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ABSTRACT 

This research examines construction environments within manufacturing 

facilities, specifically semiconductor manufacturing facilities, and develops a new 

optimization method that is scalable for large construction projects with multiple 

execution modes and resource constraints.  The model is developed to represent real-

world conditions in which project activities do not have a fixed, prespecified duration but 

rather a total amount of work that is directly impacted by the level of resources assigned.  

To expand on the concept of resource driven project durations, this research aims to 

mimic manufacturing construction environments by allowing a non-continuous resource 

allocation to project tasks.  This concept allows for resources to shift between projects in 

order to achieve the optimal result for the project manager.  Our model generates a novel 

multi-objective resource constrained project scheduling problem. Specifically, two 

objectives are studied; the minimization of the total direct labor cost and the 

minimization of the resource leveling.  This research will utilize multiple techniques to 

achieve resource leveling and discuss the advantage each one provides to the project 

team, as well as a comparison of the Pareto Fronts between the given resource leveling 

and cost minimization objective functions.  Finally, a heuristic is developed utilizing 

partial linear relaxation to scale the optimization model for large scale projects.  The 

computation results from multiple randomly generated case studies show that the new 

heuristic method is capable of generating high quality solutions at significantly less 

computational time.  
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NOMENCLATURE 

Symbol Description  

i,j∈P  Set of projects (installation or demolition of a tool) 

k∈K  Set of modes 

r,t∈T  Set of weeks 

zikt  1 if project i is performed on mode k during week t, 0 otherwise 

xit  # of workers working on project i during week t 

hk  # of hours a worker works on mode k 

sit  1 if project i’s activity j starts at the beginning of week t, and 0 otherwise 

fit  1 if project i’s activity j finishes at the end of week t, and 0 otherwise 

hk  # of hours a worker works on mode k 

H  # of hours required by project i 

W  # of workers that can work during a week 

ck   the hourly wage of a worker working on mode k 

lwi  Minimum number of workers allowed to work during a week on project i 

uwi  Maximum number of workers allowed to work during a week on project i 

sdi   the earliest start time (beginning of week) of project i 

ddi   the due date (end of a week) of project i 

aij   The precedence relationship between projects i and j 



 

 

1. INTRODUCTION 

1.1. BACKGROUND 

Construction is a labor driven industry.  As such, the ability to accurately forecast 

and manage the trade workforce is critical in any construction project.  From the planning 

to the implementation phase, the project management team must be aware of market 

conditions, as the amount of total available resources directly correlates with number of 

construction activities that can occur at one time. Poorly managed labor can result either 

in a schedule push when certain tasks cannot be staffed or in the project going over 

budget as resources are paid for and not utilized efficiently.  While construction 

scheduling is usually generalized into one category, there exists multiple subsets, each of 

which possess unique constraints that can greatly alter the model and the subsequent 

optimal schedules and resource allocation. 

1.1.1. Manufacturing Construction. Construction in a manufacturing or 

operations facility differs vastly from construction in the singular project model.  

Manufacturing facilities involve multiple individual tools or pieces of equipment 

where construction activities can be divided into three categories: installation, 

demolition or conversion.  While each piece of equipment may be part of a larger 

production line, the schedule for each piece of equipment is typically independent 

from the other tools.  A good example of manufacturing construction can be foind in 

the semiconductor industry.  Semiconductor facilities operate 24 hours a day, 7 days a 

week.  When a new technology node is introduced thousands of tools have to be 

install, demolished, or converted, all the while not impacting the remainder of the 
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facility.  Construction focused on a singular model is comprised of individual tasks 

interrrated to achieve one result.  A new building is a good axample of this type of 

construction.  A project is kicked off with groundbreaking and excavation activities, 

followed by pouring a foundation, setting steal, installing mechanical and electrical 

equipment, and finally architectural finishes.  While each task is important, the project 

is not complete until all systems are complete and ready to be turned over.  

1.1.2. Construction Scheduling Platforms.  Commercial scheduling 

platforms are a valuable tool for managing construction projects.  Software platforms 

are widely used as they are able to provide project planning as it relates to scheduling, 

resource allocation, and cost management.  These platforms are vital in that they allow 

the project management team to track the status of the project in real time.  A key 

feature in scheduling function allows project managers to link multiple tasks in finish-

to-start, finish-to-finish, or start-to-start precedence relationships with any desired lag 

associated with the operations.  Each task can have resources and a cost allocated to 

them which allows the project management team insight to any potential risk resulting 

from resource constraints or cost overrun.  While these platforms provide valuable 

information once a schedule is generated, they lack the ability to generate optimum 

schedules based on a series of inputs.  As noted by Mellentien and Trautmann [1], 

there exist a considerable performace gap between the scheduling platforms and state-

of-the-art scheduling algorithms. 
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1.2. PROBLEM STATEMENT   

Through a thorough literature analysis, we have discovered that multiple gaps 

exist in the current research regarding multi-objective resource constrained scheduling 

problems (MORCSP) specific to manufacturing construction.  As manufacturing facilities 

have hundreds of independent tools or machines, the model must be able to treat each 

project independently.  Project float is defined as the amount of time a project can be 

delayed before it impacts the deadline the project.  Resource leveling can be achieved by 

creating a critical path and shifting schedules along the project float.  The presence of 

project float indicates that there is an initial task and a finish task that all the projects tie 

into, but this is not the case in manufacturing.  Another aspect that is unique to 

manufacturing construction is flexible resource allocation.  In industry, a construction 

manager or superintendent can shift shared workforce across multiple projects, adjusting 

the number of workers allocated on a daily or weekly basis.  Current models do not allow 

for this type of flexibility.  A project is assigned a number of resources and that number is 

static until the task is complete.  Recently, research has been conducted on an approach 

that allows for resources to vary throughout the lifespan of a project.  This method is 

called flexible resource profile (FRP).  While this field of study is promising, it does have 

its limitations.  FRP models do allow the duration of a project to be independent of the 

resource profile.  However, the profiles are still pre-determined which limits flexibility.  

Also, a key constraint in FRP is that once a project starts it must be continuously worked.  

Our research will challenge this assumption and account for resource splitting, which 

allows a project to start and stop multiple times before completion. 
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The objectives that are optimized in academic research do not represent the 

ultimate goals of manufacturing construction.  The four main aspects studied in literature 

include resource level, cost, makespan, and quality, as these constitute the pillars of any 

construction project.  However, there has been little research thus far that focuses on the 

interaction between resource leveling and cost.  Much of the existing research on multi-

objective resource constrained scheduling problems has focused on the total project 

makespan [2-4].  As previously discussed, in manufacturing and operations with multiple 

independent projects, the total project makespan is not a vital success criterion as each 

project has an equally important completion date.   

Our research will explore schedule generation schemes where the main objective 

is to reduce resource leveling while providing the lowest total labor cost.  In response to 

this problem, our study proposes to generate a multi-objective model that is based on 

academic research but is useful within the construction industry.  We will focus our study 

on two of the largest risks to project success: total cost and resource availability.  From 

the model that we will develop, the success criteria will be tested against existing 

industry construction schedules. 

 While it is straightforward to minimize cost and makespan, this is less so the case 

with resource leveling.  Previous research has varied in how resource leveling is 

calculated, from measuring the absolute difference in resources between periods [5] to 

calculating the difference between the actual and desired headcount [6-8].  While each 

method can provide valuable information, the difficulty lies in reconciling the results of 

the different methods.  Our research will utilize a model developed for manufacturing 



 

 

5 

construction and perform the multi-objective optimization using multiple resource 

leveling techniques. 

1.3. CHALLENGES AND TECHICAL NEEDS   

The main challenge of this research is to develop a model that can be easily scaled 

for use in real world scenarios.  Multi-objective resource constrained problems generally 

are NP hard problems (non-determinstic polynomial-time hardness) [9], which already 

complicate scaling due to the size and complexity of the problem.  Our model aims to 

provide greater flexibility to construction scheduling solutions, as it is our goal to 

simulate the choices that management teams face every day.  There have been numerous 

studies on various heuristic methods for larger multi-objective resource constrained 

problems.  Two common heuristic approaches are genetic algorithms [4,10-11] and the 

manipulation of activities float in the schedule [12-13].  Unfortunately, neither approach 

will suffice due to the conditions established in our problem statement.  As each project is 

independent, there is no project float.  Also, a key aspect of our study is that the number 

of resources drives the length of a project’s duration.  For example, a given project 

requires 10 resources to be completed. The work can be defined as 2 resources a day for 5 

days, 5 resources a day for 2 days or any combination to achieve the desired resource 

usage.  While this offers increased scheduling flexibility, it also creates a scenario where 

the same activity on two schedules may have different duration.  Because of this, we will 

not be able to utilize traditionalgenertic algorithms as we will not be able to ensure 

feasible schedules during a crossover or mutation operation, see Figure 1.1.   
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Figure 1.1. Example of crossover and mutation operations.  

1.4. EXPECTED CONTRIBUTIONS   

The expected contribution of our research is the creation of a novel model that is 

for schedule generation in manufacturing construction projects.  While there are multiple 

studies and industrial software packages that address the need for schedule generation 

solutions, we believe that there is a gap in current methods in that they do not allow 

project management teams to take full advantage of all options available during the 

construction phase.  From an industry standpoint, the largest contribution will come 

during both the project planning and execution phases of the project.  Unlike software 

packages, the novel model will be able to provide the project management team with 

choices regarding the level of risk in resource availability and total cost early on in the 

planning phase.  This will allow projects to be accurately budgeted at their onset.  

Furthermore, as the model will have the ability to generate a new resource profile for 

each period per project, the project’s construction manager or superintendent will have 

insight on how to schedule and micro-manage the short-term schedule to optimize the 

workforce. 



 

 

7 

In academia, we are expected to expand on the latest research regarding FRP 

projects that base the duration of a project on the number of allocated resources.  While it 

is our assumption that the novel model will produce non-dominated outcomes as it relates 

to similar situations, the ability to scale our system to handle large problem sets is what 

will make it unique.  We plan to develop a novel heuristic approach to allow for near 

optimum schedule generation in scenarios in which a project’s duration may not be 

identical among the various schedules.    

