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ABSTRACT 

 

This study investigates crustal thickness and properties within the north central 

Africa region. Results obtained from 15 seismic stations belonging to the Libyan Center 

for Remote Sensing and Space Science are reported, in addition to 3 seismic stations 

publically available, using receiver functions, the first P-to-S receiver function 

investigation of the 410 km and 660 km depth discontinuities bounding the mantle 

transition zone (MTZ), and P wave tomography methods. The results from the first method 

show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between 

±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km 

in the southern portion of the Libyan territory then becomes thinner, between 24 km and 

30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt 

Basin.  

The observed high Vp∕Vs value of 1.91 at one station located at the AS Sawda 

Volcanic Province in central Libya indicates the presence of either partial melt or an 

abnormally warm area. The results from the second method show thinning of the MTZ was 

observed beneath the Miocene – Holocene volcanic provinces in central Libya, and the 

thickness of the MTZ increases from 249 km to 270 km. The third methods results show 

that Low-velocity anomalies probably representing deep and hot materials are visible 

extending to depths of ~350–350 km under the volcanic provinces in North Central Africa. 

 These results indicate that the source materials beneath the volcanic provinces are 

deeper than previously believed and are mostly attributable to a mantle plume. 
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1. INTRODUCTION 

 

1.1. BACKGROUND 

In the last decades, many studies have suggested that the current continental crust 

reflects multiple accretionary processes resulting from continent-continent collision, 

volcanic arcs, continental rifting, and basaltic volcanism at hot spots (Christensen & 

Mooney, 1995; Clarke & Silver, 1993; Griffin & O’Reilly, 1987; Lemnifi et al., 2017; 

Rudnick & Fountain, 1995; Rudnick & Gao, 2003). Most of the African subcontinental 

lithospheric mantle (SCLM) is believed to be of Archean origin but strongly affected by 

metasomatization during later geological events (Begg et al., 2009). The subcontinental 

lithosphere is composed of cratons and smaller cratonic fragments that are linked together 

by younger fold belts. The boundaries of these fragments are fed by magmas that over time 

generate a fertilization of the SCLM. These weak margins undergo many cycles of rifting, 

extension, subduction, and renewed accretion (Begg et al., 2009). 

The North African portion of the subcontinental lithospheric mantle has undergone 

a series of complex tectonic processes, where the most notable being the Pan-African 

events. The Pan-African events (Late Proterozoic to Early Paleozoic) developed 

continental-scale convergence structures, such as crustal thickening, and may be related to 

volcanic arcs and possibly deeper alterations indicated by drop a Bouguer gravity anomaly 

(Doucouré & de Wit, 2003; Liégeois et al., 2013, 2005; Liu & Gao, 2010; Van Der Meijde 

et al., 2003). 

Libya includes a portion of the largest Archean craton of Africa, which is the Sahara 

Metacraton (SMC). The SMC extends from the Tuareg Shield to the Arabian-Nubian 
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Shield (Abdelsalam et al., 2002; Lemnifi et al., 2015). According to geochronological and 

isotopic data, the whole craton appears to have behaved as a single block during the 

Phanerozoic (Abdelsalam et al., 2002; Liégeois et al., 2013). In addition, the Late Paleozoic 

oceanic crust is found north of the continental crust of Libya and Egypt (Granot, 2016; 

Speranza et al., 2012). 

A series of uplifts have been recognized on the surface of the SMC, such as the 

western Tihemboka uplift, the Tibesti-Sirt uplift, the Tripoli-Tibesti uplift, the Al Garaqaf 

arch, the Haruj Uplift, and the eastern Calanscio-Awayant uplift (Craig et al., 2008; Hassan 

& Kendall, 2014). The Phanerozoic period in the north of Africa involved episodic 

compressional and extensional tectonism (Nyblade et al., 1996). During the Mesozoic and 

early Cenozoic, the North African part was affected mainly by subduction of the Mesozoic 

lithosphere along the Hellenic arc and Calabrian arc (Capitanio et al., 2009; Marone et al., 

2003). In the same period, deep-seated rifting and marine transgression across the region 

was initiated. As a result, many basins were formed, such as the Sirt, the Murzuk, the Al 

Kufrah, and the Ghadamis Basins. In the northern part of central Africa, there is significant 

continental extension (represented by normal faults) affecting an area of 500 kmin width 

and 500 km in length along the Sirt Basin. This extension developed during the Late 

Cretaceous to the Eocene, and perhaps into the Holocene, and may have been controlled 

by the slab pull force developed during the Hellenic convergent event in the north of the 

region (Capitanio et al., 2009; Nyblade et al., 1996). 

Volcanism in Libya began in the Eocene and continued developing into the late 

Pleistocene. Some evidence suggests volcanism continued along the western and 

southwestern margins of the Sirt Basin into the Holocene (Elshaafi & Gudmundsson, 2016, 
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2017a; Nixon et al., 2011). Volcanic units of the Al-Haruj province of Libya are dominated 

by primarily olivine- and clinopyroxene-rich magma types, which were likely sourced from 

the juvenile asthenosphere (Cvetkovi´c et al., 2010). It has been proposed that the extrusion 

of these volcanic units occurred during the reactivation of older lithospheric faults from the 

uplift events (Cvetkovi´c et al., 2010). Basaltic rocks of Libya’s volcanism were produced 

by melting of predominately anhydrous mixed peridotitic mantle source in an upper mantle 

plume with an asthenosphic potential temperature around 1400∘C (Ball et al., 2016; Nixon 

et al., 2011). 

The origin of magma beneath Libya and North Africa at large scale is still poorly 

understood and widely debated. For example, Hegazy (1999) argues that the Libyan 

intraplate volcanism is related to hot mantle plumes in the underlying asthenosphere. 

Keppie et al. (2011) propose a conceptual model, using available geophysical and 

geological constraints, outlining the geometry of a channel plume underlying North Africa, 

which laterally feeds geographically discrete volcanic fields, similar to a model of the Afar 

plume (cf. Ebinger & Sleep, 1998). Tomographic models by Begg et al. (2009) argue that 

topography of the bottom of cratonic blocks in Africa has caused an important role in 

guiding the upwelling hot mantle, whereby magma might ascend to the surface through 

metasomatized lithospheric channels. Based on geochemistry and isotope data, Nixon et 

al. (2011) infer that the North African Tertiary-Quaternary volcanism can be partly 

explained in terms of diapiric upwellings originating from the upper mantle. 

The main volcanic provinces in Libya mostly coincide with the current elevated 

basement regions. There are at least two alternative mechanisms that may explain this 

relationship between basement and volcanic provinces in Libya: (i) the regions have been 
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subject to magmatic underplating that led to further increase in the elevation (cf. Craig et 

al., 2011) and (ii) the basement highs have been subject to subcrustal arching (Al-Hafdh & 

El-Shaafi, 2015; Vail, 1971). 

All these studies and related models to a large degree depend on having a 

reasonably accurate knowledge of the crustal thickness, mantle transion zone (MTZ), and 

P-wave tomography beneath Libya. However, the crustal thickness, thickness of MTZ and 

P-wave tomography of Libya and of the central North Africa, in general, has been rather 

poorly constrained, partly because of the paucity of seismic broadband stations. 

 

1.2. STATEMENT OF THE PROBLEM 

Economic minerals related to source materials beneath Libya are sparsely studied 

and poorly constrained. In particular, the origin of volcanic materials and hydrothermal 

processes, lucks of understanding the plumbing system of Libya’s enigmatic volcanism 

and substantial characterization of ore deposits within and around the study area (e.g., 

Lemnifi et al., 2015) are still debated and many interpretations are based on mainly 

geochemical and isotopic data and rarely from regional geophysical studies (Elshaafi and 

Gudmundsson, 2018). Tomographic models by Begg et al. (2009) argue that topography 

of the bottom of cratonic blocks in Africa has caused an important role in guiding the 

upwelling hot mantle, whereby magma might ascend to the surface through metasomatized 

lithospheric channels. The main volcanic provinces in Libya mostly coincide with the 

current elevated basement regions. Previous models have mostly centered on two 

hypotheses. Some studies (e.g., Burke, 1996; Gourgaud and Vincent, 2004; Nixon et al., 

2011) consider the origin of the volcanic materials are coming from deep source beneath 
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the region. By contrast, other studies (e.g., Liegeois et al., 2003; Less et al., 2006) 

completely rule out that the origin of the volcanic materials coming from deep source. 

Beccaluva et al. (2007) also suggest that the volcanism in Libya and adjacent regions is 

mostly related to passive asthenospheric mantle upwelling triggered by extensional stress 

in the lithosphere during Cenozoic reactivation. Cvetkovi´c et al. (2010) proposed that 

volcanic activity was most likely initiated during the early stage evolution of the Sirt Basin. 

Numerous global and regional tomographic studies (e.g., Marone et al., 2003; Li´egeois et 

al., 2005; Pasyanos and Nyblade, 2007; Montagner et al., 2007; Fishwick, 2010; 

Bardintzeff et al., 2012) have shown weak velocity anomalies, but the depths of their 

investigations were limited. The volcanic provinces throughout northern Central Africa are 

mainly associated with negative Bouguer anomalies, and the lithospheric thicknesses 

indicated from surface wave tomography are relatively, perhaps anomalously thin, at 

approximately 90 to 100 km [Fishwick, 2010]. 

There are at least two alternative mechanisms that may explain this relationship 

between basement and volcanic provinces in Libya: (i) the regions have been subject to 

magmatic underplating that led to further increase in the elevation (cf. Craig et al., 2011) 

and (ii) the basement highs have been subject to subcrustal arching (Al-Hafdh & El-Shaafi, 

2015; Vail, 1971). Part of a more complete understanding relies on further knowledge of 

the mechanical interactions between subsurface layers in the Earth and their role in the 

widespread magmatism throughout the region since the Early Miocene.  

Mapping and understanding the depth and physical properties of the sediment-

crust, crust-mantle, and lithosphere‐asthenosphere boundaries is essential for not only 

interpreting the processes occurring within the layers and between the boundary plates but 
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also to develop a more complete understanding of the tectonic evolution of the Earth, 

source of the volcanic materials (McKenzie and Priestley, 2008; Liu and Gao, 2018).  

Thus, this research will open and advance frontiers on the use of the geophysical 

models to study relationship between the earth’s layers and estimate the depth of the source 

of surface volcanic materials. Thus, this information can lead to discovery of ore deposits. 

 

1.3. RESEARCH OBJECTIVES AND SCOPE 

Despite a proliferation of literature concerning the tectonic evolution of north 

central Africa as well as the characteristics of the crustal thickness and the source of the 

ore deposit beneath the region, numerous significant questions remain. The main objective 

of this research is to develop a comprehensive local geological model, which considers the 

relationship between the different layers such as crust-mantle and sediment-crust 

boundaries. The study area lucks deal geophysical study shows that how the mechanical 

interaction between Moho, crust and sediment. Also, a further question concern how these 

boundaries affect different hydrothermal and partial melting. The answering to such 

questions cannot be answered by using only one method. Thus, this proposed research 

study will address these weaknesses. This study will apply three distinct analytical 

techniques receiver function constraints, p wave tomography, and remote sensing 

techniques. This research encourages further research in the development of local 2D/3D 

geodynamic models using new seismic data and encourage geological field work.  

This research initiative is limited to lack of geophysical information by using new 

seismic data. The study will provide an independent set of measurements with a higher 

resolution than most previous studies. Additionally, the results from this study are less 
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affected by the thick sedimentary layers which led to an approximately 1.5–2 s delay of the 

first P arrival on the radial receiver function. 

 

1.4. INDUSTRIAL AND ACADEMIC CONTRIBUTIONS 

Exploration for minerals requires a range of different techniques and technology. 

As such, this project will use data from both seismic stations and satellites in the areas 

around volcanic provinces in Libya in order to better estimate their mineral resource 

potential. In a simple sense, ores and mineral deposits require hot fluids to flow through 

faults and fractures (i.e. permeable networks). It is well recognized that the geometrical 

arrangement of crustal structures influences the deposition of hydrothermal minerals 

(Hildenbrand et al., 2000).  As the relationship between ore formation and lithospheric 

thickness is still poorly constrained and unknown, some inferences are needed in order to 

assess any potential mineralization in the Libyan region. 

