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ABSTRACT 

Elemental carbon has important structural diversity, ranging from nanotubes 

through graphite to diamond. Previous studies of micron-size core/rim carbon spheres 

extracted from primitive meteorites suggest they formed around such stars via the 

solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating 

to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon 

vapor in the lab. The long-range carbon bond-order potential was used to computationally 

study liquid-like carbon in (1.8 g/𝐜𝐦𝟑) periodic boundary (tiled-cube supercell) and 

containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-

annealing nucleation and growth simulations using molecular dynamics were done to study 

nucleation seed formation, structural coordination, and the latent heat of fusion. Atomistic 

results, which agree with independent DFT studies, show an energy preference for 

pentagon nucleation seeds, sp and sp2 coordination, and a bond defining gap in nearest 

neighbor histograms. Latent heat of fusion values of 𝟏. 𝟎𝟏𝟓 ± 𝟎. 𝟎𝟕𝟖 eV/atom (𝟏. 𝟏𝟕𝟖 ±

𝟎. 𝟎𝟓𝟑 eV/atom at fixed pressure) were determined which agree with values previously 

determined by separate experimental and computational studies. Analytical models of 

nucleation and growth derived from classical nucleation theory links the onset of 

solidification to the interface/bulk energy ratio, predict cluster size distributions, and 

suggest a role for saturation during slow (e.g. stellar atmosphere) cooling. The low-pressure 

analytical model predictions for graphene sheet density and mass weighted average are 

supported by experimental observations of pre-solar and lab-grown specimens.  
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1. INTRODUCTION 

1.1. INTEREST IN ELEMENTAL CARBON 

Carbon’s structural diversity is one aspect that makes it interesting to study in many 

different fields. It has intriguing solid-state forms ranging from amorphous phases to 

graphite and diamond. Liquid carbon is thought to comprise of roughly 17% of Uranus and 

Neptune’s total planetary mass [1]. A metallic liquid phase could exist within the deep 

interiors of both planets [2]. These metallic liquid phases could be the catalyst that leads to 

those planets’ high magnetic moments. Difficulties arise experimentally in the formation 

of liquid carbon due to the high temperature and pressure levels needed. Requirements such 

as high pulsed laser heating of diamond-like carbon or graphite along with immediately 

measuring the rapidly expanding and boiling liquid phase are not trivial for experiment [3, 

4, 5]. After cooling to ambient temperatures, a wide variety of structures have been reported 

to form; nanoclusters of diamond and graphite [4], carbyne chains [5], and novel super-

dense phases [6].  

Pre-solar specimens extracted from meteorites have recently inspired some 

interesting results on the condensation of liquid carbon at low pressure, as well as its 

subsequent and solidification. Submicron graphite-coated spheres containing unlayered 

graphene have been observed via transmission electron microscopy imaging and 

diffraction [7]. Electron phase contrast imaging of edge-on sheets has moreover suggested 

the presence of faceted penta-cones. This, and subsequent laboratory synthesis work, 

suggest that carbon vapor at low pressure condenses first as liquid droplets which, if cooled 

slowly, form unlayered graphene sheets in an otherwise disordered matrix. It also suggests 
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that pentagonal loops may play a role in the nucleation of those graphene sheets, raising 

the questions such as: What loops are more likely to form during the solidification of liquid 

carbon? And how does the nucleation of a supercooled low pressure carbon work? Before 

we can answer these questions, we need to first understand the different carbon allotropes 

and the pre-solar grains they can come from. As well as the theory and different methods 

that can be used to study these phenomena.  

1.2. CARBON ALLOTROPES 

There are eight well known and highly studied allotropes of carbon. Six of which 

can be seen in Figure 1.1. When carbon atoms are under standard temperature and pressure 

conditions, it has an interesting preference to have each atom bond to three nearest 

neighboring atoms 120 degrees apart. These bonds form sp2 hybridization hexagonal sheets 

making up what is known as graphite. The three carbon atoms form strong covalent bonds 

with lengths of 1.42 Å. A weak Van der Waals attraction to the layer above and below stays 

stable with an interplanar spacing of 3.35 Å. With only three of the four bonding sites 

occupied, the fourth electron can migrate freely giving graphite a high electrical 

conductivity. Phonons will propagate quickly along the tightly bound planes but are slower 

to travel from one plane to another making the acoustic and thermal properties of graphite 

highly anisotropic giving graphite a high thermal conductivity and stability. These 

properties allow for widespread use as electrodes and refractories in high temperature 

material processing applications.  
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Figure 1.1. Carbon Allotropes Structures [8] (Orgav et al.). 

 

For carbon under high pressures, each atom will bond to four other atoms forming 

a sp3 hybridization carbon diamond cubic cell. This diamond cubic crystal structure will 

have a repeating pattern of 8 atoms. The crystal lattice of the diamonds forms a face-

centered cubic which packs the atoms as tightly together as possible. The tight packing 

makes the diamond lattice very rigid due to strong covalent bonding between the atoms. 

Research had found that with this structure came the highest thermal conductivity for any 

bulk material above 100 Kelvin (K) [9]. 

When the diamond cubic cell has a hexagonal lattice, it is called lonsdaleite. This 

hexagonal diamond structure was first discovered in the Canyon Diablo meteorite of 1967 

[10]. The lonsdaleite forms from graphite transforming into diamond but keeping the 

hexagonal symmetry when uniaxial pressure is applied to liquid carbon during its 

solidification [11]. Recent studies have predicted that lonsdaleite exhibits many excellent 
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mechanical properties better than diamond that can be used in areas of high-pressure 

research and applications [12]. On the other hand, nanodiamonds found in variety of 

extraterrestrial materials [13] or produced in the lab of type type Ia,b can have different 

impurities, such as nitrogen, within its bulk. The nitrogen impurities can replace a carbon 

atom within the diamond lattice forming nitrogen vacancy (NV) center point defects which 

have many interesting quantum mechanical properties. The stability of these quantum 

mechanical properties at room temperature and higher make them promising candidates 

for room temperature quantum sensing and computing devices [14-16]. 

One structure that was posited for many years, but not detected in nature [17] and 

outer space [18] after accidental synthesis [19], consists of a carbon molecule whose single 

or double bonds form a closed or partially closed mesh known as a fullerene. The discovery 

of the fullerene was able to expand the known allotropes of carbon from the limited amount 

graphite, diamond, and amorphous carbon (soot and charcoal). Fullerenes can take up 

different shapes such as hollow spheres, ellipsoids, tubes, and many others. The hollow 

tube is better referred as the carbon nanotube which is a hot topic due to being able to 

exhibit high electrical conductivity, exceptional tensile strength, high thermal conductivity, 

and some can even be great semiconductors. 

An extreme member of the fullerene family will have the mesh flattened out with 

hexagonal rings making up a singular layer of graphite or better known as graphene [20, 

21]. Graphene is part of a wide-reaching materials research topic which is currently rising 

in popularity known as a 2-dimensional material. Each carbon atom is connected to three 

nearest neighbors and form a sigma bond. The sigma bond is the strongest type of chemical 

covalent bond formed by head on overlapping between atomic orbitals. One electron is 
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contributed to the conduction band for the whole sheet. The conduction bands of graphene 

make it a semimetal with unusual electronic properties such as charge carriers in graphene 

show linear, rather than quadratic, dependence of energy on momentum, and field-effect 

transistors with graphene can be made that show bipolar conduction [20, 22]. 

One carbon structure that’s stability has been a discussion of debate is a chemical 

structure that repeats as a chain of carbon atoms known as carbyne. The long chains of sp-

hybridized carbon atoms are joined by alternating single and triple bonds or by consecutive 

double bonds as a one-dimensional structure. Carbyne has been detected naturally in 

interstellar dust and meteorites [23]. Studies have reported a long chain up to 44 carbon 

atoms synthesized experimentally in the lab [24] as well as synthesis in lab and from 

computational methods [25, 26]. These studies are showing carbyne to be a prominent 

structure in the liquid phase of carbon. 

The different allotropes of carbon are stable or meta-stable depending on their 

current phase. The phase diagram in Figure 1.2 gives us the breakdown of the stable and 

meta-stable phases. Temperature values need to be greater than 4600 K at normal 

atmospheric pressures for carbon to be vapor and at high pressures for carbon to be liquid. 

These are extreme states making graphite and diamond the most common solid-state form 

of carbon as well as the most common form in general. As carbon heats up at standard 

pressures, its most direct conversion is from the solid phase to the vapor phase and vice 

versa when cooling down at standard pressures. Having the pressure be in the range of 0.1 

to 0.01 Gpa during the cooling or heating process will have carbon enter a meta stable 

liquid phase during the conversion from vapor to solid or vice versa. The meta-stable liquid 

phase tends to have a short lifetime. The coexistence of all three phases is known as the 
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triple point, which appears at temperatures around 4600 K and roughly 0.01 Gpa. The 

nature of carbon allows for interesting supercooling phenomena. Studies into carbon’s 

crystallization temperature have shown that it could have a supercooling threshold below 

30% of the melting temperature [27]. 

 

 

Figure 1.2. Carbon Phase Diagram [27].  

 

Carbon’s liquid phase has been a difficult phase to study and has sparked the 

interest of many scientists. Figure 1.3 shows a detailed modern understanding of the carbon 

phase diagram. Clear changes to the shape of the graphite melting curve have been 

predicted. At a temperature of 4800 K and pressure of 5 Gpa, the graphite melt line shows 

an inflection point and the slope of line can be represented by the Clapeyron equation,  
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𝑑𝑃

 𝑑𝑇௠ 
=  

∆𝑆௠

∆𝑉௠
.                (1.1) 

 Here P is the pressure, Tm is the melting temperature, ∆𝑆௠ is the entropy change, and ∆𝑉௠ 

is the volume change. The previous studies suggested that the slope of the line changes in 

the presence of the inflection point at 4800 K under high pressure [28, 29].  

The slope of the graphite melting line at low pressure is positive indicating the 

volume change should also be positive which points to the liquid being less dense than 

graphite. At higher pressures, the sign of the slope of the graphite melting line flips to 

negative because of the volume change is negative suggesting that the liquid is much denser 

than graphite. This would allow the liquid phase to go through a first-order liquid-liquid 

phase transition (LLPT) from a low density to a higher density [30-32]. This phase change 

would most likely happen in tetrahedral liquids [33-39]. The structures of the two liquid 

phased is important for the transition and has inspired the work here as well as other 

researchers to determine ways of studying this structure. This will be discussed more in 

depth in later sections. 

 

Figure 1.3. Updated Carbon Phase Diagram. 
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The phase diagrams of Figures 1.2 and 1.3 were studied by looking at micron scales 

and larger. Work looking at the nanometer scales to determine the particle cluster size 

effect on carbon phase diagram showed some possible changes to the carbon phase diagram 

[40].  Figure 1.4 shows smaller sized carbon clusters in a containerless setting at low 

pressures can be stable as a liquid well below the usual triple point for carbon. The nano-

scale phase diagram shows that as the cluster sizes decrease, nano-diamonds are the stable 

phase even at low temp and pressures. 

 

Figure 1.4. Nanoscale Carbon Phase Diagram. T-P phase diagram for bulk 
and nanocrystalline clusters of diamond. The areas are marked D = 
diamond, G = graphite, and L = liquid. The solid line denotes the bulk, the 
dashed is for 5 nm diameter clusters, and the dotted is for 2 clusters [40]. 
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An extension of the phase diagram to show the vapor curve can be seen in Figure 

1.5. The figure characterizes the bulk phase (solid line), the 2 nm cluster size carbon (dot-

dashed line) and adds the vapor phase curve (red-dashed line) [41]. Denoting the points of 

½ and 2/3 of carbon melting temperature shows the carbon vapor can condense as a stable 

liquid during the cooling process before solidification at low pressures. Experimental 

studies using laser ablation in liquid showed synthesis of nano diamonds from graphite 

under water confinement [42]. It was proposed that nano diamonds solidified from a 

supercooled liquid carbon state.  

 

 

Figure 1.5. Log-Log Nanoscale Carbon Phase Diagram. P vs. T composite of the 
carbon phase diagram size effects (bulk solid, 2nm dot-dashed), combined with a 
carbon vapor pressure curve (dashed). D stands for diamond, G for graphite, L for 
liquid carbon, and V for carbon vapor, with color blue for the D-G transition, grey 
for the D-L transition, and black for the G-L transition. On heating carbon at low 
pressure sublimates before melting to the right of the red dashed line, even though 
on cooling the vapor may still condense as “supercooled” liquid before 
solidification at temperatures near those dotted green lines. 
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1.3. PRE-SOLAR GRAINS 

Studies into carbon have been done widely on laboratory synthesized or naturally 

occurring forms of carbon. Another method for studying carbon can be by extracting the 

carbon from extraterrestrial materials [43].  Extraterrestrial materials are celestial objects 

which are sub categorized for the purpose of study on earth as cosmic dust, pre-solar grains, 

moon rocks and meteorites. A particular meteorite shown in Figure 1.6 was found in 1969 

and named ‘Murchison’. Scientists were able to extracts silicon-carbide and date the 

meteorite at roughly 7 billion years old making it the oldest known material on earth [44]. 

 

 

 

Figure 1.6. Murchison Meteorite. Landed in Australia in 1969. 

 

Pre-solar grains are some of the most interesting out of the different types of 

extraterrestrial materials as they are the most primitive minerals in solar system. The 
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formation of these grains occur flow out from red giant star atmospheres or during 

supernovae.  The process of the pre-solar grain formation can be described as follows. The 

dust particles being pushed out via radiation pressure from many red giant stars and 

supernovae form a molecular cloud that ultimate forms a stellar nebula. Escaping grains 

will cool and solidify into celestial and interplanetary objects.  

Pre-solar grains are comprised of various types of elements with different isotopic 

ratios. Carbon based structures and compounds can range from, graphite and diamond-

based, titanium carbide, silicon carbide, silico nitride, nanodiamonds and much more. 

Variations of minerals within the different pre-solar grains imply origins in different parent 

stars and give information about stellar mixing. This could point to our solar system 

condensing form multiple stellar sources. Further studies using pre-solar grains to 

characterize the physical and chemical properties of the different possible parent star 

atmospheres [45, 46].  

Carbonaceous pre-solar grains have been a topic of intense studies for many years. 

Research has found that carbon atoms formed in red giant star atmospheres during the first 

five billion years of our galaxy’s lifetime. The carbonaceous pre-solar grains included 

graphite-only particles formed around carbide “seeds”, micrometer-sized silicon carbide 

crystals, and nanodiamonds [47-50]. Carbonaceous pre-solar grains extracted exhibited 

KFA1 (2.05–2.10 g/cm3), KFB1 (2.10–2.15 g/cm3), and KFC1 (2.15–2.20 g/cm3) density 

fractions.  

The high-density KFC1 fractions have well-ordered onion-like graphite rims 

condensed around a frozen liquid core from supercooled carbon droplets from the vapor 

phase. These micron-sized particles contain “slow neutron process” isotopes indicating 
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formation in asymptotic giant branch (AGB) stars after dredge-up of carbon formed in the 

star’s interior [51]. The low-density KFA1 fraction consist of disordered graphite that point 

to origins from supernovae.  

KFC1 grains were examined by diffraction and electron phase contrast (lattice) 

imaging using a 300kV Transmission Electron Microscope (TEM). The electron powder 

diffraction patterns of a selected area of these pre-solar grains gave evidence that the 

graphite onion cores contain unlayered graphene sheets with 40 Å coherence widths. The 

lattice imaging confirmed this and suggested further that the sheets nucleated to form 

faceted pentacones [52-54]. 

Figure 1.7a shows a false color slice of the core-rim pre-solar graphite onion 

extracted from Murchison meteorite. The field width of the false color image is on the order 

of a micron. Figure 1.7b shows a high-resolution TEM image of intersecting line segments. 

These intersections are made up of edge-on graphene sheets around 2–5 nm in length. They 

intersect at an angle between 39o – 65o. The electron diffraction only showed (hkO) 

spacings with the high frequency tails expected for atom thick sheets. There was also an 

absence of any graphite (002) “layering” lines. The intersecting atom thick graphene sheets 

must have formed faceted pentacones. 

Synthesis of core-rim (& core-only) particles can be done in an “evaporating carbon 

oven” but graphene-sheet coherence widths turn out to be much smaller (around 1 nm). 

Figure 1.8 demonstrates the mass density versus nearest neighbor distances of elemental 

carbon phases. The tetrahedral (sp3 coordination) bonding of diamond and graphite (sp2 

coordination) has the smallest nearest neighbor spacing of 1.45-1.52 Å. This small nearest 

neighbor distance gives very strong covalent bonding. Experimental studies report a 
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density estimation for liquid carbon around 1.8 g/cmଷ end for unlayered graphene found 

in the core of pre-solar core-rim graphite onion [25, 52]. 

 

 

Figure 1.7. TEM Imaging of Carbonaceous Pre-Solar Grain. (a) A false-color TEM 
image of a slice from a graphitic onion particle from the Murchison meteorite with 
micron field width. (b) TEM image of thin onion core material with white lines 
denoting intersecting graphene sheets. 

 

 

Figure 1.8. Carbon Mass Density Versus Interatom Spacing. The orange dashed 
line indicates the tetrahedral bonding of diamond face centered cubic arrangement. 
The dark blue line represents the coordination 12 cubic close pack arrangement of 
fcc-carbon and icosahedral symmetry of clusters. The density range 1.2 g/cmଷ – 
1.8 g/cmଷshown in green is for liquid carbon. 



14 

 

Due to extreme conditions, like high temperature and high pressure, needed to study 

liquid carbon in the lab, analytical modelling and computer simulation methods become an 

important role to understand the formation & structure of carbonaceous pre-solar grains. 

The experimental and pre-solar observations of graphite-onions and unlayered graphene 

gives a good starting point to direct the analytical and computational methods of future 

work. 

1.4. NUCLEATION AND SOLIDIFICATION 

1.4.1. Nucleation. When referring to nucleation, it is typically defined as the first 

step in the formation of the either of two processes: the formation of a new thermodynamic 

phase or a new structure via self-assembly or self-organization. The process of nucleation 

determines how long an observer must wait before the new phase or self-organized 

structure will appear. First-order phase transitions can be studied by understanding their 

nucleation process. Nucleation is known to be very sensitive to impurities within the 

system. Due to this sensitivity, it is important to distinguish between the types of 

nucleation, heterogeneous and homogeneous. Heterogeneous nucleation will occur at 

nucleation sites on the surfaces the system [55]. Homogeneous nucleation will occur away 

from surface becoming seeds for further heterogeneous nucleation. 

Nucleation can usually be described as a stochastic (random) process. This means 

that two identical systems could have nucleation occur at different times [55-57]. The 

standard theory that describes the behavior of nucleation of a new thermodynamic phase is 

classical nucleation theory (CNT). CNT states that for a new thermodynamic phase, such 

as the formation of ice in water, if there is no evolution in time and the transition occurs in 
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one step, then the probability that nucleation has not occurred will be represented by a 

Boltzmann exponential factor. CNT is a widely used theory to approximate the rate of the 

exponential decay especially how they vary due to temperature. CNT is usually given by 

the following form [58], 

𝑟∗ ≅ ൬𝑁
𝑘஻𝑇

ℎ
൰ 𝑒𝑥𝑝 ቈ−

(∆𝑓∗ + ∆𝐹∗)

𝑘஻𝑇
቉.         (1.2) 

Here 𝑁 is the number density of nuclei per unit volume, 𝑘஻ is the Boltzmann constant, T 

is the temperature, h is Planck’s constant, ∆𝑓∗ the free energy of activation for short range 

travel across the interface to the new phase, ∆𝐹∗ is the free energy needed to create a 

critical-size cluster. 

 With heterogenous nucleation occurring much more than homogeneous nucleation, 

it can be observed that the heterogeneous nucleation will start when rate of homogeneous 

nucleation is essentially zero [55,57]. This switch between the two types of nucleation 

predicts nucleation decay due to a free energy barrier. This barrier is due to the cost, or 

penalty, of forming the surface of the growing nucleus. CNT makes several assumptions, 

such as the microscopic nucleus as a macroscopic droplet with a well-defined surface. A 

nucleus can be on the order of ten molecules across and treating it as a small volume with 

a surface is not always clear. Though the assumptions can be difficult to define, CNT 

accurately predicts the extreme decrease in wait time for nucleation when supersaturated 

[55,56] as well as being a very reasonable approximate theory for the crystallization of 

hard spheres [59]. CNT is also a useful starting point at predicting the nucleation process 

for supercooled liquids [60]. 
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1.4.2. Solidification. A phase transition when the liquid turns into a solid is referred 

to as solidification. This process is usually described as freezing as normally the 

temperature of a system is lowered below the freezing point. This can also take place if the 

pressure of the system is increased enough for solidification to begin. Most crystals freeze 

by crystallization, the formation of solids in a highly organized structure. As long as the 

solid and liquid coexist, the temperature of the system should remain relatively equal to 

the melting temperature. Two major events occur during crystallization. The first being 

nucleation which was discussed in the previous section, and the second being growth.  

Crystal growth will occur as the nuclei reach sufficient critical cluster size. Free 

particles will adsorb onto the critical nuclei and propagate the crystal structure outwards. 

Usually, the growth process is much more rapid than that of the nucleation process. This is 

due to the presence of dislocations and other defects acting as catalysts for additional 

particles. Defects can act as inhibitors to crystal growth as well due to modifying the crystal 

habitat [61]. Growth from liquids tend to require a finite degree of supercooling in order to 

lower the nucleation barrier to allow nucleation to occur from thermal fluctuations. Studies 

have shown that two major mechanisms take part in the growth from a melt: uniform 

normal growth and non-uniform lateral growth [62, 63].  

Uniform normal growth is where the surface will propagate normal to itself without 

the need for any type of stepwise growth mechanic. This is a situation where there is a 

sufficient thermodynamic driving force (or degree of supercooling) present. Every element 

of surface will be capable to change continuously contributing to the propagation of the 

interface. Non-uniform lateral growth will have the surface propagate by lateral step 

motions which will be some integral multiple of the interplanar spacing in height. The step 
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is the transition between two adjacent regions of a surface. These surfaces are parallel to 

each other displaced by an integral number of lattice planes and have identical 

configurations.  

The two growth mechanisms allow for the distinction if a surface will be singular  

or diffuse. A singular surface will have a pointed minimum for the surface tension as a 

function of orientation. Singular surfaces usually have non-uniform lateral step type 

growth. A diffuse surface will have the change from one phase to another be continuous. 

Carbon for geological time frames is not to be considered as a strong diffusion barrier. 

Carbonaceous pre-solar grains are indicating on stellar time frames this could be the 

opposite. 