While this research contributes a new method for approaching multi-objective 

construction schedule problems, there are situations within the construction industry that 

would not benefit from the novel model and approach.  The first scenario involves 

scheduling work with an in-house labor workforce. There exist multiple commercial 

software platforms that are built to coordinate and schedule work for a set number of 

employees.  These platforms act more as a central repository of information and are 

useful for establishing a standard collection of inputs that are used to create schedules or 

make adjustments in real time [14].  Typically, these platforms track current market cost, 

productivity rates and updated worker availability.  These platforms are not required to 

create buy off charts between resource leveling and cost minimization due to the fact that 

the total labor force is a constant number and the goal is to properly allocate that constant 

labor force. 

The second scenario that would not benefit from our model is the traditional 

construction project.  Traditional construction projects can consist of thousands of 

interrelated tasks to achieve one project schedule.  A project has a defined start and finish 

that each task contributes to.  Our model would not be able to take advantage of key 
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features of these schedules, such as project and total float.  While proven to be less 

efficient than models used in research, current software such as Primavera are built to 

handle large single project construction activities [1].  These tools are used to plan, 

schedule, and control large-scale individual projects will provide the ability to visualize 

project performance versus planned schedule and budget.   
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PAPER 

I. SCHEDULE OPTIMIZATION FOR CONSTRUCTION IN MANUFACTURING 

ENVIRONMENTS 

 

ABSTRACT 

Construction in a semi-conductor manufacturing facility involves the constant 

construction, demolition and modification of thousands of machines that enable raw 

silicon to be transformed to a wafer with over 1.4 billion transistors.  While maintenance 

is always required to operate such large facilities, a majority of the construction follows a 

cyclical pattern of a two-year cycle.  The ability to handle the construction loads of over 

3,000 machines in a 6-12 month period requires a specialized construction workforce that 

is able to meet the strict quality requirements of working in a class 1 cleanroom 

environment.  Within a given construction ramp, the trade headcount can rise from 

hundreds to low thousands during the peak periods.  Baseline schedules are usually 

created around the technology demands without added cost or inefficiencies to the 

construction contractors.  These inefficiencies range from slipped schedules to added cost 

due to overtime of rework requirements.  The model we propose treats each construction 

activity as an individual project and aims to minimize the total cost of labor during the 

technology ramp while also minimizing the amount of labor resources that are hired and 

fired.  Labor resources represent the largest risk to the program from a cost, schedule and 

quality focus. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Manufacturing of semiconductor microchips consists of hundreds of individual 

machines that change silicon into highly developed transistors. Advances in 

semiconductor technology have traditionally followed a new technology cadence of every 

two years and the number of transistors in an integrated circuit will double as well as the 

transistor costs will [1].  This pattern was predicted by Gorgon Moore in 1965 and has 

mostly held steady for the last 50 years.  The manufacturing process consists of hundreds 

of machines that work in an assembly line process.  Each machine is constructed 

specifically for the current technological node and requires a unique electrical and 

chemical infrastructure.  The demolition and installation construction of the 

semiconductor manufacturing machines drive the cadence to maintain Moore’s law and 

mass produce product every two years.  Due to the cyclical cycle of Moore’s law, there 

are periods of peak construction and valleys, in which a large amount of labor resources 

must be hired and fired over a short period of time.  Manufacturing enabled schedules are 

traditionally created to hit key technology milestone without considering the effect of 

construction or labor resources available.  This paper models the system as a resource-

constrained project scheduling problem with labor requirements and discusses labor 

leveling approaches. 

Schedule development is a major aspect of managing a construction project.  The 

critical chain method (CCM) is a common technique that is based on the estimated time 

durations of activities on the critical path as discovered by calculating the early and late 

start and finish dates of the activities [2].  CCM is an accurate technique for repetitive 
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and predictable tasks or activities with predictable durations; however, construction 

projects are unique in nature [3], which causes issues in estimating time and resource 

durations when developing an accurate schedule.  Construction projects are traditionally 

late and over budget due to the challenges related to the unique or custom conditions 

involved.  There are many surveys that identify the major causes for delay in construction 

projects (see, e.g., [4]).  

Classical resource-constrained project scheduling problems involve a set of 

activities with a fixed duration where each activity needs a certain amount of resources to 

accomplish the task in the given time duration.  The total resources available is also 

constrained [5].  The objective for these systems can range, given the project’s overall 

goal, from minimizing cost, makespan to resource fluctuations.  Construction projects 

generally deal with multi-objective resource constrained project scheduling problems 

(MORCPSP) as a project manager must know the impact of schedule on costs or quality.  

Brucker et al. [6] review the notation and characteristics associated with MORCPSP 

problems.  A survey of scheduling constrained projects that deal with the classification of 

multiple methods is reviewed by Blazewicz et al. [7].  In this study, we concentrate on 

multi-mode resource constrained problems. 

Construction projects in a semiconductor manufacturing company consist of 

thousands of independent projects with shared labor resources, with shifting 

manufacturing need dates throughout the life of the program. A major concentration 

within the semiconductor construction industry is therefore to minimize the resource 

fluctuations by moving non-critical activities in the project schedule.  This is important 

considering the fact that hiring and firing large amounts of labor resources from one time 
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period to the next is undesired.  To avoid the risks of not having the proper labor to 

accomplish all activities in a given period, many projects have to pay for standing or non-

value added labor time.  Techniques to minimize resource fluctuations can be broken 

down into sum of squares method [8], minimum moment arm method [9], absolute 

difference between resource consumption in consecutive time periods [10-11], and no 

predefined levelling pattern [9].  These models optimize the release and re-hire across 

multiple time periods. This study extends the El-Rayes [12] that aims to minimize 

resource fluctuations with no predefined pattern by investigating the effects of resource 

leveling across multiple projects.   

The rest of the paper is organized as follows. Next section presents the basic 

optimization model for the multi-mode scheduling problem with labor requirements. The 

resulting model is a non-linear integer programming problem. In Section 3, we provide a 

linear formulation and formulate different approaches to include labor resource leveling 

in the scheduling model. The last section briefly discusses a solution framework and 

future steps of the study.   

 

2. PROBLEM FORMULATION 

 

The problem of interest in this study is scheduling of construction of special 

tools/machines that transform raw silicon to integrated semiconductor circuits. We refer 

to construction of a tool/machine as a project. Let these projects be indexed by 𝑖 ∈ 𝐼 =

{1,2, … , 𝑛}. The construction involved on a tool consists of either the demolition or 

installation of certain activities/utilities performed by trade partners. Let the trade 
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partners (activities) be indexed by 𝑗 ∈ 𝐽 = {1,2, … , 𝑚}. While the formulation presented 

for an arbitrary number of trade partners, we note that, typically, there are three main 

trades such that 𝑗 = 1 defines the process trade (activity), 𝑗 = 2 defines the mechanical 

trade (activity), and 𝑗 = 3 defines electrical trade (activity). 

Construction of each tool is an independent project with trade resources (labor) 

shared amongst multiple projects.  Each project requires a given amount of construction 

hours from each trade for completion. Let 𝐻𝑖𝑗 denote the time required to complete 

project 𝑖’s activity 𝑗 (by trade 𝑗). The following assumptions define the working 

conditions: 

● The maximum number of workers each trade partner can provide is fixed 

throughout the whole schedule. Let 𝑊𝑗 be the maximum number of workers from 

trade 𝑗 that can work for construction during any period (week).  

● Each worker from any trade can work on different modes during a week. Let the 

working modes be indexed by 𝑘 ∈ 𝐾 = {1,2, … , 𝑙} and let ℎ𝑘 denote the number 

of hours a worker in mode 𝑘 works per week. Again, even the formulation 

considers an arbitrary number of models, there are three different modes 

considered for a worker during a week such that ℎ1 = 40 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘, ℎ2 =

50 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘, and ℎ3 = 60 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘.  

● There is not a linear relation between the number of hours worked and the hourly 

rate of a worker. Furthermore, each trade has different rates. Therefore, we define 

𝑐𝑗𝑘 as the hourly wage of a trade 𝑗 worker working on mode 𝑘 (one would guess 

that as ℎ𝑘 increases, 𝑐𝑗𝑘 increases as well due to overtime). 

● A worker will not switch projects and will not change modes during a week.  
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● Workers performing activity 𝑗 on a project during a week will have the same 

mode throughout the week as trade workers form a crew and follow the same 

work plan throughout the week.  

● A project is completed when all of its activities are completed. 

In addition to the above assumptions, the following restrictions apply. Each 

project cannot start prior to a specific date (this is because, for an installation project, 

parts are being delivered or, for a demolition project, the current work of the tool should 

be completed) and each project should be completed before a due date. Let 𝑠𝑑𝑖 and 𝑑𝑑𝑖 

denote the earliest start time (beginning of week) and due date (end of a week) of project 

𝑖, respectively. Based on the working conditions, we focus on scheduling project 

activities on a weekly basis, i.e., each period is one week and let the weeks be indexed by 

𝑡 ∈ 𝑇 = {1,2, … , 𝜏}. Note that one can define 𝜏 = max
𝑖∈𝐼

{𝑑𝑑𝑖}. Ultimately, the decisions to 

be made are how many workers and in what mode they will work on each project’s each 

activity during each week. Let 𝑧𝑖𝑗𝑘𝑡 = 1 if project i’s activity j is performed on mode k 

during week t, 0 otherwise. Note that ∑ 𝑧𝑖𝑗𝑘𝑡 ≤ 1𝑘∈𝐾  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 as at most 

one mode can be selected (when no mode is selected, there is no-one working on that 

project’s that activity during that week). Next, let xijt number of workers (from trade j) 

working on project i’s activity j during week t.  One can notice that if 𝑧𝑖𝑗𝑘𝑡 = 0, then 

𝑥𝑖𝑗𝑡 = 0. Due to the start and finish time restrictions and availability of the workers, it 

might be possible that a there is no activity going on a project during an intermediate 

week after the project starts. For instance, during weeks 2 and 3, a project’s activity 1 can 

be worked on by trade 1 workers, and then, there is no work on the project during week 

4, and trade 1 or another trade continues its work on the project in week 5. To define 
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project, start and finish times, we define additional variables as follows. Let 𝑠𝑖𝑗𝑡 = 1 if 

project i’s activity j starts at the beginning of week t, and 0 otherwise, 𝑓𝑖𝑗𝑡 = 1 if project 

i’s activity j finishes at the end of week t, and 0 otherwise. 