The complex tectonic history in the region is exhibited by periods of uplift, 

subsidence, tilting, faulting, and intrusion. The effects of these tectonic events throughout 

the region are broad (Al-Heety, 2013). For example, external impacts on mining operations 

can produce a serious threat as they occur rapidly and unexpectedly. Such a rapid onset 

external impact is seismic activity. Although the region is not considered as highly 

seismically active (Al-Heety, 2013), many earthquakes of Mw >6 have occurred 

historically. Fortunately, both telesesimic and microseismic measurements are collected 

and commonly used in the fields of geo-science, geo-engineering and geo-resources. The 

data from such measurements can be used to monitor the seismic structure in and around 

tunnels, which benefits schedule planning, budget and safety for any planned mining 
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activities. The beauty of teleseismic and microseismic investigations is that they can be 

applied over different scales to observe fluctuations in stress field across a regional fault 

caused by changes of stability level. They can also be incorporated into risk planning 

associated with mining activity. The new information and expertise from this research 

would be a great help to build a new base for mining activities and estimation of the amount 

of future investment and profit from mining activities in the region.  

This research effort is expected to expand frontiers and advance knowledge with 

the use of seismicity data to create a geodynamic model link with mantle-crust-sediment 

layering. This study will build a bridge between engineering, geological and geophysical 

research fields. The knowledge and discoveries from this study will create new research 

frontiers for further research initiatives.  

 

1.5. ORIGINALITY OF PHD RESEARCH 

This fundamental research work is a novel effort towards providing a local 

geodynamics model by using different techniques. The research pioneers the efforts in 

studying the crustal thickness, sediment thickness, and source of any ore’s deposits beneath 

Libya. A major problem for the seismicity studies of Libya in the past decades was the 

absence of any extensive seismological network until 2005, at which time, the first Libyan 

seismological network was established (Al-Heety, 2013). Specifically, this study uses 

seismologic data acquired from 2005 to 2009 and allows us to infer in much greater detail 

than has been possible before the depth of the Moho, and the source of the ore deposits in 

various parts in Libya and, in particular, the origin of the partial melting within the volcanic 

provinces. 
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1.6. STRUCTURE OF THE PHD DISSERTATION 

Section 1 presents background information about the study area and associated 

problems. The research problem, as well as the research objectives and methodology, are 

outlined. Section 2 provides an extensive review of literature that has been done so far in 

the region. The extensive review of literature will be in the following areas including 

seismology, global geophysical model, geochemical isotopes, and remote sensing.  We will 

focus in weaknesses in the existing techniques that used in the literatures, and lack of 

available studies conducted into seismology and remote sensing. The data and methods are 

presented in Section 3. The methods that we will use are receiver functions, p wave 

tomography. The results and observation from the methods are captured in Section 4. 

Section 5 provides discussion and comparisons of our findings with previous studies. 

Summary of the conclusions and recommendations from the research are covered in 

Section 6. 
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2. LITERATURE REVIEW 

 

The contributions and limitations of relevant books and technical publications have 

been reviewed. This section will outline the summary contributions from published 

literature with significant impact on receiver function (RFs), P-wave tomography.  

 

2.1. PREVIOUS GEOPHYSICAL STUDIES ON CRUSTAL THICKNESSES 
       USING RECEIVER FUNCTION METHOD 

 
Many geophysical studies have focused on crustal thicknesses beneath 

northern and central Africa (Begg et al., 2009; Marone et al., 2003; Pasyanos & Nyblade, 

2007; Pasyanos & Walter, 2002) using different global velocity models. Marone et al. 

(2003) estimated the crustal thickness at the Eurasia-Africa plate boundary on basis of 

receiver function analysis, reflection and refraction surveys, and gravity and anomaly 

measurements. They inferred a typical Moho depth of about 30 km. They interpreted the 

sharp change in crustal thickness along the coast of Africa (from 25 km to 35 km) as being 

due to extension of the North African margin. In this area Moho depth and structure are 

poorly constrained, making it difficult to provide reliable models of associated local 

geological processes.  

Sandvol et al. (1998) used H-𝜅 stacking to estimate the crustal structure in the 

Middle East and in a segment of North Africa but did not include data from Libya. Van 

Der Meijde et al. (2003) studied the crustal structure beneath the Mediterranean region 

using H-𝜅 stacking and found that the crustal thickness varies from 22 km beneath the 

intraoceanic islands to 47 km beneath the continental margins. They found a deeper Moho 

of 30 ± 2.1 km at station GHAR and 31 ± 1.5 km at station MARJ. In their study, they 
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chose the peaks by using a very broad grid search method, so the Moho depth could range 

from 30 km to 36 km for both stations in their study. Pasyanos and Nyblade (2007) 

estimated crustal thickness beneath Africa and Arabia using forward modeling of surface 

waves and found that the crustal thickness in the study area varies between 25 km and 35 

km. They found that the crustal thickness at the coastline is about 25 km in the west and 

30 km to 35 km in the east. They also have examined the sedimentary cover thickness in 

the African and Arabian platforms, including that in the study area, providing estimates 

indicating that the sediment layers are thicker in the coastal areas (about 3.5 km to 5.5 km) 

and thinner in the central portions (about 1.0 km to 3.0 km).  

The gravity field of the eastern Mediterranean Sea, including the coastline of the 

study area, was studied by Cowie and Kusznir (2012) whose results indicate that close to 

the coastline the offshore crust is about 35 km thick but 20–25 km thick farther seaward, 

while in the interior of Libya the crust reaches its maximum thickness of 40–45 km. They 

concluded that the thickness of sedimentary deposits along the southern coastline of the 

Mediterranean Sea is ranging from 4 km to 6 km. 

High heat flow of 80–120 mW/m2 in northwestern Africa is associated with a 

regional thermal anomaly in the lithosphere (Lesquer et al., 1990). Specifically, the 

Tertiary-late Quaternary volcanic activity in Algeria, in the Hoggar massif, indicates that 

the upper mantle beneath northwestern Africa is still partially molten (Lesquer et al., 1990; 

Nyblade et al., 1996). Very low shear wave velocities (Vs) have been observed beneath 

eastern Africa and branches throughout northern Africa, which may reflect the presence of 

partial melt at the crust-mantle boundary (Begg et al., 2009; Deen et al., 2006). 
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2.2. PREVIOUS GEOPHYSICAL STUDIES ON MANTLE TRANSION ZONE 
       USING RECEIVER FUNCTION METHOD 
 

The study of mantle discontinuities beneath Libya and adjacent regions are 

relatively sparse. This is partly due to the limited number of broadband seismic stations 

deployed in the area. Van der Meijde et al. (2005) studied seismic discontinuities in the 

Mediterranean region using P-to-S converted phases which were identified through 

receiver function analysis. They found that the MTZ was 10–30 km thicker than the global 

average in the areas surrounding the Mediterranean Sea (including the north-eastern parts 

of Libya). These findings were interpreted as resulting from past subduction. Bonatto et al. 

(2015) investigated the MTZ thickness beneath the Ibero-Magherbian region (to the west 

of the study area) using data from 258 seismic stations. Their method was also based on 

receiver function analysis and two different cross-correlation functions. They observed 

lateral variations in terms of the depths of the 410 km depth discontinuity (d410) and the 

660 km depth discontinuity (d660) and the thickness of the MTZ which they attributed as 

the Betic Aboran slab subducted beneath the Alboran Sea, as well as the presence of a 

garnet enriched layer beneath the western Moroccan region, and plume material beneath 

the Gulf of Cadiz. 

 The origin of Libya’s volcanism (Tibesti, Al Haruj, As Saawada and Gharyan) and 

adjacent areas is widely debated and many interpretations are based on mainly geochemical 

and isotopic data and rarely from regional geophysical studies (Elshaafi and Gudmundsson, 

2018). Previous models have mostly centered on two hypotheses. Some studies (e.g., 

Burke, 1996; Gourgaud and Vincent, 2004; Nixon et al., 2011) consider there to be a 

hotspot mantle plume beneath the region. By contrast, other studies (e.g., Liegeois et al., 

2003; Less et al., 2006) completely rule out the mantle plume theory.  
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Ebinger et al. (1989) propose that nearly all of the volcanic activity in North and 

Central Africa, such as the volcanoes found in Darfur, Tibesti and Cameroon, are 

associated with the Afar plume. The hypothesis relies on the lateral flow of plume materials 

beneath the lithosphere feeding the volcanoes in this region (Azzouni-Sekkal et al., 2007). 

Keppie et al. (2011) offer a conceptual model based on geological constraints and 

geophysical data to depict the geometry of the super-plume underlying North Africa. This 

super-plume laterally feeds geographically discrete volcanic fields analogous to the Afar 

plume (cf. Ebinger et al., 1989, Ebinger and Sleep, 1998; Begg et al., 2009). Burke (1996) 

proposes that the North African intraplate volcanism is related to mantle plumes in the 

underlying asthenosphere. Gourgaud and Vincent (2004) also allude to the existence of a 

mantle plume beneath the Tibesti volcanic province, southernmost Libya, using 

geochemical data.  

By contrast, the tomographic model of Liegeois et al. (2005) does not support the 

existence of mantle plumes beneath the Libyan volcanic provinces. This model instead 

assumes that the shallow mantle is warmer with melt fractions at depths between 100 km 

to 150 km. These estimated depths are in good agreement with the depths of 80–150 km 

reported from geochemistry and isotopic studies on the lavas and mantle xenoliths from 

the Al Haruj and Waw an Namous provinces (Bardintzeff et al., 2012). In addition, the 

relatively low magmatic temperatures that have been obtained through the studied 

peridotite xenoliths (spinel lherzolites) (Peregi et al., 2003; Less et al., 2006; Elshaafi and 

Gudmundsson, 2017) from the Al Haruj Volcanic Province, do not support the presence of 

a mantle plume beneath this volcanic region but instead they suggest the existence of a 

relatively cold lithosphere. Beccaluva et al. (2007) suggest that the volcanism in Libya and 
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adjacent regions is mostly related to passive asthenospheric mantle upwelling triggered by 

extensional stress in the lithosphere during Cenozoic reactivation. Cvetkovi´c et al. (2010) 

proposed that volcanic activity was most likely initiated during the early stage evolution of 

the Sirt Basin.  

Nixon et al. (2011) inferred that Libya’s volcanism formed by diapirs and upwelling 

originating in the upper mantle. They concluded that the primary magmas originated at 

depths of 70 km for tholeiitic magmas with partial melt of 13.5% and 74 km for alkali 

magmas with partial melt of 18.9%. The primitive mantle normalized multi-element 

patterns of Libya’s basaltic rocks are highly enriched in incompatible trace elements, 

similar to within plate basalts, particularly oceanic island basalts (OIB) spectrum (St 

Helena-type) which represent basaltic melts from an enriched asthenospheric mantle 

source, most likely associated with an uprising mantle plume (Asran and Aboazom, 2004). 

St. Helena is also formed by a mantle plume similar to that of many volcanic islands, such 

as Hawaii and Iceland.  

Previous seismological investigations of the crust and mantle beneath Libya and 

adjacent areas have been global scale low-resolution studies (e.g., Pasyanos and Nyblade, 

2007; Fishwick, 2010). Tomography studies indicate that the volcanic areas in Libya are 

associated with a low-velocity mantle structure limited to the top 150 km (Liegeois et al., 

2003) as previously mentioned. Large positive velocity anomalies in the upper 100 km of 

North Africa were interpreted as the cratonic roots of cratonic terranes called the Sahara 

Metacraton (Grand, 2002; Lemnifi et al., 2015). The delamination of cratonic roots have 

been proposed to explain the observed negative velocity anomalies at the depths of 100–

175 km (Abdelsalam et al., 2011). The interior of North Africa has also been imaged, with 
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limited resolution, to show high velocity anomalies at depths above the 660 km 

discontinuity which suggests that the area is dominated by an accumulation of subducted 

slabs (Piromallo and Morelli, 2003). The central portion of Libya was characterized as 

having a thinner lithosphere, which is about 90–100 km thick, based on studies of surface 

wave tomography (Fishwick, 2010). It is likely that partially molten magma reservoirs are 

active beneath the AS Sawda Volcanic Province, as detected recently by slow Vs waves in 

comparison to the Vp waves (Lemnifi et al., 2017a). 