1.5. SEMI-EMPIRICAL INTERATOMIC POTENTIALS 

The use of semi-empirical methods has, and will continue to be, an indispensable 

tool for studying many-particle systems. Semi-empirical methods use empirical corrections 

to improve theoretical models. In other words, experimental data is used to help improve 

the predictability and performance of different theoretical models. This is widely done for 

interatomic potentials which are functions derived to calculate the potential energy of a 

group of atoms given their positions in the system. Interatomic potentials are widely used 

in the fields of computational chemistry, physics, and materials science as the physical 

basis for molecular mechanics and molecular dynamics simulations. Interatomic potentials 

have been able to help to explain and predict different material properties such as lattice 

parameters, adsorption, thermal expansion, and interfacial energies.  
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1.5.1. Interatomic Potentials. We can write these interatomic potentials as a series 

expansion of functional terms that depends on the position of a number of atoms a time 

giving us a total potential as follows, 

𝑉௧௢௧௔௟ = ෍ 𝑉ଵ(𝑟௜)

ே

௜

+
1

2
෍ 𝑉ଶ(𝑟௜ , 𝑟௝)

ே

௜,௝

+
1

6
෍ 𝑉ଷ(𝑟௜ , 𝑟௝ , 𝑟௞)

ே

௜,௝,௞

+  ⋯.           (1.3) 

Here 𝑉ଵ,ଶ,ଷ are the one-body, two-body, and three body-terms, N is the number of atoms in 

the system, 𝑟௜,௝,௞ are the positions of atoms at 𝑖, 𝑗, and 𝑘. If we consider no external field, 

the one body term becomes negligible, and the potential only relies on the relative positions 

of the atoms and the angles between the bonds. The new form can then be written as, 

𝑉௧௢௧௔௟ =
1

2
෍ 𝑉ଶ(𝑟௜௝)

ே

௜,௝

+
1

6
෍ 𝑉ଷ(𝑟௜௝, 𝑟௜௞ , 𝜃௜௝௞)

ே

௜,௝,௞

+  ⋯,                               (1.4) 

where 𝑟௜௝ =  ห𝑟௜ − 𝑟௝ห is the interatomic distance and 𝜃௜௝௞ is the angle between the bonds. 

The three-body term does not require the interatomic distance between atoms 𝑗 and 𝑘 as 

the terms 𝑟௜௝ , 𝑟௜௞ , 𝜃௜௝௞ are able to give relative positions for three atoms in three-dimensional 

space. The terms that are of higher order than 2 are considered many-body potentials. For 

some interatomic potentials, the many-body terms are embedded into a pair-potential or 

also known as bond-order potentials. 

 The potential terms will sum over all N atoms, but assumptions of the range can 

give finite cutoffs. This cutoff will restrict to potential within a certain range making 

𝑉(𝑟) ≡ 0 at some distance 𝑟௖௨௧௢௙௙. Applying this restriction and implementing a cellular 

method for finding nearest neighbors, the interatomic potential algorithm can be used for 

an 𝑂(𝑁) algorithm [64]. Leaving the infinite range on the N atoms, the sum of the potential 
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terms can be done efficiently by Ewald summation and its further developments as long as 

the system is periodic.  

 The interactions of the interatomic potentials are quantum mechanical in nature. 

The interactions described by both the Schrödinger equations and Dirac equations for all 

electrons and nuclei has been extremely difficult to cast into an analytical functional form. 

The difficulty to represent this quantum mechanical origin of the interactions has had 

potentials be built as parametric. In other words, they were developed and optimized with 

a fixed number of physical terms and parameters. Non-parametric potentials are being 

developed but are still in their infancy [65]. This means that all interatomic potentials will 

be approximations by necessity. Interatomic potentials have grown more and more 

complex increasing their accuracy, but this is still not strictly true [66].  

 One parametric potential that is arguably the simplest and most widely used is 

known as the Lennard-Jones potential [67]. The Lennard-Jones potential is usually 

represented in the following form, 

𝑉௅௃(𝑟) = 4𝜀 ൤ቀ
𝜎

𝑟
ቁ

ଵଶ

− ቀ
𝜎

𝑟
ቁ

଺

൨.                                          (1.5) 

Here 𝜀 is the depth of the potential well, 𝜎 is the distance at which the potential crosses 

zero, the attractive term proportional 1/𝑟଺ comes from the scaling of the Van der Waals 

forces, and the repulsive term proportional to 1/𝑟ଵଶ is an approximation by squaring the 

attractive term. The Lennard Jones potential is quantitatively accurate for noble gases and 

has been widely used for qualitative studies involving dipoles.  

 Another widely used potential is the Morse potential which takes a different 

approach to describing interatomic interactions [68]. The potential can be given by, 
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𝑉ெ(𝑟) = 𝐷௘൫𝑒ିଶ௔(௥ି௥೐) − 2𝑒ି௔(௥ି௥೐)൯,                      (1.6) 

here 𝐷௘ is the equilibrium bond energy, 𝑟௘ is the bond distance, and 𝑎 controls the width of 

the potential. Applications of the Morse potential has helped studies of molecular 

vibrations and solids [69]. The Morse potential inspired the functional form for more 

accurate potentials such as bond-order potentials. 

 Bond-order potentials are widely used to describe covalently bonded system and 

are written based off the Linus Pauling bond order concept [70],  

𝑉௜௝൫𝑟௜௝൯ = 𝑉௥௘௣௨௟௦௜௩௘൫𝑟௜௝൯ + 𝑏௜௝௞𝑉௔௧௧௥௔௖௧௜௩௘൫𝑟௜௝൯.       (1.7) 

Here the potential is written as a simple pair potential that depends on the interatomic 

distance 𝑟௜௝. The strength of the bond is modified by the environment of atom 𝑖 defined by 

the bond order 𝑏௜௝௞. For different potentials, this bond order can change to fit the model 

the potential is trying to approximate. A wide range of bond order potentials have been 

derived such as the Enivironment Dependent Interatomic Potential (EDIP) for silicon [71], 

the Finnis-Sinclair potential [72], the Reactive Force Field (ReaxFF) potential for 

hydrocarbons [73], and the Tersoff potential for silicon and carbon [74]. 

1.5.2. Tersoff Potential for Carbon. The development of the Tersoff potential 

initially came from motivations to study the different states of silicon. Being a bond order 

potential, the Tersoff potential incorporates a dependency on the number of bonds between 

pairs of atoms. This means that the order of the bonds is significant in how the Tersoff 

potential will model the bonds. For silicon oxide for example, the bonds of O-Si-O would 

be modelled differently from the bonds of Si-O-Si. The Tersoff potential consists of two-

body terms and are dependent on the local environment [75]. The general form of the 

Tersoff potential is slightly different than the usual bond order potential and is given by, 
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𝜙௜௝൫𝑟௜௝൯ = ൣ𝜙ோ൫𝑟௜௝൯ − 𝐵௜௝𝜙஺൫𝑟௜௝൯൧.       (1.8) 

Similar to the general form for bond order potentials, there is a repulsive and attractive 

pair potential. The bond order term, 𝐵௜௝, for the Tersoff potential will decrease as the 

coordination of the atoms increases. This means that the bond order is a function, 

𝐵௜௝(𝜓௜௝), dependent on the neighboring atoms at a certain distance and the angles 

between them. For studying liquid and amorphous phases of silicon, the Tersoff potential 

does a good job describing these different states. 

 Due to the similarities of silicon and carbon, Tersoff derived a form to work with 

carbon and carbons amorphous phases [76]. Starting from the general form of eqn. (7), the 

Tersoff potential for carbon can be written as, 

𝜙௜௝൫𝑟௜௝൯ = 𝜙௜௝
஼ ൫𝑎௜௝𝜙௜௝

ோ − 𝑏௜௝𝜙௜௝
஺ ൯,           (1.9𝑎) 

𝜙௜௝
ோ = 𝐴𝑒ିఒభ௥೔ೕ ,                                           (1.9𝑏) 

𝜙௜௝
஺ = 𝐵𝑒ିఒమ௥೔ೕ .                                           (1.9𝑐) 

Here 𝜙௜௝
ோ  and 𝜙௜௝

஺  are the competing repulsive and attractive pairwise potential terms, 𝜆ଵ,ଶ, 

A, and B are constants, and 𝜙௜௝
஼  is the cut-off term ensuring that only nearest neighbor 

atoms are considered in the interaction. The 𝑎௜௝ is a range limiting term on the repulsion 

that is usually set to one. As stated before, the bond order, 𝑏௜௝, will depend on the local 

coordination of the atoms and can be written as, 

𝑏௜௝ = ൫1 + 𝛽௡𝜁௜௝
௡൯

ି
ଵ

ଶ௡,                                        (1.10𝑎) 

𝜁௜௝
௡ = ෍ 𝜙௜௞

஼ 𝑔௜௝௞𝑒ఒయ
య൫௥೔ೕି௥೔ೖ൯

య

௞ஷ௜,௝

,                       (1.10𝑏) 
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𝑔௜௝௞ = 1 +
𝑐ଶ

𝑑ଶ
−

𝑐ଶ

𝑑ଶ + ൫ℎ − 𝑐𝑜𝑠ൣ𝜃௜௝௞൧൯
ଶ .      (1.10𝑐) 

𝜃௜௝௞ is the angle between the atoms 𝑖, 𝑗, and 𝑘. The bond angle term describes the strong 

covalent bonding of carbon systems in different types of geometries which cannot be 

represented by a purely central potential model.  

The Tersoff potential for carbon was later extended to describe diamond and take 

into account hybridization changes as bonds are broken and formed. This extension is 

known as the Brenner potential [77]. For solid-state carbon structures, the Brenner potential 

is given by the following functions, 

𝜙௜௝൫𝑟௜௝൯ = 𝜙௜௝
஼ ൫𝜙௜௝

ோ − 𝑏ത௜௝𝜙௜௝
஺ ൯,       (1.11𝑎) 

𝜙௜௝
ோ = ቆ1 +

𝑄

𝑟௜௝
ቇ 𝐴𝑒ିఈ௥೔ೕ ,               (1.11𝑏) 

𝜙௜௝
஺ = ෍ 𝐵௡𝑒ିఒ೙௥೔ೕ

ଷ

௜ୀଵ

.                       (1.11𝑐) 

Many of the terms are similar to that of Tersoff original form for carbon. The bond order 

term, 𝑏ത௜௝, for the Brenner potential is written as follows, 

𝑏ത௜௝ =
1

2
൫𝑏௜௝

ఙିగ + 𝑏௝௜
ఙିగ൯ + Π௜௝

ோ஼ + b௜௝
஽ு,              (1.12𝑎) 

𝑏௜௝
ఙିగ = ቌ1 + ෍ 𝑓௜௞

஼𝑔௜௝௞

௞ஷ௜,௝

ቍ

ି
ଵ
ଶ

,                           (1.12𝑏) 

𝑔௜௝௞ = ෍ 𝛽௜𝑐𝑜𝑠௜ൣ𝜃௜௝௞൧.                                       (1.12𝑐)

ହ

௜ୀ଴
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For the Brenner potential we have the term 𝑏௜௝
ఙିగ known as the pi-bond function. Similar 

to Tersoff’s original form, the function depends on the coordination between the atoms but 

will also depend on the angle between the bonds. For graphene, graphite, and diamond this 

pi-bond function is symmetric giving 𝑏௜௝
ఙିగ = 𝑏௝௜

ఙିగ. The coefficients, 𝛽௜, that are part of 

the bond-bending spline function were extrapolated from experimental data for graphite 

and diamond. The term Π௜௝
ோ஼ takes into account radical energetics such as vacancies and 

other defects, and b௜௝
஽ு is a dihedral bending function that depends on local conjugation. 

This term is zero for diamond but is important for describing graphene and is given by, 

b௜௝
஽ு =

𝑇଴

2
෍ 𝜙௜௞

஼ 𝜙௝௟
஼ ൫1 − 𝑐𝑜𝑠ଶൣΘ௜௝௞௟൧൯

௞,௟ஷ௜,௝

.            (1.13) 

𝑇଴ is a fitting parameter,  𝜙௜௞
஼  is the cut-off function, and Θ௜௝௞௟ is the dihedral angle of four 

atoms 𝑖, 𝑗, 𝑘, and 𝑙. For flat graphene, the dihedral angle is either 0 or π making b௜௝
஽ு go to 

zero, but if the graphene bends the contribution of this term is not negligible.  

 Other expansions of the Tersoff potential have been derived over the years. One 

such expansion was derived to describe small-scale defects on graphite surfaces [78]. 

Another expansion wanted to study the sp2/sp3 characterization techniques of X-ray 

photoelectron versus high energy electron energy-loss spectroscopy [79]. The Tersoff 

potential and its expansions are widely used in a method for analyzing the movements of 

atoms and molecules known as molecular dynamics. One of most recent expansion of the 

Tersoff potential was trying to improve the potentials accuracy of simulating graphene in 

different environments [80]. Even with all these expansions, one place where these 

potentials fall short is in the cut-off of the interactions. The cut-off function plays a big role 

in trying to study the molecular dynamics of carbon as a liquid. Before we dive more into 
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that, it is first useful to understand what exactly molecular dynamics means as a method 

for studying liquid carbon. 

1.6. MOLECULAR DYNAMICS 

To put it simply, molecular dynamics (MD) is a computational method for 

analyzing the physical movements of atoms and molecules. What this entails is allowing 

the atoms or molecules to interact over a given period of time to show the dynamic 

evolution of the system. The most common type of molecular dynamics simulation has 

trajectories of atoms and molecules determined by numerically solving Newton’s equations 

of motion. This is done by having the forces and potential energies of the interacting 

particles calculated using interatomic potentials or molecular force fields. MD is widely 

used in the field of biophysics, chemical physics, and material science. 

Molecular systems tend to consist of a vast number of particles. This makes it 

extremely difficult to determine properties of the complex systems analytically. MD 

simulations are able to circumvent this problem by employing numerical methods. Where 

numerical methods are algorithms that make numerical approximations for solving 

calculations. Due to the numerical approximations, long MD simulations generate 

cumulative errors making them mathematically ill-conditioned without proper algorithm 

and parameter selection. Even with the proper selections of algorithms and parameters, the 

errors will not be eliminated fully.  

Systems that obey the ergodic hypothesis, which states over long periods, the time 

spent by a system in some region of the phase space of microstates with the same energy 

is proportional to the volume of this region. Another way of putting this is to say that all 
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accessible microstates are equiprobable over a long period of time. This means that for one 

MD simulation evolution of a microcanonical ensemble may be used to determine 

macroscopic thermodynamic properties. The microcanonical ensemble evolutions are 

normally referred to as microcanonical ensemble averages. This is just one type of 

constraint that MD simulations can have on the system. To understand MD simulations 

further, we need to understand what the different ensemble constraints can be assumed for 

a given system. 

1.6.1. Microcanonical Ensemble. Considering again the microcanonical ensemble 

mentioned previously, we consider a system that will be isolated from changes in number 

of atoms, volume, and energy. This corresponds to an adiabatic process, which is a 

thermodynamic process without the exchange heat or mass between the surroundings. 

These constraints on this statistical ensemble allow for the systems energy to be exactly 

specified.  The MD for a microcanonical ensemble will have the exchange of potential and 

kinetic energy in a way where the total energy is conserved.  

1.6.2. Canonical Ensemble. Now for a system where the number of atoms, the 

volume, and the temperature are held constant, we have what is defined as the canonical 

ensemble. This statistical ensemble will have all possible states in thermal equilibrium with 

a heat bath, or thermal reservoir. The system is allowed to exchange energy with the 

thermal bath and is dependent on the number of atoms and volume of the systems which 

will affect the systems internal states. The energy of the endothermic and exothermic 

exchanges is given by a thermostat. A thermostat in MD simulations is an algorithm which 

adds and removes energy from the boundaries in an approximately realistic way. 

Thermostat methods control the temperature by rescaling the velocity. Some popular 
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thermostats are the Berendsen thermostat [81], the Nosé-Hoover thermostat [82], and the 

Langevin dynamics thermostat [83]. Not all thermostats will work for any given system as 

it is not trivial to gain the canonical ensemble distribution and velocities.  

1.6.3. Isothermal-Isobaric Ensemble. There also might be systems that need more 

than just a thermostat, but also a barostat. The barostat will be needed for situations where 

the number of atoms, pressure, and temperature are held constant. This type of statistical 

ensemble is referred to as an isothermal-isobaric ensemble. The system for an isothermal-

isobaric ensemble will correspond closely to laboratory conditions. For example, our box 

that makes up the system will be open to ambient temperatures and pressures. This type of 

ensemble plays an important role in chemistry and chemical physics [84] and is useful for 

measuring the equation of state for a system whose virial expansion for pressure is too 

complex to be evaluated or the system is near a first-order phase transition [85].   

1.6.4. Generalized Ensemble. The main three ensembles discussed have set 

specific constraints on a thermodynamic system. The dynamics tend to be fast and there is 

usually some order within the systems. When applying the different ensembles, different 

computational errors can arise based on the different constraints. This has led to studies 

into creating a generalized ensemble for use in MD simulations. One method is referred to 

as the parallel tempering method which was initially created to study slow dynamics and 

disordered spin systems [86]. Parallel tempering is the simulation N copies of a system 

randomly initialized at different temperatures. The simulation allows for a given criterion 

that the high temperature configurations can be available to the low temperature 

configurations. This will allow for thermodynamic properties such as specific heat to be 

determined with great precision which is not always the case for canonical ensembles.  
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1.6.5. Molecular Dynamics Applications. As stated before, MD is a useful tool in 

the fields of chemistry, chemical physics, biophysics, and material science. In biological 

systems, MD simulations were able to show that protein motion was essential in function 

and not just accessory [87]. The importance of MD simulations its ability to allow for the 

study of materials at the atomic scale. This was shown in the grain size evolution of 

nanocrystalline aluminum wear and friction [88]. Beyond this, as MD simulations are 

updated and improved, they become a necessary tool for studying physical systems which 

are not easily attainable within the laboratory. Such a system is the high temperature and 

pressure environment that will have carbon in a liquid phase.  

1.7. OUTLINE OF WORK 

The work presented here studies the nucleation and solidification of liquid carbon. 

More specifically, we are studying these processes both analytically and atomistically for 

a supercooled carbon melt at low pressures.  

Section two goes over zero kelvin tiled-cube energy minimizations using semi-

empirical potentials in a MD simulator of 100 atom carbon sets at densities of 1.8 g/cmଷ 

which are the observed estimates for liquid carbon densities. N-member loop statistics, 

coordination statistics, and nearest neighbor histograms were generated from the atom lists. 

Section three goes over isolated cluster zero kelvin MD simulations of similar 100 atom 

liquid carbon sets. Like the tiled-cube simulations, N-member loop statistics, coordination 

statistics, and nearest neighbor histograms were generated, but also studies into preferred 

density, grain size, and Debye scattering profiles were done. 
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Paper I is previously published work that studies a zeroth order few-parameter 

nucleation and solidification model for supercooled carbon liquid at low pressures. 

Alongside that, we study the growth of the carbon melt with a graphene sheet embedded 

using MD anneals at different temperature ranges.  

Section four goes over the atomistic molecular dynamics simulations done to study 

growth in both 3D and 2D. The Nosé-Hoover thermostat was used with the best performing 

semi-empirical potential from the zero-kelvin simulations. The data gained from the 

different heat treatments allowed us to determine different parameters for use in modeling 

the nucleation and growth analytically. Section five goes over the analytical 2D nucleation 

and growth models for the low-pressure liquid carbon studied here.  
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2. TILED-CUBE ZERO KELVIN LOOP COUNTING AND COORDINATION 
STATISTICS 

2.1. TILED-CUBE MODEL 

Observations of pre-solar grains had evidence of submicron graphite coated spheres 

of unlayered graphene forming around a liquid core [7]. Closer investigation via 

transmission electron microscopy showed joints within the core indicative of faceted 

pentacones. It is believed that these faceted pentacones could only form from a nucleation 

seed of a pentagonal ring instead of the usual hexagonal ring of graphite and graphene [52-

54]. The conditions required to study the carbon liquid are very difficult to get in laboratory 

settings, so our method has us study the carbon liquid computationally.    

 2.1.1. LCBOP/EDIP Carbon Potentials. When studying carbon using interatomic 

potentials, Tersoff and its extensions have been able to make useful predictions of carbons 

solid phases. These potentials fall short when studying graphite layering and liquid phases 

of carbon due to their short cut-off distances around 2.1 Å. Liquid carbon is believed to 

have interaction distances around 2.5 Å. Two recent potentials have been built on the 

shortcomings of Tersoff with long-range interaction cut-offs: the Long-Range Carbon 

Bond-Order Potential (LCBOP) and the Environment Dependent Interatomic Potential 

(EDIP) [89, 90].           

 The starting point of LCBOP is the Brenner extensions of Tersoff. The Brenner 

potentials describe only the strong covalent bonds, underestimates isotropic elastic 

constants, and neglect long-range interactions. LCBOP take a different approach of most 

long-range extensions of Brenner/Tersoff. The nearest-neighbor interactions are the only 

pieces excluded from the long-range interactions and the short-range interactions are 
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parameterized in such a way that the combined short- and long-range interactions yield 

correct properties such as binding energies, conjugation effects, elastic properties, and 

lattice constants.          

 Instead of using the Lennard-Jones potential for the long-range interaction, LCBOP 

uses a Morse-like potential which was based on a best fit for interlayer interaction energy 

in graphite calculated by local density approximations. The binding energy of the LCBOP 

semi-empirical potential can be written as follows [89], 

𝐸௕
௅஼஻ை௉ =  

1

2
෍ 𝑉௜,௝

௧௢௧ =
1

2
෍൫𝑓௖,௜௝𝑉௜௝

ௌோ + 𝑆௜௝𝑉௜௝
௅ோ൯.

ே

௜,௝

ே

௜,௝

                  (2.1) 

Here the total pair potential, 𝑉௜,௝
௧௢௧, is the sum of the short-range interactions, 𝑓௖,௜௝𝑉௜௝

ௌோ, and 

the long-range interaction, 𝑆௜௝𝑉௜௝
௅ோ. For the short-range interaction, 𝑓௖,௜௝ is a smooth cut-off 

function where for the long-range interaction, 𝑆௜௝ is a switching function that excludes first 

neighbors. The short-range piece resembles the Tersoff bond-order and is given by, 

𝑉௜௝
ௌோ = 𝑉ோ൫𝑟௜௝൯ − 𝐵௜௝𝑉஺൫𝑟௜௝൯,                    (2.2𝑎) 

𝑉ோ(𝑟) = 𝐴𝑒ିఈ௥ ,                                           (2.2𝑏) 

𝑉஺(𝑟) = 𝐵ଵ𝑒ିఉభ௥ + 𝐵ଶ𝑒ିఉమ௥ .                    (2.2𝑐) 

𝑉ோ and 𝑉஺ are the repulsive and attractive radial pair potentials and 𝐵௜௝ is the bond-order 

which contains many-body effects. The switching function is given by, 

𝑆௜௝ = 1 − 𝑓௖,௜௝ ,               (2.3𝑎) 

𝑓௖,௜௝(𝑥) = Θ(−𝑥) + Θ(𝑥)Θ(1 − 𝑥)𝑒𝑥𝑝 ቈ
𝛾௅஼஻ை௉𝑥ଷ

𝑥ଷ − 1
቉.    (2.3𝑏) 



31 

 

The cut-off function, 𝑓௖,௜௝(𝑥), was adopted from the EDIP potential for silicon where 𝑥 =

(𝑟 − 𝑟ଵ)/(𝑟ଶ − 𝑟ଵ), and Θ(𝑥) is the Heavyside step function [91]. The 𝛾௅஼஻ை௉ parameter is 

used to optimize the shape of the energy barrier for the diamond to graphite transition. The 

cut-off function is continuous up to the second derivative at 𝑟 = 𝑟ଵ and all its derivatives 

at the cut-off radius 𝑟ଶ. This function yields a much smoother cut-off than the cosine 

functions used by Brenner and Tersoff. The bond-order term, 𝐵௜௝, is taken to be, 

𝐵௜௝ =
1

2
ൣ𝑏௜௝ + 𝑏௝௜ + 𝐹௖௢௡௝൫𝑁௜௝, 𝑁௝௜ , 𝑁௜௝

௖௢௡௝
൯൧,         (2.4) 

where 𝑏௜௝ is the angular dependent piece which is optimized for elastic properties, surface 

properties, and the energy barrier for the diamond to graphite transformation. 𝐹௖௢௡௝ 

considers conjugation effects.  

