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ABSTRACT

Smart city applications like smart grid, smart transportation, healthcare deal with

very important data collected from IoT devices. False reporting of data consumption from

device failures or by organized adversaries may have drastic consequences on the quality of

operations. To deal with this, we propose a coarse grained and a fine grained anomaly based

security event detection technique that uses indicators such as deviation and directional

change in the time series of the proposed anomaly detection metrics to detect different

attacks. We also built a trust scoring metric to filter out the malicious devices. Another

challenging problem is injection of stealthy data falsification. To counter this, we propose a

novel information-theory inspired data driven device anomaly classification framework to

identify compromised devices launching low margins of stealthy data falsification attacks.

The modifications such as expected self-similarity with weighted abundance shifts across

various temporal scales, and diversity order are appropriately embedded in resulting di-

versity index score to classify the devices launching different attacks with high sensitivity

compared to the existing works. Active learning, a semi-supervised classification approach

is used to cluster the malicious and benign sensors depending on the score.

Adversarial machine learning (AML) is a technique that fools the machine learning

models with the malicious input. The resulting performance of the existing machine

learning models will drop when the adversary employs AML. Common types of AML

techniques are evasion attacks and poisoning attacks. For this purpose, we proposed a

Generative Adversarial Network (GAN) based solution to detect different kinds of evasion

and poisoning attacks. Our proposed solutions are validatedwith the help of real-world smart

metering datasets from Texas and Ireland, and smart transportation data from Nashville.
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1. INTRODUCTION

A smart city is a framework, predominantly composed of Information and Com-

munication Technologies (ICT), to develop, deploy, and promote sustainable development

practices to address growing urbanization challenges. A big part of this ICT framework

is essentially an intelligent network of connected objects and machines that transmit data

using wireless technology and the cloud. Citizens engage with smart city ecosystems in

various ways using smartphones and mobile devices and connected cars and homes. Pairing

devices and data with a city’s physical infrastructure and services can cut costs and improve

sustainability. Communities can improve energy distribution, streamline trash collection,

decrease traffic congestion, and even improve air quality with help from the IoT.

There are different smart city applications including smart energy, smart healthcare,

smart transportation, smart agriculture, smart infrastructure [3]. This is shown in Figure 1.1.

In this work we will be predominantly concentrating on smart grid and smart transportation.

Figure 1.1. Smart City Applications



2

1.1. SMART GRID

Smart grid is one of the important part of the smart city. This work focuses on the

possible threats in smart grid and proposes solution for different types of data falsification

attacks. In this section, we will see what is a smart grid and its components along with the

advantages of the system.

1.1.1. Smart Grid Architecture. The electrical power delivery system has often

been considered the greatest and most complex network ever built. It consists of wires, ca-

bles, towers, transformers, monitoring devices, and circuit breakers, all connected together.

The transfer of power from generation in the grid to utilization in homes and industries will

be as shown in Figure 1.2.

Figure 1.2. Electric Power System.

Historically, the electric power grid operators and planners had limited information

for the system status and behavior of the grid. The only available information was mea-

surements from decentralized SCADA (supervisory control and data acquisition) systems,

mostly recorded at several-second intervals, and they did not include the physical state vari-

ables of the a.c network like the complex voltages at every node, and time-shifted voltage

information. Thus the primary focus of the system was designed for the most extreme

conditions, specifically, peak loads and faults – and then try to ensure that the grid operated

within that expected range. Despite the good design, operation, and maintenance efforts,

over 90% of customers’ electric outages occur due to problems on the distribution system

rather than from transmission or generation level problems. Moreover, with the growth

of distributed energy resources (example: rooftop photo-voltaic cells), two-way electric-
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ity flows and new customer devices such as electric vehicles necessitate better situational

awareness and insight into distribution system conditions and performance to make the grid

more robust, more efficient, more distributed, re-configurable, more interactive, with faster

protection and control.

To meet these requirements, smart grid integrates modern advanced sensor technol-

ogy, measurement technology, communication technology, information technology, com-

puting technology, and control technology into it, where information and electricity flow

bi-directionally and the smart grid can: (1) Enable active participation by customers; (2)

Accommodate all generation and storage options; (3) Enable new products, services, and

markets; (4) Optimize asset utilization and operate efficiently; (5) Anticipate and respond

to system disturbances. The architecture of Smart Grid can be seen in Figure 1.3

Figure 1.3. Smart Grid Architecture.

1.1.2. AdvancedMetering Infrastructure. AdvancedMetering Infrastructure (AMI)

is one of the basic units of the smart grid technology. AMI collects data on loads and cus-

tomer’s power consumption [4], from Smart Meters installed on the customer site (see

Figure 1.4). Such data plays a pivotal role in several critical tasks such as automated billing,

demand response, load forecast and management [4, 5, 6].
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Figure 1.4. Architecture of AMI [1]

Apart from automated billing, strategic tasks are expected to be performed by future

smart grids, based on the AMI power consumption data. For example, AMI will have

implications on tasks such as daily and critical peak shifts [7, 8]. When the consumption

increases beyond a critical limit, emergency ‘peaker plants’ are currently used by most

utilities for additional power generation to meet the demand. However, such peaker plants

are extremely carbon as well as cost intensive. In the modern grid, the utility will also have

the option for automated demand response where utilities pay customers to shut certain

appliances temporarily (peak shifting) to obviate the need for additional generation [9, 10].

In general, an accurate short or long term data on loads and consumption will aid in accurate

demand response, load forecast and planned generation in the future smart grid [11].

Therefore, the integrity of the AMI data is of utmost importance.

Defense against falsification of power consumption data from AMIs, has largely

focused on electricity theft [12, 13, 14, 15], where individual customers are primary ad-

versaries who report lower than actual usage for lesser bills. Since isolated smart meters

belonging to rogue customers reduce the value of power consumption, we term such an

adversarial attack as a Deductive mode of data falsification. However, it has been widely

acknowledged that given the cyber and interconnected nature of AMI, it could potentially
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be the target of organized adversaries such as cyber criminals [16], utility insiders [17], or

business competitors [18]. Organized adversaries can compromise several smart meters and

then spoof false power consumption data [13] from smart meters. Organized adversaries are

more equipped to crack/leak cryptographic secrets, have a higher attack budget, and possess

the ability to simultaneously attack other elements of the grid (e.g., audit logs, transformers

meters) in order to avoid easy consistency checks on false data.

1.2. SMART TRANSPORTATION

Vehicular Ad hoc Network (VANET) is the connection of group of vehicles that can

communicate with each other and with the infrastructure domain through internet and radio

channels. VANETs are a subgroup of MANETs where communicating nodes are mainly

vehicles and roadside infrastructures. At present, VANETs have many implementations

across different aspects like smart transport systems, driving assistance, public security,

roadside facility locator, toll collection, road traffic control, freeway internet connection

and increasing security and efficacy of freeway systems. Through the use of Dedicated

Short-Range Communication (DSRC) [19], VANETs support Intelligent Transportation

System (ITS) [20]. Wireless Access in Vehicular Environment (WAVE) [21] is one of the

standards to implement VANET. Figure 1.5 illustrates the basic topology of VANET.

Two types of communication technologies are implemented for VANET. One is

Vehicle to Vehicle (V2V) and another is Vehicle to Infrastructure (V2I). This is shown in

Figure 1.6 Vehicles consist of GPS, processors, sensors and antennas which are known as

On Board Unit (OBUs) to correspond with other vehicles. Vehicles also communicate with

infrastructures at the roadside at a static distance from each other known as Road Side Units

(RSUs). RSUs can be mobile and they use wired or wireless medium to communicate with

each other and the Internet. Vehicles can be connected to Internet through V2I since RSUs

are connected to the Internet. Real time and emergency messages can be transmitted using

V2V communications to avoid accidents and traffic congestions. Figure 1.5 Vehicular Ad
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Figure 1.5. Vehicular Network

HocNetwork (VANET). VANETs are required to implement securitymeasures, for instance,

secrecy, reliability and approval to offer protection against invaders and mischievous nodes

since VANETs transmit emergency, life critical real-time information. Wormhole attack

[22, 23], Purposeful attack [24], Illusion attack [25], Denial of Service (DoS) [26], Sybil

attack [27, 28, 29] are some of the security attacks which can hamper the privacy of the

person driving the vehicle as well as the vehicle. Eventually, these attacks may cause

death of human lives by reducing traffic safety. Hence, many researchers are extensively

working on the security of VANETs. The primary reason of providing security in VANET

is necessary so that the original identity of the drivers cannot be disclosed at any time in

VANET since malicious nodes can launch attacks using this information as false identity.

During V2I communication safety and privacy is very important since drivers and

vehicles have to disclose their identity to communicate with RSUs. Vehicles need to ensure

the authenticity of the received information before reacting to the received information. V2I

is also responsible for recording the speeds of vehicles through Traffic Message Channels

(TMCs). The data from a group of TMCs will be aggregated at the RSUs. The aggregated

data is used to make the traffic decisions which will be shared with the vehicles, So, the
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Figure 1.6. V2V and V2I Communications [2]

collected data needs to be accurate to share the true information. There are different possible

security threats that can lead to data falsification. Different security issues in smart city

applications will be discussed in later sections.
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2. SECURITY THREATS IN SMART GRID AND SMART TRANSPORTATION

There are different possible security threats in smart city. We concentrate on two

main things, data falsification and adversarial learning.

2.1. DATA FALSIFICATION

We assume an organized adversary that orchestrates data falsification attacks from

multiple sensors (smart meters or TMCs) via cyber or physical exploit [30]. Smart meters

receive power consumption from various appliances via the Home Area Network (HAN)

and sends it to the utility side via the Neighbourhood Area Network. Either the (i) input

to the smart meter, (ii) the power consumption data at rest inside the smart meter, (iii) or

data in flight may be falsified. An example of falsifying power consumption data at rest

is the Puerto-Rico Grid Attack of 2012, where hundreds of smart meter’s optical ports

were manipulated using laser probes by utility insiders [16, 31], causing the smart meters

to record lower than actual power consumption. Similarly, load altering attacks reported

in [32], have shown the possibility to change the inputs from appliance loads to the smart

meter. Similarly, the data in flight from multiple smart meters to the NaN gateway may

be falsified by a traditional man-in-the middle attack. Finally, another possibility is an

organized adversary that controls a set of smart meters like a Botnet, collect data from

intercepted smart meters, and inject advanced data falsification strategies, that we discuss

under the stealthy attack strategies. We discuss the threats for smart meters which can also

be applicable to other smart city applications.

Our approach is agnostic of the exploit used to falsify the data. Of course, depending

on the exploit the attack scales, strengths, and strategies will vary. Our intention is to capture

various kinds of data falsification attack realizations instead of a specific one, since exploits

tend to evolve over time and just because an attack has not been realized before, does not

mean they will not be experienced in future. We capture this generic data falsification
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attack landscape by parameterizing the attack strategy space; taking into account the full

range attack scales, strengths, strategy combinations in this section. The following features

characterize our threat model:

A) Attack Scale: The fraction of compromisedmeters, d<0; = "
#
, is the attack scale,

where " is the number of unique smart meters compromised by an organized adversary

in a given network. Traditional use of Kullback-Leibler Divergence (KLD) model with

statistical aggregates work well, if d<0;% [33, 34] are smaller. However, resilience against

higher d<0; has been reported only when associated margins of false data per meter is too

high (which facilitates easier detection). However, if the attack budget is high, or a creative

adversary finds a cheaper exploit to compromise a meter, or the network size is smaller, then

the attack budget constraint does not automatically imply a lower fraction of compromised

meters [33]. This is because, in reality, the value of " depends also on the creativity of

its exploit, and the micro-grid size # . Given large values of d<0; are possible in the real

world, we take into account a wide variation of d<0; between 0.10 to 0.90.

B)Average Margin of Attack Strength: Average margin of false data is the average

extent of falsification introduced per meter. We observed that in most previous works,

the average margin of false data is not parameterized as a variable except in two recent

works [33, 35], which report that these methods completely fail to detect meters when their

average margin of false data is X0E6 < 400. This happens because the standard deviation

of data streams are high (430W-480W in AMI applications) due to randomness of human

activity, making it difficult for previous methods to achieve success.

C) Attack Types: We consider three different attack types. The adversary seeks

to falsify original data points %802C (C) representing actual energy consumption at time C by

some factor XC , where XC ∈ [X<8=, X<0G] and the long term average value of XC is X0E6 (avg.

margin of attack strength).

(i) Additive Attacks: Here the smart meters seek to increase the data from its original

values, such that %8 (C) = %802C (C) + XC . Motivation of such attacks are discussed in [32].
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(ii) Deductive Attacks: Smart meters seek to decrease the data from its original

values, such that %8 (C) = %802C (C) − XC ; this is equivalent to electric theft and the most

commonly seen attack type [16].

(iii) Alternating Switching: In such an attack, every compromised meter alternates

between launching additive and deductive attacks with the same margin of false data at

different times of the day to take advantage of dynamic pricing/demand response of elec-

tricity. When the prices are high (due to higher demand), it launches a deductive attack,

while compensating with an equal margin additive attack when the pricing is low (due to

lower demand), causing the mean consumption trends from individual compromised me-

ters practically unchanged. This is device level equivalent to a camouflage attack reported

in [30] from two sets of meters in the same time, thus blinding a micro-grid level anomaly

detector. However, our variation of camouflage attack is launched from the same end point

meter to camouflage the end device (meter) level detectors.

D) Stealthy Attack Distribution Strategies: Now we focus on ‘how’ false data is

introduced in the smart meters data streams. Apart from a non-stealthy random bias, we

analyze our solution against four stealthy strategies, viz. (i) the data order aware, (ii)

incremental ramp, (iii) KLD minimization (iv) persistent strategies. AMI applications are

not real time systems; they can tolerate some delay. Therefore, if there is some timing

delay due to coordination for the stealthy strategies, it is still practical. We assume that a

reasonably organized attacker will have an idea of the data distributions and mechanisms

used by usual anomaly detectors, and craft the following strategies accordingly:

(i) Data Order Aware Strategy: It is a stealthy falsification strategy that minimizes

the chance of detection against mechanisms utilizing proximity (e.g., Euclidean !2 distance)

between the reported and original data distribution, while keeping the same X0E6. Addition-

ally, this strategy makes sure that the maximum and minimum values in the original and

falsified distribution are not different, to prevent obvious statistical outliers.



11

The following strategy is implemented in the following manner: At any time slot

C, the adversary sorts the actual recorded data vector from its compromised set of devices

such that %(1)C (02C) ≤, · · · , %
(<)
C (02C), ≤ %

(")
C (02C); as well as its corresponding bias

vector X1
C (<8=) ≤, · · · , ≤ X"C (<0G). Under an additive attack, the minimum actual data is

changedwith the highest XC (<0G), while themaximumobserved data ismodifiedwith lowest

XC (<8=), and so on like an inversematching, such that %(1)C (02C)+XC (<0G), · · · , %
(")
C (02C)+

XC (<8=), subject to the fact that it does not violate bounds on the historical distribution. For

a deductive attack, the maximum recorded data is modified by matching with the maximum

bias XC (<0G), while the lowest actual recorded data is altered with the lowest XC (<8=). For

alternating switching attack, the additive and deductive attacks alternate with the strategy

mentioned above.

In Figure 2.1(a), the blue line corresponds to the non-attacked value of compromised

meters. The yellow and red lines correspond to a realization of falsified data under a data

order aware and non-data order aware strategy with same X0E6=200W and d<0; = 40% for

‘deductive’ attacks from Texas dataset. The same revenue impact is achieved with both

strategies, but chances of detection (using proximity/distance/similarity) are smaller in data

order aware strategy. The width of the interval of XC ∈ [X<8=, X<0G] is known as the aperture

of attack. The aperture is varied as necessary to minimize the euclidean and KLD.

(ii) Incremental/ Ramp / Boil-frog Strategy: This strategy involves a very gradual

increase in of XC bias over time, until intended X0E6 is reached. This attack strategy is termed

as boil-frog in AI security and ramp attack in cyber physical system (CPS) security. The

strategy causes all temporal metrics to record minimal changes that evolve over time to

bypass detection
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(iii) KLD Minimizing Strategy: The falsified data is injected in a manner which

minimizes the KLD, while preserving the target X0E6. Figure 2.1(b) shows an illustration for

a single meter where the adversary crafts a distribution (bold red line) that minimizes the

KLD; thus being closer to the actual data distribution (blue line) than to a uniform random

bias attack (gray line), even when the X0E6 = 200 for both attack strategies.

(iv) Persistent Strategies: These attacks are launched by an adversary that knows our

defense model and tries evasion attacks. We show performance under such evasion attacks,

by showing the extent to which undetectable strategy space is reduced, and break even time

of adversary.
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Figure 2.1. Attack Strategy (a) Data Order Aware (b) KLD Minimizing

2.2. ADVERSARIAL MACHINE LEARNING

AdversarialMachine Learning (AML) is a technique of fooling themachine learning

model by providing malicious input. This malicious input is called Adversarial example.

This can be understood from the Figure 2.3 where the machine learning model that works

well under normal conditions, will result in an undesired outcome when we provide an

adversarial example as input. A real world application of adversarial example is shown in

Figure 2.2. The machine learning model that can classify the picture as panda will fail to

classify correctly when we introduce some noise intelligently to fool the system. In Figure

2.2, the nearly same panda image is classified as panda before the noise and gibbon after
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noise by the same classification model. n is the noise level factor. There are some ways to

deal with these attacks. One way is to generate possible adversarial examples and retrain

the model using the examples.

Figure 2.2. Generation of Adversarial Example

AML can be implemented using two main strategies, Evasion attacks and Poisoning

attacks. Evasion attacks are quite similar to the example in Figure 2.3. Consider a spam

email that is obfuscated to escape the spam filtering. This is an example for evasion

attack. The evasion attacks happen during the testing phase of the machine learning system.

Poisoning attacks takes place on the training data. The poisoning attacks contaminate the

training set which will be used to re-train the model. Intrusion Detection Systems (IDS)

which are re-trained can be subjected to poisoning attacks disrupting the whole system.

Figure 2.3. Adversarial Example
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2.2.1. Evasion Attacks. Evasion attacks are adversarial attacks that are introduced

during the testing phase. As shown in Figure 2.4, the machine learning model with good

performance can result in undesired outcomes when the testing data is intelligently modified

using adversarial examples. This technique was successfully in image recognition to result

in a completely different classification output by just modifying few pixel’s intensities that

is imperceptible to the human eye. In case of ML based security models, for detecting false

data injection, the evasion techniques can be used by the adversary to falsify the data points

and still escape the detection.

Figure 2.4. Evasion attack on machine learning model

Figure 2.5. Poisoning attack on machine learning model

2.2.2. Poisoning Attacks. These attacks are rare compared to evasion attacks. As

shown in Figure 2.4, it happens during the training process. We are aware that adversaries

will have full knowledge of our defense mechanism when published. Our base assumption

is that the defender has a significant portion of training set that is not attacked. As for this
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work, we have only focused on evasion attacks that occur in the testing phase and ignored

possibility of poisoning attacks. This is because reducing the undetectable attack strategy

space itself is quite a challenging problem. Active poisoning attacks will be part of our

future work.

Finally, since CPS application security is still a new field, datasets containing real

attacks are unavailable. Therefore, we have parameterized the entire attack strategy space

in terms of attack strength, scale, strategies, and types, and reported the failure bounds.

This should alleviate concerns over non-availability of real attacks.
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3. LITERATURE REVIEW

3.1. EXISTING SMART GRID SECURITY DEFENCE MECHANISMS

Existing approaches for detecting smart meters launching data falsification attack

can be broadly divided into three categories, (i) classical machine learning, (ii) information-

theoretic, (iii) consensus-based statistical approaches.

The classical machine learning methods use SVMs [12], decision/regression trees

(DRT) [36], and neural networks [37, 38]. In [12], the problem was investigated using SVM

with a radial basis network when X0E6 = 450, , but the percentage of compromised meters

assumed was just 1%. In the DRT method [36], the approach does not parameterize the

attack strategy space fully, and the attack strength and scales are unclear. Surveyed by[39],

the false alarm rates reported by most neural network based methods are much higher even

as they do not generalize for an unbounded attack strategy spaces and low profile attacks.

Information-theoretic approaches proposed in [33, 40] use Kullback-Leibler diver-

gence to classify compromised meters, and is a competing approach to our model. Hence,

we will show how our attacks perform under these defenses and our solution’s detection

performance compare with these approaches.

Consensus-based approaches used classical statistics [15, 41], time series [14],

robust statistics and density-based learning [35] to identify such smart meters. We chose

to compare with [35], since it outperforms the others, and parameterizes the attack strategy

space with attack scales and strengths. State estimation based methods are not used since

they depend on putting extra monitoring hardware in the higher layers of a smart grid. Note

that [30] applies to stealthy attacks at a micro-grid level and but not at the meter level, thus

it does not feature in our comparisons.
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Gaussian trust model, KL divergence based trust model are some of the existing

models to detect the data falsification in smart grid. The approaches are discussed in the

following sections.

3.1.1. FoldedGaussianClassifier. The folded Gaussianmodel uses a trust scoring

model based on the distance of the reading from the mean of the data. Then a discrete rating

will be assigned depending on the distance. This will be finally used to calculate a score

for each meter to judge if the smart meter’s readings are falsified or not.