Most of the existing global or continental scale tomography models of the study 

area (Marone et al., 2003; Li´egeois et al., 2005; Pasyanos and Nyblade, 2007; Montagner 

et al., 2007; Fishwick, 2010; Bardintzeff et al., 2012) show weak anomalies but with 

limited depth investigation. P-and S-wave velocity perturbations have been observed in 

previous studies (e.g., Grand, 2002; Simmons et al., 2012). Shear wave splitting 

measurements obtained adjacent to North Africa (Miller et al., 2013; Lemnifi et al., 2014; 

2015) are attributed to mantle flow and represent the horizontal movement of the African 

continent to the north with local deflection of the mantle flow (Lemnifi et al., 2015). 

 

2.3. PREVIOUS GEOPHYSICAL STUDIES ON MANTLE STRUCTURE 
       BENEATH NORTH CENTRAL AFRICA USING TELESEISMIC P-WAVE 
       TOMOGRAPHY 

 

Over the last two decades, seismic tomography has become one of the most 

powerful tools for mapping the three-dimensional (3-D) heterogeneous velocity structure 

of the Earth’s interior. Through tomography on both regional and global scales, seismology 

can provide useful information to answer questions related to geodynamics and tectonics. 

Certainly, tomography can be used to estimate the volume of subducted lithosphere and 
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locate upwellings of hot (low-velocity) material from different depths in the mantle more 

realistically than other studies (e.g., Piromallo and Morelli, 2003). 

Categorizing the structure of the lithosphere is of fundamental importance for 

studying the evolution of the crustal thickness and the development of volcanic provinces 

(Cochran and Karner, 2007; Lemnifi et al., 2019). The Pan-African orogeny, an orogenic 

cycle reflecting the opening and closing of a large ocean and the collision of buoyant crustal 

blocks (Kröner and Stern, 2005), exerted compressional stresses on the African plate 

during the Neoproterozoic and caused varying lithospheric thicknesses (Stoeser and Camp, 

1985; Stern, 1994; Lemnifi et al., 2015). Related to these complicated geological 

phenomena, North Central Africa also contains many volcanic provinces that were shaped 

from the Miocene to the Holocene (e.g., Hoernle et al., 1995; Bardintzeff et al., 2012; 

Lemnifi et al., 2019]. These volcanic provinces are thought to originate from within the 

lower mantle (Lemnifi et al., 2019). Previous geophysical investigations have indicated 

that the crustal thickness beneath North Central Africa varies from 20 to 37 km using the 

gravity field and receiver functions (e.g., Cowie and Kusznir, 2012; Lemnifi et al., 2017). 

Lesquer et al. (1990) found that this area is characterized by a high heat flow of 80–120 

mW/m2, especially in the Hoggar massif, indicating that the upper mantle beneath 

northwestern Africa is still partially molten (Lesquer et al., 1990; Nyblade et al., 1996). 

Numerous models have been developed to explain the tectonics of North Central 

Africa, including those involving teleseismic receiver functions (e.g., Sandvol et al., 1998; 

Cowie and Kusznir, 2012; Lemnifi et al., 2017; 2019), shear-wave splitting analyses (e.g., 

Lemnifi et al., 2015), and global tomography (e.g., Liegeois et al. 2005). However, the 

dynamic evolutionary processes of this region are still debated because the lack of seismic 
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data and deep seismic soundings prohibit its detailed imaging. Recent receiver function 

investigations beneath Libya in the As Sawda volcanic province revealed an obvious low-

velocity (low-V) anomaly in the mantle transition zone (MTZ) (Lemnifi et al., 2019), 

suggesting higher-than-normal temperatures therein. 

 

2.4. SUMMARY 

Literature on geological and geophysical studies on the region have been reviewed. 

We summarize from the previous studies that have done in the region, the origin of the 

surface volcanic materials observed receiver functions and p wave tomography is still 

poorly understood. The vast majority of the previous receiver functions and p wave 

tomography investigations in the study area was based on the data from three seismic 

stations. Major problem for the seismicity studies of Libya in past decades was the absence 

of any extensive seismological network until 2005 at which time the first Libyan 

seismological network was established (Al-Heety, 2013). Specifically, this study uses 

seismologic data acquired from 2005 to 2009 and allows us to infer in much greater detail 

than has been possible before the depth of Moho in various parts in North Central Africa. 

Section 3 presents the data and methods and equations that used in this study. 
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3. DATA AND METHODS 

 

We used receiver functions (RFs) and P wave tomography obtained from 15 

seismic stations managed by the Libyan Center for Remote Sensing and Space Science 

(LCRSSS) and 3 seismic stations from the Incorporated Research Institutions for 

Seismology (IRIS) and Data Management Center (DMC). Figure 3.1 shows the distribution 

of earthquakes used in this study from both seismic networks. 

 

 
Figure 3.1. Elevation map of the study area (North Central Africa) and distribution of 
seismic stations (red triangles) used in this study. The circular inset shows the epicentral 
distribution of the teleseismic events (red crosses) used in this study. The red triangle 
indicates the center of the study area, and the numbers show the epicentral distances in 
degrees from the center of the study area. 
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The operation period of the Libyan Network stations ranged from early 2005 to late 

2009, while the data were acquired from early 2000 to 2013 for the public seismic stations. 

All 18 stations were used to estimate H and 𝜅 values, mantle transition zone thickness, and 

mantle structure beneath north central Africa. 

 

3.1. RECEIVER FUNCTIONS METHODS TO ESTIMATE H AND 𝜅 VALUES 

The three component seismograms are adjusted to 20 s earlier and 260 s after the 

first P wave arrival based on the IASP91 Earth model, and seismograms were filtered in 

the 0.04–0.8 Hz frequency band to enhance the signal-to-noise ratio. All seismic events in 

this study have magnitudes between 5.2 and 6.2 and occurred at epicentral distances from 

30° to 180° (cf. Liu et al., 2017; Nair et al., 2006; Reed et al., 2014) (Figure 3.2).  

 

 
Figure 3.2. Location of the events used in this study. The size of the red circles is 
proportional to the number of high-quality receiver functions from that event. The blue 
triangle indicates the area of study. 
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In this study, the cutoff magnitude (Mc) was defined as Mc = 5.2 + (De − 30.0) ∕ 

(180.0−30.0) −Hf ∕700, where De is epicentral distance in degree and Hf is focal depth in 

kilometer (Liu & Gao, 2010). We applied the procedure of Ammon (1991) to deconvolving 

the vertical component from the radial component to filter seismograms with a P wave 

signal. A signal-to-noise ratio of 4.0 or greater was used in order to generate radial RFs on 

the radial component utilizing the frequency domain water level deconvolution. This 

method uses the relative arrival times of the P wave and associated P to S converted phases 

PxS by grid searching each station’s stacked trace across a range of candidate values for H 

and 𝜅. A constant P wave crustal velocity of 6.5 km/s was assumed in this study. The 

optimal pair of H and 𝜅 values was investigated in the range of 15–55 km and 1.65–1.95, 

with the intervals of 0.1 km and 0.01 km, respectively.  

Moreover, the high-quality seismograms were manually selected with a robust first 

arrival of the direct P phase on the vertical component in order to identify the optimal pair 

of H and 𝜅 corresponding to the maximum stacking amplitude (Zhu & Kanamori, 2000). 

Thus, iterating the moveout corrections and stacking were used to determine the parameters 

(H and 𝜅) and their standard deviations (uncertainties) through 10 bootstrap computation 

using the Efron and Tibshirani (1986) method for random resampling in order to obtain a 

reliable estimate. We used a producer that is described by Zhu and Kanamori (2000) to 

stack the RFs. The following equation describes the stacking of the receiver functions at 

each of the station. 

 

 
(1) 
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Where N is the number of high-quality radial RFs from the station, Sk(t) is the 

amplitude of the point on receiver function at time t after the direct P arrival, t1, t2, t3 are 

the moveout times for the PxS, and the w1,w2, and w3 are the weighting that satisfy w1 + 

w2 + w3 = 1 (Zhu & Kanamori, 2000). More detailed descriptions of this method can be 

found in Nair et al. (2006) and in Reed et al. (2014). The stations results were ranked as: 

A (excellent), B (good), and C (poor), according to the peak clarity of the PxS on the H-𝜅. 

The stations assigned a rank of C were not included in the results.  

The study area has four major sedimentary basins as already mentioned, and 

stations SRT, MSR, UJL, ZLA, SHF, UMB, GHD, and KFR are located within the 

sedimentary basins (Figure 3.1). The Mesozoic Sirt Basin situated in north central Libya is 

bounded by the Paleozoic Ghadamis, Murzuk, and Al Kufrah Basins. These basins have 

thick sedimentary deposits, ranging from 1 km to 7 km (Abadi et al., 2008; Hassan & 

Kendall, 2014; Pasyanos & Nyblade, 2007). The increasing thickness and decreasing 

velocity of the sedimentary layers can generate a reverberatory characteristic in the RFs 

(Yu et al., 2015). Therefore, larger sedimentary thicknesses can produce errors in the H 

results when applying the method described above. Thus, the conventional H-𝜅 stacking 

procedure causes overestimates of H because the strong reverberations by multiple 

reflections (between the bottom of a loose sedimentary layer and the Earth’s surface) 

associated with a low-velocity sedimentary layer can mask the Moho converted phases. In 

order to remove these effects of the sedimentary layers, we have applied the technique by 

Yu et al. (2015), which uses the arrival time of the PxS phases and the two-way travel time 

of the sedimentary layers to correct the RFs. The removal of the reverberations clarifies the 

arrival of Ps from the Moho discontinuity (Figure 3.3). This procedure corrects the time 
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delay and calculates the thicknesses of the unconsolidated sediment layer as well as the 

subsediment H and 𝜅. Further details of the technique procedure are given by Yu et al. 

(2015).  

On the other hand, an average P wave velocity of 3.5 km/s was used for the 

sedimentary layers during this study based on several studies related to oil surveys in Libya 

(e.g., Ben, 2000; Makris & Yegorova, 2006). The sediment velocity (3.5 km/s) for stacking 

would lead to an error of 0.024 km to 0.78 km in the resulting H value and 0.0052 to 0.13 

in the resulting 𝜅 value. After the removal of the effects caused by the sedimentary layers, 

the amplitude of the first Ps phase from the base of the sedimentary layer (PbS) and the 

Moho phases appears more clearly (Figures 3.3-3.5). 

For each pair of ( i , j ) we will calculate PmS was calculated by using [Dueker 

and Sheehan, 1998] 
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Where p is the P wave ray parameter, i  is the depth of the candidate discontinuity, j  is 

the candidate Vp/Vs and Vp(z) is the P wave velocity at depth z.  
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At each station the receiver functions have been stacked by using 
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where n is the number of high –quality radial RFs from the station, Sk(t) is the 

amplitude of the point on the receiver function at time t after the direct P arrival, t1, tt2, t3,  

are moveout for PxS, w1, w2 and w3 are weighting factors that satisfy w1+w2+w3= 1 (Zhu 

and Kanamori, 2000). 

 

 
Figure 3.3. Application of H-𝜅 plot for station ASA before and after the sediment 
correction, using the procedure of Yu et al. (2015). (a) Radial RFs plotted against the back 
azimuth, with a simple time series stack (red) before sediment moveout, (b) same as Figure 
3.3a but after resource-removal filtering, and (c) H-𝜅 grid plot for normalized stacking 
amplitude after the sediment moveout correction. The optimal H and 𝜅 pair are indicated 
by a black dot. (d) Same as Figure 3.3c but for the H-𝜅 grid plot for the stacking amplitude 
to determine sediment thickness. 
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Figure 3.4. (a–d) Application of H-𝜅 stacking for stations KFR, TATN, UMB, and SHF. 
The top panels show radial RFs (black) plotted against the back azimuth. The bottom panels 
are normalized amplitude grid with optimal H and 𝜅 pair indicated by a black dot. The red 
line represents stacking amplitudes for 𝜅 = 1.73, the dashed blue line represents stacking 
amplitudes for the optimal 𝜅 and stacking amplitude along the dashed white. 
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Figure 3.5. Same as Figure 3.4 but for station JFR at the AS Sawda Volcanic Province. 
Note that the 𝜅 value (1.91) most likely indicates partial melting beneath this region. 
 