Remark that ∑ 𝑠𝑖𝑗𝑡 = 1 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑡∈𝑇  and ∑ 𝑓𝑖𝑗𝑡 = 1 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽𝑡∈𝑇  since 

each project’s each activity will start and finish during a week. Furthermore, one can note 

that project 𝑖’s start time will be 𝑆𝑖 = min
𝑗∈𝐽

{∑ 𝑡𝑠𝑖𝑗𝑡𝑡∈𝑇 } and project 𝑖’s finish time will be 

𝐹𝑖 = max
𝑗∈𝐽

{∑ 𝑡𝑓𝑖𝑗𝑡𝑡∈𝑇 }. Table 1 summarizes the notation used. Additional notation will be 

defined as needed.  

 

Table 1. Notation. 

 

Next, we present the mathematical formulation for the scheduling problem of 

interest. The objective is to minimize the total labor cost of the construction schedule. One 

can note that the total cost amounts to ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑧𝑖𝑗𝑘𝑡𝑥𝑖𝑗𝑡𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼 . Then, the 

mathematical formulation reads as follows: 

Type: Notation: Explanation: 

Indices 

𝑖 ∈ 𝐼 = {1,2, … , 𝑛} Set of projects (installation or demolition of a tool) 

𝑗 ∈ 𝐽 = {1,2, … , 𝑚} Set of trade partners/activities 

𝑘 ∈ 𝐾 = {1,2, … , 𝑙} Set of modes 

𝑡 ∈ 𝑇 = {1,2, … , 𝜏} Set of weeks 

Variables 

𝑧𝑖𝑗𝑘𝑡 ∈ {0,1} 1 if project 𝑖’s activity 𝑗 is performed on mode 𝑘 during week 𝑡, 0 

otherwise 

𝑥𝑖𝑗𝑡 ∈ {0,1,2, … } # of workers (from trade 𝑗) working on project 𝑖’s activity 𝑗 during 

week 𝑡 

𝑠𝑖𝑗𝑡 ∈ {0,1} 1 if project i’s activity j starts at the beginning of week t, and 0 

otherwise 

𝑓𝑖𝑗𝑡 ∈ {0,1} 1 if project i’s activity j finishes at the end of week t, and 0 otherwise 

Parameters 

ℎ𝑘 # of hours a worker works on mode 𝑘 

𝐻𝑖𝑗  # of hours required by project 𝑖’s activity 𝑗 

𝑊𝑗  # of workers from trade 𝑗 that can work during a week 

𝑐𝑗𝑘  the hourly wage of a trade 𝑗 worker working on mode 𝑘 

𝑠𝑑𝑖   the earliest start time (beginning of week) of project 𝑖 
𝑑𝑑𝑖   the due date (end of a week) of project 𝑖 
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(P) Minimize ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑧𝑖𝑗𝑘𝑡𝑥𝑖𝑗𝑡

𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

 
  

 Subject 

to 

∑ 𝑧𝑖𝑗𝑘𝑡 ≤ 1
𝑘∈𝐾

 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (1) 

  ∑ 𝑠𝑖𝑗𝑡 = 1 
𝑡∈𝑇

 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (2) 

  ∑ 𝑓𝑖𝑗𝑡 = 1 
𝑡∈𝑇

 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (3) 

  min
𝑗∈𝐽

{∑ 𝑡𝑠𝑖𝑗𝑡
𝑡∈𝑇

} ≥ 𝑠𝑑𝑖 
∀𝑖 ∈ 𝐼 (4) 

  max
𝑗∈𝐽

{∑ 𝑡𝑓𝑖𝑗𝑡
𝑡∈𝑇

} ≤ 𝑑𝑑𝑖 
∀𝑖 ∈ 𝐼 (5) 

  ∑ ∑ ℎ𝑘𝑧𝑖𝑗𝑘𝑡𝑥𝑖𝑗𝑡

𝑡∈𝑇𝑘∈𝐾

≥ 𝐻𝑖𝑗 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (6) 

  ∑ 𝑥𝑖𝑗𝑡

𝑖∈𝐼

≤ 𝑊𝑗 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (7) 

  𝑥𝑖𝑗𝑡 ≤ 𝑀 ∑ 𝑧𝑖𝑗𝑘𝑡
𝑘∈𝐾

 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (8) 

  

∑ 𝑧𝑖𝑗𝑘𝑡
𝑘∈𝐾

≤ ∑ 𝑠𝑖𝑗𝑟

𝑡

𝑟=1

 
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (9) 

  
∑ 𝑧𝑖𝑗𝑘𝑡

𝑘∈𝐾
≤ ∑ 𝑓𝑖𝑗𝑟

𝜏

𝑟=𝑡

 
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (10) 

  𝑥𝑖𝑗𝑡 ∈ {0,1,2, … },  𝑠𝑖𝑗𝑡 ∈

{0,1}, 𝑓𝑖𝑗𝑡 ∈ {0,1} 

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (11) 

  𝑧𝑖𝑗𝑘𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾  ∀𝑡

∈ 𝑇 

(12) 
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The objective function minimizes the total labor cost. Constraints (1) assure that 

at most one mode is selected for each project’s each activity during any week. 

Constraints (2) and (3) define that a project’s activity starts (at the beginning) and finish 

(at the end) at a single week, respectively. Constraints (4) and (5) enforce that a project 

cannot start before the earliest start time and it should be completed before the due date, 

respectively. Constraints (6) ensure that the number of hours performed on a project’s 

activity is at least how much needed to complete that activity for that project. Constraints 

(7) restrict the total number of workers from each trade working during any week to be 

less than or equal to the available number (maximum) of workers from that trade, while 

constraints (8) guarantee that there will be no worker from a trade on a project during a 

week if there is no mode selection for the workers to perform the corresponding activity 

on that project during that week. Constraints (9) and (10) assure that there is no mode 

selection for a trade (hence, no workers performing the corresponding activity 

considering constraints (8)) on a project’s activity before the project’s activity starts and 

after the project’s activity ends, respectively. Finally, constraints (11) and (12) are integer 

and binary definitions of the variables. 

One can note that (P) is a non-linear integer programming model. In particular, 

the non-linearity follows from the objective function and constraints (4), (5), and (6). In 

the next section, we present a linear reformulation. Furthermore, (P) is a single-objective 

model with sole cost minimization objective. However, as noted in the introduction, 

resource leveling is an important factor that should be considered in designing work 

schedules for the trades. It is possible that the number of workers needed from one trade 

can change significantly from one week to the next over the production cycle. This 
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situation is not desired as it creates issues such as the lack of the ability to retain key 

talent or extra payments made to retain labor that is not being utilized. Market labor 

resources are not always able to keep up with the manufacturing demand, which can 

result undesired pushes in the project schedule.  Therefore, while reformulating (P), we 

also discuss additional objectives to overcome the fluctuations in labor and present multi-

objective schedule optimization model in the next section. 

 

3. REFORMULATION AND LABOR LEVELING 

3.1. LINEAR REFORMULATION   

Recall that the non-linearity of (P) is due to the objective function and constraints 

(4), (5), and (6). Specifically, the objective function and constraints (6) are non-linear as 

they include multiplications of the variables 𝑧𝑖𝑗𝑘𝑡 and 𝑥𝑖𝑗𝑡. To overcome these, we 

introduce a new variable to replace 𝑥𝑖𝑗𝑡. Particularly, let 𝑥𝑖𝑗𝑘𝑡 = number of workers from 

trade j working on project i on mode k during week t.  With the introduction of 𝑥𝑖𝑗𝑘𝑡, the 

objective function can be rewritten as ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑥𝑖𝑗𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼 , which is linear, 

and constraints (6) can be rewritten as ∑ ∑ ℎ𝑘𝑥𝑖𝑗𝑘𝑡𝑡∈𝑇𝑘∈𝐾 ≥ 𝐻𝑖𝑗  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, which are 

also linear. Note that we will still have 𝑧𝑖𝑗𝑘𝑡 variables and we will need to modify 

constraints (7) and (8) of (P). Introduction of 𝑥𝑖𝑗𝑘𝑡 increases the number of variables. To 

linearize constraints (4) and (5), we can simply replace them with ∑ 𝑡𝑠𝑖𝑗𝑡𝑡∈𝑇 ≥ 𝑠𝑑𝑖 ∀𝑖 ∈

𝐼, ∀𝑗 ∈ 𝐾 and ∑ 𝑡𝑓𝑖𝑗𝑡𝑡∈𝑇 ≤ 𝑑𝑑𝑖  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽. These reformulations increase the number 

of constraints. 
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With the above changes, the non-linearity in (P) is eliminated in an expense of 

increased number of variables and constraints. Furthermore, we note that constraints (1) 

can be eliminated from (P) due to constraints (2) and (9). The reformulation of (P) with 

these changes, denoted by (P’), is presented below. 

