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ABSTRACT 

This study is an exploration of phase transition behavior in evolutionary and 

population dynamics, and techniques for predicting population changes, across the 

disciplines of physics, biology, and computer science. Under the looming threat of 

climate change, it is imperative to understand the dynamics of populations under 

environmental stress and to identify early warning signals of population decline. These 

issues are explored here in (1) a computational model of evolutionary dynamics, (2) an 

experimental system of decaying populations under environmental stress, and (3) a 

machine learning approach to predict population changes based on environmental factors. 

Through the lens of critical phase transition behavior, the non-equilibrium continuous 

transition of a neutral agent-based model is shown to exhibit power-law-like behavior for 

two control parameters in the critical regime. The model does not fall within the directed 

percolation universality class, despite exhibiting some characteristics of directed 

percolation. The results also compare a system exhibiting quenched randomness with one 

that does not. Experimentally, the impact of two stressors, temperature and NaCl stress, 

are examined in S. cerevisiae. Increased levels of NaCl in growth media result in a 

smooth transition from a survivable to an uninhabitable environment, whereas increased 

temperature stress results in a transition with signs of critical behavior. Lastly, population 

data from the Living Planet Index and weather data from NOAA are used to predict 

population changes based on weather attributes using classification and regression 

machine learning models. Results indicate that a machine learning approach is viable, but 

additional data and environmental factors are needed to improve the predictive models. 
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1. INTRODUCTION 

 

Climate-driven population declines have become increasingly prevalent in the age 

of the Anthropocene. Because of global-scale environmental changes, and the evidence 

that the Anthropocene marks the beginning of the sixth mass extinction event, 

understanding the impact on populations is of increasing importance (Kolbert, 2014). 

Investigation of population-level responses to stress casts a wide net, stretching across 

scientific disciplines where each field offers a different perspective by utilizing different 

analytical methods.  

Computational modeling provides a platform to combine different fields of study. 

Even in the realm of computational modeling there are several approaches that can be 

taken. The physics-based approach is to model a phenomenon that closely resembles 

reality, which can be in the form of Newtonian equations for topics like trajectory 

analysis, statistical mechanics to model the behavior of particles and changes of states in 

matter, or simulations using rule-based, stochastic Markov processes to study systems-

level behavior in time. Analyzing population behaviors from a physics-based perspective 

has proven fruitful in the past. For example, modeling population clustering on a neutral 

landscape has shown that clustering can occur in independently diffusing individuals, by 

reproduction and death processes (Houchmandzadeh, 2002, 2008; Houchmandzadeh & 

Vallade, 2003; Meyer et al., 1996; Young et al., 2001). In several cases, models have 

demonstrated evolution and speciation on a neutral landscape, supporting neutral theory 

(Alonso et al., 2006; de Aguiar et al., 2009; Derrida & Peliti, 1991; Lawson & Jensen, 

2007). Models of both neutral theory and natural selection have demonstrated critical 
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phase transition behavior (King et al., 2017; Scott et al., 2013; Weinberger, 1987; 

Zhang et al., 1990). These models exemplify the how computational models can increase 

the understanding of population dynamics. 

Laboratory environments allow for the isolation of a variable to test its effect 

independently on system-level behavior. Investigation of different environmental 

stressors in yeast has shown that the population response is dependent on a specific 

stressor, such as heat stress, dilution rate (as a proxy for death rate), nutrient 

concentration, or osmotic stress (NaCl concentration). (Dai et al., 2012, 2015; 

Mensonides et al., 2002). Slow recovery and early warning signals of an at-risk 

population under an environmental stress have been demonstrated from changes in 

population resilience and stability, identifying that the response can vary based on the 

type of stress on the population (Dai et al., 2013, 2015). Observations like slow recovery 

and changes in resilience and stability near population collapse reveal critical phase 

transition behavior, critical slowing down, and fluctuations of an active state near the 

transition (Scheffer et al., 2009, 2012). The connection across scientific fields provides 

greater understanding of population collapse, and investigation from both biological- and 

physics-based approaches are complimentary to developing early warning signals and 

population recovery efforts. 

Beyond physics-based modeling and laboratory work, there has been increasing 

demand and interest in building more “data-driven” models utilizing methods from the 

field of data science. The key to building a data-driven model is to take advantage of our 

data-rich world and use known data to build a model that attempts to predict future 

outcomes. The field of data science has established standard artificial 
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intelligence/machine learning techniques to accomplish inference (prediction) using real 

data. This approach has many applications, from identifying critical behavior of disease 

spread based on vaccination behavior to classifying individuals into pre-defined 

populations by detecting genetic differences between populations (Bridges et al., 2011; 

Pananos et al., 2017). The application of machine learning may provide valuable insight 

into the examination of populations in the wild. With so many environmental factors that 

can affect a population, traditional analytics have limited capability, but incorporating 

these environmental impacts as inputs or features in a machine learning model may 

function as an effective method for analysis. 

1.1. SECTION TWO SUMMARY  

This section examines absorbing state phase transition behavior of a neutral 

evolution model to determine whether the model belongs in the directed percolation 

universality class. Investigation of the transition includes the comparison of two control 

parameters, with and without quenched disorder, through the measurement of absorbing 

phase critical relations.  

1.2. SECTION THREE SUMMARY  

The work presented in Section 3 investigates the effect of multiple environmental 

stressors on yeast and bacterial populations. Yeast cultures were subjected to salt and 

temperature stress. The population declines, or death curves, were examined for 

characteristics of critical transition behavior. The temperature stress conditions were 

found to result in behavior similar to a critical phase transition, while the salt stress 
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conditions showed a more gradual decline. Similar results were observed by 

collaborators applying different antibiotics to bacterial populations. 

1.3. SECTION FOUR SUMMARY  

The final section explores the use of machine learning to predict population 

change in North American mammalian, amphibian, and reptilian species based on a 

number of weather attributes. Two classification models were trained to predict 

population increase or decline, and one regression model was trained to predict 

population change. Comparisons are made between a dataset with fewer features and a 

higher number of training examples and a dataset with more features but fewer training 

points.  
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2. POPULATION DYNAMICS IN A COMPUTATIONAL MODEL 

 

Computational modeling allows investigation of complex real-world problems by 

providing better control than an experimental approach as well as data collection at a 

lower cost. The model discussed in this section began with the investigation of optimized 

speciation based on mutation size in an agent-based model of evolutionary dynamics on a 

two-dimensional phenotype space (Dees & Bahar, 2010). Dees developed a clustering 

algorithm analogous to speciation to investigate the effects of various fitness landscapes 

using an assortative (nearest neighbor) mating scheme. Fitness is defined here as the 

number offspring each organism reproduces based on different computational landscape 

definitions (varying fitness based on location, shifting fitness landscapes, and landscapes 

modulated by feedback). This model was further enhanced by Scott et al. (2013), who 

investigated and compared phase transition behavior among assortative mating, asexual 

fission, and random mating reproduction schemes on a neutral fitness landscape (fitness 

is equal for all organisms regardless of position in the phenotypic space). Scott et al. 

observed phase transition behavior in models using asexual fission and assortative mating 

as the maximum mutation size was varied, but not with randomized mating. This result, 

which derives from the local interaction (mating) rule, is consistent with the transition 

from extinction to survival belonging to the directed percolation universality class. 

Critical scaling behavior was further investigated through the lens of cluster-level 

dynamics, and power-law-like relationships through dynamically changing clusters in 

time were found (Scott, 2014; Scott et al., 2013). This supported the concept that there 

could be multiple levels of organization in the model, which parallels biological theories 
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of multi-level evolution (Okasha, 2009). King (2015) expanded on this by investigating 

the effects of different control parameters and demonstrated the existence of multiple 

types of phase transitions occurring in one model. These included a continuum 

percolation transition, which is only spatially dependent, and a time-dependent directed 

percolation transition. King extended the investigation into multi-level evolution through 

analyzing phylogenetic tree structures of populations at the individual and species 

(cluster) level of biological organization, and also investigated the effects of mass 

extinction events on phylogenies as the model approached criticality (King, 2015; King et 

al., 2017).  

This section will extend the previously described work by examining the model 

behavior in the absorbing phase of the critical regime for the critical phase transition 

previously classified as directed percolation (Scott, 2014). By analyzing the transition 

from the absorbing phase, the aim is to accomplish two things: first, to determine the 

accuracy of the previous assumption that the model demonstrates time-reversal 

symmetry, and second, to determine how the critical transition behavior is dependent on 

control parameter, in this case, the mutation parameter µ and death parameters d, dmax. By 

comparing the effects of d, a constant death percentage, and dmax, a death percentage that 

changes at each generation, the effects of temporal disorder are examined within the 

system. 

2.1. PHASE TRANSITIONS AND UNIVERSALITY CLASSES 

A phase transition occurs when a system changes from one state to another, 

driven by a feature of the system. An observable characteristic (or dependent variable) of 
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the model system is referred to as the order parameter, and the driving feature 

(independent variable) of the system is referred to as the control parameter. A system’s 

phase transition is discontinuous if the transition demonstrates a discontinuity, or abrupt 

change, in the order parameter behavior and is continuous when the order parameter 

demonstrates no discontinuities as the system changes from one phase to another. In 

addition to categorizing a phase transition based on continuity, a transition can also be 

described as a non-equilibrium transition if there exists an “absorbing phase,” and an 

equilibrium transition if no such absorbing phase exists. An absorbing phase is defined by 

the system’s inability to return to the active fluctuating state, regardless of control 

parameter value. The transition that occurs in this model is a continuous, non-equilibrium 

phase transition.  

Continuous phase transitions can be characterized by power-law scaling 

sufficiently close to the transition, in the critical regime. Power-law scaling of an order 

parameter is used to calculate critical exponents, which describe the system’s universal 

behavior. During the 1950s and 1960s, it was recognized that quantities like a 

parameter’s critical point depend heavily on the interaction details in a system, while 

critical exponents instead depend on a small number of general, or universal, system 

features like dimension or symmetries (Hinrichsen, 2000b). This led to the universality 

hypothesis, first clearly formulated by Kadanoff in 1971, which “reduces the large variety 

of critical phenomena to a small number of equivalence classes, so-called universality 

classes, which depend only on a few fundamental parameters” (Hinrichsen, 2000b). 

Every system in a universality class has the same critical exponents and exhibits the same 

scaling behavior near the critical point.  
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In its origins, universality classification was developed to explain universal 

behaviors in equilibrium transitions, but over the last several decades, these analytical 

methods have been applied to non-equilibrium transitions (Hinrichsen, 2000a). Directed 

percolation (DP) universality is a robust classification with respect to dynamic rules, 

making it the most understood class for non-equilibrium systems (Hinrichsen, 2000a). A 

model will be classified as directed percolation if it does not violate any parts of the DP-

conjecture (Grassberger, 1982; Henkel et al., 2008; Janssen, 1981). The DP-conjecture, 

developed by Grassberger and Janssen, states that a system is belonging to directed 

percolation if: 

1. the model displays a continuous phase transition from a fluctuating active 

phase into a unique absorbing state, 

2. the transition is characterized by a non-negative one-component order 

parameter, 

3. the dynamic rules are short-ranged, and 

4. the system has no special attributes such as unconventional symmetries, 

conservation laws, or quenched randomness. 

A number of theoretical models have fit into directed percolation universality, including 

Monte Carlo simulations in 2 + 1 dimensions, phase transitions in various lattice structure 

models, Brownian particles competing for resources, as well as modified versions of 

classical models like an Ising model with damage-spreading behavior and a Potts model 

with heat-bath dynamics (Grassberger, 1989; López et al., 2007; Marro & Dickman, 

1999; Ódor, 2004). The first experimental realization of directed percolation was 

observed in turbulent liquid crystals (Takeuchi et al., 2009). 
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2.2. MODEL 

The model is built on a 45 x 45 continuous, phenotypic landscape with time 

defined by generational steps forward. Active sites are analogous to organisms on the 

landscape, and each organism reproduces, creating the next generation, before the parent 

organism is removed and a series of death processes take place. The landscape is one of 

neutral fitness; each organism will produce two offspring and all removal processes are 

uniform across the landscape. For all analysis, simulations were initialized with an initial 

population placed on the landscape with a uniform random distribution. All simulations 

proceed through reproduction and death processes (described below) at each generation. 

Each simulation continues until the population goes extinct (zero), or the simulation 

reaches 2000 generations. Simulations were performed in MATLAB (The MathWorks) 

on PCs using a Windows 10 operating system. 

2.2.1. Reproduction. All simulations follow asexual reproduction methods, as 

illustrated schematically in Figure 2.1; each organism creates two offspring without a 

mate. The offspring are placed within a 2µ x 2µ square centered around the parent. The 

coordinates of each offspring ('%& , '%') are determined by 

'%& = '(& − + + 2.+ (1) 

'%' = '(' − + + 2.+ (2) 

where ('(& , '(')  are the parent’s coordinates, µ is the mutation parameter, and r is a 

random number drawn from a uniform distribution from the interval [0,1]. Once the 

offspring are created, the parents are removed, and the population goes through a series 

of death processes. 
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Figure 2.1 Asexual Reproduction. (a) The region of birth around the parent (blue square), 
a 2µ x 2µ square centered around the parent. (b) The offspring (red circles) are placed 
within the birth region. (c) The parent is removed, leaving the offspring to a series of death 
processes. 

 

2.2.2. Death Processes. After reproduction occurs in each generation, a series of 

death processes follows. A competition limit is imposed for any organisms within the 

competition radius of k=0.25 units, removing one of the organisms within the radius with 

no preference, simulating competition for resources in organisms that are too similar. All 

organisms that mutate to values outside of the landscape are also removed. Lastly, the 

death parameter removes some portion of the population. Two death parameters are 

compared in this work, d, which removes a set percentage of the population at every 

generation, and dmax, which removes a up to a certain percentage chosen from a uniform 

random distribution from 0 to dmax for each generation. In both cases, an organism’s 

probability of removal is uniform across the landscape because the model uses a neutral 

fitness landscape (meaning that each organism is subjected to same rule, even in the case 

of dmax, where the percentage of removal may change from generation to generation).  

a b c 

μ 

μ 
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2.3. METHODS 

The first step is to identify the critical point for a control parameter. The critical 

point is the exact point at which the system transitions from an active or surviving phase 

to an absorbing or extinction phase. Simulations with initial populations of 300 were run 

at varying d and dmax in increments of 0.01, holding µ constant at 0.3, 0.35, and 0.4 to 

identify the approximate transition point for each value of µ. The transition point is 

identifiable as the region in which the population average at 2000 generations approaches 

zero. Once the approximate transition point was identified, 5000 simulations with an 

initial population of 1 were run in the parameter range near the transition in increments of 

0.001 to gain more precision on the approach to criticality.  

The scaling behavior of three observables allows for identification of a critical 

transition; the probability of survival Ps(t), the number of active sites N(t), and the mean 

square spreading (radius of gyration) from the origin R2(t) (Hinrichsen, 2000b, 2006). In 

each case, asymptotic power law behavior emerges at the critical point. The power law 

scaling for each observable is as follows: 

2)(3)	~	3*+! (3) 

7(3)	~	3, (4) 

9-(3)	~	3 	/0 (5) 

where de is the survival probability exponent, q is the slip exponent, and ;̃ is the 

spreading exponent (Henkel et al., 2008; Hinrichsen, 2000b, 2006). The traditional 

notation for the survivability exponent is d, but in an effort to avoid confusion with the 
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death parameters d and dmax, the survivability exponent is defined as de in this 

dissertation.  

In practice, Ps(t) is the percentage of survival at a given time t, calculated over all 

simulations, N(t) is measured directly, and R2(t) is calculated by first calculating the mean 

spreading for each simulation and then averaging over all simulations. The mean 

spreading for a simulation, 91
-(3) is: 

91
-(3) = 〈[?2(3) − ?1(0)]- + [B2(3) − B1(0)]-〉 (6) 

where 91
-(3)  is the mean spreading for simulation k, (?2(3), B2(3)) are the coordinates of 

the ith organism at time t, and (?1(0), B1(0))	are the coordinates of the initial organism at 

t = 0. An average is then taken over all organisms active at time t, resulting in  91
-(3). 

Averaging over 91
-(3) for all simulations surviving at t gives R2(t). 

The critical value of control parameters dc and dmax,c are determined for µ = 0.3, 

0.35, and 0.4 by calculating best linear fit of Ps(t), N(t), and R2(t) on a double logarithmic 

scale. The critical parameter values exhibit the lowest chi-square linear fit (Garcia, 2000). 

In case of disagreement in critical value across the three observables, N(t) is the most 

sensitive of the quantities and therefore determines the critical value (Hinrichsen, 2006). 

