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ABSTRACT

Cyber-Physical Systems (CPS) are sensing, processing, and communicating plat-

forms, embedded with physical devices that provide real-time monitoring and control.

Security challenges in CPS necessitate solutions that are robust against attacks and uncer-

tainties and provide a seamless operation, especially when used in real-time applications

to monitor and secure critical infrastructures. CPS mainly consists of a physical compo-

nent for sensing or monitoring and a cyber component for processing and communicating.

The quality of interactions between physical and cyber systems has direct impacts on the

system’s performance and reliability.

CPS plays a major role in smart services and applications within a smart living en-

vironment, such as smart cities, smart energy management systems, traffic control, critical

infrastructure protection, and many defense-related systems. Such smart CPS are inte-

grating sensing, communication, computation, and control aim to achieve stability, high

performance, robustness, and efficiency. This thesis concentrates on three aspects of CPS

robustness and security. First, we investigate the security of smart grid systems against ad-

versarial attacks and how reliable automation of smart grids depends on decisions based on

situational awareness extracted via real-time system monitoring. Second, we take a crowd-

sourcing vehicular network environment to identify potential security concerns, specifically

that impacts the quantification of aggregate truthfulness of events (quality of information

or QoI). Finally, we generalize the CPS system to create a large-scale network to investigate

how information propagates in the CPS network and possible ways to control and mitigate

the information spread. In all these cases, we identify the attack strategies that can be

employed by an intelligent adversarial entity to disrupt the operation of the application and

how different measures can be developed to make the system more robust and resilient

against attacks and uncertainties.
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1. INTRODUCTION

A smart city is a model framework, predominantly composed of Information and

Communication Technologies (ICT) to develop, deploy, and promote sustainable develop-

ment practices to address growing urbanization challenges. To address this, smart cities are

using ICT to develop energy-efficient applications coupled with automated decision mak-

ing, to support various public services in urban spaces. The core part of a ICT framework

is essentially an intelligent network of connected objects and machines that transmit data

using wired or wireless technology and the cloud. Citizens engage with smart city ecosys-

tems in various ways using smartphones, wearable devices, and connected cars and homes.

Pairing devices and data with a city’s physical infrastructure and services can reduce costs

and improve sustainability and robustness of the system. Communities can improve energy

distribution, decrease traffic congestion, and even improve living quality with help from

interconnected networks.

Cyber-physical systems (CPS) comprise the backbone of critical infrastructures of

a smart city such as power grids, transportation systems, medical devices, etc. Such CPS

systems, generally termed as smart CPS is considered as the next generation of systems that

integrate sensing, communication, computation, and control in order to achieve stability,

high performance, robustness, and efficiency as it relates to physical systems. This coupling

between the cyber and physical layer is manifested from the nano-world to large-scale wide-

area systems of systems [1].

Although cyber-physical systems are being widely incorporated into various critical

infrastructures, however, given the lack of countermeasures, security breaches could have

catastrophic consequences. For example, in an electric grid network, if communication

channels between the end devices (smart meters) to the central EnergyManagement System

(EMS) are compromised, then the whole power gridmay become unstable, possibly creating
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a large-scale cascaded blackout. Similar to theway the internet has transformed how humans

interact and communicate with one another, CPS will transform how humans access and

control the physical world around them.

Figure 1.1. The Monitor-Control-Actuation Loop of a CPS.

Figure 1.1 [2] illustrates the monitoring and control loop of an typical CPS system.

The entire system can be categorized into three phases: monitoring, decision making, and

execution. In addition to security issues, CPS privacy is another serious concern. Cyber-

physical systems are often distributed across wide geographic locations and they collect

large volumes of different types of data for analysis and decision making. Based on the

analysis and decision control actions are executed. Breaches in the data accumulation

process could potentially lead to wide-scale data theft/leakage, much of which is private or

sensitive information. An intelligent adversary can target to attack different stages of the

system’s operation, including data collection, data transmission, data operation, and data

storage.

1.1. DATA COLLECTION BY SENSING DEVICES

In a typical CPS system, information is collected by sensors and then transmitted

via a wired or wireless communication channel to the central server where the data is

processed and some decision is taken based on the collected data. Smart applications

require to sense the physical environment in real-time and process the generated data to

perform decision making. In a smart CPS system, the sensing devices are not necessarily

always physical sensors, in recent times, mobile crowdsensing (MCS) [3] has emerged as
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an enabler of cost-effective sensing infrastructure. MCS allows users possessing smart

devices like smartphones, tablets, smart wearables, etc. to collect rich sensory data about

the surrounding environment. Such sensing can either be opportunistic which indicates

sensing through smartphone sensors or participatory sensingwhere sensory data is collected

by humans [4]. The transmission between the sensing devices and the server can happen in

two ways as shown in Figure 1.2.

1.1.1. Single Hop Transmission. In these types of systems the sensing devices,

humans send the data directly to the decision-maker in a single hop. This transmission can

happen either by wired or wireless technologies. In an unreliable environment that assumes

the presence of adversarial attacks and uncertainty, the data captured by the sensors can not

always be trusted. The attacks on the sensing devices can be carried out by a malicious

adversary or even the device itself can malfunction and sends incorrect information. In

this type of single hop transmission channel, it is critical to identify the presence of such

compromised/faulty devices to prevent the decision maker from taking bad decisions.

Figure 1.2. Single-Hop and Multi-Hop Transmission.

1.1.2. Multi-Hop Transmission. In these types of systems the sensing devices

or the humans (participatory sensing) send the data via a relay network to the decision

maker. For example in a collaborative data collection framework such as bioMCS [5], the

decision maker can be located far away from the physical sensing devices and the devices
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communicate with each other to relay the collected information to the decision maker in

multiple hops. In this type of transmission settings where the collected data reaches the

decision maker indirectly using multiple hops, the security challenges become more varied

compared to single hop transmission settings. Along with the physical attack or faulty

devices, the relay network itself can introduce security issues.

1.1.3. CPS Security Objectives.

• Confidentiality: Ensures the prevention of disclosure of information to an unautho-

rized entity. For example, healthcare CPS requires personal patient information to be

transmitted confidentially to a specific destination. In case of any breach in the net-

work, that needs to be identified quickly and preventive measures to be incorporated.

• Integrity: States that the data or resource cannot be modified without proper au-

thorization. When data integrity is compromised the receiver may receive falsified

information and can believe it to be true. Any presence of data modification by

an adversary needs to be detected in real-time and counter security measures to be

deployed.

• Availability: States that the data or services must be available when it is needed to

ensure an seamless and uninterrupted service.

1.1.4. CPS Security Practices. Any CPS system such as a smart grid network,

crowdsourcing system, or complex social network is prone to adversarial threats. With the

improvements of the defense mechanisms, the adversarial strategies are also evolving and

more sophisticated methods are being incorporated by the adversarial entities. It is almost

impossible to make any system to be 100% resilient to adversarial threats. There have been

a plethora of works that discuss and contribute to the security and robustness of smart CPS

systems. We define robustness as the ability of a network to carry out information flow

under the presence of attack and uncertainties in the communication channel. The design

of defense mechanisms is distributed into three broad categories.
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• Detection: The first step of the secure and resilient defensemechanism is the detection

of attack and anomalies in the system. Early detection of such attacks/anomalies is

very important as it can prevent physical damage and financial loss to the system.

• Mitigation: Asmentioned earlier the attacker and the attack strategies are continuously

evolving, thus designing a full-proof defense mechanism is almost impossible. So

there is a need to analyze the impact of an attack and mitigation strategy. Moreover,

in some CPS systems such as crowdsourcing, it is certainly very difficult to control

user participation. Maintaining a trust score for every individual device is both time

and resource-consuming. Even in the presence of such a scoring mechanism, it is

very easy for the attacker to change its identity and create a new account. Thus in

such cases, the presence of attackers or malicious users can be assumed, and then a

new robust and resilient defense mechanism needs to be developed.

• Control: The third and last step of the CPS security practices is the controlling of the

spread of the attack. As the CPS system is deeply interconnected, the adversary with

the access of a certain vulnerable point might be able to influence other segments of

the network creating large-scale damage. So in that case, if an attack, presence of

malicious information is detected, restricting the said attack is very necessary so that

a large portion of the system can be disconnected from the infected segment and thus

can be protected.

1.2. SMART GRID ARCHITECTURE

The electrical power delivery system has often been considered the greatest andmost

complex network ever built. It consists of wires, cables, towers, transformers, monitoring

devices, and circuit breakers — all connected together in some fashion, as shown in Figure

1.3.
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Figure 1.3. Electric Power System.

1.2.1. Supervisory Control and Data Acquisition (SCADA). Historically, the

electric power grid operators and planners had limited information for the system status and

behavior of the grid. The only available information was measurements from decentralized

SCADA (supervisory control and data acquisition) systems, mostly recorded at several-

second intervals, and they did not include the physical state variables of the a.c network like

the complex voltages at every node, and time-shifted voltage information. Thus the primary

focus of the system was designed for the most extreme conditions, specifically, peak loads

and faults – and then try to ensure that the grid operated within that expected range. Despite

the good design, operation, andmaintenance efforts, over 90%of customers’ electric outages

occur due to problems on the distribution system rather than from transmission or generation

level problems [6]. Moreover, with the growth of distributed energy resources (example:

rooftop photo-voltaic cells), two-way electricity flows and new customer devices such as

electric vehicles necessitate better situational awareness and insight into distribution system

conditions and performance to make the grid more robust, more efficient, more distributed,

reconfigurable, more interactive, with faster protection and control.

To meet these requirements, smart grid integrates modern advanced sensor technol-

ogy, measurement technology, communication technology, information technology, com-

puting technology, and control technology into it, where information and electricity flow

bi-directionally [7] and the smart grid can: (1) Enable active participation by customers; (2)

Accommodate all generation and storage options; (3) Enable new products, services, and
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markets; (4) Optimize asset utilization and operate efficiently; (5) Anticipate and respond

to system disturbances; (6) Operate resiliently against attacks and natural disasters [8]. Its

conceptual model is shown in Figure 1.4.

Figure 1.4. Smart Grid Conceptual Model by NIST.

1.2.2. Phasor Measurement Unit (PMU). Phasor Measurement Unit (PMU) is

one of the most important grid-monitoring devices which provide dynamic visibility of the

state of the power grid. PMUs capture time-synchronized real-time measurements of the

magnitude and phase angle of bus voltage and line currents, the frequency, and the rate

of change of frequency at the substations where they are installed. The data are sampled

at rates of 20, 30, 50, 60, or 120 measurements per second and time-stamped accurately

based on a common time source of the Global Positioning System (GPS). At the PMU, the

synchrophasor data is assimilated in the form of the data packet and immediately sent to the

Phasor Data Concentrator (PDC). The PDC receives data from all its respective PMUs and

based on the associated time-tags sorts and merges the PMU data into single datasets and

forwards it to the super PDC or control center or the EMS as shown in Figure 1.5.

This PMU generated data, also known as synchrophasor data are used along with

the SCADA information for various power grid applications like state estimation, optimal

power flow, real-time congestion control, etc. This data provides real-time close monitoring

of the grid network that can assist grid operators to identify the exact type, time, and
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Figure 1.5. Synchrophasor System Architechture.

location of a fault or disturbance. With `PMUs installed at multiple locations throughout

the electrical distribution network (e.g. the substation, end of the feeder, and any key

distributed generation facilities), the PMU monitoring device is capable of supporting the

analysis and operation of single or multiple feeders originating from the same substation, or

even contribute to the wide-area state estimation of transmission and distribution-level grid

network. The precision of the PMU measurements, time synchronization, and the ability

to cross-reference locations can bring more insight to more distributed generation and

storage on customer premises, more customer-initiated demand response, electric vehicles,

and other changing customer load characteristics. The deployment locations of the PMUs

are very critical for monitoring the grid network, a conceptual PMU network is shown in

Figure 1.6 [9]. This PMU data is extremely critical since the control center bases their

control actuation decisions either directly on these measurements or the output of various

applications using these measurements.
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Figure 1.6. PMU Deployment Concept in an Electric Network.

1.3. CROWDSENSING SYSTEM

Today’s smartphones are ubiquitous devices equipped with a plethora of embedded

multimodal sensors, integratingwireless communication technologies such as 4G/WiFi, and

also possess complex processing capabilities. For example, the smartphone cameras can

act as video and image sensors [10], and the microphone can be used as an acoustic sensor

[11, 12, 13]. Apart from that, the embedded global positioning system (GPS) receiver in the

smartphones can gather accurate location information and the gyroscopes, accelerometers

can extract contextual information about individual users [14, 15]. Moreover, additional

sensing devices such as temperature, air quality, and humidity sensors can be connected

to the smart devices via bluetooth or wired connection. These technological features,

combined with the advanced sensing capability of humans, have garnered a significant

amount of research from both industry and academia and generated myriad applications

based on the emerging mobile crowdsensing paradigm [16].

Crowdsensing, sometimes referred to asmobile crowdsensing, is a techniquewhere a

large group of individuals having mobile devices capable of sensing and computing (such as

smartphones, tablet computers, wearables) collectively share data and extract information

to measure, map, analyze, estimate or infer (predict) any processes of common interest
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[wikipedia]. Mobile crowdsensing (MCS) has emerged as a novel paradigm for large-scale

data collection and collective knowledge formation. MCS enables users equipped with

energy-constrained smart devices to participate in sensing and reporting assigned tasks.

A typical MCS paradigm involves an MCS server that accumulates voluntary con-

tributions that are supplied by either autonomous sensing agents (IoT devices) or by humans

via an App. This new trend leverages the proliferation of modern sensing-capable devices

along with the smartphones in order to offer a better understanding and analysis of people’s

activities and surroundings. MCS users are expected to voluntarily contribute sensed data

to a central server via a communication channel. The benefit of using an MCS paradigm

is that precise and fine-grained information collection is possible without a dedicated in-

frastructure to achieve seamless communication as well as efficient resource and energy

management. However, this data is often tagged with spatiotemporal information which,

if misused, could potentially reveal sensitive user-specific information such as their where-

abouts and their health condition. Furthermore, as there is no incentive for sharing the

data, there is no control over who can contribute. Most Mobile Crowdsensing applications

deploy rating feedback mechanisms to help quantify the aggregate truthfulness of events

(quality of information (QoI)) to improve decision-making accuracy. In case of adversarial

presence in the crowdsensing environment, it is of utmost importance to devise a robust

technique to validate the authenticity of the contribution made to the MCS server.

1.3.1. Quality of Information (QoI) in MCS. Most Mobile Crowdsensing appli-

cations deploy rating feedback mechanisms to quantify the aggregate truthfulness of events

(quality of information (QoI)). Based on the QoI score and the specific requirement of the

application the authenticity of the event is measured. Most of the time the feedback is

accumulated from voluntary contributions that are supplied by either autonomous sensing

agents (IoT devices) or by humans via an App. Typical QoI scoring methods in MCS in-

clude 3 major phases: (1) accumulation of ratings/feedbacks/labels on the published event,

which ‘serves as a body of evidence’; (2) quantification of an event’s truthfulness via a
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QoI scoring model that uses the received feedbacks. (3) classification decision on whether

the event is truthful or not by comparing the QoI score with a hard or soft threshold. QoI

score is directly related to the rating population size, inherent error probabilities of the

rating providers, and most importantly in the presence of an adversary, the fraction of the

population controlled by the adversary.

1.3.2. Information Spread in Complex MCS Network. In recent times, MCS

has emerged as a paradigm of cost-effective sensing infrastructure. For the participatory

sensing (sensing by humans) applications, the human users are actively engaged in sensing

tasks and the data from multiple users are aggregated by the MCS platforms to build a

body of knowledge to support decision making. However, as the participation of MCS

users is voluntary and mostly without incentives, often users are reluctant to contribute

due to the incurred cost in terms of data subscription plan (if cellular connectivity is

used for data transfer) and/or energy spent from device batteries. In recent times, A few

energy-efficient data transfer mechanisms are proposed to keepMCS-based data acquisition

sustainable for smart city applications. In [5], a centralized, energy-efficient and robust

data collection framework, called bioMCS is proposed based on the topological properties

of a biological network called transcriptional regulatory network (TRN). bioMCS uses

collaborative sensing among users in close proximity by leveraging energy-efficient device-

to-device communication. However, this collaborative sensing is heavily dependent on the

functioning of the cluster head.

Although this method is shown to be an energy-efficient and robust framework that

leverages collaborative sensing to achieve high data delivery, It does not discuss how the

data/information is actually spread throughout the network. Information spread control in

complex networks has gained attention in recent years in a broad range of applications,

from large scale IoT networks, smart grid networks, healthcare and medicine (e.g., drug

design [17] or curbing epidemics [18]) to social networks [19] (e.g. moderating fake

information that can lead to polarization). Selective removal of certain subgraphs called
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motifs based on the spread function value is one of the most powerful approaches to

curb the overall influence spread in any complex network. The presence of motifs has been

reported inmany applications including large scale IoT networks, social networks, biological

networks, ecological networks, and communication networks [20, 21]. The high degree

of evolutionary conservation of motifs suggests that they play a key role in information

dissemination, making their detection and analysis the first step towards investigating their

contribution to spreading dynamics within complex networks. However, the design of an

effective control mechanism to curb influence spread poses important challenges: (i) high

computational complexity, especially in large complex networks, (ii) ethical issues, such

as harmful bias and lack of accountability in social networks, and (iii) long-term control

impact, e.g., potential reduction in network operations due to the presence of malicious

information in the network which can only be observed in hindsight.

1.4. SUMMARY OF CONTRIBUTION

As discussed in the Introduction, the defensemechanism of any CPS system depends

on the type of transmission (single hop or multi-hop) used in the system to transfer the data

to the decision maker. Each of these brings unique security challenges.

Moreover, the defense mechanisms can be broadly categorized into three classes

such as Detection, Mitigation, and control. In this thesis we have particularly put our focus

on these three aspects and proposed defense mechanisms for each of these. Now all these

aspects are time dependant but the detection of attack/anomaly is the most time critical

task. So for that reason, we have used a smart grid application to construct our defense

mechanism. Secondly, for the mitigation step, we have assumed that the CPS system is

prone to attack and considered the presence of malicious users. To implement that we have

considered a crowdsourcing application where devices are users contribute voluntarily.
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Figure 1.7. Common CPS Security Model.

Finally, in the control phase, we envisioned the CPS system as a large complex network and

investigated the possible ways to control the spread of an attack. Figure 1.7 depicts all three

aspects of the CPS security model.

1.4.1. PMU Security. We first discuss multiple attack strategies for data falsifica-

tion attacks in distribution layer PMUs. Then, we propose a process variable selection that

reduces the dimensionality of the dataset to design a light weight anomaly detection model.

We use the ratio of harmonic means to arithmetic means of the active power derived from

the synchrophasor data sent from PMUs as a data-driven ‘invariant’ for anomaly detection.

Specifically, we find the appropriate spatial and temporal considerations of the PMU net-

work, such that an ‘invariant’ is highly stable under no attacks but shows unique changes

under various kinds of data falsification attacks. Then, we propose a two-tier threshold

based detection criterion involving stateless and stateful residuals of the anomaly detec-

tion metric, that better improves the false alarm versus detection sensitivity trade-off. The

two-tier detector uses the sum of long term residuals from the median absolute deviation
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of the ratio based metric observed over the training phase. We further propose the use of

Cauchy/Lagrangian loss function to fine tune the detection threshold. Finally, we validate

our work by using real two PMU datasets.

The main benefits of our approach are to provide a practical framework for com-

promised PMU identification that (i) real time, light weight, semi- supervised, (ii) enables

quick identification, and (iii) simultaneously works for a variety of data falsification attack

types.