 

(P’) Minimize ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑥𝑖𝑗𝑘𝑡

𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

 
  

 Subject 

to 

(2), (3), (9), (10)   

  ∑ 𝑡𝑠𝑖𝑗𝑡
𝑡∈𝑇

≥ 𝑠𝑑𝑖 
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (13) 

  ∑ 𝑡𝑓𝑖𝑗𝑡
𝑡∈𝑇

≤ 𝑑𝑑𝑖 
∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (14) 

  ∑ ∑ ℎ𝑘𝑥𝑖𝑗𝑘𝑡

𝑡∈𝑇𝑘∈𝐾

≥ 𝐻𝑖𝑗 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (15) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑡

𝑘∈𝐾𝑖∈𝐼

≤ 𝑊𝑗 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (16) 

  𝑥𝑖𝑗𝑘𝑡 ≤ 𝑀𝑧𝑖𝑗𝑘𝑡 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (17) 

  𝑠𝑖𝑗𝑡 ∈ {0,1}, 𝑓𝑖𝑗𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (18) 

  𝑧𝑖𝑗𝑘𝑡 ∈ {0,1},𝑥𝑖𝑗𝑘𝑡 ∈ {0,1,2, … } ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘

∈ 𝐾  ∀𝑡

∈ 𝑇 

(19) 

The objective function and the constraints are defined similar to (P).  
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3.2. LABOR LEVELING 

In this section, we discuss approaches for resource leveling and show how to 

modify (P’) with these approaches. First approach is minimization of the sum of the 

absolute values of the difference of the number of workers in consecutive time periods 

from each trade (see also [12]). Specifically, the difference in the number of workers used 

from a trade in two consecutive weeks (if negative, represents fires; and, if positive, 

represents hires) is preferred to be low. Since both firing and hiring additional workers is 

not preferred throughout the whole schedule, one can minimize the sum of the absolute 

values of the differences for each trade individually or over all trades. To do so, one can 

minimize  ∑ ∑ ∑ |∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 − ∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾 |𝑡∈𝑇𝑗∈𝐽𝑖∈𝐼  or minimize 

∑ ∑ |∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 − ∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾 |𝑡∈𝑇𝑖∈𝐼  ∀𝑗 ∈ 𝐽. Note that, in either case, the additional 

objective function(s) would be non-linear due to the absolute value function. Since the 

objective is to minimize, the model can be made linear by introducing 𝑈𝑖𝑗𝑡 and enforce 

constraints such that 𝑈𝑖𝑗𝑡 ≥ ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 − ∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 and 

𝑈𝑖𝑗𝑡 ≥ − ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 + ∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇. Then, the multi-objective 

schedule optimization model with the first approach for leveling would read:   

(P’-

1) 

Minimize ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑥𝑖𝑗𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼     

 Minimize ∑ ∑ ∑ 𝑈𝑖𝑗𝑡𝑡∈𝑇𝑗∈𝐽𝑖∈𝐼   (or, for each trade 

separately, Minimize 

∑ ∑ 𝑈𝑖𝑗𝑡𝑡∈𝑇  ∀𝑗 ∈ 𝐽𝑖∈𝐼 ) 

 

 Subject to (2), (3), (9), (10), (13)-(19)   
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  𝑈𝑖𝑗𝑡 ≥ ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 −

∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾   

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (20) 

  𝑈𝑖𝑗𝑡 ≥ − ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 +

∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾   

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (21) 

The first approach, when it minimizes the sum of the differences over all trades, 

can disfavor a trade, on the other hand, if it minimizes the sum of the differences for each 

trade separately, the number of objectives will be large. Given that the problem on hand is 

already complex, this increased in the number of objectives would make the model even 

more challenging. The next approach discussed can effectively overcome these issues. The 

second approach is minimization of the maximum difference (see also [13]), rather than 

sum of the differences over all trades or for each trade separately. The second approach is 

to minimize max
𝑖∈𝐼,𝑗∈𝐽.𝑡∈𝑇

{𝑈𝑖𝑗𝑡}. Again, this additional objective function is non-linear but the 

resulting model can be modified easily to be linear by using a single variable, say 𝑈, due 

to the minimization objective. In particular, the multi-objective schedule optimization 

model with the second approach for leveling would read: 

(P’-2) Minimize ∑ ∑ ∑ ∑ ℎ𝑘𝑐𝑗𝑘𝑥𝑖𝑗𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼     

 Minimize 𝑈   

 Subject to (2), (3), (9), (10), (13)-(19)   

  𝑈 ≥ ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 −

∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾   

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (22) 

  𝑈 ≥ − ∑ 𝑥𝑖𝑗𝑘𝑡𝑘∈𝐾 +

∑ 𝑥𝑖𝑗𝑘(𝑡−1)𝑘∈𝐾   

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (23) 
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4. FURTHER DISCUSSION AND CONCLUSIONS 

 

In the above discussions, we presented formulations for the multi-mode schedule 

optimization with labor considerations for semiconductor manufacturing projects. We 

note that, without resource leveling considerations, even if (P’) is linear, it is still a large-

scale integer programming model. Furthermore, once one aims to include labor leveling 

approaches, the problem becomes a large-scale multi-objective integer programming 

model, which would be more challenging that its single-objective version. Therefore, due 

to these complexities of the models, we will focus on developing genetic algorithms, 

which are successfully used for multi-objective discrete optimization models. The genetic 

algorithms will focus on generating a set of Pareto efficient solutions, which then can be 

used to finalize schedules by comparing their costs and labor fluctuations. We plan to 

develop multi-stage genetic algorithms varying in their chromosome representations and 

stage definitions as done in [14] and use separations to improve computational 

performance as done in [15].  The ultimate goal is to compare various resource leveling 

approaches and decide which approach results in the best labor leveling with the 

minimum cost increase. To provide a proof of concept, a sample scenario will be 

developed to represent a real period of time of a construction ramp.  
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ABSTRACT 

One of the largest challenges and risks to a successful project is to be able to 

allocate the available labor resource in a way to maintain schedule while also achieving 

the project budget.  This study investigates the impacts of using different resource 

leveling objective functions in multi-objective multi-mode resource constrained project 

scheduling problems within the construction field.  Specifically, the two objectives are 

studied: the minimization of the total direct labor cost and the minimization of the 

resource leveling. Three alternative formulations for defining the resource leveling 

objective function are used to formulate three alternative bi-objective construction 

scheduling models. These models enable the project durations to be adjusted based on the 

number of resources (workers) assigned as well as the mode selected for the assigned 

resources in each period.  An exact methodology based on the adaptive ε-constraint 

method is used to solve the resulting bi-objective integer linear programming models.  

Using a case study, the different resource leveling objective functions are tested by 
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comparing the three Pareto Fronts, each corresponding to an alternative resource leveling 

objective function.  The results from three objective functions allow the project 

management team to evaluate different options with respect to risk tolerance and 

confidence about future market conditions.   

 

1. INTRODUCTION 

 

The success of a construction project relays on the ability of the management 

team to manage the available resources [1].  Resource management involves both the 

generation of a scheduling plan to assign the available resource and the utilization of 

those resource to not only complete the project on time, but also at the lowest cost 

possible. Construction projects within manufacturing and operational settings can involve 

many repetitive activities or projects, often unique in nature, where a shared labor pool is 

utilized amongst all the projects.   In the research reported in this paper, different 

resource leveling objective functions are investigated for multi-objective resource 

constrained project scheduling problems.  Our research builds off a bi-objective 

construction scheduling model proposed by Dwyer and Konur [2] in order to identify the 

different approaches for resource leveling and their impacts when scheduling a large 

construction program. 

Resource management can be broken up into two main categories during a 

construction project [7].  The first category involves a market with limited resources and 

not obtaining proper number of resources will result in an extension of the project 

duration.  In such cases, the project manager or scheduler must decide which projects not 
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located on the critical path to adjust the start or finish dates.  This category falls within 

the resource allocation category where the resources drive the schedules.  The typical 

objective of the problems in this category is to reduce the total project makespan using 

the available resources [4]. The second category is known as resource leveling or 

smoothing and involves a fixed duration on project tasks. In this case, resource leveling is 

used to ensure efficient use of the labor resources.  The goal of this category is to 

minimize the fluctuations of the resources used by shifting activity start dates and 

resource allocations.  Traditionally, the most important challenge to a construction 

project is to achieve resource leveling within a fixed duration.  This study focuses on a 

combination of the above categories such that we aim to minimize the resource 

fluctuations within a resource constrained environment. 

The main idea of resource leveling is to shift the start times of non-critical 

activities along their available float [5].  One of the earliest research to solve resource 

leveling was presented by Burgess and Killebrew [6].  The goal of their research was to 

create a uniform resource histogram by minimizing the sum of the squares of the 

resources allocated.  Harris [7] expanded on the work of Burgess and Killebrew [6] and 

utilized the minimum moment method for resource leveling.  Minimum moment method 

states that the moment of the periodic resource demands about the horizontal axis of a 

project’s resource histogram is a good measure of the resource utilization and the optimal 

resource allocation exists when the total moment is at a minimum, i.e., when the resource 

histogram is of a rectangular shape [8].  The goal of this method is to minimize resource 

buildups by considering the advantages of shifting non-critical activities. Because it is 

assumed that the duration of a project is fixed, the critical activities are not altered. This 
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method assumes that, once a project has started, it cannot be altered, and resources are 

uniformly distributed across the duration of the projects.   

Further studies in resource leveling allow for the methods to be broken down into 

four main categories: sum of squares method [6,9], minimum moment arm method [7-8], 

absolute difference between resource consumption in consecutive time periods [10], and 

no predefined levelling pattern [11].  Damci and Potal [3] researched the effects of 

multiple resource leveling objective functions on construction projects.  In their study, the 

durations were assumed to be fixed and cost of the projects were not taken into account.  

Damci et al. [12] expanded on that research to measure the effect of multiple resource 

leveling objective functions on line-of-balance scheduling, in which the same activities 

are repeated in a linear fashion. 

Although there exist many studies on resource allocation, very few of those 

studies allowed for resources to be split between periods.  Resource splitting varies from 

traditional modelling methods in that resources do not have to be uniformly distributed 

across the duration of the projects.  Karaa and Nasr [13] emphasized that one of the major 

weaknesses of Critical Path Method (CPM) is the fact that activities cannot be 

intermittent.  Hariga and El-Sayegh [14] presented an optimization model for resource 

leveling, in which activity splitting is allowed by moving non-critical activities within 

their float.  Our study expands on the research from Hariga and El-Sayegh [14] as we 

also allow construction resources work under different overtime modes. Allowing for 

resource splitting and operating under multiple working modes, our research allows for 

more opportunities to reduce the total cost of the project while achieving the desired 

resource leveling as there are more options in which to allocate each individual trade. 
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The rest of the paper is organized as follows. Next section presents the research 

methodology and outlines the resource leveling objective functions that are studied and 

compared. Section 3 summarizes the implementation of the ε-constraint method for 

generating the exact Pareto front for the bi-objective models with alternative resource 

leveling objectives. Section 4 presents a case study, where the Pareto fronts 

corresponding to alternative resource leveling objectives are compared. Concluding 

remarks and future research directions are noted in Section 5. 