 The formulation of EDIP for carbon began from the original EDIP potential for 

silicon. EDIP for carbon has addressed a major weakness for the silicon version, namely, 

the absence of π-bonding. This added improvement allows for important phenomena like 

dihedral rotation penalties and π-repulsion to be described. Writing EDIP for carbon gives 

a functional form consisting of three components: a two-body pair-wise energy, a three-

body angular penalty, and a generalized coordination. The two- and three-body terms will 

have environment dependence controlled by the atomic coordination Z. The total energy 

can be written as [90], 

𝐸௕
ா஽ூ௉ = ෍ 𝑉ଶ(𝑟௜௝, 𝑍௜)

௝

+ ෍ 𝑉ଷ(𝑟௜௝, 𝑟௜௞ , 𝜃௜௝௞ , 𝑍௜)

௝ழ௞

.          (2.5) 

Here 𝑉ଶ is a short-range pair potential of the Stillinger-Weber (SW) form [92-94]. The 

short-range SW potential decays to zero at a distance set by the denominator in the 

exponential and can be written as, 
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𝑉ଶ(𝑟, 𝑍) = 𝜀 ቈ൬
𝐵

𝑟
൰

ସ

− 𝑒ିఉ௓మ
቉ 𝑒𝑥𝑝 ቂ

𝜎

𝑟 − 𝑎 − 𝑎ᇱ𝑍
ቃ.               (2.6) 

The bond-order is described by the exponential term −𝛽𝑍ଶ and the cut-off is controlled 

by the variable parameter 𝑎ᇱ.  

 The three-body term uses a SW-like potential as well with the form, 

𝑉ଷ൫𝑟௜௝, 𝑟௜௞ , 𝜃, 𝑍൯ = 𝜆(𝑍)𝑔൫𝑟௜௝, 𝑍൯𝑔(𝑟௜௞ , 𝑍)ℎ(𝜃, 𝑍).           (2.7) 

Here the distances 𝑟௜௝ and 𝑟௜௞ will be less than the interaction cut-off and the three functions 

that make up this potential are given by, 

𝜆(𝑍) = 𝜆଴𝑒ିఒᇲ(௓ି௓బ)మ
,                                     (2.8𝑎) 

𝑔(𝑟, 𝑍) = 𝑒𝑥𝑝 ቂ
𝛾ா஽ூ௉

𝑟 − 𝑎 − 𝑎ᇱ𝑍
ቃ,                       (2.8𝑏) 

ℎ(𝜃, 𝑍) = 1 − 𝑒𝑥𝑝[−𝑞[𝑐𝑜𝑠𝜃 + 𝜏(𝑍)]ଶ].     (2.8𝑐) 

The term 𝜏(𝑍) describes the variation in ideal bond angle based on the atom coordination. 

This term gives angular penalties like the Brenner and Tersoff potentials and follows the 

SW potential philosophy that there is an ideal angle, 𝜃଴, where there would be no angular 

penalty.  

 2.1.2. LAMMPS Simulation Setup. To employ the LCBOP and EDIP potentials 

in these studies of liquid carbon, we used a software distributed by Sandia National labs 

known as the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

[95]. LAMMPS is a molecular dynamics coding software with a focus on materials 

modeling. The molecular dynamics software has been built as a tool for modeling atoms at 

the atomic, meso, or continuum scale.  

 The system setup for use in the MD simulator was that of 100 carbon atoms 

randomly placed with nearest neighbors distanced ranging from 1.4 – 1.9 Å. The simulation 
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box had side lengths of 10.345 Å to give a density of 1.8 g/cmଷ which is the predicted 

density of liquid carbon from pre-solar and lab observations. The box was given periodic 

boundary conditions so we could simulate the conditions for an infinite crystal.  

 With the simulation box set up, we performed a zero-kelvin energy minimization 

via the Polak-Ribiere version of conjugate gradient optimization which is believed to be 

the most effective conjugate gradient method for most systems [96]. This optimization 

finds the arrangement of the atoms where the energy is minimum. The situation for energy 

minimum is set when the difference between atom arrangement gives an energy difference 

of 10ିଶହ eV or less. Once the system is relaxed, we use the final positions to determine 

how many of n-member rings, where 5-member rings are pentagons and 6-member rings 

are hexagons, formed during relaxation.  

Code was developed to determine the ring formation, coordination, and nearest 

neighbor statistics for a given set of atom positions. For the ring statistics, we followed 

methods of Deringer and Franzblau et al. [97,98] to place the correct constraints on what 

should be considered a ring and to make sure rings spanning the boundaries are neglected. 

The coordination statistics had a cut-off constraint of 1.7 Å interatomic distance as this is 

the believed covalent bond length cut-off for liquid carbon based on pre-solar and lab 

observations. 

2.2. RESULTS AND DISCUSSION 

To determine which n-member rings would be preferred nucleation seeds, loop 

formation statistics were taken after energy minimization of the system using both LCBOP 

and EDIP. The 100 atom sets had different constraints on atom distance when randomly 
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placed in the cell ranging from 1.4 to 1.9 angstroms. We notice first that allowing the atoms 

to be as close as 1.4 angstroms when using the LCBOP potential does not give more loops 

than atoms that are restricted to 1.9 angstrom distance. Knowing this, when using the EDIP 

potential, we had our atom distance constraint set to the Van der Waals radius of 1.7 Å for 

carbon.  

Table 2.1 shows that pentagons form with the same frequency as hexagons for 

LCBOP and are the most prominent loop for EDIP. The pentagon formation amounts agree 

with independent DFT studies and other computational methods [98-101], but total ring 

formations are lower. Though EDIP has mainly pentagonal loops form, it also has the 

presence of 3- and 4-member loops which are believed to be non-physical or metastable. 

The formation of pentagonal loops in our simulations strengthens the conclusions of pre-

solar data that the joints from the TEM could be from a pentagon being a nucleation seed. 

These pentagon nucleation seeds forming initially to create the cone shape of the faceted 

pentacones. 

Along with loop formation, coordination number statistics of the 100 atom lists was 

determined. To keep consistency, the starting atoms for the coordination number sets had 

a distance constraint of the Van der Waals radius. Table 2.2a shows for the LCBOP case 

that coordination number 2 (sp) and coordination number 3 (sp2) are the most prominent 

for the relaxed atoms. This shows that carbyne (sp) and graphene/graphite (sp2) structures 

are forming the most during the energy relaxation process for the different 100 atom sets. 

Table 2.2b shows the EDIP case, which shows a similar high amount of carbyne 

coordination, but less graphene/graphite coordination. There is also double the percentage 

of coordination-1 dipoles compared to LCBOP. 
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Table 2.1. LCBOP/EDIP Loop Formation Statistics. a.) LCBOP and b.) EDIP after energy 
minimization of 100 randomly placed carbon atoms in a cell with periodic boundary 
conditions and volume set to give 1.8 g/cmଷ liquid carbon density. 

 

 

 
Table 2.2. LCBOP/EDIP Coordination Number Statistics. a.) LCBOP and b.) EDIP after 
energy minimization of 100 randomly placed carbon atoms in a cell with periodic boundary 
conditions and volume set to give 1.8 g/cmଷ liquid carbon density. 
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The high percentage of graphene/graphite sp2-coordination formation for LCBOP 

shows that the structure preference after relaxation is that of graphene/graphite. This 

follows independent DFT studies as well as what was seen by the pre-solar data as there 

was evidence of unlayered graphene formation. The high percentage of carbyne 

coordinated atoms for both the LCBOP and EDIP cases agree with other DFT studies into 

low density liquid carbon [26].  

 Determining the nearest neighbor atom distances after relaxation can give 

information on whether the atoms are bonding covalently or metallically and links directly 

to radial distribution and correlation functions. Composite nearest neighbor histograms of 

the interatom distances were generated for the 10 Van der Waals radius constrained sets 

for both LCBOP and EDIP. The spike at 0 Å in Figure 2.1 is from finding an atom on top 

of itself, so it counts the total amount of 100 atoms for each 10 sets giving a count of 1,000. 

For the LCBOP case shown in Figure 2.1a, a noticeable gap between 1.7 and 2.2 Å in the 

interatomic distances can be seen. For the EDIP case shown in Figure 2.1b, the gap is less 

defined and only goes from 1.85 to 2.1 Å. 

This gap could be showing the atomic distances for covalent and metallic bonds as 

the carbon atoms are preferring these interatomic distances. More metallic bonds are 

present than covalent bonds which could be evidence of a metastable metallic liquid carbon 

at these low densities. Taking the number of pairs with the limit of 2.6 Å and subtracting 

off the number of pairs with the limit of 1.7 Å we see that 52% of the atoms are preferring 

the metallic bonding interatomic distance. 
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Figure 2.1. Composite Tiled-Cube Nearest Neighbor Histograms. a.) LCBOP and b.) EDIP 
after energy minimization of 10 sets of 100 randomly placed carbon atoms in a cell with 
periodic boundary conditions and volume set to give 1.8 g/cmଷ liquid carbon density. 

 

2.3. CONCLUSION 

In this section, two semi-empirical potentials written to incorporate long-range 

interactions that are present in carbon were used in the LAMMPS MD simulation software. 

Zero kelvin energy minimizations using the Polak-Ribiere version of conjugate gradient 

optimization was done on 100 carbon atom sets where the simulation box had periodic 

boundary conditions and the volume gave the experimentally expected density for liquid 

carbon of 1.8 g/cmଷ. From the relaxed atom positions, n-member loop formation, 

coordination statistics, and nearest neighbor histograms were studied.  

The loop formation statistics for both the LCBOP and EDIP potentials had 5-

member loops have prominent formation. The presence of pentagonal loop formation in 

the energy minimizations indicate that pentagons can be seeds for nucleation within the 

low-density liquid carbon. EDIP did have the pentagonal loop formations be its highest 

percentage of loop formation, but it also had 3- and 4-member loops present which are 

believed to be nonphysical or metastable at best.  
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After looking at the loop formations, coordination statistics were determined for 

the different 100 atom sets. For the LCBOP case, carbyne sp-coordination and 

graphene/graphite sp2-coordination are the preferred structural coordination after energy 

minimization with percentages of 42% and 43% respectively. Though compared to other 

work done on carbon coordination there is a much higher percentage of carbyne 

coordination [102], the higher values agree with other observations of low-density carbon 

[25,26]. The high percentage of carbyne and graphene/graphite coordination with 

prominent pentagonal loop formation could also be evidence of the pentagon-first 

mechanism of Y-junction carbyne chains.  

The nearest neighbor histograms for both LCBOP and EDIP were able to shed light 

on preferred bond distances for the liquid after energy minimization. For LCBOP, a clear 

gap between 1.7 and 2.2 Å indicate interatomic distances of covalent and metallic bonding. 

Over half the atoms in the liquid were at interatomic distances resembling metallic bonds, 

but 48% were within the covalent bond distances. EDIP did not have as large of a gap as it 

saw interatomic distances at distances of 1.85 and 2.1 Å. The lack of a nice gap in the 

nearest neighbor histograms, the presence of possibly nonphysical loops, and double the 

percentage of coordination-1 dipoles compared to LCBOP could be indications that EDIP 

for carbon does not perform as well as LCBOP when studying liquid carbon.  
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3. ISOLATED CLUSTER ZERO KELVIN ATOMISTIC STUDIES 

3.1. ISOLATED CLUSTER MODEL 

3.1.1. Isolated Cluster Simulation Setup. A tiled-cube periodic boundary 

simulation is indicative of simulating an infinite crystal. The properties studied will 

represent bulk properties of the material. It is also interesting to study a system where 

interactions with the box sides is not a factor. The atoms can then move freely in space. 

This containerless setting, referred to as an isolated cluster for the purposes of this study, 

allows the liquid atoms to interact with less contributions from the environment.  

The simulation setup is similar to that of the tiled-cube model, except instead of 

using periodic boundary conditions the simulation box is made large enough to be 

considered infinite in size.  The simulation atom set was 100 atoms randomly placed with 

a nearest neighbor distance constraint of the Van der Waals radius. LCBOP was employed 

as the interatomic potential for the isolated cluster simulations. EDIP was unable to be used 

as in the current build of LAMMPS, the EDIP potential for carbon was unable to calculate 

an energy without the simulation code producing an error. Then the Polak-Ribiere version 

of conjugate gradient optimization was used for a zero-kelvin energy minimization. The 

simulation stopping parameters were 1,000 iterations or when the energy difference was 

10ିଶହ eV or less.  

After energy minimization of the atoms, the final atom positions were taken for the 

10 different atom sets and plugged into the ring formation, coordination statistics, and 

nearest neighbor histogram code. Along with determining the ring formation, coordination 

statistics, and nearest neighbor histograms, different models for space filling and Debye 
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scattering profiles were calculated from the final atom positions. The space filling models 

allow us to understand a preferred density for the liquid-like carbon in the containerless 

setting and a way to determine the containerless cluster grain size. The Debye scattering 

profiles allow a direct link to x-ray diffraction experiments. 

3.1.2. Space Filling Models. The three space filling models were convex hull 

[103], ellipsoid [104-106], and Van der Waals space fill [107]. Convex hull is a method of 

geometry where a set of points in  Euclidean space is defined to be convex if it contains 

the line segments connecting each pair of its points. The convex hull is then given by a set 

𝑿 which can be defined by four criteria: the minimal convex of 𝑿 is unique, the intersection 

of all sets contains 𝑿, the set of all convex combinations of points contains 𝑿, and the union 

of all simplices with vertices contains 𝑿. For objects in three dimensions, the first criterion 

is enough to gauge the smallest possible convex bounding volume. With this volume, the 

density of the liquid-like carbon can be determined. 

The ellipsoid model used here is a geometric technique of sphere packing where 

non-overlapping spheres are arranged within the ellipsoid space. We consider the carbon 

atom positions the position of each sphere with a radius of a carbon atom set to carbons 

Van der Waals radius. An ellipsoid envelope is then used to determine the optimal space 

filling. This model can construct approximate surface models for “frozen-liquid” systems 

like those represented by the isolated liquid carbon clusters. These clusters are expected to 

stay roughly ellipsoidal or even spherical. From such models, total volumes, approximate 

mass densities, and atom distances from the surface to distinguish bulk from surface atoms, 

can be calculated. 
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The Van der Waals space filling model stems from the concept of the Van der 

Waals surface. This model is an abstract representation of a molecule, illustrating where, 

in very rough terms, a surface might reside for the molecule based on the hard cutoffs of 

the Van der Waals radii. From this model, the space filling is done by representing the 

atoms by spheres that are allowed to overlap with carbons Van der Waals radius. This space 

fill model gives stable and sophisticated area, volume, and density values, especially for 

small and/or porous (non-convex) structures allowing for accurate modeling of the 

structure of the isolated liquid-like cluster. 

3.1.3 Debye Scattering Profiles. Scattered intensity in powder diffraction patterns 

from gases, liquids, and randomly distributed nanoclusters in the solid state (to first order 

in kinematic approximation) can be done rather elegantly with the Debye scattering 

equation [108,109]. The Debye scattering equation is given as follows, 

𝐼௣௢௪ௗ௘௥(𝒒) = ෍ ෍ 𝑓௜(𝒒)𝑓௝(𝒒)
sin (𝒒𝑟௜௝)

𝒒𝑟௜௝

ே

௝ୀଵ

ே

௜ିଵ

.                     (3.1) 

Here N is the number of atoms, 𝑓௜,௝(𝒒) is the atom scattering factor for atoms I and j, 𝑟௜௝ is 

the distance between atoms I and j, and q is the scattering vector (𝒒 = 2𝜋𝒈 = 2𝜋/𝒅) in 

reciprocal lattice distance units. The special period or interplanar spacing 𝒅௛௞௟  is associated  

with the reciprocal lattice vector 𝒈௛௞௟. It should not be confused with the lattice vectors a, 

b, and c. One can also use this to predict the effect of nano-crystallite shape on detected 

diffraction peaks, even if in some directions the cluster is only one atom thick [52,110,111]. 

These reciprocal space quantities can be related to the Bragg half-scattering angle 𝜃஻ by 

Bragg’s law, 
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𝑛𝜆𝑞

2𝜋
≡ 𝑛𝜆𝑔 ≡

𝑛𝜆

𝑑
= 2 sin[𝜃஻].                      (3.2) 

 Following this model, Mathematica code was developed to give scattering power 

in “electron units”. This being the amount of classical scattering power a single free 

electron would provide which we adapted from Fultz and Howe [112]. Non-periodic 

objects will scatter with broad peaks and smoothly varying intensities called diffuse 

scattering. Modern x-ray synchrotron diffraction instruments are able to measure the 

diffuse scattering with good accuracy, using the so-called Total Scattering approach in 

which both Bragg (where there are present) and diffuse intensities are both measured over 

wide ranges of reciprocal space. This data may then be Fourier transformed to real space 

giving the atomic pair distribution function.  

3.2. RESULTS AND DISCUSSION 

To determine which n-member rings would be preferred nucleation seeds in a 

containerless setting, loop formation statistics were taken after energy minimization of the 

system using LCBOP. EDIP was unable to be used for this study as it would error due to 

the negligible environment effects that are the basis behind the potential’s framework. The 

100 atom sets had their atoms randomly placed in a box with a nearest neighbor constraint 

of the Van der Waals radius of 1.7 Å for carbon. The box size was set large enough to be 

considered infinite in size compared to the local interactions between the particles. Table 

3.1 shows an equal abundance of 5-member pentagons and 6-member pentagon formation. 

Though the total percentages are a bit lower than that seen in the tiled-cube infinite crystal 

simulations, having pentagons be preferred just as much as hexagons is more support for 
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pentagons being seeds for nucleation. The absence of 3- and 4-member loops is also 

another sign that these loops may be unstable or nonphysical for the carbon melt.  

 

Table 3.1. LCBOP Isolated Cluster Loop Formation Statistics. 100 atoms in a containerless 
setting simulation box after energy minimization using the Polak-Ribiere version of 
conjugate gradient optimization and LCBOP interatomic potential. 

 

 

 
 

 After determination of the loop formations, the coordination statistics were 

generated to study the structure preference after minimization. Table 3.2 shows a high 

percentage of carbyne coordinated atoms similar to the infinite crystal simulations. The 

difference between the containerless setting that the infinite crystal is a lower percentage 

of graphene/graphite coordinated atoms. When comparing this to DFT studies done on low 

density carbon [26], carbyne chains dominate the structure preference. The presence of 
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these chains in the containerless setting and in the infinite crystal setting are giving support 

that the carbyne chains could be stable or meta-stable structures in the carbon melt. 

 

Table 3.2. LCBOP Isolated Cluster Coordination Number Statistics. 100 atoms in a 
containerless setting simulation box after energy minimization using the Polak-Ribiere 
version of conjugate gradient optimization and LCBOP interatomic potential. 

 

 

 
 

The nearest neighbor histograms for the containerless setting are showing a much 

wider gap than the infinite crystal tiled-cube histograms. Figure 3.1 shows for the 

containerless isolated cluster setting, covalent bond peaks are closer to the 1.42 Å bonds of 

graphene and graphite. The interatomic distance that corresponds to metallic bonding is 

roughly 2.3 Å which is slightly longer than the 2.1 Å seen for the infinite crystal setting. 

Also seen in Figure 3.1, the peak representing the graphene covalent bond length of 1.42 

Å is highest for sets 1, 2, 3, 5, 7, and 8. This indicates for six of the ten simulations, the 
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containerless isolated cluster had a high preference for graphene/graphite bond distances 

after energy minimization. 

 

 

 

 

Figure 3.1. Isolated Cluster Nearest Neighbor Histograms. 10 sets of 100 atom isolated 
cluster zero kelvin energy minimizations. A noticeable gap from 1.42 to 2.3 Å can be seen 
in all 10 sets. Sets 1, 2, 3, 5, 7, and 8 show highest peaks at the graphene covalent bond 
distance of 1.42 Å. 
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Figure 3.1. Isolated Cluster Nearest Neighbor Histograms. 10 sets of 100 atom isolated 
cluster zero kelvin energy minimizations. A noticeable gap from 1.42 to 2.3 Å can be seen 
in all 10 sets. Sets 1, 2, 3, 5, 7, and 8 show highest peaks at the graphene covalent bond 
distance of 1.42 Å. (Cont.) 

 
 

Energy minimization in the containerless setting gives a situation which does not 

give direct information of the system density. Since the atoms are freely moving, models 

for space filling can be used to study the preferred density of the atoms within the “frozen-

liquid”. Three different space filling approaches were used to gauge the density for our 

relaxed atom positions: convex hull, ellipsoid, and Van der Waals. Table 3.3 shows the 

output from the three different models when applied to a single set of atoms. These models 

are able to give information on surface area, volume, mass density, equivalent diameter, 

and grain size. For the case shown here, the convex hull and Van der Waals space fill give 

similar density values and are much higher than predicted by the ellipsoid model.  
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Table 3.3. Isolated Cluster Space Filling Model Output. Convex hull, ellipsoid, and Van 
der Waals space filling models when applied to the positions of 100 atom isolated cluster 
after energy minimization.  

 

 

 
 
Table 3.4. Isolated Cluster Preferred Density Statistics. Convex hull, ellipsoid, and Van der 
Waals space filling models of 100 atom isolated cluster energy minimization simulations. 
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The space fill modelling was applied to all 10 sets of 100 atom isolated cluster 

energy minimizations. From the information gained, the preferred density was of high 

interest as it can tell us if the “frozen-liquid” system is preferring densities that correspond 

to liquid-like carbon melts. Table 3.4 shows the determined density values from the three 

space filling models for each set of energy minimizations. For all sets of data, the ellipsoid 

model gives the lowest density values with a majority being on the order of 1 g/cmଷ. For 

some of the cases, the convex hull and Van der Waals models give similar density values 

near their respective average values of 1.52 and 1.59 g/cmଷ. Most of the time though, the 

density values vary by 0.2 to 0.5 g/cmଷ.  

Standard deviation analysis of the densities also shows the convex hull model gives 

the largest standard deviation. This is most likely due to the atomic structures not always 

being convex which can allow for larger errors in the calculation of the density. The errors 

in the convex hull model also shows up in independent DFT studies. A couple of the data 

sets were unable to determine a density with the Van der Waals model. This was most 

likely due to the presence of carbyne chains poking out from local ordering of the atoms 

causing an extremely complex volume which the code could not calculate. Even with these 

missing calculations, the Van der Waals model gave the most consistent density calculation 

with the lowest standard deviation. From the data here, the Van der Waals method gave a 

more stable and accurate determination of the isolated cluster preferred atom density of 

1.59 ± 0.06 g/cmଷ. The Van der Waals and convex hull models show agreement with 

estimated density values of ~1.5 g/cmଷ of the liquid core of lab grown graphite onions 

[52,113]. There is an expansion as the density drops from the beginning 1.72 g/cmଷ, but 
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the overall preferred density after energy minimization still falls within the expected 

density range for liquid carbon. 