3.1.2. Kullback-Leibler-divergence Trust Model. The work proposed in [33]

uses the Kullback-Leibler Divergence between the probability distribution of binary rating

levels that use the first standard deviation only. Rather than just having our probability

distribution, it adds in approximating distribution. With KL divergence we can calculate

exactly howmuch information is lost whenwe approximate one distribution (%) with another

(&) over probability space j, shown in Eqn. 3.1.

� ! (% | |&) =
∑
Gn j

%(G) × ;>6
( %(G)
&(G)

)
(3.1)

This can be used to calculate and compare the probability distribution of the binary

rating levels compared to the attack free training stage. The model was designed in a such

a way that higher value of divergence implies a big change in the usage trend and will be

marked as falsifying data.

Our analysis of existing works in smart meter data falsification found that most

methods fail to classify correctly when the attack margins are below 400W, regardless

of the attack types and strategies (elaborated in the threat model section). Additionally,

the possibility of physical attacks causing data falsification ( optical laser attacks [16]

and acoustic transduction attacks [42, 43]) render cryptography based and network traffic

based intrusion detection methods on IoT devices inadequate. Cybersecurity practices such

as static analysis, and signed software updates do not protect against a sensor recording

false data since the physical attacks influence the output of sensor hardware that is trusted
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by software/firmware [42, 44]. Furthermore, several studies [45, 46] have noted that

embedded/hardware/in-situ security of smart meters that provide some protection against

physical attacks, is not cost effective due to the large scale nature of meter deployment and

variety in commodity hardware. Therefore, providing a device level data driven behavioral

anomaly scoring technique is necessary not only as an extra level of security, but as a

principle approach for trusting the data from a distributed set of IoT devices (e.g. smart

meters), which motivates our approach.

However, non-typical but benign conditions can cause changes in data due toweather

conditions, and seasons; and low margin data falsification attacks can easily hide behind

such randomness. Our anomaly based detection approach should distinguish between such

events and changes that are caused due to attacks. Finally, the method has to generalize

across various attacks and datasets.

3.2. ADVERSARIAL MACHINE LEARNING IN SMART GRID

The usage of adversarial examples started in the image processing and recognition.

[47] shows the impact of adversarial examples in image processing and proposed a solution

on how to handle those threats. The adversarial attacks can be classified as black-box attacks

and white-box attacks. In case of black-box attacks, the adversary has the knowledge of the

machine learning model used in the system where as in white-box attacks, the adversary

don’t have access to such information. [48] explains some solutions on dealing with the

black-box attacks in image processing. [49] follows the approach to deal with the adversarial

examples.

In this work, we will show the impact of AML in smart grid security systems. Some

works like [14, 50, 51] have been done employing AML in the security of smart grid. [52]

shows how to handle data poisoning by eliminating the outliers. The possibility of evasion

attacks is more than poisoning attacks in the smart grid environment. This is because, the

security models are not often retrained which is required for injecting the poisoning attacks.
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To our knowledge, none of the existing works provide the analysis of the impacts of evasion

attacks or the solutions to deal with such attacks in smart grid. Protection against evasion

attacks will make the security model more robust.

3.3. ANOMALY DETECTION IN SMART TRANSPORTATION

Research on Smart city applications has seen rapid advancements in recent years.

A large portion of this research contribution has focused on the implementation of sensor

systems for transportation, communication, and infrastructure monitoring [53, 54, 55].

The two key challenges in large decentralized IoT networks like the smart transportation

network are Quality-of-Service (QoS) and Security. While QoS focuses on the ability

to provide services within an acceptable time frame, thus making it a latency critical

application, security deals with resilience and mitigation of unwanted interference, whether

it is environmental or created by an external adversary. Generally, anomaly detection is

focused on finding perturbations that may cause by either an unexpected event or a False

Data Injection (FDI) attack on the system. Different Intrusion Detection Systems (IDS) are

deployed at key points in the distributed network to collect and analyze the network traffic

to detect anomalies in the system [56].

Traditional anomaly detection schemes are based on classification, statistical in-

ference, state-based analysis, and clustering [57]. Classification based detection schemes

usually rely on Support Vector Machines (SVM), Bayesian Models, Gaussian Processes

or Neural Networks [58]. However, these methods require large-scale accurate models

of system behavior which might contain sensitive information (e.g., exact locations and

movements of the users over time). State based methods based on Kalman Filtering [59]

require realistic assumptions on the data distribution to estimate normal behavior which is

a challenging task. In [60], the authors have presented a decentralized and light-weight

anomaly detection approach on RSU level based on the ratio of Harmonic and Arithmetic

mean to detect different types of data falsification. However, the method results in a false
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positive rate of 20% which is relatively high considering the fact that attacks on the system

are generally rare, and a high false positive rate would disrupt the system frequently which

would cost infrastructure management.

3.4. DATASETS AND DESCRIPTION

We have used two real AMI datasets to validate the proposed solutions. The first

dataset is Ireland Social Sciences Data Archives [61] containing 5000 meters from six

regions in the city of Dublin, Ireland, collected between 2009-2010. Three out of these

six regions, have more than 1000 smart meters. The rationale for choosing this dataset is

to investigate the scalability of our framework for large micro-grids. The second dataset is

Pecan Street Project [62] containing hourly power consumption data from 215 houses from

a Solar village in Texas, USA, collected between 2014-2016. Hence, we have chosen two

datasets that are inherently different in terms of their geography, climate, randomness, and

extreme difference in sizes.

For smart transportation, we have used dataset from Nashville, Tennessee which

consists of vehicular data recorded in real-time over a period of 4 months (January to April

2019) with 1271 Traffic Message Channels (TMCs) [63]. The dataset contains the ground

truth for accidents and congestion.
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4. DETECTION OF DATA FALSIFICATION ATTACKS IN SMART GRID

The introduction of Smart Grid led to a lot of advantages like reduction in peak

power production, demand pricing, real time billing. This also results in cyber attacks

where the adversary will try to manipulate the data in a way to gain profit. It is proven that

organized attacks are also possible on the smart grid. This section proposes a solution for

detection such organised attacks in smart grid.

4.1. CONTRIBUTIONS

We have discussed different possible security threats for smart grid in the intro-

duction. There are some existing security models to deal with such attacks. The existing

security models are also discussed in the introduction. The existing works are not able to

detect different possible attacks like additive, deductive and alternate switching using the

same security model. The existing anomaly detection methods are not capable of filtering

out the malicious meters in case of anomaly detection.

This work is the first effort to establish trustworthiness in AMI against multiple

attack types and faults with coarse and fine grained attack strategies. Secondly, our focus is

on orchestrated data falsification attacks devised by organized adversaries rather than just

rogue customers. Our method works well for even higher fractions of compromised meters,

unlike most statistics based methods due to the embedding of real time attack responses into

the trust model. To demonstrate detection sensitivity in terms of margin of false data, we

assume the full attack strategy space and show that detection rates are high across a wider

threat landscape. Additionally, our method’s time to detection of compromised meters is

quick even under opportunistic attack strategies that are sporadic over time domain, via

attack time probability ratio embedding. Our proposed method is light weight and gives

better performance compared to the classical bad data detection mechanisms which use
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expensive multi-class SVM and neural network based training models. We also discuss

about the limitations of our proposed framework under adversary’s knowledge of our defense

mechanism, which motivates the direction in which further research should be conducted.

Section 2.2 describes the system and threat models while Section 2.3 discusses the

proposed framework with theoretical analysis. Section 2.4 includes a special embedding

method required to counter opportunistic attacks. Section 2.5 shows the experimental results

for real-world data.

4.2. SYSTEM AND THREAT MODELS

In this section, we discuss the network architecture of the AMI, characterize the

distribution of two real datasets, and propose the threat model for organized data falsification

in AMI.
4.2.1. Architecture. We consider a collection of # smart meters reporting power

consumption data to a Neighborhood Area Network (NaN) Gateway (acts as an edge

computing node) periodically and independently. The 8-th smart meter, records an actual

power consumption data, say %802C (C) at the end of each time slot C (C is slotted hourly).

The reported power consumption %8A4? (C) is equal to %802C (C), if 8 is not compromised.

However, %8A4? (C) ≠ %802C (C), if 8 is compromised by an adversary. We model %802C (C) as the

realizations of a random variable %8, that denotes power consumption from the 8-th meter.

The NaN gateway piggybacks data from each smart meter and sends it to the utility via a

Wide Area Network (WaN) Gateway that collects data from multiple such NaN gateways.

Occasionally, there is another network hierarchy known as the Field Area Network (FAN)

gateway which connects NaN and WaN and may host edge computing services. Both FaN

and WaN may host the security monitoring mechanisms. Deploying security mechanism at

the FaN is a decentralized implementation, while deployments at the WaN is a centralized

implementation. Our framework works regardless of the implementation. The current
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evaluation proposed mechanism assumes a decentralized implementation given the size of

the microgrid datasets. Moreover, [64] has observed the benefits of decentralized security

implementations over centralized ones.

(a) (b)

Figure 4.1. Power Consumption Distribution: (a) All Houses (b) Mixture

4.2.2. Data Set Characterization and Transformations. To characterize the dis-

tribution of the random variable %8 from the 8-th smart meter, we conducted preliminary

investigations on real power consumption data sets with 800 [62] (Texas Dataset) and 5000

meters [61] (Irish Dataset) collected on an hourly basis. The Texas dataset contains data

across the years 2014, 2015 and 2016. Throughout the paper, data from 2014 and 2015

are used as the historical training set, while 2016 serves as a testing set. The Irish dataset

contains approximately 535 days of data from years 2009-2010, that we use to prove the

generality of our results.

Each home consists of one smart meter in the datasets. We observed that for each

meter, the power consumption can be approximated as a log normal distribution. We also

observed that all such log normal distributions are clustered close to each other; that is, the

variance between them is not arbitrarily large. Figure 4.1(a) summarizes the results from

all the houses in the Texas dataset. Thanks to this observation, we can approximate the
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aggregate of the individual log normals using amixture distribution, which is also lognormal

as evident from Figure 4.1(b). Let %<8G denote the approximate lognormal mixture of all

%8.

Next we transform all %8 using a Box-Cox transformation technique to obtain an

approximate normally distributed r.v. denoted as %̂8. Let %̂<8G denote the mixture of all

the %̂8. Results of ˆ%<8G , for different months is depicted in Figure 4.2(a). The box-cox

transformation serves a dual purpose. First, it maps the data points to a lower portion

real axis. Some interesting statistical properties of proposed Pythagorean Mean based

invariants are more prominent in this lower-dimensional real axis which increases the

relative sensitivity of Harmonic Mean to Arithmetic mean differences and their ratios

(used for detecting anomaly) under false data injections. Below, we describe the box-cox

transformation technique and how we apply it in our context.

4.2.2.1. Box-cox transformation. The transformation of non-normal data into ap-

proximate normal distribution can be achieved using the following method. Given any set

of data-points J = {� (1) , · · · , � (:) , · · · , � (=)}, where = denotes the total number of data

points inJ, the box cox transformation ofJ is given by d̂ = {3 (1) (_), · · · , 3 (:) (_), · · · , 3 (=) (_)}:

3 (:) (_) =

(� (:) )_−1

_
if _ ≠ 0;

;=(� (:)) if _ = 0
(4.1)

where _ is an appropriate transformation parameter chosen from a possible set _∗ ⊆ R,

such that

_ =_∈R 5 (J, _∗)

where 5 (J, _∗) is the logarithm of the likelihood function such that 3̄ (_) =
∑=
8=1 3

(:) (_)
=

is

the arithmetic mean of the transformed data.

5 (�, _) = −=
2
;=

[
=∑
8=1

[3 (:) (_) − 3̄ (_)]2
=

]
+ (_ − 1)

=∑
8=1

;=(3 (:)) (4.2)
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4.2.2.2. Applying transformation to the datasets. The data from each smart me-

ter 8 (analogous to �) is transformed onto the box cox transformed scale by using the

above procedure. Thereafter, we build the time series of the whole dataset in the box cox

transformed scale as:

?̂(C) = { ?̂1(C), · · · , ?̂8 (C), · · · , ?̂# (C)}

where ?̂(C) denotes the reported time series over all smart meters 8 ∈ {1, #} at each time

slot. The appropriate _ is learned from the historical training set (2014, 2015), and the

same is applied to the testing set (2016) and Irish Dataset (2010). To prove the generality

of this method, we repeated the experiments for the Irish data set [12], and reported similar

results which are included in the preliminary version of our work [33]. The distribution for

Irish dataset after box-cox transformation After the transformation, 67% and 68% of data

points fall within the first standard deviation for the Texas and Irish data sets respectively.

However, the resultant distributions as a whole are not symmetric about the mean and 64%

and 69% of the data are lesser than the mean and 36% and 31% of the data are greater than

of the mean. This asymmetry is another factor that affects the observations in the anomaly

detection phase.
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Figure 4.2. After BoxCox: (a) Monthly Texas (b) Yearly Irish
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The proposed framework has three phases: (a) Anomaly-based Security Event

Detection (b) Attack Context Embedded Trust Scoring Model. The anomaly detection

phase indicates the nature of the security event in terms of the information such as the

presence, type, strategy, and strength of the concerned data falsification attack. Such

information extracted from the security event detection aids in the calculation of certain

attack response metrics such as an unbiased robust mean, a median absolute deviation, and

an attack probability time ratio by the attack context generation phase. Such attack response

metrics are supplied to the trust scoringmodel phase that calculates a linearly separable score

for each meter and uses it to identify the compromised meters launching data falsification

attacks. The embedding of the attack context based response metrics improve the accuracy

of compromised meter classification and the classification convergence times regardless of

the attack types, margins, and strategies inflicted.

The anomaly detection phase is further divided into two parts: (i) coarse grained

anomaly detection for attacks for all strategies except on-off and omission strategies; (ii) fine

grained anomaly detection for on-off and omission strategies. Note that, the coarse and fine

grained anomaly detectors run simultaneously in the framework since any attack strategy

is possible in reality. While both anomaly detection variants help to calculate the robust

mean and median absolute deviation, the attack probability time ratio is relevant only for

the fine grained anomaly detector. The trust model is further divided into three parts: (a)

estimating parameters of true proximity distributions (b) estimating parameters of observed

proximity distribution with appropriate attack context embedding (c) The Kullback-Leibler

Divergence calculation.

4.3. ANOMALY DETECTION MODEL

In this section, we propose the coarse grained and fine grained anomaly based secu-

rity event detection scheme. The proposed event detection scheme leverage the properties

of how different data falsification types change the Pythagorean Means (such as Harmonic,
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Geometric, Arithmetic Means) of an attacked time series. We propose an invariant for both

coarse and fine grained anomaly detection schemes, that is stable under no attacks. The

evidence of invariant stability is proved through two real datasets gathered from 200 from a

solar village in Texas, USA [62], and 5000 smart meters in Dublin, Ireland. Then, we show

how these invariants exhibit visibly evident changes under various attacks, which forms the

premise for inferring the presence of attack, type of data falsification, and the strategy used

by the adversary that collectively reconstructs the security event. Based on the nature of the

security event, an attack context is generated (in the form of robust mean, median absolute

deviation, attack probability time ratio). The attack context information is forwarded to the

trust based scoring model which enables accurate identification of the compromised smart

meters.

First, we propose the detection metric (or invariant). Second, we explain the reason-

ing behind the design of the proposed invariant. Third, we establish the normal range of the

under no attacks. Fourth, we propose the detection criterion to detect the occurrence of an

orchestrated attack that needs a consensus (location and scale) correction. Fifth, we show

how the attack type could be determined given the incidence of attack. Finally, we show

how the knowledge of the incidence of attack and its corresponding type is used to estimate

an approximate robust mean and median absolute deviation (collectively called as robust

consensus measures). Information on the robust consensus measures is supplied to the

entropy based trust model for improved classification that maximizes detection sensitivity

for a wide range of X0E6 and d<0; values while minimizing the incidence of false alarms.

4.3.1. Pythagorean Means. The various Pythagorean means (arithmetic, geomet-

ric and harmonic means) in a particular time slot C is given by:

�" (C) =
∑#
8=1 ?̂

8 (C)
#

, �" (C) =
( #∏
8=1

?̂8 (C)
) 1
#

, �" (C) = #∑#
8=1

1
?̂8 (C)
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The average of all these hourly means �" (C), �" (C) and �" (C) over a particular

day (C ∈ [1, 24]) is represented by �" ()), �" ()), and �" ()) respectively where

) ∈ [1, 365]. For example, �" ()) = ∑24
C=1 �" (C)/24) and so on. Due to the well known

Pythagorean mean inequality, �" ()) ≤ �" ()) ≤ �" ()) holds.

4.3.2. Proposed Coarse Grained Invariant (�� ())). From our statistical studies

over two big datasets, we discovered that the time series of the absolute difference between

average daily harmonic and arithmetic mean power consumption is an effective invariant

across datasets. Theoretical reasoning behind the stability of the harmonic mean and arith-

metic combination has been extensively discussed and presented in our previous work [1].

Formally, the coarse grained invariant is quantified by �� ()) and is defined as:

�� ()) =
��� �" ()) − �" ())

��� (4.3)

Eqn. 4.3, is designed as an anomaly detection metric for two main advantages:

First, the time series of �� ()) is a highly stable invariant of the aggregate power con-

sumption, compared to other parametric and non-parametric measures that are functions

of the instantaneous or historical arithmetic mean power consumption as proved in our

previous work [1]. Furthermore, our previous work in the context of smart transportation

systems [65, 66] showed that this observation of stationarity in harmonic and arithmetic

mean generalizes across application domains under careful spatial and temporal consider-

ations. High invariance over time or a given context is one of the desired properties of

anomaly detectors [67].

Figure 4.3(a) shows the instantaneous values of �� ()) for two different years (2014

and 2015). It can be verified that under no attacks, the average value of �� ()) is about 0.49

and the values are relatively stable over time across both years. Similarly, Figure 4.3(b),

shows the time series of �� ()) for the portion of the Irish dataset that has a historical

overlap between two years 2009-2010. The �� ()) of the Irish dataset is stable over history,

since AD(T) on the T-th day is one year is not arbitrarily different from the AD(T) of
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the corresponding T-th day in the previous year. Both Figures 4.3(a) and 4.3(b) is in

complete contrast to the Figure 4.4 that shows the average arithmetic mean �" ()) for the

Texas dataset, can be seen as neither stable over time or over history. As it is well known

that anomaly detection metrics ideally need high invariance under normal operations, we,

therefore, conclude that �� ()) a better invariant compared to any derivative of the popular

arithmetic mean and standard deviation. Additionally, since the values are not arbitrarily

different, the variance in the �� ()) samples is also lesser compared to the variance in

�" ()) samples.

(a)

0 20 40 60 80 100 120 140 160

Time (Days)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
A

D
 =

 |
 H

M
 -

 A
M

 |

 2009

 2010

(b)
Figure 4.3. Time Series of proposed �� ()): (a) Texas Dataset (b) Irish Dataset

Figure 4.4. Unstable �" ()) for Texas Dataset

4.3.3. Summary of Security Properties of Proposed �� ()). The second advan-

tage is that harmonic, geometric and arithmeticmean possesses certain specialmathematical

properties that produce unique changes in the time series of �� ()), whenever data falsifi-

cation occurs from a subset of data sources, that otherwise produced a stationary �� ()).
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Figure 4.5. �� ()) deviation under attacks (a) Texas Dataset (b) Irish Dataset

While harmonicmean and geometric mean is a strictly Schur-Concave function [68],

the arithmetic mean is both Schur Concave and a Schur Convex function of its arguments

(the numbers involved in the calculation of the means). Such a difference in the strictness

of Schur-Concavity property produces six unique novel properties in the context of data

falsification that we had identified. The direction of deviation depends on the skewness in

the datasets, but the fact there will be deviation is generic and independent of the datasets.

These six properties are divided into two-sub groups based on the direction of change in the

�� ()). The direction of change in �� ()) is dependent on whether the X0E6 is greater or

lesser than a certain threshold Γ, given a particular d<0; , attack type, and the skewness in

the data distribution. The theoretical and experimental proof of the properties has been es-

tablished in our earlier work [1]. For the sake of completeness, we now provide a summary

of these properties in harmonic and arithmetic means, that cause the deviation in �� ())

under attacks.

A) Case 1: For all attacks with X0E6 > Γ, the following hold true:

Property 1: Under additive attacks, the harmonic mean grows slower compared to

the arithmetic mean, thus �� ()) will increase.
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Property 2: Under deductive attacks, the harmonic mean decays faster compared to

the arithmetic mean decay rate, thus �� ()) will increase.

Property 3: Given the same X0E6 and the same set of arguments, the decay in

harmonic mean is larger for deductive attacks compared to growth in harmonic mean

for additive attacks. Therefore, in a camouflage attack with the same X0E6, the resultant

harmonic mean will be lesser than the original harmonic mean, while the arithmetic mean

will not change. Thus �� ()) will increase.

It is easy to conclude that all the above three properties will cause the �� ()) to

increase after attacks compared to before attacks because the gap between �" and �"

widens, so does its absolute value represented by �� ()). This is experimentally verified

in Figure 4.5(a), where attack injected after the 250-th day shows a sharp increase in the

�� ()) for various attack types.