 

2. RESEARCH METHODOLOGY 

 

A review of literature indicates that there have been several studies focusing on 

multi-objective resource constrained project scheduling problems (MORCPSP).  

However, the impact of using different resource leveling objective functions for such 

problems, where resources are shared amongst multiple projects and splitting is allowed, 

has not been investigated. The main objective of this research is to investigate the 

impacts of different resource leveling techniques and discuss the advantages and 

shortfalls of each technique. To do so, we first review the literature on resource leveling 

to identify the objective functions used for resource leveling in resource constrained 

project scheduling problems. After that, we use a construction scheduling optimization 

model from Dwyer and Konur [2] and create alternative bi-objective optimization models 

which differ in their resource leveling objective functions. For solving these models, we 

use the adaptive ε-constraint method algorithm, which is described in Section 3. Finally, 

a case study is presented to compare different resource leveling approaches 
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2.1. RESOURCE LEVELING OBJECTIVE FUNCTIONS 

Our study focuses on the multi-objective scheduling problems.  The two 

objectives that we chose to study are cost minimization and workforce resource leveling.  

Construction cost can be broken up into two main categories: labor and materials.  While 

material cost can be minimized through value engineering in the design phases, 

construction labor can be minimized by allocating resources efficiently through 

scheduling techniques. The objective function that we used as our first objective function 

(1) is located in Table 1.  Literature research indicates that there are multiple objective 

functions that can be used to level a resource histogram (Table 1).  While it is difficult to 

maintain a uniform usage rate for labor resources, the multiple objective functions goal is 

to make the usage rate as uniform as possible or to make any non-uniform rate fit the 

owner’s requirements 

 

Table 1. Objective functions for resource leveling. 

Objective 

Function Number 

Optimization Criteria References 

1 Minimize the direct construction labor cost 2 

2 Minimization of the sum of the absolute deviations in 

resource usage for a determined time interval (day, week, 

etc.) 

10,17 

3 Minimization of the maximum resource usage for a 

determined time interval (day, week, etc.) 

17 

4 Minimization of the maximum deviation in resource usage 

for a determined time interval (day, week, etc.) 

17 
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3. ADAPTIVE ε-CONSTRAINT 

 

The ε constrained method is one of the most common exact methods, it is solved 

by optimizing one of the objective functions using the remaining objective functions as 

constraints [15].  By varying the right-hand side of the constrained objective functions, 

the efficient solutions of the problem are obtained.  Laumanns et al. [15] proposed 

adaptive ε-constraint method, which is modification of the ε-constraint method for bi-

objective integer programming models. In the adaptive ε-constraint method, similar to the 

classic ε-constraint method, one of the objective functions is moved to the constraints 

with an upper bound. In the traditional ε-constraint method, this upper bound on the 

objective function moved to the constraints is decreased by ε at each iteration until the 

model with the upper bound constraint becomes infeasible.  In our research, we utilize the 

adaptive ε-constraint method because the bi-objective scheduling model of [2] is an 

integer programming model. Specifically, in the adaptive ε-constraint method, the upper 

bound value is defined by subtracting ε from the objective function value of the final 

solution selected in the last iteration. This way, it is guaranteed that a different solution is 

returned at each iteration. The solution at the end of each iteration is a Pareto efficient 

solution. 

The adaptive ε-constraint method is coded in Matlab and the flowchart in Figure 1 

summarizes the overall procedure.  The first step of the procedure is to establish model 

parameters.  These inputs include schedule precedence relationships and early start and 

late finish dates for each project.  The parameters also include all the resource constraints, 

from individual construction tasks to overall projects/programs. The final inputs for the 
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model include the different overtime working modes and the hourly costs associated with 

each mode as well as the step values for the ε-constraint.  Our research set the step value 

to 1 because the resource leveling can change by at most 1 unit due to integrality of the 

number of workers. 

Step 3 of the procedure conducts the optimization operations for the cost and 

resource leveling objectives.  The first step is to minimize the total cost objective 

function using the initial upper bound value of the resource leveling constraint.  The goal 

of the adaptive ε-constraint method is to create a Pareto Front or a non-dominated front in 

which none of the objective functions can be improved in value without degrading some 

of the other objective values [16].  The schedule generated from the cost minimization 

objective function cannot guarantee that the resource level is not dominated.  To alleviate 

the possibility of a dominated solution, the next step calculates the minimum resource 

level objective function using the total cost calculated in the previous step as a constraint. 

The additional calculation guarantees that the solution lands on the Pareto Front. 

 

 

Figure 1. Procedure flowchart. 
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4. CASE STUDY  

 

The impacts of using different objective function in MORCPSP involving 

resource leveling can best be demonstrated utilizing an example project. A project with 

eight activities over a 19-period duration is depicted in Figure 2. The network diagram in 

Figure 2 also shows the precedence relationships, the activities required hours to 

complete, early start and late finish times, and the minimum and maximum allowable 

workers on each project.  We assumed that the work can be scheduled utilizing three 

different modes or overtime rates: 40 per week at $75/hour, 50 hours per week at 

$82/hour and 60 hours per week at $90/hour.  

 

 

Figure 2. Sample schedule network diagram and schedule inputs. 

4.1. IMPLEMENTATION OF THE MODEL   

Prior to running the model of the case study, the resource histogram in Figure 3 

was plotted before leveling to reflect the conditions in the initial schedule prior to any 

optimization operations.  The schedule was created utilizing the critical path method in 

Microsoft Projects.  The total number of resources required to complete a project was 

calculated by dividing the minimum duration, in hours, by 40.  The value of 40 represents 

one trade working in a 40 hour week.  The total number of resources per project was then 
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uniformly distributed across the projects total duration.  This method does not account for 

resource constraints. 

 

 

Figure 3. Resource histogram before resource leveling. 

 

The adaptive ε-constraint method discussed above was then implanted on the 

same model shown in Figure 3 utilizing the three different objective functions (2-4) for 

resource leveling.  Figure 4 shows the results of the bi-objection optimization models 

using the three different resource leveling object functions.  The top row of Figure 4 is a 

Pareto Front between the total cost of the project and the resource leveling objective 

function.  However, a simple comparison of the three Pareto Fronts does not provide the 

scheduling team much insight into the advantages of each method.  In order to compare 

the three methods, we normalized all the schedules generated using the three objective 

functions against a singular objective function.  The second row of Figure 4 depicts the 

maximum resource difference between periods of the schedules that were generated by 

the objective functions (2-4) in the top row.  The results highlight three different risk 

scenarios for the project manager and scheduler to consider when developing the project 

schedule.  While objective function (4) provides the model with the least total cost 
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options per max labor difference between periods, it does not take into account how 

many periods reach that maximum value.  Objective function (2) allows the team to 

hedge that risk by knowing the total amount of resource deviation between projects.  In 

comparing the results of the two Pareto Fronts, a summation of the projects maximum 

difference between tasks plateaus at 25 laborers while the sum of all the deviations 

between periods reduces as 25 laborers at as total cost of $2,130,000.  This indicates only 

one period in the projects presents a deviation from a steady state resource allocation 

plan.  That security can be attractive to risk adverse management teams.  While objective 

function (3) presents the least desirable results in terms of both total cost and max 

difference between periods it does provide valuable information for the project team if 

there is uncertainty in total labor availability.  Our sample schedule created an initial 

constraint of total resource availability of 55 labor trades per period.  Objective function 

(3) provides the management team insight into potential cost impacts if that total labor 

availability changes from initial assumption and how that will impact total project cost. 

 

 

Figure 4. Pareto Charts for three different optimization methods. 
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5. FURTHER DISCUSSION AND CONCLUSIONS   

 

The impacts of using different objective functions in leveling resources in 

MORCPSP were investigated in this study.  Three different objective functions were 

identified after a review of prior studies focused on resource leveling utilizing linear 

methods.  The objective functions were used in an adaptive ε-constraints method with the 

total direct labor cost for the project to create Pareto Fronts for each objective function.  

A simple test case of a project involving eight activities was utilized to compare the three 

different objective functions.  Comparing the Pareto Fronts between three different 

resource leveling models help highlight the advantages and disadvantages of each 

methodology.  The practical implementation of the study show that while the concept of 

resource leveling is simple to understand the means and methods to accomplish the task 

can great affect the final schedule.  The goal of the study is not to provide the program 

manager or scheduler with the best scheduling techniques but to identify the different 

approaches when scheduling a large constructing program.  Our study focused on 

comparing the three different resource leveling on a small case study utilizing an exact 

solving methodology.  A direction for future research can be to study the effect of the 

three objective functions on larger models, solving with heuristic or evolutionally 

algorithms.  Our research focused on linear resource leveling objective functions, future 

work can also expand that to non-linear techniques.  
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ABSTRACT 

Preparing the manufacturing facility to produce new products is a very important 

process in competitive semiconductor industry. This preparation requires construction, 

demolition, and modification of high-tech machines/tools in a working environment. In 

this study, we present a project scheduling problem integrated with worker assignments for 

the problem of preparing a semi-conductor manufacturing facility. The project scheduling 

problem studied is a bi-objective model with flexible resource profiles where preemption 

is allowed. For the model, we first discuss the implementation of the well-known 𝜀-

constraint method for generating the exact Pareto front of the model. After that, we propose 

an approximation approach based on partial linear relaxation. Based on a set of numerical 

analyses, it is demonstrated that the approximation approach is computationally efficient, 

and it can find solutions within the proximity of the Pareto efficient solutions.  

Keywords: Scheduling, Worker assignment, Bi-objective, Semiconductor 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Semiconductor industry has been steadily growing since late 1980s and 

semiconductor industry sales are expected to reach over $430 billion by the end of 2020. 