The surface fill models do a good job of giving an understanding of the preferred 

density as well as allowing for the determination of the grain (or cluster) size for the 

different containerless clusters. The grain size is determined form the surface to volume 

ratio via 𝐷 ≡ 6𝑉/𝐴. Table 3.5 shows that statistics of the grain size for all 10 containerless 

setting sets. Of the three models, the Van der Waals model gives a grain size much smaller 

than the convex hull and ellipsoid models. The convex hull and ellipsoid models have 

closer agreement on the grain size, but when compared to work done in lab-grown 

specimens [52,113] the Van der Waals model comes closest. Lab-grown specimens see 

cluster sizes near 6 Å which is closest to the average value generated by the Van der Waals 

space fill of 5.19 ± 0.24 Å. The Van der Waals model also has the smallest standard 

deviation of the three models.  

When comparing to the initial (unrelaxed) atom set, the convex hull and ellipsoid 

model show an increase in grain size, where the Van der Waals sees a shrink from 7.19 Å 

to 5.19 ± 0.24 Å. The difference in how the models calculate the surface area and volume 

can be attributed to the vastly different grain size calculations. For the convex hull and 

ellipsoid models, the volume during energy minimization nearly doubles, but the surface 

area only slightly increases. For the Van der Waals model, the volume increases much less 

than the surface area. The decreasing density and grain size comes from the rearrangement 

of atoms between surface and bulk. The more sophisticated model for volume and are from 

the Van der Waals model provides more accurate values of grain size and density which 

agree with lab-grown specimens. 
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Table 3.5. Isolated Cluster Grain Size Statistics. Convex hull, ellipsoid, and Van 
der Waals space filling models of 100 atom isolated cluster energy minimization 
simulations. 
 

 
 
 

With the preferred density and grain size data determined, Debye scattering profiles 

were generated to investigate signs of structure of the containerless setting isolated cluster. 

Figure 3.2 shows the generated Debye scattering profile for all 10 studied atom sets. Each 

set of energy optimized atom sets are showing a peak in their Debye profiles at the (100) 

graphite Miller index. The peaks are broad due to the small size of the clusters. The absence 

of the (200) peak which corresponds to the 1/3.4 Å spacing of the graphite layers is 

evidence that the structure of the containerless cluster is resembling more of a graphene 

than graphite structure.  The low frequency peaks before the (100) peak for graphite is from 

the amorphous liquid atoms. We also see the presence of the liquid from the slight wave in 

the tail of the scattering profiles. The Debye profiles along with the density calculation 

from the Van der Waals space fill are showing preference for graphene structure and agree 

with previously observed lab-grown cores. 
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Figure 3.2. Debye Scattering Profiles. 100 atom isolated cluster relaxations. 
Red dots indicate (100), (110), and (200) graphite Miller indices. Blue dots 
indicate the (111) and (220) diamond Miller indices. 
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Figure 3.2. Debye Scattering Profiles. 100 atom isolated cluster relaxations. Red 
dots indicate (100), (110), and (200) graphite Miller indices. Blue dots indicate 
the (111) and (220) diamond Miller indices. (Cont.) 

 

3.3. CONCLUSION 

In this section the LCBOP semi-empirical potential for carbon was used to 

simulated isolated clusters of 100 carbon atoms randomly placed with a nearest neighbor 

distance constraint of the carbon Van der Waals radius. Unlike the tiled-cube infinite 

crystal studies, the EDIP potential was not able to be used here to compare the two long 

range models as the high dependence on environmental effects of EDIP caused the 

potential to error during the simulations. Zero kelvin energy minimizations using the Polak-

Ribiere version of conjugate gradient optimization was done to find an optimum energy 

configuration for the atoms. With the relaxed atom positions, n-member loop formation 

statistics, coordination statistics, density and grain size statistics from different space fill 

models, and Debye scattering profiles were generated. 

The n-member loop formations were showing similar results to the tiled-cube 

infinite crystal studies with pentagonal 5-member loops forming just as much as hexagonal 

6-member loops. This gives more support that pentagonal 5-member loops are just as likely 
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to be nucleation seeds for liquid carbon. The coordination statistics show a high percentage 

of carbyne sp-coordination which agrees with previous computational studies of low-

density carbon. The presence of graphene/graphite sp2-coordination with the presence of 

pentagonal loop formation is another indication of the pentagon-first mechanism from Y-

junction carbyne chains. Both the infinite crystal and containerless settings are showing 

evidence of pentagons being possible nucleation seeds which agrees with independent DFT 

studies. 

Convex hull, ellipsoid, and Van der Waals space fill models were used with the 

atom positions to determine the preferred density and grain-size after energy minimization. 

When determining the density of the containerless setting isolated clusters, the ellipsoid 

model generated a much smaller density compared to the other two. For a select few atom 

sets, the convex hull and Van der Waals models were in close agreement on density and 

their respective averages were close in value as well. The standard deviation in the density 

showed the Van der Waals model gave a more precise and stable estimate for the density 

of the cluster. Though the convex hull model has a bigger standard deviation, it and the 

Van der Waals model estimates agree with density observations of liquid cores of lab 

grown graphite onions. The determination of the grain size looked at the surface to volume 

ratio. During energy minimization the models estimated the volume changes differently. 

The convex hull and ellipsoid estimated a volume change of nearly double, but the surface 

area only slightly increased. The Van der Waals model had the volume increase much less 

than the surface area. Comparing the average grain size values and their standard deviations 

the Van der Waals model comes closest to observed lab-grown cluster sizes in a 

containerless setting. The more complex and sophisticated determination of volume and 
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surface area gives a more accurate representation of the grain-size than the other two 

models. 

Debye scattering profiles, which can be directly related to x-ray diffraction 

experiments, were generated from the atom positions of each energy minimized atom set. 

Each set sees a peak at the (100) graphite index. The peak is broad due to the small size of 

the cluster and low-frequency peaks from the amorphous liquid are present. For a select 

few sets, the low-frequency peak is negligible or completely absent giving a large peak at 

the (100) index. This peak with the absence of the (200) interplanar 1/3.4 Å spacing peak 

is showing the containerless “liquid-like” minimized atom positions are preferring a 

graphene structure. The wave-like features at the tail of the Debye profile are also indictive 

of a liquid-like structure showing a preference for a liquid state in a containerless low-

density and pressure setting.  
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ABSTRACT 

Elemental carbon has important structural diversity, ranging from nanotubes to 

graphite and diamond. Studies of primitive meteorite extracted micron-size core/rim 

carbon spheres suggest they formed via the solidification of condensed carbon-vapor 

droplets, followed by gas-to-solid carbon coating to form the graphite rims. We show here 

how analytical models of reaction limited nucleation & growth can be used to connect 

thermal history (e.g. time at temperature) to electron microscope observations of mean 

graphene sheet size and number density. Atomistic models using the LCBOP semi-

empirical potential show promise for estimating latent heat and the temperature-

dependence of barrier heights, which are not yet incorporated in the model. We also show 

that growth of 2D clusters from a 2D liquid takes place more rapidly than from a 3D liquid, 

which with suitable scaling might open the door to simulating growth over millisecond 

time scales in the study of liquid carbon’s solidification at low pressures. 
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1. INTRODUCTION 

Liquid carbon has been difficult to study experimentally due to the high 

temperature and pressure levels needed for formation. Requirements such as high pulsed 

laser heating of diamond-like carbon or graphite along with immediately measuring the 

rapidly expanding and boiling liquid phase are not trivial for experiment [1-9]. After 

cooling to ambient temperatures, a wide variety of structures have been reported to form; 

nanoclusters of diamond and graphite [10], carbyne chains [11], and novel super-dense 

phases [12]. This has given rise to the desire to study liquid carbon computationally [13-

20]. The Long-Range Carbon Bond Order Potential (LCBOP) was created to begin studies 

into liquid carbon phases [21]. This has led us to employ LCBOP in our studies of the 

nucleation and solidification of liquid carbon.       

 Micron-size core/rim carbon spheres extracted from primitive meteorites have 

recently inspired some interesting results on the condensation of liquid carbon at low 

pressure, as well as its subsequent solidification. The submicron graphite-coated spheres 

observed via transmission electron microscopy imaging and diffraction have shown to 

contain unlayered graphene [3-9]. Electron phase contrast imaging of edge-on sheets has 

moreover suggested the presence of faceted penta-cones. This, and subsequent laboratory 

synthesis work [3-7], suggest that carbon vapor at low pressure condenses first as liquid 

droplets which, if cooled slowly, form unlayered graphene sheets in an otherwise 

disordered matrix. Experimental densities are on the order of 1.8 g/cmଷ at ambient pressure 

after solidification [4,8].  



57 

 

The environments in which both specimens were formed also were likely well under 

atmospheric pressure (10ିଷ and 10ି଼ bars).      

 We report on here a first pass at semi-empirical modelling of liquid-carbon 

solidification, using data from electron microscope study of pre-solar and lab grown 

“cores”. In particular, we build “few-parameter” models of graphene sheet nucleation and 

growth. The nucleation model builds on the classic analytical model of Turnbull and 

Fischer [22], although we have not yet included temperature dependence for the activation 

energies (which we hope will eventually provide insight into the supercooling threshold 

which triggers nucleation). Similarly, the growth model uses a single fixed activation 

energy, starting with a 6-atom critical nucleus even though independent DFT and 

experimental work suggest that 5-atom rings are active nucleation sites as well [23]. 

2. COMPUTATIONAL METHODS 

Nucleation model: Following the classic paper by Turnbull and Fisher [22] we 

model the time (t) rate at which the number density (𝜂) of nuclei per unit volume increases 

with an expression of the form, 

𝛿𝜂

𝛿𝑡
≅ ൬

𝑘஻𝑇

ℎ
൰ 𝑒

൤ି
(∆௙∗ା∆ி∗)

௞ಳ்
൨
𝜂଴𝑡,        (1) 

where 𝑘஻ is the Boltzmann constant, T is the temperature, h is Planck’s constant, ∆𝑓∗ the 

free energy of activation for short range travel across the interface to the new phase, ∆𝐹∗ 

is the free energy needed to create a critical-size cluster, and 𝜂଴ is the number of carbon 
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atoms per unit volume in the liquid. We report here on a nominally fixed value for the sum 

∆𝑓∗ and ∆𝐹∗ at 8.36 eV, which may seem large until one realizes that for 2D growth ∆𝐹∗ is 

inversely proportional to the supercooling increment ∆𝑇, and so becomes quite large as 

temperature increases.        

 Growth model: Considering 2D growth at sheet edges only, we begin by modelling 

a sheet as a circle with radius r. The number of atoms is written as 𝑛 ≈  𝜎𝜋𝑟ଶ, where the 

number of atoms per unit area in a graphene sheet is 𝜎 ≈ 3.82 × 10ଵହ/𝑐𝑚ଶ. The rate of 

atom-addition at a given temperature is presumed proportional to the length of the 

perimeter ൫𝑝 ≈ 2𝜋𝑟 = 2𝜋ඥ𝑛/𝜋𝜎 = 2ඥ𝜋𝑛/𝜎൯ immersed in the growth liquid. Since the 

amount of perimeter is proportional to the square root of the area, the differential growth 

equation will take the form, 

𝛿𝑛(𝑡)

𝛿𝑡
= ൬

𝛿𝑛/𝛿𝑡

𝑝
൰ 𝑝 = 𝑎ඥ𝑛(𝑡).         (2) 

The proportionality constant 𝑎 = 2ඥ𝜋/𝜎
ఋ௡

௣ఋ௧
, is the rate of atom addition per unit perimeter 

at a given temperature, for whose temperature dependence we add a Turnbull-Fischer type 

attempt rate and Boltzmann activation energy factor that can be calibrated empirically. At 

fixed temperature, the solution to this first-order differential equation under the initial 

condition that the “critical” starting seed size is 𝑛(0) = 𝑏 is quadratic in time with the 

form, 

𝑛(𝑡) = 𝑏 + 𝑎√𝑏𝑡 + ൬
𝑎𝑡

2
൰

ଶ

.             (3) 
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Individual carbon loops are plausible nucleation seeds given their tight binding energies, 

and here we choose b as nominally 6. This may later be adapted to changing effects of edge 

curvature, possible nucleation on pent loops, shape changes during growth and more. 

 We combine nucleation and 2D growth by monitoring the distribution of cluster 

sizes as a function of time during a constant temperature anneal. Using discrete time steps, 

new small nuclei are added to the distribution after the existing nuclei are grown by an 

amount appropriate to the time step involved. We then calculate two curves: One for time 

to nucleate a fixed number of sheets per unit volume, and the second for time to grow a 

distribution of sheets to a mean size, as a function of temperature. This general approach 

allows us to look for intersections between number-density and mean-size curves for the 

two experimental specimen types in hand.       

 Atomistic modeling: For atomistic work we employ LCBOP using Sandia’s Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The binding energy of 

the LCBOP semi-empirical potential [21] can be written as follows, 

𝐸௕ =  
1

2
෍ 𝑉௜,௝

௧௢௧ =
1

2
෍൫𝑓௖,௜௝𝑉௜௝

ௌோ + 𝑆௜௝𝑉௜௝
௅ோ൯.

ே

௜,௝

ே

௜,௝

           (4) 

Here the total pair potential, 𝑉௜,௝
௧௢௧, is the sum of the short-range interactions, 𝑓௖,௜௝𝑉௜௝

ௌோ, and 

the long-range interaction, 𝑆௜௝𝑉௜௝
௅ோ. For the short-range interaction, 𝑓௖,௜௝ is a smooth cut-off 

function where for the long-range interaction, 𝑆௜௝ is a switching function that excludes first 

neighbours. Our heat treatments used the same temperature range as our analytical model 
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on a 100-atom liquid with 42 of those atoms forming a graphene sheet to determine the 

growth in both 2D and 3D. 

3. RESULTS 

Figure 1 shows the rate that nuclei/cc are formed over time at different temperatures 

predicted by our nucleation model. The increase is linear at fixed temperature, until the 

supply of unprecipitated carbon atoms grows short. We cannot yet predict solidification 

times from this plot because the temperature dependence of the nucleation barrier is not 

yet considered. Horizontal lines denote experimentally observed number densities of 

grown graphene sheets [23], from which we have inferred densities of grown nuclei after 

recognizing that pent-loops can each nucleate 5 flat sheets while hex-loops nucleate only 

one.                                                                                                                                                                                              

 Figure 2 allows us to address the second problem, namely the requirement of time 

to grow to the observed size, by combining nucleation and growth to determine the 

solidification time as temperature increases. Intersection points between the nucleation and 

growth curves suggest self-consistent values of time and temperature for solidification. 

Extending our nucleation model to include the temperature dependence of barrier height 

therefore shows promise for allowing one to infer thermal history (e.g. time at temperature 

during solidification) from observed microstructure (e.g. average cluster size and number 

per unit volume), and vice versa. 
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Figure 1. Zeroth-Order Nucleation at Different Temperatures. Nuclei/cc as a 
function of time at different temperatures; dotted is 2800 K, solid blue 3100 K, and 
dashed orange 3400 K. The lines across denote sheet density levels: (a) in lab-
grown cores if from hex-loops (red) or from pent-loops (magenta), and (b) in pre-
solar cores if from hex-loops (blue) or from pent-loops (cyan). 
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Figure 2. Zeroth-Order Solidification Times as a Function of Temperature. The 
solid lines denote times (as a function of fixed temperature) to grow 600-atom 
(blue) and 60-atom (orange) graphene sheets from a supercooled droplet at low 
pressure (neglecting saturation effects).  The intersection (large green dot) of the 
per-solar nucleation model (small green dots) curve with the pre-solar blue 600-
atom curves come from the observed pre-solar core number density. The 60-atom 
lab-grown curves likewise connect (large red dot with the nucleation model curve 
(small red dots) for the higher observed lab-grown core number density. 

Use of atomistic simulations, to explore energy differences (including latent heats 

and barrier heights) as well as growth rates at temperature, are a second part of our strategy. 

The challenge is that solidification times in the millisecond or larger time frame may be 



63 

 

involved, even though simulation time intervals begin in the femtosecond range. This is 

consistent with the lack of graphene sheet growth from a 3D liquid during 20 nanosecond 

LCBOP molecular dynamic anneals at temperatures in the range from 2400K to 3400K.

 To address this issue, we explore a possible scaling advantage for growing a 2D 

graphene sheet from a 2D rather than a 3D liquid. Figure 3 shows the final sheet atoms 

after the 20 nanosecond LCBOP heat treatments of a 100-atom “liquid-like” carbon with 

42 atoms in the form of a 13-loop graphene sheet. The simulation was done by forcing all 

forces and movement along the z-axis to be zero.  

 

Figure 3. Atomistic 2D Graphene Sheet Atoms as a Function of Temperature. Final 
number of atoms in graphene sheet versus temperature, after a two-dimensional 
LCBOP heat treatment over 20 ns time integration of 100-atoms including a 42 
atom (13-loop) graphene sheet. The dotted line is a spline fit to the data. 
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 If at around 3000K it takes e.g. a tenth millisecond to grow 60-atom sheets from a 

3D liquid in the lab, but it takes only 20 nanoseconds to grow roughly 70-atom sheets from 

a 2D liquid in LCBOP, this suggests that scaling relations for growth of 2D structures from 

a reduced dimensionality liquid may provide insight into growth from a higher dimensional 

liquid with less computer time doing molecular dynamics. Regardless, LCBOP 

calculations show promise for checks on latent heat of fusion and temperature-dependent 

barrier height extension of these models. 

 

 
4. DISCUSSION 

 

We describe here a strategy for semi-empirically modelling the solidification of a 

carbon melt at low pressure, based on observational data from the cores of carbon spheres 

formed in cool giant star atmospheres, as well as in the laboratory. The strategy as outlined 

appears robust, but so far, we have limited the number of parameters used in the modelling. 

We have not included a temperature dependence for the barrier height to nucleation, for 

which atomistic estimates of latent heat of phase transition and barrier heights to reaction 

may be crucial.   

 We have also shown that atomistic simulations for the growth of 2D structures in a 

2D instead of 3D liquid might allow for molecular dynamics simulation of longer time 

periods, provided that suitable scaling relations for the switch from 2D to 3D can be 

identified. The atomistic method was able to get good growth of a graphene sheet when 

restricting the simulation to 2D by zeroing out forces along the z-axis.  
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5. CONCLUSION 

 

Recent laboratory observations of micron-size carbon spheres, with cores 

containing randomly oriented and unlayered graphene sheets embedded in a frozen liquid 

matrix obtained by the cooling of a carbon vapor, open the door to experimental work on 

liquid carbon at low pressures. In this paper, we describe a strategy for relating the observed 

size and number density of these unlayered graphene sheets to analytical models for sheet 

nucleation and growth from the carbon melt. 

The nucleation and growth models examined so far have a minimum of empirical 

parameters. We see at higher temperatures less time is needed to generate enough 5/6-atom 

loop seeds to agree with lab-grown and pre-solar core observations but at lower 

temperatures more time is needed to generate enough 6-atom loop seeds. This first pass 

zeroth order model may be pointing to 5-atom pent loops being the more abundant 

nucleation seed in our lab grown and pre-solar observations. Atomistic simulations (both 

LCBOP/semi-empirical and VASP/ab-intio) show promise for expanding those parameter 

sets, and eventually connecting observed structures to thermal history of the solidification 

process.  

Our understanding of the super-cooling threshold for solidification (which may in 

carbon’s case be even higher than that for liquid metals in containerless settings [24]) may 

emerge from this exploration. Extensions of the models are still needed, however, to the 

temperature dependence of the nucleation threshold, and to the switch from the effects of 

“time at temperature” to effects of a given “cooling rate”. Though our current 

understanding of the pressure-effects to nucleation is limited, atomistic studies to 
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determine the latent heat of fusion is showing negligible dependence on pressure. More 

studies into the effects of pressure will be needed to determine the effect of pressure on our 

analytical models. In addition to the larger ramifications, this work is of immediate 

relevance to studies of carbon condensation in cool giant star atmospheres, and to the 

possible laboratory synthesis of “unlayered graphene solid” with unprecedented properties 

as a diffusion barrier.  
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SECTION 

4. TEMPERATURE ANNEALS OF LIQUID CARBON 

4.1. HEAT TREATMENT MODEL 

In the previous sections, the LCBOP potential was used to study zero kelvin energy 

minimizations of 100 atom “liquid-like” carbon sets. The energy minimizations allowed us 

to study n-member loop formations and preferred structures for infinite crystal setting tiled-

cubes and containerless setting isolated clusters. The next step is to study physical 

properties of the “liquid-like” carbon at temperature ranges proposed for supercooling of 

the carbon melt. To do this study, molecular dynamics techniques are used to simulate the 

atoms at different temperatures. The simulations at temperature require a thermostat to 

correctly simulate the temperature of the system and for some of the cases a barostat to 

keep the system at a preferred pressure. 

4.1.1. Molecular Dynamics Thermostats. In molecular dynamics simulations, 

thermostats are used to add and remove energy from the boundaries of the simulation. 

There are a variety of algorithms which try to simulate the adding and removing of energy 

in a realistic way. Popular methods for controlling the temperature rescale the atom 

velocities. As mentioned in Section 1, such methods include the Nose-Hoover thermostat, 

the Berendsen thermostat, and Langevin dynamics. Obtaining a canonical ensemble using 

these algorithms is not trivial as it depends on the specific system being studied. This makes 

it important to understand the different thermostats to know which will be useful for studies 

of the supercooled carbon melt. 
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For the Berendsen thermostat, the system is weakly coupled to the heat bath. This 

thermostat suppresses fluctuations of the kinetic energy and corrects the temperature of the 

system in the following way, 

𝑑𝑇

𝑑𝑡
=

𝑇଴ − 𝑇

𝜏
.                 (4.1) 

Here the term 𝜏 is an exponential decay time constant of the deviation of the temperature. 

Due to the suppression of fluctuations, the Berendsen thermostat cannot produce 

trajectories consistent with the canonical ensemble for small systems. When used on 

systems with hundreds or thousands of molecules, the approximation does generate 

roughly correct estimates for most calculated properties [114]. The thermostat is used 

mainly due to its efficiency to get the bath to a desired temperature which makes it a good 

candidate for initial equilibration. The Berendsen thermostat can result in the flying ice 

cube effect which is an artifact where the energy of high-frequency fundamental modes 

drains into low-frequency modes, particularly into zero-frequency motions such as overall 

translation and rotation of the system. This artifact is entirely consequence of the 

thermostat algorithm and is highly unphysical making the Berendsen thermostat only 

useful for efficient equilibration of the systems heat bath. 

 Langevin dynamics approaches the modeling of the molecular dynamics by 

accounting for omitted degrees of freedom using stochastic differential equations. These 

differential equations will consist of one or more terms being a stochastic (random) 

process. This will ultimately result in a solution which is also a stochastic process. 