3.2. RECEIVER FUNCTIONS METHODS TO ESTIMATE THE MANTLE 
       TRANSION ZONE THICKNESS 
 

The mantle layer between the 410 km and 660 km discontinuities (here after 

referred to as d410 and d660, respectively) is denominated as the Mantle Transition Zone 

(MTZ). Mineral physics and seismic studies (Ringwood, 1975) suggest that d410 is 

characterized as the phase transition from olivine to wadsleyite, while d660 is formed by 
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the transformation of spinel to perovskite and magnesiowüstite. Previous determinations 

revealed Clapeyron slopes of +1.5 to+3.0 MPa K−1 for the olivine wadsleyite (d410) and 

-4.0 to -0.4 MPa K−1 for the postspinel transition (d660) (Gao and Liu, 2014b; Tauzin and 

Ricard, 2014). Therefore, the depths of the d410 and d660 phase changes are anticorrelated 

in depth of thermal anomalies. The d410 phase becomes shallower when it hosts colder 

material, and deeper with hotter material. 

The d660 phase exhibits the opposite behavior. Therefore, the MTZ is thinner in 

higher temperature regions, and thicker in colder regions (such as near subducted slabs) 

(Helffrich, 2000; Lawrence and Shearer, 2006; Bonatto et al., 2015). Previous studies have 

established that the depth variability of the d410 and d660 can indicate the existence of 

cold subducted slabs and high temperature anomalies (e.g., Anderson, 1967; Collier et al., 

2001; Contenti et al., 2012; Li and Yuan, 2003; Shearer and Masters, 1992; Wicks & 

Richards, 1993; Yu et al., 2017). Kennett and Engdahl (1991) and Kennett et al. [1995] 

established that in most global models, the average thickness of the MTZ is 250 km, known 

because mineral phase variations between α olivine and β olivine occur at 410 km 

(Ringwood, 1975) and the spinel to bridgmanite variation occurs at 660 km (Ito & Katsura, 

1989; Yamazaki and Karato, 2001).  

Nevertheless, MTZ thickness variations depend not only on the temperature of the 

material, but also on water concentration and chemical composition (Gu et al., 1998; 

Flanagan and Shearer, 1998; Meier et al., 2009). Litasov et al. (2005) demonstrated that 

the presence of water within olivine, wadsleyite and ringwoodite has the effect of 

increasing the magnitude of the clapeyron slope and thus amplifies variations in depth. The 

effect is to deflect the d410 upward and the d660 downward, making it harder to observe 
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the temperature changes because thickening of the MTZ will always occur when a enough 

water is present (Yu et al., 2017). 

The present work focuses on MTZ studies by using new data from eighteen 

broadband seismic stations, which are managed by the Libyan Center for Remote Sensing, 

and Space Science (LCRSSS), in addition, data from three seismic stations are publicly 

available and archived from the Incorporated Research Institutions for Seismology (IRIS) 

Data Management Center (DMC) (Figures 3.2 and 3.6). The main aim of this project is 

using receiver function analysis to map the depth of the discontinuities and the thickness 

of the MTZ beneath Libya and so infer related geodynamical processes and understand 

better the origin of Libya’s volcanism. 

The seismic events were selected based on epicentral distance, from 30° to 100° 

and cut-off magnitude, which is determined by the epicentral distance and focal depth, as 

defined by Liu and Gao (2010). We calculated the receiver functions (RFs) based on the 

frequency-domain water-level deconvolution procedure (Ammon, 1991). The 

seismograms were filtered in the frequency range of 0.02-0.50 Hz. An SNR based 

procedure was applied to select high-quality RFs, further details about the quality of RFs 

are given by Gao and Liu (2014a). We stacked the moveout-corrected RFs within each 2° 

radius bin based on the locations of the ray-piercing points at the depth of 535 km (Gao 

and Liu, 2014a). We stack the RFs based on the piercing point locations calculated at each 

of the candidate discontinuity depths (e.g., Liu et al., 2003). The IASP91 reference Earth 

model (Kennett and Engdahl, 1991) was employed to stack the receiver functions using the 

non-plane wavefront assumption [Gao and Liu, 2014a]. RFs placed within each of the bins 

are resampled over 50 iterations (Efron and Tibshirani, 1986; Liu et al., 2003; Dahm et al., 
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2017) to calculate the mean and standard deviation of the discontinuity depths and the 

thickness of the MTZ. The moveout-corrected RFs were converted into a depth range of 

300–800 km with a vertical interval of 1 km. 

Bins with less than 5 RFs were not used in this study in order to minimize the 

possibility of misidentifying the arrivals from the targeted discontinuities. In order to 

increase the reliability of the results, we manually picked the maximum amplitude near the 

theoretical arrival of the converted S waves from the MTZ discontinuities. 

To provide restrictions on the explanation on the observation of the results MTZ, 

we pick P-wave travel-time manually relative to the IASP91 Earth model on the vertical 

and transverse components. The P wave arrival was measured relative to the IASP91 Earth 

model. The picking residuals accuracy is dependent on the signal strength relative to the 

background noise, as well as the sharpness of the arrivals (further details are given by Yu 

et al., 2015). In this study, we use 5.3 km s−1 for the P-waves. We apply Eq. (6) to correct 

for travel-times due to variations in station elevation (Nolet, 2008; Yu et al., 2015). 

 𝛿𝑡 =  𝛿 −  
ℎ𝑖

𝑣 𝑥 cos{𝑎 sin(𝑅𝑖𝑗 𝑥 𝑣)}
  (6) 

where, δtij is the original residual (in seconds) found at the ith station from the jth 

event, Rij is the ray parameter (in s km−1), hi is the elevation (in km) for the ith station, 

and v is the average velocity (in km s−1) in the layer above sea-level. 

 

3.3. TELESEISMIC P-WAVE TOMOGRAPHY 

In this study, we use data collected from the LCRSS. The LCRSS consists of 15 

relatively new seismic stations. The epicentral distances of the events used in the project 

vary from 25° to 95°. Most of the events used here are in the Pacific and Atlantic Oceans 
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(Figure 3.1); hence, these events represent a sufficient azimuthal coverage around the study 

region. 

Here, based on theoretical arrival times computed using the IASP91 Earth model 

(Kennett and Engdahl, 1991), we hand-picked the first P-wave arrival times from high-

quality seismograms (Figure 3.7) with an accuracy of approximately 0.1–0.2 s. We then 

applied various important steps, including a careful visual check of all the vertical-

component seismograms to reject all those lacking a clear P-wave onset (see Yu et al. 

(2017) for more details regarding the procedure). Each of the events used in the study was 

recorded by at least four seismic stations. A total of 2093 direct P-wave arrivals (Figure 

3.7) were used for the tomographic inversion. The ray paths show good coverage in all 

directions (vertical and horizontal planes) down to a depth of 700 km (Figure 3.8). 

We computed the relative travel-time residual for each event to decrease the effects 

of uncertainties in the hypocenter locations and origin times by using the tomography 

method of Zhao et al. (1994) to subtract the mean residual from the raw residuals prior to 

the tomographic inversion. For the tomographic inversion, we used the IASP91 Earth 

model as the starting one-dimensional velocity model. For more details for the calculation 

of the relative travel-time residuals, see Zhao et al. (1994); Lei and Zhao (2016); Zhao et 

al. (1992); Yu at el. (2015); (2017). An average P-wave velocity of 6.5 km/s was assumed 

in this study. The ray path length in the crust was calculated by considering the angle of 

incidence, which was calculated using the ray parameter.  

Damping and smoothing regularization were used to solve the large and sparse 

system of observation equations (Zhao et al., 1994; Zhao, 2015; Yu et al., 2017) by 

employing the conjugate-gradient algorithm (Paige and Saunders, 1982).  



30 

 

 

Figure 3.9 shows the optimal values of the damping and smoothing parameters 

established based on the trade-off curve between the data variance reduction and model 

norm (Hansen, 1992; Yu et al., 2017). 

 

 
Figure 3.6. Topographic map overlaid with circles representing the central point of each 2° 
radius bins. The triangles represent the seismic stations used in this study. HA: Hellenic 
Arc. The different sizes of the triangles represent the number of RFs obtained from each 
station. The color of the circles represents the number of RFs per bin. 

 

3.4. SUMMARY 

Over the last two decades, receiver functions, seismic tomography techniques have 

become one of the most powerful tools for mapping of earth’s layer of the Earth’s interior. 

These techniques can provide useful information to answer questions related to 

geodynamics, origin of the surface materials especially in the volcanic provinces and 

tectonics. The results all methods we used are presented in Section 4. 
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Figure 3.7. (A) All 2093 raw travel-time residuals (in seconds) versus the backazimuth (in 
degrees). (B) Raw travel-time residuals (in seconds) versus the epicentral distance (in 
degrees). 
 

 
Figure 3.8. Distribution of P-wave ray paths (A) in map view and (B) on north-south and 
(C) east-west vertical cross-sections through the region. The ray paths from each station 
are projected onto the cross-section. The red triangles represent the seismic stations. The 
white dashed lines in B and C illustrate the 410 km (d410) and 660 km (d660) 
discontinuities. 
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Figure 3.9. Trade-off curves between the norm of the 3-D velocity model and the root-
mean-square (RMS) travel-time residuals for the tomographic inversions with different 
values of the damping parameter. The green circles in (A) and (B) indicate the optimal 
values of the smoothing and damping parameters used in this study, respectively. 
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4. RESULTS  

 

In this section will present the results from three methods (receiver function, first 

P-to-S receiver function investigation of the 410 km and 660 km depth discontinuities 

bounding the mantle transition zone (MTZ), and P wave tomography). 

 

4.1. RECEIVER FUNCTION TO ESTIMATE H AND 𝜅 VALUES 

The values for H and 𝜅 for the crustal thickness and unconsolidated sediment layer 

thickness obtained from the 18 seismic stations are shown in Tables 4.1, Figures 4.1 and 

4.2 and Table 4.2. Each station was manually checked based on the displayed PmS, as well 

as both the PPmP and PSmS arrivals. Figures 3.4 and 3.5 show an example from stations 

ASA, KFR, TATN, UMB, SHF, and JFR that display a clear arrival phase in a singular 

stacking point on the corresponding H-𝜅 plot after the removal of effects from the 

sedimentary layers.  

For the entire area of investigation, the resulting H values range from 24 km to 36 

km, with a mean value of 32 km (with uncertainties ranging between ±0.10 km and ±0.90 

km). The 𝜅 values range from 1.71 to 1.91, with a mean value of 1.83 (with uncertainties 

ranging between ±0.01 and ±0.04). The results suggest that the thinnest crust occurs mainly 

beneath the stations SRT, TRP, and JDB, whereas the thickest crust occurs beneath station 

KFR (the east central portion of the study area). In the coastal area, the H ranges from 24 

km to 31 km, and the 𝜅 value ranges from 1.71 to 1.85. The northwestern part of the region 

is characterized by some of the lowest 𝜅 values, especially at stations GHAR and SRT 

(Figure 4.2). Stations GHD and ZLA were not used in the study because of the very strong 
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influence of a thick sedimentary layer that led to an approximately 1.5–2 s delay of the first 

P arrival on the radial RFs. The waveform does not have a dominant period; thus, the 

sedimentary removal procedure cannot be reliably applied in this case. 

Additionally, station TBQ was not used because it recorded an unreliable number of RFs 

(<10). Our result for the stations GHAR and GHR shows that H is approximately 33 km, 

which is similar to the finding recorded by Van Der Meijde et al. (2003) who reported an 

average thickness of about 31 km. 

To characterize the observed systematic spatial variations in the crust, we tested the 

correlations between crustal thickness, elevation, Vp∕Vs, and Bouguer gravity anomalies 

for the region (Figure 4.2). We used a grid resolution for Bouguer gravity anomaly and 

elevation of 2 min and 1 min, respectively. Such resolutions are useful for large-scale 

geological studies and give critical information about the compensation mechanism of the 

Libyan territory (cf. Tontini et al., 2006). The H is directly proportional to the surface 

elevation with cross-correlation coefficient (r) of 0.55 (Figure 4.3a), and the H is inversely 

proportional to the Bouguer gravity anomaly with r = −0.70 (Figure 4.3c). We also compare 

the 𝜅 values with H, surface elevation, and Bouguer gravity anomaly and find no significant 

correlation with r = −0.02, −0.34, and 0.03, respectively (Figures 4.3e and 4.3f).  