These critical value combinations of µ and d or dmax are used as critical points for both 

control parameters; when µ is acting as the control parameter, d and dmax are held 

constant at the corresponding dc and dmax,c, and vice versa. All comparisons of transition 

behavior based on control parameter are considered at parameter pairs of (µc, dc) or (µc, 

dmax,c). 
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After identifying the critical point, the scaling behavior of four additional 

quantities are used to characterize the system. Each of these quantities characterizes the 

scaling behavior of a system beginning with one active site in the absorbing phase. They 

are mean cluster mass M, mean survival time T, mean spatial volume V, and mean size S. 

These quantities scale as follows: 

E	~	|Δ|*3 (7) 

I	~	|Δ|*4 (8) 

K	~	|Δ|*5 (9) 

M	~	|Δ|*6 (10) 

where D represents the off-critical measure, or the difference from the control parameter 

value and the critical point, and g, t, n, and s are critical relations. These scaling relations 

are used to calculate the four critical exponents, which identify the universality class of 

the system: 

N = O∥(1 + P) = O∥ + QO$ − R − R7 (11) 

S = O∥(1 + T8) = O∥ − R7 (12) 

U = O∥ V
Q
;
− T8W = QO$ − R7 (13) 

X = O∥ V
Q
;
+ 1 − T8W = O∥ + QO$ − R7 (14) 
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where, O∥, O$, R, and R′ are the critical exponents used to determine universality class, 

d is the system’s spatial dimension (in this case d  = 2), and z is the is the dynamical 

exponent defined as ;̃ = 	 2 ;⁄ .1  

Because the field of critical phase transitions is almost entirely theoretical, the 

established method of determination for M, T, S, and V is to calculate them with the use 

of the system observables Ps(t) and the pair-connectedness function (Henkel et al., 2008). 

This method of determination is well-defined compared to measuring M, T, S, and V 

directly from model data, and therefore will be the method used.  

2.3.1. Mean Cluster Mass. The mean cluster mass, M, is calculated as the total 

integral of the pair connectedness function 

E = [Q9.[ Q3	'(., 3, Δ)
:

;
(15) 

where '(., 3, Δ) is the pair connectedness function, defined as “the probability that a 

cluster generated at site r1 at time t1 in an otherwise empty system activates r2 at time t2” 

(Henkel et al., 2008). Applying this definition to our model, r1 and t1 correspond to the 

initial active site in an otherwise empty landscape and, at a given time t2, any active site 

will have a probability of 1 and any non-active or empty sites will have a probability of 0. 

 

1 Notational inconsistencies are not uncommon with enough sources, sometimes even from the same 
author. The spreading exponent and dynamical exponent notation is no exception. Since the original work 
by Grassberger and de la Torre in 1978, a variety of combinations like Z and z, !̃ and z, and my personal 
favorite z and z, have been used to represent the spreading exponent and dynamical exponent respectively. 
For this work, I will use the notation defined in Henkel et. al (2008) where the spreading exponent will be 
represented as !̃ and the dynamical exponent as z. 
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By integrating over the landscape, the results become equal to the number of active 

sites at a given time t. Therefore, M can be rewritten as: 

E = [ Q3	7(3)
:

;
(16) 

which can be rewritten in discrete form for use with the generational data as: 

E =\ 7(3)
<

(17) 

where N(t) is the cluster mass (also called the average cluster mass) 

7(3) = 〈\]2(3)
2

〉 (18) 

where ]2(3) = 1 if a site is active and ]2(3) = 0 if a site is inactive. 

2.3.2. Mean Survival Time, Mean Spatial Volume, and Mean Cluster Size. 

The measurables of mean survival time T, mean spatial volume V, and mean cluster size 

S are all calculated by integrating over the probability of survival Ps(t), with S and V 

having an additional multiplier before integration. The original equations as well as 

discrete form are included below: 

I = 	[Q3	2)(3) 						⟹ 							I = 	\2)(3)
<

(19) 

K = 	[Q3	2)(3)3
9
/*= 						⟹ 							K = 	\2)(3)

<
3
9
/*= (20) 

M = 	[Q3	2)(3)3
9 /> 						⟹ 							M = 	\2)(3)

<
3
9 /> (21) 
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where d is the spatial dimension and z is the dynamical exponent described above 

(Henkel et al., 2008). 

2.4. RESULTS 

 

Figure 2.2 Phase Transition Behavior. Population sizes averaged over five simulations for 
d (a) and dmax (b) with insets of standard deviation are shown. Blue stars represent µ = 0.3, 
red diamonds represent µ = 0.35, and purple squares represent µ = 0.4. The color of each 
standard deviation plot corresponds to the related dataset.  
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Figure 2.2 shows the continuous, nonequilibrium phase transitions for the 

population as a function of the control parameters d (a) and dmax (b). Each subplot 

includes population decay curves for µ = 0.3, 0.35 and 0.4 with corresponding standard 

deviations as insets.  Characteristic behavior of a critical transition is shown for d in 

Figure 2.2a, where each value of µ decays smoothly from the active phase to the 

absorbing phase with a spike in standard deviation at the transition point. In the case of 

dmax, Figure 2.2b shows a trend of population decay from an active to an absorbing phase, 

but with greater fluctuations in the plotted averages and standard deviations. Even far 

from the transition point, the average population has noticeably higher fluctuations for 

dmax compared to d. The standard deviations show greater fluctuations about the transition 

point, but the insets in Figure 2.2b show these high fluctuations span a larger set of dmax 

values, compared to the identifiable peaks seen in the insets of Figure 2.2a.  

 Following the determination of the approximate transition point for µ = 0.3, 0.35, 

and 0.4, the survival probability, number of active clusters, and gyration radius were 

measured. An examination of each value through time demonstrated a shift from survival 

to population collapse, with the critical point demonstrating power-law-like behavior in 

survival probability and number of active sites. The critical point for each value of µ was 

determined by the death parameter value which minimized the chi-square linear fit test of 

the double logarithmic plot of each measurable vs. time (Garcia, 2000). Once the critical 

values dc and dmax,c were determined for each µ, simulations were performed holding the 

death parameter constant at dc and dmax,c, and varying µ as the control parameter. 
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  Figure 2.3 shows the survival probability for control parameters d and µ in the 

active and absorbing phases directly around the phase transition. Figure 2.3a-c 

corresponds to the control parameter d for fixed values of µ = 0.3, 0.35 and 0.4 

respectively, and Figure 2.3d-f corresponds to the control parameter µ for fixed values of 

d = 0.281, 0.32, and 0.349 respectively. Each plot shows the average survival probability 

over 5000 simulations at the labeled order parameter value for t = [0, 2000]. The slope of 

the fit lines represents the critical relation exponent de at the critical value of the control 

parameter. Each plot demonstrates the continued survival of population in the active 

phase, the critical transition exhibiting power-law-like behavior, and the decay of 

survival probability in the absorbing phase.  

Similarly, Figure 2.4 represents the number of active sites for control parameters 

d and µ in the active and absorbing phases in the immediate neighborhood the phase 

transition. Figure 2.4a-c corresponds to the control parameter d for fixed values of µ = 

0.3, 0.35 and 0.4 respectively, and Figure 2.4d-f correspond to the control parameter µ for 

fixed values of d = 0.281, 0.32, and 0.349 respectively, with a time series from t = [0, 

2000] and averaged over 5000 simulations. The slope of the fit lines represent the critical 

slip relation exponent q. Both Figures 2.3 and 2.4 demonstrate that increasing values of 

µc and dc result in an increase in the domain of the critical regime; each subplot shows 

similar range in off-critical measure, but moving left to right, the plotted observables 

extend over a narrower range of the y-axis, suggesting that less of the critical regime is 

plotted. 
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Figure 2.3 Survival Probability for µ and d. Average probability of survival for control parameter d with values of µ = 0.3, 0.35, and 0.4 
(a, b, and c respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively). Legends show 
control parameter value. Thick red plots demonstrate the fit line, with the slope defining the survival probability exponent de. 
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Figure 2.4 Number of Active Sites for µ and d. Average number of active sites for control parameter d with values of µ = 0.3, 0.35, and 
0.4 (a, b, and c respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively) are shown. 
Legends show control parameter value. Thick red plots demonstrate the fit line, with the slope defining the critical slip exponent q. 
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 Figures 2.5 and 2.6 present the results for critical relations de and q  for the 

control parameters µ and dmax, with all system parameters the same as described for 

Figures 2.3 and 2.4 where a-c corresponds to the control parameter dmax for fixed values 

of µ = 0.3, 0.35 and 0.4 respectively, and d-f correspond to the control parameter µ for 

fixed values of d = 0.636, 0.739, and 0.818 respectively, with a time series from t = [0, 

2000] and averaged over 5000 simulations for both figures. The results are similar to 

those shown in Figures 2.3 and 2.4, with two exceptions. First, while the fluctuations of 

number of active sites, N(t) for both d and dmax are greater in the absorbing phase, the 

comparison of Figures 2.4 and 2.6 shows the results of dmax demonstrate higher levels of 

fluctuations for each control parameter value in the active and absorbing phases. The 

results correlate to the increased disorder associated with dmax. Figures 2.3 and 2.5, do not 

show the same fluctuation increase for dmax, supporting the notion from Henkel et al 

(2008) that N(t) is a more sensitive measurement than Ps(t). Secondly, the behavior 

around the transition spans further across the phase space for dmax, noted by the larger 

intervals in control parameter values presented. The difference of highest and lowest d 

values plotted in Figures 2.3 and 2.4 is 0.016 for each value of µ, and a difference in µ 

values of 0.012 for each value of d. In Figures 2.5 and 2.6, the comparable difference of 

highest and lowest dmax values is 0.028 for µ=0.3, 0.032 for µ=0.35 and 0.4, and a 

difference in µ values of 0.024 for dmax=0.636, and 0.028 for dmax=0.739 and 0.8181.  

Though the plotted ranges are larger for the plots of dmax than d, comparisons of Figures 

2.3 and 2.5 and Figures 2.4 and 2.6 do not suggest that the increased ranges of dmax 

include larger sections of the critical regime.
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Figure 2.5 Survival Probability for µ and dmax. Average probability of survival for control parameter dmax with values of µ = 0.3, 0.35, 
and 0.4 (a, b, and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). 
Legends show control parameter value. Thick red plots demonstrate the fit line, with the slope defining the survival probability exponent 
de.   
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Figure 2.6 Number of Active Sites for µ and dmax. Average number of active sites for control parameter dmax with values of µ = 0.3, 0.35, 
and 0.4 (a, b, and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). 
Legends show control parameter value. Thick red plots demonstrate the fit line, with the slope defining the critical slip exponent q. 
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The mean radius of gyration, R2(t), is presented for control parameters d  in Figure 

2.7a-c and µ in Figure 2.7d-f . Figure 2.8a-c similarly demonstrates radius of gyration for 

dmax and Figure 2.8d-f for µ. In both scenarios, all parameters near the critical point 

demonstrate nearly identical trends, but with slightly larger deviations near the end of the 

time series for results holding the death parameter constant and µ acting as the control 

parameter, an expected result as the increased mutation rate dictates spatial growth. 

Power law behavior is apparent in this system, regardless of death parameter value. 

Table 2.1 presents the calculated values for the critical exponents de, q, and !̃ 

followed by accepted values for each exponent for 2 + 1 dimensional directed percolation 

(Grassberger & Yi-Cheng Zhang, 1996). When death parameter d is used, measured 

exponents de and q are very similar to accepted values for directed percolation. As µc and 

dc increase, however, the gap between the accepted and measured values of de and q 

grows. Measurements of the spreading exponent, !̃, show a greater difference from the 

accepted value than that of de and q, with the gap between the accepted and measured 

values increasing as µc and dc increase, similar to the results of de and q. Results 

corresponding to dmax however, do not match with accepted values of de and q for 

directed percolation, and demonstrate no consistent trend across the phase space. 

Interestingly, values of !̃ align more closely with accepted values for dmax than for d. 

Calculations for de, q, and !̃ are time dependent, but not dependent on the off-critical 

measure, therefore the similar scaling behavior of each exponent for each critical point 

pair is expected.
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Figure 2.7 Radius of Gyration for µ and d. Radius of Gyration for control parameter d with values of µ = 0.3, 0.35, and 0.4 (a, b, and c 
respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively) are shown. Legends show 
control parameter value.  
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Figure 2.8 Radius of Gyration for µ and dmax. Radius of Gyration for control parameter dmax with values of µ = 0.3, 0.35, and 0.4 (a, b, 
and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). Legends show 
control parameter value.
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Table 2.1 Survival Probability, Slip, and Spreading Exponents 

Critical Parameter 
Values 

Control 
Parameter de q !" 

(µc, dc) = (0.3, 0.281) 
d 0.4637(71) 0.2167(71) 1.079(14) 

µ 0.4861(58) 0.2043(86) 1.077(15) 

(µc, dc)  = (0.35, 0.320) 
d 0.4444(39) 0.2462(61) 1.048(18) 

µ 0.4090(43) 0.293(17) 1.059(18) 

(µc, dc)  = (0.4, 0.239) 
d 0.4026(63) 0.2925(82) 1.032(21) 

µ 0.4068(96) 0.2734(68) 1.053(19) 

(µc, dmax,c) = (0.3, 0.636) 
dmax 0.2582(40) 0.729(10) 1.1668(66) 

µ 0.2379(27) 0.7452(90) 1.1741(46) 

(µc, dmax,c) = (0.35, 0.739) 
dmax 0.2339(16) 0.751(13) 1.177(14) 

µ 0.2210(38) 0.690(18) 1.178(16) 

(µc, dmax,c) = (0.4, 0.818) 
dmax 0.2027(40) 0.736(16) 1.153(33) 

µ 0.2398(39) 0.741(12) 1.158(25) 

Accepted Values (J. Wang et al., 2013) 0.451(3) 0.229(3) 1.1322(1)* 

* #̃ calculated via # = 2/#̃; accepted value z = 1.7665(2)  
 
 

The mean cluster mass is shown for µ and d in Figure 2.9, and for µ and dmax in 

Figure 2.10. In each subplot, the data shown with blue squares represents the calculated 

mean cluster mass, where the number of active sites is summed for each simulation, and 

then averaged over 5000 simulations beginning from a single organism at each off critical 

measure. As discussed above, the domain of the critical regime increases with increasing 

values of µc (and corresponding dc/dmax,c). The ranges of off-critical measures, listed in 

Table 2.2, were determined by the range in system observables seen as the span along the 

y-axis in Figure 2.3 through Figure 2.6, with the intention to include the same span of the 

critical regime around each critical point pair. The fit line demonstrates the linear best fit 

of the double-logarithmic plot, the slope of which is the calculated exponent g. 
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Comparison of the two figures demonstrates a more accurate fit of power-law behavior 

when the system is dictated by d, as seen by the near linear data trends in Figure 2.9, as 

compared to the concave shape of the data trends seen in Figure 2.10 for dmax.  