1.4.2. Crowdsensing Security. Here we establish the use of a moving target sub-

sampling technique as a method to ensure active resilience against bad mouthing attacks

when rating sample sizes are smaller, honest rating labelers have errors in their judgment

and uncertainty, and adversaries have knowledge of QoI scoring models. Specifically, we

first establish some conditions under which linear QoI models (e.g., Josang, Beta Trust

Models) and nonlinear models (QnQ) fail. Then, we describe the sub-population sampling

method under various adversarial scenarios, and available information present to the MCS

provider. We show that when consensus is lacking and the attack scale is unknown, a

sub-sampled strategy for quantifying QoI is a better approach that improves the probability

of evasion of bad mouthing attacks, and still infer an event as truthful, regardless of whether

the adversary controls the majority or minority of the rating feedback population. We

then provide a game theoretic formulation where we analyze strategic behaviors of MCS

and adversaries by taking economics of security attack and defense into consideration to

show improved resilience to bad mouthing attacks and boost in QoI scores, compared to

traditional methods.

1.4.3. Information Security. Influence spread control in complex networks has

some specific challenges: (i) high computational complexity, especially in large complex

networks, (ii) ethical issues, such as harmful bias and lack of accountability in social
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networks, and (iii) long-term control impact, e.g., potential reduction in network operations

due to the presence of malicious information in the network which can only be observed in

hindsight.

Here, we first focus on the first challenge, namely, designing an efficient information

spread control scheme to curb the adversarial influence on the network. Selective removal of

certain subgraphs calledmotifs based on the spread function value is one of themost powerful

approaches to curb the overall influence spread in any complex network. In particular,

we propose a novel scoring mechanism that leverages the presence of motifs (or specific

subgraphs) that are recurrent patterns occurring in complex networks in higher numbers than

in randomized networks [22]. We first prove that any general spread function preserves both

monotonicity and submodularity properties even under motif removal operations. Next,

we propose a scoring mechanism as a novel spread function that quantifies the relative

importance of a given motif within the overall influence spread dynamics on the complex

network. We design a novel algorithm that eliminates motifs with high spread scores to curb

influence spread. We evaluate the performance of our proposed spread control algorithm

using simulation experiments in the context of 3-node motifs called feed forward loops

(FFLs) in both real and synthetic network topologies. We demonstrate that high-scoring

motifs intercept a high number of short paths from the pre-assigned source and sinks,

because of which their elimination results in a significant effect on curbing the influence

spread. Furthermore, we empirically evaluate the run-time and cost versus performance

trade-off of the proposed algorithm.
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2. LITERATURE REVIEW

2.1. ATTACK DETECTION IN DISTRIBUTION LEVEL PMUS

Real-time use of PMUs is a growing field of research, however, the practical imple-

mentation of PMU technology has been scattered. The proposed approach in this paper is

to develop a statistical based semi-supervised learning framework for modeling the multi-

variate stream of raw PMU data that captures frequency, voltage, current measurements,

and phase angles that exhibit nontrivial dependencies in real-time.

Most of the prior research on power grid data analytics (including SCADA and

PMU measurements) is mainly focused on either placement of PMU in strategic locations

or detecting events on the grid transmission level.

In [23, 24], the authors designed satistical testing with sliding windows that detect

anomalies in a single variable. [23] propose to use the compensation theorem in circuit

theory to generate an equivalent circuit to identify a specific event. [24] propose an approach

for clustering sets of events to reveal unique features that distinguish different events from

one another. However, both the designs are built on a single data stream, thus, can result

in computational overhead. Similarly, the authors of [25] used a rule-based mechanism to

detect perturbations in each data streams independently by identifying optimal placements

of PMUs. In [26], the authors focus on detection and classification of smart meter anomalies

using an unsupervised machine learning techniques using neural network based models.

However, given the latency critical and high sampling nature of PMU, it is difficult to extend

the proposed method in real-time.

In [27], a mechanism based on continuous monitoring of phase-wise equivalent

transmission line impedance was proposed, for detecting data falsification on the voltage

data from transmission system PMUs. However, they require two PMUs deployed at both

ends of the transmission line and one of them needs to be honest. More importantly, we
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found that the PMU data streams at the transmission level were inherently stable making

anomaly detection a less challenging problem. In [28] a Support Vector Machine (SVM)

was used for detection, against a mirroring spoof attack strategy on the voltage data at

distribution level PMUs. However, only falsification of voltage stream was considered

which is relatively stable and makes anomaly detection less challenging.

The [29] proposed a decision tree-based anomaly detection scheme to differentiate

between normal tripping and malicious tripping by training on specific attack samples.

However, it is not feasible to generate 100% of all the possible legitimate line tripping

cases for training in [29]. In [30] a smart Time Synchronization Attack (TSA) based on

GPS spoofing was shown to be equivalent to modifying the phase angle measurement from

PMUs. However, they have not discussed any defense mechanism.

In[31] a density-based local outlier factor (LOF) analysis was used to detect the

anomalies among the data, to describe spatio-temporal outliers among all the synchrophasor

measurements from the grid. However, this method might not be able to detect attacks in

real time, and in their proposed method the authors have only considered an attack on

voltage magnitude.

A critical analysis of all previous works on the detection of PMU data falsification

revealed that current data falsification for PMU streams was not investigated. Further-

more, we found that, unlike transmission level PMUs, the distribution level PMU’s current

synchrophasor data shows high dynamic variations in benign conditions, making anomaly

detection challenging. Finally, all previous defenses are stream specific in the sense that

they only work for either voltage or phase falsification. Since each PMU contains 4 streams

and has 3 phases, a stream specific defense will require 12 different defense models that

need complex cross-coordination.
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2.2. ATTACK RESILIENCE IN MCS

Typical trustworthy MCS includes 5 major phases: (1) accumulation of ratings/

feedbacks/ labels on the published event, that ‘serves as a body of evidence’; (2) quantifica-

tion of the event’s truthfulness score via a Quality of Information (QoI) model that uses the

body of evidence (i.e., rating feedbacks). (3) classification decision on whether the event

is truthful or not by comparing the QoI score with a hard or soft classification threshold.

(4) a user reputation model that rewards the reporters who were involved in the reporting

concluded truthful events while penalizing those reporting events concluded as not truthful.

(5) Such rewarding are aggregated over time across the whole network, to calculate the final

reporting reputation of a user, and incentives are disbursed based on the reputation.

Normally, the QoI is calculated by modeling evidence obtained using (i) ground

truth, (ii) similarity based outlier detection, (iii) spatio-temporal provenance, (iv) prior

reputation context, and (v) the rating feedback mechanism. However, the ground truth is

not always immediately available, and often acquiring the same is not guaranteed or feasible.

Additionally, obtaining ground truth often requires deployment of dedicated infrastructure

thus obviating the main benefit of crowdsensing.

The QoI’s is typically computed by Majority Voting [32], Josang’s Belief [33],

Dempster Shafer [34], or nonlinear models (QnQ [35], Gompertz [36]. The user reputation

model is computed by Dempster Shafer, Beta/Dirichlet distribution via various aggregation

operations for multi-source fusion and time averaging that utilize outcomes of the QoI

phase. Similarity based outlier detections such as [37], [36], [38] checks the similarity

among user’s contributions in terms of event type, location, and time stamp and awards

higher QoI to events having higher similarity. Spatio-temporal provenance based schemes

[39] rely on the existence of prior and reliable reputation scores of all the users. Research

works also investigated the design of incentive mechanisms in order to influence users

behaviors so that users will produce high-quality data. Such incentive mechanisms mostly

include auctions [40], [41], lotteries using the Tullock contests [42], trust and reputation
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systems [43]. Other such incentive mechanisms include bargaining games [44], contracts

[45], or market mechanisms [46]. For example, [40] proposed Thanos that incorporates

QoI into an incentive mechanism based on reverse combinatorial auctions to achieve near-

optimal social welfare.

[47] proposed a cross validation (CV) approach to quantify the data quality by using

a validating crowd to ratify the contributing crowd in terms of the sensor data contributed

by the latter, and uses the validation result to reshape data into a more credible posterior

belief of the ground truth. This approach leverages the “side information” possessed by

people, which includes (diversely) people’s domain knowledge, professional expertise, etc.

All QoI models are based on the assumption that the presence of a crowd auto-

matically means the presence of a substantial amount of rating feedbacks that is enough to

keep the relative proportion of compromised feedbacks to the total number of feedbacks

low enough for QoI models to successfully infer the QoI that is unbiased. Nonetheless,

this assumption is often not practical or useful for the following reasons. First, MCS the

main adversary is a rival business, who’s aim is to not let a new business competitor grow.

Initially, all newly launched crowdsensing systems have a lower customer base, and hence

rating feedback labelers are lower to begin with. The rival business with a practically small

attack budget can poison the QoI inference and prevent good reporters from gaining reputa-

tion. Eventually, demotivated good reporters will cease to be active or exist. Consequently,

such action can be accompanied by introducing rogue reporters by the rival business to

introduce fake or spam reports which will get accepted easily due to less competition from

good users.

Second, even when the crowdsensing systems may have a high user base, the

geographical spread of this user base may not be spatio-temporally uniform. For example,

downtown area has less crowd during night, parts of the city can be inherently sparsely

populated than other areas. Event QoIs have a strong spatial relationship in general and this

creates further danger in having negative QoI inferences. Hence, this makes the problem a
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very important security issue. Furthermore, most of these solutions do not mathematically

incorporate the error probability of rating feedbacks from honest raters. When the error

probability is combined with the presence of an attack, even for a minority malicious rating

population, the QoI with existing models can produce sub-optimal results.

2.3. INFORMATION PROPAGATION IN COMPLEX NETWORKS

The Topological and functional properties of motifs are important for analyzing

large-scale complex networks. While 4-node motifs were found to be responsible for

nutrient metabolism and bio-synthesis in biological networks [22, 48], 3-node motifs are

shown to affect information propagation by acting as filters, pulse generators, and response

accelerators [49]. This motivated researchers to investigate motifs from the perspective of

information processing. For example, the influence of motifs on information dissemination

in neuronal networks is investigated in [50]. Motifs are also hypothesized to regulate

information flow within constrained time windows [21]. Hence, complementary research

efforts were motivated to decode the impact of broader organizational patterns of motifs.

For example, the authors in [51] proposed an approach called motif generalization to group

similar motifs into families; while the organizational pattern of motifs was analyzed in [52].

Finally, the notion of higher-order motifs is explored in [53], which showsmotif aggregation

to form motif-of-motif structures.

Topological robustness due to the presence of motifs is well-studied in biological

networks such as Transcriptional Regulatory Network (TRN). The authors in [21] proposed

a network centrality measure, called motif-based centrality, to quantify the importance of a

node in terms of its motif participation. This metric was utilized to design efficient fault-

tolerant topologies and robust routing protocols in various communication networks, such

as wireless sensor networks [54, 55, 56], delay tolerant networks [57], and edge computing

frameworks [58]. These networks optimize communication performance goals, such as data

delivery rates, communication delay, and energy efficiency. Since motifs play a key role in
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the information spread, their removal due to failures or attacks makes the performance of

complex networks (e.g., wireless sensor networks or smart grid networks) highly vulnerable.

Thus, it is imperative to evaluate the cost and effects of failures or attacks that knock off

network motifs.
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3. REAL TIME STREAMMINING BASED ATTACK DETECTION IN
DISTRIBUTION LEVEL PMUS FOR SMART GRIDS

CPS systems are widely used in a smart city environment for sensing the physical

environment in real-time and processing the generated data to inform decision making. One

of the most important such applications is the smart grid management system. Reliable

automation of smart grids depends on decisions based on situational awareness extracted via

real time system monitoring and accurate state estimation. The Phasor Measurement Units

(PMU) at distribution and transmission layers of the smart grid provide high velocity real

time information on voltage and current magnitudes and angles in a three phase electrical

grid. Naturally, the authenticity of the PMU data is of utmost operational importance. Data

falsification attacks on PMU data can cause the EnergyManagement Systems (EMS) to take

wrong decisions, potentially having drastic consequences on the power grid’s operation.

The need for automated data falsification attack detection and isolation is key for EMS

protection from PMU data falsification. Here, we propose an automated distributed stream

mining approach to time series anomaly based attack detection that identifies attacks while

distinguishing from legitimate changes in PMU data trends. Specifically, we provide a

real time learning invariant that reduces the multi-dimensional nature of the PMU data

streams for quick big data summarization using a Pythagorean means of the active power

from a cluster of PMUs. Thereafter, we propose a methodology that learns thresholds of

the invariant automatically, to prove the predictive power of distinguishing between small

attacks versus legitimate changes. Extensive simulation results using real PMU data are

provided to verify the accuracy of the proposed method.
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3.1. BACKGROUND

Traditionally, power grid operators had limited information about dynamically vary-

ing system states in the grid. Manymajor faults in the grid are usually preceded by ephemeral

warning signs (e.g., voltage sags) that Supervisory Control And Data Acquisition (SCADA)

measurements (with data resolution of several seconds) could not capture as shown in [6].

To alleviate this problem, PMUs are deployed to capture fine grained high resolution time

series data. These PMUs form the crucial endpoint device for the PMU Infrastructure, one

of the key cornerstones of the modern smart grid design. Furthermore, with the increasing

market penetration of Distributed Energy Resources (DERs) (e.g. solar panels), two-way

electricity flows, and novel loads (such as electric vehicles), the grid requires real time grid

monitoring, making the integrity of PMU data streams of strategic importance. The PMUs

record time-synchronized measurements of voltage, current, phase angle and frequency

(collectively known as synchrophasor data) and sends it to an aggregator called Phasor Data

Concentrator (PDC) using single hop transmission protocol IEEE C37.118-2. The PDC, in

turn, relays such data to a control center, allowing grid operators to localize and infer the

type, time and location of a fault or disturbance as well as support critical control-actuation

operations such as state estimation, maintain optimal power flow, based on the measured

PMU data streams. The architecture of a typical PMU-PDC infrastructure is shown in

Figure 3.1.

Figure 3.1. Architecture of a PMU Infrastructure.
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However, in recent years, power distribution systems have faced cyber-attacks, threat-

ening their security, reliability of operations. The report of US National Research Council

highlights potential multi-state blackouts as a result of coordinated False Data Injection

(FDI) attacks on power systems[59]. Such an attack on the Ukrainian power grid resulted

in the loss of service for approximately 225,000 customers in three different territories

which lasted for several hours [60]. Stuxnet worm has directly affected more than 100,000

industrial components [61]. However, the widely accepted IEEE C37.118-2 protocol for

synchrophasor communication is highly vulnerable to cyber-attacks [62, 63]. In fact, most

synchrophasor data transmission happen on non-reliable and insecure IP networks. Heavy

encryption is not possible due to the latency critical nature of PMU data applications, thus

increasing the chances of FDI attacks. This motivates the need for anomaly based intrusion

detection in PMUs. While some existing research [27, 30] offer solutions, they have the

following limitations: [27] focus on transmission layer PMUs, where data is very stable,

thus making anomaly detection easy. The [28] considers the problem of only voltage data

falsification, which is stable and hence easy to detect, ignoring current data falsification.

In this work, we first discuss multiple attack strategies for data falsification attacks

in PMUs. Then, we propose a process variable selection that reduces the dimensionality

of the anomaly detection problem. Then, we use a ratio of harmonic means to arithmetic

means of the active power derived from the synchrophasor data sent from PMUs as a

data-driven ‘invariant’ for anomaly detection. Specifically, we find the appropriate spatial

and temporal considerations of the PMU network, such that an ‘invariant’ is highly stable

under no attacks but shows unique changes under various kinds of data falsification attacks.

Then, we propose a two-tier threshold based detection criterion involving stateless and

stateful residuals of the anomaly detection metric, that better improve the false alarm versus

detection sensitivity trade-off. The two-tier detector uses the sum of long term residuals
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from the median absolute deviation of the ratio based metric observed over the training

phase. Finally, we validate our work by using real PMU datasets collected from Lawrence

Berkley National Lab across 12 days.

The main benefits of our approach are to provide a practical framework for com-

promised PMU identification that (i) real time, light weight, semi- supervised, (ii) enables

quick identification, and (iii) simultaneously works for a variety of data falsification attack

types.

3.2. SYSTEM AND THREAT MODELS

3.2.1. PMU System Architecture. Here we first describe the PMU infrastructure

network architecture. Most PMUs measure time-stamped voltages and current magnitudes

and their phase angles denoted by +C ( 9), �C ( 9), \+C ( 9), \ �C ( 9) respectively, where C is the

time stamp and 9 is the j-th phase. These PMUs are deployed at strategic points of the

transmission and distribution layers of the smart grid. Each PMU sends its data to a regional

decentralized data aggregator known as PDC. The corresponding PDC in turn relays the

aggregated data from multiple PMUs to a Local Controller Center (LCC). Various local

controller centers communicate with each other forming a wide network for synchronizing

local and global PMU data. In this work, we are specifically interested in a decentralized

anomaly detection that runs on a PDC or a LCC and facilitates early attack detection from

a bunch of PMUs that are geographically proximate in terms of the PMU network.

3.2.2. Dataset Description. We have used two different dataset for our analysis.

The first dataset is collected at Lawrence BerkeleyNational Laboratory (LBNL) in Berkeley,

CA and the second dataset is collected at Ecole Polytechnique Federale De Lausanne (EPFL)

campus in Switzerland.

3.2.2.1. LBNL data. We use a dataset collected from the Power Standards Lab

(PSL) at LBNL in Berkeley, CA, which developed high-precision `-PMUs for showing

how steps in our framework related to a real PMU system. The LBNL dataset contains
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three `-PMUs that are deployed at multiple utility and LBNL campus locations on a 12

kV distribution grid. The `-PMU devices are named as: Grizzly, A6, and Bank514 in

the dataset. Each `-PMU device produces 12 streams of 120 Hz high-precision values

with timestamps accurate to 100 ns (the limit of GPS). The 12 streams of data include

both magnitude and phase angle for both voltage and current for all three phases on a true

distribution network[64].

3.2.2.2. EPFLdata. This dataset is from themonitoring infrastructure of the smart-

grid pilot project in the EPFL campus [65]. It consists of voltage, current, and frequency

data from five PMUs deployed in a 20 kV active distribution network and the data has been

recorded as 50 fps. The PMU devices are named as: PMU2, PMU3, PMU4, PMU5, PMU6.

The 12 streams of data include both magnitude and phase angle for both voltage and current

for all three phases on a true distribution network.

3.2.3. ThreatModel. This section describes three features characterizing the threat

model (e.g.,attack types, falsification margins, and falsification distributions) that can be

employed by organized adversaries.

3.2.3.1. Threat model scope. PMU being a comparatively new research area, real

malicious data samples from PMUs are hard to find. Therefore we generated the malicious

samples by applying the three aspects of adversarial strategy over the real data. We have

ensured that the falsification strategies used, do not favor or suit our proposed defense

mechanism.

In simple electrical terms, the term load is equivalent to the current magnitude in

each phase. Typically, in any phase, there could be two possibilities of load change. Either

there could be an increase or decrease in current, both creating an imbalance in the power

grid. An increase in the phase current will cause the phase voltage to drop. If the current

increases toomuch, then the phase is shed or the load is switched to other phases. Imbalance

can also occur if the current drops in any phase, making the system inefficient in terms of

utilization. This creates a motivation to falsify current measurements.
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3.2.3.2. Attack types. Attacks can be categorized in different types based on how

data is changed across multiple PMUs. Organized adversaries can falsify data from single

or multiple compromised PMU(s) simultaneously. Based on the objective and intent of the

adversary, any of the four streams (Voltage Magnitude, Voltage Angle, Current Magnitude,

Current Angle) of each phase can be falsified.

We assume the adversary falsify the ’current magnitude’. Let �8C (02C) be the actual

current magnitude of 8-th PMU at time C, while �8C be it’s reported value. Under no attacks,

the actual and reported value �8C = �8C (02C), while under attacks the reported value �8C can be

biased by the following ways:

• Deductive: In this case �8C from the 8-th compromised PMU at time C is changed to

�8C (02C) − �XC , where �X<8= ≤ �XC ≤ �X<0G , for �X<8= > 0 is the false bias. Deductive

attacks disrupt the efficiency of the grid by reducing the power utilization.