We additionally observed a good correlation between elevation and Bouguer 

gravity anomalies (r = 0.57) for 56 points where we picked up four measurements for both 

parameters at 2.5 km around each seismic station (Figure 4.1b). Hence, the greater surface 

elevations commonly correspond to the lower Bouguer anomalies and thicker crust, which 

may indicate an isostatically compensated crust. 
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4.2. RESULTS FROM RECEIVER FUNCTIONS METHODS TO ESTIMATE 
       THE MANTLE TRANSION ZONE THICKNESS 

 

The RFs in the study area produced 162 bins with observable arrivals from the d410 

and d660. As shown in Figure 4.4, the P-to-S conversion from the d410 and d660 can be 

easily identified when the traces are sorted according to depth. All of the stacked traces 

plot along eight latitudes from 27 °N to 34 °N as shown in Figure 4.5. The average depth 

of the d410 in the study area is 413 ± 6 km, and the average depth of the d660 is 663 ± 8 

km. The average MTZ thickness calculated is 249 ± 14 km, which fully agrees with the 

IASP91 Earth model depth value of 250 km. 

The observed depth of the d410 increases towards the central part of the study area, 

from approximately 400 km to 420 km (Figure 4.5a, b, c, e, and f). The apparent depth of 

the d660 increases from 650 to 670 km from longitudes 6° to 13° but returns to 650 km 

from longitudes 14° to 28°. The depths of the d410 and the d660 increase by 10 km to 420 

km and 670 km beneath the areas hosting volcanoes. We find that the depths of the d410 

and d660 are generally uncorrelated, and the cross-correlation coefficient (R) is 0.21 

(Figure 4.6). To provide spatial series images for the results at the bins selected we used a 

continuous curvature surface gridding algorithm, with a tension factor of 0.5 (Smith and 

Wessel, 1990; Yu et al., 2015). The Standard deviation (STD) of MTZ thickness in the 

region is less than 10 km (Figure 4.7d). 

The weak correlation between the two depths studied indicates that the MTZ 

beneath the study area is influenced by materials with anomalously high or low 

temperatures (e.g., Bonatto et al., 2015). MTZ thicknesses in the west and southeast are 

similar to the global average but the MTZ thickness in the northeast of Libya is about 20 
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km thicker than average (Figure 4.7c), while the south-central area, approximately centered 

at 14 °E, 28 °N, is about 10 km thinner. The thinnest portion of the MTZ, to the south of 

the As Sawda Volcanic Province (SVP), is affected by a depressed d410 and an uplifted 

d660. Therefore, the weak correlation might indicate slower upper mantle velocities. To 

the northeastern part of Libya, a thicker MTZ is caused by shallowing of the d410 and 

deepening of the d660, which demonstrates a negative correlation between the d410 and 

d660 and as such indicates the presence of cold material. This finding is entirely supported 

by mineral physics studies (Ito and Takahashi, 1989; Fei et al., 2004). 

We have hand-picked P-wave residuals from the teleseismic events (Figure 4.8). 

The observations represent the residuals from individual station event pairs which are 

plotted at the ray-piercing point at the depth of 100 km from west to east along the study 

area. The P-wave travel time residuals decrease in the central part of the region, and this 

again occurs spatially with the location of volcanic provinces. 

 

Table 4.1. Observations of Crustal Thickness (H) and Vp/Vs(k). 
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Figure 4.1. (a) Topographic relief map of the study area, with 1 min resolution, showing 
crustal thickness, and (b) resulting crustal thicknesses plotted on top of the Bouguer gravity 
map, which produced from the WGM2012 Bouguer gravity model with a resolution of 2 
min. Note that circle diameter correlates with crustal thickness 
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Figure 4.2. Vp∕Vs values in the study area and patterns of heat flow across the Sirt Basin. 
The inset map shows the heat flow (80–120 mW/m2) in the NW part of Africa at Algeria, 
which is indicated by a deep red color. The heat flow in the volcanic areas seems likely 
much higher than central and eastern parts of the Sirt Basin. The heat flow data are taken 
from Nyblade et al. (1996). Expanding circle diameters indicate increasingly 𝜅 values. The 
highest 𝜅 value (1.91) was recorded beneath the AS Swada Volcanic Province at station 
JFR. The main volcanic provinces represent by red dashed lines, and Mesozoic rifts 
represent by teeth on downthrown blocks (black lines). 

 

Table 4.2. Observations of Crustal Thickness (H) and Vp/Vs(k). 
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Figure 4.3. Graphs showing the correlations between crustal thickness, elevation, Bouguer 
Gravity, and Vp∕Vs. (a) Correlation between crustal thickness and elevation with r = 0.55 
where r is the cross-correlation coefficient. (b) Correlation between Bouguer gravity 
anomaly and elevation with r = −0.57, 𝜎2(x, y) = 32, 941, where 𝜎(x, y) is the sum of 
variance elevation (x) plus Bouguer gravity anomaly (y) due to both x and y are correlated. 
(c) Correlation between crustal thickness and Bouguer gravity anomaly with r = −0.70. (d) 
Correlation between Bouguer gravity anomaly and Vp∕Vs values with r = 0.03. (e) 
Correlation between crustal thickness and Vp∕Vs values with r = −0.02. (f) Correlation 
between elevation and Vp∕Vs values with r = −0.34. 
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Figure 4.4. (a) The results of stacking normal moveout-corrected RFs, plotted with the 
sequentially increasing depth of the d410, and (b) same as (a) but for the d660. 
 

4.3. P-WAVE TOMOGRAPHU RESULTS 

In this study, the tomography resolution was examined by performing a 

checkerboard resolution test at many different depths using different grid intervals (Figure 

4.9). 

4.3.1. Resolution Analyses.  Here, we allocated alternating negative and positive 

velocity anomalies of up to 3% to the 3-D grid nodes in the modeling space. A grid interval 

of 1° was adopted to represent the optimal tomographic inversion of real-world data. The 

checkerboard resolution test outcomes are good for the depth range of 150–700 km beneath 
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the study area. As the depth increases, the resolution increases due to the presence of 

vertically incident rays (Figure 3.8). 

The spatial resolution beneath the volcanic provinces becomes significantly higher 

with increasing depth due to the improving ray path coverage. In some areas, the biased 

velocity anomalies are spatially limited, especially in the west and east, which may be due 

to the azimuthal coverage of incoming rays and the limited number of seismic stations. 

Therefore, our interpretation will focus on the areas with a high number of seismic stations, 

good resolution test outcomes, and a high back azimuthal coverage. 

4.3.2. Tomography Results.  Here, we adopted velocity anomalies ranging from –

3% to 3%, as shown in Figures 4.9 and 4.10. At 80 km depth, both low- and high-velocity 

bodies are clearly shown, especially around the Al Haruj volcanic province (Figure 4.10). 

The results at a depth of 150 km are mostly the same as those at a depth of 80 km with low-

velocity anomalies between the Al Haruj and As Sawada volcanic provinces.  

The resolution gradually increases with depth and is greatly improved at a depth of 

300 km, which reflects the improved ray coverage (Figure 3.8). A high-velocity anomaly 

is revealed beneath the As Sawada volcanic province that extends to a depth of 750 km. 

However, low velocities are observed between Al Haruj and As Sawada volcanic 

provinces. In the northwestern part of the study area, especially beneath the Gharyan 

volcanic province, a high-velocity anomaly is observed in the shallow (depths <80 km) and 

deep (depths >80 km) lithosphere, while in the southeastern part of the province, the 

underlying depth range of 100–300 km is dominated by a low-velocity body (Figure 4.11). 

A high-velocity anomaly covers the entire As Sawada and Gharyan volcanic provinces in 

the depth slices at 350 and 750 km. 
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The most prominent features seen on the cross-sections in Figure 4.11 are low- and 

high-velocity anomaly zones in the depth range of 100–400 km beneath the volcanic 

provinces. A low-velocity anomaly exists from the surface to a depth of ~200 km beneath 

the Al Haruj and As Sawada volcanic provinces, while a high-velocity body extends to a 

depth of approximately 700 km beneath the volcanic provinces. 

 

 
Figure 4.5. Profiles showing the RFs stacked in 2° radius bins at depths from 350 km and 
750 km along eight latitudes. Thick gray lines of the stacked RFs show the depth series 
average; black lines around it represent the mean±2σ; black circles represent the average 
depths of the d410 and the d660, with error bars showing 2σ of the peak’s depth. 
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Figure 4.6. Cross correlation plot (R) of the d410 and d660 apparent depths. The error bars 
represent the (σ) standard deviation. 
 

 

 
Figure 4.7. (a) Results showing the topography of the d410, (b) same as (a) but for the 
d660, (c) MTZ thickness, and (d) MTZ standard deviation (STD). Contour lines are spaced 
at 10 km intervals for in (a)-(c), but at 2 km (d). 
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Figure 4.8. Teleseismic P-wave travel time residuals displayed above the ray-piercing 
points at 100 km depth and projected from west to east of the study area. The red points 
are individual event values, and circles with error bars are station-averaged values. (For 
interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article). 

 

4.4. SUMMARY 

This section covers the results from three methods that we used in this project. 

Furthermore, applying the sedimentary thickness technique of Yu et al. (2015), as 

mentioned before, provides the sediment thickness beneath the stations in the study area. 

The sedimentary thickness ranges from 0.40 km to 3.70 km with 𝜅 values ranging from 

1.50 to 4.80 (Table 4.2). Results from all methods confirm each other. The results from p 

wave tomography support the results from receiver function that the surface volcanic 

materials are mainly coming from deep source. The discussion and interpretation of the 

results are captured in Section 5. 
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Figure 4.9. Maps view of different depth slices through a checkerboard resolution test 
beneath the region with a lateral grid interval of 1° and input velocity anomalies of ± 3%. 
The layer depth is shown in the upper right corner of each map. 
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Figure 4.10. Map views of our obtained P-wave tomography results of the study area. The 
layer depth is shown below each map. Red colors represent low-velocity anomalies, and 
blues color represent high-velocity anomalies. The velocity perturbation scale (in %) is 
shown at the bottom. The black crosses show the seismic station locations. 
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Figure 4.11. Cross-sections of the P-wave tomography results along longitude 13° (a), 
longitude 14° (b), latitude 32° (c), latitude 28° (d), longitude 17° (e), longitude 18° (f), 
latitude 28° (g), latitude 26° (h), longitude 16° (i) and latitude 29° (j). The black dashed 
lines represent the remaining microslab. The blue lines on the topographic map show the 
locations of the vertical cross-sections. 
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5. DISCUSSION 

 

5.1. CONSTRAINTS ON THE SEDIMENT THICKNESS 

One of the drawbacks of using the receiver function technique is the existence of 

interferences resulting from sedimentary layers (Ammon, 1991; Langston, 1979; Owens et 

al., 1984; Zandt & Ammon, 1995; Zhu & Kanamori, 2000). Previously, some geophysical 

studies were conducted in the study area, especially along the coast, to estimate the 

thickness of the sedimentary layers using global velocity models (Cowie & Kusznir, 2012; 

Pasyanos & Nyblade, 2007). According to these previous studies, the thickness of these 

layers’ ranges from 1 to 7 km in the study area (e.g., Abadi et al., 2008). Hassan and 

Kendall (2014) summarized the geological and basin evolution in Libya, finding that the 

sediment thickness in the Sirt Basin varies from 1 km to 7 km; in the Murzuk Basin, it 

exceeds 4 km; in the Ghadamis Basin, it is about 7 km; in the Al Kufrah Basin, it is around 

3 km; and in the northeast part of Libya, it varies from 3 km to 4 km.  

This study finds that the unconsolidated sediment layers beneath the seismic 

stations range from 0.40 km to 3.70 km, with 𝜅 ranging from 2.20 to 4.80. Anomalously 

high measurements of 𝜅 at some seismic stations might result from the presence of loose 

sediments, such as at stations ASA, JDB, MSR, and UJL (Table 4.2). Some seismic 

stations, such as stations TRP and SHF, show low 𝜅 values ranging from 2.20 to 3.0, 

suggesting that the areas beneath these stations have less compact sediments.  