Stochastic processes can model different types of phenomena. For Langevin dynamics the 

phenomena are thermal fluctuations. Molecular systems in the real world are unlikely to 

be present in a vacuum. Langevin dynamics attempts to extend molecular dynamics to 



70 

 

allow for effects that perturb the system such as high velocity collisions of particles and 

jostling of solvent. Langevin dynamics mimics the viscous aspect for a solvent but does 

not fully model an implicit solvent as it does not account for electrostatic screening or the 

hydrophobic effect which are prominent in denser solvents. We can describe Langevin 

dynamics by considering N particles with mass M whose coordinates X = X(t) that 

constitute a time-dependent random variable. This will result in the Langevin equation 

[115], 

𝑀𝑋̈ = −∇𝑈(𝑋) − 𝛾𝑀𝑋̇ + ඥ2𝑀𝛾𝑘஻𝑇𝑅(𝑡).             (4.2) 

Here 𝑈(𝑋) is the interatomic potential, 𝑋̇ is the velocity, 𝑋̈ is the acceleration, 𝛾 is the 

dampening parameter, T is the temperature, and 𝑘஻ is the Boltzmann constant. 𝑅(𝑡) is a 

delta-correlated stationary Gaussian process which can be described by, 

〈𝑅(𝑡)〉 = 0,                             (4.3) 

〈𝑅(𝑡)𝑅(𝑡ᇱ)〉 = 𝛿(𝑡 − 𝑡ᇱ),    (4.4) 

where 𝛿 is the Dirac delta function. The dampening constant should be kept small to control 

the temperature, but over dampening will switch to the Brownian regime where no average 

acceleration is estimated.  

 The Nosé-Hoover thermostat is a deterministic molecular dynamics algorithm for 

constant temperature. The heat bath only consists of one imaginary particle, but simulation 

systems do achieve realistic constant temperature conditions. To understand the Nosé-

Hoover thermostat, we begin by considering the velocity Verlet algorithm which allows us 

to integrate Newton’s equations of motion,  

𝑚௜

𝑑ଶ𝒓௜

𝑑𝑡ଶ
= − ෍ ∇௜𝑈൫ห𝒓௜ − 𝒓௝ห൯.

௝ஷ௜

          (4.5) 
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Here 𝑚௜ is the mass of particle I, the position of the particle in three-dimensional space is 

𝒓௜ = (𝑥௜ , 𝑦௜ , 𝑧௜), and similar to the other algorithms ∇௜𝑈൫ห𝒓௜ − 𝒓௝ห൯ is the gradient of the 

interatomic potential between atoms I and j. The velocity Verlet algorithm then is 

implemented as follows: 

𝒓௜(𝑡 + 𝛿𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)𝛿𝑡 +
𝑭௜(𝑡)

2𝑚௜
𝛿𝑡ଶ,           (4.6𝑎) 

𝒗௜ ൬𝑡 +
𝛿𝑡

2
൰ = 𝒗௜(𝑡) +

𝛿𝑡

2

𝑭௜(𝑡)

𝑚௜
,                               (4.6𝑏) 

𝑭௜(𝑡) = 𝑭௜൫𝒓௜(𝑡 + 𝛿𝑡)൯,                                              (4.6𝑐) 

𝒗௜(𝑡 + 𝛿𝑡) = 𝒗௜ ൬𝑡 +
𝛿𝑡

2
൰ +

𝛿𝑡

2

𝑭௜(𝑡 + 𝛿𝑡)

𝑚௜
.            (4.6𝑑) 

Here 𝒓௜, 𝒗௜, and 𝑭௜ are the position, velocity, and the force subjected to the ith atom. No 

forces are dissipative, so the overall energy is conserved in this algorithm. This algorithm 

used within the Nosé-Hoover thermostat provides a way to simulate within the canonical 

ensemble.  

How this is done is by introducing a fictitious dynamical variable whose physical 

meaning is that of a friction, 𝜁, which slows down or accelerates particles until the 

temperature reaches the desired value. The equations of motion in 3D will then change to 

be, 

𝑚௜

𝑑ଶ𝒓௜

𝑑𝑡ଶ
= 𝑭௜ − 𝜁𝑚௜𝒗௜ ,                    (4.7𝑎) 

𝑑𝜁

𝑑𝑡
=

1

𝑄
൥෍ 𝑚௜

𝒗௜
ଶ

2
−

3𝑁 + 1

2
𝑘஻𝑇

ே

௜ୀଵ

൩.   (4.7𝑏) 
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Q in this formulation determines the relaxation of the dynamics of the friction 𝜁(𝑡) and T 

is the target temperature. One can see that if  
ௗ఍

ௗ௧
= 0, the kinetic energy will simplify down 

to what is required by equipartition, 
ଷ

ଶ
(𝑁 + 1)𝑘஻𝑇. The 3𝑁 + 1 instead of 3𝑁 comes from 

the extra factor 𝜁. It is important to note that the temperature is not fixed but tends towards 

a target temperature. Now using the velocity-Verlet algorithm from before we can 

implement the Nosé-Hoover thermostat via a small modification. Our algorithm will 

change to, 

𝒓௜(𝑡 + 𝛿𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)𝛿𝑡 + ൭
𝑭௜(𝑡)

𝑚௜
− 𝜁(𝑡)𝒗௜(𝑡)൱

𝛿𝑡ଶ

2
,           (4.8𝑎) 

𝒗௜(𝑡 + 𝛿𝑡/2) = 𝒗௜(𝑡) +
𝛿𝑡

2
൭

𝑭௜(𝑡)

𝑚௜
− 𝜁(𝑡)𝒗௜(𝑡)൱,                             (4.8𝑏) 

𝑭௜(𝑡 + 𝛿𝑡) = 𝑭௜൫𝒓௜(𝑡 + 𝛿𝑡)൯,                                                                  (4.8𝑐) 

𝜁 ൬𝑡 +
𝛿𝑡

2
൰ = 𝜁(𝑡) +

𝛿𝑡

2𝑄
൥෍ 𝑚௜

𝒗௜(𝑡)ଶ

2
−

3𝑁 + 1

2
𝑘஻𝑇

ே

௜ୀଵ

൩.                  (4.8𝑑) 

The two-step character of the velocity-Verlet algorithm must be matched so 𝜁(𝑡) is first 

updated at time 𝑡 + 𝛿𝑡/2. One final step is needed to fully implement the thermostat into 

the algorithm, 

𝜁(𝑡 + 𝛿𝑡) = 𝜁(𝑡 + 𝛿𝑡/2) +
𝛿𝑡

2𝑄
൥෍ 𝑚௜

𝒗௜(𝑡 + 𝛿𝑡/2)ଶ

2
−

3𝑁 + 1

2
𝑘஻𝑇

ே

௜ୀଵ

൩,   (4.9𝑎) 

𝒗௜(𝑡 + 𝛿𝑡) =
൤𝒗௜(𝑡 + 𝛿𝑡/2) +

𝛿𝑡
2

𝑭௜(𝑡 + 𝛿𝑡)
𝑚௜

൨

1 +
𝛿𝑡
2

𝜁(𝑡 + 𝛿𝑡)
.           (4.9𝑏) 
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The last equation is slightly more complicated than the counterpart due to the dissipative 

force term is computed at time 𝑡 + 𝛿𝑡. The Nosé-Hoover thermostat is the most commonly 

used thermostat due to its accuracy and efficient methods to give constant temperatures, 

which is the reasoning for its use in this work over the other two thermostats discussed. 

4.1.2. Molecular Dynamics Barostat. In molecular dynamics there are a range of 

barostat that can be used to control pressure for a simulation. Similar to the thermostat, the 

correct barostat to use will depend on the system being studied. For the work done here, 

the Berendsen barostat was chosen for its efficiency to equilibrate the pressure of the 

system. To implement the pressure, consider that the instantaneous pressure, P, is given by 

[116], 

𝑃 = 𝜌𝑇 +

1
3

∑ 𝑭(𝑟௜௝) ∙ 𝒓௜௝௜வ௝

𝑉
.               (4.10) 

Here 𝜌 is the density, 𝑇 is the temperature, 𝑭(𝑟௜௝) is the force exerted on particle I by j, and 

𝑉 is the system’s volume. The Berendsen barostat uses a scale factor to scale the length of 

the box sides of the simulation to control the external pressure. The scale factor, 𝜇, will be 

a function of the pressure and is given by, 

𝜇 = ൤1 +
𝛿𝑡

𝜏௉
(𝑃 − 𝑃଴)൨

ଵ/ଷ

.                      (4.11) 

𝜏௉ is the “rise time” of the barostat which controls how the pressure will tend to the target 

𝑃଴. The Berendsen barostat can lead to violent oscillations in highly ordered systems, but 

with the liquid-like carbon systems studied here being a mix of amorphous and graphene-

like carbon, those oscillations are negligible. 
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4.1.3. LAMMPS Heat Treatment Setup. The heat treatment simulations were 

comprised of different liquid carbon tiled cube infinite crystal systems. To study the 

growth, a 42-atom graphene sheet was placed inside a box with the remaining 58 atoms 

being randomly placed in the liquid using the Van der Waals radii distance constraint. The 

box size was set to give a density of 1.8 g/𝐜𝐦𝟑. This was done for both a 3-dimensional 

(3D) and 2-dimensional (2D) case. To simulate in 2D, the interactions between the atoms 

and velocities along the z-axis were forced to zero. The LCBOP and EDIP potentials were 

employed for both the 3D and 2D heat treatments. The Nosé-Hoover thermostat was 

implemented to hold the simulation at a desired temperature. The initial atom sets for both 

the 3-dimensional and 2-dimensional case can be seen in Figure 4.1.  

 

 

Figure 4.1. 3D and 2D 100 Atom Liquid with 42-Atom Graphene Sheet Embedded. The 
remaining 52 atoms were randomly placed with a nearest neighbor distance constraint of 
the carbon Van der Waals radii of 1.7 Å. 
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After studying the growth of the system, temperature anneals were done on a 100-

atom tiled-cube system that was pre-relaxed via the zero-kelvin energy minimizations done 

before. For a few of the simulations, a Berendsen barostat was used to hold the pressure in 

the range expected for the atmosphere of AGB stars. From the temperature anneals, the 

energy of the atoms was taken over time to study structural and physical properties of the 

liquid carbon. Such properties were the correlation between the coordination and different 

energy states and the latent heat of fusion. Lab observations of the latent heat of fusion and 

the bulk modulus have been evasive for some time due to the difficulties of producing 

stable liquid carbon in the lab. The atomistic studies here give some insight on what these 

values might be. 

4.2. RESULTS AND DISCUSSION 

The simulation time step for the heat treatments of the 100-atom liquid with the 42-

atom graphene sheet embedded was 0.02 picoseconds (2 femtoseconds) and done for 1 

million iterations. This gives a total simulation time of heat treatment anneals of 20 

nanoseconds. To study the growth of the system, the final atoms in the sheet were 

calculated by using the loop counting code used for the zero-kelvin tiled-cube energy 

minimizations. To double check the loops were added to the initial sheet, a trajectory file 

was created for the simulation to be used in the Virtual Molecular Dynamics (VMD) 

software from the Nation Institute of Health and the department of biophysics at the 

University of Illinois at Urbana-Champaign [117]. When looking at the growth in 3D, 

Figure 4.2 shows no noticeable growth after heat treatment at 2800 K for the LCBOP case 

though atoms do seem to be nucleating above and below the sheet. For EDIP case obvious 
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dissipation of the graphene sheet can be seen. This is a common trend for all temperatures 

in the range of 2400-3800 K anneals studied. Considering the lab-observed growth times 

of tenths-of-milliseconds, the fact that no growth is being seen in the 3D case during the 

20 ns heat treatment can be expected.  

 

 

Figure 4.2. VMD of 3D Final Positions after 20 ns Heat Treatment at 2800 K.  Nucleation 
above and below the sheet can be seen in the LCBOP case where dissipation of the sheet 
can be seen in the EDIP case. 

 
 
 

 Moving to 2D, we see a different outcome for our growth studies for the two 

potentials. Figure 4.3 shows the final positions after heat treatment at 3800 K for both the 

LCBOP and EDIP cases. The graphene sheet is seeing noticeable growth for both cases as 

the atoms appear to be solidifying into a singular graphene sheet. Both the LCBOP and 

EDIP cases show pentagonal loop formation, but the EDIP shows these loops form near 

the center of the sheet. Lab observations show that a central pentagon will have the 

hexagonal sheets form at an angle and not flat. As the simulations were 2D and forced z-

directionality to zero, this type of growth does not seem physical. LCBOP’s pentagons 
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form mainly on the edge of sheets and due to higher degrees of freedom are likely 

metastable or formed due to the “pentagon first” mechanism at a Y-junction. The atom 

addition as a function of temperature in Paper I shows a trend of increased growth with 

increased temperature. The growth of the 70-80 atoms over 20 ns in simulation compared 

to the tenths-of-milliseconds growth of 60 atom sheets from observational data points 

towards scaling relationships for growth between the 2D liquid and higher dimension 

liquid. 

 

 

Figure 4.3. VMD of 2D Final Positions after 20 ns Heat Treatment at 3800 K. Growth and 
solidification can be seen for both cases, but the pentagonal center loops should not be flat 
making them non-physical or metastable. 

 
 

 Studying growth is a good way to look at the structure of a system using MD 

simulations. Apart from that, the study of physical properties of a material can be done. To 

study physical properties of the supercooled liquid carbon, a 100-atom liquid previously 

equilibrated via zero-kelvin energy minimization was heat treated in a box such that the 

density would be 1.8 g/cmଷ. From the heat treatment, the atom positions and energy values 
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of each atom were taken throughout the time integration of the simulation. Having the 

energy values at each time interval allowed us to graph the energy of each atom at any 

given point in time and see how the atom energies changed over the simulation. This is 

displayed in Figure 4.4.  

 

 

Figure 4.4. 2500 K Heat Treatment Energy vs. Time. Pre-relaxed,  
via energy minimization, 100-atom carbon liquid at 1.8 g/cmଷ. 

 
 

The first thermodynamic property studied from the energy versus time data was the 

latent heat of fusion, ∆𝐻௙. This was done both with and without the Berendsen barostat to 

determine any pressure dependence. To determine ∆𝐻௙, the difference between the binding 
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energy within graphene, ~7.4 eV, and the average energy of atoms that had binding 

energies smaller than graphene binding. For the simulations without the Berendsen barostat 

the average ∆𝐻௙ value came to be 1.015 ± 0.078 eV/atom. When holding the pressure at 

~10ିଷ bars, the average value comes out slightly higher at 1.178 ± 0.053 eV/atom.  

Flash heating studies [118] of carbon and high pressure melting of graphite [119] 

determined ∆𝐻௙ values of 1.04 to 1.14 ± 0.12 eV/atom and an average of 1.08 eV/atom 

respectively. These experimentally determined values fall in the range and uncertainties of 

values determined from these simulations when looking at both high-pressure and low-

pressure systems. DFT studies into the melting of graphite have also considered values for 

∆𝐻௙.  

One reported using a value of 1.20 eV/atom [120] where another determined a 

value of 1.05 eV/atom [121] which both fall in the high and low ends of the determined 

range for the latent heat. Figure 4.5 shows ∆𝐻௙ as a function of temperature for both cases. 

The value stays relatively constant and both high and low-pressure cases fall relatively 

close within the error bars of one another. Figure 4.5 shows an insensitivity to the pressure 

and temperature for the latent heat of fusion value.  

Looking back at Figure 4.4, the presence of possible distinct energy bands can be 

seen. Having the energy of each atom at the different time intervals, it is possible to look 

at how the energy of a single atom changes and to see if the energy band is in fact a 

phenomenon going on during the simulation. Figure 4.6 looks at one atom within the 

simulation and the distinct energy bands the atom fluctuates within can be seen. Since the 

energy bands are a phenomenon within the graph, these energy bands should have some 

sort of correlation to the structure of the system.  
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Figure 4.5. Latent Heat of Fusion vs. Temperature for Different Pressure Cases. Liquid 
carbon when simulation allows external pressures to change (blue line high-pressure 
case) and being held constant using Berendsen barostat (orange line low-pressure case).  
 

 

Figure 4.6. A Carbon Atom Through Time. The binding energy of a single atom in 
a 2200 K heat treatment of a 100-atom carbon liquid at 1.8 g/cmଷ density. 
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 The atom positions of each atom were also taken at the different time intervals of 

the simulation. From the atom positions, the coordination of each atom can be determined. 

With the binding energy of each atom and the coordination of each atom, the relation 

between a carbons binding energy and coordination can be determined. In Table 4.1, the 

coordination statistics for different heat treatments both with and without the Berendsen 

barostat was generated. Similar to the zero-kelvin simulations, there is a high percentage 

of carbyne and graphene coordination. The energy of each atom of the given coordination 

was taken. A range of binding energies and an average binding energy was determined for 

each coordination number and displayed in Table 4.1 as well. The data is showing that on 

average in the supercooled liquid, a coordination-1 carbon atom will have a binding energy 

of 3.22 ± 0.72 𝑒𝑉, a coordination-2 carbon atom will have 6.21 ± 0.54 𝑒𝑉, and 

coordination-3 atoms have the expected 7.40  𝑒𝑉.  

 
Table 4.1. Coordination Statistics and Binding Energies After Heat Treatment. 100 atom 
carbon liquid coordination statistics and binding energy range and averages from different 
temperature heat treatments. 
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4.3. CONCLUSION 

In this section, the LCBOP and EDIP semi-empirical potentials for carbon were 

used with the Nosé-Hoover thermostat and occasionally also with the Berendsen barostat 

to do a molecular dynamics simulation of sets of 100 supercooled low- density and pressure 

carbon atoms. One atom set had a 42-atom graphene sheet embedded into the 100-atom 

liquid, while the other set was a pre-relaxed at 0K set of 100-atoms. Set temperature 

simulated anneals were done at temperatures ranging from 1900-3900K over 20 ns total 

simulation time integrations. The atom positions and their binding energies were taken 

throughout the simulation. With the atom positions, the VMD simulator was used to study 

the growth in both 2D and 3D. The energy values were used to determine the 

thermodynamic property of the latent heat of fusion and its pressure dependence. Lastly, 

the combination of the atom energies and their positions over time were used to determine 

a correlation between the binding energies and the atom coordination.  

For the 3D growth case, both potentials used show negligible growth over the 20 

ns simulation time. Of the two, EDIP shows more dissipation than any nucleation or growth 

to the embedded sheet. This trend remains for all the temperature anneals studied. When 

considering lab-grown cores grew at time scales of tenths-of-milliseconds compared to the 

20 ns in simulation, the trend of negligible growth in the LCBOP case and dissipation in 

the EDIP case makes sense. Also, one can consider that the supercooling limit for liquid 

carbon might be more than the usual 30% for liquid metals. For the range of temperatures 

studied, a majority are at supercooling temperature of 45% or higher. If the onset of 

solidification is at supercooling of 50 or even 60%, the 5-member and 6-member loops 

may not be stable. The instability of 5- or 6-member loops and the time scale could be the 
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leading factors in why negligible growth, and even dissipation in the EDIP case, was seen 

for simulations in 3D. 

For the 2D growth case, both potentials see noticeable growth of the graphene sheet. 

A trend of increased growth as the temperature increases which follows our analytical 

model for growth. The 20 ns to growth 70-80 atom sheets in simulation compared to 60 

atoms in tenths-of-milliseconds in the lab could give insight into a scaling relationship 

between 2D and 3D growth. Pentagonal loop formation is prominent for both potentials, 

but for the EDIP case these loops form near the center of the sheet. A central pentagon will 

have hexagonal loops nucleate and then grow at an angle and not flat. As the simulations 

were 2D and forced z-directionality to zero, this type of growth may be showing some non-

physical phenomena. LCBOP on the other hand had pentagons form mainly on the edge of 

sheets. Due to having higher degrees of freedom these pentagons are likely metastable or 

formed from the “pentagon first” mechanism. 

 The binding energies of the individual atoms after simulated annealing of a 100-

atom liquid pre-relaxed via energy minimization at 0K were used to determine the latent 

heat of fusion, ∆𝐻௙. To determine this thermodynamic property, the difference between the 

binding energy for graphene and the average binding energy of atoms smaller than that was 

taken. This was done for simulations which did and did not have a Berendsen barostat used. 

The average ∆𝐻௙ value came to be 1.015 ± 0.078 eV/atom for the high-pressure case 

using no barostat. For the low-pressure case holding the pressure at ~10ିଷ bars, the 

average value came out slightly higher at 1.178 ± 0.053 eV/atom. Both high-pressure and 

low-pressure systems give values that fall within the range of uncertainty of experimental 

flash heating and high-pressure melting studies of carbon. DFT studies used a value of 1.20 
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eV/atom without external reference or given reason, and another DFT study determined a 

value of 1.05 eV/atom at zero-pressure for ∆𝐻௙. The intuitive choice still falls in the high 

end of the determined range for the latent heat while the zero-pressure calculation falls 

within the low end.  

 Both the atom positions and binding energies were used to determine a correlation 

between the atom coordination and its binding energy as distinct energy bands can be seen 

when looking at the energy of each atom over the integration time. Taking the energy of 

each atom at a given coordination, an average energy for each coordination value can be 

determined. For coordination-1 atoms the average binding energy came to be 3.22 ±

0.72 𝑒𝑉, coordination-2 carbon atoms had an average energy of 6.21 ± 0.54 𝑒𝑉, and 

coordination-3 atoms had their averages come out to be the expected 7.40 𝑒𝑉. The 

correlation between the coordination number and the binding energy gives a specific 

energy state for a carbon atom based on the number of nearest neighbors in the 

environment. The data also showed once again for the supercooled low-density liquid 

carbon a high percentage of sp and sp2 coordination which corresponds to a mixture of 

carbyne and graphite structuring as seen in previous DFT studies. This helps support that 

the low-density carbon melt will have either stable or metastable carbyne chains which 

could produce pentagon nucleation seeds from the Y-junction “pentagon first” mechanism.  
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5. ANALYTICAL MODELING OF LIQUID CARBON 2D NUCLEATION AND 
SOLIDIFICATION 

5.1. NUCLEATION MODEL 

The analytical model to study the low-pressure liquid carbon starts from classical 

nucleation theory which describes a first-order phase transition which describes the rate of 

formation of nucleating clusters from a nonequilibrium state. The pioneering works of 

Becker and Döring [122], Zeldovich [123], and Turnbull and Fischer [58] laid the 

groundwork for future nucleation theories. The Becker-Döring- Zeldovich (BDZ) theory 

states that the rate of nucleation in condensed systems such as solid-solid transformations 

or liquid-solid transformations can be written as follows, 

𝑟∗ = 𝐾𝑒𝑥𝑝 ൤−
(∆𝐹௜

∗ + 𝑞)

𝑘஻𝑇
൨.                 (5.1) 

Here, ∆𝐹௜
∗ is the maximum free energy for nucleus formation, 𝑞 is the activation energy for 

diffusion across the phase boundary, 𝑘஻ is the Boltzmann constant, 𝑇 is the temperature, 

and K is an unknown constant. Turnbull and Fischer went on to extend BDZ theory to 

derive an exact expression for 𝑟∗ based on the theory of absolute reaction rates to determine 

the unknown constant K.  

To do so, a metastable state can typically be assumed to be a mixture of clusters 

containing n molecules and molecules in the nonequilibrium state. In BDZ theory, direct 

interactions between the clusters are neglected meaning the clusters will only change their 

size due to an evaporation-condensation mechanism. Mainly, a cluster of n molecules will 

only grow or shrink by the condensation or loss of a single molecule. The derivation of 

Turnbull and Fischer gives a rate of nucleation to be eqn. (1.2), 
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𝑟∗ ≅ ൬𝑁
𝑘஻𝑇

ℎ
൰ 𝑒𝑥𝑝 ቈ−

(∆𝑓∗ + ∆𝐹∗)

𝑘஻𝑇
቉.       (5.2) 

Earlier in this dissertation, 𝑁 is described as the number density of nuclei per unit volume 

and ℎ is Planck’s constant. Another way of describing this pre-exponential factor is that 

𝑁 = 𝑁௡(𝑡) which is the average number of clusters of size 𝑛 at time 𝑡 within the volume.  