Short life cycles of the products, rapidly changing designs due to technological 

advancements, and increasing demand pressure semiconductor manufacturers to compete 

in several dimensions such as price, quality, innovation, and lead time. Effective 

management and strategic, tactical, and operational decision making are therefore crucial 

in every stage of the supply chains in semiconductor industry. For detailed review of 

different studies related to semiconductor supply chains, we refer the reader to a recent 

series of three reviews: Mönch et al. (2018a) review strategic supply chain decisions (part 

I of the review series), Uzsoy et al. (2018) review demand and capacity planning and 

inventory management, and Mönch et al. (2018b) review master and production planning 

and demand fulfillment (part III of the review series). Also, Mönch et al. (2012), Fowler 

and Mönch (2017), and Mönch et al. (2018c) are other comprehensive resources about 

research studies in semiconductor manufacturing and supply chains. Especially, 

production planning and job scheduling in semiconductor manufacturing have been 

intensively studied in the literature (see, e.g., other reviews by Uzsoy et al. (1992; 1994), 

Gupta and Sivakumar (2006), Mönch et al. (2011)). 

Semiconductor industry has been following the candace of Moore’s law, which 

suggested that the number of transistors on an integrated circuit would double regularly 

(Schaller, 1997). As a result, as noted by Mönch et al. (2018a) as well, one crucial 

competitive advantage for the semiconductor manufacturers is the ability to effectively 
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introduce new products into the market. This equates that the manufacturing facilities and 

production lines need to be periodically updated for the next production ramp-up of the 

new product. This process is referred to as equipment installation and qualification 

(Cheng et al. (2015)) and constitutes the major part of the lead time of a semiconductor 

supply chain (see, e.g., Cheng et al. (2012)). It is therefore important for manufacturers to 

efficiently complete this process for gaining competitive advantage. 

Particularly, a semiconductor facility ramp-up corresponds to a facility 

construction planning problem, which includes various activities/tasks such as installation 

of new tools/machines and demolition or modification of some of the existing 

tools/machines in an active manufacturing environment. This problem corresponds to a 

variant of project scheduling problem. In this study, we analyze a multi-mode flexible 

resource profile project scheduling problem with two objectives: minimization of total 

labor cost and minimization of the maximum (peak) labor use. Accordingly, in what 

follows, we first review related project scheduling literature. After that, we discuss the 

studies that focus on scheduling of semiconductor facility ramp-up. 

Put simply, project scheduling problem aims at scheduling projects (or project 

activities), which typically have precedence relations and/or resource constraints 

(Herroelen, 2005). Project scheduling problem is one of the most studied optimization 

problems. The books by Demeulemeester and Herroelen (2002) and Schwindt and 

Zimmerman (2015a; 2015b) are among many great resources to review various project 

scheduling concepts, problems, formulations, and solution approaches. The simple case 

of single-mode makespan minimization without resource constraints is polynomially 

solvable (see, e.g., Kolisch and Padman (2001)); therefore, a majority of the academic 
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research focuses on resource-constrained project scheduling problem (RCPSP), which is 

an NP-hard problem (see, e.g., Blacewicz et al. (1983)). We refer the reader to Özdamar 

and Ulusoy (1995), Herroelen et al. (1998), Brucker et al. (1999), and Hartmann and 

Briskorn (2010) for reviews of the studies on RCPSP.  

In the model we study, we consider a single renewable resource: the labor 

required for completing the activities. The workers can work under different modes in a 

period, i.e., we have multi-mode resource assignment. One may refer to Weglarz et al. 

(2011) and Mika et al. (2015) for reviews of multi-mode project scheduling problems and 

to Van Peteghem and Vanhoucke (2014) for a study comparing various metaheuristic 

approaches for multi-mode RCPSP. In our model, while individual activities have a limit 

on the amount of the resource they can utilize, we do not have a resource constraint. It is 

noted by Herroelen (2005) that, resource constraint is not the main concern in project 

scheduling for practitioners. Instead of a resource constraint, as noted above, one of the 

objectives of our model is to minimize the maximum (peak) resource usage throughout 

the project duration. To this end, our model corresponds to a multi-objective project 

scheduling problem. As noted by Ballestín and Blanco (2011), multi-objective project 

scheduling problem, compared to single-objective project scheduling problem, is less 

studied in the literature. We refer the reader to Viana and Sousa (2000) and Ballestín and 

Blanco (2011; 2015) for basics of multi-objective RCPSP.   

In most of the project scheduling research, preemption is not allowed (see, 

Ballestín et al. (2008)). That is, once an activity is started, it is not interrupted until 

completion. Specifically, when objectives other than makespan minimization are 

considered, preemption can be beneficial. In this study, neither of the objectives is 
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makespan minimization and we allow preemption. One may refer to Balestin et al. 

(2008), Quintanilla et al. (2015), and Schwindt and Paetz (2015) for overviews of 

preemption in project scheduling. Here, we determine the number and mode of workers 

to assign to each activity within each period throughout the project schedule; and, the 

work on an activity can be interrupted. For instance, it is allowed to assign 5 workers in 

mode 1, 10 workers in mode 2, no workers, and 5 workers in mode 1 to an activity during 

4 consecutive periods within the project schedule. This indicates that, in addition to 

preemption, the project scheduling problem under investigation in this study allows 

flexible resource profiles.  

Typically, in multi-mode project scheduling problems, the time to complete an 

activity and the amount of resource used for completion under each mode are given. On 

the other hand, in flexible resource profile project scheduling, each activity requires a 

specified amount of a resource (referred to as work-content by Fundeling and Trautmann 

(2010) for labor requirements and as resource requirement by Naber and Kolish (2014) 

for generic resources) and the amount of resource(s) allocated to the activities in each 

period (i.e., work-profiles or resource-profiles) are determined in addition to project start 

and finish times. RCPSP with flexible profiles (FRCPSP) has been relatively recently 

studied with discrete or continuous resources as well as under discrete or continuous 

times. Particularly, Fundeling and Trautmann (2010), Ranjbar and Kianjar (2010), 

Baumann and Trautmann (2014), Baumann et al. (2015), and Zimmermann (2016) 

analyze FRCPSP with discrete resources under discrete time. Fundeling and Trautmann 

(2010) propose priority-rule based heuristic, Ranjbar and Kianjar (2010) develop a 

genetic algorithm, and Zimmerman (2016) discuss a mixed-integer-programming based 
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heuristic approach, while the others present formulations and test instances with 

commercial solvers. On the other hand, Naber and Kolisch (2014) and Tritscheler et al. 

(2014; 2017) focus on FRCPSP with continuous resources under discrete time. Naber and 

Kolisch (2014) formulate different models for the problem and propose a priority-rule 

based heuristic approach. Tritscheler et al. (2014) discuss a genetic algorithm while 

Tritscheler et al. (2017) develop a hybrid metaheuristic method. Finally, Naber (2017) 

studies FRCPSP with continuous resources under continuous time and develops a branch-

and-cut method for the problem. 

In this study, we consider discrete time and a single discrete resource, which is 

renewable and unconstrained. The above studies on FRCPSP consider a single mode, do 

not allow preemption, and aim at minimizing project makespan. Different than these 

studies, as previously noted, preemption is allowed and there are multiple modes. 

Furthermore, rather than makespan minimization, we consider two objectives: cost 

minimization and maximum (peak) resource minimization. We will discuss the related 

project scheduling studies based on the objective functions considered while presenting 

the model in Section 2, especially related to resource leveling. The main motivation for 

our model is the need for planning the construction of the semiconductor manufacturing 

facility for the new production run. In what follows, we review the project scheduling 

studies that focus on scheduling activities for semiconductor facility ramp-up. 

Cheng et al. (2012) study a multi-mode resource-constrained project scheduling 

for ramping up a semiconductor manufacturing facility. They consider multiple 

constrained resources and assume that an activity should be completed in a single mode 

(the model is basically the classical multi-mode RCPSP without preemption). The authors 
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propose a simulated annealing method integrated with simulation for makespan 

minimization and present a case study. Later, in Cheng et al. (2015), the authors analyze 

a similar multi-mode resource constraint project scheduling problem under three 

formulations: with preemption, with non-preemptive activity splitting (i.e., preemption is 

allowed only if resources are not sufficient at a period), and without activity splitting. 

They propose a modified branch-and-bound algorithm as the exact method and develop 

priority-rule based heuristic method. In our study, different than Cheng et al. (2012; 

2015), we consider a single unconstrainted resource with flexible profiles. In addition to 

project scheduling decisions, we also consider worker assignment decisions such that a 

worker can work in different modes. In an earlier work (Dwyer and Konur (2018)), we 

presented a similar model with multiple constrained resources and only discussed how to 

linearize the formulation in order to incorporate a resource leveling objective. Later in 

Dwyer and Konur (2020), we compared different resource leveling functions using a case 

study for the model presented in Dwyer and Konur (2018) with a single resource. The 

current study uses linearization from Dwyer and Konur (2018); and based on our 

preliminary analysis, we adopt to minimize the maximum resource use in addition to cost 

minimization; therefore, we do not have resource constraint in the current study. As 

mentioned above, we will review the resource leveling problems in Section 2. 

In summary, our model is a bi-objective multi-mode flexible resource profile 

project scheduling problem with a single unconstrained renewable discrete resource 

under discrete time. For this model, we first discuss the implementation of the well-

known ε-constraint method (see, e.g., (Özlen and Azizoğlu (2009)) to generate the exact 

Pareto front. After that, we propose an approximation method to generate near Pareto 
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efficient solutions. The approximation method first solves partial linear relaxation of the 

subproblems that are required to be solved within the ε-constraint method; then, a 

rounding approach is utilized to convert the non-integer solutions to integer ones. Finally, 

an improvement heuristic is used to enhance the converted solutions. Based on a set of 

numerical studies, we conclude that the approximation method can generate solutions 

within proximity of the exact Pareto front with significantly less computational time. 

The contributions of this study are as follows: a novel model for a project 

scheduling problem motivated by semiconductor manufacturing facility construction is 

presented and a simple and computationally efficient approximation method is developed 

for finding near Pareto efficient solutions for the resulting bi-objective model. In 

addition, we discuss the details of problem instance generation and post the data and 

solutions of the problem instances generated for interested researchers. The rest of the 

paper is organized as follows. Section 2 discusses the details of the problem settings and 

presents the mathematical formulation of the model. In Section 3, we explain the 

implementation of the ε-constraint method and develop our approximation method. The 

setup and the results of the numerical studies are detailed in Section 4. Concluding 

remarks and possible future research directions are noted in Section 5. 