Due to the availability of seismic data, and the importance of oil, within the Sirt 

Basin region, we focus the discussion on this sedimentary basin. The results show that there 

is a significant change in the unconsolidated sediment layer thickness, ranging from 1.50 
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km to 2.20 km, the lowest value beneath stations UJL and MSR, and highest value at 

eastern boundary of the basin. This change may be related to extension within the basin 

and typeset of rocks. Furthermore, most of the previous studies (Abadi et al., 2008; Hassan 

& Kendall, 2014) did not consider the 𝜅 value of the sedimentary layers of the region. We 

have shown, as did Yu et al. (2015), that this is an important variable. The 𝜅 value in the 

Sirt Basin ranges from 3.50 to 4.80, which indicates that the sediments differ in their 

compactness. The technique that we used here did not work in some seismic stations, 

probably due to strong interfaces inside the sedimentary layer in the basins. 

 

5.2. CRUSTAL COMPOSITION PATTERN OF HEAT FLOW AND PARTIAL 
       MELTING BENEATH CENTRAL LIBYA 

 

The Cenozoic igneous rocks, which are exposed mainly in the central part of the 

region, comprise a low percentage of the region’s surface geology (Suleiman, 1985). 

Geological studies (Al-Hafdh & El-Shaafi, 2015; Anketell, 1996; Cvetkovi´c et al., 2010; 

Klitzsch, 1971) suggest that the igneous rocks in these areas originated primarily from the 

partial melting of asthenospheric mantle materials. 

Based on the classification of Holbrook et al. (1992), the crust composition in the 

study area is variable (Figure 4.1), with small 𝜅 values (1.72 to 1.77) occurring beneath 

stations SRT, UMB, and KFR, indicative of felsic rocks. For other stations, the values 

range from 1.80 to 1.86 and are indicative of intermediate rocks, except for station JFR, 

where a value above 1.86 suggests mafic rocks. In addition, Watanabe (1993) interpreted 

rapid reduction of Vs relative to Vp, the 𝜅 value, as being a function of melt percentage, 

the melt being primarily noticeable for values above 1.86. Reed et al. (2014) inferred that 
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the high 𝜅 (>1.86) beneath the Red Sea rift and adjacent regions indicates widespread 

partial melting. The observed low values of Vs are interpreted as reflecting present-day 

thermal effects within the central part of Libya (cf. Begg et al., 2009; Deen et al., 2006).  

Overall, the crustal composition in the study area is intermediate to mafic. In the 

volcanic and coastal areas, 𝜅 values are high, especially at stations JFR, TATN, JDB, ASA, 

and TRP. This indicates that the crustal composition beneath these stations is 

predominantly mafic. Other 𝜅 values suggest that the crustal composition is mainly 

intermediate. Our observations of velocities obtained from seismic stations at the volcanic 

provinces (SHF, JFR, and GHR) broadly agree with other geochemical and petrological 

studies on the composition of crustal materials (e.g., Aboazomet al., 2006; Al-Hafdh & El-

Shaafi, 2015; Al-Hafdh & Gafeer, 2015).  

As discussed by Abdelsalam et al. (2002) and Lemnifi et al. (2015) a negative of 

shear wave velocity at depth of 100–175 km reflects the delamination of a cratonic root. 

This is in agreement with our results, especially from data obtained from stations KFR and 

UMB, which give values of 𝜅 ranging between 1.75 and 1.77, respectively. The 𝜅 values 

are not high enough to indicate partial melt beneath the lower crust or delamination process 

beneath the Al Kufra and Murzuk Basins. However, these values may indicate that heat 

flux beneath the base of the lower crust is not high or, alternatively, the values may be an 

effect of the thickness in this part of Libyan territory. 

Heat flow across the Sirt Basin has been shown to be normal to slightly elevated 

(49–91mWm2) and generally higher in platforms (horsts) than grabens (Figure 4.2) 

(Nyblade et al., 1996). It has been suggested that the heat flow in the Sirt Basin is too low, 

particularly compared with that of the Sahara basins (northwestern Africa), to support the 
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idea of a lithospheric thermal anomaly (Nyblade et al., 1996). Heat flow measurements 

suggest that the elevated heat flow is primarily concentrated in the western part of the Sirt 

Basin (77–91 mW m2) in areas close to the Al Haruj and AS Sawda Volcanic Provinces 

(Nyblade et al., 1996) (Figure 4.2). In addition, maturation depth trends in the western Sirt 

Basin are higher than in the eastern and central parts, suggestive of elevated 

paleogeothermal gradients in the late Cenozoic (up to 30°C/km) (Abadi et al., 2008; 

Gumati & Schamel, 1988). It is thus likely that elevated heat flow in the western Sirt Basin 

is related to enhanced crustal heat production rather than to thermal alteration of the 

lithosphere related to rifting of the Sirt Basin (Nyblade et al., 1996). However, a lack of 

heat flow data prevents a precise evaluation of heat flow in the northwestern part of Africa 

between Algeria and the Sirt Basin (Figure 4.2). In these regions the heat flow in volcanic 

areas, such as the western part of the Sirt Basin, are indeed likely to be much higher than 

central and eastern parts of the Sirt Basin.  

The high 𝜅 values show velocity ratios suggesting the presence of fluids and melts 

(Deen et al., 2006; Reed et al., 2014; Watanabe, 1993). The 𝜅 values in the volcanic regions 

throughout Libyan territory are significantly greater than those found in other areas, 

particularly at the JFR station (AS Sawda Volcanic Province) (1.91) (Figure 3.5). These 

values are significantly greater than those found in other areas. This suggests the existence 

of partial melt within the crust beneath the volcanic areas. The modern-age dating for the 

last volcanic phase at the Al Haruj Volcanic Province, central Libya, indicates ages as 

young as 2.3 ± 0.8 ka (Nixon et al., 2011), indicating that the magma reservoir beneath this 

volcanic field is still active (Elshaafi & Gudmundsson, 2017a). In addition, the Al Haruj 
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and Waw an Namous volcanic fields in central Libya (Figure 3.1) are considered as still 

potentially volcanically active (Bardintzeff et al., 2012; Siebert & Simkin, 2002). 

Isotope data and geochemical signatures for basaltic rocks within the Al Haruj 

Volcanic Province indicate that fractional crystallization of primitive magma took place at 

depths of 25–39 km and temperatures of 1215–1360∘C (Nixon et al., 2011). The majority 

of earthquakes in Libya occur at depths around 30–35 km (Al-Heety, 2013) that suggests 

that the increased seismogenic thickness in Libya corresponds to a thick lithosphere 

underlying the region (cf. Craig et al., 2011; Priestley & McKenzie, 2006). The depths of 

the proposed magma reservoirs and the earthquakes coincide with the depths that our 

results give for the Moho. The results suggest that the proposed magma reservoirs at the 

Al Haruj and AS Sawda Volcanic Provinces could be located in the transition zone between 

the lowermost crust and the upper mantle. Results from other volcanic areas, such as 

Iceland, suggest that many partially molten magma reservoirs tend to be located at the 

boundary between the upper mantle and the lower crust (Elshaafi & Gudmundsson, 2017a; 

Gudmundsson, 1986, 2016; cf. Hermance, 1981; Schmeling, 1985).  

Magma reservoirs at the contact between the upper mantle and the lower crust can 

remain active for millions of years or more and mantle plumes exist for tens of millions of 

years, particularly when located away from plate boundaries (Courtillot et al., 2003; 

Elshaafi & Gudmundsson, 2017b; Gudmundsson et al., 2009, 2016) as in the present case. 

Consequently, the magma reservoirs beneath parts of Libya, particularly the central part 

(at Al Haruj, Waw an Namous and AS Sawda volcanic fields), are likely to be still active. 

In which case, mechanical interaction is possible over the same time spans as the magma 

chamber/reservoir acts to concentrate stress (Andrew & Gudmundsson, 2008; Biggs et al., 
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2016; Elshaafi and Gudmundsson, 2017b). The magma reservoirs beneath the Libyan 

territory would contribute to the generation of zones of tensile and shear stresses within 

and in-between these volcanic provinces. The concentration of elevated stresses poses a 

significant earthquakes and volcanic hazard (for more details see Elshaafi & 

Gudmundsson, 2017b).  

 

5.3. LIBYAN CONTINENTAL INTERIOR AND COASTAL AREA CRUSTAL 
       THICKNESS 

 

The H varies spatially throughout Libya, with the northern central portion having 

the thinnest crust and the interior having the thickest crust. Most of the seismic stations 

located along the uplifted areas, such as stations JFR and GHAR (Figure 4.1), suggest H 

of >32 km. From these thicknesses we deduce that uplift occurred in this area and volcanic 

activity played a contributing role in the determining H and composition. Results for H and 

𝜅 represent aspects of crustal formation and evolution as illustrated in Figures 4.1 and 4.2.  

The crust beneath the central and northwestern parts of Libya is as much as 5 km 

thinner than in the southeast and southwest parts. It is widely agreed (e.g., Faccenna et al., 

2001; Marone et al., 2003) that the H might relate to the opening of the Paleozoic ocean to 

the north (Granot, 2016) and the heterogeneity of tectonic processes in the area. 

 

5.4. COMPARING CRUSTAL THICKNESS WITH ELEVATION AND 
       BOUGUER GRAVITY ANOMALIES 

 

The question then arises: is the crust in Libya compensated only by isostasy or 

instead by mantle dynamics? Numerous studies have discussed the relationship between 

gravity anomalies and H (e.g., Aiken, 1976; Assumpcáo et al., 2013; Bashir et al., 2011; 
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Hendricks & Plescia, 1991; Sumner, 1989). We tested correlations between H, elevation, 

and Bouguer gravity anomalies (Figure 4.1) and found that they are correlated.  

The studies by Egorkin (1998) and Zandt and Ammon (1995) indicate that 

geological processes of different ages can be distinguished by their relation of H and 𝜅 

values. But our results do not support these suggestions since we find a weak correlation 

between H and 𝜅 values with r = −0.02 in the region (Figure 4.3e).  

A number of previous studies (e.g., Boschi et al., 2010; Flament, 2014; Forte et al., 

1993, 2010; Gurnis, 1993; Husson et al., 2014; Lithgow-Bertelloni & Silver, 1998; Liu & 

Gurnis, 2010; Moucha & Forte, 2011; Moucha et al., 2009) propose that surface elevations 

of >1 km are mainly controlled by mantle convention. Long-wavelength dynamic 

topography can account for topography smaller than 500 m, which supports the idea that 

surface topography can be created by mantle convection, whereas short wavelengths can 

be related to local thermal settings (Hoggard et al., 2016).  

In Libya, surface elevations are <500 m except in some volcanic provinces where 

the surface elevation reaches above 850 m. We suggest that these elevation differences at 

volcanic areas are supported by mantle convection, which supports the findings of several 

previous studies (e.g., Hoggard et al., 2016). According to the correlation between surface 

elevation and H, we propose that the crust is isostatically compensated. It has been 

suggested that the crust near/within adjacent areas to the Eurasia-Africa plate boundary 

region are in close-to-isostatic equilibrium (Marone et al., 2003).  

The results show that the crust is 30–36 km thick throughout the high elevation 

parts of the interior of Libya but much thinner, 24–28 km, under the lower topography parts 

along the coastal area, except in the northwest at the Gharyan Volcanic Province.  
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The available seismic data are still limited for explore the detailed relationships 

between elevation, crustal thickness, and the Bouguer anomalies. However, data from this 

analysis indicate a crustal thickness variation that is in agreement with studies by 

Assumpcáo et al. (2013), Oliveira and Medeiros (2012), and Van Der Meijde et al. (2013), 

who estimated the H using modeling gravimetric anomalies. The results thus indicate that 

the Moho depth might constrain the topography of Libya, as suggested in Brazil region 

(e.g., Assumpcáo et al., 2013; Feng et al., 2007; Lloyd et al., 2010).  

The correlations in Figure 4.3 suggest an isostatically compensated crust: higher 

elevations correspond to lower Bouguer anomalies and thicker crust. Using the Airy model 

to crudely calculate the density of the crust beneath the study area, we find it to be 

approximately 3,140 kg/m3, which is above the average found using typical values of 

crustal density (2,850 kg/m3 to 2,880 kg/m3) (e.g., Darbyshire et al., 2000; Woollard, 

1959) and lower than densities derived from Makris and Vees (1977), Makris and Stobbe 

(1984), and Makris and Yegorova (2006), which are 3,300 kg/m3. Therefore, we propose 

that the crust beneath Libya is old and dense, possibly having been formed during the 

Precambrian to Early Paleozoic age, which agree with the finding by Granot (2016) and 

Speranza et al. (2012) beneath the eastern Mediterranean Sea. Meanwhile, results of 

surface wave modeling by Fishwick (2010), who observed the thinner lithosphere beneath 

central Libya and delamination of cratonic roots beneath Sahara metacraton (Abdelsalam 

et al., 2011), tend to support the idea that the area is under isostatic equilibrium.  