• Additive: An additive attack can be launched by a rival utility to make the control

center believe in a sudden increase in load which might lead to load shedding in that

particular phase. Therefore, for additive falsification, the modified attack sample is

�8C = �
8
C (02C) + �XC from a compromised PMU.

• Alternating Attack: The adversary alternates between additive and deductive falsifi-

cation for equal time duration over the time domain with the same average bias value

of �XC . In such a case, the effect of additive and deductive falsification will cancel each

other’s effect over a particular time period making it hard over most device specific

statistical anomaly detectors to detect such attacks. Figure 3.2a demonstrates the

impact on the power if a PMU is compromised with such an attack.
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(a) (b)

Figure 3.2. Attack on PMU2. (a) Alternating Attack; (b) Mirroring Attack.

• Mirroring Attack: Here attacker captures �8C for some period and then replaces the

actual current measurements with the mirror image of captured �8C . Using mirroring

attack the adversary can disrupt the system without violating the upper and lower

value of the attacked PMU active power. Figure 3.2b shows the impact of mirroring

attack on the active power of EPFL dataset.

3.2.3.3. FDI margin. We consider �X0E6 as the average margin of false data for

each compromised PMU. The strategic value of �X0E6 is selected by an adversary as some

value that ensures some minimum damage to the system. We keep this as an uncontrolled

variable to test detection sensitivity since there could be various applications of PMU data.

We consider that the attack is uniformly distributed �XC ∈ [�X<8= , �X<0G ] that does not change

the resultant shape of the load distribution drastically, making it a smarter and less obvious

attack.

3.2.3.4. Attack strategies. We consider three types of attack strategies:

• Step Strategy: In this case the adversary modifies all samples to higher (additive) or

lower (deductive) values by �X0E6 in the attack period, Δ0.

�8C =


�8C (02C), if C ∉ Δ0

�8C (02C) + �XC , if C ∈ Δ0
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• Ramp Strategy: A ramp attack involves gradual modification of the actual measure-

ments by the adversary. Here adversary gradually increases the �XC in each time slots

to reach �X<0G and then again gradually decreases �XC [27]. Based on the adversary’s

intend, this attack can also be both of additive and deductive in nature.

�8C =


�8C (02C), if C ∉ Δ0

�8C (02C) + _A .C, if C ∈ Δ0/2

�8C (02C) − _A .C, if Δ0/2 ∈ C ∈ Δ0

• Random Strategy: This attack involves the addition/subtraction of positive values

generated by a uniform random function to the actual measurements. The upper (0)

and lower (1) bounds for selection are provided to the function as an input

�8C =


�8C (02C), if C ∉ Δ0

�8C (02C) ± A0=3><(0, 1), if C ∈ Δ0

3.3. PROPOSED FRAMEWORK

The proposed framework is divided into four steps: (1) Propose a derived process

variable (active power from synchrophasor measurements) that will form the basis for

the anomaly detection process; (2) Design the invariant metric by optimizing spatial and

temporal granularities of the process variable; (3) Design of a stateless and a stateful

detection thresholds that identify the normal region of invariants under no attacks from

the training set, such that false alarms are not drastically sacrificed for detection sensitivity

improvement; (4) Determine the detection criteria parameters, based on learning from the

training and cross validation steps, and apply it on the testing set, such that the predictive

accuracy of distinguishing between legitimate changes versusmalicious attacks is improved.

3.3.1. Choosing Process Variable for Anomaly Detection. Given the high veloc-

ity of the data, quick lightweight analytical tools are required for big data summarization

to ensure the security and integrity of the dataset. However, due to 12 streams of data



30

per PMU, the variety of data is extremely large. With multiple data streams per PMU, the

anomaly monitoring of all these streams separately increases the computational cost and

latency in anomaly detection analytics.

Hence, we propose the active power calculated from synchrophasor data streams

per PMU, as the process variable over which the data driven invariant is designed. The

active power (%( 9)) per phase from PMU measurements are calculated using the following

standard power equations:

%( 9) = + ( 9)� ( 9) cos \ ( 9). (3.1)

Here 9 ∈ {1, 2, 3} denote the phases and + ( 9), � ( 9), \ ( 9) are voltage magnitude,

current magnitude, and angle difference between voltage and current phases respectively,

for the 9-th phase. This reduces the complexity of the monitoring each stream separately

unlike existing works.

Another advantage is that any deliberate falsification of the voltage or current (both

in terms of magnitude and phase) will impact the active power, and hence we can potentially

detect an attack on any of the data streams fromPMUs. Therefore, for our anomaly detection,

we propose to use the phase wise monitoring of the active power %( 9) as a starting point.

To clean the raw dataset [64] we have also applied 95% Winsorization before proceeding

with our model.

3.3.2. Achieving an Invariant for Anomaly Detection Metric. For real time

anomaly detection in CPS, it has been established that a metric which is invariant under

normal operating conditions (without any attack) is ideal for attack detection. However, un-

like tightly controlled industrial CPS applications, the distribution level synchrophasor data

is affected by randomness and renewable power outputs and consumption patterns, causing

traditional statistical invariants to have high randomness. As shown in Figure 3.3(a) the

arithmetic mean of the time series is not stationary. Here day 1, 2, 3, 6 are weekdays and day

4, 5 are weekends. Prior works such as [66] propose the use of derived smoothing statistics
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of the arithmetic mean (such as ARMA, EWMA, CUSUM control charts) for time series

anomaly detection. However, Figure 3.3(a) shows that time series of PMUs active power

fluctuates greatly over time windows, making it difficult to distinguish legitimate changes

from a malicious one. Any moving average or smoothing technique either loses sensitivity

for a small margin of attacks (since the moving average does not reflect the changes beyond

already existing deviations or has large false alarms.

Let Vt = [%1C , ..., %#C ] denote the active power from # PMUs at time slot C. Recently,

in [67], we have shown that the ratio of harmonic mean and arithmetic mean of positively

correlated variables exhibit invariance in their time series even when the individual means

show non-stationarity. Additionally, [67] showed that the data perturbations in any variable

cause the ratio to lose its invariance. However, this stability is guaranteed for appropriately

correlated variables only. Hence, our primary goal is to investigate how to apply this on

active power from PMUs. To this aim, we need to find the appropriate spatial and temporal

granularity that maximizes the correlation between active powers on a given phase across

different PMUs, which ensures invariance in the detection metric. Figure 3.3(b) depicts the

stability of the invariant metric under optimal spatio-temporal optimization.

We propose to use the Harmonic to Arithmetic mean ratio as our invariant. Let the

harmonic mean (�"C) and arithmetic mean (�"C) of %C at time slot C be defined as:

�"C = # (
#∑
8=1

%8C)−1 and �"C =
1
#

#∑
8=1

%8C . (3.2)

We calculate �"C and �"C for slot C over a time window ) of length = slots. Then

we calculate the average �"C to �"C ratio, &A ()), at the end of each window as follows:

&A ()) =
∑=
C=1 �"C∑=
C=1 �"C

(3.3)
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(a) (b)

Figure 3.3. Illustrations of AM and HM/AM. (a) AM; (b) HM/AM.

where 0 ≤ &A ()) ≤ 1, as �"C ≤ �"C .

3.3.2.1. Optimizing spatial granularity. Intuitively, a group of PMUs connected

to the same feeder or serving proximate geographical areas should exhibit some interde-

pendence in the synchrophasor data streams. We use the pairwise Pearson correlation

coefficient to identify clusters that show some level of positive correlation. The higher

the desired level of invariance, the higher is the required level of positive correlation. We

calculate hourly Pearson’s correlation among all pairs of PMUs in the training set to find

groups having a maximum correlation. In the LBNL dataset, the mean of hourly correla-

tions between Grizzly, A6 is 0.98; between Grizzly and Bank514 is 0.54; between A6 and

Bank514 is 0.55 as shown in Figure 3.4(a). It is evident from the mean correlations that

Grizzly and A6 are connected to the same feeder and thus can be considered in a single

cluster. The average correlation identifies PMUs to be clustered under one instance of the

anomaly detection technique.

3.3.2.2. Optimizing temporal granularity. Now we focus on choosing the appro-

priate time granularity over which the ratio metric is calculated. The time granularity should

be such that the invariance in the ratio metric is maximized (i.e., minimize the measure of

dispersion in the ratio statistic). Therefore, we solve the following search problem:

) = argmin
)∗

"�� (&A ()∗)). (3.4)
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(a) (b)

Figure 3.4. PMU Clustering and MAD Over Time Window. (a) Correlation among the
PMUs; (b) MAD over time windows.

(a) (b)

Figure 3.5. Stateless and Stateful Residuals for n = 0.85. (a) Stateless Residual; (b) Stateful
Residual.

In the previous equation, "�� (&A ()∗)) is the median absolute deviation (MAD)

of the resulting ratio time series with candidate time granularity )∗ ≤ 360 seconds. We

choose )∗ that minimizes the MAD of the ratio time series (shown in Figure 3.4(b)).

3.3.3. Stateless and Stateful Residual based Threshold Design. Intuitively, The

anomaly detection needs to identify a proximate spatial region around the ratio time series

that specifies the behavior of the invariant under no attacks. Usually, a threshold is calculated

by tracking the difference between the actual time series value and its smoothed value over

time. However, a simple threshold based approach, cannot decrease both false alarms and

missed detections simultaneously [66]. Hence, we put forward a two-tier approach with

stateless and stateful residuals.
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3.3.3.1. Stateless residuals. The stateless residual is an instantaneous residual per

time window ) . Our method computes the mean `A and median absolute deviation, <& ,

from the probability distribution of ratio values &A ()) for each PMU cluster (shown in

Figure 3.5(a)).

Unlike our previous work [67], we propose the use of Median Absolute Deviation

(MAD) as a scale parameter for designing the stateless residual rather than the standard

deviation (SD), because MAD is more robust to outliers. Thus, MAD can automatically

adjust the resultant safe margin under errors and outliers in the training. The MAD is robust

than SD since it is based on a squared error from the mean, so a finite number of outliers can

influence SD easily compared to MAD, thus reducing sensitivity to small attack strengths.

Stateless residual is parameterized as ^ = n<& where n ∈ (0, 4], such that ^ ∈

(0, 4<&] and <& is the MAD. Intuitively, larger ^ values produce wider safe margins, thus

reducing false alarms but increasing misdetection and vice-versa. Hence, a trade-off is

necessary for selecting a threshold that will automatically generalize into lowering false

alarms while not sacrificing the detection sensitivity, which is taken care of by the stateful

residual as shown in Figure 3.5(b).

Our framework calculates a parameterized ’stateless residual’ with two values;

Γ; ()), and Γℎ ()) around the observed instantaneous ratio values &A ()), on every time

window on the training dataset as shown in the Equation 3.3.

Γℎ ()) = &A ()) + n<&;

Γ; ()) = &A ()) − n<& .
(3.5)

∇()) =


&A ()) − Γℎ ()), if &A ()) > Γℎ ());

&A ()) − Γ; ()), if &A ()) < Γ; ());

0, otherwise.

(3.6)
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The instantaneous stateless residual ∇()) which is the ’signed residual distance’

between the observed ratio and the stateless residuals is derived using Equation 3.6.

The value of ∇()) could be positive (or negative) depending on whether the ratio

sample observed is above (or below) the upper (or lower) safe margin Γℎ ()) (or Γ; ())).

Thus, ∇()) is zero when the ratio observed is within [Γℎ ()) , Γ; ())].

3.3.3.2. Stateful residuals. Our framework now maintains the sum of residuals

between the ratio value and the Γℎ ()) and Γ; ()) over a sliding frame of past  time

windows. We denote this sum as '*� ()). To calculate this metric. Now, the framework

calculates '*� ()) over a sliding frame of past  time windows as:

'*� ()) =
)∑

9=)− 
∇( 9). (3.7)

Algorithm 1 Calculate g<0G
input : list of g: [g]
output : g<0G;
for ), [g] do

if '*� ()) > 0 then
if '*� ()) < g then

�<0G : |g−'*� ()) |F

if '*� ()) > g then
%<0G : F |'*� ()) − g |

g<0G = argmin
g

( |BD<(�<0G) − BD<(%<0G) |)

3.3.4. Optimizing Standard Limits of '*� ()). We need to calculate an upper

and a lower threshold from the RUC values that prevent underfitting and overfitting and

improves detection performance in the test set. The procedure for calculating the upper and

lower thresholds is similar. Algorithm 1 and 2 shows the method for calculating g<0G and

g<8= respectively.
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For this, we define a cost �, and penalty %, as the loss functions. The cost and

penalty function represents the loss due to missed detection and false alarms respectively.

One key consideration in time series attack detection is to minimize false alarms, since

the actual probability of being under attack is much lesser. Therefore, seemingly low false

alarm rates, do not necessarily indicate a good usable attack detector. Therefore, we need

to give more importance to the false alarms. Hence, the loss due to false alarm (penalty

%) gets more weight, compared to the loss due to missed detection (cost �) as is evident

in Algorithm 1. In the end, we choose a threshold g<0G (and g<8=) which minimizes the

absolute difference between total cost and penalty values for the positive RUC samples (and

negative RUC samples).

Algorithm 2 Calculate g<8=
input : list of g: [g]
output : g<8=;
for ), [g] do

if '*� ()) < 0 then
if '*� ()) > g then

�<8= : |g−'*� ()) |F

if '*� ()) < g then
%<8= : F |'*� ()) − g |

g<8= = argmin
g

( |BD<(�<8=) − BD<(%<8=) |)

The frame size  and weight F of � and % can be determined optimally, by using

a small cross validation set with a few attack samples and test what values of  and F are

best. We plot the Receiver Operating Characteristic (ROC) curve for the cross validation set

(See Figs. 3.6(a) and 3.6(b)) for various values of  and F, and choose that combination

that gives the steepest ROC curve.
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(a) (b)

Figure 3.6. Parameter Selection from Cross Validation. (a) ROC(CV) Additive Attack; (b)
ROC(CV) Deductive Attack.

3.3.5. Detection Criterion in Test Set. The main idea behind attack detection is

that RUC in the test set ('*� ()�)) should not deviate from the standard limit obtained

from the training set. We first calculate the stateless residuals for each time window of

the testing set )� such that Γℎ ()�) = &A () ℎ) + ^>?C and Γ; ()�) = &A () ℎ) − ^>?C . ^>?C

is derived from the set of ^ that produces optimal standard limit. The historical value of

the ratio on that time window &A () ℎ), where ) 2 is the current time window and ) ℎ is the

corresponding time window in the training set, Γℎ86ℎ () 2) and Γ;>F () 2) are the safe margins

at ) 2 time window of the test set.

From Γℎ ()�) and Γ; ()�), we calculate the '*� ()�) using Equation 3.8. Then we

check whether '*� ()�) violates the standard limit range identified during training set.

'*� () 2) :

∈ [g<8=, g<0G],No Anomaly;

∉ [g<8=, g<0G],Anomaly.
(3.8)

3.4. EXPERIMENTAL RESULTS

Using the LBNL PMU dataset (see Sec. 4.4), we conducted extensive experiments

for different falsification margins and attack strategies. For our experimental results, the

first seven days are the training set and the next two days of data is used for cross validation
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(a) (b)

Figure 3.7. Anomaly Detection for Additive Step Attack. (a) Tier 1; (b) Tier 2.

(a) (b)

Figure 3.8. Anomaly Detection for Deductive Step Attack. (a) Tier 1; (b) Tier 2.

and the remaining data are testing set. We divide this section into two parts: (1) Snapshot

Results: that show how our method works under several attack strategies and types (2)

Performance Evaluation: that shows the sensitivity versus the false alarm across varying

attack margins.

1) Snapshot Results: We randomly selected a period from the test set and introduced

an Step attack on the current magnitude from A6 PMU with X0E6 1 p.u (which is approx-

imately 0.16 amps). Tier 1 detection scheme to infer the presence of an additive attack is

shown in Figure 3.7(a) and subsequently tier 2 is applied to confirm the presence of the

attack as shown in Figure 3.7(b). Similarly, for deductive type of attack, Tier 1 and Tier 2

detection schemes are shown in Figure 3.8(a) and Figure 3.8(b) respectively.
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(a) (b)

Figure 3.9. Anomaly Detection for Additive Ramp Attack. (a) Tier 1; (b) Tier 2.

(a) (b)

Figure 3.10. Anomaly Detection for Deductive Ramp Attack. (a) Tier 1; (b) Tier 2.

We have also verified our model against Ramp and Mirroring attack strategy. We

have randomly selected periods of 15minutes to implement the ramp attack for both additive

and deductive types with a X0E6 of 1.5 p.u. As shown in Figure 3.9 and Figure 3.10, our

model is able to detect the attacks for both the cases. Finally, Figure 3.11 shows that our

model is able to detect Mirroring attack as well in both Tier 1 and Tier 2.

2) Performance Evaluation: For performance evaluation, we generate the ROC

curve that characterizes the trade-off between the probability of attack detection vs. the

probability of false alarm. we vary the X0E6 from 1 p.u to 2.5 p.u (≈ 0.4 amps) using a step

strategy to show the ROC for the additive attacks in Figure 3.12(a). A comparative analysis

of ROCs of additive, deductive, and alternating attacks for an attack margin of 1 p.u. is
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(a) (b)

Figure 3.11. Anomaly Detection for Mirroring Attack. (a) Tier 1; (b) Tier 2.

(a) (b)

Figure 3.12. Performance Analysis using ROCs. (a) ROC for Additive Attack; (b) ROCs
for X0E6 = 1 p.u.

shown in Figure 3.12(b). A report on accuracy (A), false positive (FP), and false negative

(FN) for different attack margins in case of deductive and alternating attacks is given in

Table 3.1.

Table 3.1. Experimental Results.

Attack On Attack Type Margin(p.u.) A(%) FP(%) FN(%)
Curr. Mag. Deductive 1 99 1 1
Curr. Mag. Deductive 1.5 100 1 0
Curr. Mag. Alternating 1 91 1 9
Curr. Mag. Alternating 1.5 99 1 1
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3.5. IMPROVEMENTS OVER PROPOSED METHOD

In our previous method, we have proposed a semi-supervised attack detection model

that is deployed on the PDC level which receives the power distribution line information

directly from the PMUs in a single hop. If the underlying distribution network has a lot

of uncertainties and disturbances the proposed method can generate higher false alarms.

However, in a real-time critical infrastructure system such as the smart grid, it is essential to

keep the false alarms as low as possible. So we extend our previous work by incorporating

noise reduction, data normalization, and adaptive loss function to make our invariant more

stable under normal conditions while achieving low false alarms without compromising on

the detection sensitivity.

3.5.1. Noise Removal Using Winsorization. We apply standard winsorization of

90% on the raw dataset to remove the instanteneous disturbances from the dataset. We use

the same technique on both the datasets. Please note, This is done only for training and

cross validation period. we did not winsorize the testing data.

3.5.2. Data Set Characterization and Normalization. PMUs are deployed at

different critical locations of the grid network. Due to this reason, the active power

information varies broadly from PMU to PMU as illustrated in Figure 3.13a. From the

principle of machine learning models variables that are measured at different scales do not

contribute equally to the model fitting and the learned model function and thus creating

a bias. To mitigate this potential problem feature-wise normalization such as MinMax

Scaling is usually used prior to model fitting. We apply the same normalization method to

our selected data sources. We also added a constant value (= 1) to prevent any sample < 1

as per Equation. 3.9. For notation simplicity, we used % instead of %B20;43 to indicate active

power for our future analysis. Figure 3.13b shows the scaled active power information for

1 week from our training set.

%B20;43 =
% − <8=(%)

<0G(%) − <8=(%) + 1. (3.9)
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(a) (b)

Figure 3.13. MinMax Scaling. (a) Unscaled data; (b) Scaled data.