 

Table 2.2 Ranges of Off-Critical Measures for M, T, S, and V 

Constant parameter Range Increment 
µ = 0.3 d = [0.282, 0.292] 0.001 

d = 0.281 µ = [0.289, 0.299] 0.001 

µ = 0.35 d = [0.321, 0.331] 0.001 

d = 0.32 µ = [0.339, 0.349] 0.001 
µ = 0.4 d = [0.35, 0.36] 0.001 

d = 0.349 µ = [0.389, 0.399] 0.001 

µ = 0.3 dmax = [ 0.638, 0.660] 0.002 
dmax = 0.636 µ = [0.278, 0.298] 0.002 

µ = 0.35 dmax = [0.74, 0.762] 0.002 

dmax = 0.739 µ = [0.328, 0.348] 0.002 
µ = 0.4 dmax = [0.820, 0.864] 0.004 

dmax = 0.818 µ = [0.378, 0.398] 0.002 
 
 

 Figure 2.11 through Figure 2.16 shows data trends and fit lines, with the slope of 

the fit lines corresponding to the critical relation exponents listed in Table 2.3, for mean 

survival time (Figure 2.11 corresponding to d, and Figure 2.12 for dmax), mean cluster 

size, (Figure 2.13 for d, and Figure 2.14 for dmax) and mean spatial volume (Figure 2.15 

for d, and Figure 2.16 for dmax). In all cases, 5000 simulations were performed for each 

value of the off-critical measure (as previously described for the calculation of mean 

cluster mass). Each data point in Figures 2.11 and 2.12 represents the summation of Ps(t) 

for each simulation averaged over all simulations for each off-critical measure to 
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determine the mean survival time, T. Mean cluster size, S, shown in Figures 2.13 and 

2.14 are calculated using Equation 21, and averaged over all simulations for each off 

critical measure. The data shown in Figures 2.15 and 2.16 represents the mean spatial 

volume calculated with Equation 20 and averaged over all simulations for each off-

critical measure. When examining T, S, and V, the trend seen in M (Figures 2.9 and 2.10) 

with respect to the change in linearity of the data reemerges; the log-log plots for d are 

more linear than those for dmax. 
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Figure 2.9 Mean Cluster Mass for µ and d. Mean Cluster Mass for control parameter d with values of µ = 0.3, 0.35, and 0.4 (a, b, and c 
respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively). The off-critical measure is 
the parameter distance from dc = 0.281, 0.32, and 0.349 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f respectively). 
Fit lines with the slope defining the critical relation exponent g are shown in black.  
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Figure 2.10 Mean Cluster Mass for µ and dmax. Mean Cluster Mass for control parameter dmax with values of µ = 0.3, 0.35, and 0.4 (a, 
b, and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). The off-critical 
measure is the parameter distance from dmax,c = 0.636, 0.739, and 0.818 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f 
respectively). Fit lines with the slope defining the critical relation exponent g are shown in black. 
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Figure 2.11 Mean Survival Time for µ and d. Mean Survival Time for control parameter d with values of µ = 0.3, 0.35, and 0.4 (a, b, 
and c respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively) are shown. The off-
critical measure is the parameter distance from dc = 0.281, 0.32, and 0.349 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and 
f respectively). Fit lines with the slope defining the critical relation exponent t are shown in black.  
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Figure 2.12 Mean Survival Time for µ and dmax. Mean Survival Time for control parameter dmax with values of µ = 0.3, 0.35, and 0.4 (a, 
b, and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). The off-critical 
measure is the parameter distance from dmax,c = 0.636, 0.739, and 0.818 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f 
respectively). Fit lines with the slope defining the critical relation exponent t are shown in black.
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Figure 2.13 Mean Cluster Size for µ and d. Mean Cluster Size for control parameter d with values of µ = 0.3, 0.35, and 0.4 (a, b, and c 
respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively). The off-critical measure is 
the parameter distance from dc = 0.281, 0.32, and 0.349 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f respectively). 
Fit lines with the slope defining the critical relation exponent s are shown in black. 
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Figure 2.14 Mean Cluster Size for µ and dmax. Mean Cluster Size for control parameter dmax with values of µ = 0.3, 0.35, and 0.4 (a, b, 
and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). The off-critical 
measure is the parameter distance from dmax,c = 0.636, 0.739, and 0.818 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f 
respectively). Fit lines with the slope defining the critical relation exponent s are shown in black. 
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Figure 2.15 Mean Spatial Volume for µ and d. Mean Spatial Volume for control parameter d with values of µ = 0.3, 0.35, and 0.4 (a, b, 
and c respectively) and for control parameter µ with values of d = 0.281, 0.32, and 0.349 (d, e, and f respectively). The off-critical 
measure is the parameter distance from dc = 0.281, 0.32, and 0.349 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, e, and f 
respectively). Fit lines with the slope defining the critical relation exponent n are shown in black. 
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Figure 2.16 Mean Spatial Volume for µ and dmax. Mean Spatial Volume for control parameter dmax with values of µ = 0.3, 0.35, and 0.4 
(a, b, and c respectively) and for control parameter µ with values of dmax = 0.636, 0.739, and 0.818 (d, e, and f respectively). The off-
critical measure is the parameter distance from dmax,c = 0.636, 0.739, and 0.818 (a, b, and c respectively) and µc = 0.3, 0.35 and 0.4 (d, 
e, and f respectively). Fit lines with the slope defining the critical relation exponent n are shown in black.
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Table 2.3 Critical Relation Exponents 

Critical 
Parameter Values 

Control 
Parameter g t s n 

(µc, dc) =  
(0.3, 0.281) 

d 1.193(81) 0.529(38) 1.313(124) 0.612(45) 

µ 1.205(75) 0.521(39) 1.236(121) 0.601(47) 

(µc, dc)  =  
(0.35, 0.320) 

d 1.219(84) 0.522(43) 1.312(138) 0.604(52) 

µ 1.040(73) 0.458(29) 1.004(96) 0.522(35) 

(µc, dc)  =  
(0.4, 0.239) 

d 1.266(81) 0.560(36) 1.369(118) 0.646(42) 

µ 0.905(93) 0.383(47) 0.798(106) 0.434(54) 

(µc, dmax,c) =  
(0.3, 0.281) 

dmax 1.027(115) 0.428(54) 0.699(98) 0.483(62) 

µ 1.989(139) 0.841(63) 1.778(186) 1.001(80) 

(µc, dmax,c) =  
(0.35, 0.739) 

dmax 0.753(137) 0.303(64) 0.481(106) 0.343(72) 

µ 1.619(165) 0.668(71) 1.263(166) 0.785(87) 

(µc, dmax,c) =  
(0.4, 0.818) 

dmax 1.363(208) 0.605(91) 1.093(206) 0.691(108) 

µ 1.243(132) 0.539(58) 0.897(117) 0.611(69) 
Calculated Accepted Values* (J. 

Wang et al., 2013) 1.585 0.707 2.165 0.878 

* Values calculated using Eq. 11-14 with accepted values b = b’ = 0.580(4), !∥ = 
1.287(2),  and !" = 0.729(1). 
 

 

 Results for g, t, s, and n are presented for all critical point pairs with both 

mutation and death parameters acting as the control parameter in Table 2.3. Results for 

system parameters such that µ is held constant and d acts as control parameter exhibit a 

reasonable consistency across all four critical relation exponents, whereas when µ acts as 

the control parameter and d = dc, all four measured exponents decrease as µ increases. 

Interestingly, this decrease seems nearly linear, though with only three points, this may 

not be consistent across the whole parameter space. Results with a constant µ, with dmax 

acting as control parameter, show a decrease in all four exponents from µ = 0.3 to µ = 
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0.35, but an increase in all cases with the highest measured values of all four exponents 

when µ = 0.4. Similar to the results with a fixed d, when dmax was constant and µ was the 

control parameter, the values of all four exponents decreased as µ increased. None of the 

measured values align with the accepted values for directed percolation for any parameter 

at any of the measured transition points. 

2.5. DISCUSSION 

Scott (2013) approached the classification of the system into a universality class 

of directed percolation (DP) by holding dmax at 70% and varying µ as the control 

parameter to examine the critical phase transition. The mutability µ was varied to find the 

transition from survival to extinction of the population. This approach utilized the 

measurement of the critical relation a, corresponding to the population density scaling, 

r(t), and the direct measurement of critical exponents n|| and n^. These measurements 

were calculated using simulations of various landscape size, beginning with a completely 

full landscape, and observing the population decline to a steady state in the survival 

phase, or the population’s transition to extinction in the absorbing phase. Observations 

and calculations to determine the system’s universality classification were conducted in 

the survival phase of the critical regime (Scott, 2014; Scott et al., 2013). 

One major assumption made by Scott was that the model demonstrated time-

reversal symmetry, a known feature of the DP universality class. Time-reversal 

symmetry, also known as rapidity symmetry, holds when “the density r(t) starting from a 

fully occupied lattice and the survival probability P(t) for clusters grown from a seed are 

exactly equal for all t” (Hinrichsen, 2006). In other words, the dynamical behavior of the 
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density decay from a completely full (completely active) landscape scales exactly as 

the probability that the system will survive through time from a single active site. When 

time-reversal symmetry is present in a system, the scaling properties of density decay, 

corresponding to exponent b, and of survival probability, corresponding to b’, are equal, 

making b = b’. Because the b, n||, and n^ matched the accepted values of DP, the 

assumption that time-reversal symmetry exists in the model, and therefore that b = b’, 

was reasonable.  

The results presented above demonstrate that the system controlled by death 

parameter d exhibits possible time-reversal symmetry for calculations in time at the 

transition point. The critical exponents, de and q, match closely with accepted values of 

directed percolation. Measurements of "̃ provide results similar to the accepted value of 

directed percolation but are slightly below the accepted value. The results for critical 

exponents de and q , when the system is controlled by dmax, however, do not resemble 

accepted values for directed percolation. These initial results at the transition point 

suggest the possibility of time-reversal symmetry with the use of d, but not with dmax  

because the critical exponents in the former case more closely fit with the expected DP 

values.  

The most straightforward explanation for this difference correlates with a 

violation, in the dmax case, of the DP conjecture requirement that the system cannot have 

any special attributes, such as quenched randomness. Simulations with death parameter 

dmax demonstrate quenched disorder, since dmax acts as a fluctuating variable, but the 

fluctuations do not vary over time. The use of d, for comparison, still provides a level of 
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fluctuation as the number of organisms removed varies from one generation to the 

next, but because this fluctuation is directly connected to population size, with the same 

percentage of removal at every generation, it is not considered a quenched disorder. This 

violation of the DP conjecture for dmax becomes the most direct explanation for the 

mismatch of results with accepted directed percolation values. However, the results from 

Table 2.1 showing the critical exponent values of de and q, and the small deviation from 

accepted values for "̃ suggest that when the system is controlled by d instead of dmax, it 

could indeed undergo a directed percolation transition. 

Previous work measuring scaling behavior in the absorbing phase only calculated 

M, T, S, and V using their defining functions, which resulted in a lack of clarity regarding 

the physical definition of each measurable. For this reason, measurement of each value 

through direct observation was impossible without establishing specific definitions. As an 

example, the accepted definitions for M and S only include each measurable’s name, 

“mean cluster mass” and “mean cluster size”, accompanied by their defining equations 

(Equations 15 and 21 respectively) (Henkel et al., 2008; Hinrichsen, 2000b, 2006). One 

additional definition for mean cluster size that appears on occasion in the literature states 

that S is the average size of all clusters present, with the size being defined as the sum of 

all active sites in a cluster and a cluster defined as sites connected in time (Henkel et al., 

2008; Nachtrab, 2011).  

In the absorbing phase, all clusters are generated from a single seed, which by 

definition means that each simulation is defined as one cluster (all active sites in time 

connect to the single seed organism), and therefore the mean cluster size, S, is the total 

number of active sites in each simulation. The mathematical definitions for M, mean 
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cluster mass, simplify to the total number of active sites in a cluster (in this case a 

simulation) as shown in section 2.3.1 Equations 15-17. This may not be the case in all 

situations, but when examining absorbing phase, system-level properties with an initial 

population of one, application of the definitions from Henkel et al. suggest that M and S 

scale identically, as they are both defined by the number of organisms in a cluster. 

However, this cannot be true, or the scaling relations $ = &∥ + (&" − * − *# and + =

&∥ + (&" − *# (from Equations 11 and 14) would also be equal. Additionally, there 

appears to be no agreed-upon definition for mean spatial volume, V, other than Equation 

20. Mean survival time, T, is the only well-defined measurable value, though this may be 

because survival time is a common term.  

The results of the global dynamic scaling in the absorbing phase side of the 

critical regime do not indicate that this system belongs to the DP universality class for 

either death parameter. Though d demonstrates behavior close to directed percolation in 

time at the critical point, the scaling behavior of the observables in the absorbing phase of 

the critical regime do not support directed percolation classification. For both d and dmax, 

findings suggest that neither transition can be classified as directed percolation. The 

results of g, t, s, and n in Table 2.2 suggest that the dynamics in the absorbing phase of 

the critical regime may be dictated by power law behavior, but not within the directed 

percolation universality. Results for d demonstrate linearity on the double-logarithmic 

scale (see Figures 2.9, 2.11, 2.13, and 2.15), whereas the results of dmax show a more 

significant curvature in the plotted data (see Figures 2.10, 2.12, 2.14 and 2.16). Two 

explanations may support the reasoning for this: first, the range of the off-critical 

measures is larger for dmax, and therefore may reach too far into the absorbing phase, and 
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include data outside of critical behavior about the transition, and second, that the 

quenched randomness, though it had little effect in the active phase in Scott’s work, has a 

greater effect on system behavior in the absorbing phase of the critical regime, and the 

system does not exhibit power law-behavior in the case of dmax (Scott, 2014; Scott et al., 

2013). The range of the off-critical measure was determined based on the system 

behavior in the neighborhood of the transition, as seen in Figures 2.5 and 2.6, in an effort 

to encompass similar ranges based on dynamical behavior. Quenched disorders have been 

shown to modify the universality class of a critical point, and to spread the transition over 

a larger interval of the control parameter, further supporting the larger range of off-

critical measures in the case of dmax and the change in scaling behavior between d and 

dmax (Grinstein & Luther, 1976; Hooyberghs et al., 2003; Vojta, 2003). 

The results shown above demonstrate that the behavior about a critical point can 

be dependent on which parameter is acting as the system control parameter. Comparison 

of µ acting as control parameter with the results of d or dmax as control parameter for g, t, 

s, and n show only one case where the exponents linked to each control parameter were 

approximately equal. The results about the critical point (µc, dc) = (0.3, 0.281) are 

remarkably close for g, t, s, and n, but the investigation of the transition point at (0.35, 

0.32) shows notable differences for µ compared to d as seen in Table 2.3: all four 

exponents are lower for control parameter µ than d. The results corresponding to (0.4, 

0.349) show a similar pattern of lower exponents for µ than d, with the difference 

between measured exponent for µ and d  being nearly twice the comparable difference 

from (0.35, 0.32) for all four exponents. In all three cases, the results of all four 
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exponents show little variation when d is the control parameter, but as µ increased, the 

exponents collectively decrease, which suggests that the critical behavior driven by µ is 

dependent on the value of d, but behavior driven by d demonstrates no such dependence 

on µ. Comparing the results of µc with corresponding dmax,c demonstrates no notable 

similarities. The results for dmax do not show consistency for any of the four exponents, in 

stark contrast to the results for d. The only discernable pattern for dmax is that all four 

exponents decrease from transition point (µc, dmax,c) = (0.3, 0.636) to (0.35, 0.739), but 

then all increase at (0.4, 0.818), where the exponents all have their highest values. The 

results for dmax with µ as control parameter parallel the results for d with µ as control 

parameter with a consistent decrease in all four exponents as µ increases, though the 

measured exponents for µ in each system were not equal. The results as µ increases may 

be demonstrating a violation of the DP conjecture that the dynamical rules are short-

ranged; it is possible that the increased spatial range of new offspring on the phenotypic 

space defined by larger µ values outreach the “short-range” dynamics required for the 

directed percolation universality class.  

2.6. CONCLUSION AND FUTURE WORK 

Dynamics of the absorbing phase in the critical regime were investigated with aim 

to determine whether the presented model belongs to the directed percolation universality 

class in the presence and absence of quenched disorder, and to gain a better 

understanding of the differences in critical behavior based on control parameter. It was 

demonstrated that the model does not exhibit time-reversal symmetry (an assumption 

used in previous work to classify this system), and it further does not present evidence of 
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directed percolation in the absorbing phase of the critical regime, with quenched 

disorder (dmax) and without quenched disorder (d). The comparison of dynamics about the 

transition point of two control parameters, mutation size and the death parameter, 

demonstrated that transition behavior is dictated by the selection of control parameter, 

and in some cases (µ as the control parameter), the global dynamics of the system are 

also determined by the value of another parameter (d or dmax).  

Examination of absorbing phase critical behavior in phase transitions is not 

commonplace, a possible reason for the lack of definitions in literature. Complex models 

can be limited by computational resources, and the ability to gain multiple critical 

relation values from a shared data set in the absorbing phase of a system is more efficient 

than the traditional approach requiring individual data sets for each critical exponent. 

Efforts to establish standardized definitions of mean cluster mass, mean cluster size, and 

spatial volume outside of their mathematical definitions may help strengthen the ties 

between model-based results and experimental results; values with well-defined 

definitions in the physical world will be more directly applicable to experimental data.  

The work presented shows that directed percolation is not the correct universality 

classification for this model, but in the case of the model without a quenched 

randomness, power-law-like behavior still occurs.  As multiple universality classes exist, 

the power-law-like behavior suggests that the model may fall into a different universality, 

though further investigation is required. Additionally, previous work has shown the 

model exhibiting continuum percolation which is spatially dependent, but only in cases 

where the landscape fitness is greater than 2 (King, 2015; King et al., 2017).  The 

variation of critical relation exponents for different values of µ demonstrates a change in 
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scaling behavior that are spatially dependent.  Examination of the spatial dynamics of 

model behavior with various mutation values may provide insight beneficial in 

determining population survivability.  
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3. MICROBIOLOGICAL POPULATIONS UNDER STRESS 

 

As a result of the increasing environmental stressors of climate change, and the 

ecological effects of these stressors on ecosystems, identification of early warning signs 

of population collapse has become a priority (Carpenter, 2013; Dai et al., 2012, 2013, 

2015; Dakos et al., 2019; Scheffer et al., 2009, 2012). Critical slowing down, a 

dynamical phenomenon associated with scale-free, power-law dynamics, has been 

suggested to accompany population decline in some studies, while others have observed 

population decline without any such critical signatures (Dai et al., 2015; Dakos et al., 

2019; Rozek et al., 2017; Scheffer et al., 2009, 2012). Populations that experience critical 

slowing down recover more slowly from perturbations in the neighborhood of the 

system’s tipping point between survival and population collapse (Dai et al., 2015).  