B) Case 2: For all attacks with X0E6 < Γ, the above three properties are reversed and

the following hold true:

Property 4: Additive attacks will show larger growth in harmonic mean compared

to arithmetic mean growth, thus �� ()) will experience a decrease.

Property 5: Deductive attacks will show smaller decay compared to arithmetic mean

decay, thus �� ()) will experience a decrease.

Property 6: �� ()) will decrease if actual number of data points attacked with

additive are smaller than the actual mean. This is typically true for power consumption

datasets that are right skewed, hence the mean is shifted towards the right tail of the

distribution. If such data is attacked, on average more number of datapoints being modified

will be smaller than the actual arithmetic mean.

It is easy to conclude that properties 4-6 will cause the �� ()) to decrease after

attacks compared to before attacks because the gap between �" and �" narrows, so does

its absolute value represented by �� ()). This is experimentally verified in Figure 4.5(b),

where attack injected after the 100-th day shows a decrease in the �� ()).
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Approximation of crossover Γ: For directional switching of the proposed �� ()),

the approximate bounds on the average value of Γ and its details have been published in our

earlier work [1]. The closed form of Γ is not possible due to non-existence of the closed

form. However, approximation of the lower and upper bounds are given by the following

The approximate (average case) lower bounds are: Γ−(A;>F) = Γ+(;;>F) =

Γ;>F =
f

"
+ f
√
"

√
# − "
# − 1

+ f (4.4)

where + and − superscripts denote additive and deductive manipulation and ; and A denote

whether the bias points are on the left or right of the actual mean. The approximate upper

bounds are: Γ+(;ℎ86ℎ) = Γ−(Aℎ86ℎ) =

Γℎ86ℎ = <0G(f2,
2f
"
+ f
√
"

√
# − "
# − 1

+ 2f) (4.5)

4.3.4. Identifying Normal Range of �� ()). Let the standard deviation of the

�� ()) samples in the training set be denoted as f�� ()) . Given that the �� ()) metric

is stable over history as evident from earlier results, the normal range can be a residual

margin around the historical values. The margins can be a parameterized by a scalar factor

W ∈ (0, 3] of the standard deviation of the �� ()) samples, such that the upper threshold

for �� ()) at the )-th window in the testing set i given by:

��C4BC
<0G ()) = ��ℎ8BC ()) + Wf�� ())

and the corresponding lower threshold is:

��C4BC
<8= ()) = ��ℎ8BC ()) − Wf�� ())

Please note that, it is possible that smaller X0E6 (stealthy) or smaller d<0; values (isolated or

small scale adversaries) will not create enough deviation for the �� ()) to fall outside the

��=>A< ∈ [��C4BC
<8=
, ��C4BC

<0G]] range. However, such smaller attacks will also not drastically

affect the consensus measures (mean and standard deviation). As mentioned earlier, the one
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of the purpose of the anomaly detection phase in our framework is to provide an unbiased

instantaneous mean and median absolute deviation to the trust model across either a high

d<0; or X0E6 values. Therefore, successful detection of incidence and type of attack, is only

required when attacks are strong enough to influence the consensus significantly. To this

end, the simple definition of ��=>A< ∈ [��C4BC
<8=
, ��C4BC

<0G]] is sufficient. If attacks are not

detected, however, at the same time they do not affect the consensus in a significant way. In

such cases, the trust scoring model proposed later will be still successful in detecting the

compromised meters regardless.

4.3.5. Coarse Grained Detection for Organized Data Falsification. From Fig-

ure 4.5(a), it is easy to conclude that for all attack types, the ��>1B is larger than the ��=>A<

learned from the training phase. The ��=>A< act as a safe margin for the invariant, and

anything outside of it is inferred as an orchestrated attack that needs a location and scale

correction as a response. As long as the attack continues the �� ()) remains higher than

the normal values.

��>1B ()) :


∈ ��=>A< No Organized Falsification ;

> ��=>A< Organized Falsification Occurred;
(4.6)

4.3.6. Determining the Type of Data Falsification Attack. From the above, we

conclude that an authentic change in the observed distribution may cause the mean con-

sumption to increase or decrease but ��>1B remains the same as compared to the historical

range of values ��=>A< = [��<8=, ��<0G]. An additive attack causes both HM and AM

of consumption to increase but also causes ��>1B to increase compared to its normal range.

This way a legitimate versus a malicious increase in the data can be distinguished. A de-

ductive attack causes the HM and AM of mean consumption to decrease and causes ��>1B

to increase from the historical range. Similarly, camouflage and conflict attacks do not have

much change in the AM of the consumption but triggers a large increase in the ��>1B ()).
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In this way, it is possible to infer which type of data falsification has been launched. A

summary of the above discussion to determine the presence and type of attack is given in

Table 4.1.

Table 4.1. Concluding Security Events
AD AM HM GM Conclusion

Increased Increased Increased Increased Additive
Increased Decreased Decreased Decreased Deductive
Increased Same Decreased Decreased Camouflage
Decreased Increased Increased Increased Additive Low
Increased Any Any Any Conflict
Same Don’t Care Don’t Care Don’t Care No Attack

4.4. ATTACK CONTEXT RESPONSE METRICS

Given that an attack has been inferred that bias the instantaneous (hourly) consensus

measures, we need a consensus correction scheme. The knowledge of the attack type could

be leveraged to unbias the consensus measures. This is because, the manner and extent to

which different instantaneousmeans such as, �" (C), �" (C) and �" (C) and corresponding

standard deviations get biased by different attack types, is unique (from Property 1,2,3 and

their corollary). Alternatively, one may be tempted to use the historical values of mean

and standard deviation on the corresponding hours of the )-th day in the previous years.

However, as already shown in Figure 4.4, the mean values on the same days on successive

years vary greatly and hence historical values are not reliable. Therefore, it is required

that for a successful statistical detection, a robust mean (location consensus) and a robust

measure of dispersion is calculated.

4.4.1. Estimation of Robust Mean as a Response. For the calculation of robust

mean, we need to reconstruct the actual mean from the observed mean using knowledge

of how each attack type changes these means. Additionally, the extent of change triggered

in the �� ()) metric also depends on X0E6 and/or d<0; . Hence, an adjusted robust mean

helps to estimate an approximate value closer to the original mean. Note that, the highest

possible X0E6 is lesser in deductive attacks than additive ones because the feasible margin

of deductive false data is bounded by zero. As the margins of false data or compromised
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fraction increases, the observed consensus gets more and more biased. To prevent this, we

ought to have a consensus correction step. Otherwise statistics based trust models will not

be able to identify the compromised meters.

From the statistical observations, we see that the �" (C) is more proximate to the

actual AM than the observed �" (C), under the effect of additive attacks, due to a slower

increase inHMas opposed toAM.However, the�" (C) itself is not a robustmean consensus,

if either X0E6 or d<0; is large. Therefore, we propose to use `' (C) = �" (C) − �� (C) as

the estimated robust mean aggregate under additive attacks, which is closer to the original

instantaneous arithmetic mean. Therefore, we deduct the �� (C) since it is the index of

the extra deviation caused by the attacks. As an example, in Table 4.3, for additive attack

�" − �� = 7.92 − 0.76 = 7.16, which is very close the actual AM value of 7.053.

In contrast, for deductive attacks, due to �" ≤ �" ≤ �" property, the �" (C) is

even lesser than the already biased �" (C). But, �" (C) + �� (C) is more robust than AM

for deductive attacks, and results show that it is a good approximation to the actual mean.

From the example in Table 4.3, it can be verified that for deductive attack, the robust mean

`' = 6.29 + 0.79 = 7.08 is closer to the actual mean 7.05. For camouflage attacks, AM is

the most robust and hence `' is set as the AM. For conflict attacks, �" is an intermediate

robust choice as it shows relative stability to both partially positive and negative outliers.

The recommended mean correction for each attack type is tabulated in Table 4.2.

Table 4.2. Robust Mean Responses

Security Incident Choice of `' (C)
Additive HM-AD
Deductive GM+AD
Camouflage AM
Conflict GM
No Attack AM

Table 4.3. Attacks on Various Means

Parameter Actual Add Deduct Camo Conf
AM 7.053 8.68 6.67 7.04 7.26
GM 6.860 8.35 6.29 6.65 6.89
HM 6.680 7.92 5.88 6.02 6.11
�� 0.373 0.76 0.79 1.02 1.15

4.4.2. Estimating a Median Absolute Deviation as a Response. If the presence

of an attack is discovered from the anomaly detector, then we know that the instantaneous

standard deviation of the observed data is biased. The f(C) in the testing set under attacks
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will increase regardless of the type of data falsification attack (except for low additive

attacks). Therefore, a directional correction of the standard deviation is not possible like

`' (C) based on the attack types. While standard deviation is a very popular measure of

dispersion (scale parameter) to build proximity distributions, we argue the use of a less

common statistical measure of dispersion known as ‘Median Absolute Deviation’ (MAD),

which is defined as follows:

For power consumption data at any time C, ?̂(C) = {?1(C), · · · , ?8 (C), · · · , ?# (C)},

the data’s median is defined as ?̃(C) = "4380=( ?̂(C)). The median absolute deviation is

defined as: "�� (C) = "4380=( |?8 (C) − ?̃(C) |).

The MAD is a much more robust measure of dispersion (or more robust scale

parameter) compared to the traditional standard deviation because MAD is more robust

and remains less affected due to outliers (reducing false alarms under no attacks) and

extreme values (under stronger margin attacks) compared to standard deviation. This is

because measures such as standard deviation are derived from variance which uses squares

of the difference between those outlying datapoints and the true mean. Squares produce

very high values when datapoints are greater than 1, thus causing an unwarranted increase

in the standard deviation. This is the cause of increased missed detection under attacks

and increased false alarms under no attacks. Therefore, we depart from the traditional

use standard deviation for characterizing the probability distribution of the proximity of

individual smart meters data with the consensus.

The measured "�� (C) of the historical time slots, before the inference of orches-

trated attack is therefore embedded as the robust measure of dispersion or the robust scale

parameter in the trust model in the event of an attack indication from the anomaly detector.

As shown later, the mean correction, robust scale parameter as median absolute deviation

and attack probability time ratio embedding facilitates quick detection, this approximation

works well.
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Both robust mean and median absolute deviation bias correction improves results

significantly compared to the preliminary version of this work in [33]. The failure points

for higher X0E6 values completely disappear. While, the above adjustment of mean location

parameter and median absolute deviation may not always be perfectly close to the actual

mean and median deviation, our results show that classification performance is much better

under these approximate bias corrections rather than just using the exact harmonic mean

and standard deviation as the location and scale parameters as done in our preliminary

work [33].

4.5. TRUST SCORING MODEL

We pursue a light weight learning approach for identifying compromised smart me-

ters that launch data falsification. The prior historical data set is considered as the authentic

distribution of power consumption. From the historical data set, a true proximity distribu-

tion denoted as ^8 for each smart meter is generated based on its reported consumption’s

proximity to the arithmetic mean of the authentic data set. Since the authentic historical

data set is attack-free, the measure of consensus is arithmetic mean (AM), denoted by `(C)

and the standard deviation is f(C).

In the observed data set under test, we define `' (C) and "��' (C) as the robust

mean and median absolute deviation of the observed distribution based on the inferred

security incident. In the testing set, a current proximity distribution, denoted by _ 8, for

each smart meter 8 is calculated based on the proximity of its reported consumption data

?8A4? (C) to `' (C). In the absence of a detected security incident, the robust mean and median

absolute deviation equals `(C) and f(C) (like in the historical set). However, when an attack

is present, the `' (C) is set according to model based on the inflicted attack type and strategy.

This way the attack context is embedded via the appropriate robust mean as a response to

the detected attack context. Similarly, the "��' (C) is set to the historical median absolute

deviation if there is an indication of an attack.
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If the true distribution is very different from the current distribution, it is an indication

that this meter’s data is unusually different and this difference in the probability space is

measured as Kullback-Leibler divergence (also called KL Distance) which measures the

relative entropy between the two distributions. The higher the divergence between the

two distributions, the more the indication of anomalous behavior. The trust of a meter is

calculated at the end of the frame � (in days). The total number of observations over the

time frame is given by )(. For the relative entropy trust model, we had time frames of

length � = 10 days and � = 30 days. Therefore, the number of time slots monitored in the

frame of observation is )( = � ∗ 24.

4.5.1. True and Current Proximity Distributions as Meter Evidence. We intro-

duce a binary random variable - 8 = {0, 1} for each meter 8, for 8 = 1, . . . , # , which acts

as a historical reference distribution. If the historical data reported ?̂8A4? (C) at time C from

meter 8 falls within one standard deviation of `(C), then - 8 = 1, else 0. Formally,

- 8 (C) =


1 if ?̂8A4? (C) ∈ {`(C) ± f(C)};

0 otherwise
(4.7)

where - 8 (C) follows a Bernoulli distribution with parameter A, that is the probability of

- 8 = 1 is A, and the probability of - 8 = 0 is 1 − A .

Suppose, ((-) be the variable that denotes the number of successes, that is ((- 8) =∑)(
C=1 -

8 (C). Let ((-) = : be the observed value of the variable for any meter 8, such that

number of success in the true distribution is ((- 8) = ∑)(
C=1 -

8 (C) = : .

Similarly, we have a binary random variable . 8 for the current distribution of each

smart meter, such that the probability of . = 1 is @ and the probability of . = 0 is 1 − @. In

this case, the number of successes is denoted by a variable '(. 8) = ∑)(
C=1.

8 (C). Let '(. ) = 9

denote the number of successes for any such meter 8 such that number of successes in the

current distribution is '(. 8) = ∑)(
C=1.

8 (C) = 9 . If an attack has been detected through the

anomaly detection phase, then the robust mean `' (C) and the robust standard deviation
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f' (C) is calculated, and the . 8 is calculated based on them. In this way attack context is

embedded such that . 8 remains unbiased from the effects of orchestrated attacks. However,

in the absence of any detected attacks, `' (C) = `(C). Formally, the current proximity

distribution is given by:

. 8 (C) =


1 if ?8A4? (C) ∈ {`' (C) ± "��' (C)};

0 otherwise
(4.8)

Intuitively, in absence of attacks, the distribution of. should be very close to - . On

the contrary, the two distributions should show a difference when an attack is present.

4.5.2. Estimating Parameters of True and Current Proximity Distributions.

Next, we need to estimate the parameters A and @ for corresponding distributions - 8 and

. 8. An obvious estimate is the minimum variance unbiased estimate (frequentist), which

is the sum of all successes divided by the total number of observations )(. However, this

approach may cause A = 0, @ = 0, or A = 1, @ = 1, for which the relative entropy (see

Eqn. 4.15) is undefined. Moreover, frequentist probability unbiased estimator makes sense

only if there is a large set of observations. However, since our trust model works on a shorter

horizon of time (typically on a few days or monthly basis), such approaches are improper.

Hence, we need to accommodate a Bayesian approach for estimation of A and @, so it is

theoretically sound and mathematically tractable. Since the following is true for all meter’s

8, we drop the suffix 8 from the notational simplicity.

First, we estimate the parameter of A. We prove that the estimated probability

A = :+1
)(+2 , where : is the realization of the total number of successes observed. Thus

((-) = : follows a binomial distribution with parameter A.

Hence, the probability of observing exactly : successes out )( times, given the

probability of success of each trial was A, is given by,
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%(((-) = : |A) =
(
)(

:

)
A : (1 − A))(−: (4.9)

The Bayesian posterior estimate of A, based on prior )( observations by Bayes theorem, is

given as:

%(- ()( + 1) = 1|((-) = :) = %(- ()( + 1)), ((-) = :)
%(((-) = :) (4.10)

The denominator is the marginal probability of %(((-) = :) marginalized over all

possible outcomes of A. Hence,

%(((-)) =
1∫

0

(
)(

:

)
A : (1 − A))(−: 5 (A)3A (4.11)

Assuming conditional independence between ((-), A and -8 (C + 1) of the prior and

likelihood can be solved as:

%(- ()( + 1)), ((-) = :) ⇒
=

1∫
0

%(- ()( + 1) = 1|A)%(((-) = : |A)3A (4.12)

Since there is no prior information on A, we assume a non-informative prior such

that 5 (A) = 1, for Eqn. (4.11) and Eqn. (4.12). Plugging in Eqn. (4.11) and Eqn. (4.12) into

Eqn. (4.10), it can be shown that:

%(- ()( + 1) = 1|((-) = :) = : + 1
)( + 2

= A (4.13)

Similarly,

@ =
9 + 1
)( + 2

(4.14)

It can be verified that A, @ ≠ 0, 1. Hence, the logarithms of distributions - 8 and

. 8 for the i-th smart meter, (described in terms of probability parameters A (8) = : (8)+1
)(+2 and

@ (8) = 9 (8)+1
)(+2 ), in Eqn (4.15) is always defined and exist even as :

(8) = 0 or 9 (8) = 0.
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4.5.3. Kullback-LeiblerDivergence based Scoring andClassification. Weadopt

the Kullback Leibler divergence to measure the difference between the historical distribu-

tion - 8 and the observed distribution . 8 for a smart meter. Note that - 8 and . 8 are not

consumption patterns but a trend on proximity to the middle quartile. Subsequently, the KL

distance is transformed into a trust value between 0 and 1 by passing it through an inverse

square root function that produces linearly separable trust values between compromised and

honest meters via a single threshold.

The KL distance between two distributions X and Y for a smart meter 8, is given by:

�8 (- 8 | |. 8) = (1 − A (8)) × ;=
( 1 − A (8)

1 − @ (8)
)
+ A (8) × ;=

( A (8)
@ (8)

)
(4.15)

The �8 (- 8 | |. 8) is a positive real value that indicates the divergence between the observed

and the historical proximity distribution. Hence, the smaller the value of �8 (- 8 | |. 8) the

better it is in terms of being trustworthy and the larger it becomes the less trustworthy it

becomes since a larger divergence indicates a mismatch between the true and observed

proximity distributions. Given this, the final trust value &8 of a smart meter 8, is given by:

&8 =
1

1 +
√
�8 (- 8 | |. 8)

0 ≤ &8 ≤ 1 (4.16)

The rationale of Eqn. 4.16, is a scaling function that scales the lowest value in �8 (- 8 | |. 8)

a trust score that is closest to 1 while the highest value in �8 (- 8 | |. 8) gets the exponentially

lower trust score with increasing �8 (- 8 | |. 8). The exponential nature ensures a risk aversion

towards progressively increasing distance in the probability space.

4.5.4. Limitation of Coarse Grained Anomaly Detection based Trust Model.

Since the coarse grained anomaly detection has an observation granularity of 24 hours, it

is not suitable for detection of opportunistic omission and on-off strategies that are discon-
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tinuous and sparsely distributed over the time domain. Therefore, an anomaly monitoring

metric with a daily time granularity such as �� ()) will not be sensitive and fail to provide

the early indication of the attack’s presence that is necessary to embed in the attack context.

Apart from failing to identify the incidence, type, and robust consensus, there will

be another hurdle for the subsequent pipelined trust model. Since in most of the time slots,

there are no attacks from the meters, the evidence against each meter will have reduced

sensitivity when observed over a time frame. This is because the probabilities (modeled

by evidence) in information theoretic measures (such as KL Divergence) are steady state

long term measures. When observed over the time frame, the detection of meters will be

delayed due to a lesser change in evidence counts. However, if the trust model is made

aware of the incidence of such non-continuous strategies and the approximate start and stop

times of such attacks, the evidence against meters collected on those specific slots may be

weighted as more important (while others as less important). This would facilitate quicker

classification of such meters while running the trust scoring model through information

theoretic measures. This is achieved by calculating the fraction of the time frame that a

meter was under such attack strategies (defined later as attack probability time ratio). This

motivates the need for a fine grained anomaly detection phase that runs in parallel with

coarse grained anomaly detection metric and associated attack context embedding.

4.6. FORMAL SECURITY ANALYSIS

We do the theoretical analysis in terms of attack parameters to formally specify the

impact of attacks on the effectiveness of the defense method. Specifically, we assess the

security level of our mechanism by taking into account what an intelligent adversary might

do to bypass the invariant based anomaly detection and the compromised meter detection

trust model. Here, we also show closed form theoretical expressions of our observations

that will help generalize our framework.
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4.6.1. Theoretical Analysis of Deviation in �� ()) Under Attacks. As a part

of the theoretical security analysis of the anomaly detection phase, we provide the closed

form approximate estimated deviation in the anomaly detection metric �� ()). This can be

estimated by calculating the expected harmonic mean and arithmetic mean, given an attack

type, d<0; and X0E6. Below we provide an estimation of the harmonic mean followed by

the arithmetic mean. Finally, we show how closely the theoretical result from the closed

form expression matches the experimental result to prove accuracy of analysis. We also

show that change in �� ()) observed experimentally also matches the theoretical analysis.

Because our detector uses the values in a box-cox transformation domain, we have carefully

estimated it for real data values and found their box cox equivalents on the transformed

scale.