3.5.3. Optimizing Standard Limits Using Loss Function. We need to calculate

an upper and a lower threshold from the RUC values that prevent underfitting and overfitting

and improves detection performance. We first adopted Cauchy/Lagrangian loss function to

gather the potential set of standard limits. The Cauchy loss is defined as follows:

!20D2ℎH (B) = V2 log(1 +
B2

V2
). (3.10)

Here V is the tuning parameter and B is the difference between RUC value and the

standard limit. We calculate both upper standard limit (g<0G and lower standard limit (g<8=),

for different values of the optimization parameter V using the following algorithms. First,

for each potential g<0G , We calculate the total loss over '*� ()) by assigning different

weights depending on whether the instantaneous RUC value is higher or lower than the

g<0G . Then we find the optimal g<0G that minimizes the loss for a particular V. We use

different range of V to calculate the respective optimal g<0G and g<8=.

Finally we use a cross validation set with minimum X0E6 that we target to detect

and calculate the False Alarms (��) and Mis-Detection ("�). Thus we use the following

optimization to select the optimal g<0G and the corresponding V.

g<0G = argmin
g
V
<0G

(31�� + 32"�) (3.11)
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Algorithm 3 Calculate new g<0G

input : '*� ()), [g], V, F1, F2
output : gV

<8=
;

for g ∈ [g] do
2>BC = 0
for A ∈ '*� ()) do

if A > 0 then
B = A − g
if B >= 0 then

2>BC : log(1 + ( B∗F2
V
)2)

if B < 0 then
2>BC : log(1 + ( B∗F1

V
)2)

)>C0;�>BC : V2 ∗∑ 2>BC

g
V
<0G = argmin

g

()>C0;�>BC)

Algorithm 4 Calculate new g<8=

input : '*� ()), [g], V, F1, F2
output : gV<0G;
for g ∈ [g] do

2>BC = 0
for A ∈ '*� ()) do

if A <= 0 then
B = A − g
if B >= 0 then

2>BC : log(1 + ( B∗F2
V
)2)

if B > 0 then
2>BC : log(1 + ( B∗F1

V
)2)

)>C0;�>BC : V2 ∗∑ 2>BC

g
V

<8=
= argmin

g

()>C0;�>BC)
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For this, we define two different weights 31, and 32 as loss parameters, 31 represents

the loss due to false alarms and 32 represents the loss due to missed detection. One key

consideration in time series attack detection is to minimize false alarms, since the actual

probability of being under attack is much lesser. Therefore, seemingly low false alarm rates,

do not necessarily indicate a good usable attack detector. Therefore, we need to give more

importance to the false alarms. Hence, the loss due to false alarm (31) gets more weight,

compared to the loss due to missed detection (32). In the end, we choose a threshold g<0G

(and g<8=) which minimizes the total loss for the positive RUC samples (and negative RUC

samples).

Table 3.2. Parameter Description and Value.

Parameter Symbol Value
Attack Margin X0E6 0.16-1.5
Attack Period − 2 hours

Optimized Time Window ) 600
Sliding Frame  5

3.5.4. Snapshot Results. Using both the EPFL dataset and LBNL dataset, we

conducted extensive experiments for different falsification margins and attack strategies.

For the EPFL data, the first four months are considered as the training set and the next two

months are considered as cross validation and test data. To show how our method works

under several attack strategies and types, we randomly selected a period from the test set

and introduced an attack on the current magnitude from PMU2 with X0E6. Tier 1 detection

scheme is used to infer the presence of an attack and subsequently tier 2 is applied to confirm

the presence of the attack. The parameter values considered for the experiments are shown

in Table 3.2.

Figure 3.14(a) and 3.14(b) depicts the tier 1 and tier 2 detection for an additive

type of attacks. Similarly, Tier 1 and Tier 2 detection of deductive attack is shown in

Figure 3.15(a) and Figure 3.15(b) respectively. In both the cases we have selected a period
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(a) (b)

Figure 3.14. Anomaly Detection for Additive Step Attack for X0E6 = 15 p.u. (a) Tier 1; (b)
Tier 2.

(a) (b)

Figure 3.15. Anomaly Detection for Deductive Step Attack for X0E6 = 15 p.u. (a) Tier 1;
(b) Tier 2.

of 2 hours with an X0E6 = .5 amps. As discussed in Sec. III, the attacker may choose to use

a combination of both additive and deductive attack for equal time duration (alternating

attack) to increase the chances of evasion. Our proposedmethod is able to detect such attack

as shown in Figure 3.16(a) and Figure 3.16(a). The detection of the mirroring attacks are

shown in Figure 3.17(a) and Figure 3.17(a). To implement such attacks we have selected

a random period of two hours of a PMU and used the mirror image of the captured time

series for the next two hours.

3.5.5. Performance Evaluation. For performance evaluation, we generate the

ROC curve that characterizes the trade-off between the probability of attack detection

vs. the probability of false alarm. To remove attack period selection bias we introduced

continuous attack for the whole testing period with different attack margins (.25-1.5 amps)
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(a) (b)

Figure 3.16. Anomaly Detection for Alternating Attack for X0E6 = 15 p.u. (a) Tier 1; (b)
Tier 2.

(a) (b)

Figure 3.17. Detection for Mirroring Attack. (a) Tier 1; (b) Tier 2.

and measured the % of samples points outside the standard limit boundaries for different

scalar factors (f). We introduced attack on each PMU and have taken the average of detec-

tion rate and false alarms to remove the bias of selected PMU. Figure 3.18(a) and 3.18(b)

depicts the ROC for EPFL dataset of additive and deductive attacks respectively. Similarly,

Figure 3.19(a) and 3.19(b) depicts the ROC for LBNL dataset of additive and deductive

attacks respectively.

3.5.5.1. Comparison between old and new method. We have compared our old

and new methods and found improved performance. We have simulated the same attack

strategy and attack margin on the EPFL dataset and compared the ROC obtained for both

additive and deductive types of attacks. Figure 3.20(a) and 3.20(b) shows the comparison

of the old and new method for additive and deductive attacks respectively.
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(a) (b)

Figure 3.18. Performance Analysis on the EPFL Dataset. (a) ROC for Additive Attack; (b)
ROC for Deductive Attack.

(a) (b)

Figure 3.19. Performance Analysis on the LBNL Dataset. (a) ROC for Additive Attack; (b)
ROC for Deductive Attack.

(a) (b)

Figure 3.20. Comparison Between Old and New Method on the EPFL dataset. (a) For
Additive Step Attack; (b) For Deductive Step Attack.
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(a) (b)

Figure 3.21. Detection Analysis (Step Attack Strategy). (a) on the EPFL Data; (b) on the
LBNL Data.

(a) (b)

Figure 3.22. Detection Analysis (Ramp Attack Strategy). (a) on the EPFL Data; (b) on the
LBNL Data.

(a) (b)

Figure 3.23. Detection Analysis (Alternating Switching Attack Strategy). (a) on the EPFL
Data; (b) on the LBNL Data.
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(a) (b)

Figure 3.24. Detection Analysis (Random Attack Strategy). (a) on the EPFL Data; (b) on
the LBNL Data.

3.5.5.2. Detection rate and false alarm analysis. For any anomaly detection de-

tection mechanism it is essential to investigate the false alarms raised. To analyze this we

first calculated the false alarm raised in the presence of no attack and then we randomly

introduced multiple short term attacks (of length 2 hours) on a different PMUs and checked

the detection accuracy. Figure 3.21(a) and Figure 3.21(b) shows the true detection averaged

over all the PMUs for EPFL and LBNL dataset respectively. To calculate the attack detection

rate and false alarms we fraction of datapoints outside the standard limits in the all attack

period combined. It is evident from the plots that our method achieves detection accuracy

>= .95 for both the deductive and additive attack types on both the datasets. We investigated

Ramp and Alternating attacks in similar strategy. Figure 3.22 and Figure 3.23 shows the

performance of our model under Ramp and Alternating Switching types of attacks.

3.6. INFERENCES

Here, we presented a real time anomaly based attack detection for current magnitude

falsification in PMU data streams. We showed that harmonic to arithmetic mean ratios can

be used as an effective invariant that is stable without attacks but shows changes during

attacks. We showed that even if the attacker has knowledge about the underlying time series

we are still able to identify anomalies with a low false alarm rate in real time. Also, unlike
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many existing bad data detection methodologies, it does not require the topology of the

grid network. We also proposed improvements over the generic threshold detection model

by incorporating the Cauchy/Lagrangian loss function. We evaluated our model on two

different datasets and showed that we are able to achieve a very low false alarm rate without

compromising on the detection sensitivity.
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4. RESILIENCE AGAINST BAD MOUTHING IN MOBILE CROWDSENSING
APPLICATIONS VIA ACTIVE QOI BOOSTING

In the previous section, we discussed a static CPS system where physical devices are

deployed in a fixed location and directly forwarding the sensed information to the decision

maker in a single hop. We showed that we can achieve high stability under normal conditions

(i.e. in the absence of any attacks) by considering the ratio of harmonic and arithmetic mean.

Then we showed that our proposed model is able to detect attacks in the system with high

accuracy and low false positive rate. Now we want to introduce mobility to the sensing

devices. With the introduction of mobility, we have some additional challenges such as

dynamic clustering. As the devices are moving, the clustering will change continuously

and the location information of the devices will become critical for the security analysis of

the system. One classic example of such a system is Mobile Crowdsensing (MCS) where

sensing devices transfer the data to the MCS server using single hop transmission. Most

Mobile Crowdsensing applications deploy rating feedback mechanisms to help quantify

the aggregate truthfulness of events (quality of information (QoI)) to improve decision

making accuracy. In this work, we first show that factors such as sparseness, inherent error

probabilities of rating feedback labelers, and prior knowledge of the QoI models, can be

used by strategic adversaries to hĳack the feedback labeling mechanism itself and cause

QoI score degradation under bad mouthing attacks. Thereafter, we propose a randomized

rating sub-sampling technique inspired from the philosophy of moving target defense to

mitigate the degradation in the QoI scores of truthful events, instead of traditional use of

taking all the feedbacks. We offer a game theoretic strategy under various knowledge levels

of an adversary and the MCS in regards to picking an optimal subsample size for bad

mouthing attacks and QoI calculations respectively, by using a vehicular crowdsensing as a

proof-of-concept.
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4.1. MOBILE CROWDSENSING SYSTEM (MCS)

The widespread availability of sophisticated mobile (e.g., smartphones, tablets,

smartwatches) and IoT devices (smart vehicles, roadside units) and rapid advances in per-

vasive sensing have fueled the development of the novel paradigm of Mobile Crowdsensing

Systems (MCS). A typical MCS paradigm involves an MCS server that accumulates volun-

tary contributions that are supplied by either autonomous sensing agents (IoT devices) or

by humans via an App.

Based on the nature of the MCS application, either a summary statistic of vari-

ous contributions (‘events’) or individual contributions are published by the MCS service

provider. Such published events guide intelligent human choices or automated decision

making that improve quality of life and civic-well being in smart cities. The benefit of

using an MCS paradigm is that precise and fine-grained information collection is possible

without dedicated infrastructure.

Real life examples of MCS applications include a Vehicular Crowd-Sensing appli-

cations such as Google Waze, where contributions are in the form of ‘reports’ from humans

indicating the presence of special road and traffic events (viz., jam, accident, weather hazard,

crime scene, speed trap, gasoline prices). Based on such reports, Google Waze infers the

most likely event and publishes it on the Waze App that helps in making intelligent changes

in traffic route selection. Additionally, most mobile app stores and online social business

networks such as Yelp, run in a similar way.

Typically, to evaluate the truthfulness of contributions (known as quality of infor-

mation (QoI)), there is an additional provision of a feedback monitoring mechanism that

allows other users/agents known as labelers or raters, who provide a positive, negative, or

uncertain rating labels to the reports/events. However, this feedback procedure motivates a

possibility of orchestrated false ratings/feedbacks/labels (known as feedback weaponizing

attacks) from a well-organized malicious adversary that biases the QoI scoring mechanism,
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in a way that negatively affects reputation systems, incentive assignment, and publish deci-

sions. The three established feedback weaponizing attacks are ballot stuffing, badmouthing,

and obfuscation stuffing [35].

Several methods in the past have used variants of Josang’s Belief Model [33], Beta

Distribution [68], Dempster Shafer Belief [34] for QoI scoring. To date, the research on

Quality of Information score, provides active resilience to ballot stuffing and obfuscation

stuffing attacks [35] only, but does not actively prevent bad mouthing attacks.

4.2. MOTIVATION

Nowwe present some unique challenges not adequately addressed in previousworks,

which motivate our work. These challenges include sparsity in rating feedback population,

error probabilities in the feedback apparatus, and targeted feedback weaponizing attacks by

adversaries with prior knowledge of the QoI mechanisms in MCS.

First, we argue the sparsity challenge in the feedback apparatus of MCS. Previous

QoI models assume that the presence of an MCS automatically implies the availability of

a substantial amount of rating population that keeps the relative proportion of compro-

mised feedbacks to the total number of feedbacks low enough for QoI scores to remain

unbiased [35]. Nonetheless, this assumption may not be always practical since (i) newly

launched MCS have a lower customer base, and hence rating feedback labelers are lower

to begin with. A rival business with a practically small attack budget can poison the QoI

inference and prevent good reporters from gaining reputation and forcing them to get less

incentives. (ii) Second, even when the crowdsensing systems may have a high user base, the

geographical spread of this user base may not be spatio-temporally uniform. For example,

a downtown area has less crowd during nights, parts of the city can be inherently sparsely

populated than other areas. This aspect is further elaborated in Sec. 4.3.5.
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Second, none of the QoI scoring models mathematically incorporate the error prob-

ability of rating feedback from an honest rater combined with the possibility of feedback

weaponizing attacks. When you combine the error probability as well as the presence of

attack, we found that even by compromising a minority of the rating population, the QoI

with existing models provides biased results on true events. This is elaborated further in

Sec. 4.5.3.1.

Third, feedback weaponizing attacks can be better crafted when a rational and intel-

ligent adversary has the knowledge of the QoI scoring models, and he uses that knowledge

to craft attacks that creates biased QoIs that do not accurately reflect the veracity of a

concerned event. Furthermore, adversary may have knowledge of the defense mechanism

through several sources (insider leaks, patent studies etc.)

4.3. RATING FEEDBACK SYSTEMS

Typical QoI scoring methods in MCS includes 3 major phases: (1) accumulation

of ratings/feedbacks/labels on the published event, that ‘serves as a body of evidence’; (2)

quantification of an event’s truthfulness score via a Quality of Information (QoI) model that

uses the rating feedbacks. (3) classification decision on whether the event is truthful or not

by comparing the QoI score with a hard or soft threshold.

4.3.1. Rating Feedback Systems and QoI. The rating feedback systems specify a

discrete state space of possibilities a particular rater gives about the authenticity of an event.

This state space usually contains three categories: positive feedback (U), negative feedback

(V), and uncertain feedback (`), and goes by different names in different commercial MCS.

An example of binary state space is Useful, Not Useful in Waze, and in systems like Yelp

have three possibilities for rating a review given by another user. The number of ratings per

event can be written as [U, [V, and [` and a event is denoted as � : 〈#, [U, [V, [`〉 where

# is total population of ratings, # = [U + [V + [`. The quality of information is quantified

by the two popular techniques over decades:
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4.3.2. Beta Trust QoI. Beta Trust QoI views the state space as binary. The original

Beta Reputation Systems [68] can be applied to both binary and ternary evidence state

spaces. The QoI is quantified as:

&>�14C0 =
[U + 1
# + 2 0 < &>�14C0 < 1 (4.1)

where &>�14C0 is the event truthfulness, [U is the total number of positive feedbacks, # is

the total feedbacks received.

4.3.3. Josang’s BeliefModel basedQoI. Josang’s BeliefModel explicitly handles

uncertainty in the evidence, by specifying expected truthfulness (�) by the following linear

score:

&>� 9> = 1 + (0).D where 1 =

([U + 1
# + 3

)
; D =

([` + 1
# + 3

)
(4.2)

The parameters 1 and D are the degrees of belief and uncertainty respectively and 0

is relative atomicity parameter that decides the extent to which uncertainty should contribute

to truthfulness (benefit of doubt). The value of 0 is 0.5 if there is no prior information

available, such that 0 < &>� 9> < 1 acts as a linear predictor of the estimated truthfulness

of an event.

4.3.4. QnQ Belief Model. In QnQ Belief model [35], the QoI is represented as:

&>�&=& = F1 .1 + FD .D (4.3)

where 1 and D are the same as Josang’s Belief Model, and F1, FD are known as Belief

Coefficient and Uncertainty Coefficient respectively with the limits: 0 < {F1, FD} < 1,

such that 0 < &>�&=& < 1. The equations for F1 and FD are specified by non-linear
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functions such as generalized richard’s curve and Kohlsrausch relaxation functions. The

mathematical details of F1 and FD, can be found in [69]. The framework provides active

resilience to ballot and obfuscation stuffing.

We found that while ballot stuffing and obfuscation attacks are actively prevented

by QnQ, the bad mouthing attacks are passively by virtue of the assumption of large crowd.

This means that when the rating sample contains a higher fraction of compromised raters

(happens when the total ratings received are sparse), the attacks in the presence of high

negative ratings to true events cause high QoI degradation for true events, since the weights

are characterized slow growth sigmoidal nature. This causes low QoI scores and poisons

the reputation system when adversary controls a high proportion of the rating population.

In short QnQ works well under rse samples but only for ballot stuffing and obfuscation

stuffing attacks but not bad mouthing attacks.

4.3.5. Relationship between Voting and QoI Scoring. Majority voting is central

to dependable decision making in cooperative distributed systems. Now, we show that

majority voting is deeply related to how QoI scores are interpreted for event inference and

publish-subscribe decisions.

A binary rating state space can be viewed as binary votes equivalent to voting for an

event. Suppose theMCS receives two events whose evidences are specified by �1 : 〈20, 30〉

and �2 : 〈21, 20〉, such that the tuple 〈[U, [V〉 indicates number of positive and negative

ratings received. The decision by majority voting would indicate that the event is false/not

useful for E1, while it will indicate a true/legitimate event for E2. However, majority voting

is a hard decision rule and lacks intelligence in the sense that it cannot quantify confidence

on the event’s likelihood of being actually true or false. For e.g, if �3 : 〈98, 2〉, the answer

will still be a true event and there will be no difference between E2 and E3 although E3

quality of being actually true is higher than E2.
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In contrast, QoI scoring models such as beta trust [68], have its roots in Artificial

Intelligence, and enables the similar outcomes but via a soft decision rule that also allows

embedding the notion of confidence into event decisions. Let us take the same example of

E1 and E2. The E1’s QoI score via a Beta trust model is 20+1
20+30+2 = 0.4038, while E2’s QoI

is 0.5116.

The MCS uses the QoI for various purposes: (i) to decide between a true versus

a false event (a binary classification problem) (ii) use QoI scores to proportionally update

reputation of those users who reported that event (iii) update reputation is used to decide

user incentive which depends on the QoI scores. The first purpose (deciding between true

versus false event) is a logistic regression problem, where a logit link function translates the

linear predictor (QoI) to the output decision class [70]. A negative score probabilistically

indicates the event is likely false and a positive score means the event is likely true [35, 71],

because mid-point of 0.5 is assumed as a neutral decision boundary between true versus

false event inferences. Therefore, for E1, E2, and E3, we get ;>6(0.40/(1− 0.40)) = −0.16

and ;>6(0.51/(1−0.51)) = 0.020, and ;>6(0.97/(1−0.97)) = 1.5 respectively. Therefore,

E1 and E2 will be inferred as a false and true event respectively. We can see that the final

inference is the same in both voting andQoImodels. However, QoI scoringwith AImethods

unlike voting allows to distinguish between two events that are positive in their score (E2

and E3), but one event with a greater score the decision maker has more confidence that it

is indeed true, which helps in proportional update of reputation and incentive. This makes

the AI based approach to QoI more intelligent than the voting, although decision output

wise, they are similar.