Dai and colleagues have studied the population dynamics of yeast cultures to 

investigate the stability and resilience of populations subjected to environmental stressors 

(Carpenter, 2013; Dai et al., 2012, 2013, 2015). Examining populations from a nonlinear 

dynamics approach, they mapped the dynamics of stable and unstable populations under 

the influence of several environmental stressors including dilution factor (a proxy for 

death rate), nutrient concentration (a proxy for carrying capacity, using sucrose), and 

NaCl concentration (Dai et al., 2012, 2013, 2015). These studies resulted in a 

characterization of a population’s stability and resilience, i.e., the ability to recover from 

a large environmental perturbation (Dai et al., 2015). 

Section 2 outlined a computational approach to understanding population 

dynamics near “criticality” and examined system-level behavior of phase transitions. This 
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section investigates whether similar phase transition behavior exists in real biological 

populations due to an environmental stressor. The experimental approach used by Dai 

and colleagues has been adapted to investigate the decline of the budding yeast 

Saccharomyces cerevisiae and bacteria Escherichia coli populations under stress 

(Ordway et al., 2020). The investigation focuses on the dynamics of yeast population 

decay in the presence of varying temperature and salt (NaCl) concentration, and the 

decay of E. coli populations in response to an assortment of antibiotics. All work with E. 

coli presented below was done by R. Fredrik Inglis and Holly Huelskamp, who collected 

the E. coli data presented and contributed significantly to the understanding declining 

population dynamics in relation to antibiotic mechanisms. Their work is presented here 

for completeness, with their permission. All the work discussed in this section appeared 

in Ordway et al. (2020), which can be found in APPENDIX B. 

3.1. MATERIALS AND METHODS 

3.1.1. Saccharomyces cerevisiae Experiments. All yeast experiments were 

performed using the yWO3 strain of S. cerevisiae (Ulbricht & Olivas, 2008). The 

selection of this strain was based on two factors: it is a well-documented wild-type 

laboratory strain, and it is neither thermophilic nor thermotolerant. Yeast cultures were 

placed under two environmental stressors, temperature and elevated NaCl concentration, 

to investigate each stressor’s effect on population dynamics of the wild-type strain. For 

both stressors, S. cerevisiae was initially grown in standard medium of 10 g l−1 yeast 

extract, 20 g l−1 peptone and 2% dextrose (YEPD) at an optimum temperature of 30°C 

(Caspeta & Nielsen, 2015). Initially, these 50 ml cultures in liquid media were inoculated 
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from to an optical density (OD) of 0.0001, allowing multiple doublings in log phase 

over 24 h, and resulting in a large, but not saturated, concentration of cells, around an OD 

of 2.5. These starter cultures were inoculated into fresh media for both temperature stress 

and salt stress experimental cultures, as described below. All OD measurements were 

measured with a Turner visible spectrophotometer at 600 nm. 

3.1.1.1. Temperature stress. Each initial culture was inoculated into 50 ml of 

YEPD into 250 ml flasks, resulting in the desired OD of 0.05. The samples were placed 

in orbital shaking water baths previously heated to the temperature of interest for a given 

set of measurements. Sample ODs were measured every 24 h over the course of eight 

days. At the time of each measurement, if a sample had increased by more than 0.01 OD, 

it was diluted back to an OD of 0.05 in a new 250 ml flask with YEPD, resulting in a 

final volume of 50 ml, and placed back into the water bath until the next measurement. If 

the sample had increased by less than 0.01 OD, the sample was placed back in the water 

bath until the next measurement. Population doubling rates were used as the metric of 

growth rates, where the number of doublings, n, is calculated using 

, =
$%&'$()!"#$% ()"#"&"$%* ++

%&'(-) 	 (22) 

where 12/0/1/23 is the OD at the beginning of each 24 h cycle, and 124/023 is the 

measured OD at the each of each 24 h growth period. 

    Optimal growth of S. cerevisiae is known to occur at 30°C, and exhibits a sharp 

decline in growth rate as temperatures exceed approximately 40°C (Caspeta & Nielsen, 

2015; Mensonides et al., 2002). To investigate this transition, sample cultures were 

measured from 38°C to 44°C at 0.5°C intervals with sample size N ≥ 3, with an 
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additional set of N = 3 measurements at 37°C. Measurements at 37°C were included to 

demonstrate behavior of the system at a steady-state growth rate in the survival regime. 

3.1.1.2. NaCl stress. The effects of salt concentrations on the growth rate of S. 

cerevisiae were investigated by growing cultures in media with elevated NaCl 

concentrations ranging from concentrations which are documented to allow cells to grow 

normally, to concentrations known to cause considerable stress and even death of the 

yeast cells (Capusoni et al., 2019; Melamed et al., 2008; Murguía et al., 1996; Szopinska 

et al., 2011; Taymaz-Nikerel et al., 2016). NaCl was added to otherwise normally 

prepared YEPD in order to achieve desired concentrations. Culture growth was measured 

for NaCl concentrations from 66.5 to 104.5 g l−1 at approximately 5 g l−1 intervals with a 

sample size N ≥ 3. Similar to the measurements for 37°C in the temperature trials, a set of 

N = 3 measurements at a concentration of 57 g l−1 was included, demonstrating steady-

state growth further into the survival regime, and thus providing a reference to confirm 

emerging trends. 

The initial culture in YEPD was inoculated into 50 ml of YEPD + NaCl (at 

desired concentration) in 125 ml flasks, resulting in an initial OD of 0.05. Samples were 

placed in orbital shakers at 30°C and measurements were taken at 24 h intervals for eight 

days. The procedure for measurements and dilutions was the same as for the temperature 

experiment; if growth over an OD of 0.01 occurred, the sample was diluted to an OD of 

0.05, resulting in a volume of 50 ml YEPD + NaCl in a new 125 ml flask, and returned to 

the orbital shaker without any other action if no growth was measured. The number of 

doublings were calculated in the same way as the temperature experiment, using 

Equation 22. 
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Table 3.1 Mechanisms of Action of Antibiotics Used. 

Antibiotic Class Mechanism Mode of 
Action 

Ampicillin β-lactam Inhibits cell wall synthesis Bactericidal 
Carbenicillin β-lactam Inhibits cell wall synthesis Bactericidal 

Chloramphenicol Amphenicol Protein synthesis (50S inhibitor) Bacteriostatic 
Ciprofloxacin Fluoroquinolone Inhibits DNA gyrase Bactericidal 
Gentamycin Aminoglycoside Protein synthesis (30S inhibitor) Bactericidal 
Kanamycin Aminoglycoside Protein synthesis (30S inhibitor) Bactericidal 
Rifampicin Rifamycin DNA-directed RNA polymerase Bactericidal 

Spectinomycin Aminoglycoside Protein synthesis (30S inhibitor) Bacteriostatic 
Streptomycin Aminoglycoside Protein synthesis (30S inhibitor) Bactericidal 
Tetracycline Tetracycline Protein synthesis (30S inhibitor) Bacteriostatic 

 

 

3.1.2. Escherichia coli Experiments. Escherichia coli (MG1655) (E. coli) were 

initially grown in M9 minimal glucose media, shaking at 37°C overnight. The initial 

culture was used to inoculate 96-well plates containing a dilution series of 10 different 

antibiotics, at a starting OD (600 nm) of 0.005 (i.e., 2 μl of culture in 198 μl media). The 

panel of 10 antibiotics, found in Table 3.1, spanned different antibiotic classes and 

included a variety of mechanisms of action. Each antibiotic was added at a beginning 

concentration of 100 μg ml−1 and serially diluted by ¾ for a total of 40 concentrations, 

from 100 to 0.001 μg ml−1. For each antibiotic, a total of six replicates were measured. 

All 96-well plates were incubated at 37°C, shaking, for 24 h. All OD measurements were 

performed using a BioTek Cytation 3 multimode plate reader at a wavelength of 600 nm. 

Doubling times were calculated using Equation 22. 
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3.2. RESULTS 

Figure 3.1 demonstrates the predicted behavior that environmental stressors result 

in a decrease in yeast growth rate, but a comparison of the data in Figure 3.1a,b reveal a 

significant difference in behavior as the stressors increase. The data shown in Figure 3.1a 

indicates that, as the salt concentration increases, the yeast grow more slowly, but with 

gradual change until the salt concentration is high enough to prevent growth altogether. 

In contrast, the data shown in Figure 3.1b presents a sharp drop in doubling rate as 

temperature increased; the cultures change from a quick recovery time in the 37-39°C 

range, to a recovery after a long lag time in the 39.5-40.5°C range, and no recovery for 

temperatures above 40.5°C. Data points taken at 37°C have been included to demonstrate 

steady-state growth well into the survival regime. Data points taken at 30°C (not shown) 

confirmed that the growth rate at this standard temperature for yeast growth was similar 

to the growth observed at 37°C.  

 Investigation of the population dynamics in the neighborhood of the tipping point 

requires an understanding of the steady state behavior in a system. In this case, the steady 

state is a steady growth rate, calculated by averaging the number of doublings over all 

remaining days once the system has reached an approximately constant growth rate. As 

can be seen in Figure 3.1, the populations reached an approximately constant growth rate 

by day 6 post-inoculation. The steady growth rate was thus calculated as the average 

number of doublings over the last three days for each experimental run. Steady growth 

rates are shown in Figure 3.2a as a function of NaCl concentration and Figure 3.2b as a 

function of temperature, with a grand average over all experiments at each condition, and 

error bars representing the standard deviation across all experiments at each condition.  
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Figure 3.1 Daily Number of Doublings of S. cerevisiae. Number of population doublings 
for S. cerevisiae shown as a function of days after initial inoculation for values of NaCl 
concentration (a) and temperature (b). N ³ 3 for each data point; error bars not displayed 
to avoid crowding of the figure. 
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Figure 3.2 Steady Growth Rates of S. cerevisiae. Steady growth rates of the S. cerevisiae 
population for NaCl stress (a) and temperature stress (b) are shown. The steady growth 
rates equal the number of doublings averaged over days 6-8 post-inoculation, then over all 
replicate experiments. Error bars show standard deviation between replicates. 
 
  

 Figure 3.2 demonstrates, for both stressors, that the yeast population ultimately 

experienced an environment too harsh for survival with increased system stress. In the 
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case of increasing salt concentration, shown in Figure 3.2a, the system underwent a 

smooth, gradual decline with minimal fluctuations observed in the transition region, and 

with no discernable tipping point. In stark contrast, the system’s response to temperature 

stress, shown in Figure 3.2b, showed an abrupt drop-in growth rate, with large 

fluctuations near the transition (as compared to the system’s behavior away from the 

tipping point), which indicates a tipping point around 39.5°C. 

 

 

Figure 3.3 Number of Doublings of E. coli. Number of doublings of E. coli (MG1655 WT) 
populations as a function of log10(antibiotic concentration) for 10 antibiotics shown in (a). 
Error bars show standard deviation over six replicates for each antibiotic concentration. To 
show greater detail, (b) and (c) each show five of the studied antibiotics over a smaller 
antibiotic concentration range. Data collected by H. Huelskamp in the laboratory of R.F. 
Inglis. 
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 Figure 3.3 shows the decay curves of E. coli populations in the presence of 

various antibiotics, where Figure 3.3a shows all of the antibiotics tested, and Figure 

3.3b,c show the population responses to five each of the ten antibiotics studied to display 

the details of the responses more clearly. As expected, for all antibiotics tested, the 

antibiotic stress caused a decrease in bacterial growth. There is, however, a variety of 

patterns of decreased growth in response to antibiotic stress both within and across 

antibiotic classes and mechanisms of action. These patterns range from a very sharp drop 

in bacterial growth in the presence of ciprofloxacin (open green triangles in Figure 

3.3a,b) to more gradual declines in the presence of spectinomycin (filled green triangles 

in Figure 3.3a,c). The broad range of response patterns seen across the selection of 

antibiotics is qualitatively similar to the observed behaviors in the yeast experiments. 

3.3. DISCUSSION 

When examining the responses to both stressors of S. cerevisiae, and the 

responses to the various antibiotics of E. coli, it is apparent that the nature of the 

transition is dependent on the specific stressor. A major difference in the presented S. 

cerevisiae and the studies of Dai et al. is the use of glucose as a nutrient source rather 

than sucrose (Dai et al., 2012, 2013, 2015). S. cerevisiae can metabolize glucose directly, 

whereas the disaccharide sucrose must be hydrolyzed outside the cytoplasm before it can 

be metabolized. During the process of hydrolysis, products of sucrose diffuse away 

before they can be taken back up into the cytoplasm, becoming public goods (Gore et al., 

2009). Due to this mechanism, yeast cells fed with sucrose exhibit a classical Allee 

effect, with maximal growth at an intermediate population density (Dai et al., 2012). The 
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population density is prevented from becoming a major influence in the population 

dynamics of interest by instead using glucose as the food source, enabling temperature 

and salt concentration to each serve as an isolated stress variable in the study presented 

here. 

As expected, both stressors applied to S. cerevisiae cultures have a negative effect 

on yeast doubling rate for a sufficiently high level of stress, but the dynamics of the 

response to the two stressors differ greatly. As seen in Figure 3.2a and b, the response to 

NaCl stress is gradual, whereas temperature stress induces a sharp drop indicative of a 

critical phase transition with a well-defined tipping point. Accompanying this sharp 

change in population growth, the fluctuations of the system are much higher in the 

vicinity of the tipping point, compared to the response further into either phase of the 

system. Comparatively, the fluctuations of the system exposed to NaCl stress are 

uncorrelated with the vicinity of the tipping point. In the E. coli experiments (Figure 3.3), 

the responses to several antibiotics, including ciprofloxacin, streptomycin, and 

kanamycin, exhibit critical phase-transition-like behavior, demonstrating a well-defined 

transition point with high fluctuation about the tipping point. Other antibiotics, including 

chloramphenicol and spectinomycin, produced a gradual response with no well-defined 

tipping point. For other antibiotics, the responses were less clearly defined. 

The observation of critical behavior requires an examination of the system after it 

has stabilized. As seen in Figure 3.1, for both stressors, the yeast had fluctuating growth 

behavior during the first few days after exposure to stress, and for most control 

parameters, the behavior stabilized after a few days. Figure 3.2 shows the averaged 

“long-term” stable behavior. The results presented are consistent with the findings of 



 

 

58 

Mensonides et al. (2002), who demonstrated the initial slowing of S. cerevisiae growth 

due to temperature for budding yeast, along with changes in metabolism, during the 

population’s first 6 h after the introduction of various temperatures (Mensonides et al., 

2002). In their work, they “observed a surprisingly ‘thin line’ for cells between growing, 

surviving and dying, with regard to growth temperature” (Mensonides et al., 2002). The 

sharp change indicating a tipping point between survival and death observed by 

Mensonides and colleagues occurred at a temperature between 42 and 43°C, slightly 

higher than the observed tipping point in this study of 39.5°C. The difference of observed 

tipping point temperatures is likely due to comparing short- versus long-term behavior; 

Figure 3.1 shows that all cultures below 42°C had a measurable amount of growth during 

the first 24 h period, but the populations were unable to recover and had no further 

growth. Mensonides et al. suggested that it cannot be concluded if the response observed 

was the result of the absolute temperature introduced or the difference between the initial 

and new temperature (Mensonides et al., 2002). The results seen in Figure 3.1 suggest the 

absolute temperature has an impact for long-term behavior. Notably, the initial 

temperature in their study was 28°C, compared to the 30°C used for this work.  

Similar to the results shown here, Dai et al. observed that S. cerevisiae 

populations lose stability at different rates and exhibit different levels of resilience, based 

on different environmental stressors (Dai et al., 2015). For example, in the presence of 

sucrose, S. cerevisiae populations lost stability more rapidly when stressed by increasing 

dilution factor, a proxy for death rate in populations grown in sucrose, than in response to 

simple nutrient depletion (Dai et al., 2015).  
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To further investigate the reasons for the difference in response to the salt and 

temperature stressors, it is necessary to investigate the impact of the stressors on the yeast 

cells. Mensonides et al. proposed that the narrow temperature range over which the 

population decline is observed “may be explained by assuming the rapid denaturation of 

one or a very limited number of enzymes which are essential to growth” (Mensonides et 

al., 2002). This understanding is consistent with current understandings of heat shock 

response and protein denaturation in S. cerevisiae (Leuenberger et al., 2017; Verghese et 

al., 2012). In contrast, S. cerevisiae have a variety of known responses to modulate the 

response to salt stress. Change in salt concentration can have a number of effects on 

yeast, including osmotic shock, direct toxicity from Na+ ions, and changes in membrane 

potential (Gore et al., 2009; Hohmann, 2002; Murguía et al., 1996). S. cerevisiae has 

been observed to respond to these effects with a range of responses, such as activation of 

the high-osmolarity glycerol (HOG) pathway, and membrane depolarization 

accompanied by decreased permeability (Capusoni et al., 2019; Verghese et al., 2012). 