#>A (�"10 (C)) =
∑#
8=1 %

8
A4? (C)
#

; #>A (�"10 ()) =
∑24
C=1 #>A (�"10 (C))

24
(4.17)

Similarly, #>A (�"10 ())) and #>A (�"10 ())) can be calculated. For brevity, we

drop the ) from the following analysis. Since the closed form expression of the harmonic

mean does not exist, we first estimate the new geometric mean #>A (�"4B00) after the

attack. Then, we harness the following Pythagorean equation that calculates the estimated

harmonic mean from the estimated geometric and arithmetic means:

#>A (�"4B00) ≈ (#>A (�"
4B00))2

#>A (�"4B00) (4.18)

where #>A (�"4B00) and #>A (�"4B00) denote the estimated HM and AM values after an

attack.

1) Estimation of the Geometric Mean after attack: Let #>A (�"10) denote the

geometric mean of a power consumption data before attack in the original data domain and

is defined by:
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#>A (�"10) =
( #∏
8=1

%8A4?

) 1
#

=
#
√
(%1 × %2 · · · %" × %"+1 · · · × %# ) (4.19)

Similarly, let the estimated geometric mean after additive attack from d<0; = "/#

meter and X0E6 in the original data domain be denoted as #>A (�"4B00) such that:

#>A (�"4B00) = #

√
(%1 + X0E6) × (%2 + X0E6) · · · × (%" + X0E6) × (%"+1) × · · · × (%# )

(4.20)

Now we need to convert each %8 + X0E6 term into a multiplier of %8. Let the ratio

between the X0E6 and the actual data from the 8 − Cℎ meter before attack %8 be given by a

dummy variable:

U8 =
X0E6

%8
(4.21)

Since %8 is a completely random physical quantity, we will need to characterize the U

variable as a property that is shared across datapoints under an attack.

From the studies, we know that for the power consumption distribution, most of the

data points are within the first standard deviations from the mean (say %). For the Irish and

Texas dataset, more percentage of datapoints (70%) are lesser than the mean % compared to

percentage of data points greater than the mean (30%) on average. While the 30% values

are lesser and greater than the mean cancel the effect of each other on the estimation of %8,

the remaining fraction of samples represents an imbalance factor (say ∇ = 0.40).

U =
X0E6

% − ∇f

#>A (�"4B00) ≈ #
√
(%1 + U.%1) × (%2 + U.%2) · · · × (%" + U.%") × (%"+1) × · · · × (%# )
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#>A (�"4B00) ≈ #
√
(1 + U)%1 × (1 + U)%2 · · · × (1 + U)%" × (%"+1) × · · · × (%# )

#>A (�"4B00) ≈ #
√
(1 + U)" × %1 × %2 · · · × %" × (%"+1) × · · · × (%# )

#>A (�"4B00) ≈ #
√
(1 + U)d<0;∗# × %1 × %2 · · · × %d<0;∗= × (%d<0;∗=+1) × · · · × (%# )

#>A (�"4B00) ≈ #
√
(1 + U)d<0;∗# × %1 × %2 · · · × %d<0;∗= × (%d<0;∗#+1) × · · · × (%# )

#>A (�"4B00) ≈ (1 + U)d<0; #
√
%1 × %2 · · · × %" × (%"+1) × · · · × (%# )

From Eqn. 4.19, the current result of #>A (�"4B00) from above can be reduced to

the following:

#>A (�"4B00) ≈ (1 + U)d<0;#>A (�"10)

#>A (�"4B00) ≈
(
1 +

X0E6

% − ∇f

) d<0;
#>A (�"10) (4.22)

Plugging in the real values of f,∇, d<0; , X0E6 and #>A (�"10), we obtain the

estimated theoretical geometric mean after the attack as #>A (�"4B00) = 410, while the

actual measured geometric mean after the attack was recorded as #>A (�"4G?00) = 390.

This indicates that this is a reasonably close approximation. Now the next step is to

calculate #>A (�"4B00) to plug it in Eqn. 4.18 for estimation of the new harmonic mean

#>A (�"4B00).

2) Estimation of AM after attack: Let the #>A (�"4B00) denote the arithmetic mean

attack after attack. For the following estimation, assume the attack to be additive. Similarly,

this method could be used to estimate other attack types. Given the d<0; = "/# is the

fraction of compromised meters and X0E6 is the average falsification margin per meter, then

the estimated attacked arithmetic mean is under additive attack is:

#>A (�"4B00) = #>A (�"10) +
(
d<0; ∗ X0E6

)
(4.23)
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3) Estimation of HM after attack: The Eqn. 4.22 and Eqn. 6.4 can be plugged in the

following:

#>A (�"4B00) ≈ (#>A (�"
4B00))2

#>A (�"4B00) (4.24)

4) Estimation of Box-Cox Equivalents of Means: Let the �>G(#>A (�"10 ()), _)

denote the box cox equivalent of the mean before attack in the normal scale such that:

�>G(#>A (�"10 ()), _) = (#>A (�"
10 ()))_ − 1
_

(4.25)

Similarly, �>G(#>A (�"10 ()), _), and �>G(#>A (�"10 ()), _) are corresponding box-cox

equivalent values of harmonic and arithmetic means before the attack. Similarly, the box-

cox equivalent values of them after attack �>G(#>A (�"4B00), _), �>G(#>A (�"4B00), _),

�>G(#>A (�"4B00), _), can be easily estimated.

5) Final Estimation of �� ()) after attack: Note that the box-cox equivalent of

the arithmetic mean gives a slightly different answer compared to the arithmetic mean

of data in a power transformation scale (the experimental result). Let the difference be

^ = |�>G(#>A (�"4B00), _) −�>G(#>A (�"10), _) |. The estimated arithmetic, geometric,

and harmonic means calculated over box-cox transformed arguments (what our method

actually implements), after the additive attack is given by the following:

�"
4B00

= �"
10+^; �"

4B00
= �>G(#>A (�"4B00); �"

4B00
= �>G(#>A (�"4B00)

(4.26)

For the estimation of arithmetic mean, the estimation of change (^) will result in a closer

approximation compared to direct box-cox calculation for a given d<0; and X0E6. Let be

the value of the �� ()) metric after the attack be ��4B00 ()) = |�"4B00 − �"4B00
|. Thus,

The expected deviation in the �� ()) metric after an attack of d<0; and X0E6 for additive

attacks is given by:
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� (Δ�� ())) = |�"10 − �"10 | − |�"4B00 − �"4B00 | (4.27)

The theoretical deviation in the �� ()) metric for a d<0; = 0.40 and X0E6 = 800W is

0.553. For the same attack the experimental result shows the change of �� ()) to be 0.712.

This indicates a reasonable approximation as well as the positive magnitude of change.

Additionally, the theoretical value shows a increase in the �� ()) which is also seen in the

experimental result.

Table 4.4. Estimation Accuracy of Invariants with Irish Dataset

Parameter Experimental Theoretical
�"

4B00 14.5245 14.257
�"

4B00 11.8113 11.703
��4B00 () ) 2.713 2.554
� (Δ�� () )) +0.712 +0.553

4.6.2. Optimal Evasion X0E6 Against Anomaly Detection Invariants. For an op-

timal evasion of our anomaly detection step, the adversary would want to use the maximum

X0E6, which creates a deviation in the invariants, that is just within the designed safe margin.

In practice, since the adversary does not know the current �� ()) value (since he cannot

possibly control 100%) of the meters, he relies on the historical �� ()), which can be

possibly known the adversary through a database hack. Therefore, the adversary would

ensure that given its attack type, and the fraction of compromised meters, the X0E6, should

be such that the following condition satisfies:

|��4B00 ()) − ��ℎ8BC ()) | < 0.75 ∗ f�� ()) (4.28)

Specifically, expanding the Eqn. 4.26, we get the theoretical expected change in the

statistical invariants as a function of the d<0; and X0E6 (the two key variables apart from the

attack type that changes the in-variants). Thus, the estimated optimal evasion X0E6 can be

found by the adversary solving the following optimization problem:
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X4E0B8>=0E6 = arg max
X0E6

5 (X0E6) (4.29)

s.t. 5 (X0E6) < 0.75 × f�� ())

where 5 (X0E6) = |��4B00 ()) − ��ℎ8BC ()) | = | ( |�"4B00 − �"4B00 |) − ��ℎ8BC ()) |

Note that estimated means �"4B00 and �"
4B00

are given by the following as a

function of the attack:

�"
4B00

= �>G

( ((
1 + X0E6

%−∇f

) d<0;
#>A (�"10)

)2

#>A (�"10) +
(
d<0; ∗ X0E6

) )
(4.30)

�"
4B00

= (�"10 + |�>G
(
#>A (�"10) + (d<0; ∗ X0E6)

)
− �>G

(
#>A (�"10)

)
|) (4.31)

We can see that the above equations are a function of the d<0; and X0E6, which

formally analyses the effect of any attack on the statistical invariants. We have proven the

approximation accuracy of our expression in Table 4.5 by showing how theoretical values

approximate to experimental observations.

Table 4.5. Evasion X0E6: Experiment vs Theory

d<0; Exp. X4E0B8>=0E6 Theo. X4E0B8>=0E6

20 400 380
30 370 360
40 350 330
50 330 320
60 320 300
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Table 4.6. Inferred MAD at Invariant Evasion Points

d<0; Theo. Evasion X0E6 "��4E0B8>= (C) Current Mean
20 380 347 652
30 360 356 684
40 330 352 708
50 320 357 736
60 300 361 756

4.6.3. Formal Estimation of Robust Mean under Attacks. For robust mean

closed formderivation, we just plug in the values of#>A (�"4B00), #>A (�"4B00, #>A (�"4B00)

or their box-cox transformed equivalents, (expressions derived previously) and plug into

the Table 4.2 to find the theoretical value as shown below:

The �>G−1(G) is defined as: �>G−1(G) = (G ∗ _ + 1)1/_ where G is the value in box cox

scale being remapped and _ is the box cox transformation parameter. The �"
4B00

under

camouflage is the same as the observed arithmetic mean, since it balances out the mean by

virtue of its attack type.

`�338C8E4' (C) = �>G−1(�"4B00 − �� ())), `�43D2C8E4' (C) = �>G−1(�"4B00 + �� ()))

(4.32)

`
�0<>D 5 ;064

'
(C) = �>G−1(�"4B00), `

�>= 5 ;82C

'
(C) = �>G−1(�"4B00) (4.33)

where �"
4B00

= �>G

((
1+ X0E6

%−∇f )
d<0;#>A (�"10)

)
, and �"

4B00
= �>G

(
#>A (�"4B00)2
#>A (�"4B00)

)
4.6.4. Condition for Successfully Evading of Meter Detection. Note that, we

already proved that as d<0; increases, our invariant criterion forces the X0E6 to be smaller.

Hence, the attacker cannot unilaterally increase one attack parameter to arbitrarily change
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the median absolute deviation. Therefore, at the theoretical evasion X0E6, we first present,

the current median absolute deviation (under attacks) by varying from the d<0; from 20%

to 60%, as listed in Table 4.6.

The trust score depends on the divergence between proximity distributions -8 and

.8. The adversary has to bypass the invariant based anomaly detection to ensure that the

mean and median absolute deviation correction does not take place. Furthermore, the

adversary has to make sure that the majority of it’s compromised meter readings are within

the observed (biased) mean and the median absolute deviation (MAD) range. However, on

average we say that to bypassing meter detection reliably the following condition needs to

be satisfied for a given d<0; .

X
1H?0BB
0E6 ≤ <8=(X4E0B8>=0E6 , "��4E0B8>= (C))) (4.34)

Let us look at a specific example from Table 4.6. For d<0; = 40%, the X4E0B8>=0E6 is 330 and

the MAD at that evasion X0E6 based attack is 352. The min(330,352) is 330, which is the

theoretical value to bypass the trust model. In our experiments, for X0E6 > 330, the missed

detection rate is lower than 10%, however at when X0E6 < 330, it starts missing meters

and missed detection becomes about 30%. This is also repeated in the Texas dataset in

experimental results, where below 330, the missed detection becomes between 30%-40%

proving correctness.

4.7. SPECIAL CASE STUDY ON FINE GRAINED ANOMALY BASED TRUST
MODEL

Now we propose the customized version of our trust model that can run in parallel

for effective identification under on-off or omission attack strategies. It is important to

note that the fine grained anomaly based detection will produce different responses than
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the coarse grained one, and therefore will invoke an augmented and modified version of

the proposed trust model with novel embeddings of responses produced by the fine grained

anomaly based security event detector.

4.7.1. Fine Grained Anomaly based Security Event Detection. In this subsec-

tion, we will introduce the invariant (metric) for fine grained anomaly detection, justify the

choice of invariant, establish a detection criterion for fine grained attacks, determine attack

type, strategy, start and stop times, and calculate the attack probability time ratio.

4.7.1.1. Proposed invariant. We propose a more fine-grained detection metric

denoted by ��A0C8> (C) that is computed hourly, in contrast to �� ()) that is computed

daily. The ��A0C8> (C) is the ratio of the absolute difference between ‘hourly’ arithmetic and

harmonic means between the previous C − 1 and current time slot C. At any time slot C, the

metric is defined as:

��A0C8> (C) =
�� (C − 1)
�� (C) (4.35)

where �� (C) = |�" (C) − �" (C) |. The time series of the proposed metric ��A0C8> for the

Texas Dataset is shown in Figure 4.6(a).

(a) (b)

Figure 4.6. Texas Data (a) Time Series of ��A0C8> (C) (b) Distribution of ��A0C8> (C)

4.7.1.2. Identifying normal range of ��A0C8> (C). Figure 4.6(b) shows the distri-

bution of the proposed ��A0C8> (C) for the historical training dataset (2014 and 2015). It can

be seen that the distribution of ��A0C8> (C) has a mean value of 0.998 with a standard devi-
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ation of 0.1. Very few sample ��A0C8> (C) values lie beyond the second standard deviation.

Let ��=>A<
A0C8>

∈ [��<8=
A0C8>

, ��<0G
A0C8>
] denote the normal range of this fine grained ��A0C8> (C)

metric.

4.7.1.3. Investigating effect of various attacks on ��A0C8> (C). For deductive at-

tacks, we had mentioned that the decay rate of Harmonic Mean is larger compared to the

decay in Arithmetic mean given the dataset. Therefore,

�" (C) − �" (C − 1) > �" (C) − �" (C − 1)

Solving the above, we get,

�" (C − 1) − �" (C − 1)
�" (C) − �" (C) < 1

=⇒ �� (C − 1)/�� (C) < 1 =⇒ ��A0C8> (C) < 1.

From the above, it is clear that a deductive or omission (which is a virtual deductive attack)

attack when initiated, will cause a sharp drop in the proposed ��A0C8> (C) metric. When the

attack stops, there will be a sharp rise in the ��A0C8> metric, since the harmonic mean has

to increase more than the arithmetic mean to restore the original ratio that is very stable and

��A0C8> (C) → 1. Therefore, the difference between �" (C) − �" (C), will be much lesser

compared to �" (C − 1) − �" (C − 1). Since the denominator decreases when the attack

stops, the ��A0C8> (C), experiences a sharp rise. Experimental verification of this is provided

in Figure 4.7.

Similarly, for additive attacks, harmonic means have a slower growth rate compared

to the arithmetic mean. Therefore,

�" (C) − �" (C − 1) < �" (C) − �" (C − 1)
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Figure 4.7. Omission Attack Example

Table 4.7. Concluding Fine Grained Security Events

ADratio(2c − 1) |FGAT| toe Conclusion

> ��<0G
A0C8>

High Constant Additive ON-OFF

< ��<8=
A0C8>

High Constant Ded/Camo ON-OFF

< ��<8=
A0C8>

High Varying Omission Attack

< ��<8=
A0C8>

Sparse Don’t Care Omission Failure

Solving the above, we get

�" (C − 1) − �" (C − 1)
�" (C) − �" (C) > 1

=⇒ �� (C − 1)/�� (C) > 1 =⇒ ��A0C8> (C) > 1

From the above, it is clear that for additive attacks the ��A0C8> (C)must increase when

attacks start, while for deductive and camouflage attacks the ��A0C8> (C) must decrease.
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4.7.1.4. Detecting incidence of fine grained attacks. The following equation is

similar to the coarse grained logic for confirming presence of opportunistic fine grained

attacks.

��A0C8> (C) :

∈ {��=>A<

A0C8>
(C)} No Attack;

∉ {��=>A<
A0C8>
(C)} Fine Grained Attack

(4.36)

4.7.1.5. Determining fine grained attack types and strategies. To reconstruct

the security events under fine grained attack strategies, we first need to record the sequence

of time slots where the event ��A0C8> (C) ∉ {��=>A<
A0C8>
(C)} occurred over the observed time

duration, into a vector ���) = {C (1), C (2), · · · , C (2), · · · , C (�)}, where 2 ∈ N is the set

of first C natural numbers. The odd and even entries of the set FGAT are represented by

C (22−1) and C (22) respectively and |���) | is the cardinality of this set over the time frame

under observation. Additionally, let the time difference between the pairs of odd entries

and even entries be C>4 = |C (22 − 1) − C (22) |.

There are three important facets to monitor. First, the set of C>4 values help distin-

guish between deductive ON-OFF and omission attacks having similar signatures. Second,

the cardinality of |���) | is important to distinguish between the possibility of omis-

sion attack versus omission failures. Third, whether ��A0C8> (C) corresponding to the odd

entriesC = 22−1 in FGAT are greater than ��<0G
A0C8>

or smaller than ��<8=
A0C8>

, help differentiate

between additive, deductive, and camouflage data falsification types.

If the C>4 is constant for all odd values of 2, then there is an on-off attack. Given

that C>4 is constant, if ��A0C8> (22 − 1) > ��<0G
A0C8>

, it is an additive on-off attack, while

an ��A0C8> (22 − 1) < ��<8=
A0C8>
(C), it is an deductive on-off attack. Therefore, odd entries

��A0C8> (22 − 1) helps to distinguish between additive, deductive or camouflage attacks.

Since attacks are launched and stopped at periodic intervals, the |���) | will not be

singleton or sparse.
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If the set of C>4 = |C (22 − 1) − C (22) | consists of variable values, the |���) | is not

singleton or sparse, and ��A0C8> (22 − 1) < ��<8=
A0C8>
(C), it is an omission attack (deliberate).

On the other hand, if C (22 − 1) − C (22) consists of variable values, |���) | is singleton

or sparse, the ��A0C8> (22 − 1) < ��<8=
A0C8>
(C) is a omission failure due to non-adversarial

reasons.

Themissing data from a subset of houses at any time slot C is perceived as a deductive

attack where actual power consumption values are replaced by null values which are lesser

than actual data. This causes the harmonic mean to decay at a rate greater than compared

to the decay in the arithmetic mean. Therefore, the difference between arithmetic mean and

harmonic mean at time slot C increases compared to the previous time slot (C − 1) with no

data omission. Therefore, the ��A0C8> (C) value between time slots C and C − 1 experiences

a sharp decrease. As long as the degree of omission stays same the ��A0C8> is restored

to normal value. When omission stops there will be another drastic change, where the

harmonic mean will grow faster than the AM, such that the �� (C) decreases compared to

the ��A0C8> (C−1) calculated with missing data. Hence, there is a sharp drop in the proposed

��A0C8>. This can be verified from Figure 4.7.

4.7.2. Estimation of Attack Probability Time Ratio as a Response. Apart from

the robust consensus measures, which are required for fine grained attack strategies, we

also need another additional response that needs to be embedded into the subsequent trust

modeling step. This response is known as the attack probability time ratio.

The attack probability time ratio %0CC02: is an indicator of the fraction of time slots

that the system was under attack over an observed time frame. For example, for an on-off

attack having an ON period of 6 hours of attack in a day, %0CC02: = 1/4. Therefore, the

fraction of time slots with no attack is (1 − %0CC02: ), will be automatically considered as

successes even when this meter is launching data falsification attacks. Therefore, in the

probability space, these meters will not be further apart when there are on-off attacks versus

no attacks. Hence, the time to detection of such meters will be significantly larger. To
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reduce this, we need to keep track of the %0CC02: , and embed this information in the trust

model. Such %0CC02: can be estimated from our designed FGAT vector, by the

%0CC02: =

∑�
2=1 |C (22) − C (22 − 1) |

)(

4.7.3. Trust Scoring Model with Attack Probability Time Ratio Embedding.

Since on-off and omission strategies are discontinuous over time, the number of failures will

not be as high compared to the case of continuous attacks in an observed time frame. This

will produce @ (8) values of compromised meters which are still high and therefore proximate

to the parameter A in the true distribution. Hence, the time to detection convergence of

meters with missing data (omission) or discontinuous falsification of data (on-off) will be

time consuming, due to lack of evident separation in the probability space, which leads to

classification errors as well.