For ternary rating state space, [71] showed that one accommodates uncertainty

by partial splitting of uncertain ratings in the ratio of the observed positive and negative

ratings and adding it to the positive feedback, if chances of any one component getting

compromised is uniform. (instead of using 0.5 as relative atomicity as in Josang’s Model).

This gives modified effective positive and negative ratings; which can be applied to Beta
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(a) (b)

Figure 4.1. QoI under Bad Mouthing. (a) Majority honest; (b) Majority compromised.

QoI [71]. This simplifies the mathematical tractability. For example, if there are 10 positive,

8 negative and 4 uncertain ratings, the effective positive ratings are obtained by partially

splitting 4 uncertain ratings in the ratio of the observed [U and [V such that the modified

positive votes are:

[
′′
U = [U +

( [U

[U + [V

)
.[`; [

′′
V = # − [

′′
U; &>� =

[
′′
U + 1

[
′′
V
+ [′′U + 2

(4.4)

Intuitively, if the majority of the rating population is honest, it implies the Beta trust

model, Josang belief model delivers a QoI score more than 0.5 (converse may not be true)

(As depicted in Figure 4.1(a) where 60% users are honest). However, in the presence of

bad mouthing attacks, if majority of the rater population is compromised (See Figure 4.1(b)

with 60% compromised raters), then the QoI scores of all the previous models degrade

below 0.5, failing into label the event true.

4.4. SYSTEM AND THREAT MODELS

In this section, we present the abstraction of the crowdsensing system model and

the threat of bad mouthing of events in sparse feedback based crowdsensing samples, and

some novel considerations that have not been incorporated in a wholistic manner in previous

works.
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4.4.1. System Model. We assume a network of * users/devices subscribed to a

crowd-sensing application. Users have three types of roles for a given event � : (a) reporter

(b) rater (c) passive consumers who do not participate in either reporting/rating.

• Events: Any event has an event boundary and a time period of viability. The users

inside this boundary and within the time period are liable to rate on this event. The

reporters cannot rate the event reported by themselves. Similarly, a rater can rate a

single event only once.

• Reporters: Reporters are the set of users who report to the CS server indicating an

‘event’ of interest. The CS server publicly publishes, either the individual reports or

the statistical aggregate of all reports, as the ‘event’ of interest, to all other users of

that application during the cold-start phase. The same event can be reported by many

reporters within a time epoch.

• Raters: Raters are the set of users (humans) or machines (drones) who provide

a feedback/rating/label on the published events which indicate the crowd-sensed

perception of the relative goodness of the published events from the CS server. We

denote the total number of ratings received for a given event as # , and the number of

positive, negative, and uncertain ratings are [U, [V, [` respectively.

• Rating Probabilities of Honest Users: The probability ?1 is the probability that an

honest user accurately rates a legitimate event as true. Any rater when not controlled

by an adversary has an error probability of ?4 with which it mistakenly rates a true

event as false. For example, in weather conditions with low visibility can produce

errors in judgment. The probability that an honest user rates a true event as uncertain

is ?D. These probabilities might depend on the inherent level of environmental

uncertainty that might cause them to rate a true event as uncertain. So from the
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above, for an honest user ?1 + ?D + ?4 = 1. Therefore, the probability that an honest

user does not rate a true event with positive feedback is 1 − ?1. This is a robustness

issue rather than a security issue, but it affects QoI negatively.

4.4.2. Threat Model for MCS. Let us discuss several aspects that specify the

threat model.

• BadMouthing Attacks: The rogue raters may be controlled by an organized adversary

launchingBadMouthingAttacks to give false ratings to true events, causing legitimate

events to get low QoI scores. This not only prevents the published legitimate event

to be deleted but also undermines inputs from honest reporters, degrading their

reputation, and also suppressing events from such honest reporters in future [35].

• Attack Scale: The attack ‘budget’ � is the maximum number of unique raters adver-

sary can afford to compromise. The Adversary uses knowledge of defense mechanism

and MCS to decide whether to apply his full budget or not. If purpose is served with-

out using the full budget, then it is a rational choice for the adversary. The ‘attack

scale’ is the fraction of compromised ratings to the total number of ratings (from the

perspective of the defender). Hence, if the rating population is low, an attacker with

a low budget can dominate the rating population with biased ratings.

• Adversarial Capabilities and Budgets: Among # users that have provided ratings to a

particular truthful event 9 ,  users are not compromised by the malicious adversary,

while # −  users are compromised by the adversary. In many MCS, the rating

feedback mass # for an event/item is often sparse for two reasons. First, when an

application is launched initially, the user base is not very high which reduces the

chances of getting a high feedback mass. Second, the lack of motivation or incentives

to provide ratings. We assume an MCS system where the number of raters can be

less due to the following reasons: (i) this is a newly launched MCS application with a

low initial user base; (ii) the application runs in a town with a lower population size;
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(iii) the application is running in a part of the city which has a sparse population on

specific times. When # is small, the adversary’s attack budget # −  can dominate

the proportion of the rating sample # leading to altered event QoI values. This is

because malicious users are motivated by their attack rationale and coordinated in

their rating behavior.

• Adversary assumptions: (1) The adversary knows that the defender may use a tradi-

tional QoI method or sub-sampling QoI method. (2) We assume that the adversary

knows that there is a true event and therefore a compromised rater’s ?4 does not affect

the output of the compromised rater. (3) Adversary has enough budget such that he

can compromise majority of the rating users if required. This makes sense due to

the sparse sampling problem in MCS. However, once it has compromised a rater, it

exhausts a resource and it cannot change it. (4) Adversary can possess knowledge

about the rater population size # at given time/place and the probability of accuracy,

?1, of the honest rating users. (5) An intelligent rational adversary would always try

to maximize his gain and will not have any strategy that causes net loss. (6) We study

the problem only when there is a split vote of at least 30% or more for either true

or false event. If it is more than that then it is a dogmatic system and a mitigation

strategy does not make sense.

4.5. PROPOSED APPROACH

The proposed approach is divided into four parts. First, we show how and why an

MTD approach is required for the problem. Second, we show that the strategic situation

between the MCS and the adversary can be modeled into a two person game theoretic

formulation with many alternative strategies. Third, we provide a mathematical analysis of

the randomized subsampling approach and the adversary’s cost benefit analysis that helps
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to prune the strategy space of the attacker defender game. Fourth, we show the final game

with the reduced strategy space and solve for best rational strategies for both MCS and the

adversary.

4.5.1. Randomized Rater Sub-Sampling as MTD. The philosophy of moving

target defense (MTD) [72] mandates the creation of constantly shifting environments by

a defender to introduce asymmetric uncertainty between defenders and attackers.The De-

partment of Homeland Security, USA refers to the idea of moving targets in the form of

strategies that are diverse and continually shift and change over time to limit opportunities

for attack, increase the cost of attacks and/or increase system resiliency. The guidelines in

[72], specify dynamic system randomization at run time is one of the overarching ways for

a defender to constantly change the effective attack surface.

Most classical defense methods focus on host/resource/user level detection methods.

They suffer from scalability and agility concerns in MCS because: (i) network sizes always

vary rapidly as a function of time, (ii) new users quickly join or leave, and (iii) behaviors

keep evolving. Therefore, in MCS, it is rather prudent to think about mitigation of or

resilience against attacks rather than focusing on detection of attacks and attacking devices.

This is complicated by how easy it is to bias the QoI under sparse rating samples and change

the inference on the event completely, if the classical QoI approaches are used.

Hence, due to the above reasons, we concluded that an MTD approach is a better

alternative rather than focusing on detecting whether an individual feedback rater is pro-

viding a false rating or not. Motivated from the above, we propose a way to bring ideas of

moving target defense into QoI scoring for a more resilient MCS.

DEFINITION 1: Randomized Subsampling: Our main idea of dynamic system

randomization is we hypothesize that instead of using all the ratings received for calculating

aQoI score, the defender uses a subsample of a strategic size from the set of ratings received,

and then calculates the QoI of the event calculated from rating counts with that subsample.
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(a) (b)

Figure 4.2. Subsampling Intuition and Optimal Sample Sizes. (a) Intuition; (b) Optimal
Sample Sizes.

Our hypothesis is given credence by the following: Figure 4.2(a), offers a visual

intuition of why randomized subsampling can mitigate the effects of feedback weaponizing

attacks. We have already established in Sec 4.3.5 that if the majority of the ratings involved

in the calculation of QoI Score is not compromised, the QoI score progressively moves

towards the correct event status (because of being above 0.5), with higher truthfulness in the

presence of bad mouthing attacks. There are three key considerations from Figure 4.2(a).

(1) The big outer transparent circle represents the full sample # (total number of ratings

received); (ii) the medium inner red shaded circle represents a set of compromised ratings

which is a subset of # but greater than 50% of N. (iii) the smallest circles with a tick or a

cross represents a random subsample of a certain size (say =) from the set N (represented by

the smaller circles in Figure 4.2(a). The tick corresponds to samples where majority of the

ratings in that sample correspond to non-compromised rating set, while crosses correspond

to the opposite case.

We can conclude visually that the red circle size is more than half the outer circle.

In this case, a full sample majority voting will always result in an outcome that corresponds

to what the inner red circle indicates, which will be misleading and therefore considered

a failure for the defender MCS. In this case, the defender has zero chances of success in

predicting a QoI that should be greater than 0.5.
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However, if the defender picks a randomized subsample of a certain size = (repre-

sented by the smaller circles in Figure 4.2(a) from set #; there are
(#
=

)
such possibilities).

Without knowing which ones are compromised, we can see that success probability is non-

zero. and thus better than using the whole sample. Regardless of the number of selections

with ticks, it is better than zero chance of success using full sample.

To give credence to the above hypothesis, we conducted a numerical simulation

to mimic the following scenario: A true event receives N=100 ratings with 48 of them

controlled by adversary giving a negative rating and ?1 = 0.9, ?D = 0.05 for the remaining

honest raters. We then perform an exhaustive search of the subsample search space to figure

the fraction of times (out of 1000 rounds of iteration) a subsample of a given size contains

a majority of positive ratings (which is the accurate rating for the concerned event) in that

selection. This fraction is termed as the probability of success, because if a majority of true

ratings in a subsample guarantees a &>� > 0.5 required for inferring the event correctly.

Figure 4.2(b), shows the y-axis as the probability of having more 50% of positive

ratings versus different possible sample sizes. We can see that the subsample size 8

maximizes this probability as the above mentioned settings. For another instance with

# = 100,  = 60, ?1 = 0.8, ?D = 0.05 the optimal sample size is 16. It also shows that

even if the adversary compromised just short of majority of the rating sample, the classical

use of using the full rating sample for QoI calculation causes a probability of success = 0

(rightmost point on the x-axis). In this case, 30% of the time, the MCS was successful in

obtaining a QoI above 0.5.

4.5.2. Attacker Defender Game. Here we first discuss that a game theoretic ap-

proach is possible in the strategic situation above.

4.5.2.1. Defender’s perspective (MCS). In the previous sections, we provided an

intuition that using a subsample of a certain size taken as a strategy by a defenderwill provide

better outcomes if the majority is compromised. However, this size could be anything from

1 to # − 1.
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However, the defender knows that adversary possesses knowledge about its option

of a randomized subsampling approach. Based on this knowledge, defender expects that

adversary would re-adjust its strategy accordingly to compromise a minority of ratings (if

and as long as its rational). Thus, there is a possibility that adversary can might hope to

compromise an effective minority of the population if the defender chooses a sub-sampling

approach. Hence, choosing the full sample # could also be a viable strategy.

4.5.2.2. Adversary’s perspective (MCS). The Adversary expects the defender to

play a sub-sampling strategy if it compromises a majority of the ratings. However, it also

knows that the 1− ?1 is a feature that helps its cause. Thus, to overturn an event decision, the

actual number required to compromise will be lesser than 51% of the total ratings received.

On the other hand, the adversary knows that subsampling will provide better out-

comes for defender, it might contemplate to switch to strategy with minority of ratings

compromised to confuse the defender. Therefore, the adversary theoretically has a option

to compromise 1 to # − 1 raters, unless subject to any upper bound on its attack budget or

any strategy where is gain is lesser than its investment.

The above presents a huge search space for finding equilibrium strategies in the

attacker defender game. To be rational, the defender should select an optimal sub-sample

size if any, that will maximize the probability of success out of all possible subsample or

full sample sizes that could be potential strategies. The adversary will try to maximize its

net benefit and would avoid any strategy that leads to a loss.

Therefore, our next effort will to prune the search space of strategies for defender

and adversaries before we formalize the game formulation.

4.5.3. Pruning the Defender MCS Strategy Space. In this section, we will pro-

vide an analysis of success probabilities with the randomized subsampling technique with

the use of hypergeometric distribution. The security status of the rater can be classified

into one of the two mutually exclusive categories; compromised or non-compromised.

Each rater is counted as a success if not compromised (or failure if compromised). Let



66

there be  number of non-compromised and # −  number of compromised raters in the

received rating sample of size # . Let - be a random variable, denoting the number of non-

compromised ratings in a chosen subsample from the population. Given that a subsample of

size = ≤ # is drawn from such a population of size # , the probability of observing exactly

: number of non-compromised raters from a population that originally contains exactly  

non-compromised raters, can be specified by the pmf of a Hyper-Geometric distribution:

%(- = :) =
( 
:

) (#− 
=−:

)(#
=

) (4.5)

The Equation 4.5 assumes that each non-compromised rater is never wrong in their

judgment and produces a correct rating at all times. However, in the MCS model, each

honest rater is either a human or sensor/drones that are prone to errors (?4) and uncertainty

(?D). Hence, we need to modify the hypergeometric pmf, to find the effective true success

probability of observing exactly : number of successes. Note that for MCS, success

indicates those ratings that contribute to trust, and not the security status of the raters.

4.5.3.1. Embedding error of rating labelers. To simplify, first we just assume

a binary rating system (?D = 0), and then extend the analysis for ternary rating space in

Sec 4.5.3.4. Given exactly : honest raters are picked in a sub-sample, the chances that there

will be at-least ; or more successes (positive ratings) out of the : honest candidates, can be

modeled by a binomial distribution:

?(. > ; |- = :) =
:∑
9=;

(
:

9

)
(?0) 9 (1 − ?0):− 9 (4.6)

where ; is the lower bound required for successes under the normal fusion rule. For example,

in case of majority voting ; = =+1
2 (if = is even), and ?0 is the chance that an honest rater

provides a rating that eventually contributes to the increase in QoI. The interpretation of

how ?0 is calculated changes with whether one is using a Beta Trust for QoI scoring and

will be elaborated separately in Section 4.5.3.4.
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As ; is the lower bound required for successes, based on whether subsample size is

even or odd (=), ; needs to be changed. If sample size is even, ; = =+1
2 to ensure number of

successes are majority in the selected subsample. In contrast, if we take odd samples then

; = =
2 to obtain the majority of selected subsample. In this analysis, we choose a discussion

for even samples only, but it works seamlessly for odd samples with the only change in

equations being ; = =
2 .

4.5.3.2. PMF of success under attacks. Here we will derive the probability mass

function for achieving a success where dominant rating attacks and errors coexist. Intu-

itively, the probability mass function will have a positive value, if there are at least =+1
2

honest raters are in the sample of size =. However, in theory, if the number of dishonest

raters is very low, then the minimum of honest raters in a larger sample size can be greater

than =+1
2 . The following is an illustrative example that explains this:

• Lower Bound on Honest Raters: Considering two scenarios for a rating population

of size # = 100. In scenario I, the number of honest raters  = 40 is in minority,

while the rest of the # −  = 60 is compromised. Scenario I, represents a case of

organized and orchestrated attack. In contrast, in the scenario II, the number of honest

users  = 90 is in the strong majority, and # −  = 10 represents individual selfish

users or a small group selfish users. Now consider the candidate subsample size

= = 70. For scenario II, the (= + 1)/2 = 36. However, given that there are 90 honest

raters, even in the worst case, if all dishonest raters fall my sample of size = = 70,

the minimum possible honest users in this selected sub-sample is = − (# −  ) = 60.

Notice, however, that 60 is greater than 36. Therefore, the lower bound of Scenario

II is 60 and not 36. For scenario I, the lower bound on the honest users is (= + 1)/2.

Hence, the lower bound of the number of honest users in a sample of size = required

for a success is given by the following:

:<8= = <0G(
= + 1
2

, = − (# −  )) (4.7)
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• Upper Bound on the Number of Honest Raters: The maximum possible number of

honest raters that can be picked depends on whether the total number of successes  

is larger or smaller than the candidate sample size. Hence, the maximum possible

upper bound for the number of honest raters:

:<0G = <8=(=,  ) (4.8)

• Probability of Success under attacks: The probability mass function of the resultant

success in having a majority of the rating labels chosen as authentic labels is given

by the following:

%(=) =

:<0G∑
8=:<8=

( 
8

) (#− 
=−8

) 8∑
9=(=+1)/2

( 8
9

)
(?0) 9 (1 − ?0) (8− 9)(#

=

) (4.9)

4.5.3.3. Optimal sampling size for subsampling. Intuitively, the MCS server’s

policy should be to pick that random sub-sample of size =>?C that maximizes %(=), and

this would be the MCS’s most rational strategy. Mathematically, we can write it as the

following:

=>?C = argmin
=

(%(=)) %>?C = %(= = =>?C ) (4.10)

The above equation gives the optimal sub-sample size =>?C for a given # −  (no.

compromised raters) such that the probability of success (in terms of getting more than 50%

of the correct rating we desire in that sample), is maximized. Hence, among all possible

subsampling strategies, the defender will pick =>?C since it maximizes its success.

Now since we have already shown that the majority of ratings belonging to the true

class is directly related to getting the desired QoI scores and accurate event truth inference,

we would like to analyze how Beta Trust and Josang’s Belief Models perform under the

evidence restricted to this optimal subsample size.
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4.5.3.4. Interpretation of ?0 in ternary state space. Both positive and a portion

of uncertain feedbacks (the benefit of doubt) contribute to the QoI score. We envision the

positive and any portion of the uncertain feedbacks that contributes to the QoI score as a

‘success’ since it contributes to increase in the QoI score, when there is a true event (from

Section 4.3.5). Hence, ?0 needs to be expressed in terms of ?1 and ?D. Note that, the

compromised #− raters always provide a negative feedback. Therefore, the probability of

having an honest user giving a rating that contributes to the QoI score is ?14C00 = ?1 + ?D  # .

Therefore, the theoretical result on the probability of success is given by the following:

%14C0 (=) =

:<0G∑
8=:<8=

( 
8

) (#− 
=−8

) 8∑
9=(=+1)/2

( 8
9

)
(?14C00 ) 9 (1 − ?14C00 ) (8− 9)(#
=

) . (4.11)

=14C0>?C = argmin
=

(%14C0 (=)) %>?C = %
14C0 (= = =>?C ) (4.12)

where %>?C is the optimal probability of success and =>?C is the optimal sample size that

produces %>?C . In the experiment section, we will compare the theoretical result with the

experiment to prove the correctness of the equation. A similar derivation can be done under

Josang’s Belief Model.

4.5.3.5. Pruning of adversary strategy space. In a real world MCS, the adversary

can choose not to attack the system all the time so there may be the absence of attacks, but

?4 may still cause false ratings and degrade QoI. To examine whether this limits the game

formulation, we assessed the effect of optimal sampling under no attacks, using a numerical

simulation shown in Figure 4.3(a). We observed that optimal sample size converges to #

(using Equation 4.11), if no attack is present in the system (regardless the ?1).

Now if adversary chooses to attack, we can prune its strategy space accordingly:

If attacker incurs a uniform cost, �, for compromising a single rater, the net payoff � of

the adversary is defined as follows: With an investment of (# −  ) compromised raters,

the adversary can overturn a decision worth the same as if it compromised all raters # .
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(a) (b)

Figure 4.3. Pruning of Adversarial Strategy. (a) No attack as a strategy; (b) Attacker’s Gain
(?1 = 0.7 and ?D = 0.25).