Szopunska et al. proposed that protein internalization occurs rapidly after hyper-osmotic 

or ionic shock, enabling a cell to remain viable until a slower transcriptional response can 

be activated after observing that mild salt stress resulted in an increase in abundance of a 

dozen plasma membrane proteins (Melamed et al., 2008; Szopinska et al., 2011; Taymaz-

Nikerel et al., 2016). These studies suggest that S. cerevisiae has better protective 

responses to salt stress than heat stress, which is consistent with the observations of 

temperature and salt stress presented here.  

The explanation for the range responses of E. coli to various antibiotics is less 

clear. One might expect similar response to antibiotics with the same mode of action, 
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such as spectinomycin and kanamycin, which are aminoglycosides, but the decay 

curves present characteristically different responses. One might also expect that 

bacteriostatic antibiotics that only inhibit growth to have more gradual decay curves, as 

opposed to bactericidal antibiotics that kill E. coli. Surprisingly, there was a large 

variation in decay curves in both bacteriostatic (e.g., chloramphenicol and tetracycline) 

and bactericidal (e.g., rifampicin and ampicillin) antibiotics. More comprehensive 

screening would be required to illuminate the exact underlying mechanisms of each 

antibiotic that drives these differences in bacterial killing. The observed differences in 

decay curves might have implications for the evolution of antibiotic resistance. It is 

possible that mutations could impact the shape of the decay curve; this could be 

investigated using experimental evolution techniques. 

The transition behavior seen in the temperature stress experiments and several 

types of antibiotics including ciprofloxacin, streptomycin and kanamycin demonstrate 

characteristics indicative of critical phase transition behavior, while the gradual transition 

in response to salt stress and other antibiotics including spectinomycin and 

chloramphenicol present none of these characteristics. The different responses to stress 

demonstrate that monitoring the dynamics of a population’s decay may not only provide 

a warning sign of incipient collapse but may also be used to identify the stressor or 

combination of stressors causing the destabilization of the system. These differing 

responses also demonstrate that simple observation of a population in decline may not be 

sufficient to predict the course of the population’s progress toward collapse without 

reference to the environmental stressors present. With the combined information of 

environmental stressors and information about individual stressor effects on a population, 
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it may be possible to identify the driving stressor(s) of a declining population and 

determine whether the decline is gradual or exhibiting critical behavior. Understanding 

the type of stress and corresponding transition behavior could have a major impact in 

designing appropriate intervention protocols. 

 In addition to greater understanding of populations approaching the tipping point, 

the type of stress response may also play a role in the dynamics of population recovery. 

Population recovery has been observed by King (2015) in a computational evolutionary 

model for a system near the tipping point in a critical phase transition and in studies of 

population resilience by Dai et al. in the presence of different stressors (Dai et al., 2012, 

2013, 2015; King, 2015; King et al., 2017). A key behavior in systems with critical 

transition behavior is critical slowing down. If intervention is taken to save a population 

from collapse, any systems that exhibit critical slowing down will have significantly 

longer recovery times when compared to non-critical transition systems. For this reason, 

identification of transition type can have a major impact on resource allocation to rescue 

the highest number of populations approaching collapse and reduce the number of 

prematurely abandoned recovery efforts. Lastly, due to the cooperative effects, 

population size itself may modulate the dynamics of collapse and recovery and should be 

considered when designing any intervention practice. 

3.4. CONCLUSION AND FUTURE WORK 

Population declines exhibiting characteristics of a critical phase transition have 

been observed in both yeast (S. cerevisiae) and bacteria (E. coli). Yeast populations 

exhibit critical transition behavior when cultures are subjected to temperature stress, but 
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not when subjected to high salt concentration. Instead, yeast populations respond to 

increasing salt concentration with a gradual decline in reproduction, without any sign of 

criticality. Similarly, bacterial cultures respond to some antibiotics with population 

declines characteristic of a critical phase transition, while others respond with a gradual 

decline. Taken together, the yeast and bacterial results indicate that critical phase 

transition-like population dynamics may occur in response to a broad range of stressors in 

different organisms. Additionally, the disparity between the behavior indicative of a 

critical transition and more gradual population decline in both eukaryotic and prokaryotic 

cells for different stressors raises the possibility that divergent population dynamics may 

occur for a range of organisms and stressors.  

These results indicate that critical phase transition behavior occurs in the presence 

of some, but not all stressors. The underlying causes of the different responses is an 

avenue of further investigation, including investigation of metabolic flux and imaging 

analysis of cells in the presence of different stressors over time. In the case of 

temperature and salt stress on yeast populations, experimental evolution studies, as well 

as the extensive literature on transcriptional response to stress in S. cerevisiae could point 

the way to identification of particular genetic and/or transcriptional determinants of 

population collapse dynamics (Nguyen Ba et al., 2019; Ratcliff et al., 2012, 2013, 2015; 

Taymaz-Nikerel et al., 2016). The repressors Nrg1 and Nrg2 have already been 

implicated in the adaptation to salt stress in S. cerevisiae (Vyas et al., 2005). Two 

decades ago, several hundred yeast genes were shown to respond to environmental stress 

by undergoing significant changes in expression (Causton et al., 2001; Gasch et al., 

2000). The genetic pathways that mediate resilience of a population are likely to be 
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complicated, multilayered, and historically contingent. Berry et al. (2011) found that 

the changes in gene expression that confer tolerance to H2O2 stress in yeast differ based 

on the prior exposure the cells received (salt, heat shock or dithiothreitol (DTT)) (Berry 

et al., 2011). These complex interactions make investigating such problems daunting, but 

they also offer the possibility that mapping gene activation can reveal a cell’s 

environmental history, similar to the way a human patient’s complement of antibodies 

can show their history of disease exposure or vaccination record. Such studies could not 

only contribute to the development of population recovery protocols but may also 

facilitate the genetic engineering of species to be more resilient in the face of 

environmental stress. 
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4. POPULATIONS AND SUPERVISED MACHINE LEARNING 

 

Section 2 investigated the response of populations based on system parameters in 

a computational model, and Section 3 presented a controlled laboratory experiment to 

identify system-level behaviors in real populations. Application of the methods presented 

in these sections has significant limitations in uncontrolled, real-world environments, 

such as time-consuming data collection, noisy data, control of environmental stressors, 

and cost. Therefore, an approach that can incorporate multiple environmental variables 

when analyzing uncontrolled impacts on a wild population is needed. With data 

availability in today’s world, using analytic techniques that rely on large collections of 

data, even though this data may appear unconnected or not systematically collected in a 

controlled way, can potentially provide a new way of understanding system-level 

behavior. For this section, investigation will shift to using common data science 

techniques to compile disparate sources of data through standard machine learning 

practices in an effort to predict population decline. 

The consolidation of a large number of individual studies like those found in The 

Living Planet Index (LPI) provides enough data that, after all necessary processing, a 

sufficiently large data set remains for analysis (Living Planet Index, n.d.). The use of this 

database has provided the necessary data to identify a trend of rapid decline in local 

vertebrate species abundance (Collen et al., 2008). Further investigation into these 

population trends show that both rare and common populations face multiple threats 

owed to human impact (Daskalova et al., 2020). The combination of information from 

LPI and a database on mammal traits, PanTHERIA, provides enough data to predict how 
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populations decline based on intrinsic traits and extrinsic factors and to demonstrate 

the changing rates of biodiversity loss (Collen et al., 2011).  

With the development of this available data, analytical approaches have evolved 

with the use of machine learning to extract more information from these datasets. 

Machine learning is an inclusive term for computer programs that learn without explicit 

instruction, where “a computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E” (Mitchell, 1997). In the scientific 

community, machine learning has become a valuable tool, especially when investigating 

large biological data sets. In the late 1990s, machine learning played a role in modelling 

forest development based on the population dynamics of red deer (Cervus elaphus L.) 

and meteorological information (Stankovski et al., 1998). This work was extended to 

investigate the habitat suitability for red deer utilizing classification and decision trees 

(Debeljak et al., 2001). Recently, a number of machine learning algorithms were used in 

an effort to accurately predict winter wheat yield from multi-source data including 

historical yield records, climate data, satellite images, and soil maps, with results 

indicating that the machine learning methods all outperformed more traditional statistical 

methods of prediction (Y. Wang et al., 2020).  

The field of modern machine learning can be broken down into four categories 

based on desired outcome and supplied data. Supervised learning utilizes input data to 

accurately classify or predict the provided output data (also known as labels). In contrast, 

unsupervised learning is not provided with the output data (or labels) and, instead of 

mapping to a known outcome, uses relations and connections in the input data to find 
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clusters of similar data and associations within the data (Çelik, 2018). Semi-supervised 

learning is used when a dataset includes data with and without outputs or labels, making 

both supervised and unsupervised learning inadequate. Lastly, reinforcement learning 

uses a “reward system” to determine the shortest and most correct way to reach the 

desired outcome (Çelik, 2018). The remainder of the discussion will be focused on 

supervised learning. 

Supervised learning can be further separated into two categories: regression 

models are used to estimate output values based on the given parameters, while 

classification models distribute data into the categories defined in the dataset (Çelik, 

2018). The work presented in this section explores the use of supervised machine 

learning models to determine the predictability of population dynamics from accessible 

local weather attributes. A regression model and two classification models were tested on 

the dataset comprised of population data and weather parameter data with the aim to 

predict future population changes based on the local weather. 

4.1. METHODS 

All population data was sourced from LPI, currently the largest open source 

repository of population studies (Living Planet Index, n.d.). Before data collection began, 

a few limitations were placed on this proof of concept. Proper analysis of migrating 

species would require general understanding of migration schedule and tracking the 

locations of the migrating populations to examine the impact of weather patterns at 

multiple locations. Since this is an investigation of population dynamics based on local 

weather behavior, any species that exhibit migration patterns significantly complicate the 
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analytic process. To address this concern, no avian species were included in the 

presented work. Secondly, all classes of fish and plants were discarded to focus the 

results to primarily terrestrial animals. Lastly, insects were removed from the scope of the 

work. In order to ensure that all weather data collection was performed uniformly as an 

effort to reduce inconsistency, limitations were placed geographically: all population 

studies used were limited to within the United States so all weather data was gathered 

from one source, the National Oceanic and Atmospheric Administration (NOAA) 

(NOAA, n.d.). Once all the limitations on the scope of work were implemented, the 

resulting data included all available amphibian, mammalian, and reptilian populations 

observed in the United States. Any study that did not exhibit population tracking for at 

least 5 years was also removed from the data set.  

For each study in the database, the latitude, longitude, and year span were 

compared with the list of all weather stations to determine the closest weather station 

with an available global summary of the year (GSOY) for all years in the study. All 

GSOY datasets were retrieved for each year, and the location of each study from each 

weather station was gathered using NOAA’s application programming interface (API). 

The GSOY has the possibility to include a plethora of weather attributes, though a 

number of attributes like those related to soil temperature are rarely recorded. A list of the 

attributes with enough data for analysis can be found in APPENDIX A. In the case that 

no weather station is within a window of ± 5° in latitude and longitude, the study was 

removed. 

Upon initial data examination, it was determined there was a need for additional 

data cleaning and normalization before analytics could take place. The dataset included a 
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range of different units in population measurements across the included data. Some 

studies present data with units of counted individuals, while others used methods like the 

percentage of smell traps visited or approximate count from regular flyovers. In addition 

to variation from counting methods, some studies examined very large populations with 

measured units on the order of 105, while others measured units on the order of 101. This 

disparity between measurement style and number of units can be seen in Figure 4.1a. For 

this reason, each study was individually scaled (normalized) so all populations fall 

between the interval [0,1]. Scaling the population maintains the population dynamics of 

interest but allows for a common analytical application across all of the studies. The 

rescaled populations are visualized in Figure 4.1b. For each year in which the data of the 

previous year is available, the difference in scaled population value was calculated. This 

population difference will act as the dependent variable, or label.  

 

 

Figure 4.1 Scaled and Unscaled Populations. Populations from all studies are plotted as the 
observed value by year (a) and Populations scaled to [0,1] for each study (b).  

 

Lastly, while machine learning is capable of handling messy or noisy data much 

more efficiently than traditional analytical methods, it still requires complete datasets. 
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For each year and location, it is common for multiple attributes of the GSOY to be 

missing. All attributes that include values for less than 80% of the dataset were removed 

(Dataset 1). In cases where feature values were available for 80% or more or the data set, 

the remaining missing information was approximated by averaging the attribute over the 

other provided years from that specific weather station. In all cases where no other data is 

available to average from the weather station, no reasonable estimations can be made to 

approximate the missing data. This results in an incomplete data point for all data 

collected at that location, and these data points must be removed. Because each study 

only covers one location, the removal of the incomplete data, which is location 

dependent, results in the removal of entire studies. The final size of Dataset 1 includes 

2929 data points, or training examples, with five attributes from 258 studies. These 

remaining weather attributes act as the independent variables or features of the model. An 

additional version of the dataset was made following the same process but lowering the 

threshold of missing weather data to 70%, which includes a total of 16 features, but at the 

cost of the total number of training examples (Dataset 2). By reducing the threshold to 

70%, the number of incomplete data points after missing attributes are approximated 

increases, resulting in a greater number of training examples removed. The final size of 

Dataset 2 includes 1833 training examples with 16 attributes from 200 studies. 

Once the dataset contained only data with all complete or interpolated data for 

each weather attribute and the scaled population difference, it was properly prepared for a 

regression model. For the use of a classification model, the data were placed into two 

classes, population increase and decrease, with a population difference of 0 included in 

population decrease. For any choice of model, the data must be separated into a training 
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set, which will be given to train the chosen model, and a test set, which is reserved and 

will be used to test the performance of the model on “new” data. The test set consists of 

the final year from each study in the final data set. The remaining data act as the training 

set. In order to reduce chance of bias, only the training set is used for any data 

exploration, including examination of the features and labels for correlation. Highly 

correlated features can cause issues with a model’s effectiveness and can often result in 

less accurate models when all correlated features are included, compared to the inclusion 

of just one (Bishop, 2006).  

4.1.1. Classification Models. Two classification models were utilized, a decision 

tree classifier (DTC) and a random forest classifier (RFC). A decision tree classifies data 

by creating splits at nodes in order to separate the data into increasingly homogeneous 

groups. For example, a node may split the data based on the value of yearly precipitation, 

separating all training examples with a precipitation measurement above some value into 

the population increase group, and all training examples with a precipitation 

measurement lower than that value classified as population decrease. Each node can 

make classification predictions based on one or multiple features (weather attributes). 

Traditionally, decision trees select the feature or features to split the data based on the 

entropy of a given collection of training examples, S, relative to the Boolean 

classification of an attribute A (node). The entropy is calculated as: 

3,45678(9) =:−7/;6<-7/

5

/67
(23) 
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where 7/ is the proportion of S belonging to class i, and c is the total number of classes 

(Mitchell, 1997). The selection of the splitting attribute is based on the maximum 

information gain where information gain is defined as: 

>?@,(9, B) = 3,45678(9) − :
|98|
|9|

8∈:23;<=(>)
3,45678(98) (24) 

where E?;FGH(B) is the set of possible values for the attribute B, and 98 is the subset of S 

for which B has the value I. Models can alternatively determine the splitting attribute 

with by minimizing the Gini impurity, with Gini is defined as 

>@,@ =:7/
-

5

/67
(25) 

where 7/ and c have the same definition and the Gini impurity is defined as  

>@,@	KL7F5@48 = 1 − >@,@. (26) 

As shown in Figure 4.2, the first node is referred to as the root node, with each 

branch corresponding to one of the possible values of the node attribute. The branching 

continues splitting the data at each node in an effort to separate all data into the correct 

class (Mitchell, 1997). The DTC works by passing the data from the root to the leaf (final 

grouping) and assigns labels according to the majority of samples in the leaf. An RFC is 

similar to a decision tree classifier, but it creates a number of decision trees which are 

aggregated to form a final output classification or label. The results of the trees are 

aggregated with a weighted system for each tree that generates labels, generally resulting 

in a better fit compared to a decision tree classifier (Ali et al., 2012). The scoring metric 

for classification models in this work is accuracy, or the percentage of correctly classified 

samples.  
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Figure 4.2 Generalized Decision Tree. Each node of the tree acts as a test of an attribute, 
separating the data based on the test. The initial split occurs at the root node, and the data 
in each branch continues to the next decision node. The depth of the tree refers to the 
number of nodes a datapoint can pass through.  