 

2. PROBLEM SETTINGS AND FORMULATION 

 

The problem of interest in this study is scheduling of construction of special 

tools/machines that transform raw silicon into integrated semiconductor circuits. The 

construction of a tool/machine can be the demolition of an existing tool/machine because 
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its technology is outdated, modification of an existing tool/machine so that its technology 

is updated, or installation of a completely new tool/machine. We refer to construction of a 

tool/machine as an activity and let the activities be indexed by 𝑖 and 𝑗 such that 𝑖, 𝑗 ∈ 𝐼 =

{1,2, … , |𝐼|}. While it is possible that there exist stand-alone construction activities, a 

demolition project may be required to be completed before a specific installation activity 

(mainly due to cleanroom requirements) and some installation activities should be 

completed before others due to required connections along the production line. Such 

requirements necessitate precedence relations and, accordingly, we define 𝑎𝑖𝑗 = 1 if 

activity 𝑖 is to be completed before activity 𝑗 can start, and 𝑎𝑖𝑗 = 0 otherwise. Let 𝐴 

denote the set of (𝑖, 𝑗) pairs such that 𝑎𝑖𝑗 = 1, that is, 𝐴 defines the set of activity pairs 

that have precedence relations. 

All of the activities should be finished before the targeted start date of the 

complete production line. The length of the scheduling horizon is |𝑇| periods and let the 

periods be indexed by 𝑟 and 𝑡 such that  𝑟, 𝑡 ∈ 𝑇 = {1,2, … , |𝑇|}. That is, the activities 

should be completed by the end of period |𝑇|. We note that project scheduling problems 

typically aim at minimizing the makespan of the project (see, e.g., Ballestín and Blanco 

(2011)). Here, since there is a target date for finishing the project, i.e., all activities 

should be completed by this target date, makespan is not of concern. It is also worthwhile 

to note that there are studies that have upper bound limits on the project makespan (see, 

e.g., Neumann and Zimmermann (1999) and the deadline problem Brucker et al. (1999)).  

Based on the working conditions considering the scheduling practice, we focus on 

scheduling project activities on a weekly basis, i.e., each period is one week (one can 

easily modify the modeling and solution methods discussed for other period definitions 
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such as days for shorter horizons or months for longer horizons). An activity cannot start 

prior to a specific date; this is typically because, for an installation task, parts should be 

delivered; and, for a demolition/modification task, the current work assigned to the 

tool/machine should be completed. Also, individual activities might have completion due 

dates earlier than the completion of the whole production line (project); this is typically 

because, for a demolition/modification task, the tool/machine or its parts may be needed 

to be transferred to other facilities; and, for an installation task, the new tool/machine 

may be required to be up and running to enable output from the production line by the 

targeted start date. Accordingly, let 𝑒𝑖 ∈ 𝑇 and 𝑑𝑖 ∈ 𝑇 denote the earliest start time 

(beginning of a week) and due date (end of a week) for activity 𝑖, respectively, such that 

𝑒𝑖 ≥ 𝑑𝑖 ∀𝑖 ∈ 𝐼. Similar time windows for individual activities are commonly defined for 

project scheduling problems in general (see, e.g., Hartmann and Briskorn (2010)) as well 

as for the flexible resource profile project scheduling problems (see, e.g., Naber and 

Kolisch (2014), Tritscheler et al. (2017), Naber (2017)). Furthermore, Cheng et al. (2012; 

2015) also define ready time and due dates for the activities in semiconductor 

manufacturing facility ramp-up problem. Without loss of generality, we consider that 

min
𝑖∈𝐼

{𝑒𝑖} = 1 and max
𝑖∈𝐼

{𝑑𝑖} = |𝑇|.  

Each activity requires a given amount of construction (labor) hours, denoted by 

𝐻𝑖 > 0 for activity 𝑖, to be completed. This is referred to as work-content in FRCPSP 

research (see, e.g., Fündeling and Trautmann (2010), Zimmermann (2016)). We need to 

assign workforce to the activities throughout the scheduling horizon. Worker assignments 

are based on a weekly schedule such that a worker will work on the same activity during 

a week and he/she will have the same working mode throughout the week. Specifically, 
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each worker can be assigned to work on one of the different modes during a week and 

will not change modes within a week. Let the working modes be indexed by 𝑘 such that 

𝑘 ∈ 𝐾 = {1,2, … , |𝐾|}. Furthermore, let ℎ𝑘 > 0 and 𝑐𝑘 > 0 denote the number of hours a 

worker in mode 𝑘 works per week and the hourly cost of a worker in mode 𝑘. As it is 

practical that the workers form weekly teams such that each team is given the same 

guidelines and work on the same activity as a team, all the workers assigned to the same 

activity during a week will have the same mode. This is also consistent with the safety 

requirement for a minimum number of workers that should simultaneously work on an 

activity.   

It is considered that there is an ample amount of workforce that can be utilized 

each week; however, there are limits on the number of workers that can be utilized for 

individual activities. Due to safety and functional requirements (e.g., multiple workers 

are needed for minimizing the impact of possible accidents or for building the physical 

capacity required by a specific activity), there is a lower limit on the number of workers 

who can simultaneously work on an activity during a week. Furthermore, due to safety 

and functional requirements (e.g., having more workers than needed decreases safety), 

space limitations (e.g., since the construction takes place in an active manufacturing 

environment, too many workers might impact the ongoing production line), and 

congestion considerations (e.g., after a threshold number, having additional workers on 

an activity at the same time does not add value), there is also an upper limit on the 

number of workers who can simultaneously work on an activity during a week. 

Accordingly, let 𝑙𝑖 ≥ 1 and 𝑢𝑖 ≥ 𝑙𝑖 be the minimum and the maximum number of 

workers who should and can simultaneously work on activity 𝑖 during a week, 
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respectively. Similar bounds on resources that can be simultaneously assigned to an 

activity are defined in FRCPSP studies (see, e.g., Naber and Kolisch (2014), Tritscheler 

et al. (2017), Naber (2017)). 

It is important to note that an activity is not required to be worked on 

continuously from its start to its completion. That is, it is allowed that a team of workers 

work on an activity for several weeks on a specific mode, then no workers work on the 

activity for several weeks, and then another team of workers continue working on the 

activity on another mode. That is, we allow preemption while scheduling the project 

activities with flexible worker profiles. This indicates that the scheduling problem has 

two main set of decisions: worker assignments and project schedules. 

The worker assignment decisions include: the number of workers assigned to each 

activity each week, and the mode for the team of workers working on each activity each 

week. To avoid nonlinearities in model formulation, rather than defining number of 

workers assigned to each activity each week, we define the number of workers assigned 

to each activity on each mode during each week (see, e.g., Dwyer and Konur (2018)). Let 

𝑥𝑖𝑘𝑡 ≥ 0 denote the (integer) number of workers assigned to activity 𝑖 on mode 𝑘 during 

week 𝑡 and 𝑿 be the integer |𝐼| × |𝐾| × |𝑇|-array of 𝑥𝑖𝑘𝑡 worker-assignment variables. 

As there are minimum and maximum limits on 𝑥𝑖𝑘𝑡 and the workers on the same activity 

should work on the same mode through the week, we define 𝑧𝑖𝑘𝑡 = 1 if the workers on 

activity 𝑖 are working on mode 𝑘 during week 𝑡, and  𝑧𝑖𝑘𝑡 = 0 otherwise, and let 𝒁 be the 

binary |𝐼| × |𝐾| × |𝑇|-array of 𝑧𝑖𝑘𝑡 mode-selection variables. 
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The project schedule decisions include: the start and finish times for the project 

activities. These are needed to be determined to ensure the precedence relations in the 

model. In particular, let 𝑠𝑖𝑡 = 1 if the work on activity 𝑖 starts at the beginning of week 𝑡, 

and 𝑠𝑖𝑡 = 0  otherwise; and 𝑺 be the binary |𝐼| × |𝑇|-matrix of 𝑠𝑖𝑡 activity-start-time 

variables. Similarly, let 𝑓𝑖𝑡 = 1 if the work on activity 𝑖 finishes at the end of week 𝑡, and 

𝑓𝑖𝑡 = 0  otherwise; and 𝑭 be the binary |𝐼| × |𝑇|-matrix of 𝑓𝑖𝑡 activity-finish-time 

variables. Note that ∑ 𝑡𝑠𝑖𝑡𝑡∈𝑇  and ∑ 𝑡𝑓𝑖𝑡𝑡∈𝑇  define activity 𝑖’s start and finish weeks, 

respectively. To avoid notational confusion, we define 𝜏𝑡 = 𝑡 as the parameter defining 

week 𝑡 (because 𝑡 is used as an index) and let ∑ 𝜏𝑡𝑠𝑖𝑡𝑡∈𝑇  and ∑ 𝜏𝑡𝑓𝑖𝑡𝑡∈𝑇  define activity 𝑖’s 

start and finish week, respectively. Recall that an activity is not required to be 

continuously worked on; therefore, it is possible that ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾 = 0 for activity 𝑖 for 

some 𝑡 such that ∑ 𝜏𝑡𝑠𝑖𝑡𝑡∈𝑇 < 𝑡 < ∑ 𝜏𝑡𝑓𝑖𝑡𝑡∈𝑇 .   