As such, the thinner lithosphere can lead to the rise of the asthenosphere and 

promote isostatic equilibrium, which leads to local mountain building. This follows 

because although volcanic eruptions during the late Cenozoic period supplied mafic 
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magmas to the underlying crust in some areas, hence the idea of having a dense crust 

suggests a poor correlation between Bouguer gravity anomalies and 𝜅 ratios, with r of 0.03 

(Figure 4.3d) and inverse correlation between topography and Bouguer gravity anomalies 

(Figure 4.3b). However, the crustal thickness shows a good reverse relation with Bouguer 

gravity anomalies, which supports the assumption of an older origin for the overall denser 

crust. 

Crustal thickness has been shown to vary significantly in the East Saharan Shield 

area depending on the models used (e.g., Bassin et al., 2000; Pasyanos & Nyblade, 2007). 

The Pasyanos and Nyblade (2007) velocity model gives H ranging from 25 to 35 km, while 

CRUST2.0 (Bassin et al., 2000) indicates crustal ranging from 35 km to 45 km. Results 

from this study agree closely with the more recent of the two studies yielding an overall 

denser crust, since such a crust would also have higher velocities. Crustal uplifts are 

generally interpreted as hot spot swells because association with intraplate volcanism and 

large gravity anomalies (Pirajno, 2004). However, the spatial distributions of Libya’s 

volcanism have also been related to a warm upwelling asthenospheric mantle associated 

with a thinner lithosphere that promotes magma migration through metasomatized 

lithospheric channels (Ball et al., 2016; Elshaafi & Gudmundsson, 2017a; Nixon et al., 

2011). Furthermore, a low-density anomaly sits beneath the lithospheric plate and Libya’s 

volcanic provinces are distinguished by a series of long-wavelength topographic swells 

(Ball et al., 2016). 

The major volcanic fields in Libyan territory are greatly correlated to the current 

elevated basement areas. The basement highs seem to reflect some form of subcrustal 

arching rather than magmatic intraplate accumulation as inferred from isotope geochemical 
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data that indicate that the magmas lack signals of crustal contamination and, hence, most 

likely magma propagated directly from deep-seated magma reservoirs at the crust-mantle 

boundary (Elshaafi & Gudmundsson, 2017a; Stuart et al., 2014). There are no large igneous 

bodies such as extensive sills observed in seismic lines in the western part of the Sirt Basin 

(e.g., Abdunaser & McCaffrey, 2015). Hence, the lack of large plutonic bodies or extinct 

shallow magma chambers beneath the Earth’s crust may be one reason for the low Bouguer 

anomaly in volcanic areas as observed in this study. It is generally accepted that a hot 

upwelling mantle induces dynamic uplift (Courtillot et al., 2003; Pirajno, 2004) where the 

impact of a mantle plume onto the base of the lithosphere results in doming of the crust. 

 The dynamic topography is quite difficult to determine in the continents, 

particularly in Africa, due to the density structure of the lithosphere, which is still unknown 

and poorly documented (cf. Ball et al., 2016). Further geophysical studies such as heat 

flowdata, denser broadband seismic coverage, and geothermal data should be addressed in 

the future in order to obtain better constraints on the deep structure and density of the 

lithosphere beneath this important region. 

 

5.5. SPATIAL VARIATION OF ANOMALOUS MTZ THICKNESSES AND 
       TEMPERATURES 

 

Here, our discussion will mainly focus in the area where the number of the RFs per 

station is high (above 105, see Figure 3.6). In the following section we highlight several 

key features of the MTZ from the receiver function analysis. The MTZ is of constant 

thickness in the west of the studied region, thins by 10 km in the central part, and thickens 

by about 20 km beneath the northeastern part of Libya (Figure 4.7c). We infer that the 

location of the thinner MTZ (Figure 4.7c) is spatially related to the location of Quaternary 
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volcanism, suggesting that there is a deep source of upwelling materials. To infer 

temperature changes the d410 Clapeyron slope of 2.9 MPa/K (Bina and Helffrich, 1994), 

and the d660 Clapeyron slope of -2.1 MPa/K (Fei et al., 2004) are adopted. Therefore, 

considering that our results show a standard variation of the MTZ thickness of 14 km, this 

is equivalent to normal thermal variations of ± 76° K. The change in MTZ thickness to 20 

km thinner-than-average as controlled by deepening d410 corresponds to an excess 

temperature of 242° K centered in the central and northwestern part of Libya, implying 

higher temperatures in the transition zone beneath central Libya. 

Mohamed et al. (2014) adapted several different models that take account of 

velocity, thermal, and water content anomalies in order to explain the variations in 

thickness of the MTZ beneath the Afro-Arabian Dome. Those models relate the change in 

MTZ discontinuity depths to the effect of olivine- and garnet-dominated phase changes, 

and MTZ hydration. The variation in thickness of the MTZ in the area of investigation can 

be most appropriately fitted to two of the proposed models of Mohamed et al. (2014). The 

first model explains that the thinnest part of the MTZ occurs because Libya’s Quaternary 

volcanism is underlain by low seismic velocities in the upper and lower mantle. In the first 

model, the main depression occurs in the d410, with uplift in the d660, which corresponds 

to the observed values between the longitudes from 14° to 20° in the central part of this 

region. This agrees with the findings of Fishwich (2010) who found that the lithosphere is 

about 90 km thinner beneath this area. Given the fact that the area with the thinned MTZ 

has a thinner lithosphere, this model indicates that the upwelling material probably 

originated from the lower mantle. This agrees with a proposed heat source originating in 

the lower mantle that drives Cenozoic volcanism in northwest Africa (e.g., Hoggar) 



59 

 

 

(Courtillot et al., 2003). Courtillot et al. (2003) suggest that hotspots may derive from 

distinct mantle boundary layers. Thus, our findings propose that the origin of Libya’s 

volcanism may come from higher-than-normal temperatures in the mantle transition zone 

(MTZ). 

Apparently depressed MTZ discontinuities can also be explained through hydration 

mechanisms (Reed et al., 2016). The presence of water assists both to thicken the MTZ 

through an immediate uplift and depression of the d410 and d660 (Figure 4.7), respectively, 

and to decrease the seismic velocities in the MTZ. The occurrence of a strong, continuous 

520 km discontinuity and also a negative arrival immediately above the d410 beneath Afar 

is expressive of hydrous upwelling across the MTZ (Thompson, 1992; Thompson et al., 

2015; Reed et al., 2016). In principle, the thickening of the MTZ observed in the eastern 

part of the region can also be caused by the presence of water. Though, some studies 

proposed that under normal pressure temperature conditions (Yu et al., 2017), water might 

promote a low-velocity anomaly of the phase transition associated with the d410. This 

process would cause anomalously low stacking amplitudes (Wood, 1995). The velocity 

anomalies of about 0.5 s observed from picking P-wave travel-time velocities, fit well with 

what we observe at the volcanic provinces in the study area, especially at the As Sawda 

volcanic province (Figure 4.8). The profile from east to west of the study area observed 

through P-wave travel-time velocities shows a low average velocity in the central part of 

Libya where most of the volcanic provinces occur. 
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5.6. SLAB SEGMENTS IN THE MTZ 

Water has previously been used to explain low-velocity anomalies associated with 

phase transitions at the d410 (Tauzin et al., 2010). Thicker portions of the MTZ in the 

northeastern part of Libya are cause partly by hydrated minerals, resulting in a general 

increase in water content. This hydration could be associated with African-Eurasian closure 

and the subduction of the Tethys Ocean plate (Stern, 1994). The thickening of the MTZ 

observed in other areas can also be caused by the presence of water (e.g., Litasov et al., 

2005; Yu et al., 2017). 

A positive anomaly at the depths of 400–600 km beneath the northeastern part of 

Libya likely reflect part of the past subduction of the Thethys slab (Simmons et al., 2012) 

(Figure 4.7). Here, we suggest that the thicker MTZ is related to 170°K colder-than-normal 

temperatures, since cooler temperatures are related to positive velocity anomalies. Higher 

water contents also cause anomalously low stacking amplitudes or the presence of negative 

receiver function signals at the upper portion of the d410 discontinuity (Bercovici and 

Karato, 2003). The velocity anomalies found in this study match this observation. 

 Generally, tomographic studies using the global S-wave model by Grand (2002) 

and P-wave model by Piromallo and Morelli (2003) indicate the positive velocity anomaly 

observed in the eastern part of the study area. Also, our analysis of the P-wave travel-time 

residuals indicate a slightly higher average velocity (Figure 4.8). Given the fact that the 

northeastern part of Libya has a thickened MTZ, this is likely a reflection of past subduction 

and African-Eurasian collision since the late Mesozoic, and is also in agreement with the 

findings and interpretation of Van der Meijde et al. (2005) and Bonatto et al. (2015) in 

neighboring areas. 



61 

 

 

5.7. P-WAVE TOMOGRAPHY 

Global seismic tomography has been used to image various cratons (the West 

African, Congo, and Kalahari Cratons), otherwise known as blocks, and the roots of the 

cratons, which extend down to a depth of 250 km (e.g., Deen et al., 2006; Begg et al., 2009; 

Abdelsalam et al., 2011). Most of the cratons are separated by sutures (e.g., Stern, 1994; 

Abdelsalam et al., 2011). Some of these suture lines are interpreted as the collision zone 

between the Saharan Metacraton and the Tuareg Shield to the west of the study area 

(Liégeois et al., 1994, 2003; Henry et al., 2009). Abdelsalam et al. (2011) used the Grand 

(2002) model to generate S-wave velocity anomaly images of the Saharan Metacraton 

lithospheric column at different depths of 0–100 km, 100–175 km, and 175–250 km and 

showed that the craton has a positive S-wave velocity anomaly extending down to a depth 

of 250 km, reflecting the presence of a well-developed cratonic root. When we compare 

our imaged low-velocity anomalies with the Cenozoic volcanic provinces, a relation is 

apparent down to great depth (~>500 km). 

A previous work (e.g., King and Anderson, 1998) suggested that the upwelling 

volcanic materials beneath the study region may be due to an edge effect at an underlying 

lithospheric step. However, other studies such as Liégeois et al. (2003) suggested that these 

materials may result from the reactivation of preexisting shear zones and fractures during 

the late Neoproterozoic. Using a global tomography model, Liegeois et al. [2005] revealed 

that the shallow mantle is warmer with melt fractions at depths between 100 km and 150 

km but did not show the existence of a mantle plume. A recent study by Lemnifi et al. 

(2019) that used teleseismic receiver functions found that the volcanism in Libya originates 

from higher temperatures in the mantle transition zone. Our present tomographic model 
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supports the study by Lemnifi et al. (2019) but shows more features in greater detail than 

previous models. There are obvious low- and high-velocity anomalies. For example, Figure 

4.11 shows the results of tomography beneath the As Sawada volcanic province, suggesting 

that the low-velocity anomalies therein are attributable to microslabs representing a series 

of microcontinental collisions that possibly terminated with the collision of the Saldania 

microcontinent. The observed remaining slabs are as stiff as the lithosphere and extend to 

a depth of ~300 km with a dip of ~ 40° (Figure 4.11). However, the high-velocity anomalies 

are caused by hot materials extending down to ~ 400 km depth. 

It is generally accepted that microcontinental collisions during the Neoproterozoic 

Pan-African orogeny (Stoeser and Camp, 1985; Stern, 1994; Lemnifi et al., 2015) in the 

study region played an important role in the formation and evolution of North Central 

Africa. Therefore, the region is characterized by lithosphere with variable thickness owing 

to the extensive Pan-African orogenic suturing of blocks (Stern, 1994; Lemnifi et al., 

2017). The Pan-African orogeny, which involved various cratons, including the West 

African Craton and the Saharan Metacraton, represents the amalgamation of a series of 

orogenic events. We suggest that the microslab beneath the Saharan Metacraton subducted 

eastward during microcontinental accretion. The slab in this case did not subduct down into 

the deep mantle. This may explain why the volcanic provinces are limited in this region. 