 

4.1.2. Regression Models. In addition to the classification models, the use of a 

linear regression (LR) model was investigated. Linear regression modelling works to 

create a mapping from the list of weather attributes (features) to population differences 

(labels) taking the general form: 

ℎ(Q(/)) = 	:R?Q?
(/)

0

?6@
					 (27) 

where Q?
(/) is the jth feature of the ith training example, ℎ(Q(/)) is the hypothesis of the ith 

training example, R? is the jth  fitting parameter and Q@
(/) = 1 for all i. The model is 

optimized by minimizing the cost function: 

T(R) =
1
2
:UℎUQ(/)V − 8(/)V

-
		

A

/67
(28) 
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where m is the number of training examples, and 8(/) is the ith target variable for each 

iteration. During each iteration R? is updated as: 

	R? ≔		R? − Y
Z
ZR?

T(R) (29) 

where ≔ represents assignment, or the replacement of the old value with the new, and Y 

is the learning rate (Ng, 2020). The scoring metric for regression models in this work is 

the coefficient of determination R2 (pronounced R squared). It should be noted that R2 

differs from traditional definitions for coefficient of determination, r2, in that negative 

values are possible; R2 scores are 0.0 when a model’s predictability is comparable to a 

model that always predicts mean output value.  

4.1.3. Hyperparameter Tuning. Most machine learning models accept a number 

of parameters that can affect the performance of the model, known as hyperparameters. 

For example, in the case of a model using decision trees, the maximum number of layers 

of nodes, known as the maximum depth, can be set to limit the model. Each model has a 

unique set of hyperparameters that can be initialized in an effort to improve model 

performance or can be left as default values. Hyperparameter tuning is the process of 

identifying specific parameter values in an effort to optimize model performance. A 

common method of determining optimal hyperparameters, which is used here, utilizes a 

grid search that cycles through specified hyperparameter ranges, and determines the set 

of hyperparameters values resulting in a model fit with highest scoring metrics. 

Hyperparameter tuning can however prevent a model from generalizing. A model fails to 

generalize when the optimization of the model to the training set results in a model that 

accurately predicts the training data but fits the test data poorly. The result is an 
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overfitting model that will give inaccurate predictions when presented with new data 

(Roelofs, 2019).  

For the purposes of this study, the hyperparameters modified for DTC include 

maximum depth, minimum sample split (which defines the minimum number of samples 

required for a node to split the samples), minimum sample leaf (which defines the 

minimum number of samples in a leaf for it to be retained), and the maximum number of 

features to be included in one node. The hyperparameters that are modified for RFC 

include the list for DTC with the addition of the number of decision trees, known as 

estimator trees, and the criterion, which can either be ‘entropy’ or ‘gini.’ 

4.2. RESULTS 

Figure 4.3 demonstrates possible correlations as a scatter plot matrix of the 

features (weather attributes and previous population) and labels (population difference) of 

Dataset 1. The diagonal holds plots of the kernel density estimation (KDE), a 

nonparametric estimation for the probability density function. The scatter plots 

corresponding to both population difference and previous population with any weather 

feature demonstrate a wide spread in the scatter plots, suggesting that no single weather 

attribute is correlated to the population difference and therefore cannot individually 

predict the population difference. The plots of any two weather features demonstrate a 

different, more focused spread, indicating higher correlation between the weather 

attributes, especially in the case of the number of days with >= 1.00 inch (25.4 mm) of 

precipitation in the year, DP1X, and the total annual precipitation, PRCP. Figure 4.4 

shows the scatter plot matrix for Dataset 2, similarly demonstrating a lack of correlation 



 

 

75 

between the population difference and any weather features. With a larger number of 

features, Figure 4.4 includes a wider range of correlation between weather attributes 

when compared to Figure 4.3, including both positive and negative correlations.  

The correlation values for each combination of features and the label are printed 

on the correlation heat maps for Dataset 1 (Figure 4.5) and Dataset 2 (Figure 4.6). For 

both datasets, the population difference label and previous population feature show some 

negative correlation with one another, but both population difference and previous 

population have near zero correlation with any given weather attribute.  The weather 

attributes Dataset 1 all demonstrate some correlation to one another, whereas the 

inclusion of more features in Dataset 2 provides a much greater range in correlation 

values. 

 

 

Figure 4.3 Feature Scatter Matrix – Dataset 1. A scatter plot matrix of the available features, 
previous population (labeled “Prev. Pop”) and the weather attributes DP01, PD10, DP1X, 
EMXP, and PRCP for Dataset 1 and the label, population difference (labeled “Pop Diff”), 
are shown. Diagonal plots show the KDE for each variable.
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Figure 4.4 Feature Scatter Matrix – Dataset 2. A scatter plot matrix of the available features, previous population (labeled “Prev. Pop”) 
and all weather attributes, for Dataset 2 and the label, population difference (labeled “Pop Diff”),  are shown. Diagonal plots show the 
KDE for each variable. 
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Figure 4.5 Feature Correlation – Dataset 1. The correlations between the population difference (labeled “Pop Diff”), previous population 
(labeled “Prev. Pop”), and the weather attributes of Dataset 1 are shown as numerical value in each grid location and visually as a 
heatmap using the color scale on the right. 
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Figure 4.6 Feature Correlation – Dataset 2. The correlations between the population difference (labeled “Pop Diff”), previous population 
(labeled “Prev. Pop”), and the weather attributes of Dataset 2 are shown as numerical value in each grid location and visually as a 
heatmap using the color scale on the right.
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Depending on the model type selected, correlated features can negatively affect 

the model fitting process, though some models have little response to the use or removal 

of correlated features. The comparison of Figure 4.7a showing the learning curves of 

DTC utilizing all features of Dataset 1 and Figure 4.7b which only includes weather 

attributes with a correlation below 0.9: previous population, the number of days with >= 

0.01 inch (0.254 mm) of precipitation in the year, DP01, the highest daily total of 

precipitation in the year, EXMP, and the total annual precipitation, PRCP. Correlations 

are determined via the correlation plot and in the case that two features have a correlation 

value greater than 0.9, one of the correlated features is removed. This process is repeated 

until only correlations less than 0.9 remain.  Learning curves demonstrate the model’s 

accuracy of predicting population increase or decrease based on the number of training 

examples included in model training and the accuracy of the model in correctly 

predicting population change in the reserved validation set. Figure 4.7a,b includes 

subplots of the learning curves for DTC with defined maximum depths of 2, 3, 4, and 7. 

A well-fitting model will exhibit convergence of the training and validation scores, 

whereas a model that demonstrates a higher training score, but lower validation scores, is 

overfit. This occurs when the model is optimized to the data in the training set to achieve 

a higher score, but the optimization fails to improve the validation score as it is biased 

toward the data it is trained on. When all features are included during model training 

(Figure 4.7a), the model nearly converges for the maximum depth of 2 and 4 and shows 

convergence for a maximum depth of 3. When highly correlated (<0.9) features are 

removed (Figure 4.7b), the model convergence occurs for a maximum depth of 2, 

converges with less training examples for a maximum depth of 3, and nearly converges 
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for a maximum depth of 4. In both cases of feature use, a maximum depth of 7 

demonstrates overfitting, with the suggestion of possible convergence with enough data 

points, but the trends do not demonstrate increasing the accuracy of population change 

predictions for the validation set compared to models trained with less depth. While the 

differences are minor and the model scores similarly with and without the correlated 

features, the training and validation scores converge with fewer training examples when 

the features are removed. Therefore, the reduced set of features for both Datasets 1 and 2 

are used for all further investigation.  

 Hyperparameter tuning can impact the performance of a model, as seen in the 

learning curves for default hyperparameters, specifying maximum depth to 3, and tuned 

hyperparameters for DTC (Figure 4.8a-c) and RFC (Figure 4.8d-f). Hyperparameter 

tuning used a grid search over a range of values for multiple tuning parameters for each 

classifier, selecting the highest performing hyperparameter values. In both DTC and 

RFC, default hyperparameter settings fail to generalize, due to the lack of a maximum 

depth. Once the maximum depth is set to 3, the training score drops, but the models have 

a much better fitting model with signs of generalization, and when the models are set 

with the best performing hyperparameters, the model requires the least number of 

training values to converge.  

 



 

 

81 

 

Figure 4.7 Decision Tree Learning Curves – Dataset 1. Learning curves of the Decision 
Tree Classifier for Dataset 1 including all features (a) and with the removal of highly 
correlated features DP1X, and DP10 (b) are shown.   Each learning curve is created by 
randomly selecting 10% of the dataset to be reserved as a validation set a total of 10 times. 
Each training and validation set is fit to a model with solid red lines showing the mean 
score of the 10 training set iterations, and the green lines showing the mean score of the 
validation set. Standard deviations are shown as an opaque fill for the training (red) and 
validation (green) scores. Each subplot includes learning curves with the decision trees 
restricted to a maximum depth of 2, 3, 4, and 7. Accuracy is the designated scoring method. 
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Figure 4.8 Learning Curves and Hyperparameter tuning – Dataset 1. Learning curves of 
DTC with default hyperparameters (a), default hyperparameters except for max depth (b), 
and multiple tuned hyperparameters (c) are shown and learning curves of RFC with default 
hyperparameters (d), default hyperparameters except for maximum depth (e), and tuned 
hyperparameters (f) are shown. In all cases, mean training scores are shown in red with 
standard deviation in shaded red, and the mean validation score is shown in green with 
standard deviations in shaded green. 

 

 Hyperparameter tuning has similar effects of model fitting for Dataset 2, as seen 

in Figure 4.9. Default hyperparameters for DTC (a) and RFC (d) fail to generalize, but 

the training and validation generalize for both models once a maximum depth is defined, 

as seen for DTC (b) and RFC (e). Surprisingly, optimizing DTC hyperparameters results 
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in a decrease in model generalization when compared to a maximum depth of 3 and 

otherwise default hyperparameters. The results of both models suggest that the model 

would likely converge with a greater number of training examples. 

 

 

Figure 4.9 Learning Curves and Hyperparameter tuning – Dataset 2. Learning curves of 
DTC with default hyperparameters (a), default hyperparameters except for maximum depth 
(b), and multiple tuned hyperparameters (c) are shown and learning curves of RFC with 
default hyperparameters (d), default hyperparameters except for maximum depth (e), and 
tuned hyperparameters (f) are shown. In all cases, mean training scores are shown in red 
with standard deviation in shaded red, and the mean validation score is shown in green 
with standard deviations in shaded green. 
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 Receiver operating characteristic (ROC) curves for Dataset 1 DTC (a) and RFC 

(b) and Dataset 2 DTC (c) and RFC (d) are shown in Figure 4.10. A ROC curve plots the 

true positive rate (TPR) corresponding to the percentage of training examples correctly 

classified as population increase against false positive rate (FPR) corresponding to the 

percentage of training examples incorrectly classified as population increase while 

classification threshold varies (Krzanowski & Hand, 2009). Models predict a probability 

of class membership which is then mapped to the predicted label of population increase 

or decrease, and the classification threshold defines the probability that determines 

classification. A high performing model would consist of almost entirely true positive 

cases, resulting in a curve near the y-axis until the TPR reaches 1, and a random classifier 

model is expected to fall on the diagonal line shown in red. For all threshold values, both 

models perform better than a random classifier, with the exception of RFC with a 

maximum depth of 3 fitting Dataset 2, which dips below the diagonal for high TPR and 

FPR conditions and the untuned RFC for low TPR and FPR. For Dataset 1, DTC appears 

to have the highest TPR when only the maximum depth is not default, with a more 

desirable curve than the tuned DTC. The RFC curves for Dataset 1 show little 

performance difference for all three hyperparameter sets tested. Hyperparameter tuning 

results in greater improvement of fit for Dataset 2 for both DTC and RFC. The ROC 

curve for Tuned DTC (Figure 4.10c) shows a steeper increase in TPR then begins to level 

out as FPR increases, whereas Figure 4.10d shows the Tuned RFC beginning at a higher 

TPR for FPR = 0.0 and increases more linearly until it reaches a TPR of 1. 
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Figure 4.10 ROC Curves. The ROC curves for Dataset 1 DTC (a) and RFC (b) and Dataset 
2 DTC (c) and RFC (d) are shown. Each plot contains curves for default tuning parameters 
(Untuned), specified max depth of 3 (max_depth=3) and for “best” tuning parameters 
(Tuned) for the respective classifier. 

 

Moving from classification to regression, the learning curves in Figure 4.11 show 

the training and validation scores of a linear regression model. Figure 4.11a shows the 

learning curve of all features of Dataset 1 included, whereas b does not include the highly 

correlated features. Similarly, the linear regression learning curves for Dataset 2 

including all features and removing highly correlated features are shown in Figure 4.10c 

and d respectively. For both datasets, removing correlated features increases the fit of the 

model resulting in closer training and validation scores with less training examples. In the 

case of Dataset 1, both curves show convergence, whereas the fit of Dataset 2 approaches 

convergence, but does not converge with the number of available training examples. Both 
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results for Dataset 2 suggest that additional training examples could improve the model 

fit, with a greater likelihood if correlated features are removed. Both instances 

demonstrate convergence with a score around R2 = 0.2, but the removal of the highly 

correlated features lowers the number of training examples required for the scores of the 

training and validation set to be equal.  

 

 

Figure 4.11 Linear Regression Learning Curves. Learning curves of the Linear Regression 
Model for Dataset 1 including all features (a) and with the removal of correlated features 
DP1X, and DP10 (b) are shown. Linear regression model results of Dataset 2 including all 
features and the removal of highly correlated features DP1X, DP10, DSNW, and DX70 are 
shown in (c) and (d) respectively. The training scores are plotted in red and validation 
scores in green. The scoring method is R2 for both plots.  

 

Once models have been selected and fit to the datasets, the scores shown in Table 

4.1 are calculated by comparing the model with the test data that was removed before 

model training began. This score represents the overall model performances for new data 

that was not used for training, simulating the performance of the model on new 
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population and weather data. Note that the scoring for the classification models is still 

based on accuracy of classification, and the scoring for regression uses R2 for the scoring 

metric. Overall, the scores for DTC and RFC are similar, with slight improvement from 

tuning the model hyperparameters. DTC fitting Dataset 2 with optimized 

hyperparameters has the best score overall of 0.6550. LR scored slightly higher with the 

inclusion of more features in Dataset 2 when compared to Dataset 1, though the 

improvement is minimal.  

 

Table 4.1 Test Data Scores 

Dataset Model Tuning parameters Scores 

Dataset 1 

DTC 
Default 0.5271 
Max depth=3 0.5465 
Optimized Parameters 0.5543 

RFC 
Default 0.5581 
Max depth=3 0.5543 
Optimized Parameters 0.5349 

Dataset 2 

DTC 
Default 0.5350 
Max depth=3 0.5900 
Optimized Parameters 0.6550 

RFC 
Default 0.5100 
Max depth=3 0.5250 
Optimized Parameters 0.5700 

Dataset 1 LR Default 0.1979 
Dataset 2 LR Default 0.2153 

 

4.3. DISCUSSION 

The purpose of this proof of concept was to determine whether the use of a 

machine learning model would add benefit to predicting population changes as a function 
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of measured weather attributes. Each model was able to show improvement over 

random choice with the data available, confirming that population changes are at least 

partially described by weather parameters. General machine learning techniques 

improved the model’s ability to predict population change, beginning with the removal of 

highly correlated weather attributes. This comes at a tradeoff of further reducing the 

available weather attributes, and with the limited number of attributes measured and 

available, only attributes with correlation values above 0.9 were removed. The 

comparisons of Figure 4.7a and b demonstrate that, in the case of a decision tree, the 

removal of the highly correlated features reduces the number of training examples 

required for the training and validation scores to converge. The removal of these 

correlated features did not, however, improve the model’s ability to accurately predict 

population change. The decision tree was chosen for this initial effort as a decision tree 

model is one of the least sensitive to correlated features. Nodes are selected based on 

entropy, and therefore the model will select a feature with highest entropy; if correlated 

features perform equally well, only one will be used and the other will be ignored 

(Mitchell, 1997). Linear regression, however, is sensitive to correlations in the features 

since the hypothesis function is a summation with a term for each feature. Introducing 

highly correlated data is similar to introducing one feature multiple times. The impact of 

correlated features for LR are shown in Figure 4.11, and the number of training examples 

required for model generalization is less when the correlated features are removed. 