Therefore, investing in (# −  )�, it gains a return equivalent of #.� but this happens only

with a probability of (1 − %>?C), given defender’s rational choice of optimal sub-sample

size. So the net payoff � is computed as the difference between its return and investment.

Hence,

DEFINITION2: Thenet payoffof the adversary� = (1 − %>?C)#� − (# −  )�.

where (# − )� quantifies the adversaries’ investment, given (# − ) is the compromised

rater count.

The Figure 4.3(b) shows adversary payoff for each possible value of compromised

raters (# −  ) when the defender plays its optimal sub sample size for a given # −  (blue

line) and full sample size (orange line).

From Figure 4.3(b), we make a key observation: when the (# −  ) is lesser, the

attacker’s net payoff under sub-sampling is larger than a full sampling approach. However,

the � in all such cases is negative, which indicates a net loss for the adversary. Thus, we

conclude that a rational adversary who wants to make a net profit, will at least want a net

payoff to be not negative, and hence the minimum value of compromised raters for which

G is positive is # −  <. Therefore, we can prune all # −  candidates below # −  < from

the adversary’s strategy space regardless of the what the defender plays.
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(a) (b)

Figure 4.4. Attacker Payoff. (a) Full Sample; (b) Sub sample.

Interestingly enough, the minimum bound of # −  < compromised raters that

provide a positive payoff is also the maximum payoff achievable by the adversary for any

value of candidate (#− ) greater than #− <, when defender uses a full sampling strategy.

This can be verified from Figure 4.4(a) (orange line). Therefore, it is safe to conclude that

the adversary’s best strategy is to compromise # −  < (Strategy 1) if the defender plays a

full sampling strategy.

On the other hand, let us turn our focus onto the best possible adversarial response if

the defender chooses the sub-sampling approach. The Figure 4.4(b), shows the payoff of the

adversary as a function of all possible # −  when the defender plays a sub-sampling. We

can observe that there is a particular compromised # −  B which maximizes �. Therefore,

it is safe to conclude that adversary’s best strategy is to compromise # −  B (Strategy 2), if

defender chooses to play a sub-sampling approach. Note that these choices of # −  < and

# −  B is dependent on ?0, because � is related to 1 − %>?C , and %>?C is directly related to

?0.

Figure 4.4(a) and 4.4(b) shows how attacker’s gain � changes with number of

compromised raters under both full sampling (orange line) and subsampling (blue line)

strategies, for a given ?1 and ?D. Thus the attacker can compute the number of raters in

the whole population that it needs to compromise such that it would maximize his gain,
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by taking that compromised raters (on the x-axis) maximum of the blue and orange lines

correspond to # −  B =#− (� (=)) and # −  < =#− (� (#)) for the given setting. It is

evident from the diagrams that # −  B > # −  < or  < >  B.

4.5.4. Game Theoretic Formulation. Here we present a game theoretic approach

for selecting a best rational strategy in the presence of bad mouthing attack under a complete

information zero sum game between the attacker and defender where both are aware of ?0

and # and each other’s possible set of strategies.

Here we assume a sophisticated adversary with knowledge of ?0 and #; and the fact

that the defender can either take a sub-sample or a full sample approach. The adversary also

knows that given defender chooses the subsampling strategy it would pick a subsampling

size that offers maximum number of uncompromised ratings in that sample (that yields

%>?C). The defender MCS also knows that the adversary has two options of calculating

optimal compromised number of raters that would maximize the adversary’s gain, for each

of its optimal subsampling or full sampling strategy. We have not included the case of no

attacks as there is no loss of the attacker and maximum probability of success under the

subsampling approach, even in presence of bad mouthed ratings due to the inaccuracy of

honest users, the resultant subsample size from our Equation 4.12 still converges to the full

sample # as shown in Figure 4.3(a).

Now an intelligent adversary would always try to maximize its net gain under

different strategies by the defender. To achieve this he needs to find the optimal number of

required manipulated raters under two alternative strategies:

• Strategy 1: Compromise # −  < raters which maximizes G under full sampling

strategy by defender.

• Strategy 2: Compromise # − B raters, which maximizes G, if defender incorporates

the sub-sampling strategy.
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The corresponding payoffs for each strategy are calculated in terms of adversary’s

gain/loss. Depending on the strategy incorporated by the attacker and defender, the payoffs

of the players are derived as follows:

4.5.4.1. Payoff calculations for strategies. We first calculate the two pay-offs (for

Strategy 1 and Strategy 2) from the perspective of the adversary, given the defender plays a

full sampling strategy.

When full sample is selected as a defense strategy, then the attacker is able to compute

the minimum number of manipulation to overturn the decision of the defender. To perform

this, adversarymust ensure that .?0 ≤ #
2 . Hence, #− < = # (1−

1
2?0 ) and the payoffwith

strategy 1 (i.e. # − = # − <) is given by: �1( 5 D;;) = (1−0)#� − (# − <)� =  <�.

Since # −  < < # −  B, if the %>?C drops to zero at # −  <, it will remain zero

under # −  B (Strategy). Therefore, the payoff under Strategy 2 is given by �2( 5 D;;) =

(1 − 0)#� − (# −  B)� =  B�.

Wenowcalculate the twopay-offs (for Strategy 1 andStrategy 2) from the perspective

of the adversary, given the defender plays an optimal subsampling strategy derived according

to Equation 4.12.

Let %1(=1) and %2(=2) be the maximum probability of success with subsampling

method (from Equation 4.12) under adversarial Strategy 1 and 2, respectively; where =1

and =2 are the respective optimal sampling size selections for the respective strategies. For

notational simplicity, we denote %1(=1), %2(=2) as just %1, %2 respectively.

So the attacker’s payoffs with strategy 1 and strategy 2 is �1(BD1) = (1− %1)#� −

(# −  <)� = ( < − %1#)� and �2(BD1) = (1 − %2)#� − (# −  B)� = ( B − %2#)�

respectively. As cost � is a common scaling factor in all the payoffs, the final payoff matrix

of the game is given in Table 4.1 after removing � from all the individual payoffs. In

Table 4.1 the defender’s (�), has two strategies: (( stands for subsampling technique and

�( denotes using a full sampling approach.
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4.5.4.2. Game solution. Here we solve the proposed two player zero-sum game

and how Nash equilibrium can be obtained. Now ?0 ≤ 1 (because ?1, ?D ≤ 1), and both

0 ≤ %1, %2 ≤ 1. As  < >  B, for the defender there exists a strictly dominating strategy but

the attacker does not have any strictly dominating strategy. So the defender should always

go for sub-sampling method to minimize his loss/attacker’s gain. Thus, depending on the

values of  <,  B, %1, %2, a Nash equilibrium can be obtained.

Table 4.1. Complete Information Game.

Adversary
# −  < # −  B

MCS �( − <,  < − B ,  B

(( −( < − %1# ) ,  < − %1# −( B − %2# ) ,  B − %2#

Let us illustrate this with an example. Consider ?1 = 0.8 with an uncertainty

probability, ?D = 0.15. As depicted in the Figure 4.4, the # −  < and # −  B for the

adversary is 40 and 55 respectively calculated from the equation of�. After calculating the

payoffs as described in Table. 4.1, we get the payoff matrix as shown in Table. 4.2.

Table 4.2. Payoff Matrix for ?1 = 0.8.

A
Strategy 1 Strategy 2

MCS �( -55, 55 -45, 45
(( -19, 19 -29, 29

Clearly, the attacker does not have a strictly dominating attack strategy but the

defender has sub-sampling method as a dominating strategy. So finally attacker will settle

for strategy 2 as his payoff from strategy 2 is higher than that of strategy 1 and defender will

choose the sub-sampling method as the defense mechanism to minimize attackers gain and

that will be our Nash equilibrium.

4.5.4.3. QoI scores under optimal sample size. For beta distribution the QoI is

calculated based on the following equation by dividing the uncertain ratings into positive

and negative rating based on the ratio of positive and negative ratings in the population.
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&>�14C0?A>?>B43 =

[U (=14C0>?C ) +
(

[U (=>?C )
[U (=>?C )+[V (=>?C )

)
.[` (=>?C )

[>?C + 2
(4.13)

4.6. SIMULATION RESULTS

In this section, we discuss the simulation, followed by numerical and simulation

results.

4.6.1. Simulation Settings. We consider a vehicular crowd-sensing system as a

proof of concept by using SUMO (Simulation for Urban Mobility [73] as a simulation

environment. We extracted the Open Street Map (OSM) for a part of Manhattan and

created individual vehicle trips with a minimum trip length. We introduced accidents/traffic

congestion by forcing vehicles to stop at a certain location and time. Every event has an

impact area and all the vehicle information in the impact area is collected in that epoch.

We consider these users as potential raters who are liable to rate. As per the attack strategy,

these users are divided into honest and compromised groups and bad mouthing is performed

accordingly.

We considered different active rating population sizes but kept # = 100 since our

approach is relevant for sparse samples. For certain results for each # , we have considered

the compromised rater percentages to be between 30% to 70% for understanding the effect

of varying attack scale.

The probability of rating accurately by an honest rater, ?1 is varied between 0.7 to

0.95, while the probability of getting an uncertain rating submitted by an honest user, ?D, is

varied from 0.25 to 0.

4.6.2. Implementation and Metrics of Performance. The performance is evalu-

ated over 1000 iterations using the data collected from the SUMO environment. In each

1000 iteration, different samples are picked to provide an average case performance that
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reduces bias. We show results not only for the game (which contains a strategic N-K)

but also all possible N-K values to give a sense of how our method will perform under

adversaries that may be non-rational or non-strategic.

Finally, for an optimal subsample size for the optimal attack strategy, raters of that

size are randomly selected from the population over multiple events. In each event iteration,

we calculate the Beta trust score using Equation 4.13. We log the number of iterations where

the QoI score under our proposed method was above 0.5 (the typical decision boundary

in QoI scoring), which counts as an event that our method successfully evaded an bad

mouthing attack. This is repeated under all possible numbers of compromised raters (N-K).

We use the following two metrics for the performance evaluation of our proposed

randomized subsampling method.

• Probability of Evasion: is the probability that the QoI score obtained by using the

beta trust QoI under our proposed method (MTD aware approach) gives a score of

0.5 or more (calculated over 1000 iterations in our simulation), to give the probability

of evading a bad mouthing attack under our proposed approach.

• Boost in QoI: This is the raw boost in QoI score when our method is used under bad

mouthing attacks, under all possible values of # − : , ?1, ?D.

4.6.3. Optimal Sample Sizes. Figure 4.5(a) shows a comparison between theoret-

ical (from Equation 4.11) and experimental values of probability of success (%(=)) when

total raters # = 100 and honest raters  = 60, with ?1 = 0.75 and ?D = 0.05 and simula-

tion result. We can conclude from Figure 4.5(a) that simulation result closely follows the

numerical result, the optimal sample sizes =>?C from theoretical and experimental result are

similar.
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(a) (b)

Figure 4.5. Theoretical and Simulation Results. (a) optimal Sample for ?0 = 0.7; (b) Effect
of ?1 over optimal sample size.

The change in the resulting optimal sample sizes for various  value (which indi-

rectly depends on N-K by the adversary) over different ?1 values is shown in Figure 4.5(b)

for # = 100 and ?4 = 0.1. It is evident that optimal sample size changes with different  

and ?1. As  .?1 increasingly dominates the population, the optimal sample sizes tend to

increase and eventually reaches # .

4.6.4. Performance Evaluation. Wedivide performance evaluation into two parts:

(i) Illustrative Performance (ii) Average Case Performance. The illustrative result is for a

specific parameter setting while average case performance evaluation is result averaged over

all possible combinations of parameters involved.

4.6.4.1. Illustrative performance. We show theoretical versus experimental re-

sults of performance as well as comparison of our method versus traditional QoI with

Beta distribution for setting # = 100, ?1 = 0.7 and ?D = 0.25 for all N-K and also the

performance at equilibrium strategies.

• Theoretical Versus Experimental Performance: The comparison of the probability

of evading a bad mouthing attack successfully between theoretical and experimental

results is shown in Figure 4.6(a), which verifies the accuracy of the model.
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(a) (b)

Figure 4.6. Probability of Evasion (?1 = 0.7 and ?D = 0.25). (a) Theoretical vs Experi-
mental; (b) Comparison between Proposed and Traditional QoI scoring.

• Improvement from Traditional Beta Trust QoI: An illustrative result is shown in

Figure 4.6(b) the benefit of our method as opposed to traditional QoI method in terms

of probability of evasion. The percentage chances of getting QoI above 0.5 under

the traditional beta trust QoI which does not implement our MTD is compared to

the same under proposed beta trust with the MTD approach. We observe that our

proposedmethod has either equal or a better chance of evasion of bad mouthing attack

regardless of the # −  inflicted.

Note that where the performance between traditional and proposed is equal, those

are the # −  which are not part of the rational strategy space of the adversary. From the

game solution, we have the Nash equilibrium where adversary compromises # −  B = 60

as marked in the plot and in that equilibrium, probability of evasion by using the proposed

model is better than the traditional model.

4.6.4.2. Average case performance. We provide an average case performance

improvement in terms of probability of evasion and boost in QoI, by averaging them over

various ?1, ?D values for each # −  . Similarly, the average boost in QoI for using the

proposed beta model is shown in Figure 4.7(a). The overall improvement in probability of

evasion of the proposed model over traditional model in depicted in Figure 4.7(b). Please
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(a) (b)

Figure 4.7. Improvement over Traditional QoI. (a) Boost in QoI; (b) Improvement in
Probability of Evasion.

note that low boost or low improvement in the probability of evasion is seen for low # −  

because, the MCS gets an advantage regardless of whether MTD is used or not, and is not

an indication of limiting performance of our method.

4.7. INFERENCES

Here, we have analyzed the security of a CPS system where sensing devices are

mobile and the presence of malicious users are inevitable. We have used MCS as an

example of such system and presented a randomized sub-sampling method to improve

resilience against bad mouthing attacks even when a large fraction of the rater population

(especially during cold start phase) is compromised by a strategic adversary. We showed

that there exists an optimal sample size that produces an increase in QoI for each potential

value of total compromised raters. Finally, we modeled the problem as a two player zero

sum game to conclude that there exists a pure strategy Nash equilibrium. We also showed

improvement in terms of evading the effect of bad mouthing attack and the boost in QoI of

truthful events under such attacks.
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5. INFLUENCE SPREAD CONTROL IN COMPLEX NETWORKS VIA
REMOVAL OF FEED FORWARD LOOPS

In the previous section we investigated feedback weaponizing attacks against MCS

systems which is a centralized, energy-efficient and robust data collection framework. The

data from multiple users with smart devices (smartphones, tablets, wearables etc) are

aggregated by the MCS platforms to build a body of knowledge to support decision making.

However, due to centralized nature of the MCS system, executing MCS tasks incur cost

from the users in terms of energy spent from device batteries and/or data subscription plan

(if cellular connectivity is used for information transmission). Eventually users might stop

participating in the data collection process and thus making the data acquisition and the

decision made by the MCS server unreliable for smart city applications. Moreover, using a

single-point data aggregator is always risky as it entails an inherent centrality and is heavily

dependent on the functioning of central data aggregator. Thus, to prevent such single-

point of network failure and to handle the large user base and data traffic volume, different

distributed data collection mechanism are proposed that leverages peer devices to directly

communicate with each other in the the MCS platform. One such mechanism, bioMCS2.0

proposed in [58] attempts to utilize abundance of subgraphs (called motifs) in the MCS

network to perform efficient energy-awareness participatory sensing and forwarding in a

dynamic scenario where devices are both energy constrained and mobile. The proposed

mechanism leverages the topological properties of 3-node motif, called Feed Forward Loop

(FFL), to create robust pathways for information transmission in the network. These type of

FFLs are found in abundances in social network, biological network called transcriptional

regulatory network. [56, 74] also explored the possibility and advantages of FFLs in

designing robust and efficient topology that enables energy efficient and sustainable data

collection.
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Here we investigate how the FFLs are contributing to the information spread in a

large scale complex network and we propose to quantify their influence/importance (motif

score) in the data transferring process. This analysis also gives us opportunity to identify

the most influential motifs that if removed can heavily disrupt the whole data collection

process. On the other hand, these influential motifs if identified can be removed by the

MCS server to curb the malicious information spread at an very early stage.

Selective removal of FLLs (or 3-node motifs) based on the spread function value is

one of the most powerful approaches to curb the overall influence spread in any complex

network. In this paper, we first prove that any general spread function preserves both

monotonicity and submodularity properties even under motif removal operations. Next,

we propose a scoring mechanism as a novel spread function that quantifies the relative

importance of a given motif within the overall influence spread dynamics on the complex

network. We design a novel algorithm that eliminates motifs with high spread scores to curb

influence spread. We evaluate the performance of our proposed spread control algorithm

using simulation experiments in the context of 3-node motifs (or FFLs) in both real and

synthetic network topologies. We demonstrate that high-scoring motifs intercept a high

number of short paths from the pre-assigned source and sinks, because of which their

elimination results in a significant effect on curbing the influence spread. Furthermore, we

empirically evaluate the run-time and cost versus performance trade-off of the proposed

algorithm.

5.1. INFLUENCE SPREAD CONTROL

Influence spread control in complex networks has gained attention in recent years

in a broad range of applications, from healthcare and medicine (e.g., drug design [17] or

curbing epidemics [18]) to social networks [19] (e.g. moderating fake information that

can lead to polarization). However, the design of an effective control mechanism to curb

influence spread poses important challenges: (i) high computational complexity, especially
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in large complex networks, (ii) ethical issues, such as harmful bias and lack of accountability

in social networks, and (iii) long-term control impact, e.g., potential chronic side-effects

due to new drugs, or increasing socio-economic gaps in social networks, which can only be

observed in hindsight.

Here, we focus only on the first challenge, namely, designing an efficient information

spread control scheme to curb the adversarial influence on the network. In particular, we

propose a novel scoring mechanism that leverages the presence of motifs (or subgraphs)

that are recurrent patterns occurring in complex networks in higher numbers than in ran-

domized networks [22]. The presence of motifs have been reported in many applications

including social networks, biological networks, ecological networks, and communication

networks [20, 21]. The high degree of evolutionary conservation ofmotifs suggests that they

play a key role in information dissemination, making their detection and analysis the first

step towards investigating their contribution to spread dynamics within complex networks.

5.2. CONTRIBUTIONS

Given a complex networkwith a pre-determined set of seed (source) nodes spreading

information, we propose a novel scoring scheme to help identify motifs that when removed,

can minimize the influence spread. We investigate the properties of influence spread

function and show that they preserve both monotonicity and submodularity with respect to

motif elimination. We also present a novel motif scoring scheme leveraging the principle of

network core, a concept from network sciences literature, to quantify the influence of motif

removal towards curbing the influence spread. The scoring is based on the number as well

as the path lengths between the influential source and sink nodes intercepted by a motif.

Our proposed scoring scheme is highly generalizable to evaluate the relative importance of

larger motif substructures.
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We carry out extensive simulation experiments on a well-studied 3-node motif,

called feed forward loop (FFL), to demonstrate the efficacy of the proposed motif scoring

approach. Specifically, we consider two graph topologies, such as Erdos-Renyi (E-R)

random graphs [75] andE. coli transcriptional regulatory networks [76], to acquire themotif

scores. The performance of our scoring scheme is compared against a near-optimal influence

diffusion approach [77]. Results demonstrate that high-scoring FFL motifs intercept a large

number of paths connecting the pre-assigned source and sink nodes, and their removal

adversely affects network connectivity. The motif scores align with the motif order of the

influence diffusion approach. Moreover, the high-scoring motifs have interesting functional

properties in E. coli transcriptional networks, such as stress response.