Since the fine grained anomaly detector gives an early indication on the time slots

when such on and off attack happened (from FGAT vector), a lesser weight can be given to

the number of successes observed by weighing it with the fraction of duration the system

is not under attack ((i.e., 1 − %0CC02: )) in the observed frame �. In this manner, the time to

detection of these meters could be improved. Under these opportunistic attack strategies,

which are captured in the fine grained anomaly detector, the Eqn. 4.14 in the trust model is

modified byweight to the number of successes 9 . This weight is (1−%0CC02: ), which prevents

the value of @ to be very high even when the number of OFF periods is large compared to

the ON period of attacks over the observed time frame containing TS windows. Hence, due

to the attack context awareness, the observed distribution @ under evidence of on-off and

omission attacks (from the fine grained detector) for each meter is modified as:

@ (8) =
(1 − %0CC02: ) 9 (8) + 1

)( + 2
(4.37)
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Eqn. 4.37, can be explained by the following: Note that the @ is the probability that

. 8 (C) = 1, meaning the meter 8′B reading is falling within the robust mean and median abso-

lute deviation. However, in an on-off attack, there are off periods, where this compromised

meter’s data is likely to achieve a value of 1. Hence, the probability of @ over a given time

frame )( is not remarkably different from A. Since the probability of @ is specified by the

number of successes 9 , a discounting factor of 1−%0CC02: is required, since these 1−%0CC02:

time was not under attacks was a part of the OFF period. that be counted on as the FGAT

vector shows evidence of orchestrated data falsification on selective ON periods (e.g., when

prices are high/demand is high, etc.,).

The value of @ is lesser compared to a value that contributes the entire observed

9 towards the probability of success. This ensures a larger difference between @ and A in

the probability space, which facilitates quick classification that is apparent even when the

attacker acts honestly in majority of the time slots. The modification by Eqn. 4.37 is termed

as attack probability ratio time embedding that customizes the trust model for better and

quick classification of the compromised meters.

The relative entropy based trust model detect compromised meters only if the X0E6

is greater than the median absolute deviation of the datasets. From the Eqn. 22 and Eqn.,

23, it is clear that if the X0E6 is lesser than the "��, in most time instances, the .8 of

the attacked meters will be within that deviation and therefore be labeled as one instead

of zero more frequently. Thus, there will not be a significant change in the probability

of ?(.8 = 1) = @ in the attacked set. Therefore the deviation between -8 and .8 in the

probability space, will not be evident to produce a divergence that could clearly classify

the malicious meters from the honest ones. Our studies from real datasets indicate that

the "�� ranges between 290, − 350, . Therefore, in our approach the missed detection

errors increase X0E6 < 300. However, the error rates are better than existing works across

datasets as shown in the comparison in Section 5.6.
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Intuitively, one solution to this limitation is to introduce multinomial evidence

labels for each meter instead of binary labels (0,1), and then calculate the distances between

the distributions in the probability space with a similar entropy measure. However, our

experience showed that this is not enough to improve classification accuracy. This motivates

the need for an alternative approach, that complements the relative entropy approach, when

X0E6 < "��.

4.8. EXPERIMENTAL RESULTS

We utilized two big datasets for the performance evaluation of our proposed method.

The first dataset is an hourly power consumption dataset from PeCan Street Project [62],

containing 200 and 800 houses from a solar village near Austin, Texas for years 2014, 2015,

2016. The 2014 and 2015 dataset is used for learning (training), while 2016 is used a

testing set. Two 90 day periods representing two seasons in 2016 were used as a scenario

under attacks to generate the malicious dataset. The malicious data sets were generated

from the real data samples that were fed with our threat model with various d<0; and X0E6.

The second dataset is a power consumption dataset from 5000 houses from six micro-grid

regions in Dublin, Ireland [61], which was utilized to prove the scalability and generality of

our proposed approach. The datasets are publicly accessible.

The experimental section is divided into four parts: (i) First, we show some results

related to the fine grained anomaly detection; (ii) Second, we show supervised classification

results for 200 houses for all attack types over various X0E6 value (iii) Third, we show unsu-

pervised classification (using K-means) for 200 houses. (iv) Fourth, we show a performance

evaluation in terms of classification error rates for both 800 houses and 5000 houses using

unsupervised classification, to prove that error rates scale well for larger micro-grids and

works across different combinations of d<0; and X0E6 for various datasets, (v) we show real

time nature of detection of smart meters, (vi) a few comparisons of our performance with

existing works.
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(a) (b)

Figure 4.8. AD Value under (a) Data Omission (b) Additive On-Off Attack

4.8.1. Fine Grained Anomaly Detection Forensics. Here we show some results

on how the fine grained anomaly detection metric can detect opportunistic strategies such

as Omission and On-Off.

1) Data Omission Strategy: Figure 4.8(a), shows a result on the uncleaned real

dataset with missing data. We do not know whether this was due to an attack or a network

failure. Nonetheless, this is analogous to data omission, and our proposed fine grained

anomaly detection metric ��A0C8> (C), can capture such events. Since the metric ���)

contains only two entries for the whole year, it is evident that this is particular data omission

is likely an isolated failure, rather than an attack. Amagnified version was shown previously

in Figure 4.7, to prove that the ��A0C8> (C) first decreases (when omission starts) and then

increases (when omission stops).

2) On-Off Strategy: We study a small timeline of say 10 days, and start additive

attacks (ON) and then stop it (OFF), it is possible to detect the ON period of attacks with the

proposed ��A0C8> (C) metric. As an example, Figure 4.8(b), shows an additive attack with

X0E6 = 600, which was launched from the 60-th hour to the 200-th hour of this time-line.

Note that, in additive attacks the harmonic mean grows at a much slower rate compared to

the growth in arithmetic mean (given a sufficiently high X0E6). Hence, at the 60-th slot the

difference between the arithmetic mean and harmonic mean is larger than the previous time

slots. There the ratio ��A0C8> (C), shows a sharp increase.
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4.8.2. Effectiveness of the Anomaly based Attack Context Generation. The

effectiveness of the anomaly detection step is directly related to the embedding of attack

context in the proposed trust model which in turn preserves the classification accuracy,

lowers false alarm rates and, improves time to accurate classification of the compromised

meters. Therefore, the effectiveness of the anomaly detector is demonstrated through the

minimization of classification error rates (defined as the average of missed detection and

false alarm rates).

The effectiveness of the anomaly detector is also directly dependent on the value of

threshold (±Wf�� ())) around the historical �� ()) value. Recall, that W is the scalar factor

that parameterizes the threshold variation. Therefore, to demonstrate the effectiveness of

anomaly detector we show the error rates (average of missed detection and false alarms)

as a function of the varying margins of false data and variable candidate thresholds in the

anomaly detector. Through this, we also demonstrate the optimal threshold range that the

anomaly detectors should use to minimize the error rate in classification.

1) Effectiveness of Error Rate Minimization: We report a 0.75f�� ()) as a threshold

that produces minimal error rates across extreme values of d<0; and over all trained values

X0E6. This study is done because the defender has no control on the actual d<0; and X0E6

values that will manifest. Figure 4.9(a) clearly shows that a global minima for classification

error rate exists for a threshold of 0.75f�� ()) , which producesminimal error rates regardless

of X0E6 among all candidate thresholds for the Irish dataset for d<0; = 15% under additive

attacks. Figure 4.9(b) shows that the minimal error rate is achieved for the same 0.75f�� ())

across all X0E6 for different d<0; = 50% under a deductive attack.

2) Effectiveness of Time to Detection (TTD): Figure 4.10(a) is a CDF that is a

testimony of the convergence times to the detection rate for an additive attack with d<0; =

20% and X0E6 = 600 and a data-order aware strategy. The classification of compromised

meters is not only accurate but also happens in a very quick time. The steady state detection

rate as observed fromFigures 4.10(a) is achievedwithin 2 days. Additionally, Figure 4.10(b),
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Figure 4.9. Error Rate Minimization (a) Low d<0; = 15%; (b) High d<0; = 50%

shows the effectiveness of the probability of attack time ratio embedding (as a result of the

fine grained anomaly detector) into the trust model, and proves that it improves the time to

detection of compromised meters significantly. The Figure 4.10(b), shows the comparison

between the CDF of detections with andwithout embedding under an on-off strategy with an

on-to-off ratio of 1 : 3. We can observe that the circled line corresponding to detection rate

without the %0CC02: embedding approaches its steady state after atleast 10 days compared to

the blue line with the probability of attack time ratio embedding that approaches the steady

state detection rate of 90% within just 2 days.
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Figure 4.10. Performance (a) TTD of Compromised Meters (b) Comparative Effectiveness
of %0CC02: embedding

4.8.3. Supervised Classification. In this case, the threshold is obtained from a

small set of training meters from the training dataset which is then applied to the testing set

with the full set of meters in test set. Later, we show how our proposed approach performs

in an unsupervised mode as well.



62

0 5 10 15 20 25 30 35 40

Meter id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

s
t 

S
c
o

re

Malicious

Honest

(a)

0 5 10 15 20 25 30 35 40

Meter id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

s
t 

s
c
o

re

Malicious

Honest

(b)

0 10 20 30 40 50 60 70 80

Smart Meter ID

0.5

0.6

0.7

0.8

0.9

1

T
ru

st
 S

c
o
re

Compromised Meter

Honest Meter

(c)

0 50 100 150 200

Smart Meter ID

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

st
 S

c
o

re

Compromised Meter

Honest Meter

(d)

Figure 4.11. Training Set: (a) Additive; (b) Deductive (c) Effect of Meter Sizes (d) Effect
of Different Season

4.8.3.1. Training set. First, we use a training data set from 40 houses and use

power consumption reported in 2014 for a month. In each training case, we labeled 40%

meters as compromised (d<0; = 0.4) and alter their reported values with X0E6 = 500, and

then plotted, the corresponding trust values. We chose intermediate values of d<0; and X0E6

to prevent overfitting or underfitting. We use the trust scores of these labels, to calculate

a threshold that can linearly separate between compromised and non-compromised nodes.

We use a decision tree based classifier called CART (Classification and Regression Trees)

to find the supervised thresholds. The results of training for additive and deductive attacks

are shown in Figures 4.11(a), 4.11(b). Then we studied, the effect of meter training size by

repeating this with 80 meters (See Figure 4.11(c)) as well as the effect of the training time

period (seasonal change) on all meters (See Figure 4.11(d)) to test the sensitivity of training

for supervised classification. The conclusion is that all thresholds are close.

4.8.3.2. Classificationwith testing set. For testing illustration, we use 2016 dataset

from Texas and the attack launching period is one month. We set d<0; = 0.4 and X0E6 =

600, . More results over completely different combinations of d<0; and X0E6 are presented
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later to prove the robustness performance. Results for additive and deductive attacks shown

in Figures 4.12(a) and 4.12(b), exhibit a clear separation between honest and compromised

nodes with a false alarm rate of 1.5% in both the cases. The missed detection rate is 5%

and 8% for additive and deductive attacks, respectively.
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Figure 4.12. Testing Sets: (a) Additive; (b) Deductive

4.8.4. Classification Performance Evaluation. Figure 4.13(a), shows the classi-

fication error rates for a larger dataset of 800 houses in terms of missed detections and false

alarms under additive attack for the unsupervised classification approach over all possible

values of X0E6, given a d<0; = 0.50. From this, we can conclude that the relative entropy

approach works well for most values of X0E6 even when 50% of the nodes are compromised.

Particularly, the missed detection is higher than false alarms, which means detection rate

is more of a concern for additive attacks particularly, when X0E6 < 400. We report 22%

missed detection and 2% false alarm at X0E6 = 400. At X0E6 = 300, the missed detection

rate increases to 39%. Therefore, we experimentally verify that is methodology is not well

suited for the margin of false data lesser than the median absolute deviation of the dataset.

Figure 4.13(b) shows the classification error rates in terms of missed detections and

false alarms for unsupervised classification approach over all possible values of X0E6, given

d<0; = 0.50 under a deductive attack for 800 houses. This indicates the robustness of our

solution across all margins of false data under deductive attacks. The missed detection rate

does not have an upper evasion point compared to our preliminary work [33] and other

information theoretic approaches.
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Figure 4.13. Error Sensitivity Analysis over X0E6 (Texas): (a) Additive (b) Deductive

Figures 4.14(a) and 4.14(b), shows the classification error rates in terms of missed

detections and false alarms for the unsupervised classification approach over all possible

values of X0E6, given a d<0; = 0.20 under a camouflage and conflict attack.
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Figure 4.14. Error Sensitivity Analysis over X0E6 (Texas): (a) Camouflage (b) Conflict
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Figure 4.15. Error Sensitivity Analysis over d<0; (Texas): (a) Additive (b) Deductive
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Figure 4.15(a) confirms that the error rate is within 10% for all possible fractions of

compromised nodes as high as 90%, for the additive attack. This indicates the robustness

of our solution to higher fractions of compromised nodes for additive attacks. Additionally,

Figure 4.15(b), indicates the robustness of our solution to various margins of false data

under deductive attacks. The missed detection rate does not have an upper evasion point in

terms of d<0; .

4.8.5. Comparisons with Existing Work and Scalability of Error Rates. Fig-

ure 4.16 shows that the false alarm rate for the Irish dataset across 5000 houses is less than

2%. Additionally, the missed detection rate is below 20% for any X0E6 ≥ 350W. Second,

the Figure 4.16, compares our performance for deductive attacks with existing works in

terms of missed detection (MD) and false alarm (FA) rates, that use techniques such as One

class SVM [12], multi-class SVM [12], F-Deta (Information Theory based) [40], folded

Gaussian trust [35]. The proposed approach’s performance in terms of FA andMD is shown

in solid lines with season wide cross validation. From the Figure 4.16, it is evident that

across various margins of false data, our FA and MD rates are lowest compared to the other

approaches. Additionally, across the same chosen X0E6, our work remains resilient under

high fractions of compromised meters compared to previous works.
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Table 4.8, also quantifies the advantages and benefits of our framework in compari-

son to some of the recent works in this area, in terms of ‘other aspects’ that are not directly

comparable with previous works. These aspects include ranges of studied margin of false

data X0E6 and d<0; , detection rate convergence times, applicability to multiple attack types,

and both coarse and fine grained opportunistic attack strategies. While our framework

applies to all attack types, other works focus on deductive attacks except our previous work.

Therefore, the numbers for our framework in Table 4.8 are for deductive attacks only for a

fair comparison. However, our work is much broader compared to existing works since it

addresses an umbrella of various threats simultaneously. Some entries in the table marked

NA when a concerned parameter that is not reported explicitly. Moreover, our work shows

error sensitivity performance over both datasets.

Our framework has a much better performance over a wide attack strategy space

with d<0; ranging from 1% to 90% and X0E6 ranging from 300,-2000, compared to the

existing works that assume a narrower or fixed attack strategy space in terms of d<0; and

X0E6. Works such as [40] reasonable missed detection rates, but assume a very high X0E6 of

above 1000W which facilitates easier classification. The false alarm rate at only select X0E6

is provided and the detection time is not clear. At this assumption, our missed detection rate

is less than 6% and false alarm rates are 8% for a larger dataset of 800 meters. The work

in [12] has a small d<0; of 0.72%, but at their assumed X0E6 = 400, , our MD and FA rates

are better for both additive and deductive attacks across lower and higher d<0; values while

needing the same number observations per day. Our work can also perform classification

in an unsupervised mode compared to the supervised approach with a high training time as

reported in [12]. The upper evasion limit of high X0E6 and d<0; vanishes, compared to our

preliminary work [33], due to the robust mean andmedian absolute deviation correction and

convergence times are preserved under omission and on-off attacks. Our recent work [69]

also showed that harmonic and arithmetic mean calculations are compatible with fully
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homomorphic encryption schemes enabling privacy preserving security computations in

AMI. Therefore, our security method unlike others will be compatible with AMI privacy

requirements [70].

Table 4.8. Comparison with Existing Work
Parameter Proposed CPBETD [12] ARMA [14] Prior [33] F-Deta [40]
False Alarm 1.5%-4% 29% 33% 11% NA

Missed Detection 30%-0% 24% 28% 8% 10%-36%
X0E6 300-3000W 400W NA 700-800W 1000W-2000W
d<0; 1% − 90% 1% NA ≤ 40% 55%

Attack Type All Deductive Deductive All Deductive
Detection Time 2-3 days 77days 30 days 30 days NA

Opportunistic strategies Yes Yes No No No

4.9. INFERENCES

We proposed coarse and fine grained anomaly based security event detection tech-

nique that serves as an early indicator of the presence of organized data falsification attack,

infers the attack type, and strategy inflicted, which helps to reconstruct an attack context

that includes a response metrics such as robust mean, standard deviation, attack probability

time ratio, which depend on what kind of threat has been inflicted. Based on this attack

context, the relative entropy trust model adapts itself dynamically in runtime, to produce

linearly separable trust scores that can identify the compromised meters injecting false data

with higher accuracy and in near real time. In all, we showed that our framework applies

regardless of the high fraction of compromised nodes, and across various margins of false

data in an unsupervised classification mode as well with very low time to detection of

compromised meters.



68

5. DETECTION OF STEALTHY SMART GRID ATTACKS

Lower margins of attack strength are stealthier and hence harder to detect. Addition-

ally, the parameter that quantifies the total percentage of such compromised smart meters

in a micro-grid is termed as ‘attack scale’. Orchestrated and coordinated attacks often

have larger attack scales compared to the isolated attacks. Moreover, a smart adversary

can find a cheaper exploit to compromise smart meters, thereby allowing even a lower

margin attack to have a significant impact on the utility when compared to adversary’s total

attack cost. Orchestrated attacks are usually launched by organized and stealthy adversaries

(business competitors, organized cyber criminals), who will expect to lower the margins

of data falsification per meter such that meters are not easily caught, by hiding behind

the randomness of smart meter data. Rival nation states may also be motivated to launch

organized attacks, since meter data dictate the generation and distribution of electricity to

critical infrastructures.

5.1. CONTRIBUTIONS

We propose a novel information-theoretic anomaly scoring framework, calledMod-

ified Diversity Index Scoring, that captures smart meters launching additive, deductive, and

alternating switching attack types across a wide range of very low to very high margins of

attack strengths and attack scales, while also lowering false alarms and missed detection,

compared to existing approaches, for various stealthy attack strategies.

Specifically, we first establish an analogy between the intelligent data falsification

attacks in smart meters and the monitoring of ecological balance of species distributions

in a geographical region. Next, we show that information-theoretic approaches, such

as Renyi and Tsallis Entropies (popular in ecology), Shannon’s Entropy and Kullback-

Leibler Divergence common in computer security; are not sufficient to address this problem.

Thereafter, by studying the effects of various attack types on the probability of relative
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abundance of each discretized space of the random variable of power consumption, we

identify the need for modifications to the existing information theoretic measures. To this

end, we introducemodifications to the concept ofRenyi Entropy andHill’sDiversity Entropy

by embedding a notion of a weighted expected self-similarity mapping of a smart meter

IoT device across multiple temporal scales. Next, we embed an appropriate order of the

entropy and a weighted relative abundance vector to capture subtle drifts in the horizontal,

vertical and incline directions in the probability space, thereby resulting in a diversity index

score. The higher the diversity index score, the more likely is the meter launching data

falsification attacks. Thereafter, we offer a supervised approach to the learn the parameters

of our proposed model that maximizes the separation of diversity index scores between the

set of labeled compromised and honest meters, accompanied by cross-validation.

We validate the proposed framework with multiple full year real datasets, demon-

strating its generalization across a wide range of attack strengths, scales, types, and strate-

gies, across seasons. Experimental results show that our method exhibits lower false alarms

and missed detection even when the average attack strengths per meter lower than 400,

(which causes evasion in previous defenses) for both Texas Dataset (200 meters) and Irish

Dataset (1300 meters). Specifically, we show that model generalizes to successfully detect

deductive, alternating switching attacks and strategies that were not used to train the model.

A comparison with existing works exhibits improved performance in terms of reduced un-

detectable attack strategy space when the attacker has knowledge of our method. We also

provide a tradeoff between impact of missed attacks versus cost of base rate false alarms

(when there no attacks in the test set).

5.2. DIVERSITY INDEX BASED TRUST SCORE

5.2.1. Forming Species Self Similarity Matrix. We build a square matrix J of

RxR dimensions known as the species self similarity matrix, where only diagonal entries

are non-zero, and quantifies the effective level of similarity (or difference) of the relative
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abundance of a species with itself between the current time window (where the diversity

index is being calculated) compared to past windows. The past may be previous years’s

history or a shorter term history of a set of previous consecutive time windows. For

smart city application context, we use consecutive time windows, given the observation

that shifting trends in data, can diametrically change the self similarity of species without

presence of attacks over yearly time horizons.

To build D, the simplest approach would be an absolute difference between the

relative abundance of each species category between the current and the previous time

window. Mathematically, let matrix p( 5 − 1) denote the species abundance in previous

time window 5 − 1 for the 8-th meter and the same at the current time window 5 is denoted

by p∗( 5 ). Then, the most simple self similarity matrix could be S(f) = |?( 5 − 1) − ?∗( 5 ) |,

where:

p( 5 − 1) =



?1 0 . . . 0

0 ?2 . . . 0

. . . . . . . . . . . . . . . .

0 0 . . . ?'

'×'
p∗( 5 ) =



?∗1 0 . . . 0

0 ?∗2 . . . 0

. . . . . . . . . . . . . . . .

0 0 . . . ?∗
'

'×'
However, we found two problems with this approach. (1) this will fail to detect

incremental ramp or boil-frog attack strategies, that cause very small vertical changes over

time. Hence, we need to look over a longer time horizon for ‘sustained’ vertical changes.

(2) there could be false alarms, since some of the meters may show a higher change in

the legitimate difference of relative abundance in species without attacks in given pairs of

windows. Without any transformation, it creates a higher change in the eventual trust score

under benign changes.