Removal of these features did not result in an improvement in the model’s ability to 

predict population change. 
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The subplots in Figure 4.7 also demonstrate the need to establish a maximum 

depth to the DTC, and correspondingly the RFC, to prevent model overfitting. The 

subplots of training curves for maximum depths of 2, 3, and 4 demonstrate a well-fitting 

model, which predicts with the same accuracy from the training and the validation data, 

whereas the training curves for a maximum depth of 7 show the model is overfit. The 

additional decision levels result in a higher score for the training data, but this 

improvement does not translate to the model accurately predicting, and therefore does not 

signify increased model performance. Comparisons of learning curves of the DTC and 

RFC with default hyperparameters provide examples when no there is no specified 

maximum depth in Figure 4.8a,d and Figure 4.9a,d. In both datasets, the models were 

significantly overfit with default hyperparameters. 

With limited available data, the “curse of dimensionality,” that as the number of 

features increases, the required amount of training examples also increases, becomes 

apparent (Bellman & Dreyfus, 1962). Dataset 1 demonstrates model performance when 

higher priority is given to available training examples, and Dataset 2 demonstrates model 

performance with higher priority on available weather attributes. The learning curves for 

Dataset 2 in Figure 4.9 show that Dataset 2 can provide a well-fitting model with both 

DTC and RFC, but additional training examples would further improve model fitment. 

By comparison, Figure 4.8 demonstrates that for the available weather attributes, the 

number of training examples in Dataset 1 is sufficient for a well-fitting model. 

Comparisons of the results for all three models in Table 4.1 show that for the amount of 

data included in the study, both datasets have a limitation. The accuracy of the models on 

the test data suggests that an increase in the number of weather attributes will have a 
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greater benefit than an increase of training examples for model training. The ROC 

curves in Figure 4.10 further supports this, in that for most threshold values, models fit to 

Dataset 2 have a higher TPR and lower FPR than the same model’s fit to Dataset 1. The 

ROC curves also show that parameter tuning made an impact on model performance, 

resulting in more desirable curves when compared to the untuned models, with a more 

noticeable improvement for Dataset 2. 

Overall, in the case of classification, the previous population and lesser correlated 

weather attributes were able to most accurately predict a population increase or decrease 

with a DTC and hyperparameter tuning on Dataset 2. The scores in Table 4.1 show the 

accuracy of this model was highest with 0.655 or 65.5% of the population change 

predictions of the test set were correct, though all of the models showed some 

improvement in prediction accuracy over random choice. Both classifiers showed higher 

scores in the case of Dataset 2, indicating that the inclusion of additional weather 

attributes can improve the model’s prediction accuracy.   

Along with a greater number of weather attributes, Dataset 2 provides information 

about more environmental factors, giving possible explanation for improved model 

scores.  Unfortunately, of the data at the time and location these studies were completed, 

the only weather attributes providing measured values for 80% of the datapoints were all 

associated with precipitation, whereas lowering the threshold to 70% included 

information about precipitation, temperature, and snowfall.  The inclusion of data 

describing the temperature and snowfall provides a more complete picture of the local 

environment, giving further explanation for the improved model scores.  



 

 

91 

Thus far, discussion has focused primarily on classification models that predict 

if a population will increase or decrease. Predictions of the population change is a greater 

challenge, and one that cannot be handled with a classification model, as a classification 

model cannot predict a value it was not trained on. Regression models provide the ability 

to generalize to outputs that the model has not seen before, like a population change 

larger than the maximum in the training examples. However, predictions of a positive or 

negative population change is a simpler task, offering explanation to why results of LR 

were poor in comparison to the classification models. That said, the use of LR was still 

more advantageous than a model that consistently predicts the mean value, as shown by 

R2 scores above 0 in Table 4.1. In both Dataset 1 and Dataset 2, the LR model was able 

to generalize, suggesting that for the number of features available, the number of training 

examples was sufficient, but the features themselves do not linearly describe the 

population changes, and therefore LR is not an optimal approach. 

Overall, the use of classification models to answer the simple question of “will a 

population increase or decrease” provides a benefit over a random selection model (a 

model that places the training examples into one of the classifications at random), but it is 

apparent that the included weather features, in combination with the previous year’s 

population, does not fully describe the population change, suggesting that further 

optimization of the model requires additional feature inputs. The same holds true for the 

regression model tested. 
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4.4. CONCLUSION AND FUTURE WORK 

The work presented in this section demonstrates that predictions of population 

change from yearly weather summaries of a location are possible but have significant 

room for improvement. The primary limitation in improving the performance of each 

model stems from the limited available weather attribute data. In the case that data 

collection improves the amount of available population and weather data, model 

performances would likely increase. 

With the limited dataset, populations of all animals were consolidated, but this 

presents the assumption that all of the included species will be similarly impacted by the 

available weather attributes. An increase in available population data can offer the ability 

to divide the dataset by order, genus or even species, likely improving any model’s 

performance. An increase in available population data may also allow for the 

examination of only declining populations in an effort to determine early warning signs 

of a struggling population. The identification of key weather attributes to predict 

population decline and even population collapse could allow for more efficient 

intervention efforts of populations approaching collapse.  

Additionally, improvements in weather data collection would offer additional 

features and an improved picture of the local environment. As shown above, the inclusion 

of more features can improve model performance, but may also offer the opportunity to 

lower the correlation threshold with enough remaining features to create a model. The 

data that has been used here ranges from 1970 to 2016, suggesting that population data 

from more recent collection efforts may be accompanied by improved weather data,  
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resulting in more fruitful efforts in the future. The inclusion of other features such as 

terrain data, natural disaster information, and even pollution from human interaction in 

the area may offer additional improvements to model performance.  
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5. CONCLUSION 

 

With a significant decline in global population abundance since 1970 (68% 

decrease), it is clear that environmental changes experienced in today’s world can have a 

significant impact on population survival (WWF, 2020). The task of predicting and 

intervening in population decline is generally understood as a biological problem. 

However, an interdisciplinary approach incorporating physics-based and machine 

learning techniques can provide valuable insight into population dynamics. The results 

from both the computational model and the laboratory experiments presented in this 

dissertation demonstrate that the response of a population under stress correlates with 

system parameters or environmental stressors driving population decline.  The 

computational model demonstrated differences in population decline for the different 

control parameters, while also highlighting the effects of additional noise in the form of 

quenched randomness.  The results show that the transition from survival to extinction 

does not fall into the directed percolation universality class; the system’s scaling behavior 

near the critical point was shown to depend on the particular control parameter causing 

the population decline.  A difference in scaling behavior near the critical point was 

previously identified to correlate with differences in population decline and how a 

population may recover from environmental perturbations (King, 2015). This physics-

based approach allowed for the use of computational models to gain greater 

understanding of global dynamics in a population efficiently. 

Similarly, both the S. cerevisiae and E. coli experiments demonstrated that the 

mechanism driving population decline dictated the system’s behavior during the 



 

 

95 

transition. The yeast population responded differently to salt stress and temperature 

stress, exhibiting phase transition-like behavior in the latter case. These different 

responses may be explained by the physiological response of the yeast to the stressor the 

population experiences (Capusoni et al., 2019; Gore et al., 2009; Hohmann, 2002; 

Leuenberger et al., 2017; Murguía et al., 1996; Szopinska et al., 2011; Verghese et al., 

2012). As seen in the decay curves, the E. coli population response to antibiotics (shown 

in Figure 3.3) demonstrated that even with similar modes of action, the populations had 

different transition behavior. This suggests that similarly-acting antibiotics do not have 

similar effects on these bacteria. The microbiological approach shown here can be 

expanded upon in further investigation to explain why there are different responses to a 

particular population’s stressor. This will help to increase the understanding of an 

individual stress on a specific population, and it could further provide an understanding 

as to why some species are able to adapt to some stressors more effectively than others.   

Neither the physics-based nor the experimental approach directly affected the 

ability to identify a declining population, but each provided a quantitative 

characterization of individual species behavior based on environmental stressors or 

system parameters, and how these populations may decline or recover.  Section 4 is a step 

towards accurate identification of struggling populations. When combined with an 

understanding of the transition behavior based on an identified stressor, the possibility of 

identifying declining populations and curating efficient and effective efforts to intervene 

becomes a more manageable struggle.  Implementing machine learning techniques using 

a handful of weather attributes alone demonstrated some capability to predict population 

changes. Use of narrower species criteria will almost certainly increase model 
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performance, as it would increase specificity in the population response to stressors.   

Additionally, including intrinsic traits and external factors that have been identified as 

predictive of population decline may also provide increased prediction performance 

(Collen et al., 2011).  

Each of the three disciplinary approaches provides an understanding of 

populations under stress, but the combination of tools and techniques across disciplines 

presented here provide a more complete picture in understanding population declines and 

potential response to recovery efforts. Combining the information accessible through 

each approach presents the possibility of more accurate computational models, a better 

understanding of species response, and presents a chance for optimization of predictive 

modeling, all of which encourage the creation of effective and efficient methods of 

population recovery intervention.   
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NOAA WEATHER FEATURES 
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The following is a list of the weather features that have been included in the 

analysis of section 4 with definitions as stated by NOAA. A full list of all available 

weather attributes from NOAA can be found at 

https://www.ncei.noaa.gov/pub/data/metadata/documents/GSOYReadme.txt. 

 

TMAX – Average Annual Maximum Temperature. Average of the mean monthly 
maximum temperatures given in Celsius or Fahrenheit. Missing if one or 
more months are missing or flagged. 

DP01 – Number of days with >= 0.01 inch (25.4 mm) of precipitation in the year. 

DP10 – Number of days with >= 0.1 inch (25.4 mm) of precipitation in the year. 

DP1X – Number of days with >= 1.00 inch (25.4 mm) of precipitation in the year. 

DSNW – Number of days with snowfall >= 1 inch (25 mm). 

DT00 – Number of days with maximum temperature <= 0 °F/-17.8 °C. 

DT32 – Number of days with minimum temperature <= 32 °F /0 °C. 

DX70 – Number of days with maximum temperature >= 70 °F /21.1 °C. 

DX90 – Number of days with maximum temperature >= 90 °F /32.2 °C. 

EMNT – Extreme minimum temperature for the year. Lowest daily minimum 
temperature for the year. Given in Celsius or Fahrenheit. 

EMSN – Highest daily snowfall in the year, given in inches or millimeter. 

EMXP – Highest daily total of precipitation in the year, given in inches or 
millimeters. 

EMXT – Extreme maximum temperature for the year. Highest daily maximum 
temperature for the year. Given in Celsius or Fahrenheit. 

PRCP – Total Annual Precipitation. Given in inches or millimeters. 

SNOW – Total Annual Snowfall. Given in inches or millimeters. 

TMIN – Average Annual Minimum Temperature. Average of the mean monthly 
minimum temperatures given in Celsius or Fahrenheit. Missing if one or 
more months are missing or flagged.
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Non-equilibrium phase transitions from survival to extinction
have recently been observed in computational models of
evolutionary dynamics. Dynamical signatures predictive of
population collapse have been observed in yeast populations
under stress. We experimentally investigate the population
response of the budding yeast Saccharomyces cerevisiae to
biological stressors (temperature and salt concentration) in
order to investigate the system’s behaviour in the vicinity of
population collapse. While both conditions lead to population
decline, the dynamical characteristics of the population response
differ significantly depending on the stressor. Under
temperature stress, the population undergoes a sharp change
with significant fluctuations within a critical temperature range,
indicative of a continuous absorbing phase transition. In the case
of salt stress, the response is more gradual. A similar range of
response is observed with the application of various antibiotics
to Escherichia coli, with a variety of patterns of decreased growth
in response to antibiotic stress both within and across antibiotic
classes and mechanisms of action. These findings have
implications for the identification of critical tipping points for
populations under environmental stress.

1. Introduction
As our planet edges ever closer to the ‘Sixth Extinction’ [1–4],
environmental stressors are increasing, and the ecological effects of
these stressors on ecosystems are becoming more apparent. As a
result, identification of early warning signs of population collapse
has become a priority [5–11]. Population decline has been
suggested to be accompanied by critical slowing down [5–7,10], a
dynamical phenomenon associated with scale-free, power-law
dynamics, though other studies have observed population decline

© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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Figure B.1 Ordway et al. as Published in Royal Society Open Science (cont.) 

in the absence of such critical signatures [12]. Importantly, due to critical slowing down, populations recover
more slowly from perturbations in the neighbourhood of tipping points between survival and collapse [10].
The identification of indicators of incipient population decline is of increasing urgency in the light of collapse
of pollinator [13–15] and avian [16] communities, among others. Recent studies have identified evidence for
worldwide decline in insect populations [17–20], which could have catastrophic cascading effects on the
global ecosystem.

Physics-based models of phase transitions provide useful models for extinction processes. In a phase
transition, a system undergoes a change in the value of an order parameter characterizing the system’s
state, as a control parameter is varied. At a critical value of the control parameter, the system passes a
tipping point and undergoes a change of state, such as from survival to extinction. The system’s
characteristic fluctuations in the neighbourhood of the transition can serve as a warning sign for the
incipient state change. In critical (also called continuous or second-order) transitions, these fluctuations are
characterized by a large standard deviation in the order parameter in the vicinity of the transition. The
dynamics of the fluctuations can be quantified by critical exponents, which define the universality class of
the phase transition, and hence the system’s behaviour as it passes through the transition. Widely
different systems can undergo phase transitions in the same universality class. In non-equilibrium phase
transitions, a system undergoes a transition to an ‘absorbing state’, from which it cannot recover [21–22].

Computational evolutionary models of transitions from survival to extinction can be characterized as
non-equilibrium phase transitions. A recent agent-based computational evolutionary model has been
shown to exhibit a non-equilibrium phase transition with behaviour similar, but not identical, to the
directed percolation universality class [23–27]. This behaviour has been observed during simulated
transitions from survival to extinction as maximum mutation size [23–27] and death rate [26,27] are
varied as control parameters.

Dai and colleagues have performed population dynamics experiments to investigate the stability and
resilience of yeast cultures subjected to environmental stressors [8–11]. Studying their system through the
lens of nonlinear dynamics, they mapped the dynamics of stable and unstable populations in response to
environmental stressors such as dilution factor (a proxy for death rate) [8–10], nutrient (sucrose)
concentration (a proxy for carrying capacity) [10] and osmotic stress (NaCl concentration) [8,10]. These
studies resulted in a means of characterizing a population’s resilience, i.e. its ability to recover from a
large environmental perturbation [10].

In the present work, we adapt the experimental approach used by Dai and colleagues in order to
investigate the decline of the budding yeast Saccharomyces cerevisiae and Escherichia coli populations
under stress. We investigate the dynamics of yeast population decay in the presence of two different
stressors, temperature and salt (NaCl) concentration, and the decay of E. coli populations in response
to a range of antibiotics.

2. Material and methods
2.1. Saccharomyces cerevisiae experiments
Experiments were performed using the yWO3 [28] strain of S. cerevisiae. This strain was selected because
it is a well-described wild-type laboratory strain that is neither thermophilic nor thermotolerant. To
investigate the dynamics of yeast population growth under stress, two environmental stressors were
used, temperature and elevated NaCl concentration. In both cases, S. cerevisiae was initially grown at
30°C, which is the optimum temperature for S. cerevisiae growth [29], in standard medium (YEPD)
containing 10 g l−1 yeast extract, 20 g l−1 peptone and 2% dextrose. These initial 50 ml cultures in
liquid media were inoculated from a plate with cells to an optical density (OD) of 0.0001 to allow
multiple doublings in log phase over 24 h, thereby creating a large concentration of cells without
saturating the culture. From the starting OD 0.0001 concentration, the cells typically grew to an OD of
2.5 in 24 h. These initial cultures were then used as starter cultures to inoculate fresh media for the
temperature stress and salt stress experimental cultures. All OD measurements were taken at 600 nm
and measured using a Turner visible spectrophotometer.

2.1.1. Temperature stress

Wild-type S. cerevisiae is known to grow optimally at 30°C [29] and to exhibit a sharp decline in growth
rate at temperatures exceeding approximately 40°C [30]. To study the response to temperature stress, the
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initial culture, prepared as described above, was inoculated into 50 ml of YEPD in 250 ml flasks to a
resulting OD of 0.05. The samples were then placed in orbital shaking water baths that had already
reached the particular temperature of interest for a given set of measurements. Sample ODs were then
measured every 24 h. If the sample had grown, it was diluted back to an OD of 0.05 in a volume of
50 ml YEPD in a new 250 ml flask. If the sample had not grown significantly (less than 0.01 OD
growth), or if the OD of the sample was lower than 0.05, the sample was placed back into the water
bath for another 24 h. Measurements were taken over eight 24 h periods. Growth was measured by
calculating the number of times the population doubled between measurement cycles, or number of
doublings, using

n ¼ ðlogðODfinal=ODinitialÞÞ
log(2)

, ð2:1Þ

where ODinitial is the OD at the beginning of each 24 h growth period, and ODfinal is the measured OD
after each 24 h growth period.