 The nucleation rates of BDZ and Turnbull and Fischer have been good 

approximations, but recent understanding from studies of liquid metals give a more 

accurate representation of nucleation. These models so far have looked at a specific 

thermodynamic variable called the free energy. This energy is in fact the Gibbs free energy 

which is a function of other thermodynamic parameters. The theory of thermodynamics 

tells us that a phase transformation will only take place when the change in the Gibbs free 

energy, ∆𝐺, has a negative value. The interest of the work done here is on the transition to 

a solid within a supercooled liquid.  

For this, the total Gibbs free energy of a system, assuming the nucleus will be 

spherical in geometry, will have two contributions. The first will be the contribution from 

the energy difference between the solid and liquid phases, the volume Gibbs free energy 

∆𝐺௩. The value of ∆𝐺௩ will be negative if the systems temperature is below the equilibrium 

solidification temperature. The magnitude of this contribution will be product of this 

difference and the volume of the spherical critical nucleus. The second contribution will 

come from the solid-liquid phase boundary during the transformation. A positive surface 

free energy, 𝜎, with its magnitude being a product with the surface area of the nucleus will 

constitute this phase boundary contribution. From this we can describe the Gibbs free 

energy as follows [124], 
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∆𝐺 =
4

3
𝜋𝑟ଷ∆𝐺௩ + 4𝜋𝑟ଶ𝜎.               (5.3) 

 Plotting the energy change as a function of radius, the energy change will give an 

initial increase until it passes through a maximum. After passing through this maximum, 

the energy change will start to decrease as show in Figure 5.1. Physically what this means 

is as liquid atoms start to form solid clusters the free energy will increase in the system. 

Growth will continue in the system with a decrease in energy as long as the cluster reaches 

a certain critical radius 𝑟∗. If the cluster does not reach the critical radius for growth, the 

cluster will begin to shrink and eventually dissolve.  

 

 

Figure 5.1. 3D Cluster Free Energy vs. Cluster Radius.  
Classical cluster energy as a function of cluster radius. 
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From Figure 5.1 we can see that at the maximum of the energy curve there is a 

critical free energy, which will be denoted as ∆𝐺∗, which occurs as the critical radius. This 

critical energy is the free energy required to form a stable nucleus. In other words, the 

critical energy is the activation free energy barrier for nucleation. As there is a maximum 

point on the free energy curve which occurs at 𝑟∗ and ∆𝐺∗, these two parameters can be 

derived by differentiating eqn. (5.3) with respect to the radius. Setting the differentiation 

to zero, we can solve for 𝑟∗. This gives, 

𝑑(∆𝐺)

𝑑𝑟
= 4𝜋∆𝐺௩𝑟ଶ + 8𝜋𝜎𝑟 = 0,         (5.4𝑎) 

4𝜋∆𝐺௩𝑟ଶ = −8𝜋𝜎𝑟,                                 (5.4𝑏) 

𝑟∗ = −
2𝜎

∆𝐺௩
.                                               (5.4𝑐) 

Now 𝑟∗ can be substituted back into eqn. (5.3) to yield an expression for ∆𝐺∗, 

∆𝐺∗ =
4

3
𝜋 ൬−

2𝜎

∆𝐺௩
൰

ଷ

∆𝐺௩ + 4𝜋 ൬−
2𝜎

∆𝐺௩
൰

ଶ

𝜎,        (5.5𝑎) 

∆𝐺∗ = −
4

3
𝜋

8𝜎ଷ

∆𝐺௩
ଶ + 4𝜋

4𝜎ଷ

∆𝐺௩
ଶ ,                                 (5.5𝑏) 

∆𝐺∗ =
16𝜋𝜎ଷ

3∆𝐺௩
ଶ .                                                              (5.5𝑐) 

∆𝐺௩ is a temperature dependent driving force for solidification. ∆𝐺௩ is zero at the 

equilibrium melting temperature, 𝑇௠, and as the temperature decreases the volume free 

energy will be increasingly negative. The temperature dependence of ∆𝐺௩ can be derived 

from the general equation for the Gibbs free energy, which is given by, 

𝐺 = 𝐻 − 𝑇𝑆.         (5.6) 
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Here 𝐻 is the enthalpy, 𝑆 is the entropy, and 𝑇 is the temperature. The 𝐻 term is weakly 

dependent on temperature, but the term 𝑇𝑆 is strongly dependent on temperature. To get 

the temperature dependence for 𝐺 the first step is to take the partial derivative with respect 

to T. This gives, 

𝜕(𝐺)

𝜕𝑇
= ൬

𝜕𝐺ி௜௡௔௟

𝜕𝑇
൰ − ൬

𝜕𝐺ூ௡௜௧௜௔௟

𝜕𝑇
൰ = −∆𝑆.            (5.7) 

The final and initial free energies can be thought of in different ways in the partial 

derivative. For example, in a usual chemical reaction the final phase is the products, and 

the initial phase is the reactants. Here the initial phase would be the liquid carbon atoms, 

and the final phase would be the solid cluster nucleus.  

From eqn. (5.7) the temperature dependence can be derived by considering the two 

different phases of the reaction. The value of ∆𝐺௩ is the difference between the liquid and 

solid Gibbs free energies, eqn. (5.6) as follows, 

∆𝐺௩ = 𝐺ௌ − 𝐺௅ = ∆𝐻௙ − 𝑇∆𝑆,         (5.8) 

Here 𝐺ௌ,௅ are the Gibbs free energies of the stable solid and metastable liquid phases and 

∆𝐻௙ is the enthalpy (latent heat) of fusion. The term, ∆𝐻௙, is the amount of heat given up 

during transformation from liquid to solid. The point at which the Gibbs free energy for 

both the liquid and solid will happen at a specific critical equilibrium melting temperature, 

𝑇௠. Solving for this temperature we get, 

𝑇௠ =
∆𝐻௙

∆𝑆
.      (5.9) 

Solving for the entropy, and plugging back into eqn. (5.8) the following equation can be 

gained, 
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∆𝐺௩ = ∆𝐻௙ − 𝑇
∆𝐻௙

𝑇௠
,     (5.10𝑎) 

∆𝐺௩ = ∆𝐻௙ ൬1 −
𝑇

𝑇௠
൰,     (5.10𝑏) 

∆𝐺௩ =
∆𝐻௙∆𝑇

𝑇௠
.                  (5.10𝑐) 

Here ∆𝑇 = 𝑇௠ − 𝑇 which is known as the supercooling limit. This limit of the supercooling 

gives a barrier to nucleation from the undercooling of the metastable liquid [125].  

 Using the temperature dependent expression for ∆𝐺௩, the expressions for the critical 

radius and free energy can be updated to the following, 

𝑟∗ = −
2𝜎𝑇௠

∆𝐻௙(𝑇௠ − 𝑇)
,              (5.11𝑎) 

∆𝐺∗ =
16𝜋𝜎ଷ𝑇௠

ଶ

3∆𝐻௙
ଶ(𝑇௠ − 𝑇)ଶ

.         (5.11𝑏) 

What these expressions say is that as temperature decreases, both the critical radius and 

free energy will increase. Physically, this tells us that as the temperature lowers further 

below the equilibrium melting temperature nucleation of solid clusters will happen more 

readily. These expressions are for the 3D case, but when considering a low-pressure system 

for a supercooled carbon melt nucleation will be graphene sheets. This will result in 2D 

nucleation, and the Gibbs free energy contribution will be given by the following, 

∆𝐺 = 𝜋𝑟ଶ∆𝐺஺ + 2𝜋𝑟𝜆.           (5.12) 

Before the Gibbs free energy had a volume contribution, ∆𝐺௩, here the energy is the product 

between the energy difference and the area of critical nucleus. The analogue for the 

interfacial surface free energy, 𝜎, will be the edge free energy denoted by 𝜆 which will be 



91 

 

multiplied by the perimeter of the nucleus. Plotting the energy as a function of the radius, 

a critical energy and radius can be seen in Figure 5.2. 

 

 

Figure 5.2. 2D Cluster Free Energy vs. Cluster Radius. Energy  change (green), 
radius (orange) and critical radius plots for nucleation  and growth of 2D sheets 
from a liquid matrix.  

 
 
 

Similar to the 3D case, expressions for the critical radius and Gibbs free energy can 

be derived for 2D. To start, the derivation of eqn. (5.12) will be taken with respect to the 

radius and set equal to zero giving the following, 

𝑑(∆𝐺)

𝑑𝑟
= 2𝜋𝑟∆𝐺஺ + 2𝜋𝜆 = 0.        (5.13) 
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Some trivial algebra will show give an expression for the critical radius and plugging that 

back into equation (5.12) will give the critical Gibbs free energy in 2D to be as follows, 

𝑟∗ = −
𝜆

∆𝐺஺
,              (5.14𝑎) 

∆𝐺∗ =
2𝜆ଶ

∆𝐺஺
.              (5.14𝑏) 

The temperature dependence for the critical radius and Gibbs free energy can be 

determined using the fact that the Gibbs free energy temperature dependence expression 

comes from the Gibbs equation which is a general thermodynamic property. Using ∆𝐺஺ =

∆𝐻௙∆𝑇/𝑇௠ and the supercooling limit, ∆𝑇 = 𝑇௠ − 𝑇, the temperature dependence can be 

written as, 

𝑟∗ = −
𝜆𝑇௠

∆𝐻௙(𝑇௠ − 𝑇)
,          (5.15𝑎) 

∆𝐺∗ =
2𝜆ଶ𝑇௠

∆𝐻௙(𝑇௠ − 𝑇)
,           (5.15𝑏) 

Considering the theory of thermodynamic fluctuation dictated by the second law of 

thermodynamics [123], the distribution of solid clusters will obey a Gaussian distribution, 

𝜂 = 𝐴𝑒
ି

∆ீ∗

௞ಳ் .            (5.16) 

The pre-exponential constant 𝐴 here will be related to the number of nuclei of the solid 

phase and give us the correct units for a time rate at which the stable number of nuclei 

increases. Following once again the classic work of Turnbull and Fischer, the time rate of 

increasing stable nuclei can be expressed as, 

𝛿𝜂

𝛿𝑡
≅ ൬

𝑘஻𝑇

ℎ
൰ 𝑒

ି
∆ீ∗

௞ಳ்𝜂଴𝑡.          (5.17) 
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Here 𝜂଴𝑡 is the expression for 𝑁 = 𝑁௡(𝑡) from equation (5.2). Considering again the 2D 

nature of the graphene sheet nucleation of the low-pressure supercooled carbon liquid, we 

can express this nucleation rate in terms of different parameters by substituting in equation 

(5.15b), 

𝛿𝜂

𝛿𝑡
≅ ൬

𝑘஻𝑇

ℎ
൰ 𝑒𝑥𝑝 ቈ−

2𝜆ଶ𝑇௠

∆𝐻௙(𝑇௠ − 𝑇)
൬

1

𝑘஻𝑇
൰቉ 𝜂଴𝑡.         (5.18) 

The contribution from the clustering of atoms by short range diffusion is usually 

the next piece to consider, but observational data has given insights that the nucleation of 

the low-pressure supercooled carbon melt will be reaction limited so no diffusion effects 

are being considered at this time. From equation (5.18) three major parameters are required 

for understanding the nucleation, the interfacial edge energy 𝜆, the latent heat of fusion 

∆𝐻௙, and the temperature 𝑇. As the expression is written now, the nucleation predicted will 

be for a set temperature equilibrium system.  

In the atmosphere of an AGB star or in a vacuum oven in the lab, the temperature 

of the system will not be set but evolve over time and cool. From this, the importance of 

the temperature will be the cooling rates and they can differ drastically. The lab grown 

carbon onions had cooling rates on the order of 1000K per millisecond whereas in the solar 

atmosphere the cooling rates are on the order of 1K per minute. These cooling rates differ 

by ~10଻ orders of magnitude meaning the two systems could have drastically different 

phenomenon occur. The cooling rates for the solar atmosphere case were determined by 

finding the temperature versus time for the carbon particles as they are being ejected from 

the solar atmosphere. This solar cooling rate can be seen in Figure 5.3.  
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Figure 5.3. AGB Star Temperature vs. Time for a Growing Carbon Grain. 
Condensed (final size under 1 micron in diameter) in (or just outside) the 
photosphere of an AGB star, with schematics that illustrate stages in the ejection 
process. The cooling rate is on the order of 1.07 K/minute. 

 

5.2. GROWTH MODEL 

With the nucleation model set, the next step is to determine a model for the growth 

of the 2D graphene sheets. This was described in Paper I but will be restated here as well 

for review and expand the model. The 2D growth will be at sheet edges only. From this, 

one can consider starting with a circle of radius r and the number of atoms to be describes 

as 𝑛 ≈ 𝜎𝜋𝑟ଶ where 𝜎 is the number of atoms per unit area in a graphene sheet. At a given 



95 

 

temperature, the rate of atom addition will be proportional to the perimeter immersed in 

the growth liquid given by, 

𝑝 ≈ 2𝜋𝑟 = 2𝜋ට
𝑛

𝜋𝜎
= 2ට

𝜋𝑛

𝜎
.            (5.19) 

The perimeter is proportional to √𝑛 making the differential equation which will describe 

the growth will take the following form, 

𝛿𝑛(𝑡)

𝛿𝑡
= ൬

𝛿𝑛/𝛿𝑡

𝑝
൰ 𝑝 = 𝑎ඥ𝑛(𝑡),      (5.20𝑎) 

𝑎 = 2ට
𝜋

𝜎

𝛿𝑛

𝑝𝛿𝑡
.                                      (5.20𝑏) 

The proportionality constant, 𝑎, can be physically described as the rate of atom addition 

for a given temperature where the term 
ఋ௡

௣ఋ௧
 is the presumed constant rate of atom addition 

per unit length of perimeter. 

 The solution to the first order differential equation, with the initial condition that 

the critical starting seed will be 𝑛(0) = 𝑏, is quadratic in time and is given by the following 

form, 

𝑛(𝑡) = 𝑏 + 𝑎√𝑏𝑡 + ൬
𝑎𝑡

2
൰

ଶ

.      (5.21) 

Nominally, the value b will be 6 as individual carbon atoms forming a single hex loop are 

plausible nucleation seeds due to their tight binding energies. It can also be presumed from 

previous work that pentagonal loops are also plausible nucleation seeds. This value for b 

can also be updated to consider changing effects of edge curvature, shape changes during 

growth, and other processes which can affect the growth.  
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 The next step for our growth model is to add the temperature dependence. This is 

done by adding an attempt rate similar to our nucleation model and a Boltzmann factor 

probability comprised of an Arrhenius activation energy. The attempt rate and activation 

energy come into the model via the atom addition rate per unit length of perimeter giving 

the following, 

൬ 
𝛿𝑛

𝑝𝛿𝑡
൰ =

𝑘஻𝑇

ℎ∆𝑥
𝑒

ି
ఌ

௞ಳ் .         (5.22) 

Here ∆𝑥 is the separation between source regions along the perimeter and 𝜀 is the Arrhenius 

activation energy. The value for ∆𝑥 can be determined from geometry and empirical data 

from lab grown specimens and ab initio studies allow for the value for 𝜀 can be determined 

as well [126]. The graph of the temperature dependence on this model can be seen in Figure 

5.4. 

 

Figure 5.4. Growth Rate Temperature Dependence. The black dot represents where 
the nucleation peak showing that as these low temperatures, the growth rate is slow. 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Supercooling Threshold. Analysis of the solidification processes and 

undercooling of liquid carbon from the nucleation and growth models has led to some 

interesting insights. When comparing to other metallic elemental liquids whose 

undercooling is universally thought to be around 30% of the melting temperature 

[127,128], the work here instead shows undercooling on the order of 50-60% of the melting 

temperature for carbon. The rate of nucleation will be at its maximum at this critical 

temperature value which coincides with the critical radius for the nuclei allowing growth. 

The growth of the graphene sheets is due to the 3D liquid transitioning into a 2D solid. The 

work here has shown that for elemental carbon, supercooling thresholds of 50-60% below 

the melting temperature are reached before critical nuclei size can be achieved.  

The nucleation is highly dependent on the latent heat of fusion and edge energy as 

they dictate the criticality for nucleation of the liquid to solid transition for carbon as seen 

from equations 5.15a and 5.15b. The critical temperature of nucleation will be dependent 

on the latent heat of fusion and the edge energy as well as the dimension of the nucleation 

theory which dictates the system. This can be seen by the following descriptions of the 

supercooling temperature for 2D and 3D, 

𝑇௖௥௜௧ଶ = 𝑇௠௘௟௧ ቌ1 −
𝜆

Δ𝐻௙
ඨ

𝜋𝜎

𝑛௖௥௜௧
ቍ , 5.23𝑎 

𝑇௖௥௜௧ଷ஽ = 𝑇௠௘௟௧ ቌ1 −
2𝛾

Δ𝐻௙
൬

4𝜋𝜌

3𝑛௖௥௜௧
൰

ଵ
ଷ

ቍ .     5.23𝑏 

Here 𝜎 and 𝜌 are densities of atoms, 𝑛௖௥௜௧ is the critical number of atoms, and Δ𝐻௙ has 

different dimensions for the different dimensionality of the nucleation model. There is a 
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clear dependence for the 2D case on the ratio between the latent heat of fusion and the edge 

energy and an overall dependence on the critical temperature on the dimensionality of the 

system. 

 In this work we use values for these parameters estimated by the atomistic 

simulation temperature anneals done with LCBOP. For any model for nucleation of a 

carbon liquid into a solid to be able to make physical predictions, these two parameters 

must be specific values otherwise the onset of solidification would constantly shift. Other 

works have estimated values for the edge energy for the liquid-solid transition which [121], 

but the values presented lead to critical radii smaller than the radius of a carbon atom and 

critical temperature values that don’t agree with predictions from observational data.  

5.3.2. Solidification Rates. The solidification models also give insights into 

graphene sheet number density and fraction crystalline which both have been observed 

from lab grown and pre-solar micron sized core/rim spheres. Figure 5.5 shows the 

temperature dependence of the nucleation. A clear peak can be seen at 2350 K along with 

saturation insights based on fast or slow cooling of the carbon melt. Observations of lab 

grown graphene sheet number densities show much larger abundance than from pre-solar 

specimens.  

The physical reason for this difference is due to the different cooling rates. In the 

stellar atmosphere of an AGB star, the carbon will sit at high temperatures for a long period 

of time. The nucleation rate will be extremely small, but the few nuclei that will reach 

critical size will grow due to the faster growth rate at high temperatures. This will have 

larger sheet sizes, but less total amount of sheets. For the lab grown case where cooling is 

rapid, the temperature will quickly move to the maximum nucleation rate. This allows 
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many nuclei to reach critical size and be seeds for growth. The growth rate is slower so the 

size of the sheets will be smaller but there will be a larger abundance of graphene sheets. 

This cooling rate dependence also gives insight into the saturation effects of the two 

different situations. The slow cooling system will require adding a saturation effect into 

the analysis as the fast growth rate has the system running out of atoms much faster than 

the fast-cooling rate system.  

 

 

Figure 5.5. Nucleation Rate Temperature Dependence. Using computational and 
experimentally determined parameters. The saturation text indicates the points at 
which saturation will take affect for the different cooling rates. 

 
 

 5.3.3. Graphene Sheet Size and Number Density. With insight into how the 

cooling rates play a part in the nucleation and growth determining the graphene sheet size 

will be useful to predict as it will relate directly with experimental observation. A value 
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from the number density can be inferred through its relationship to the number of atoms in 

each sheet, s, and the number of sheets per cubic centimeter which are s atoms in size, n(s). 

This relationship can be written in the following way, 

𝜂௔௧௢௠௦ = ෍ 𝑠𝑛(𝑠)

௦ୀ௦೘ೌೣ

௦ୀଵ

.              (5.24) 

This value can be used to normalize the sheet size to make sure the predicted sheet sizes 

do not grow too large when compared to observational data. Now to determine the mass 

weighted average, it is logical to consider that a cluster that can grow will be a graphene 

sheet only if it is above a nominal critical size 𝑠௠௜௡. From current understandings of 

graphene sheet growth and independent DFT studies, 𝑠௠௜௡ will need to be a loop of 5 or 6 

atoms as graphene sheets will only grow from a 5- or 6-member loop. This leads to the 

mass weighted average to be given by, 

𝑠௔௩௚ =
∑ 𝑠𝑛(𝑠)

௦ୀ௦೘ೌೣ
௦ୀ௦೘೔೙

∑ 𝑛(𝑠)
௦ୀ௦೘ೌೣ
௦ୀ௦೘೔೙

=
𝜂௖௥௬௦௧

𝑛௖௥௬௦௧
.            (5.25) 

Here 𝜂௖௥௬௦௧ is the number of crystalline atoms per unit volume in the system and 𝑛௖௥௬௦௧ is 

the number of crystalline clusters per unit volume in the system. With a way to describe 

the number of crystalline atoms and clusters, the fraction of carbon atoms in crystalline 

form can be written as follows, 

𝑓௖௥௬௦௧ =
∑ 𝑠𝑛(𝑠)

௦ୀ௦೘ೌೣ
௦ୀ௦೘೔೙

∑ 𝑠𝑛(𝑠)
௦ୀ௦೘ೌೣ
௦ୀଵ

=
𝜂௖௥௬௦௧

𝜂௔௧௢௠௦
.        (5.26) 

Using a hex loop nucleation seed and initial value estimates for the parameters 

which make up the nucleation and growth model, we determined from our own temperature 

anneals and assumptions from experiment, we were able to determine a fraction crystalline 



101 

 

for a 3ms cooldown from 3000 to 2000 K of 7%, a mass weighted average of 26 atoms, 

and a number density of approximately 2.44 × 10²⁰ graphene sheets per unit volume. This 

is shown in Figure 5.6 which also indicates a strange switching point from a usual 

exponential curve to an asymptotic style line. This seems to be from switching between 

fast to slow cooling when our cooling rates get below 10ସ K/s. The switching point is 

indicative of requiring the addition of saturation effects to study number density, fraction 

crystalline, and mass weighted average. 

 

 

Figure 5.6. Effective Graphene Sheet Density vs. Mass-Weighted Average Sheet 
Size. The two black dots represent points taken from laboratory and pre-solar cores 
where the dots above the green line are different number of steps the simulation 
took at different cooling rates from 10 to 120 steps (indicated by the green line). 
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The nucleation and growth models that make up the predictions for graphene sheet 

number density, mass weighted average, and fraction crystalline are dependent on different 

parameters (∆𝐻௙ , 𝜆, 𝐸௔, 𝑇௠). This allows analyzing the sensitivity of these models to the 

different parameters. Changing the latent heat of fusion (∆𝐻௙) and edge energy (𝜆) gives a 

large change in the number density of graphene sheets versus mass weighted average. A 

change in either parameter by less than a factor of two can see changes in many orders of 

magnitude. This can be explained by the fact that the latent heat of fusion and the edge 

energy give the Gibb’s free energy for nucleation. In changing these two parameters, the 

Gibb’s free energy changes which will change the nucleation peak and supercooling 

temperature for nucleation.  