5.3. PRELIMINARIES

5.3.1. Graph Representation of Networks. A complex network is represented as

a graph � (+, �), where + is the set of vertices (nodes) and � is the set of edges between

vertex-pairs. A directed graph has directed edges (D, E) ∈ � allowing unidirectional

information flow from vertex D to E.

Degree and path in directed graph: In a directed graph �, the number of edges

leaving a node D is termed its out-degree, denoted by 346+(D), and the number of edges

entering a node is its in-degree, denoted by 346−(D). A directed path ? = {D 9 , D 9+1, · · · , D=}

is a sequence of vertices such that there is a directed edge from a vertex to its successor in

the sequence, i.e., (D8, D8+1) ∈ � for 9 ≤ 8 < =. A directed path is considered simple if it

has no repeated node in the path. In an unweighted graph, the length of a simple path is

defined as the number of edges on it. If � is a weighted graph, the path length is equal to

the sum of edge weights on the path.
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(a) (b)

Figure 5.1. Three-Tier Topology and Feed Forward Loop. (a) Three-tier topology: directed
edges indicate potential edges across and within tiers; (b) Feed forward loop (FFL): ( is the
master regulator, � the intermediate regulator and ) the regulated node. The direct edge
between ( and ) is marked in green and the indirect path (via �) in red.

Network efficiency: It is a measure of the average shortest path length between all

pairs of source and sink nodes. For a directed graph � (+, �), the network efficiency is

defined as

E = 1
|+ | × (|+ | − 1)

∑
D,E∈+,D≠E

1
3 (D, E) , (5.1)

where 3 (D, E) is the shortest path length from node D to E.

Graph density: For a directed graph � (+, �), the density is defined as

� =
|� |

|+ | × (|+ | − 1) . (5.2)

5.3.2. Transcriptional Regulatory Networks. Transcriptional Regulatory Net-

works (TRNs) are biological networks that exhibit interactions between proteins, called

transcription factors (TFs), and genes. They are represented as directed graphs in which

nodes represent TFs (or genes) and edges correspond to the regulations of target genes by

TFs [76]. Validated and nearly complete TRNs of E. coli (Escherichia coli) and Yeast (Sac-

charomyces cerevisiae) are extracted from GeneNetWeaver [78]. E. coli TRN with 1,565

nodes and 3,758 edges and Yeast TRNwith 4,441 nodes and 12,873 edges have respectively

low graph density of � = 0.0015, 0.00065. Let us discuss two key aspects of TRNs.
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5.3.2.1. Three-tier topology. Nodes in TRNs are classified into three tiers based

on their in-degree and out-degree distributions [55, 56], as discussed below:

• Tier-1 consists of the set of nodes with zero in-degree, i.e., {D ∈ + : 346−(D) = 0}.

• Tier-2 consists of the set of nodes with non-zero in-degree and out-degree, i.e.,

{D ∈ + : 346+(D) > 0 0=3 346−(D) > 0}.

• Tier-3 comprises the set of nodes with zero out-degree i.e., {D ∈ + : 346+(D) = 0}.

Figure 5.1(a) depicts a three-tier topology with unidirectional data flow from Tier-1

to Tier-3 of the TRN. Tier-1 and Tier-2 comprise TFs and Tier-3 are the target genes.

5.3.2.2. Feed forward loop. Complex networks such as biological networks (e.g.,

TRNs) and social networks are characterized by the recurrence of subgraphs, called mo-

tifs [79]. One such 3-nodemotif is the feed forward loop (FFL) that has a direct link between

the source node ( and the target node ) , and an indirect path via � [80] as shown in Figure

5.1(b). ( is called the general TF, � the specific TF and ) the effector operon. Abundance

of FFL results in a few graph properties.

• Robustness due to independent paths: Any two paths between a node-pair are called

independent if they contain no common nodes, except the source and destination.

According to Menger’s theorem on vertex connectivity [81], the minimum number of

vertices whose removal disconnects two vertices is equal to the maximum number of

pairwise vertex-independent paths between them. Our prior work [56] has shown that

FFL offers two independent paths between ( and ) , and cascades of FFLs allow them

to create multiple alternate pathways that are resilient to node or link (edge) failures.

• Increase in shortest path length: Knocking off nodes or links in a graph may increase

path lengths from D to E or disconnect them. Figure 5.1(b) shows that the indirect

path between ( and ) via � is only a single hop longer than the direct link ((, )).

Abundance of FFLs can help reduce the communication delay due to link failures.
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• FFLs as building blocks of larger motifs: FFL motifs are building blocks of larger

motifs of 4, 5, 6 nodes [82]. This implies that understanding the dynamics of infor-

mation spread due to FFLs can be a key step towards characterizing spread dynamics

in large complex networks.

5.3.3. Influence Diffusion. The main goal of influence diffusion is to identify :

seed nodes, which when activated, causes maximum collective information spread within

a network. In [77] is presented a greedy strategy that chooses : nodes one at a time, each

yielding the highest marginal spread. In a graph � at time C, the calculation of marginal

spread unfolds in discrete steps, where each node D is given a single chance to activate

a neighbor E with probability given by its edge weight Z ((D, E)). If D is successful, E is

activated at time C + 1 and acts as a spreader in the subsequent time instants. This process

continues until no more activation is possible.

5.3.4. Network Core. Network core of any undirected graph is the residual sub-

graph that manifests when all nodes with degree less than ; are removed. Consequently, all

nodes in the ;-core have degree at least equal to ;; and the (;+1)-th core is always a subgraph

of the ;-th core [83]. Although the notion of network cores was originally conceived for

undirected graphs, we propose to employ the same notion to a directed graph (see Sec.

5.5.1) in the proposed motif scoring approach.

5.3.5. Pearson Correlation Coefficient. The Pearson correlation coefficient mea-

sures the strength of linear association between two vectors, where the values 1 and −1 are

perfect positive and negative correlations, respectively. We employ this coefficient to gauge

how similar the proposed motif scoring is to the influence diffusion approach.

5.4. INFLUENCE SPREAD MODEL

Consider a directed, complex network � (+, �), where + denotes the set of individ-

uals; and the weight Z ((D, E)) on directed edge (D, E) represents the influence of individual

D over another individual E about a specific issue. Assume that a set of seed nodes (po-
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tentially adversarial) denoted by ( feeds fake information (or malware) into the network to

influence the remaining nodes in a desired manner. To curb such influence spread across

the complex network, we aim to identify  FFL motifs responsible for actively spreading

the information.

5.4.1. Spread Function. Given an initial seed (source) node set (, we define

the spread function f( (�) on the directed network � as a measure that quantifies av-

erage information spread in terms of the number of nodes activated by means of in-

fluence diffusion (see Section 5.3.3). Thus, we aim to identify a set of  FFL motifs

q = {(D1, E1, F1), (D2, E2, F2), . . . , (D , E , F )} such that

q:|q |= f( (� (+ (�) −+ (�), � (�) − � (�))) (5.3)

where � is a directed graph representing the FFL motif such that + (�) = {D : D ∈

+ (�), D ∈ q8 ∀ 8 ≤  } and � (�) = {(D, E), (E, F), (D, F) : (D, E, F) ∈ q8,∀8 ≤  }. The

rest of the paper makes two assumptions: (1) the set of triplet nodes (D, E, F) constituting

an FFL motif is denoted as <; and (2) all non-source nodes are sink nodes.

5.4.2. Properties of Spread Functions. In this subsection, we discuss two fun-

damental properties of spread functions, namely monotonicity and submodularity, that are

preserved under motif elimination in the context of influence spread control in complex

networks.

Definition 1 (Monotonicity [84, 85]). A function 5 is called monotonic if an element 4

removed from a set* cannot increase 5 , i.e.,

5 (* − {4}) ≤ 5 (*)

for all elements 4 and set*.
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In the following lemma, we show that any monotonic spread function maintains its

monotonicity property even with respect to motif elimination.

Lemma 1. Given a monotonic spread function f(, a directed graph � and a seed set (, for

any two motif sets � and � such that � ⊆ �, we have

f( (� − �) ≤ f( (� − �). (5.4)

Proof. Given that � ⊆ �, consider a motif set � such that � = �∪� and �∩� = ∅. Since

� and� are partitions of �, we have �−� = �−�−�. Then, f( (�−�) = f( (�−�−�).

We use induction principles in the remainder of the proof. In the base case, consider

the set � − �, and remove any one edge 41 ∈ � from � − �. Since f( is monotonic, we

have

f( (� − � − {41}) ≤ f( (� − �).

After : intermediate iterations, let �̃: be the subset of edges in � that are removed

from � − �. Assuming that the following inequalities hold true for the : Cℎ iteration:

f( (� − � − �̃: ) ≤ f( (� − � − �̃:−1) ≤ · · · ≤ f( (� − �),

we now focus on the (: + 1)Cℎ intermediate iteration where we remove 4:+1 ∈ � − �̃: from

� − � − �̃: . Then, for any monotonic spread function f(, we have

f( (� − � − �̃:+1) = f( (� − � − �̃: − {4:+1})

≤ f( (� − � − �̃: )

≤ · · · ≤ f( (� − �).

Therefore, by the principle of induction, when the entire set � is removed from

� − � (i.e., � − �̃ = ∅ for some  ∈ Z), the following inequality holds true:
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f( (� − �) = f( (� − � − �) ≤ f( (� − �).

�

Definition 2 (Submodularity [84, 85]). A function 5 is called submodular if it satisfies a

natural "diminishing returns" property: the marginal gain from adding an element to a set

* is at least as high as the marginal gain from adding the same element to a superset of*.

Formally, a submodular function satisfies:

5 (* ∪ {E}) − 5 (*) ≥ 5 (, ∪ {E}) − 5 (,) (5.5)

for all elements E and all pairs of sets* ⊆ , .

Spread functions satisfy submodularity given an initial set of active nodes [86], i.e.,

for all �′ and �′′ where �′ ⊆ �′′

f( (�′) − f( (�′ − {48}) ≥ f( (�′′) − f( (�′′ − {48}) (5.6)

The next lemma proves that the spread function satisfies submodularity during motif

elimination.

Lemma 2. Given a submodular spread function f(, and any set of edges {41, · · · , 4:} that

are present in both �′ and �′′ where �′ ⊆ �′′, we have

f( (�′′ − {41, 42, .., 4: }) − f( (�′′) ≥ f( (�′ − {41,

42, .., 4: }) − f( (�′) (5.7)
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Proof. Let {41, 42, .., 4: } ∈ � be the set of edges to be deleted that are the common to both

�′ and �′′ where �′ ⊆ �′′. Following Inequality (5.6), we have

f( (�′) − f( (�′ − {41}) ≥ f( (�′′) − f( (�′′ − {41}) (5.8)

>A, f( (�′′ − {41}) − f( (�′′) ≥ f( (�′ − {41}) − f( (�′) (5.9)

Without loss of generality, we can extrapolate the submodularity property to the graph

�′′ − {41} and obtain

f( (�′′ − {41, 42}) − f( (�′′ − {41}) ≥

f( (�′ − {41, 42}) − f( (�′ − {41}) (5.10)

Similarly,

f( (�′′ − {41, 42, 43}) − f( (�′′ − {41, 42})

≥ f( (�′ − {41, 42, 43}) − f( (�′ − {41, 42}) (5.11)

This can be done for all the edges to be removed. Thus,

f( (�′′ − {41, 42, .., 4: }) − f( (�′′ − {41, 42, .., 4:−1}) ≥

f( (�′ − {41, 42, .., 4: }) − f( (�′ − {41, 42, .., 4:−1}) (5.12)

Applying Expressions (5.9), (5.10), (5.11), and (5.12), we obtain the desired result

f( (�′′ − {41, 42, .., 4: }) − f( (�′′) ≥ f( (�′−

{41, 42, .., 4: }) − f( (�′) (5.13)

�
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5.4.3. Greedy Algorithm Performance. Now, if a function is monotonic, sub-

modular and non-negative, then the greedy algorithm, which starts with an empty set and at

every step picks an element that maximizes the marginal benefit, provides a set achieving a

good approximation, (1 − 1
4
) (where 4 represents the exponential constant), of the optimal

solution [77, 87], where 4 is the base of the natural logarithm. Therefore, the greedy

motif deletion based influence diffusion algorithm proposed in the next section removes the

near-optimal motifs curbing the influence spread.

Proof. Let "∗ = {<∗1, <
∗
2, .., <

∗
:
} be the optimal motif set and " = {<1, <2, .., <: } the

motif set generated by the greedy approach; and let Δ be the marginal gain by removing

motifs from graph �. Since f( is monotonic and submodular, we have the following:

f( (� − "∗) ≥ f( (� − {"∗ ∪ "})

= f( (� − ")

−
:∑
9=1
Δ(<∗9 |" ∪ {<∗1, <

∗
2, .., <

∗
9−1})

≤ f( (� − ") −
∑
<∗∈"∗

Δ(<∗ |")

≤ f( (� − ") −
:∑
8=1
Δ(<8+1 |")

≤ f( (� − ") − :Δ(<8+1 |"),

(5.14)

or,

Δ(<8+1 |") ≥
1
:
(f( (� − "∗) − f( (� − ")). (5.15)

Let X8 = f( (� − "∗) − f( (� − "), then

X8 − X8+1 = f( (� − " ∪ {<8+1}) − f( (� − ")

= Δ(<8+1 |") ≥
1
:
X8 from Inequality (15),

(5.16)
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or equivalently,

X8+1 ≤ (1 − 1/:)X8, and X: ≤ (1 − 1/:):X0. (5.17)

From well-known bound 1 − G ≤ 4−G for G ∈ R, we have

f( (� − ") =
(
1 − 1

4

)
· f( (� − "∗) (5.18)

�

Thus, the greedy motif deletion is (1 − 1
4
) ≈ 63% approximation of spread under optimal

motif elimination.

5.5. PROPOSED MOTIF SCORING FRAMEWORK

Wediscuss the proposedmotif scoringmechanism and the baseline greedy algorithm

for influence spread.

5.5.1. Motif Scoring. Given a directed graph �, adjacency matrix A and : ∈ Z,

we define A:
D,E as the [D, E]Cℎ entry of the : Cℎ power of adjacency matrix � that represents

the number of walks from node D to E in : hops. The score reflects howmany paths between

the seed and other nodes are intercepted by a given FFL <. Figure 5.2 shows that the motif

scoring works in two stages: connectivity from (1) a set of preassigned seeds ( to < and

(2) < to the preassigned sink nodes (or all nodes not in the source set ().

Figure 5.2. Two Stage Motif Scoring Mechanism.
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In Equation 5.19, we calculate the FFL information potential, P(<), for motif < as the

weighted sum of the score on (1) incoming links from seed nodes to< and (2) outgoing links

from< to all the nodes in�. As mentioned earlier, A is the adjacency matrix corresponding

to � (+, �), U is the weighing factor, : is the maximum walk length considered, kD is the

individual spread of seed node D (gauged by influence diffusion discussed in Sec. 5.3.3) and

?D is the K-directed score (measuring spreading potential as discussed hereafter) of a node

D. The motif acquires a higher score if there exist short pathways (1) into< from seeds with

high spreading potential and (2) from < to successors with high spread, as shown below.

P(<) = U ×
∑
D∈(

(∑
E∈<

(∑
:

A:
D,E

:!

))
kD+

(1 − U) ×
∑
D∈+

((∑
E∈<

∑
:

A:
E,D

:!

))
^D (5.19)

It is noteworthy that this scoring technique depends on the number and length of

paths between influencial nodes intercepted by a motif. Thus, it is highly generalizable to

study the role of larger motifs in network spread.

• K-Directed score: We propose the K-directed score inspired from the notion of

network core (mentioned in Sec. 5.3.4), which we adapt for directed networks. Given

directed graph � (+, �), we initialize a hash table ^. We iteratively eliminate nodes

D ∈ + with the least out-degree  , from � and assign ^D =  (see Algorithm 5 for

details). The underlying intuition is that the nodes with high score lie at the interior

of the directed network and have high spreading potential.

5.5.2. Greedy Influence Diffusion under Motif Elimination. Taking a cue from

the effect of motif removal on spread function, we apply a greedy motif deletion influence

diffusion as a benchmark [77]. For instance, Figure 5.2 shows that if motif < is knocked
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Algorithm 5 K-directed Score
1: Input. Directed graph, � (+, �)
2: Output. ^
3:  = min(346+(�)), ^ = {}
4: while |+ | > 0 do
5: for D ∈ + do
6: if 346+(D) =  then
7: =_;8BC := D
8: for D ∈ =_;8BC, . . . do
9: ^ [D] =  
10:  =  + 1
11: Remove =_;8BC from �

=0

off the ties between the seed and non-seed is eliminated, thereby affecting network spread.

Thus, given seed nodes (, we employ the greedy baseline strategy to calculate the effect of

knocking off an FFL motif on the overall spread.

5.5.2.1. A baseline algorithm. We discuss the greedy stochastic influence spread

presented in [77], as discussed in Sec. 5.3.3. In Algorithm 6, given directed graph � and

seed set (, we implement the influence diffusion as function �� (�, () and estimate the

greedy score for each FFL motif � = (D, E, F) based on the effect of spread when � is

knocked off �. The final score is the mean spread across a iterations after removing nodes

D, E, F from �.

Algorithm 6 Greedy Influence Diffusion
1: Input. Directed graph �, No. of iterations a, motif � = (D, E, F), Seed set (

2: Output.
1
a

a∑
8=1

k8

3: 8 = 0, k = ∅
4: Remove � from �, i.e.,
5: � (�) = � (�)\{(D, E), (E, F), (D, F)}
6: for 8 < a do
7: k8 = �� (�, ()
8: Increment 8
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5.5.2.2. Validation of motif scoring approach. We first calculate the scores using

the greedy baseline, where lower greedy score represents higher influence of a motif in

spread. Thus, we compare the motifs ranked in the increasing order of greedy score against

the list of motifs ranked in the decreasing order of proposed motif score. The effectiveness

of the proposed scheme depends on the Pearson’s correlation coefficient (see Sec. 5.3.5)

between the two list.

Table 5.1. Description and Value of Simulation Parameters.

Parameter Symbol Value
Weighing factor U 0.5

Shortest path length ? 5
Simple path length % 10
E-R Graph Density � 0.05, 0.1

5.5.3. Graph Topologies. We validate the motif scoring strategy with the two

topologies as described below.

5.5.3.1. Random topologies. We generate Erdos-Renyi random graphs by con-

necting nodes randomly with directed links with a preassigned probability [75] (see Sec.

5.6 for details).

5.5.3.2. Sampled subgraphs of TRN. We sample subgraphs from the directed

TRN. In Algorithm 7, we input TRN � and the order (i.e., required number of nodes in

sampled subgraph) A, the of the required subgraph. We initialize an empty graph � and

add a well connected node D ∈ + (�) as the first node. Subsequently, we iteratively add

nodes to � by randomly selecting a new node, say E, that belongs to the neighborhood of

D ∈ + (�) in � and include the directed links between the newly added and existing nodes

D and E from �. This is required to ensure single connected component in the generated

subgraph. This process terminates when the required subgraph order A is realized.
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5.6. RESULTS

We carry out simulation experiments on Python. We employ the Networkx [88]

library for the graph operations and validate the motif scoring method against directed

Erdos-Renyi random graphs and subgraphs of order ranging from 50 − 300 nodes sampled

from E. coli TRN. Unless otherwise stated, we consider U = 0.5 in the motif score (Equation

5.19). The default simulation parameters are summarized in Table 5.1.

Algorithm 7 Sample - TRN
1: Input. Directed graph � (+, �), A
2: Output. Directed graph �
3: Convert � to undirected graph �′
4: � = ∅
5: Select random seed D ∈ + with probability 346(D)∑

E∈+ 346(E)
6: + (�) = + (�) ∪ {D}
7: while |� | < A do
8: Select random neighbor of D ∈ �′ (D ∉ + (�)), say E, from �′

9: Add + (�) = + (�) ∪ {E}
10: for D ∈ + (�) do
11: if (D, E) ∈ � (�) then
12: Add a new edge � (�) = � (�) ∪ (D, E)
13: if (E, D) ∈ � (�) then
14: Add a new edge � (�) = � (�) ∪ (E, D)

5.6.1. Motif Removal Strategies. In order to remove a motif < = (D, E, F) of

score P(<), belonging to motif set " , we knock off its directed links (D, E), (E, F), (D, F)

from the directed graph. We consider the following two motif removal scenarios.