This gives an intuition that once an idea on the bounds of legitimate vertical changes

is learned, changes beyond that can be over-weighed, while changes below those bounds can

be discounted. These two aspects are embedded in the following way: Let the difference
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Figure 5.1. Texas Dataset (a) Benign Sample ∇B ( 5 ) (b) The q transformation function

between relative abundance vector between any two consecutive windows be denoted by

nB (:) = ?B (: − 1) − ?B (:), a shorter term similarity. Then we keep a long term memory of

nB for each species represented by:

∇B ( 5 ) =
5∑

:= 5−�
nB (:) (5.1)

such that ∇B ( 5 ) keeps the cumulative sum of the differences observed between pairs

of time windows for a sliding frame containing � previous windows. When there are no

attacks, ∇B ( 5 ) has no increasing trend (see Figure 5.2(a)) and the values are typically very

small (See Figure 5.1(a)). Infact, across an appropriate frame length (F), the ∇B flattens

out (blue lines in Figures 5.2(a) and 5.2(b)). In contrast, for incremental attacks, there is a

small monotonic increasing trend in ∇B (green and red lines in Figures 5.2(a) and 5.2(b)

respectively). For all other strategies, the average ∇B is larger, under attacks.

The species self-similarity matrix is given by J ( 5 ) such that each diagonal element

is computed through a function of the form (q(∇B ( 5 )), such that the diagonal elements in

J ( 5 ) is a mapping that takes the ∇B across the frame within each species as the input and

mathematically written as:
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Figure 5.2. Frame (a) Varying Length (b) Frame Tracking under Incremental Ramp Strategy

J ( 5 ) =



|q(∇1) 0 . . . 0

0 q(∇2) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . q(∇')

'×'
where each entry

q(∇B) =
1

(1 + �14−�1 (∇B) )1/a
; q(∇B) ∈ [0, 1] (5.2)

is a generalized sigmoidal function which inputs the vertical change over a frame of length

� at a time window 5 . The q transformation produces the necessary weighing that reduces

the false alarm rate while not sacrificing missed detection. Here the �1 is a growth rate

parameter controlling the value of∇B forwhich the q(.) function reaches itsmax value, while

a is a displacement parameter that controls the value of ∇B, where the q(.) function enters

the exponential growth phase. The �1 is a parameter that decides the initial y-intercept,

when ∇B is zero. Figure 5.1(b), shows the q function.

5.2.2. Expectation of Temporal Self-Similarity. Now we quantify the overall

average change in the similarity of the 8-th meter. Let p denote the probability abundance

vector of species calculated over a time window in near history (ideally just before attack

starts) and the J is a probabilistic measure related to that ? (given the design of J), so that

we get something similar to a second-order expectation where the random variable is itself

a probability vector p. Mathematically, we do the following operation:
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[
� (�)

]
'G1

=

[
J

]
'×'

[
p
]
'G1

(5.3)

where � (�) is an Rx1 matrix where each element represents the expectation (average)

change in the self similarity (in terms of probability of species abundances) of the corre-

sponding species between over this time frame. Each element of the � (�) is of the form

(q(∇B) ∗ ?B), which gives an idea on the index of vertical change within each species B

between two time frames. Let us call p as the reference probability vector.

Now it could be tricky to get the correct reference vector belonging to a frame

just before attacks, especially if incremental attack strategy inflicted. However, ∇B ( 5 ) also

allows us to pinpoint this by backtracking the ∇B ( 5 ) variation (See Figure 5.2(b)) and the ?

is built from before the window just before the change-point of ∇B ( 5 ).

5.2.3. Diversity Order Embedding. From theoretical intuition, one requirement

was to magnify changes in intermediately rarer species, which we accomplish here. We add

the order into the expectation of similarity in a similar way that appears as a power in the

Hill’s Diversity Index, in order to achieve the embedding of non-uniform vertical change

such that we get the following:

["]'G1 = [� (�)]@ (5.4)

S =



(
q(∇1).?1

)@
...(

q(∇B).?B
)@

...(
q(∇').?'

)@

'×1

(5.5)
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5.2.4. Magnifying Quantity of Species with Changes. From theoretical intuition,

we need to finally ensure that very small incremental changes but happening in many unique

IDs of rare species, has importance in the resultant functional form of modified diversity

index we are striving to achieve. We put more emphasis on the shifts in rarer species as a

weight to each of the species in the '×1 matrix, [� (�)]@. Note that we need a scalar value

for the diversity index trust score and the quantity weight matrix needs to be a 1× ' matrix

for the scalar to exist. Hence, we seek to design a weight vector that is 1 × ' dimension.

[,]1G' =
[
�

]
1G'
−

[
pZ

]
1G'

(5.6)

where [�] = [1 . . . 1]1G' is a matrix containing all 1’s for R columns, where the intuition is

that the one minus a rare value will be a high value and too many of these occurrences, will

push the resulting scalar to a higher portion in the number line. Hence, the result weight

factor is given by:

] =

[
(1 − ?1) . . . (1 − ?B) . . . (1 − ?')

]
1×'

(5.7)

5.2.5. Final Modified Diversity Index Trust Score. The diversity index based

trust score of the q-th order for a smart meter 8 is given by the multiplication of ] and S.

The reason they are multiplied is to achieve the functional form of Hill’s index, as we will

see next.

)'8 (@) = , × " =

(
( [�] − [ pZ]) ×

[
J p

]@)
(5.8)
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Verify how Eqn. 5.8 confirms to the original functional form of mathematical ab-

straction of a diversity index score for identifying data falsification. By plugging in Eqn. 5.5

and Eqn. 5.7 in Eqn. 5.8, we get a scalar value due to matrix multiplications of dimensions

1XR and Rx1, which gives:

TR8 (@) = (1 − ?1).(q(∇1))@ .?@1 + · · · + (1 − ?').(q(∇'))@ .?@'
If we assume (1− ?B) = GB and (q(∇B))@ = HB, then the above reduces to the desired

abstraction of the mathematical functional form of Hill’s index.

Hence, to conclude the modified diversity index score of a meter 8 that can detect

compromised meters is:

A�8 =

(
( [�] − [ pZ]) ×

[
J p

]@)
(5.9)

where A�8 > 0, if @ > 0. The whole exponent factor of 1
1−@ in the original functional

form is ignored since it does not provide any added classification advantage as far tracking

changes. Another important point is the nature of change in diversity score after the attack

is launched, and its effect on the final distribution of A�8 values of compromised versus

honest meters. Due to the nature of Eqn. 5.9, where changes in each species are added up,

the meters launching data falsification will experience an increase in the diversity scores

after the attack. In contrast, the non-compromised meters will exhibit a lower diversity

score than the compromised meters. We will verify this in the experimental results section.

5.3. PARAMETER LEARNING AND THRESHOLD

Now that we have the architecture of our base model, we need to provide a general-

izable way of learning various parameter values given any dataset. Our approach towards

this is a supervised one, where we divide the training set into two parts: first, without any

attacks; the second containing attacks from a subset of meters we choose and program them
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to simulate a limited set of attacks. Our method learns parameters according to a target

objective function that maximizes the difference between the diversity index scores of the

honest and malicious classes in the training set. Later on, we use cross-validation set to find

a threshold and then apply it on a testing set for performance evaluation.

5.3.1. Training Set Details. We use the full year of 2014 as the training set for

Texas dataset. The attack starts after the end of 6-th month. The malicious class labels

contain the following attack features: An additive attack with X0E6 = 100W, d<0; = 30%,

with an incremental ramp strategy that increases by 20W every 15 days. The idea is that

if it detects for the smallest and slowest moving attack, it will be able to detect anything

stronger. Other parts of the threat model are not used for training, since we need to verify

that our method is generalizable to detect ‘mutated’ and ‘unknown’ attack realizations that

it was not trained on.

5.3.2. Decision Variables. The controllable decision variables are namely �1, �1,

a, BF, @ and � which are candidates for optimization. Among these, parameters strongly

related to the dataset are �1 and a, others are weakly related to the dataset. Note that the

X0E6 and d<0; are uncontrollable decision variables which are beyond defenders knowledge.

However, it is known that if we observe a linear separability between diversity index scores

of a compromised and honest set of devices, for a lower X0E6, it will automatically hold for

higher X0E6 values by virtue of our scoring design. Therefore, during learning, we train with

only select candidates of X0E6 that are below the desired lower bound of sensitivity X3;10E6.

For tractability of search space, we partition the candidate species widths and candidate

X0E6 into discrete partitions with upper and lower bounds X1 and X%.

5.3.3. Objective (Error) Function. The objective function (or the error/loss func-

tion) should maximize the separation between compromised and honest devices, in terms

of the distribution of their diversity index scores. Hence, we used the squared difference
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of average of diversity index scores between the compromised and honest sets in the train-

ing set. Intuitively, that combination of parameters/decision variables that maximizes this

objective function is the optimal parameter set.

4 = <0G

(∑(A�ℎ)
# − " −

∑(A�<)
"

)2
(5.10)

s.t. �1 > 0; 0 < �1 < 1; 0 < a < 1

s.t. 0 < @ < ∞; F1 < BF ≤ X3;10E6; 1 ≤ � < �<0G

It might seem that there too many variables to optimize. However, in reality, the

search space of BF, @, �1 turns out to be bounded and small, once we apply the following

pruning logic and design considerations: The candidate species width BF is upper bounded

by the desired lower bound sensitivity of attacks X3;10E6, which is small, making the BF range

limited. Furthermore, given the role of the Renyi diversity order, we can prune the search

space of diversity order to @ ∈ (0, 1].

The optimization can be solved using a grid search; or an efficient method like

gradient descent which scales well when there are many parameters with a wide search

space. For gradient descent to work, the error function needs to be transformed into a

convex function. Our objective function is a concave function with a global maxima.

Such functions can be converted into a convex function using the negative logarithm of the

original objective function, and then apply gradient descent. However, accuracy depends on

the smoothness of the convex function. In our implementation, the number of parameters

is limited, and has a smaller search space either by design or through pruning. Hence, we

solved our optimization, using a grid coordinate search method.

For Texas data, we found the following (near) optimal parameter values: a =

0.05, �1 = 0.1, @ = 0.55, BF = 100, �1 = 0.3. To cross-check for parameter values for a

different dataset, we repeated this process for over the Irish dataset. The first 7 months of
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the dataset were used as training set, and attack labels were introduced after the end of the

3rd month, using the same attack features as the Texas dataset. We solved the parameters

separately and found a = 0.03, �1 = 0.12, @ = 0.5, BF = 100, �1 = 0.3, � = 8 and window

length is 15 days. We can observe that a and �1 are slightly different (due to dataset

specifics), while other parameters are closer due to their relationship with attack model and

underlying theory.

5.3.4. Threshold Selection. Cross-validation ascertains whether the optimal val-

ues generalize well or not to maximize the linear separation of scores, and also learn a

classification threshold that generalizes during the testing set. We use a Receiver Operating

Characteristics (ROC) curve to get the full spectrum of possibilities of false alarm (FA) to

true positive (TP) rates. From this, based on the defender’s desirable maximum tolerable

false alarm rate, the corresponding threshold giving that FA rate is chosen, and then applied

to the testing set for security performance evaluation.

Cross-validation Dataset: For Texas Dataset, we used 2015, partitioned into 12

partitions for cross-validation. For Irish dataset, we used 6 partitions, starting from the

8-th month of 2009. We average the parameter outputs to provide more accurate estimate

of model prediction performance. For Texas dataset, we got: a = 0.04, �1 = 0.08, @ =

0.55, BF = 100, �1 = 0.29, while For Irish dataset, we got a = 0.03, �1 = 0.1, @ =

0.5, BF = 100, �1 = 0.31. We used these values to retrofit in the model and generated the

diversity index scores of both classes. Then thresholds are varied according to desired false

alarm rate.

ROC Curve: Figures 5.3(a) and 5.3(b), shows the ROC curve under a X0E6 = 100

from cross-validation, with an AUC of 0.89 and 0.93 respectively. In general, the ROC

curves for various X0E6 can be plotted. A utility can use his desired maximum allowable

false alarm rate and find the corresponding threshold using this ROC.
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Figure 5.3. ROC in Cross-validation: (a) Texas (b) Irish

5.4. EXPERIMENTAL RESULTS

This section includes cross-validation and testing set results of both Texas and Irish

datasets for the smart metering application. The experimental result section is divided

into the following subsections: (i) Attack Implementation on Test set description; (ii)

Performance results (iii) Cost Benefit Analysis (iv) Comparison with other works

5.4.1. Attack Implementation on Testing Set. For each attack type, and strategy

(discussed in the threat model) we did the following: For the Texas dataset, the 2016 year’s

data (having a duration of a year), we had five attack start points interspersed approximately

by two months to cover the entire testset duration. Similarly, for the Irish dataset, the final

five months of the 2010 data were used as a test set, with two attack start points interspersed

in a two-month duration. This is done to show that regardless of the start point of attack, the

reported missed detection is unbiased. Hence, five (or two) versions of the attacked testing

set are obtained for each attack type for Texas (and Irish) datasets respectively.

In each version, we had six different sets of compromised meters per attack scale

value (to remove compromised meter selection bias), making a total of 30 (or 12) versions.

Each such version is attackedwith the indicated several different X0E6 (from the compromised

ones of course), and then fed to the diversity index model. Then, the final result on missed

detection and false alarms is reported by combining the results from all these versions.
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For reporting baseline false alarm rate (where there are no attacks throughout the year or

test duration), we counted the false alarms accordingly. Additionally, note that we have

parameterized the space of attack strengths and scales covering all possible values. There

is no availability of real attack dataset in this area, but our implementation included the

gold standards for performance evaluation covering any gaps that might otherwise exist.

Note that deductive, alternating switching attacks attack types, KLD minimizing strategies

were not used for training. We put these in test set only to understand whether the method

generalizes to previously unseen attacks.

5.4.2. Performance Results. Instead of ROC curve, we show (i) missed detection

(MD) rates across a wide X0E6 range, for different thresholds based on user’s tolerable FA

rate; (ii) the base rate FA, which is false alarm rate, when there are no attacks throughout

the test set; because most companies have a concern on lowering FA rates (because the prior

probability of an actual attack is low). The ROC curve from cross-validation, is used to

pick four corresponding thresholds that gave 2%,5%,8% and 10% FA rate; which are then

applied to the test set.

5.4.2.1. Generalizing against untrained attacks. We first show performance un-

der previously unseen attack types (deductive and alternating switching) across varying

X0E6 values and the new d<0; = 40%; threats which did not feature in the training phase,

using a data order aware strategy.
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Figure 5.4. Deductive Attacks MD rates (a) Texas Data (b) Irish Data
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Figures 5.4(a) and 5.4(b) show the MD rates across various X0E6 against ‘deductive

attacks’ under the Texas and Irish datasets respectively. Each line corresponds to a perfor-

mance given by different thresholds corresponding to that particular tolerable base FA rate.

Similarly, Figures 5.5(a) and 5.5(b) show the MD rate for alternating switching attacks for

Irish and Texas datasets respectively.
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Figure 5.5. Alternating Switching MD rates (a) Irish Data (b) Texas Data

Performance against untrained KLD minimization strategy Figure5.6(a) at tolerable

FA rate of 10%, is shown for the 3 attack types. The performance is slightly worse compared

to the data order aware strategy. The increase in mis-detection rate on average for the KLD

minimizing strategy across all attack types and X0E6 values, is 7.3% keeping the same FA

rate. The Figure 7.6(b) shows that our method scales well and is invariant to changing d<0; .
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5.4.2.2. False alarm performance. A concern on anomaly based scoring frame-

works are false alarms and their costs. A summary of base rate false alarm performance

in the testset is included in Table 5.1. The Texas dataset has more shifting trends (due to

renewable penetration), thus it has more base rate FA than Irish dataset.

Table 5.1. Base Rate False Alarm Percentages in test set

Tolerable FA Threshold Irish Test Set FA Texas Test Set FA
2% 2.11% 2.60%
5% 5.33% 6.25%
8% 8.86% 9.37%
10% 10.58% 10.93%

5.4.3. Cost Benefit Usability of our Performance. Here we analyze the costs of

MD and FA rates from the perspective of real life usability. Once inferred as attacked, an

audit trail is done by utilities on each device for confirmation. According to [71], audit

inspections are billed for a median cost of �� = $141 per device, while [72] reported the

average time to inspect each meter device is 55-65 minutes. Audits are an annual affair in

many companies and our test set is also for one year. There are two options for audit for a

utility: (1) a utility wide audit (expensive), (2) an audit on those devices detected as positive

(less costly). Let different utilities have different tolerable false alarm that vary between 2%

to 10%. There is a loss due to audit on false alarms but a gain for detecting compromised

meters successfully. We consider here only the monetary value per Kilo Watts hour (KWH)

of electricity that is falsified. The effective profit/loss per year can be calculated as:

#%A> 5 8C =
X0E6 × [ × � × 365

1000
× (" − <3) (5.11)

where " is the number of meters compromised, <3 is number of missed detections, [ is

the number of reports/day, � = $0.12 per KWH is average cost of electricity in USA (could

be as high as $0.38 in some states). On the other hand, the cost of false alarms per year is:

! = �� ∗ 5 0 and #4C�4=4 5 8C = #%A> 5 8C − ! where �� is the cost of audit/meter, and

5 0 is the number of false alarms.
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In Table 5.2, we provide the practical implication of our performance under user

tolerable false alarm rates of 2% and 10%, with d<0; = 40%, in terms of monetary benefit.

Given the numbers, a 2% tolerable FA is more profitable for Irish data, while 10% tolerable

FA is more profitable for Texas data, for the same X0E6. Since the difference in losses is not

drastic, our recommendation for utilities is to choose 10% tolerable rate, since it will give

much lower MD when attack actually occurs. Since the Irish data has a large micro-grid,

the benefit is large, underscoring that the benefit is scalable.

Table 5.2. Profit/Loss Per Year with our Framework

Tolerable FA Threshold X0E6 #4C�4=4 5 8C: Irish #4C�4=4 5 8C: Texas
2% 100 + 21,219.12 + 4,868.88
10% 100 + 16,922.34 + 5,597.16
2% 400 + 141,686.64 + 30,413.04
10% 400 + 138,441.06 + 32,087.47

5.4.4. Comparison with Previous Research. We compare our performance with

3 categories of existing methods: (i) classical ML, (ii) information-theoretic, (iii) statistical

learning. Classical ML uses SVMs [12], decision/regression trees (DRT) [36]. The [12]

outperforms [36], hence we compare our work with [12]. For information theoretic ap-

proaches [33, 40], we chose to compare with [33] (though mainly it showed the Texas data

results) since it reports for various X0E6 unlike [40]. Statistical learning based method [35]

outperform [14, 15, 41] and hence is chosen for comparison. The Figure 5.7, shows a

comparison of our method with existing works under our threat model (assuming deductive

attacks over Irish dataset since its common to all previous works). We can observe that the

MD rate of our method (blue- solid line) is much lower compared to other works especially

for lower X0E6, with a threshold corresponding to 10% acceptable FA. This is fair comparison

since Refs [12, 33, 35] have FA rates ≥ 10%, even for attacks with X0E6 > 350W.
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Figure 5.7. Performance Comparison with Existing Research

5.5. ESTIMATION OF DIVERSITY INDEX

Diversity Index is a score based on the difference in probabilities of historical (or

prior to attack) and current data across the species. It is dependent on the horizontal and

vertical change of species probability. The main attributes that result in the change of those

probabilities is Species Width (SW) and margin of false data (X0E6). As we are using a

default species width (100), the margin of false data will be the major factor that determines

the diversity index of a smart meter. Now, we will try to derive a mathematical relation

between the Diversity Index score and X0E6.

We have considered some assumptions for these estimation.

1. Attack is continuous across the frame.

2. The difference between dmin and dmax is low (100 or below).

From the derivation of diversity index, the first step is the calculation of RXR

diagonal matrix D(f). The diagonal values are the difference of probabilities of respective

species from historical (?8) and current data (?∗8 ) where 8 ∈ [1, '].

The next steps to calculate the diversity index are based on the species probabilities

before attack. So, there is no impact of margin of false data on diversity index score after

the calculation of D(f). This means that we need to estimate the RXR matrix D(F). We
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already have ?8, 8 ∈ [1, '] which is based on existing data. This brings us to the species

probabilities after the attack ?∗
8
, 8 ∈ [1, ']. Now we need to estimate the values of ?∗

8
,

8 ∈ [1, '] for a given X0E6.

It is observed that species concentration change with introduction of attack. If we

can estimate the change of concentration of species, we can also estimate the diversity index

score. Assuming uniform distribution of XC value between X<8= and X<0G , we will have the

following X0E6.

X0E6 =
X<0G − X<8=

2
(5.12)

Now, having the knowledge of the species width ((,), we can estimation the average

shift in the concentration of the species. The average shift is represented by (� and can be

calculated as shown in Eqn. 5.13.

(� =
X0E6

(,
(5.13)

We need to extract the integer (�8 and decimal part (�3 of the shift ((�) to calculate

the estimated shift in the number of readings across different species. The two values will

be calculated from values from the shift value (� as shown in Eqn. 5.14.