As the lab-grown and presolar cores were formed in a low-pressure system, setting 

the latent heat of fusion to the value obtained from temperature anneals at the constant low-

pressure of ~10ିଷ bars is a useful analysis. When the latent heat of fusion is changed to 

this value, the values for number density versus mass weighted average change wildly. 

Multiplying by a factor of two will have the analytical model for fast heating line up 

perfectly with the observational estimate for the lab grown cores. This agreement can be 

seen in Figure 5.7. Experimental and other simulations done constrain the value of the 

latent heat of fusion. The critical temperature for nucleation depends on the ratio between 

the latent heat and the edge energy penalty, 𝜆. Since this ratio is important, the constraints 

on ∆𝐻௙ will put similar constraints on 𝜆. Cutting one value in half, requires cutting the 

other value in half. 
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Figure 5.7 Graphene Sheet Density vs. Mass-Weighted Average with Determined 
∆𝐻௙. Value determined through constant pressure temperature anneal simulations 
using LCBOP. 
 

 

When changing the Arrhenius activation energy (𝐸௔), there is no change in sheet 

density versus mass weighted average even when increasing this energy penalty by over 

double. This shows a clear insensitivity to the growth rate for the number density of 

graphene sheets. This insight along with the insight into the switching point from the 

sensitivity to the cooling rates requires the consideration of saturation as the system begins 

to run out of atoms to continue the growth.  
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5.3.4. Saturation Effect of Slow Cooling. To take into account the effects of 

saturation, it is first beneficial to look at the distribution when at critical nuclei size of a 6-

member loop in this current case for fixed temperature anneals. This is shown in Figure 5.6 

and it can be seen that distributions will give straight lines when plotted on a log-log scale. 

This can be described as follows, 

log[𝑛(𝑠)] = log[𝑛଺] − 𝑎(log[𝑠] − log[6]).        (5.27) 

The value 𝑛଺ is the number of sheets of critical size (6-member loop). From here a 

representation for 𝑛(𝑠) can be determined, 

𝑛(𝑠) = 𝑛଺ ൬
6

𝑠
൰

௔

.             (5.28) 

The number of sheets of critical size, 𝑛଺, will depend purely on the nucleation rate at a 

given temperature. The power value, a, will depend on the growth rate and the total anneal 

time.  

 From here the saturation values, smax, can be determined by setting the sum 

∑ 𝑠𝑛(𝑠)
௦ୀ௦೘ೌೣ
௦ୀ଺ = 𝑛ଵ = the initial number of atoms in the system. By setting this sum equal 

to the initial number of atoms, the saturation values can be determined as this sum is stating 

that all the free atoms will be used up at any temperature. This sum cannot be solved 

analytically so a series of sums were run numerically for different temperatures and the 

outcome can be seen in Figure 5.8. A straight line on a log-log scale shows that the power 

value, a, is simply -1. This means that the growth rate only affects the total time elapsed. 

This verifies the insight the analytical model was showing of the overall insensitivity to the 

growth rate. 
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Figure 5.8. Saturation End-Point Statistics. Different temperatures give a straight 

line before hitting an asymptote at 𝑛଺ ≅
ହ

ଷ
× 10ଶଶ ଵ

௦೘ೌೣ
. 

 
 

 The saturation end point is analogous to asymptotic slow cooling which is the same 

situation happening in the AGB star atmosphere where the pre-solar cores came from. With 

the saturation effect taken into account for the slow-cooling process, the analytical model 

for graphene sheet size per cubic centimeter versus mass weighted average can be graphed 

along with the numerical simulation. Figure 5.9 shows the numerical model lines up 

perfectly with the switching point for the analytical model. It seems the analytical model 

was already hinting at the saturation effects which up until now were never considered.  
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Figure 5.9. Analytical Density vs. Mass Weighted Average with Saturation. 
Number of graphene sheets per cubic centimeter versus mass weighted average of 
an “unimpeded saturation” numerical model for slow cooling along with an 
analytical curve for fast cooling.  

 

5.4. CONCLUSION 

The analytical models presented here for 2D nucleation and growth which use 

experimentally and computationally determined parameters has been able to give insight 

into and predict physical processes of the solidification of liquid carbon. Analysis into 

supercooling thresholds for a low-pressure carbon melt was able to be performed. The data 

shows for low pressure liquid carbon will have undercooling on the order of 50-60% of 
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carbon’s melting temperature which is much greater undercooling than the 30% 

undercooling of the melting temperature expected to be universal for most metallic 

elemental liquids that have been studied. The difference in undercooling comes from the 

fact that graphene sheet growth is much different than most solidification processes. The 

3D amorphous liquid solidifies into a 2D solid crystalline structure. This requires a 2D 

rather than 3D nucleation theory which will be affected by temperature differently. 

The nucleation model, in either 3D or 2D, will be dependent on parameters that 

dictate different criticality in the system. For instance, the critical radius and critical 

temperature which are reliant on the latent heat of fusion and edge energy ratio. Current 

knowledge for metallic elemental liquids considers a 3D classical nucleation model which 

has a different temperature dependence than the 2D case. 3D classical nucleation has its 

criticality (peak nucleation) temperature dependence be proportional ∆𝑇ଶ where the 2D 

model presented here has criticality proportional to ∆𝑇. The different power dependence 

of the supercooling threshold will then give chance for deeper supercooling in for the 

nucleation of a 2D liquid. Looking at the critical temperature and its dependence on ∆𝐻௙ 

and 𝜆, it becomes clear that the ratio of these two values will be key to understanding the 

nucleation process. Due to the deeper supercooling determined from the analytical models, 

the growth simulations were misled, and annealing temperatures did not reach the 

temperature range where growth can occur. 

Analyzing graphene sheet number densities, fraction crystalline, and abundance of 

clusters allowed for direct comparison with experimental data. Observations of lab grown 

micron sized core/rim spheres have shown larger number densities when compared to 

similar structures extracted from primitive meteorites. The analytical models shows that 
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the difference can be physically explained by the drastically different cooling rates when 

considering a laboratory setting and the stellar atmosphere of an AGB star. In the case of 

solidification in the star’s atmosphere, the carbon will stay at high temperatures for long 

periods of time. At these high temperatures, the nucleation rate to get a stable nucleus of a 

critical size to start promoting growth will be very small. The growth rate, however, will 

be much faster at these high temperatures. Though there will be a small number of 

nucleation seeds of critical size, the faster rate of growth will allow for growth into larger 

sheet sizes, but the total number of sheets will be small as the number of atoms to create 

new nuclei will run out. In the lab case, the rapid cooling will quickly move the system 

through the nucleation’s maximum rate giving many nucleation seeds of critical size to 

grow from. The growth rate will however be slower at these lower temperatures causing 

many smaller sized sheets to form but giving an overall higher sheet density. 

When comparing the determined values for fraction crystalline, mass-weighted 

average, and number density of graphene sheets to the experimentally determined values 

from lab grown cores using values estimated by simulations done separately and 

experimental assumptions, close agreement with the experimentally observed values was 

observed. The fraction crystalline and number densities came rather close to the 10% and 

1.8 × 10ଶ଴ determined, but the mass weighted average predicted from these models did 

fall a bit short to the determined 60 atoms. This showed these models were pointing in the 

right direction and allowed the ability to analyze the sensitivity of the models to the 

different parameter values (∆𝐻௙ , 𝜆, 𝐸௔, 𝑇௠) to gauge which parameter values are key to 

making physical predictions. 
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A strong sensitivity to the ratio of the latent heat of fusion (∆𝐻௙) and the edge 

energy (𝜆) and the cooling rates was noticed when analyzing the change in graphene sheet 

density and mass weighted average. On the other hand, a strong insensitivity to the growth 

rate was determined. The insights into the sensitivity to the cooling rates and insensitivity 

to the growth rates were strengthened when considering the saturation effects due to slow 

cooling. Using a numerical approach for the slow cooling saturation which is analogous to 

an asymptotic low cooling rate. When comparing to our analytical model, it was seen that 

the numerical model overlapped exactly where this switch occurred. The asymptotic low 

cooling from the numerical saturation model gives insight into the growth only affecting 

overall time.  

This is also seen when analyzing the graphene sheet number density and mass 

weighted average analytically by changing the Arrhenius activation energy and seeing a 

large insensitivity to this energy change. The sensitivity to cooling rates is initially seen 

from the nucleation peak at the critical temperature. The nucleation peak is also dependent 

on the Gibb's free energy which is related directly to the latent heat of fusion and edge 

energy. The dependence on the ratio of ∆𝐻௙ and 𝜆 strongly effects the nucleation peak and 

criticality of the nucleation. This means small changes in either value can change the 

number density of graphene sheets by a large amount as there is a constraint on what ∆𝐻௙ 

or 𝜆 can be. The ratio between these two parameters is then key for any nucleation model 

to make physical predictions for the onset of solidification.  
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6. CONCLUSIONS 

In the work presented in this dissertation, two types of models (atomistic and 

analytical) were used to test the nucleation and onset of solidification for liquid carbon. 

The atomistic model used LCBOP with the LAMMPS molecular dynamics simulator to 

preform “zero-kelvin” conjugate gradient energy minimizations for two types of liquid-

like carbon systems: tiled-cube supercells and isolated clusters. The analytical models 

followed classical models for nucleation and growth, but these models had to be 

transformed since (unlike other metallic liquids) liquid carbon transitions from a 3D 

amorphous liquid into a solid matrix filled with 2D crystalline sheets.   

The zero kelvin energy minimizations for the tiled-cube systems tested two semi-

empirical potentials (LCBOP and EDIP) written to incorporate long-range interactions that 

are present in carbon were used in the LAMMPS MD simulation software. The loop 

formation statistics for both potentials had more 5-member loop than 6-member loops, in 

agreement with independent DFT studies. Pentagonal loop formation in the energy 

minimizations indicate that pentagons can be seeds for nucleation within the low-density 

liquid carbon, as suggested by observational work on presolar particles. EDIP gave 

nonphysical/meta-stable loop formations. The coordination statistics for the LCBOP case 

saw carbyne sp-coordination and graphene/graphite sp2-coordination are the preferred 

structural coordination after energy minimization with percentages of 42% and 43% 

respectively. When compared to other work done on carbon coordination there is a much 

higher percentage of carbyne coordination, but the higher values agree with other 

observations of low-density carbon. The high percentage of carbyne and graphene/graphite 
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coordination with prominent pentagonal loop formation could also be evidence of the 

pentagon-first mechanism of Y-junction carbyne chains.  

The nearest neighbor histograms for the tiled-cube case for both LCBOP and EDIP 

were able to shed light on preferred bond distances for the liquid after energy minimization. 

LCBOP analysis had a clear gap between 1.7 and 2.2 Å indicate interatomic distances of 

covalent and metallic bonding. Over half the atoms in the liquid were at interatomic 

distances resembling metallic bonds, but 48% were within the covalent bond distances. 

EDIP did not replicate this gap in the nearest neighbor histograms. Overall, when 

comparing EDIP with LCBOP, the different analysis done could be indications that EDIP 

for carbon does not perform as well as LCBOP when studying liquid carbon.  

For the case of isolated cluster (containerless) systems, the LCBOP semi-empirical 

was the only potential of any use. The EDIP potential has high dependence on 

environmental effects which caused errors to occur during the simulations making it 

impossible to get accurate results from the simulations. Zero kelvin energy minimizations 

using the Polak-Ribiere version of conjugate gradient optimization was done to find an 

optimum energy configuration for the atoms. With the relaxed atom positions, n-member 

loop formation statistics, coordination statistics, density and grain size statistics from 

different space fill models, and Debye scattering profiles were generated. 

The n-member loop formations and coordination statistics showed similar results 

to the tiled-cube infinite crystal studies. This gives more support that pentagonal 5-member 

loops are just as likely to be nucleation seeds for liquid carbon. The coordination statistics 

show a high percentage of carbyne sp-coordination which agrees with previous 

computational studies of low-density carbon. The presence of 5-member loop formation 
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and carbyne chains is another indication of the pentagon-first mechanism from Y-junction 

carbyne chains.  

Convex hull, ellipsoid, and Van der Waals space fill models were used with the 

atom positions to determine the preferred density and grain-size after energy minimization. 

When determining the density of the containerless setting isolated clusters, the Van der 

Waals model estimates agreed the most with density observations of lab grown graphite 

onions. The determination of the grain size looked at the surface to volume ratio. Again, 

the Van der Waals model comes closest to observed lab-grown cluster sizes in a 

containerless setting. The more complex and sophisticated determination of volume and 

surface area of the Van der Waals model gives a more accurate representation of the grain-

size than the other two models. 

Debye scattering profiles, which can be directly related to x-ray diffraction 

experiments, had each set seeing a peak at the (100) graphite index. The peak is broad due 

to the small size of the cluster and low-frequency peaks from the amorphous liquid are 

present. For a select few sets, the low-frequency peak is negligible or completely absent 

giving a large peak at the (100) index. This peak with the absence of the (200) interplanar 

spacing peak indicates the containerless “liquid-like” minimized atom positions are 

preferring a graphene structure. The wave-like features at the tail of the Debye profile can 

also be interpreted as a preference for a liquid state in a containerless low-density and 

pressure setting.  

Changing from zero-kelvin energy minimizations to temperature anneals was done 

with the LCBOP and EDIP semi-empirical potentials for carbon used with the Nosé-

Hoover thermostat and occasionally also with the Berendsen barostat. One atom set had a 
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42-atom graphene sheet embedded into the 100-atom liquid, while the other set was a 100 

atom set pre-relaxed at 0K. Simulated temperature anneals were done at temperatures 

ranging from 1900-3900K over 20 ns time integrations. With the atom positions, the VMD 

simulator was used to study the growth in both 2D and 3D. The energy values were used 

to determine the thermodynamic property of the latent heat of fusion and its pressure 

dependence. Lastly, the combination of the atom energies and their positions over time 

were used to determine a correlation between the binding energies and the atom 

coordination.  

For the 3D growth case, both potentials used show negligible growth over the 20 

ns simulation time. EDIP showed more dissipation than any nucleation or growth to the 

embedded sheet was consistent for all the temperature anneals studied. When considering 

lab-grown cores grew at time scales of tenths-of-milliseconds compared to the 20 ns in 

simulation, the trend of negligible growth in the LCBOP case and dissipation in the EDIP 

case makes sense. Also, one can consider that the supercooling limit for liquid carbon 

might be more than the usual 30% for liquid metals. For the range of temperatures studied, 

a majority are at supercooling temperature of 45% or higher. If the onset of solidification 

is at a supercooling threshold of 50 or even 60%, the 5-member and 6-member loops may 

not be stable. The instability of 5- or 6-member loops and the time scale could be the 

leading factors in why negligible growth, and even dissipation in the EDIP case, was seen 

for simulations in 3D. 

For the 2D growth case, both potentials had noticeable growth of the graphene 

sheet. Growth increased as the temperature increased which follows our analytical model 

for growth. The 20 ns to grow 70-80 atom sheets in simulation compared to 60 atoms in 
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tenths-of-milliseconds in the lab could give insight into a scaling relationship between 2D 

and 3D growth. Pentagonal loop formation was shown to be prominent for both potentials. 

In the case of EDIP, there were central pentagons. Growth from a central pentagon will 

have hexagonal loops nucleate and then grow at an angle and not flat. As the simulations 

were 2D and forced z-directionality to zero, this type of growth may be showing some non-

physical phenomena. LCBOP on the other hand had pentagons form mainly on the edge of 

sheets. Due to having higher degrees of freedom these pentagons are likely metastable or 

as independent DFT studies and the zero-kelvin energy minimizations are giving insight to 

are formed from the “pentagon first” mechanism. 

To determine ∆𝐻௙, the difference between the binding energy for graphene and the 

average binding energy of atoms smaller than that was taken. This was done for simulations 

which did and did not have a Berendsen barostat used. The average ∆𝐻௙ value came to be 

1.015 ±0.078 eV/atom for the high-pressure case using no barostat. For the case holding 

the pressure at ~10ିଷ bars, the average value came out slightly higher at 1.178 ±0.053 

eV/atom. Both cases gave values that fall within the range of uncertainty of experimental 

and DFT studies done before. 

The energy of each atom was taken at a given coordination and used to gain the 

average energy for each coordination value. For coordination-1 atoms the average binding 

energy came to be 3.22 ±0.72 eV, coordination-2 carbon atoms had an average energy of 

6.21±0.54 eV, and coordination-3 atoms had their averages come out to be near the 

expected 7.40 eV. This correlation gives insight into a specific energy state for a carbon 

atom based on the number of nearest neighbors in the environment. For the low-density 

liquid carbon temperature anneals a high percentage of sp and sp2 coordination which 
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corresponds to a mixture of carbyne and graphite structuring was determined. This, with 

information gained from independent DFT studies, helps support that the low-density 

carbon melt will have either stable or metastable carbyne chains which could produce 

pentagon nucleation seeds from the Y-junction “pentagon first” mechanism. 

2D classical analytical models for nucleation and growth were presented here. 

Using experimentally and computationally determined parameters with these models have 

been able to give insight into and give early predictions of physical processes of the 

solidification of containerless liquid carbon. The data shows the containerless liquid carbon 

will have undercooling on the order of 50-60% of carbon’s melting temperature which is 

much greater undercooling than the 30% undercooling expected for most metallic 

elemental liquids that have been studied. The solidification of the containerless carbon melt 

is much different than most solidification processes. The 3D amorphous liquid solidifies 

into a 2D solid crystalline structure. This requires a 2D rather than 3D nucleation theory 

which is affected by temperature differently. 

The nucleation model is dependent on parameters that dictate different criticality in 

the system. For instance, the critical radius and critical temperature which are reliant on 

the latent heat of fusion and edge energy. 3D classical nucleation models have a different 

temperature dependence than the 2D case. The 3D classical nucleation model widely used 

has its criticality (peak nucleation) temperature dependence be proportional ∆𝑇ଶ where the 

2D model has criticality proportional to ∆𝑇. The different power dependence of the 

supercooling threshold will then give chance for deeper supercooling in the nucleation of 

a 2D liquid. Due to the deeper supercooling determined from the analytical models, the 
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growth simulations were misled, and annealing temperatures did not reach the temperature 

range where our models are saying growth can occur. 

Observations of lab grown micron sized core/rim spheres have shown larger 

number densities when compared to similar structures extracted from primitive meteorites. 

The analytical models showed that the difference can be physically explained by the 

drastically different cooling rates when considering a laboratory setting and the stellar 

atmosphere setting. The carbon melt will stay at high temperatures for long periods of time 

inside the stellar atmosphere. At these high temperatures, the nucleation rate will be very 

small whereas the growth rate will be much faster. The faster rate of growth will allow for 

growth into larger sheet sizes, but the small nucleation rate will mean the total number of 

sheets will be small as the number of atoms to create new nuclei will run out. In the lab 

case, the rapid cooling will quickly move through the nucleation’s peak rate giving many 

nucleation seeds of critical size. The growth rate will however be slower at these lower 

temperatures causing many smaller sized sheets to form but giving an overall higher sheet 

number-density. 

The determined values for fraction crystalline, mass-weighted average, and number 

density of graphene sheets showed very close agreement with the experimentally observed 

values from lab grown cores. The ~7% fraction crystalline and ~2.3 × 10ଶ଴ number 

densities came rather close to the 10% and 1.8 × 10ଶ଴ determined, but the ~30 atoms 

mass weighted average predicted from the analytical model fell a bit short to the 

determined 60 atoms. This indicates these models are pointing in the right direction and 

allowed the analysis of the sensitivity of the models to the different parameter values 

(∆𝐻௙ , 𝜆, 𝐸௔ , 𝑇௠) to gauge which parameter values are key to making physical predictions. 
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A strong sensitivity to the ratio between latent heat of fusion (∆𝐻௙) and the edge 

energy (𝜆) and the cooling rates was noticed when analyzing the change in graphene sheet 

density and mass weighted average. On the other hand, a strong insensitivity to the growth 

rate was determined. The insights into the sensitivity to the cooling rates and insensitivity 

to the growth rates were strengthened when considering the saturation effects due to slow 

cooling. Using a numerical approach for the slow cooling saturation which is analogous to 

an asymptotic low cooling rate. When comparing to the analytical model, the numerical 

model overlaps exactly where the observed switch occurred.  

The asymptotic low cooling from the numerical saturation model gives insight into 

the growth only affecting overall time. This is also seen when analyzing the graphene sheet 

number density and mass weighted average analytically by changing the Arrhenius 

activation energy and seeing a large insensitivity to this energy change. The sensitivity to 

cooling rates is initially seen from the nucleation peak at the critical temperature. The 

nucleation peak is also dependent on the Gibb's free energy which is related directly to the 

latent heat of fusion and edge energy. The critical supercooling temperature was also seen 

to depend directly on the ratio of ∆𝐻௙ and 𝜆. This puts constraints on the possible values 

so if one is changed the other must be changed giving a strong effect on the nucleation peak 

and criticality of the system. This means the ratio between these two parameters is key and 

must be a specific value to be able to make physical predictions for the onset of 

solidification.  

The 2D nucleation and growth models show a strong sensitivity to different 

parameters that make up these analytical models. This work can be extended by looking 

deeper into the multiparameter space to gauge a stronger understanding of the plausible 
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values for each of these parameters that make up the analytical models. The numerical 

model for evolving distributions used here implements free-growth during constant 

cooldown capped by a full-saturation with infinitesimal cooldown. Effectively, this full-

saturation can be thought as a point at an effective fixed-temperature where 100% of the 

atoms have crystallized. A more sophisticated model for saturation should be considered 

to gauge accurate predictions of graphene sheet growth. A way to extend this saturation 

model is by looking at adding a simple version for Ostwald ripening [129,130]. This simple 

approach of the Ostwald ripening model would involve unimpeded growth to the 

experimentally determined fraction crystalline. Following this would be a redistribution of 

the smallest clusters to increase the size of the larger clusters until the observed average 

crystal size is reached. These additions would get these models closer to making physical 

predictions for the growth of graphene sheets from a low-pressure carbon liquid. 



119 

 

BIBLIOGRAPHY 

 
1. S. a. J. R. Scandolo, The Centers of Planets: In laboratories and computers, shocked 

and squeezed matter turns metallic, coughs up diamonds and reveals Earth's white-
hot center. American Scientist 2003, 91 (6), p. 516–525.  
 

2. M. Ross, The ice layer in Uranus and Neptune - diamonds in the sky? Nature 1981, 
292, 435−436.  

 
3. S. L. Johnson, P. A. Heimann, A. G. MacPhee, A. Lindenberg, O. R. Monteiro, Z. 

Chang, R. W. Lee and R. W. Falcone, Bonding in liquid carbon studied by time-
resolved x-Ray absorption spectroscopy. Phys. Rev. Lett. 2005, 94, 057407.  

 
4. A. Hu, Q.-B. Lu, W. W. Duley and M. Rybachuk, Spectroscopic characterization 

of carbon chains in nanostructured tetrahedral carbon films synthesized by 
femtosecond pulsed laser deposition. J. Chem. Phys. 2007, 126, 154705.  

 
5. A. Hu, M. Rybachuk, Q.-B. Lu and W. W. Duley, Direct synthesis of sp-bonded 

carbon chains on graphite surface by femtosecond laser irradiation. Appl. Phys. 
Lett. 2007, 91, 131906.  

 
6.  A. Y. Basharin, V. S. Dozhdikov, V. T. Dubinchuk, A. V. Kirillin, I. Y. Lysenko 

and M. A. Turchaninov, Phases formed during rapid quenching of liquid carbon. 
Tech. Phys. Lett. 2009, 428−431.  