• Random removal: The probability of motif removal is independent of its motif score,

i.e.,
1
|" | .

• Preferential removal: The probability of motif removal is proportional to its motif

score, i.e., P(<)∑
<′∈" P(<′) .
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(a) (b)

Figure 5.3. Relationship Between Motif Scores and Source-Sink Path. (a) motif score and
simple source-sink path count; (b) motif score and weighted source-sink path count.

(a) (b)

Figure 5.4. Failure scenarios on 150-node E-R random graphs. (a) average network
efficiency; (b) frequency distribution of shortest path length.

(a) (b)

Figure 5.5. Failure on 150-node E. coli TRN. (a) average network efficiency; (b) frequency
distribution of shortest path length.
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5.6.2. Effect of Motif Score. We discuss in Sec. 5.5 that the high scoring motifs

intercept bulk of the directed paths from the preassigned source to the sink nodes. Specifi-

cally, the motif score will be higher if the (1) number of source-sink paths increases and (2)

source-sink paths are shorter in length. To demonstrate this, we estimate the relationship

between the score P of a motif (refer Equation 5.19) and count and length of source-sink

paths it intercepts. For these experiments, we show the mean measurements of 50 iterations

on directed, weighted E-R random graphs of 300 nodes and graph density � = 0.1. We use

the Networkx path function to enumerate simple paths of length, % ≤ 10.

In the first experiment, we consider the two nodes with the highest out-degree nodes

as source, while the remaining nodes act as sinks. Figure 5.3(a) shows that the mean count

of simple paths intercepted by a motif tends to range from 10 for P ∈ [2, 3) to 300

for P ∈ [11, 12), respectively. This suggests that the number of source-sink simple paths

intercepted by a motif < is indeed commensurate with P(<). In another experiment, we

turn our attention to the length aspect of the paths intercepted by the motifs. Instead of

assigning equal weight to each simple path, we gauge the importance of a path ? by its

"shortness", the shortest path length, i.e., 1|? | . Figure 5.3(b) once again shows that the path

interception of a motif < increases with P(<), even when we attach more weight to shorter

paths.

5.6.3. Failure Scenario. Let us now consider the effect of removing high-scoring

FFL motifs (by virtue of failure or attack) on the overall connectivity of a directed network,

measured in terms of the change in network efficiency (refer Equation 5.1 in Sec. 5.3.1 for

details). Recall that we execute motif removal by knocking off its constituent links and that

we consider random as well as preferential motif removal strategies. For each strategy, we

carry out 10% motif removal on 150-node E-R random graphs of graph density � = 0.1.

Once again we consider only 2 high out-degree nodes to be source and all other nodes to

be sinks.
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Figure 5.4(a) depicts that the network efficiency corresponding to the preferential

failure is lower than that of random failure. This goes to show that the overall connectivity

of the network suffers when motifs with high P are knocked off. Furthermore, we compare

a frequency distribution of the shortest path lengths for the two failure scenarios. Figure

5.4(b) shows that while the frequency of shortest paths of length 2 for preferential failures

is less than that of random failures, it exhibits higher frequency for paths of length 3. This

suggests that the preferential motif failures creates longer paths, causing poorer connectivity

in the directed E-R graphs.

We recreate the same scenario for 150-node subgraph sampled (using Algorithm

7) from E. coli TRN. Figure 5.5(a) shows a significant difference in network efficiency

between preferential and random node failure scenarios. Unlike the E-R random networks

where nodes exhibit average degree, TRN is a sparser topology (refer to graph density

of TRN � < 0.002 discussed in Sec. 5.3.2) and possesses fewer source-sink pathways,

making it more susceptible to failure of motifs with highP. Similarly, we plot the frequency

distribution of the path lengths to show that the preferential motif failures cause path lengths

to increase or nodes to become unreachable, resulting in fewer paths of length ≤ 5 (see

Figure 5.5(b)).

5.6.4. Comparison with Greedy Influence Diffusion. We compare the perfor-

mance of motif scoring against standard influence diffusion approach (refer Sec. 5.3.3 for

details). In each run of this experiment, we apply the greedy influence diffusion baseline

approach to acquire the motif scores and classify the motifs into 5 bins of size 0.2 on the

basis of scores normalized by the maximum score of that directed graph.

We apply the proposedmotif scoringmethod to record the corresponding normalized

score of the motifs in each bin based on the proposed scoring method, over 1000 iterations.

Figure 5.6(a) and 5.6(b) shows that for directed 150-node E-R random graph with random

edge weights and TRN subgraphs, the FFL scores increase with increasing greedy scores
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(a) (b)

Figure 5.6. Pearson Correlation of Motif Scoring and Influence Diffusion. (a) on E-R
random graphs; (b) on E. coli TRN subgraphs.

(with Pearson correlation coefficients equal to 0.84 and 0.97, respectively). This shows the

efficacy of the proposed scoring in capturing the effect of FFL motifs in overall influence

spread.

5.6.5. Biological Validation. The well-connected nodes in the TRNs represent

transcription factor proteins or genes with well-studied and highly specialized functional

properties. We validate the important FFL motifs identified by the scoring Equation 5.19

by recording the functional properties of the genes participating in the motifs in the E. coli

TRN. To this end, we calculate the top 100 scoring motifs and rank the genes with the

highest participation in them. Figure 5.7 depicts the top 20 most appearing genes in E. coli

TRN by the (a) number of times they appear in the top 20 motifs and (b) weighted sum of

motif scores the genes appear in. in E. coli TRN.

Figure 5.7. Names of Genes Participating in the Top 20 High Scoring FFL Motifs.
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It is noteworthy that ihfA, ihfB, gadX, gadW, fis emerge as the nodes of most sig-

nificant motifs. The genes ihfA, ihfB play a role in anaerobic fermentative metabolism

in E. coli [89], while gadX, gadW are major transcriptional regulators that affects acid

resistance [90]. Finally, fis too is a regulator influencing translation (rRNA and tRNA

genes), virulence, biofilm formation, energy metabolism, stress response, central inter-

mediary metabolism, amino acid biosynthesis, transport, cell structure, carbon compound

metabolism, amino acid metabolism, etc. [91]. Also, all the above genes appear in tier 2

of the three tier hierarchy of E. coli TRN (see Sec. 5.3.2 for details), making them ideal

candidates intercepting information flow between tiers 1 and 3. This aligns with our earlier

studies [56, 82] that show the tier 2 nodes to contain key TRNmotifs. The tiers of the motifs

with the top 10 scores (and their tier information) are summarized in Table 5.2, where the

general TFs (defined in Sec. 5.3.2.2) belong to tier 2.

Table 5.2. Top 10 Motif Scores.

Gene Motif Weighted Score Tier
(’gadX’, ’gadW’, ’gadA’) 10.0085 2 2 3
(’gadW’, ’gadX’, ’gadA’) 10.0085 2 2 3
(’gadE’, ’gadX’, ’gadA’) 9.93092 2 2 3
(’gadX’, ’gadE’, ’gadA’) 9.93092 2 2 3
(’gadW’, ’gadX’, ’hdeB’) 9.41128 2 2 3
(’gadW’, ’gadX’, ’hdeA’) 9.41128 2 2 3
(’gadX’, ’gadW’, ’yhiD’) 9.41128 2 2 3
(’gadX’, ’gadW’, ’hdeA’) 9.41128 2 2 3
(’gadX’, ’gadW’, ’hdeB’) 9.41128 2 2 3
(’gadW’, ’gadX’, ’yhiD’) 9.41128 2 2 3

We explore the notable research abstracts, where the genes participating in the top FFL

motifs feature together. We find the 1000 research abstracts from PubMed [92] and perform

text analysis to identify motif triplets in them. Figure 5.8 depicts that PMID: 22790954 and

PMID: 17259322 deal with acid resistance [93, 94], whereas PMID: 9097440 deals with

the effect of genes on resistance to antibiotics [95]. Finally, PMID: 9783171 explores how
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the over-expression of stress response genes affect tolerance to organic solvents [96]. These

papers report essential functions in the transcriptional networks, explaining why the motif

genes we report have high P(<).

Figure 5.8. Motif Triplets Frequency in Top Four Research Abstracts.

5.7. DISCUSSIONS

In this work, we proposed a generalizable motif scoring mechanism that identifies

the role of motifs in the spread of influence from preassigned spreader nodes in a complex

networks. We proved the influence spread in networks under motif elimination to be mono-

tonic, submodular and compared the accuracy of the proposed scoring technique against a

near-optimal greedy influence diffusion approach. Our simulation experiments using feed

forward loop (FFL) motifs in random graph and transcriptional network topologies corrob-

orated the ability of the scoring approach to influence information spread by intercepting

short paths between seed and sink nodes. Furthermore, the high-scoring FFL motifs also

emerge as significant spreader in the influence diffusion approach and contribute towards

important functional properties like stress response in E. coli transcriptional networks.

This work presents several interesting research directions. First, we explored the

average running time of the motif scoring approach for E. coli TRN on a Intel(R) Core(TM)

i7-3770 CPU @ 3.40GHz 16 GB RAM computer. Figure 5.9(a) shows the nonlinear

increase in running time (measured in seconds) for increasing graph order, suggesting that
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(a) (b)

Figure 5.9. Scalability and Attack Cost vs. Damage Trade-off.

the proposed motif scoring approach may be computationally prohibitive for large complex

network scenarios. This makes it imperative to design scalable yet efficient motif scoring

algorithms. We are working towards a distributed motif scoring mechanism in which a

node can identify motifs in its immediate neighborhood in the absence of the knowledge of

the global network topology.

Second, in real world complex networks topologies, such as wireless networks and

smart grid, an attacker may disrupt communication by knocking off the high scoring motifs.

However, high scoring may be well-connected, thereby demanding a greater attack budget.

Figure 5.9(b) shows the increasing mean degree of nodes participating in FFL motif of

50 150-node subgraphs sampled from E. coli TRN. Evidently, if one equates the cost of

knocking off a FFL motif to its connectivity (i.e., node degree in the network), it becomes

imperative for the attacker and network administrator to analyze the trade off between the

damage inflicted and attack cost incurred. Third, we will validate the efficacy of the motif

scoring approach on other real datasets of large-scale social, communication or biological

networks. Finally, we have discussed in Sec. 5.5 that the proposed motif scoring approach

is highly generalizable and can be employed to gauge the influence of larger motifs.
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6. ONGOING RESEARCH

6.1. A SCALABLE MOTIF SCORING MECHANISM TO CONTROL INFORMA-
TION SPREAD IN SOCIAL NETWORKS

6.1.1. Motivation for a Scalable Solution. Influence spread control in complex

networks has gained attention in recent years in a broad range of applications, from health-

care and medicine (e.g., drug design [17] or curbing epidemics [18]) to social networks [19]

(e.g. moderating fake information that can lead to polarization). However, the design of an

effective control mechanism to curb influence spread poses important challenges: (i) high

computational complexity, especially in large complex networks, (ii) ethical issues, such

as harmful bias and lack of accountability in social networks, and (iii) long-term control

impact, e.g., potential chronic side-effects due to new drugs, or increasing socio-economic

gaps in social networks, which can only be observed in hindsight [97, 98, 99, 100].

Feed Forward Loop (FFL) is a 3−node subgraph that is recurrent in social and

biological networks. It is characterized by three nodes (, � and ) , such that there is a direct

link between ( and ) as well as an indirect path via �.

6.1.2. Problem Statement. Consider a social network � = (+, �), where + is the

set of individuals in the network and � is the set of edges that represent the influence of

one individual over another regarding a specific issue. We assume that a set of adversarial

seed nodes (denoted as () feeds negative information into the social network in order to

influence the rest of the individuals in a desired manner. In an attempt to alleviate this false

information spread across the social network, our goal is to identify  FFL motifs which

are responsible for actively spreading misinformation across the network, and eventually

remove them from the network.

Consider a social graph (directed, weighted and signed) � (+, �) and seed set (.

The average spread within graph � for seed set ( is given by f( (�).
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Determine a set of  FFL motifs q = {(D1, E1, F1), (D2, E2, F2), . . . , (D , E , F )},

s.t.

argmin
q:|q |= 

f( (� (+ (�) −+ (�), � − � (�))). (6.1)

Here � is a directed signed graph s.t. + (�) = {D : D ∈ + (�), D ∈ q8∀8 ≤  } and

� (�) = {4(D, E), 4(E, F), 4(D, F) : (D, E, F) ∈ q8,∀8 ≤  }.

6.1.3. FFL Scoring Mechanism. In this section, we present a simple scoring

mechanism to gauge the significance of any given FFL motif < in the information flow

within a social graph � (+, �).

P(<) = U ×
∑
D∈(

(∑
E∈<

(∑
:

A:
D,E

:!

))
kD+

(1 − U) ×
∑
D∈+

((∑
E∈<

∑
:

A:
E,D

:!

))
^D . (6.2)

f( (D1, · · · , D") = fA4B83.( +
∑
<∈M

D< · P(<), (6.3)

where D< is the decision made regarding the inclusion/exclusion of FFL <, and P(<) is

the scoring function defined in Equation (6.2).

In Equation 6.2, we calculate the FFL information potential P as the weighted sum

of the score on (i) incoming links from seed nodes to FFL motif < and (ii) outgoing links

from < to all the nodes in �. Here � is the adjacency matrix corresponding to � (+, �),

F is the weighing factor, : is the maximum walk length considered, kD is the individual

spread of seed node D and ?D is the pagerank centrality of a node D.
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Figure 6.1. Two stage motif scoring.

Figure 6.1 represents a schematic of the two-part scoring mechanism of information

potential of FFL motif <. Our metric is based on the fact that �:D,E is the [D, E]Cℎ entry of

the : Cℎ power of adjacency matrix � that represents the number of walks from node D to E in

: hops. The score reflects how many paths between the seed and other nodes is intercepted

by a given FFL <.

6.1.4. Motif Misinformation Propagation.

F` (D, E) = F(D, E) × DD
max(D′,E′)∈� F(D′, E′) × DD′

. (6.4)

P` (<) = P(<) ×
∏
E∈<

%(E |?0A (E, <)). (6.5)

Here %(E |D) = F` (D, E) if (D, E) ∈ � and 0 otherwise; ?0A (E, <) = {D : D ∈ <, E ∈

<, (D, E) ∈ �}, and 0 otherwise.

6.1.5. Preliminary Experimental Results. We carry out the simulation experi-

ments on synthetically generated networks as well as social networks. We utilize the

Python Networkx [88] library to process the networks. The default simulation parameters

are summarized in Table 6.1. We consider the following datasets for our validation purpose.
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• Wikipedia administrator requests network. This is a directed, signed network of

10, 835 nodes and 159, 388 links, where the nodes represent the Wikipedia members

and the directed links are ordered pairs of the voter and his choice of Wikipedia

administrator candidate [101].

• Clustered networks. We use the Python Scikit-Learn library [102] make_blobs func-

tion to generate 200, 400, and 600 datapoints divided in 5 clusters on a 2D plane

(refer Table 6.1).

Table 6.1. Scalability Parameter Description and Value.

Parameter Symbol Value
Weighing factor U 0.5

Shortest path length ? 5
Simple path length % 10
E-R Graph Density � 0.05, 0.1

Number of nodes in wiki network - 10835
Number of edges in wiki network - 159388

E-R Graph Density � 0.05, 0.1

Figure 6.2 depicts the average motif scoring using our clustered approach compared

to the average motif scores obtained from the whole graph. It is evident that high scoring

motifs are also getting high scores when clustered approach is used. For the next experiment

we varied the cluster count and monitored the effect on execution time and average motif

scores obtained from the cluster and the original graph. The result of this experiment is

depicted in Figure 6.3.

Figure 6.4 show that the running time of the scalable and original motif scoring

approach in seconds on the log scale. We find that the gap in running time widens with

the number of nodes. The speed-up achieved by the scalable approach on 600-node wiki

network (Figure 6.4(a)) and clustered networks (Figure 6.4(b)) are approximately 16 and

64 times, respectively.
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(a) (b)

Figure 6.2. Scalability Analysis of Influence Diffusion and Motif Scoring. (a) wiki sub-
graph; (b) clustered networks.

(a) (b)

Figure 6.3. Scalability Analysis Based on Cluster Count. (a) over Execution time; (b) over
Motif score.

(a) (b)

Figure 6.4. Run-time analysis of influence diffusion on (a) wiki subgraph; (b) clustered
networks.
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7. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we studied the robustness of smart CPS systems under various

transmission setups. We first consider a CPS system where sensing devices are static and

directly transmitting to the decision maker in a single hop. We have used a distributed PMU

network as a proof-of-concept application to propose a real-time anomaly based attack

detection framework that uses harmonic mean to arithmetic mean ratio as a stable metric

to identify current magnitude falsification in PMU data streams. We showed that even if

the attacker has knowledge about the underlying time series we are still able to identify

anomalies with a low false alarm rate in real time. Also, unlike many existing bad data

detection methodologies, it does not require the topology of the grid network.

Thenwe studied a generic CPS systemwhere sensing devices (or humans) aremobile

and investigated the security and robustness of the system against feedback weaponizing

attacks. We showed that under extreme adversarial conditions both linear and nonlinear

QoI models can fail and then we proposed a randomized sub-sampling method to improve

resilience against bad mouthing attacks even when a large fraction of the rater population

(especially during cold start phase) is compromised by a strategic adversary. We showed

that there exists an optimal sample size that produces an increase in QoI for each potential

value of total compromised raters. Finally, we modeled the problem as a two player zero

sum game to conclude that there exists a pure strategy Nash equilibrium. We also showed

improvement in terms of evading the effect of bad mouthing attacks and the boost in QoI of

truthful events under such attacks.

Finally, we consider a more generic MCS application where distributed data collec-

tion mechanisms are used that leverages peer devices to directly communicate with each

other in the MCS platform and the data reaches the destination in multiple hops from the

source. We investigated the role of feed forward loops (or motifs) in such a distributed

framework and proposed a method for the identification of influential motifs that contribute
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significantly to data collection or information diffusion. We evaluate the performance of our

proposed spread control algorithm using simulation experiments in the context of 3-node

motifs in both real and synthetic network topologies. We demonstrate that high-scoring

motifs intercept a high number of short paths from the preassigned source and sinks, because

of which their elimination results in a significant effect on curbing the influence spread.

In the future, we plan to build a generic anomaly-based attack detection model that

can serve as a common framework across various applications of the smart grid network.

We are also working on building an all-inclusive model to tackle all possible types of

feedback weaponizing attacks such as ballot stuffing, bad mouthing, reputation stuffing, etc.

to strengthen the CPS system more robust and resilient to adversarial manipulations.
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PUBLICATIONS

1. PEER-REVIEWED CONFERENCE PAPERS

• P. Roy, S. Bhattacharjee, and S.K. Das. "Real Time Stream Mining based Attack De-

tection in Distribution Level PMUs for Smart Grids" IEEE Global Communications

Conference (GLOBECOM) 2020.

• P. Roy, S. Bhattacharjee, and S.K. Das. "Resilience Against Bad Mouthing Attacks in

Mobile Crowdsensing Systems via Cyber Deception" IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2021.

• S. Roy, P. Roy, VSS Nadendla, and S.K. Das. "Influence Spread Control in Complex

Networks via Removal of Feed Forward Loops" Conference on Computer Commu-

nications and Networks (ICCCN) 2021.

2. PAPERS UNDER REVIEW

• VPK Madhavarapu, P. Roy, S. Bhattacharjee, and S.K. Das. "Active Learning Aug-

mented Folded Gaussian Model for Anomaly Detection in Smart Transportation"
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