For the measurements of growth under temperature stress, sample cultures were measured from 38°C
to 44°C at 0.5°C intervals with a sample size N≥ 3, with an additional set of N = 3 measurements at 37°C.
Since 37°C was well into the survival regime, as can be seen from the steady-state growth curve at this
temperature in figure 1, and far from any population tipping points, measurements under this condition
served as a reference point to confirm any emerging trends. Data points taken at 30°C (not shown)
confirmed that the growth rate at this standard temperature for yeast growth was similar to the
growth observed at 37°C.

2.1.2. NaCl stress

Saccharomyces cerevisiae growth was investigated over a range of salt concentrations, from concentrations
under which cells are documented to grow normally to concentrations which are known to cause
considerable stress, including cell death [31–35]. For the measurement of yeast growth under high salt
stress, NaCl was added to freshly prepared YEPD in order to achieve the desired NaCl concentration.
Culture growth was measured for NaCl concentrations from 66.5 to 104.5 g l−1 at approximately 5 g l−
1 intervals with a sample size N≥ 3. An additional set of N = 3 measurements at 57 g l−1, which is
well into the survival regime, as can be seen from the steady-state growth curve at this salt
concentration in figure 1, served as a reference point to confirm any emerging trends.

An initial culture in YEPD was inoculated into 50 ml of YEPD +NaCl in 125 ml flasks to a resulting
OD of 0.05. The samples were then placed in an orbital shaking water bath at 30°C. As with the
temperature studies described above, sample ODs were measured after 24 h at 600 nm using a Turner
visible spectrophotometer. If growth had occurred, the sample was diluted back to an OD of 0.05 in
a volume of 50 ml YEPD +NaCl in a new 125 ml flask. If the sample did not have significant growth
(less than 0.01 OD), or if the OD was less than 0.05, the sample was returned to the incubator until
the next measurement period. Measurements were taken over eight 24 h periods, and doublings were
calculated using equation (2.1). All data, for both temperature and salt stress, are available in [36].
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Figure 1. Number of S. cerevisiae population doublings is shown as a function of days after initial inoculation for various values of
NaCl concentration (a) and temperature (b). N≥ 3 for each data point; error bars are not shown to avoid crowding the figure (see
electronic supplementary material, table).
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2.2. Escherichia coli experiments
Escherichia coli (MG1655) were grown in M9 minimal glucose media overnight, shaking at 37°C. This
bacterial culture was used to inoculate 96-well plates containing a dilution series of 10 different
antibiotics, at a starting OD (600 nm) of 0.005 (i.e. 2 µl of culture in 198 µl media). We selected a panel
of 10 antibiotics across different antibiotic classes with a variety of mechanisms of action (table 1).
Each antibiotic was added at a starting concentration of 100 µg ml−1 and subsequently serially diluted
by ¾ to give 40 different concentrations, ranging from 100 to 0.001 µg ml−1. There were six replicates
for each antibiotic. The 96-well plates were incubated, shaking at 37°C, for 24 h. The OD (600 nm) for
each well was measured using a Cytation 3 multimode plate reader (BioTek). Doubling times for each
well were calculated as a function of initial and final OD using equation (2.1) as described above. All
data are available in [36].

3. Results
As shown in figure 1, increases in both environmental stressors caused a decrease in yeast growth rate, as
would be expected. However, the time course of the stress response differed significantly between the
stressors. The data shown in figure 1a indicates that increasing salt concentrations caused the yeast to
grow more slowly, but with a gradual shift until growth ceased altogether. By contrast, as shown in
figure 1b, as the temperature was increased, a sharp drop in doubling rate was observed. Here, the
cultures changed from a quick recovery time in the 37–39°C range, to a recovery after a long lag time
(39.5–40.5°C range) and finally to being unable to recover at all for temperatures above 40.5°C.
Standard deviations are provided in electronic supplementary material, Data tables 1 and 2, but not in
figure 1, to avoid crowding the figures.

In order to investigate the population dynamics in the neighbourhood of the ‘tipping point’ into
decline, average growth over the last 3 days was calculated as a function of NaCl concentration
(figure 2a) and temperature (figure 2b). As can be seen in figure 1, in most cases, the populations had
reached an approximately constant growth rate by post-inoculation days 6–8. Averaging the growth
rates over these three days thus serves as a proxy for a ‘steady-state’ growth rate. In figure 2, these
averages are shown, with a grand average taken over all experiments at each condition. This gives a
measure of the system’s overall response to each stressor.

It can be seen from figure 2 that, for both stressors, the yeast population ultimately experienced an
environment too harsh for survival. However, in the case of increasing salt concentrations (figure 2a),
the system underwent a smooth, gradual decline. Minimal fluctuations were observed in the transition
region, and there was no identifiable tipping point. In stark contrast, the response to temperature
stress (figure 2b) showed an abrupt drop in growth rate, with comparatively large fluctuations in the
transition region, indicating a tipping point around 39.5°C.

Table 1. Mechanisms of action of antibiotics used.

antibiotic class mechanism mode of action

ampicillin β-lactam inhibits cell wall synthesis bactericidal

carbenicillin β-lactam inhibits cell wall synthesis bactericidal

chloramphenicol amphenicol protein synthesis (50S inhibitor) bacteriostatic

ciprofloxacin fluoroquinolone inhibits DNA gyrase bactericidal

gentamycin aminoglycoside protein synthesis (30S inhibitor) bactericidal

kanamycin aminoglycoside protein synthesis (30S inhibitor) bactericidal

rifampicin rifamycin DNA-directed RNA polymerase bactericidal

spectinomycin aminoglycoside protein synthesis (30S inhibitor) bacteriostatic

streptomycin aminoglycoside protein synthesis (30S inhibitor) bactericidal

tetracycline tetracycline protein synthesis (30S inhibitor) bacteriostatic
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In figure 3, we show the decay curves of E. coli populations in the presence of various antibiotics. All
the antibiotics tested are shown in figure 3a. In figure 3b and c, the responses to five each of the ten
antibiotics studied are shown (on a shorter horizontal scale, in the case of 3c), in order to display the
details of the responses more clearly. The presence of antibiotic stress caused a decrease in bacterial
growth across all the antibiotics tested, as expected. However, we observed a variety of patterns of
decreased growth in response to antibiotic stress both within and across antibiotic classes and
mechanisms of action. This ranged from a very sharp drop in bacterial growth in the presence of
ciprofloxacin (open green triangles, figure 3a and b) to more gradual declines in the presence of
spectinomycin (filled green triangles, figure 3a and c). This broad range of response patterns is
qualitatively similar to those observed in the yeast experiments.
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Figure 3. (a) Number of doublings of E. coli (MG1655 WT) populations as a function of log10(antibiotic concentration) for ten
antibiotics. Error bars show standard deviation over six replicates for each antibiotic concentration. (b) Number of doublings for
five of the studied antibiotics over a smaller concentration range, in order to show detail. (c) Number of doublings for the
other five studied antibiotics over a smaller concentration range, in order to show detail.
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Figure 2. Steady states of the S. cerevisiae population for NaCl stress (a) and temperature stress (b) are shown. For each condition,
the populations are first averaged over days 6–8 post-inoculation, then over all runs at that condition and finally averaged over all
experiments at that condition. Error bars show standard deviation.
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4. Discussion
We have examined the response of S. cerevisiae to two different environmental stressors, temperature
and NaCl concentration, as well as the response of E. coli to various antibiotics. In contrast with the
studies of Dai et al. [8–10], our yeast experiments used glucose as a nutrient source rather than
sucrose. Glucose can be directly metabolized by S. cerevisiae, in contrast with the disaccharide sucrose,
which must be hydrolysed outside the cytoplasm. However, most of the hydrolysis products of
sucrose diffuse away before they can be taken back up into the cytoplasm, becoming public goods
[37]. As a result, yeast cells fed with sucrose exhibit a classical Allee effect, with maximal growth at
an intermediate population density [8]. Use of glucose rather than sucrose prevents population
density from having a significant effect on survival, enabling temperature and salt concentration to
serve as isolated stress variables in the studies described here.

We find that, while both high temperature and high NaCl concentration have a negative effect
on the yeast doubling rate, the dynamics of the response to the two stressors is significantly different.
In particular, the response to NaCl is gradual (figure 2a), while temperature stress induces a sharp
drop reminiscent of a critical phase transition with a well-defined ‘tipping point’ (figure 2b).
Accompanying this change in population growth, the fluctuations of the system are much higher in the
vicinity of the tipping point as the temperature increases. In the E. coli experiments (figure 3), the
responses to some of the antibiotics, such as ciprofloxacin, streptomycin and kanamycin, exhibited
critical phase-transition-like behaviour, while others, such as chloramphenicol and spectinomycin,
produced a gradual response without a well-defined tipping point. For other antibiotics, the response
was less clearly defined.

In order to observe any critical behaviour, it is necessary to examine the system after it has stabilized. As
figure 1 shows, the yeast had fluctuating growth behaviour in the first few days after exposure to both
stressors. For most control parameter values, the behaviour stabilized after a few days. It is this stable
‘long-term’ behaviour that is averaged and shown in figure 2. Our results are consistent with those of
Mensonides et al., who demonstrated the initial slowing of S. cerevisiae population growth due to
temperature for budding yeast, accompanied by changes in metabolism, by observing the populations
for 6 h after introduction to various temperatures [30]. They ‘observed a surprisingly “thin line” for cells
between growing, surviving and dying, with regard to growth temperature’ [30]. The sharp change
between survival and death observed by Mensonides and colleagues occurred for a slightly higher
temperature (between 42 and 43°C) than that observed in the present paper (39.5°C). This difference can
be explained as the result of short- versus long-term behaviour; in all our cultures below 42°C, there
was some measurable amount of growth in the first 24 h period, but the populations were unable to
maintain consistent growth above 39.5°C, as can be seen in figure 1a. Mensonides et al. [30] suggested
that ‘it cannot be concluded if [the] effect on growth and viability is caused by the absolute
temperature, or by the difference between initial and new temperature’. Notably, the initial temperature
in their study was 28°C, while it was 30°C in our experiments. Dai et al. [10] also observed that S.
cerevisiae populations lose stability at different rates and exhibit different levels of resilience, for different
environmental stressors [10]. Specifically, for S. cerevisiae grown in the presence of sucrose, populations
lost stability more rapidly (and early warning signals based on stability loss performed better) when
stressed by increasing dilution factor, which serves as a proxy for death rate in S. cerevisiae populations
grown on sucrose, than in response to simple nutrient depletion [10].

Why is the response to temperature stress much more abrupt than the salt stress response?
Mensonides et al. proposed that the ‘narrow temperature range’ over which population decline is
observed ‘may be explained by assuming the rapid denaturation of one or a very limited number of
enzymes which are essential to growth’ [10]. This is consistent with the current understanding of heat
shock response [38] and more specifically of protein denaturation [39] in S. cerevisiae. By contrast,
these cells have a variety of responses that can modulate the response to salt stress. Changes in salt
concentration can have multiple effects on yeast, including osmotic shock [40], direct toxicity from
Na+ ions [31] and changes in membrane potential [37]. Saccharomyces cerevisiae can respond to these
diverse insults with a range of responses, such as activation of the high-osmolarity glycerol (HOG)
pathway [39] and membrane depolarization accompanied by decreased permeability [32]. After observing
an increase in abundance of a dozen plasma membrane proteins in response to mild salt stress, Szopinska
et al. [33] proposed that protein internalization occurs rapidly after hyper-osmotic or ionic shock, enabling
a cell to remain viable until a slower transcriptional response [34,35] can be activated. These various
studies suggest a model in which S. cerevisiae is better able to modulate its response to salt stress than to
heat stress, consistent with the more gradual response to salt stress we observe.
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It is less clear, however, why E. coli responds so differently to antibiotics. Many of the antibiotics
tested have the same mode of action but display completely different decay curves (see, for example,
spectinomycin and kanamycin, which are both aminoglycosides). A priori one might expect that
bacteriostatic antibiotics that only inhibit growth, as opposed to bactericidal antibiotics that kill E. coli,
might have more gradual decay curves. However, there was a large variation in decay curves both
within bacteriostatic (e.g. chloramphenicol and tetracycline) and bacteriocidal (e.g. rifampicin and
ampicillin) antibiotics. It may be that the inherent pharmacokinetics of each antibiotic drives these
differences in bacterial killing, and more comprehensive screening would be required to elucidate the
exact underlying mechanisms. The differences observed in these bacterial decay curves might have
important implications for the evolution of antibiotic resistance. It is possible that mutations could
shift the shape of the decay curve; this could be tested in experimental evolution studies.

The system behaviour seen in the temperature stress experiments and some types of antibiotics (e.g.
ciprofloxacin, streptomycin, kanamycin) match exceptionally well with critical phase transition
behaviour, while the smooth transition in response to NaCl stress and other antibiotics (e.g.
spectinomycin and chloramphenicol) show none of the signifying characteristics of a critical phase
transition. These findings demonstrate that monitoring the dynamics of population decay can not only
provide a warning sign of incipient collapse but could also be used in order to identify the type of
stressor that is causing the destabilization. The difference in these two behaviours demonstrates that,
without reference to the environmental stressors, simple observation of a population in decline may
be insufficient to predict the course of the population’s progress toward collapse. With detailed
information about individual stressor effects, however, it may be possible to identify the driving
stressor(s) of a population decline and determine whether it is approaching a critical collapse, or a
gradual decline based on the transition behaviour. Understanding the type of stress response could be
critical in designing appropriate intervention protocols.

The type of stress response may also play a role in the dynamics of population recovery. This has been
observed by King et al. in a computational evolutionary model when a system is near the tipping point in
a critical phase transition [26,27] and in the studies of population resilience in the presence of different
stressors by Dai et al. [8–10]. As mentioned above, a key behaviour in systems with critical transition
behaviour is critical slowing down. If intervention is taken to save a population from collapse,
systems exhibiting critical slowing down will have significantly longer recovery times compared to
systems undergoing gradual transitions. These systems will require more stringent monitoring to
ensure that recovery continues through the long recovery period; it may also take far longer for
significant signs of recovery to appear. Identification of transition type can be crucial in resource
allocation to rescue the highest number of populations approaching collapse and prevent premature
abandonment of a recovering population. Lastly, it is important to note that, due to cooperative
effects, population size itself may modulate the dynamics of collapse and recovery [41] and should be
taken into account when designing such interventions.

5. Conclusion
We observe population declines exhibiting characteristics of a critical phase transition in both yeast
(S. cerevisiae) and bacteria (E. coli). In the case of yeast, phase transition behaviour is only observed
when cultures are subjected to temperature stress, but not in the case of high salt concentration. In the
latter case, the yeast populations exhibit a gradual decline without any sign of criticality. Similarly, in
bacteria, some antibiotics produce population declines characteristic of a critical phase transition,
while others produce more gradual declines. Taken together, the yeast and bacterial results suggest
that phase-transition-like population dynamics may occur in response to a broad range of stressors in
different organisms. Further, the disparity between phase-transition-like behaviour and more gradual
population declines in both eukaryotic and prokaryotic cells for different stressors raises the
possibility that divergent population dynamics may also occur for a range of organisms and stressors.

With increasing peril of current climate change and the approach of ‘the Sixth Extinction’, it is crucial
to examine population dynamics for early indicators of collapse. Investigating population collapse
through the lens of critical phase transitions can identify factors that drive population dynamics in
uncontrolled environments and can facilitate the development of protocols for population rescue. This
approach may also be used to pinpoint what stressor or combination of stressors is responsible for
pushing a population to collapse, as well as to design intervention and rescue protocols.
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Our results indicate that critical phase transition behaviour occurs in the presence of some stressors
but not others. How and why this occurs is an avenue for future investigations, which could include,
among other avenues, investigation of metabolic flux and imaging analysis of cells in the presence of
different stressors over time. In the case of temperature and salt stress, recent experimental evolution
studies in yeast [42–45], as well as the extensive literature on transcriptional response to stress in
S. cerevisiae [35], could point the way toward identifying particular genetic and/or transcriptional
determinants of population collapse dynamics. The repressors Nrg1 and Nrg2 have already been
implicated in S. cerevisiae adaptation to salt stress [46]. Nearly two decades ago, a group of several
hundred yeast genes were shown to undergo significant changes in expression in response to
environmental stress [47,48]. The genetic pathways that mediate resilience are likely to be complicated,
multilayered and historically contingent. Berry et al. [49] found that the changes in gene expression
that confer tolerance to H2O2 stress in yeast differ depending on the prior mild insult the cells
received (salt, heat shock or dithiothreitol (DTT)). While such complex interactions make investigating
such problems daunting, they also offer the tantalizing possibility that mapping gene activation can
reveal a cell’s environmental history, much as a human patient’s complement of antibodies can show
their history of disease exposure. Such studies could ultimately contribute not only to the
development of population rescue protocols but may also facilitate the genetic engineering of species
more resilient in the face of environmental stress.
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