 
7. P. Fraundorf, T. Hundley and M. Lipp, HAL-02238804 2019. 

 
8. Artem Oganov, Structure, Bonding, and Mineralogy of Carbon at Extreme 

Conditions. Reviews in Mineralogy and Geochemistry 2013 75: 47-77. 
 

9. J.E. Graebner, Thermal Conductivity of Diamond, Springer, 1995. 
 

10. C .Frondel and U.B. Marvin, Lonsdaleite, A new hexagonal polymorph of 
diamond. Nature 1967, 214 (5088): 587–589. 

 
11. C .Frondel and U.B. Marvin, Lonsdaleite, A hexagonal polymorph of diamond. 

American Mineralogist 1967, 52. 
 

12. Zicheng Pan, Hong Sun, Yi Zhang, and Changfeng Chen, Harder than Diamond: 
Superior Indentation Strength of Wurtzite BN and Lonsdaleite. Phys. Rev. Lett. 
2009, 102, 055503. 

 
13. P. Fraundorf, G. Fraundorf, T. Bernatowicz, R. Lewis and T. Ming, Stardust in the 

TEM. Ultramicroscopy 1989, 27 (9): 401-412. 
 



120 

 

14. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. 
Mitzuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. 
Jelezko, and J. Wrachtrup, Ultralong spin coherence time in isotopically engineered 
diamond. Nat. Mater. 2009, 8, 383-387. 

 
15. P. Chrostoski, H. Sadegphour, and D. Santamore, Electric Noise Spectra of a Near-

Surface Nitrogen-Vacancy Center in Diamond with a Protective Layer, Phys. Rev. 
Applied 2018, 10, 064056.  

 
16. P. Chrostoski, B. Barrios, and D. Santamore, Magnetic field noise analyses 

generated by the interactions between a nitrogen vacancy center diamond and 
surface and bulk impurities, Physica B 2021, 605, 412767.  

 
17. P.R. Buseck, S.J. Tsipursky, and R. Hettich, Fullerenes from the Geological 

Environment. Science 1992, 257 (5067): 215–217. 
 

18. J. Cami, J. Bernard-Salas, E. Peeters, and S. E.  Malek, Detection of C60 and C70 
in a Young Planetary Nebula. Science 2010, 329 (5996): 1180–1182. 

 
19. S Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black 

by high resolution electron microscopy. Journal of Crystal Growth 1980, 50 (3): 
675–683. 

 
20. A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials 2007 6 

(3): 183–191. 
 

21. N. M. R. Peres and R. M. Ribeiro, Focus on Graphene. New Journal of Physics 
2009, 11 (9): 095002. 

 
22. Zhilin Li, Lianlian Chen, Sheng Meng, Liwei Guo, Jiao Huang, Yu Liu, Wenjun 

Wang and Xiaolong Chen, Field and temperature dependence of intrinsic 
diamagnetism in graphene: Theory and experiment. Phys. Rev. B. 2015, 91 (9): 
094429. 

 
23. A. Webster, Carbyne as a possible constituent of interstellar dust. Mon. Not. R. Ast. 

Soc. 1980, 192, p. 7-9. 
 

24. W. A. Chalifoux and R. R. Tykwinski, Synthesis of extended polyynes: Toward 
carbyne. Comptes Rendus Chimie. 2009, 12 (3–4): 341. 

 
25. S. L. Johnson, P. A. Heimann, A. G. MacPhee, A. M. Lindenberg, O. R. Monteiro, 

Z. Chang, R. W. Lee, and R. W. Falcone, Bonding in Liquid Carbon Studied by 
Time-Resolved X-Ray Absorption Spectroscopy, Phys. Rev. Lett 2005, 94, 057407. 
 

26. C. B. Cannella and N. Goldman, Carbyne Fiber Synthesis within Evaporating 
Metallic Liquid Carbon, J. Phys. Chem. C 2015, 119, 21605−21611. 



121 

 

 
27. J. M. Zazula, On Graphite Transformations at High Temperature and Pressure 

Induced By Absorption of the LHC Beam, LHC-Project-Note-78 1997. 
 

28. F.P. Bundy, W.A.Bassett, M.S.Weathers, R.J.Hemley, H.U.Mao, and 
A.F.Goncharov, The pressure-temperature phase and transformation diagram for 
carbon; updated through 1994, Carbon 1996, 34 (2): 141-153. 

 
29. G. Zhao, H. F. Mu, D. H. Wang, C. L. Yang, J. K. Wang, J. Y. Song, and Z. C. 

Shao, Structural and dynamical change of liquid carbon with pressure: ab initio 
molecular dynamics simulations, Phys. Scr. 2013, 88, 045601. 

 
30. C.J. Hull, S.L. Raj and R.J. Saykally, The liquid state of carbon, Chem. Phys. Lett. 

2020, 749, 137341. 
 

31. A.L. Horvath, Critical temperature of elements and the periodic system, Journal of 
Chemical Education 1973, 50 (5): 335. 

 
32. C. J. Wu, J. N. Glosli, G. Galli, and F. H. Ree, Liquid-Liquid Phase Transition in 

Elemental Carbon: A First-Principles Investigation, Phys. Rev. Lett. 2002, 89, 
135701. 

 
33. W. Hujo, B. S. Jabes, V. K. Rana, C. Chakravarty, and V. Molinero, The Rise and 

Fall of Anomalies in Tetrahedral Liquids, J. Stat. Phys. 2011, 145, 293–312. 
 

34. S. Sastry and C. A. Angell, Liquid–liquid phase transition in supercooled silicon,  
Nature Mater. 2003, 2, 739–743. 

 
35. M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, and A. Föhlisch, The liquid-

liquid phase transition in silicon revealed by snapshots of valence electrons, PNAS 
2010, 107 (30): 16772-16776. 

 
36. T. Morishita, Liquid-Liquid Phase Transitions of Phosphorus via Constant-Pressure 

First-Principles Molecular Dynamics Simulations, Phys. Rev. Lett. 2001, 87, 
105701. 

 
37. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata & K. 

Funakoshi, A first-order liquid–liquid phase transition in phosphorus, Nature 2000, 
403, 170–173. 

 
38. J. C. Palmer, P. H. Poole, F. Sciortino, and P. G. Debenedetti, Advances in 

Computational Studies of the Liquid–Liquid Transition in Water and Water-Like 
Models, Chem. Rev. 2018, 118 (18): 9129–9151. 

 



122 

 

39. R. S. Singh, J. W. Biddle, P. G. Debenedetti, and M. A. Anisimov, Two-state 
thermodynamics and the possibility of a liquid-liquid phase transition in 
supercooled TIP4P/2005 water, J. Chem. Phys. 2016, 144, 144504. 

 
40. C. C. Yang and S. Li, Size-Dependent Temperature-Pressure Phase Diagram of 

Carbon, J. Phys. Chem. C 2008, 112, 1423-1426. 
 

41. B. Fegley Jr., Practical Chemical Thermodynamics for Geoscientists, Academic 
Press 2013. 

 
42. F. Gorrini, M. Cazzanelli, N. Bazzanella, R. Edla, M. Gemmi, V. Cappello, J. 

David, C. Dorigoni, A. Bifone and A. Miotello, On the thermodynamic path 
enabling a room-temperature, laser-assisted graphite to nanodiamond 
transformation, Sci. Rep. 2016, 6, 35244. 

 
43. P. Fraundorf, G. Fraundorf, T. Bernatowicz, and R. L. Tang Ming, Stardust in the 

TEM, Ultramicroscopy 1989, 27 (4): 401-411. 
 

44. P. R. Heck, J. Greer, L. Kööp, R. Trappitsch, F. Gyngard, H. Busemann, C. Maden, 
Janaína N. Ávila, A. M. Davis, and R. Wieler, Lifetimes of interstellar dust from 
cosmic ray exposure ages of presolar silicon carbide, PNAS 2020, 117 (4): 1884-
1889. 

 
45. M. Lugaro, Stardust from Meteorites: An Introduction to Presolar Grains, World 

Scientific 2005. 
 

46. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the 
Elements in Stars, Rev. Mod. Phys. 1957, 29, 547. 

 
47. T. J. Bernatowicz and E. Zinner, Astrophysical Implications of the Laboratory 

Study of Presolar Materials, AIP Conference Proceedings 1996, 402, 450. 
 

48. T. K. Croat, T. Bernatowicz, S. Amari, S. Messenger, and F. J. Stadermann, 
Structural, chemical, and isotopic microanalytical investigations of graphite from 
supernovae, Geo. et Cosmo. Acta 2003, 67 (24): 4705-4725. 

 
49. T. K. Croat, F. J. Stadermann, and T. J. Bernatowicz, Presolar Graphite from AGB 

Stars: Microstructure and s-Process Enrichment, ApJ 2005, 631, 976. 
 

50. T. J. Bernatowicz, O. W. Akande, T. K. Croat, and R. Cowsik, Constraints on Grain 
Formation around Carbon Stars from Laboratory Studies of Presolar Graphite, ApJ 
2005, 631, 988. 

 
51. B.Wopenkaa, Y.C.Xub, E.Zinner, and S.Amari, Murchison presolar carbon grains 

of different density fractions: A Raman spectroscopic perspective, Geo. et Cosmo. 
Acta 2013, 106, 463-489. 



123 

 

 
52. E. Mandell, Electron beam characterization of carbon nanostructures, University of 

Missouri – Rolla ProQuest Dissertations Publishing 2007, 3298489. 
 

53. P. Fraundorf and M. Wackenhut, The Core Structure of Presolar Graphite Onions, 
ApJ 2002, 578, L153. 

 
54. P. Fraundorf, T. Hundley, and M. Lipp, Synthesis of unlayered graphene from 

carbon droplets: In stars and in the lab, HAL-02238804 2019. 
 

55. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer 
1997. 

 
56. R.P. Sear, Nucleation: theory and applications to protein solutions and colloidal 

suspensions, J. Phys.: Condens. Matter 2007 19 (3): 033101. 
 

57. R.P. Sear, Quantitative Studies of Crystal Nucleation at Constant Supersaturation: 
Experimental Data and Models, Cryst Eng Comm. 2014, 16 (29): 6506–6522. 

 
58. D. Turnbull and J. C. Fisher, J. Chem. Phys. 1949, 17, 71. 

 
59. S. Auer and D. Frenkel, Numerical prediction of absolute crystallization rates in 

hard-sphere colloids, J. Chem. Phys. 2004, 120, 3015. 
 

60. D. Duft and T. Leisner, Laboratory evidence for volume-dominated nucleation of 
ice in supercooled water microdroplets, Atmos. Chem. Phys. 2004, 4, 1997–2000. 

 
61. T. T. H. Nguyen, A. Khan, L. M. Bruce, C. Forbes, R. L. O’Leary, and C. J. Price, 

The Effect of Ultrasound on the Crystallisation of Paracetamol in the Presence of 
Structurally Similar Impurities, Crystals 2017, 7(10), 294. 

 
62. W. K. Burton  and  N. Cabrera, Crystal growth and surface structure. Part I, Discuss. 

Faraday Soc. 1949, 5, 33-39. 
 

63. N. Cabrera  and  W. K. Burton, Crystal growth and surface structure. Part II, 
Discuss. Faraday Soc. 1949, 5, 40-48. 

 
64. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University 

Press, 1989. 
 

65. A. V. Shapeev, Moment Tensor Potentials: A Class of Systematically Improvable 
Interatomic Potentials, Multiscale Modeling & Simulation 2016, 14 (3): 1153–
1173. 

 
66. S. J. Plimpton, A. P. Thompson, Computational aspects of many-body potentials, 

MRS Bull. 2012, 37 (5): 513–521. 



124 

 

 
67. J. E. Lennard-Jones, On the Determination of Molecular Fields, Proc. R. Soc. Lond. 

A. 1924, 106 (738): 463–477. 
 

68. P. M. Morse, Diatomic Molecules According to the Wave Mechanics. II. 
Vibrational Levels, Physical Review 1929, 34, 57. 

 
69. L. A. Girifalco and V. G. Weizer, Application of the Morse Potential Function to 

Cubic Metals Physical Review 1959, 114 (3): 687–690. 
 

70. G. C. Abell, Empirical chemical pseudopotential theory of molecular and metallic 
bonding, Phys. Rev. B. 1985, 31: 6184. 

 
71. M. Z. Bazant, E. Kaxiras, and J. F. Justo,  Environment-dependent interatomic 

potential for bulk silicon, Phys. Rev. B. 1997, 56 (14): 8542. 
 

72. M. W. Finnis, A simple empirical N-body potential for transition metals, Philos. 
Mag. A. 1984, 50 (1): 45. 

 
73. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, ReaxFF:  A 

Reactive Force Field for Hydrocarbons, J. Phys. Chem. A, 2001, 105 (41), pp 9396–
9409. 

 
74. J. Tersoff, New empirical approach for the structure and energy of covalent 

systems, Phys. Rev. B. 1988, 37: 6991. 
 

75. S. Munetoh,  T. Motooka,  K. Moriguchi, and A. Shintani, Interatomic potential for 
Si-O systems using Tersoff parameterization. Computational Materials Science 
2007,  39 (2), 334–339. 

 
76. J. Tersoff, Empirical interatomic potential for carbon, with applications to 

amorphous carbon, Phys. Rev. Lett. 1988, 61:25, 2879-2882. 
 

77. D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the 
chemical vapor deposition of diamond films, Phys. Rev. B. 1990, 42 (15): 9458–
9471. 

 
78. K. Nordlund and J. Keinonen, Formation of Ion Irradiation Induced Small-Scale 

Defects on Graphite Surfaces, Phys. Rev. Lett. 1996, 77 (4): 0031. 
 

79. J.T. Titantah, and D. Lamoen, sp3/sp2 characterization of carbon materials from 
first-principles calculations: X-ray photoelectron versus high energy electron 
energy-loss spectroscopy techniques, Carbon 2005, 43, 1311–1316. 

 



125 

 

80. G Rajasekaran, R. Kumar and A. Parashar, Tersoff potential with improved 
accuracy for simulating graphene in molecular dynamics environment, Mater. Res. 
Express 2016, 3, 035011. 

 
81. H. A. Posch, Canonical dynamics of the Nosé oscillator: Stability, order, and chaos, 

Phys. Rev. A. 1986, 33 (6): 4253–4265. 
 

82. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.  
Haak, Molecular-Dynamics with Coupling to an External Bath, J. Chem. Phys. 
1984, 81 (8): 3684–3690. 

 
83. T. Schlick, Molecular Modeling and Simulation, Springer 2002. 

 
84. K. A. Dill, S. Bromberg, and D. Stigter, Molecular Driving Forces, Garland 

Science 2003. 
 

85. D. Frenkel and B Smit, Understanding Molecular Simluation, Academic Press 
2002. 

 
86. R. H. Swendsen and J. S. Wang, Replica Monte Carlo simulation of spin glasses, 

Phys. Rev. Lett. 1986, 57: 2607–2609. 
 

87. A. Warshel, Bicycle-pedal model for the first step in the vision process, Nature 
1976, 260 (5553): 679–683. 

 
88. D. E. Shaw et al., Atomic-Level Characterization of the Structural Dynamics of 

Proteins, Science 2010, 330 (6002): 341–346. 
 

89. A. F. J.H. Los, "Intrinsic long-range bond-order potential for carbon: performance 
in Monte Carlo simulations of graphitization," Phys. Rev. B 68 (2), 24107, 2003. 

 
90. N. A. Marks, Generalizing the environment-dependent interaction potential for 

carbon, Phys. Rev. B 2000, 63 (3): 0163-1829. 
 

91. J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, and S. Yip, Interatomic potential 
for silicon defects and disordered phases, Phys. Rev. B 1998, 58, 2539. 

 
92. N.A. Marks, D.R. McKenzie, and B.A. Pailthorpe, Molecular-dynamics study of 

compressive stress generation, Phys. Rev. B 1996, 53, 4117.  
 

93. P. Mahon, B.A. Pailthorpe, and G.B. Bacskay, A quantum mechanical calculation 
of interatomic interactions in diamond, Philos. Mag. B, 1991, 63, 1419.  

 
94. B.A. Pailthorpe, Molecular‐dynamics simulations of atomic processes at the low‐

temperature diamond (111) surface, J. Appl. Phys. 1991, 70, 543. 
 



126 

 

95. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. 
Comp. Phys 1995, 117, 1-19. 

 
96. E. Polak and G. Ribière, Note on the convergence of conjugate direction methods, 

Rev. Française Informat Recherche Opérationelle 1969, 3 (1): 35–43. 
 

97. D. S. Franzblau  Computation of ring statistics for network models of solids, Phys. 
Rev. 1991, 44, 4925. 

 
98. V. L. Deringer and G. Csányi, Machine learning based interatomic potential for 

amorphous carbon, Phys. Rev. B 2017, 95, 094203. 
 

99. C. Silva, P. Chrostoski, and P. Fraundorf, DFT study of “unlayered graphene solid” 
formation, in liquid carbon droplets at low pressures, MRS Advances 2021, 6 (7), 
203-208. 

 
100. C. Silva, DFT study of unlayered-graphene solid formation, in carbon droplets 

condensed in stellar atmospheres, University of Missouri – Rolla ProQuest 
Dissertations Publishing 2021, 11923. 

 
101. N. A. Marks, N. C. Cooper, D. R. McKenzie, D. G. McCulloch, P. Bath, and S. P. 

Russo, Comparison of density-functional, tight-binding, and empirical methods for 
the simulation of amorphous carbon, Phys. Rev. B 2002, 65, 075411. 

 
102. J. R. Morris, C. Z. Wang, and K. M. Ho, Relationship between structure and 

conductivity in liquid carbon, Phys. Rev. B 1995, 52, 4138. 
  

103. R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series 1970, 28, 
Princeton University Press. 

 
104. A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Unusually Dense 

Crystal Packings of Ellipsoids, Phys. Rev. Lett. 2004, 92 (25): 255506. 
 

105. C. F. Royse, An introduction to sediment analysis, Arizona State University Press, 
Tempe 1970, 169. 

 
106. Th. Zingg, Contribution to gravel analysis, Swiss mineralogical and petrographic 

notices 1935, 15, 39–140. 
 

107. R. B. Corey and L. Pauling, Molecular models of amino acids, peptides, and 
proteins, Rev. Sci. Instrum. 1953, 24 (8): 621–627. 

 
108. B. E. Warren, X-ray diffraction, Courier Corporation 1990. 

 
109.  P. Debye, X-ray scattering, Ann. Physik 1915, 46: 809. 

 



127 

 

110. B. E. Warren, X-ray diffraction in random layer lattices, Phys. Rev. 1941, 59 (9), 
693. 

 
111. T. Bernatowicz, R. Cowsik, P. C. Gibbons, K. Lodders, B. F. Jr., S. Amari, and 

R. S. Lewis, Constraints on stellar grain formation from presolar graphite in the 
Murchison meteorite, Astrophysical Journal 1996, 472, 760. 

 
112. B. Fultz and J. M. Howe Transmission electron microscopy and diffractometry of 

materials, Springer 2001. 
 

113. E. Mandell, N. Hunton, and P. Fraundorf, Unlayered graphenes in red-giant 
starsmoke, arXiv:cond-mat/0606093v1 2006. 

 
114. T. Morishita, Fluctuation formulas in molecular-dynamics simulations with the 

weak coupling heat bath, The Journal of Chemical Physics 2000, 113 (8): 2976–
2982. 

 
115. T. Schlick, Molecular Modeling and Simulation, Springer 2002. 

 
116. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. 

Haak, Molecular dynamics with coupling to an external bath,  J. Chem. Phys. 1984, 
81(8): 3684-90. 

 
117. W. Humphrey, A. Dalke, and K. Schulten, VMD - Visual Molecular Dynamics, 

J. Molec. Graphics 1996, 14 (1), 33-38. 
 

118. M. Togaya, Pressure Dependences of the Melting Temperature of Graphite and 
the Electrical Resistivity of Liquid Carbon, Phys. Rev. Lett. 1997, 79 (13): 0031-
9007. 

 
119. F. P. Bundy, Melting of Graphite at Very High Pressure, J. Chem. Phys. 1963, 38, 

618. 
 

120. N.D. Orekhov and V.V. Stegailov, Graphite melting: Atomistic kinetics bridges 
theory and experiment, Carbon 2015, 87, 358–364. 

 
121. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and Annalisa Fasolino, Melting 

temperature of graphene, Phys. Rev. B 2015, 91, 045415. 
 

122. R. Becker and W. Döring, Kinetic treatment of the nucleation in supersaturated 
vapors, Ann. Phys. (Leipzig) 1935, 24, 719. 

 
123. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An 

Introduction 2009. 
 



128 

 

124. D. Turnbull, Formation of Crystal Nuclei in Liquid Metals, J. Appl. Physics, 1950, 
21, 1022. 

 
125. D. J. Evans and D. J. Searles, The Fluctuation Theorem, Advances in Physics 

2002, 51 (7): 1529-1585. 
 

126. F. Colonna, J. H. Los, A. Fasolino, and E. J. Meijer, Properties of graphite at 
melting from multilayer thermodynamic integration, Phys. Rev. B 2009, 80, 
134103. 

 
127. K. Kelton and A. L. Greer, Nucleation in condensed matter: applications in 

materials and biology, Elsevier 2010. 
 

128. R. Kalyanaraman, Nucleation energetics during homogeneous solidification in 
elemental metallic liquids, J. Appl. Phys. 2008, 104, 033506. 

 
129. L. Ratke, and P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in 

Material Processing, Springer 2002, 117-118. 
 

130. A. Baldan, Review Progress in Ostwald ripening theories and their applications to 
nickel-base superalloys Part I: Ostwald ripening theories, Journal of Materials 
Science 2002, 37, 2171-2202. 



129 

 

VITA 

 

 Philip Chrostoski obtained his Bachelor of Science in Physics from Southern 

Illinois University – Edwardsville (SIUE) in 2016. While doing his undergraduate work, 

he worked as an undergraduate teaching assistant and tutor. His work had him awarded 

with the SIUE Physics Outstanding Teaching Assistant award for the years of 2015 and 

2016. His senior assignment was also awarded with the SIUE Outstanding Senior 

Assignment award. Philip then moved on to Delaware State University (DSU) where he 

earned his Master of Science in Physics in 2018. During his time at DSU as a graduate 

research assistant, Philip was able to graduate with a 4.0 GPA earning him the DSU 

Graduate Studies and Research Certificate of Academic Excellence. Philip continued his 

studies by gaining a Dissertation Recruitment Fellowship for the joint Missouri University 

of Science and Technology (Missouri S&T) and University of Missouri – St. Louis 

(UMSL) Physics PhD program. Philip received his PhD in Physics jointly by Missouri 

S&T and UMSL in December 2021. 

 Philip has published as main author and co-author in multiple conference 

proceedings and main author in respected peer reviewed journals during his graduate level 

studies. He also presented work at conferences put together by different societies such as 

the American Physical Society, Materials Research Society, and the International Society 

for Optics and Photonics. Philip was also an invited speaker by the Southern Illinois 

University-Edwardsville physics department to talk about his graduate school studies and 

research.  


	Semi-empirical modeling of liquid carbon's containerless solidification
	Recommended Citation

	Microsoft Word - DissertationSubmissionVersion-Chrostoski