(�8 = floor((�) (�3 = (� − floor((�) (5.14)

Once we have (�8 and (�3 , we can estimate the probabilities of species ?∗
8
after

the injection of attack based on the values of ?8 is shown in Eqn. 5.5.

p∗
8
=


0 if 8 <= (�8;

(1 − (�3) × ? (8−(�8) + (�3 × ? (8−(�8+1) if 8 > (�8
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5.6. INFERENCES

We offered a novel information-theoretic anomaly scoring technique that showed

successful detection of smart meters launching data falsification with very low to high attack

strengths and attack scales are possible, using AMI as proof of concept. The proposed

method’s accuracy generalizes well across two different datasets, with completely different

years of data collection, countries, sizes of micro-grids. The conclusion is that the method

is a way of inferring security status in terms of data integrity where inherent variances

are higher than impactful attack strengths. Additionally, we conclude that for a cognizant

attacker, the undetectable strategy space in smart energy AMI is reduced from what was

achieved by previous works, without a drastic increase in false alarms.
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6. DETECTION OF EVASION ATTACKS IN SMART GRID

6.1. BACKGROUND

In previous sections, we have proposed attack detection models for different types

of attacks in smart grid. The knowledge of the model to the attacker can lead to several

problems. One problem is that the adversary can launch attacks that will not be detected by

the proposed defence models. This process is called Adversarial machine Learning(AML).

6.2. CONTRIBUTIONS

We propose a Generative Adversarial network (GAN) based solution to detect and

eliminate evasion attacks in smart grid. This helps to avoid the usage of training data that

could be anomalous either due to external intrusion or internal data management error. By

filtering out the possibly anomalous training data, we make sure the Machine Learning

(ML) model is more robust and devoid of evasion attacks.

This work mainly focuses on providing a solution to deal with evasion attacks and

validate the solution with the existing smart grid security models [33, 35]. First, we discuss

about different types of evasion attacks and how they impact the performance of the attack

detection ML models. The impact of evasion will be shown using the Gaussian Trust

model [35], and [33] which is based on Kullback-Leibler Divergence by comparing the

performance of the model with and without the evasion attack. Next, we propose a GAN

based solution on how to deal with the evasion attacks. A GAN has two important parts,

generator and discriminator. The generator keeps generating evasion data samples which

will be used to train the discriminator. This iterative process will lead to the improvement

of discriminator in detecting the presence of evasion attacks. The resulting discriminator
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can be used as a filter for the security model to avoid evasive data. Finally, We validate the

proposed solution with multiple real datasets, demonstrating its generalization across very

low to high attack strengths, scales, types, and strategies.

Section 6.3 introduces different types of evasion attacks and shows their impact on

detection models for data falsification in smart grid. Section 6.4 describe the Diversity

Index model system that will be used to validate the proposed solution along with the

datasets used. Section 6.5 presents the GAN based solution to detect these poisoning

attacks. Section 6.6 describes experimental results for two security models for both Texas

and Irish datasets.

6.3. IMPACT OF EVASION ATTACKS

In this section, we elaborate on two types of evasion attacks called standard evasion

attacks and smart evasion attacks. The purpose of evasion attack is to escape the detection

model either by being stealthy or creating adversarial examples that meets the target of the

attack. These changes will be made to be very small where the performance of the security

model drops in case of standard evasion attacks where as the attack margin will be high and

changes will be made with the knowledge of the model in case of smart evasion attacks. The

standard evasion attacks can be capable of escaping the detection but the adversary cannot

achieve the desired margin of false data that can guarantee profit. The smart evasion attacks

when done appropriately can escape the detection model while guaranteeing the targeted

margin of false data.

6.3.1. Random Evasion Attacks. In the standard evasion attacks, the adversary

will manipulate the test data by introducing noise in the training data randomly. When the

machine learning model uses this evasion data, its performance will become inconsistent.

The standard poisoning of the data will be done by selecting the standard readings from the

training set and modifying the true values. The modification will be made in a way that

the value stays in the minimum and maximum readings from the selected data. Consider
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�<8= and �<0G will be the minimum and maximum meter readings respectively. Let �8

and �′
8
be the true and evasion readings respectively. The poisoning is done over a selected

data points. If more data points are modified, the poisoning could be easily detectable by

observing the data distribution.
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Figure 6.1. Standard Evasion Attack at X0E6 = 300

Once the standard poisoning is introduced into the training set, the machine learning

model will not work desirably. One possible solution to handle the standard poisoning

attacks is to introduce the robust statistics (like Median Absolute Deviation, Trimmed

Mean) into the machine learning model. The purpose of robust statistics is that they will

work with wide range of probability distributions and also resilient to data outliers. The

elimination of outliers helps to eliminate some of the noise and thereby reduces the impact

of poisoning. This solution is particularly helpful when the attack is black-box. It is very

challenging to poison the data effectively in balck-box attacks. But, in case of white-box

attacks, the data could be poisoned intelligently to impact the performance of theMLmodel.

Using the robust statistics alone cannot prevent the impact of poisoning in white-box attacks.

we refer to these attacks as smart poisoning attacks.
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6.3.2. SmartEvasionAttacks. Smart evasion attacks does not go for lowermargins

of false data to escape detection. For an attacker to introduce smart evasion attacks, he

should have the knowledge of the machine learning model. These are classified as white-

box attacks as explained in the introduction. In such cases, the attacker can carefully make

changes to the data in a way to escape the detection. This enables the attacker to achieve

higher margins of false data which could increase the profit of the attack.

The best way to deal with smart evasion attacks is to detect them and avoiding them.

In this paper, we are using Generative Adversarial Networks (GANs) as the tool to detect the

smart evasion attacks. A GAN mainly consists of two things, Generator and Discriminator.

The generator creates different possible evasion samples or adversarial examples. These

evasive data samples will be used for training the discriminator along with the true samples

that we have from the historical data. Once the discriminator is well trained, it should be

able to classify whether the given data is an evasion sample or not. The working of a GAN

can be seen in the Figure 6.2.

Figure 6.2. Generative Adversarial Network
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6.4. GENERATORMODEL

Generative models concern with how data is generated given a classification model

that produces an output. We observed that the [35] uses a discriminative approach. First,

we will discuss howwe can generate the evasion data samples or adversarial examples using

the generative approach.

6.4.1. Overview of Solution. From the folded gaussian model, we know the trust

score of a smart meter will be higher when as more and more smart meter readings fall

in the first standard deviation. So, with this knowledge of the adversary, the attack can

be injected in a way to keep certain changed readings closer to the temporal mean, which

boosts the trust score and potentially lead to misclassification, while preserving the X0E6

impact constraint. Interestingly, there is a design similarity of this approach with DBSCAN

and KL distance trust, although the actual mathematics of each approach is very different.

The similarity is in the discretization of the data into levels and using the probability density

of each level to combine it into a clustering approach. This is what our adversarial method

seeks to harness and gives the power of transferability. While it may not completely evade

the classifier, increase in the trust score will degrade the meter detection success.

6.4.2. Generating Evasion Data using Generator. In this step, generation of the

evasion data is shown from the true data samples. The input V is the true electricity readings

of a smart meters across ) time slots in a frame. The output of generator &, will be the

evasion sample with same size which the adversary needs to generate to escape detection.

V =
[
%1, ..%C , ..., %)

]
1×)

W =

[
%
′

1, ..%
′
C , ..., %

′
)

]
1×)

(6.1)

The generativemodel’s designwill depends on the architecture of the defensemodel.

A close look into the folded Gaussian trust model reveals that the smart meter is classified

honest, when it has a relatively high trust score. So, the generative model needs to create

falsified data per smart meterW such that it results in a higher trust score even in the presence

of an attack.
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To accomplish the above, the generator has to select appropriate instantaneous XC

(Eqn.6.2) perturbations over a time frame that results in highest trust score possible, by still

preserving the strategic target X 50E6 of the adversary, required to inflict the targeted damage.

L =
[
X1, X2, ..., XC , ..., X)

]
1×)

(6.2)

%
′
C = %C ± XC X

5
0E6 =

∑)
C=1 XC

)
(6.3)

The working logic of the scoring model shows that when a data point is within first

standard deviation on either side of the mean (rating level 4), it contributes to a higher

trust because the weight of such an observation is proportional to the probability density

of observing the level 4, which is the highest in the benign dataset. The rating levels 3,2,1

which indicate increasing distance of the data points from the mean, contributes less to the

trust score, due to the same proportionality feature, because the probability densities in the

benign dataset for levels 3,2,1 are much lower.

This gives an intuition that, if the data points stay closer to the mean even after false

data injection, it should lead to higher trust score. To do this, the adversary needs to find the

best values for -,., / and � from Table 7.1 which will be the number of readings in each

discrete rating level in the time frame under the crafted evasion attack. The discrete levels

depend on the mean and standard deviation. This requires the adversary to estimate the

values of mean, standard deviation after the attack. The threshold for classification decides

the malicious smart meters. So, it also needs to be estimated to evade detection.

Estimating Safe Threshold (TH): The smart meters with trust score higher than the

threshold will be classified as honest. In the [35], the threshold was generated through a

k-means which depends on the final distribution of the trust scores and attack incidence flag

generated by the anomaly detector.
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Since, the adversary may not be sure of the threshold for classification, the threshold

needs to be estimated to escape the detection. This threshold can be estimated by observing

the trust scores produced by inputting honest smart meter readings from historical data.

The threshold is selected using :-means and it will be highest in case of less

malicious meters. As the number of malicious meters increase, it creates more lower trust

scores in the final input to the k-means, and therefore, the final threshold starts to decrease.

So, the safe threshold will be selected by applying the Gaussian trust classification using

very low value of M. This is shown in Figure 6.3(a).
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Figure 6.3. Texas Data (a) Safe Threshold (TH) (b) Difference in mean

Estimating Mean (`): The exact trust score estimation for Gaussian trust model

needs the knowledge of mean of current data. This is unknown to the adversary as the

mean value is based on current time slot and over all smart meters. Let `C denote the

arithmetic mean at time t after attack. Since `C is unknown to the adversary, it needs to

be estimated using the knowledge of the data before the attack. The difference in mean

over two consecutive time frames is very low and can be seen in boxcox scale from figure

6.3(b).The value of mean from the previous time frame before the attack at the exact time

slot C will be `C−) . Given, d<0; = "/# is the fraction of compromised meters and X 50E6

is the targeted margin of false data, the estimated arithmetic mean for an additive attack is

shown in Eqn. 6.4.
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`C = `C−) +
(
d<0; ∗ X 50E6

)
(6.4)

Estimating Standard Deviation (std): Estimation of the exact standard deviation

after attack at run time is impossible to know before the attack, given a knowledge of a

subset of meters d<0; and the X0E6.

However, studying the dataset we found that the standard deviation is cyclostationary.

So will take the standard deviation after attack, fC same as the standard deviation from the

previous time frame at same time slot, fC−) . This leads to some data points in higher

discrete level to come down to lower discrete levels after the attack leading to higher than

estimated trust score.

Estimating X0E6 per Each Discrete Level: Once we estimate the mean and standard

deviation given the X 50E6, we have to estimate the average possible margin of false data at

each discrete level. %C−) will be the smart meter reading at time C from the time frame

before the detection of attack. The maximum margin of false data for %C−) in each discrete

level for an additive attack is shown in Eq. (6.5). This will be calculated for all T readings

in the time frame.

X-ℎ = `C−) + fC−) − %C−) X.ℎ = `C−) + 2fC−) − %C−)

X/ℎ = `C−) + 3fC−) − %C−) X�ℎ > `C−) + 3fC−) − %C−)
(6.5)

Using the historical data, the margin of false data per each reading in a discrete level

is calculated over the same time frame from the previous year. Considering the number of

readings in each discrete level over history as -ℎ8BC , .ℎ8BC , /ℎ8BC , �ℎ8BC we can calculate the

average margin of false data in each discrete rating level using Eq. (6.6).
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X-0E6 =

∑-ℎ8BC
ℎ=1 X-

ℎ

-ℎ8BC
X.0E6 =

∑.ℎ8BC
ℎ=1 X

.
ℎ

.ℎ8BC

X/0E6 =

∑/ℎ8BC
ℎ=1 X/

ℎ

/ℎ8BC
X�0E6 =

∑�ℎ8BC
ℎ=1 X�

ℎ

�ℎ8BC

(6.6)

Finding Optimal Parameters for Evasion: The trust score can be reformulated as Eqn. 6.7

by combining the Eqs. (7.4), (7.5), and (7.6), where, (;) = F × ;. The value of F for each

discrete level is extracted using historical data. To create an optimal evasion attack, the trust

score (TR) should be just above the threshold (TH) separating the honest and malicious

smart meters. At the same time, the readings should meet the targeted margin of false data.

To generate the evasion data, we have to estimate the number of values in each discrete

rating level that can guarantee evasion and X 50E6. For this, we have to solve the optimization

problem in Eqn. 6.8 to find the best values for -,., / and �.

) ' =
1
( )[ (- , (4) +. , (3) + / , (2) + �, (1))

[ (6.7)

min ()' − )�)

s.t.
-X-0E6 + .X.0E6 + /X/0E6 + �X�0E6

)
= X

5
0E6,

)' ≥ )�,

- + . + / + � = ) ,

-,., /, � > 0

(6.8)

The second constraint shows that best possible value for the trust score is nearly

equal to the threshold. The third constraint allows to reduce the problem from 4 unknown

variables to three unknown variables by replacing � with ) − - − . − / .

The optimization problem has 3 unknown variables and can be solved using linear

programming as all the constraints are linear. We used the simplex method to solve the

formulated optimization. Upon solving the optimization problem defined above, we get the
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values of X,Y,Z and A. Now in this step we will generate the evasion data &. Using the

estimated values `C , fC and known true reading %C , the XC values will be calculated similar

to Eqn. 6.5 for all ) time windows. Then, we finally create the evasion data using Eqn. 6.3

from the XC values.

The whole process is shown considering an additive attack. For deductive, camou-

flage and alternate switching attacks, the only difference will be in the estimation of mean

and Eqn.6.5. The rest of the process will be the same.

6.5. DISCRIMINATORMODEL

The purpose of discriminator is to detect the evasive data which could pass though

the seurity model. Discriminator uses a neural network that takes the test data as input and

gives a result between 0 and 1. If the output is closer to 1 means that the data might be

modified using evasive strategy. The input of the neural network is a set of # × ) data

points of N smart meters across T time slots. The discriminator checks each smart meter

for detecting the presence of evasive attack. For this purpose, we need to extract features

from the T data points of each meter into a much smaller set which retains the important

characteristics of the data that enables to detect the evasion attacks.

First, we will compress the size of the input which is N data points into R data points

(' << #). T decision making regarding the poisoning of the data. There are many ways

to compress the size of set of values like down-sampling but these methods will only take

one points from set of points. Here we are trying to extract in a way that each output point

is dependent on the set of all the points it got extracted from and at the same time holds the

characteristics to detect the poisoning of the data. There are again different possibilities like

mean, min and max for compression. The compression we are taking is in terms of smart

meter readings. We will take all the N meter readings and arrange them in a sorted order

and divide them into R bins each of size SW where (, = #/'. Now, we need to extract a

feature from each of the R bins that defines all the meter readings in each bin. The diversity
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index model, says that probability of a meter reading in a given range can help detect data

falsification but for that we need to select an optimal value of SW. This is because if the

value of SW is too small or too large, it will result in over-fitting or under-fitting. To find

the optimal SW, we have defined an objective function that gives the difference of diversity

index scores across compromised and honest smart meters. Taking all the variables as

constant for the calculation of diversity index score by just varying the value of SW, we

have calculated the objective function. The optimal value of SW is where the value of e is

maximum. The Figure 6.4 shows the optimal SW value for the texas data.

4 =

(∑(A�ℎ)
# − " −

∑(A�<)
"

)2
(6.9)
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Figure 6.4. Optimal size of SW

Once we got the optimal SW, we can get the vector X of length R from the input of

N smart meter readings. Mathematically, we use the Bayesian interpretation of posterior

relative abundance to calculate each value of -8. This is shown in Eqn. 6.10.

-8 =
�8 + 1
# + '

where, �8 = number of readings in [(8 − 1) ∗ (,, 8 ∗ (,)
(6.10)



98

Once, we have the extracted feature vector [-1, -2, ..., -8, ..., -'], it is provided as

input to the fully connected neural network. This will result in a binary classification based

on single output value y from the neural network. The neural network is shown in Figure

6.5. If the value of y is closer to 1, it shows poisoning and if it is closer to 0, it shows no

poisoning. The neural network will be trained using the existing data and evasion samples

generated using the generator. The weights of the neural network will be updated using

back-propagation. For this we are using a loss function as shown in Eqn. 6.11. We are using

the sigmoid activation function shown in Eqn. 6.12 for building the discriminator neural

network. Once, this neural network goes through a lot of training samples, the weights of

the neurons will get updated to detect the evasion attacks.

Figure 6.5. Discriminator Neural Network

q(I) = 1
1 + 4−G (6.11)

Discriminator loss = A ∗ (1 − H) + (1 − A) ∗ H

where, A =


1, for poisoned data

0, otherwise

(6.12)
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q(I) = 1 − 4−2G

1 + 4−2G (6.13)

6.6. EXPERIMENTAL RESULTS

We have defined the procedure for the development of generator and discriminator in

the previous section. Now, we will implement the generator and discriminator and analyze

the performance of the system. First, we will show the results of the generator.

The purpose of generator is to create an attack that should be able to get through

the security model. Now, we will show the performance of the generator by comparing the

performance of the security model under attack with and without evasion strategy.
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Figure 6.6. Performance: (a) No Evasion (b) Evasion

The impact of evasion on a real dataset can be seen from Figure 6.6(b). The

performance of classification is worse compared to Figure 6.6(a). This is because the data

is generated in a way to evade the detection method and it is evident from the difference in

performance.

Nowwe investigate whether the success observed in Figure 6.6(b) generalizes across

any margin of false data (X0E6) and attack type. To assess this, we invoke our generative eva-

sion strategy with different input values of X0E6, and generate correspond evasion data. We

repeat this for each attack type: additive, deductive, camouflage, and alternating switching.
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Missed detection rates for additive and deductive attack across X0E6 with a d<0; of

0.3 is shown in Figures 6.7(a) and 6.7(a) respectively. Similarly, Figures 6.8(a) and 6.8(b)

show the results for camouflage and alternate switching attack types respectively, under the

same attack features. From observing the Figures 6.7(a), 6.7(a), 6.8(a), 6.8(b), the red lines

(which correspond to the performance under our evasion strategy) are always showing a

higher missed detection rate, than the blue line (attacks without our evasion strategy).
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Figure 6.7. Performance (a) Additive attack (b) Deductive attack
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Figure 6.8. Performance (a) Camouflage attack (b) Alternate Switching attack

The neural network defined in the discriminator part of the previous section has

been implemented and trained using year 2015 of Texas data and evasion samples generated

using the generator. Figure 6.9 shows the classification performance of discriminator in
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detecting the smart meters that use evasion strategy. The result is shown for X0E6 of 500.

The result shows that we are able to detect 96% of smart meters with just 1.5% False alarm

rate. This is much higher than the trust model’s 40% detection rate at X0E6 of 500.
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Figure 6.9. Performance of Discriminator for Texas data

6.7. INFERENCES

We have presented different types of evasion attacks in smart grid. Then, we have

proposed solutions to handle those attacks. We have used Generative Adversarial Networks

(GANs) based method to create the evasion attack samples using generator and detect

the evasion tactics by training the discriminator with the generated adversarial examples.

Finally, we have demonstrated the importance of the proposed solution by showing the

performance of a machine learning model with evasion strategy. The final experimental

results show that the discriminator can be used as a filter to detect the evasion attacks.
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7. ACTIVE LEARNING BASED DETECTION OF SENSOR FAILURE AND
CONGESTION IN REAL-TIME VEHICULAR NETWORKS

Smart transportation is an essential clog in the wheel that runs current and future

smart cities. It uses two types of communication technologies, Vehicle to Vehicle (V2V)

and Vehicle to Infrastructure (V2I). V2V communication is the wireless interaction and

exchange of information like speed, location, and other information between the vehicles.

In V2I communication, the road infrastructure consisting of IoT sensors collects data of

vehicle speeds in various road segments, analyzes them, and shares the traffic information

with the vehicles. The infrastructure and the vehicles communicate through Dedicated

Short Range Communication (DSRC) protocol. Figure 7.1 illustrates the basic architecture

of road infrastructure in a smart transportation network [60].

The TrafficMessage Channel (TMC) sensors are deployed on various road segments

to capture the ambient speeds as vehicles pass by. Regardless of the type of IoT sensing

end-point, multiple such sensors forward information to a Road Side Unit (RSU). The

aggregated data from the RSU is used to analyze the state of the traffic in real-time and

to provide improved traffic management decisions to the vehicles. Numerous RSUs are

deployed to cover the smart city area. Apart from vehicle speeds, the RSUs also receive

other information (e.g. time, location) and transmit them to an edge/fog computing module

that implements the decision services (e.g., traffic information, selection of the fastest

route). It also supports the smart transportation network with services such as driving

assistance, detection of incidents, roadside assistance locator, road traffic control, and

increasing efficiency of freeway systems. Naturally, the accuracy of the data collected from

such TMC is of utmost importance to make accurate decisions.