In this case, we propose that the remaining microslabs reflect part of the collision of the 

Saharan Metacraton with the Tethys Ocean. This can be clearly seen from the elevation of 

the northwestern part of the study area, which encompasses the boundaries between the 

Sirt Basin, Ghadamis Basin, and Murzuk Basin (Figure 3.1). The mechanism of this 

collision may have been increased localized stretching in the Sirt Basin. This stretching 
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increased abruptly between ~50 and ~48 Ma (e.g., Capitanio et al., 2009). During this 

period, volcanism in Libya began and continued to develop into the late Pleistocene (e.g., 

Nixon et al., 2011). Consequently, we suggest that the local structure in the study region 

played a major role in forming the structure of the Sirt Basin and that small-scale 

convection and the upwelling of materials may have been responsible for the observed 

surface tectonic features, especially in the Sirt Basin (Figures 3.1 and 5.1). 

Using the receiver function technique, Lemnifi et al. (2017) suggested that the 

magma reservoirs beneath the study region are still active and that these reservoirs 

generated the zones of tensile and shear stresses within and between these volcanic 

provinces. Consequently, our model supports the study by Lemnifi et al. (2017); however, 

more detailed features are observed in this study. 

Moreover, the tomography results suggest that the lithosphere beneath the region 

may extend to an estimated maximum depth of 200 km with a more variable thickness than 

that obtained from surface wave tomography, which estimated a lithospheric thickness of 

approximately 90–100 km (Fishwick, 2010). It is likely that this thinner lithosphere was 

observed beneath the volcanic provinces due to thermal erosion and the presence of 

partially molten magma reservoirs. This hypothesis is supported by slow S-wave velocities 

in comparison to the P-wave velocities (Lemnifi et al., 2017; 2019). 

Our results provide the most convincing evidence that the microslabs and relative 

movements of rigid cratonic blocks in the region are the most important sources of 

earthquakes that occurred during the past century (Al-Heety, 2013). The localized low-

velocity anomaly observed in the upper asthenosphere (Figures 20 and 21) is most likely 

caused by a down going slab; however, we suggest that the speed of subduction of these 
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microslabs is almost zero, which may be due to their location far from the major plate 

boundaries to the north of the study area, such as the Hellenic and Calabrian subduction 

zones. The results from this teleseismic P-wave tomography study beneath the study region 

in combination with those from recent anisotropy investigations (Miller et al., 2013; 

Lemnifi et al., 2015) indicate that most of the regional geodynamic processes are associated 

with the varying lithospheric thickness due to microsubduction, partial melting, and local 

mantle flow deflection. 

Using the first P-to-S receiver function investigation of the mantle transition zone in 

the study region, the previous study by Lemnifi et al. (2019) found that the thicker mantle 

transition zone to the east and southeast was related to ancient subducted slabs caused by 

the convergence between Africa and Europe. In the southeastern part of the study, the Al 

Awaynat volcanic province, which was initially created during the Precambrian, was 

mostly built during the Proterozoic (Abdelsalam et al., 2002). In this area, the geodynamic 

processes and source of volcanic materials are debated. Due to the limited number of 

seismic stations to the east of the study area and on the basis of the new findings from this 

study, we suggest that additional seismic stations are needed for further detailed 

geophysical studies to obtain better constraints on the deep Earth structure. 

 

5.8. SUMMARY 

The results of this study, when using three methods was successfully confirmed 

eacth other. The results from the RFs and p wave tomography suggested that the source of 

volcanic materials on the surface came from deep sources. The technique that we used to 

determine the sedimentary thickness did not work in some seismic stations, probably due 
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to strong interfaces inside the sedimentary layer in the basins. Further studies are certainly 

still needed in the future in order to obtain better constraints on the ore deposits in Libya, 

and we hope that these results encourage further research into the origin of Libya's 

volcanism. 

 

 
Figure 5.1. Schematic explanation of the proposed model for the study area from west to 
east. 
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6. CONCLUSIONS, PHD CONTRIBUTIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 

6.1. SUMMARY AND CONCLUSIONS 

This is the first study to present crustal thickness measurements of Libya based on 

seismic data obtained from several seismic stations. The H ranges from 24 km to 36 km, 

specifically, the range in H is from a maximum of 30–36 km beneath the southern part of 

Libya to a minimum of 24–28 km along its coast.  A significant correlation was observed 

between H, elevation, and Bouguer gravity, suggesting that the crust is isostatically 

compensated. However, there is a weak correlation between H and 𝜅 values. The main 

volcanic provinces in Libya mostly coincide with the current elevated areas and low 

Bouguer gravity anomalies, which indicates that the volcanic regions have been subject to 

subcrustal arching rather than magmatic under plating. This study showed that seismic 

stations close to the volcanic provinces detected more mafic crustal compositions because 

of basaltic magma underlying the crust, possibly forming partially molten magma 

reservoirs. The value at station JRF is 1.91, suggesting the existence of partial melt at the 

crust-mantle boundary beneath the associated volcanic field. Modern age dating by Nixon 

et al. (2011) at the Al Haruj Volcanic Province indicates that the volcanism in this region 

continued until recent times. If magma resides beneath central Libya in reservoirs, then the 

volcanic systems may pose significant earthquake and volcanic risks. Many previous 

earthquakes in Libya during the past century have depths between 30 km and 35 km (Al-

Heety, 2013). Fractional crystallization of the primitive magmas at the Al Haruj Volcanic 

Province is also thought to have occurred at similar depths, namely, in reservoirs at depths 

of 25–39 km (Nixon et al., 2011). The inferred depths of the reservoirs match this study’s 
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findings of the Moho depth variations. This study also finds that sediment thicknesses 

beneath the seismic stations range from 0.4 km to 3.7 km, with variable values of 𝜅. Using 

an Airy isostasy model suggests that the density of the crust beneath the study area is 3,140 

kg/m3. This research study suggests that the crust in this region is denser than normal and 

therefore likely to be older than Phanerozoic time. 

This is the first pioneering study to investigate the d410 and d660 depth variations, 

and mantle transition zone thicknesses beneath Libya using receiver functions. This study 

marks an important step in the quest to understand tectonic processes in the northern 

portion of the African continent. The results show that the d410 was depressed, while the 

d660 was uplifted within the Miocene – Quaternary volcanic areas and an anomalously 

thin MTZ in the central portion of Libya suggests that the Miocene – Holocene volcanoes 

heat source originated within the lower mantle. Hence, the study findings propose that the 

origin of Libya’s volcanism may derive from higher temperatures in the mantle transition 

zone (MTZ), deeper than 410 km, beneath this region. This conclusion is in good 

agreement with the hypothesis of a mantle plume where Miocene-Holocene volcanic 

activity throughout Libya was/is directly related to an uprising mantle plume rather than 

related solely to extension of the lithosphere. Conversely, the MTZ is thickened in the 

north-east to approximately 270 km, indicating a colder-than-average MTZ. Thus, this 

study infers that this thicker and colder MTZ is most likely associated with slab stagnation. 

In conclusion, this study provides new insights using P-wave velocity tomography 

to further enhance the details of the tomographic images in a local-scale model. This study 

provided a velocity model for the vertical structure that has a better resolution than that of 
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previous models. The tomography results in the region show different observables, which 

are governed by different temperatures in the crust, lithospheric mantle and asthenosphere. 

 The main finding of this study is that the low-velocity anomalies probably 

represent deep and hot materials that are visible under the volcanic provinces in North 

Central Africa and extend to depths between 350to 550 km. The observation of high-

velocity anomalies, which indicate that microslabs still exist beneath the region, suggests 

that North Central Africa was mostly affected by microcontinental accretion during the 

Pan-African orogeny. 

 

6.2. PHD RESEARCH CONTRIBUTIONS 

Essentially the formation of ore and mineral deposits is governed by the flow of hot 

fluids through faults and fractures as known by permeability. It is well recognized that the 

geometrical arrangement of crustal structures influences the deposition of hydrothermal 

minerals [Hildenbrand et al., 2000].  Even as the relationship between ore formation and 

lithospheric thickness is still poorly constrained and unknown, therefore this study suggests 

signs of potential mineralization in the Libyan region. 

The region is broadly categorized into an area hosting a thinner-than-normal mantle 

transition zone (and so thicker lithosphere) and an area hosting a thicker-than-normal 

mantle transition zone (and so a thinner lithosphere). The thinner MTZ is characterized by 

increased melt production which is associated with numerous shear and extensional 

fractures such as ring-faults and dykes and so also presumably significant hydrothermal 

circulation. The location of epithermal and porphyry precious and base metal deposits may 
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then form in such environments, whereas they are less likely to form in the colder stagnant 

slab region. 

The results of this research study shed lights on the subsurface and surface 

economic minerals, sediment and crustal layering, deformation history of the lithosphere 

and the thermodynamic processing beneath Libya. In addition, it provides valuable 

information about the source of economic materials and future mine activities in the region.  

The key contributions from this research are outlined below: 

1. The value at some seismic stations show that the Vp/Vs ratio is high, suggesting 

the existence of partial melt beneath volcanic provinces. 

2. This study also finds that sediment thicknesses beneath the seismic stations range 

from 0.4 km to 3.7 km, with variable values of Vp/Vs ratio. 

3. The velocity anomaly shows a low average velocity in the central part of Libya 

where most of the volcanic provinces have formed. 

   

6.3. RECOMMENDATIONS FOR FUTURE WORK 

This research has made significant strides towards improving geophysical methods 

to discover ore deposits, further work is still necessary to achieve a complete certainty of 

ore deposits existence. There is a need for further study using different methods such as 

remote seining, because one of the drawbacks for example of using the receiver function 

technique is the low vertical resolution in shallow depth. Thus, this study concludes that to 

use the remote sensing is essential to complete the whole image. 
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APPENDIX A. 

RECEIVER FUNCTION 
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Figure A1. An H-κ plot for station SHF before and after the sediment correction. (a) Radial 
RFs plotted against the back-azimuth, with a simple time-series stack (red) before sediment 
move-out, (b) same as (a) but after resource-removal filtering, (c) H-κ grid plot for 
normalized stacking amplitude after the sediment move-out correction. The red line 
represents stacking amplitudes for κ = 1.73 (which is the mean κ for crustal rocks), the 
dash blue line represents stacking amplitudes for the optimal κ and stacking amplitude 
along the dashed white. The optimal H and κ pair is indicated by a black dot, (d) same as 
(c) but for the H-κ grid plot for the stacking amplitude to determine sediment thickness. 
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Figure A2. Same as Figure A1, but for station MSR. 
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Figure A3. Application of H-κ stacking for MRJ station, located in the Northeastern part 
of the region. (Top) Radial RFs plotted against the back-azimuth. (Bottom) Normalized 
amplitude grid with optimal H and κ pair indicated by a black dot. 
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Figure A4. Same as Figure A3, but for station GHR and without sediment correction.  
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Figure A5. Same as Figure A1, but for station SRT. 
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Figure A6. Same as Figure A1, but for station TRP. 
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Figure A7. Same as Figure A1, but for station UMB. 
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Figure A8. Same as Figure A1, but for station UJL. 
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Figure A9. Same as Figure A3, but for station GHAR. 
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APPENDIX B. 

MANTLE TRANSION ZONE (MTZ) 
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Figure B.1. Stacked latitudinal traces of time-series receiver functions (RFs) converted into 
depth-series RFs using the IASP91 Earth model velocities. Dashed lines represent the 
standard error of the binned trace amplitude from a bootstrap sample of 50 traces. Black 
dots with associated standard error mark the depth value obtained from bootstrap 
resampling of 50 resampled traces for each 2° radius bin. 
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Figure B.2. Same as Figure B10. 
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Figure B.3. Same as Figure B10. 
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Figure B.4. Same as Figure B10. 
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Figure B.5. Same as Figure B10. 
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Figure B.6. Same as Figure B10. 
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Figure B.7. Same as Figure B10. 
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Figure B.8. Same as Figure B10. 
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Figure B.9. Results of stacking moveout-corrected RFs within each bin plotted along 9 
longitude profiles. 
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Figure B.10. With different 9 longitude profiles. 
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Figure B.11. With 6 longitude profiles. 
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