There are several scenarios that can produce erroneous data from TMCs. In case

of incorrect reporting of vehicle information such as speed, location can result in incorrect

interpretation of the traffic situation, which might lead to severe traffic jams. For exam-
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Figure 7.1. Architecture of a Road Infrastructure

ple, stuck value anomalies [73] where the sensor gets stuck at a particular sample value.

Calibration errors in these sensors can also cause the reported data to be above or below

the actual reading. Another common reason for faulty data is low battery. Similarly, some

sensor errors can stop data collection altogether. Environmental disasters can also hinder

the ability to supply accurate data from a large fraction of such IoT sensing devices. For

a large community scale IoT infrastructure, we need a scalable and lightweight anomaly

detection technique that can quickly detect these malfunctioning IoT sensors, such that the

maintenance personnel can be dispatched to fix/replace them.

While several theories of anomaly detection [57] and consensus based trust scor-

ing models [60] have been proposed to find the devices whose data is anomalous, there

is a challenge of scalability, when it comes to large community scale smart living IoT

applications such as smart connected transportation. For example, [35] proposed a novel

semi-supervised framework for identifying compromised IoT devices sending falsified data.

However, it uses unsupervised classification and did not have a fixed threshold. Such meth-

ods are highly sensitive to outliers. Similarly, the supervised machine learning approaches

such as decision trees, Support Vector Machine (SVM) require labeling of the complete

training set. This puts a tremendous burden on the infrastructure and large scale com-
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putations also increase the carbon footprint. Ideally, for community scale IoT, we need a

device level anomaly detection classifier that does not need to learn and train over the whole

training data from the full network.

The proposed anomaly detection model has 2 main parts. The first part is the trust

scoring model which gives a score based on the recorded speeds from the TMCs. The trust

scoring model is based on the [35] which is built for smart meters. The second part is

the classification of anomalous TMCs. For this, we proposed an active learning approach

which is a semi-supervised learning algorithm that avoids the need for large sets of labeled

data by employing a technique to identify and prioritize a limited set of labeled data. This

is immensely beneficial for large community scale smart living IoT applications such as

transportation systems having a large number of IoT sensing points. The detection model

is verified with different experimental results using a real-world vehicular dataset from

Nashville [63]. We show that the model is able to detect the traffic incidents and TMCs

that are malfunctioning with an accuracy of more than 90%.

The classification from active learning will be advantageous compared to classifica-

tion based on traditional clustering algorithms such as k-means and decision trees. This is

because the outlying samples have lower priority and will not be considered while learning

the threshold for classification. Active learning also reduces the cost of labeling needed for

training the model compared to supervised clustering algorithms.

The rest of the paper is organized as follows. Section 7.1 defines the anomalies and

their impacts. Section 7.2 presents the threat model and the trust scoring mechanism to

detect the anomalies. Section 7.3 offers the experimental results.

7.1. SYSTEMMODEL

We consider a set of # TMCs that collects the speeds information from the vehicles.

The speed reported by 8-th TMC at time slot C is represented by (8C . We model (8C as the

realizations of a random variable (r.v.) (8 denoting the speed distribution of the vehicles
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of 8-th TMC. We develop a detection model that is deployed at the cloud server to analyze

the measurements of each TMC. The model will be able to detect congestion, accident, or

sensor failures in real-time.

The deviation from free flowing traffic may be due to an accident or congestion

owing to malfunction of speed sensing. We consider these as anomalies. In this work, we

propose a model to detect such anomalies at the TMC level in real-time to take necessary

actions. Let’s consider " TMCs record an anomaly of the total # TMCs. We define

"/# = d<0; ∈ [0, 1). For example, d<0; = 0.05, means 5% of the total number of TMCs

have readings that deviate from the free-flow either due to heavy traffic, accident, or sensor

failure. A sensor failure can result in following situations:

Stuck Value Anomaly: In case of sensor failure, the reporting value gets stuck at the

value in which the sensor was last correctly working. This results in reporting of the same

value which is not the true value.

Calibration Anomaly: If condensation builds up on the sensor, it can impact the

sensor calibration accuracy and result in reporting of false data. The calibration anomaly

can result in increased or decreased speeds compared to the true value.

Omission Failures: In this case of sensor failure, the TMC will stop reporting. This

can be easily detected as the records will be empty for that particular TMC.

Depending on the average speed, the anomalies could be classified as deductive or

additive based on the deviation from the free-flow. For example, for the deductive anomaly

of a TMC, the actual speed of information (8C from the 8-th TMC at time C will be lower than

the free-flow situation. These anomalies are possible under congestion due to heavy traffic,

accident, or sensor failure. The additive anomaly is possible under the calibration error as

this type of sensor failure can report any false value.
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We denote X0E6 as the average margin of deviation from the free-flow for each TMC.

It is the average of all XC values for a TMC in a given time frame. Note that our model

does not use specific vehicle information rather uses the collection of speed information of

multiple vehicles captured at the TMC level.

7.2. PROPOSED APPROACH

The detectionmodel consists twomain steps. The first step is the scoringmodel. The

second step is classification. In the scoring model, a trust score will be calculated depending

on the vehicular readings of each TMC. In the second step, we use active learning model

to classify the benign/non-anomalous TMCs from anomalous ones. Our method is divided

into the following sub-modules: (1) Trust Scoring model, (2) Selection of Sparse Manual

Labels and Initial Threshold, (3) Priority Scoring of TMCs, (4) Priority Score enabled

Final Threshold Selection. The sub-modules 2-4 deal with the classification based on active

learning.

7.2.1. Trust Scoring Model. The trust scoring model will be used to identify the

TMCs reporting the anomalous data by assigning a score depending on the speeds recorded.

The trust score is calculated for each TMC over a time window ) (< 2 hours). The trust

scoring model starts with the discrete rating criterion that assigns a rating level to each TMC

reading, by comparing proximity of its reported data (8C at time slot C with the historical

(previous time frame) free-flow mean consensus `� over the time window. The absolute

difference between the (8C for any TMC 8 and the `� , |(8C − `� | will be used along with

the historical standard deviation (f�). The discretized rating level for each TMC reading

denoted by A8C is given by Table 7.1, using the empirical rule for Gaussian distributions to

assign (8C as belonging to one of the 4 possible rating levels. The highest rating 4 is closest

in terms of proximity to `� , and similarly lower ratings are obtained if the TMC’s data is
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Table 7.1. Discrete Rating Levels

Scenario of (8C Rating (A8C)
|(8C − `� | ≤ f� 4

f� < |(8C − `� | ≤ 2f� 3
2f� < |(8C − `� | ≤ 3f� 2

otherwise 1

further from the `� . Over the time window ) , all the discrete ratings over time frame ) for

each TMC 8 is collected to form a rating vector sequence ®A8B>AC sorted in descending order

of discrete ratings.

Most of the vehicles will be going closer to the mean free flow speed. So, under

no anomalies, the most common and highest rating level is 4 followed by all others. The

sign of the discrete rating is always positive as in the folded Gaussian, the magnitude of

difference |(8C−`� | is the only thing that matters. It doesn’t impact if the reading is greater or

lesser than the mean. Intuitively, in case of any accident/congestion, TMCs will have more

lower ratings leading to lesser weights and ultimately lower trust score. If the deviation is

larger, it assigns a non-linearly decreasing density value based on the shape of the Gaussian

distribution. We represent this as FC . This is calculated from GC and 2FC

GC = 1 + ( − 1)C
() − 1) ∀ C ∈ ) (7.1)

2F8C =
1

f8
3A

√
2c
4
− (GC−`�' )

2

2(f8
3A
)2 (7.2)

F8C =
2F8C∑)−1
C=0 2F

8
C

(7.3)
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All the density values are combined to form a weight vector ®, 8 for each TMC 8 as

in Eqn. 7.4. The aggregate weight rating '8 of the 8-th TMC will be a scalar value between

1 and 4 resulting from the dot product of weight vector ®, 8 and sorted discrete rating vector
®A8B>AC as shown in Eqn. 7.5.

®, 8 = [F81, F
8
2, ..., F

8
C , ...] ∀ C ∈ ) (7.4)

'8 = ®A8B>AC · ®, 8 (7.5)

As the ratings will be positive regardless of whether the reading is greater or lesser

than the rating level 4 are treated as the same random variable. Hence, the aggregate

weighted ('8), when interpreted as a trust score will also follow a folded Gaussian shape.

This meaning '8 = 4 represents the highest trust score followed by an exponential reduction

of trust, as '8 decreases. We used the inverse power law inspired kernel trick to transform

the '8 that ranges from 1 to 4 into a final trust value, )'8, for each TMC 8 between 0 and 1,

as shown in Eq. 7.6. The value of K depends on the number of rating levels (4, in our case).

)'8 =
1
( )[ ('

8)[ (7.6)

7.2.2. Selection of Sparse Manual Labels and Initial Threshold. The folded

Gaussian model gives a trust score ()'8) for each TMC 8 ∈ # . The TMCs with lower

trust scores imply anomalous behavior because they result in lower rating labels. The

classification is done by determining a linear threshold that separates the anomalous TMCs

from the benign ones. The TMCs with trust scores higher than the threshold will be

considered as benign whereas the ones less than the threshold will be marked as anomalous.

In this section, we will discuss the selection of the manual label set and initial threshold

that initiates the active learning process.
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Consider the trust scores of all the # TMCs. First, trim out U% of the lowest and

highest trust scores to reduce the influence of extreme points on the learning process. From

the set of remaining TMCs, we pick a subset &1 verified with no anomalies; which forms

the first class (denoted by blue dots of size |&1 | = 10 in Figure 7.2). Then, we pick a subset

of TMCs of size &0 with verified presence of congestion, stuck value anomaly, and traffic

incidents (denoted by red stars of size |&0 | = 10 in Figure 7.2) &0. The verification is

allowed by a ground truth data set available fromNashville Police and Emergency Response

Units [63].

The combination of &0 and &1 (&0 ∪ &1) from the training set forms the initial

sparse set of TMCs of size & that requires manual labeling. For illustration, 10 anomalous

labels and 10 benign labels are shown in Figure 7.2 making |& | = 20 labels. For the rest

of the TMCs (denoted by green marker in Figure 7.2), we have scores from the training,

but no information on whether they are benign or anomalous. The challenge is to learn the

accurate threshold without knowing the label status of most of the TMCs in the network. This

exemplifies the power of our approach for community scale smart living IoT applications.
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Figure 7.2. Initial Manual Labeling of few TMCs.

Now, we use the set &, to calculate the initial threshold (denoted as )�8=;) using

Support Vector Machine (SVM) with a linear kernel. The rationale for using a linear kernel

is due to the fact that the scores are distributed indicate that they are linearly separable.
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7.2.3. Priority Scoring of TMCs. Given the initial threshold )�8=; and the sparse

labeled set &, we need to iteratively find the most appropriate training data points of #

TMCs that will enable the learning of the final threshold ()� 5 =;) which in turn will be used

for classification in the test set. The selection of important data points for each iteration

of active learning is achieved via priority scoring which uses least confidence to calculate

the scores. These newly selected data points will be used to keep updating the threshold in

each iteration. This process ends when the threshold remains unchanged in two consecutive

iterations.

In least confidence, the data points whose scores are neither too high nor low end

up with higher priority scores compared to extreme scores. For example, the data points

among the highest trust scores and least trust scores have higher probability to belong to

the true benign class and anomalous class respectively. However, the data points closer to

the current threshold (at any iteration) cannot be certainly determined whether they belong

to one class or the other. Thus, they have the least confidence or paradoxically, the highest

priority score (denoted by !�). These higher priority data points play a proportionally

more crucial role in the determination of the final threshold.

To calculate the priority scores, we need to have the probability of each TMC 8

belonging to anomalous class (%80) and benign class (%81). The probabilities of each class is

based on the trust score ()'8) of the TMC 8 and the )� ( 9) is shown in Eqn. 7.7 and Eqn.

7.8. When a data point is equal to the threshold, the probability that data point belongs to

either class is 0.5. As the data point gets farther from the threshold, the probability that

data points belongs to certain class increases. The least confidence priority score (!�8 ( 9))

of TMC 8 and iteration 9 is calculated from %80 ( 9) and %81 ( 9) as shown in Eqn. 7.9. The

priority score will be higher for TMCs with trust score closer to the threshold. For example,

consider )� ( 9) = 0.55 and two TMCs with trust scores )'1 = 0.5 and )'2 = 0.9, the

priority scores will be !�1 = 0.45 and !�2 = 0.11 respectively. So, the first TMC will be

picked over the second for the set / because of higher priority score.
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%80 ( 9) =


1
2 −

)'8−)� ( 9)
2×(1−)� ( 9)) , If )'8 > )� ( 9)

1
2 +

)� ( 9)−)'8
2×)� ( 9) , Otherwise

(7.7)

%81 ( 9) = 1 − %80 ( 9) (7.8)

!�8 ( 9) = 1 −max(%80 ( 9), %81 ( 9)) (7.9)

7.2.4. Priority Score based Final Threshold Selection. The manual labeled set

& and initial threshold ()�8=;), are input to the calculation of final threshold )� 5 =; . Active

learning is an iterative approach and slowly corrects the threshold. The change in threshold

leads to change in the set of appropriate data points. We represent the changing set with

/ ( 9) for iteration 9 .The active learning starts with )�8=; . It continues using the following 6

steps until we get the final threshold. The iteration for active learning in Algorithm 1 (line

4-9) is explained below:

1) The current threshold ()� ( 9)) will be used to calculate the priority score (!�8)

of each TMC 8 using Eqn. 7.9.

2) Find the set / ( 9) with TMCs having highest |& | priority scores calculated from

step 1.

3) Manually label the unknown data points from the set / ( 9) using ground truth

information.

4) Increment 9 by 1

5) Using the trust scores of TMCs from set / ( 9 − 1), the threshold ()� ( 9)) will be

calculated using SVM.
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6) If)� ( 9) is different from)� ( 9−1), go to step 1. Otherwise the current threshold

)� ( 9) will be the final threshold )� 5 =; .

Algorithm 1 Finding threshold using Active learning
1: Input: &, 9 = 1, )� ( 9) = )�8=; , )� (0) = 0

2: Output: )� 5 =;

3: while )� ( 9) ≠ )� ( 9 − 1) do

4: Calculate !� for all TMCs using )� ( 9)

5: / ( 9) = Top |& | TMCs with highest !� values

6: Query the unknown labels of / ( 9)

7: 9 = 9 + 1

8: )� ( 9) = SVM(/ ( 9 − 1))

9: )� 5 =; = )� ( 9)

Optimal size of Q: & is the set of TMCs considered for manual labeling and finding

new threshold in each iteration of the active learning model. The classification performance

of the model is dependent on the size of & which is a hyperparameter that can impact the

final threshold )� 5 =; . If & size is too small, it can result in under-fitting and a bigger size

of set & can result in over-fitting. So, we need to find the optimal value of Q.

The measure of optimal size of & can be done using an error function � that will

be minimum under best classification. The summation of the priority scores !�8 (&) of

set of mis-classified TMCs . will be lower under best size of & as the number of mis-

classifications will also be lower. The error function for each value of & will be summation

of priority scores calculated using )� 5 =; for the set of mis-classified TMCs. It is shown in

Eqn. 7.10. The error function for different values of Q can be seen in Figure 7.3. From the

result, we can say that the optimal size of Q is in range of 10-20.
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� = arg min
|& |

(∑
!�8 (&) ∀8 ∈ .

)
(7.10)

Figure 7.3. Error rate under different values of &.

7.3. EXPERIMENTAL RESULTS

Description of Datasets: We have used vehicular dataset from Nashville, Tennessee

to validate the proposed solution. Out of the 4months of available data, We used the first two

months (January, February) for training the model. March data is used for cross-validation

and April data is used as the test set. The results from this section are considered from 60

TMCs belonging to a 10 different RSU clusters.

7.3.1. Trust Score Classification of TMCs. The trust scoring model is applied to

the test set of the Nashville dataset. The active learning parameters we got from the training

and cross-validation will be used for classification. The test data contains TMCs reporting

wrong information under both additive and deductive anomalies. The ground truth for the

accidents and congestion are also available to test the detection accuracy.

A higher trust score implies the TMC is under a normal behaviour. The lower trust

score will be a result of either congestion or sensor failure. Congestion will always be a

deductive anomaly. The sensor failure can result in either additive or deductive anomaly.

The trust model generates a score for all the TMCs depending on the readings. We then
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used the )� value from active learning for the classification. The Figure 7.4(b) shows the

performance of trust scoring model in detecting the additive anomalies caused by the sensor

malfunction.

The two main possibilities for congestion are accident and heavy traffic. The

congestion can be differentiated from the deductive anomaly due to sensor failures by

analyzing the speed information of the vehicles. The congestion will result in speeds with

close proximity from different vehicles in the selected time frame.So, the standard deviation

will be lower in case of congestion. For a sensor failure, this cannot be guaranteed. Figure

7.4 shows the performance of the model under different deductive anomalies. The result

also shows the cause of anomaly for the TMCs that registered lower trust scores whether it

is congestion or sensor malfunction.

� �� �� �� �� �� 	�

�����

���

���

���

��	

��


���

�
��
��
��
��
��

�����������������
�������������

(a)

� �� �� �� �� �� 	�

�����

���

���

���

��	

��


���

�
� 
��
��
��
�� ����������� �����

����������
����������� ��

(b)

Figure 7.4. Classification of Anomaly: (a) Additive (b) Deductive

7.3.2. PerformanceAnalysis. The time to detection of anomalies is a crucial factor

in vehicular networks. The accidents and congestion should be detected immediately to

warn the other vehicles to avoid the congested routes. The performance must be good at

lower detection time for detecting the anomalies. Figure 7.5(b) shows the performance of

the model with the detection time ranging from 5 minutes upto 1 hour. The result shows

the proposed model is able to detect the congestion and accidents with an accuracy of over

85% in only 5 minutes.
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Figure 7.5. Performance (a) Time to detection (b) Type of failure

The active learning provides advantage of reduced labelling cost compared to su-

pervised classification models. In comparison with unsupervised classification models, the

performance should be better. The figure 7.6 shows the classification performance using

both k-means and active learning.
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7.4. INFERENCES

In this work, we have presented an anomaly detection model for the TMCs. The

anomaly could be any abnormal traffic incident or due to TMC malfunction. We used the

folded Gaussian trust scoring model to generate the trust score for each TMC depending

on its measurements. We applied an active learning approach to identify the TMCs with

anomalous behavior. This helps to classify any traffic incidents in near real-time as the

proposed model is able to detect the anomalies within 10 minutes with good accuracy. In

future we will extend the model to distinguish the reason for congestion. This would help

the network to take the required safety measures accordingly.
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8. ONGOING RESEARCHWORK

8.1. DETECTION OF POISONING ATTACKS IN SMART GRID

Adversarial machine learning (AML) is a technique that fools the machine learning

models with the malicious input. The resulting performance of the machine learningmodels

will not be good when the adversary employs AML. One of the common types of AML

techniques is poisoning attacks. In poisoning attacks, the adversary will manipulate the

training data on which the machine learning models rely on. The changes will be done in

a way that leads to the bad performance of the machine learning model. In this paper, we

showed two types of poisoning attacks called random poisoning attacks and smart poisoning

attacks. We showed the impact of poisoning attacks on the machine learning model we have

implemented to detect the false data in smart grid. Then, we have proposed a Generative

Adversarial Network (GAN) based solution to detect different kinds of poisoning attacks.

Our proposed solution is validated with the help of two real smart metering datasets from

Texas and Ireland.

8.2. ANOMALY DETECTION IN DETECTION IN AUTOMATIC GENERATION
CONTROL (AGC)

Automatic Generation Control (AGC) is a critical control function of the power

grid. It controls the amount of power generation and maintains the balance between power

generation and load distribution, which keeps frequency at the scheduled value (i.e. 60 Hz

in the U.S.). AGC periodically receives information about the power system’s frequency

and tie-line power flow between neighboring balancing areas. Using the current models

proposed for smart grid, we want to implement the anomaly detection models for AGC.
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9. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation we studied the security issues in smart grid and proposed trust

scoring model to detect different kinds of attacks in smart grid. The proposed solution is not

good under stealthy attacks in range of 100W. For this, offered a novel information-theoretic

anomaly scoring technique that showed successful detection of smart meters launching data

falsification with very low to high attack strengths and attack scales are possible, using AMI

as proof of concept. The proposed method’s accuracy generalizes well across two different

datasets, with completely different years of data collection, countries, sizes of micro-grids.

The conclusion is that the method is a way of inferring security status in terms of data

integrity where inherent variances are higher than impactful attack strengths. Additionally,

we conclude that for a cognizant attacker, the undetectable strategy space in smart energy

AMI is reduced from what was achieved by previous works, without a drastic increase in

false alarms. We have proposed some models to deal with evasion attacks. The detection of

sensor failures and congestion in real-time transportation networks has been proposed and

tested using real-world data from Nashville.

As part of future work, we will study how to strengthen the model under training

data poisoning attacks and give theoretical estimations of expectation of change in diversity

index score as a function of various attack parameters, and check on whether retraining over

the untrained attacks improves missed detection performance. We also want to check if the

proposed diversity index model generalizes for other parts of smart city like autonomous

vehicles.
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