Cost minimization is an important criterion regarded by many companies. In 

project scheduling literature, even though time-based objectives, especially makespan 

minimization, are the most commonly used ones (see, e.g., Hartman and Briskorn (2010), 

Ballestin and Blanco (2011)), cost related objectives are also used in so-called time-cost 

trade-off problems (see, e.g., Brucker et al. (1999)) as well as time-resource trade-off 

problems (see, e.g., Weglarz et al. (2011)). We refer the reader to the survey papers cited 

in Section 1 for overviews of various project scheduling problems with cost related 

objectives. One particularly relevant project scheduling problem with cost related 

objective is the resource availability cost problem, which aims to minimize the cost of the 

resources used in order to finish the project before a deadline (Rodrigues and Yamashita 

(2010; 2015), Kreter et al. (2018)). Kreter et al. (2018) provide a detailed review of 
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resource availability cost problems and the solution approaches discussed. In the 

semiconductor facility construction scheduling problem of interest in this study, the 

variable resource costs incurred are the payments made to the workers. The total variable 

cost depends on the number of workers working on each mode during each week. It then 

follows that the total cost of the construction plan is ∑ ∑ ∑ 𝑐𝑘ℎ𝑘𝑥𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼 .  

During the scheduling horizon, minimizing the total cost might result in worker 

assignments with significant variations in the total number of workers utilized per week. 

These changes in the number of workers utilized is especially not favored by the worker 

trades. Therefore, having balanced worker assignments throughout the planning horizon 

is as important as the cost of the construction schedule. In project scheduling literature, 

balanced resource profiles are typically sought in so-called resource leveling problems 

(see, e.g., Rieck and Zimmermann (2015)). Different objective functions are defined and 

used for resource leveling problems such as minimizing the maximum difference in the 

amount of resource used, minimizing the deviations from a desired resource profile, and 

minimizing the sum of squared resource usages. One can refer to Neumann et al. (2003) 

for various leveling objectives (also, Damci et al.  (2016) list 10 different leveling 

objectives). It is important to note that, several cost-related objective functions are 

defined for resource leveling such as total adjustment cost (see, e.g., Kreter et al. (2014)), 

resource overload (see, e.g., Neumann et al. (2003), Rieck et al. (2012)), and release and 

rehire cost (see, e.g., Atan and Eren (2018)). Moreover, resource availability/investment 

cost problem mentioned above (see, e.g., Neumann and Zimmermann (1999), Rodrigues 

and Yamashita (2010; 2015), Kreter et al. (2018), Coughlan et al. (2015)) is also 

considered as resource leveling problem. In this study, as noted above, we aim to 
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minimize total resource (labor) cost; hence, for resource leveling, we consider 

minimization of the maximum (peak) resource needed. 

As remarked by Takamoto et al. (1995) as well, minimizing the maximum 

resource use helps level resource profile. Similarly, Atan and Eren (2018) note that 

minimizing maximum resource usage is a resource leveling metric. Furthermore, Caramia 

and Dell’Olmo (2003) discuss that minimizing the peak resource level can be desired 

even if the resource usage is constant throughout the project duration. Caramia and 

Dell’Olmo (2003) study a single-mode project scheduling problem (without constrained 

resources) and propose heuristic approaches for the problem with makespan and peak 

resource use minimization objectives. Given that we already consider cost minimization, 

as noted above, we choose to minimize the maximum resource needed as the resource 

leveling objective. Also, it is worthwhile to remark that resource leveling is especially 

important during preplanning phase in project scheduling (Neumann et al. (2003)). For 

our problem, since we deal with worker assignment in addition to scheduling, our focus is 

more on the preplanning phase of the project scheduling for the semiconductor 

manufacturing facility construction problem. This preplanning includes contracting with 

worker trade to plan the labor requirements for the project. Minimizing the maximum 

number of workers within a week therefore provides a level of robustness for 

construction by minimizing the impact the week with the maximum number of workers 

can have on the schedule in case of unforeseeable disruptions in the work force. 

Furthermore, doing so reduces the pressure on the worker trade. The maximum number 

of workers used in a week is equal to max
𝑡∈𝑇

{∑ ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝐼 }, which is not a linear function 
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of 𝑿. To overcome this, we introduce 𝑋𝑚𝑎𝑥 as the auxiliary variable defining the 

maximum number of workers used in a week. 

Based on the above discussion, construction scheduling problem (CSP) with total 

cost and maximum number of workers minimization objectives can be formulated as 

follows. 

CSP:   
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑘ℎ𝑘𝑥𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼    
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑋𝑚𝑎𝑥  
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ ∑ ℎ𝑘𝑥𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 ≥ 𝐻𝑖  ∀𝑖 ∈ 𝐼  
(1) 

 ∑ 𝑠𝑖𝑡𝑡∈𝑇 = 1  ∀𝑖 ∈ 𝐼  
(2) 

 ∑ 𝑓𝑖𝑡𝑡∈𝑇 = 1  ∀𝑖 ∈ 𝐼  
(3) 

 ∑ 𝜏𝑡𝑠𝑖𝑡𝑡∈𝑇 ≥ 𝑒𝑖  ∀𝑖 ∈ 𝐼  
(4) 

 ∑ 𝜏𝑡𝑓𝑖𝑡𝑡∈𝑇 ≤ 𝑑𝑖  ∀𝑖 ∈ 𝐼  
(5) 

 ∑ 𝜏𝑡𝑓𝑖𝑡𝑡∈𝑇 ≤ ∑ 𝜏𝑡𝑠𝑗𝑡𝑡∈𝑇 − 1  ∀(𝑖, 𝑗) ∈ 𝐴  
(6) 

 ∑ 𝑧𝑖𝑘𝑡𝑘∈𝐾 ≤ ∑ 𝑠𝑖𝑟
𝑡
𝑟=1   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇  

(7) 

 ∑ 𝑧𝑖𝑘𝑡𝑘∈𝐾 ≤ ∑ 𝑓𝑖𝑟
|𝑇|
𝑟=𝑡   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇  

(8) 

 ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾 ≥ 𝑠𝑖𝑡  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 
(9) 

 ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾 ≥ 𝑓𝑖𝑡  ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 
(10) 

 𝑥𝑖𝑘𝑡 ≥ 𝑙𝑖𝑧𝑖𝑘𝑡 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  
(11) 

 𝑥𝑖𝑘𝑡 ≤ 𝑢𝑖𝑧𝑖𝑘𝑡 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  
(12) 

 𝑋𝑚𝑎𝑥 ≥ ∑ ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝐼   ∀𝑡 ∈ 𝑇 
(13) 
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 𝑥𝑖𝑘𝑡 ∈ {0,1,2, … } ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  
(14) 

 𝑧𝑖𝑘𝑡 ∈ {0,1}  ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  
(15) 

 𝑠𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 
(16) 

 𝑓𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 
(17) 

 𝑋𝑚𝑎𝑥 ∈ {0,1,2, … }.  (18) 

In CSP, total cost and maximum number of workers utilized are minimized. 

Constraints in (1) assure that each activity gets the workhours needed for its completion. 

Constraints (2) and (3) restrict that a single week is designated as the start and finish 

week for an activity, respectively; and, constraints (4) and (5) ensure an activity is 

worked on only after its earliest start time and before its due date, respectively. 

Constraints (6) enforce the precedence relations between each pair of activities, which 

have a precedence relation. Constrains (7) and (8), together with constraints (2) and (3), 

guarantee that at most one mode is selected for the workers on an activity during the time 

between the activity’s start and finish weeks, and no mode is selected for the weeks 

before the start and after the finish of the activity. Constraints (9) and (10) are introduced 

to eliminate symmetric solutions and they guarantee that there is at least one worker in 

the weeks an activity starts and ends, respectively. These avoid considering feasible 

solutions where an activity’s start week is earlier than the first week the activity is 

worked on and/or where an activity’s finish week is later than the last week the activity is 

worked on. Constraints (11) and (12) define the lower and upper limits on the number of 

workers to be assigned to an activity during a week, respectively, if a team of workers is 

assigned to the activity. Because 𝑋𝑚𝑎𝑥 is minimized, constraints (13) assure that 𝑋𝑚𝑎𝑥 is 

indeed the maximum number of workers utilized in a week throughout the project 
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horizon. Finally, constraints (14)-(18) state the integer and/or binary definitions for the 

worker assignment (𝑥𝑖𝑘𝑡 and 𝑧𝑖𝑘𝑡), project schedule (𝑠𝑖𝑡 and 𝑓𝑖𝑡), and maximum number 

of workers utilized (𝑋𝑚𝑎𝑥) decision variables, respectively. 

Table 1 summarizes the notation used and additional notation will be defined as 

needed. A construction plan is defined by 〈𝑿, 𝒁, 𝑺, 𝑭〉. CSP is a bi-objective integer linear 

programming model with 2|𝐼||𝑇||𝐾| + 4|𝐼||𝑇| + 5|𝐼| + |𝑇| + |𝐴| constraints (excluding 

binary/integer definitions) and 2(|𝐼||𝑇||𝐾| + |𝐼||𝑇|) + 1 variables. Furthermore, single-

objective CSP with a single project without lower and upper bounds on the number of 

workers is a knapsack problem (particularly, due to constraints (1)); hence, even single-

objective CSP is NP-hard. Therefore, in what follows, we develop a heuristic method for 

solving CSP.  

 

3. SOLUTION METHOD 

 

Two common approaches to solve multi-objective models are (i) reducing the 

problem into a single-objective model and finding the optimum solution for the resulting 

single-objective model and (ii) generating Pareto efficient solutions for the multi-

objective model. In this study, we adopt approach (ii) for CSP as this approach gives the 

decision maker a set of alternative solutions, which can then be evaluated and compared 

using the objectives as well as other measures. 

Note that, once 𝑿 is known, the other variables (i.e., 𝒁, 𝑺, 𝑭, and 𝑋𝑚𝑎𝑥) can be 

easily determined. Therefore, for notational simplicity, we use 𝑿 to represent a solution 

of CSP and let 𝜒 denote the sets of feasible solutions (𝑿’s) of CSP. Furthermore, we let 
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𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) denote the total cost (i.e., 𝑇𝐶(𝑿) = ∑ ∑ ∑ 𝑐𝑘ℎ𝑘𝑥𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼  ) and 

the maximum number of workers utilized (i.e., 𝑀𝑊(𝑿) = 𝑋𝑚𝑎𝑥 = max
𝑡∈𝑇

{∑ ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝐼 }) 

for solution 𝑿, respectively. Then, CSP is to minimize 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) such that 𝑿 ∈

𝜒.  

 

Table 1. Notation. 

Sets and Indices: 

𝑖, 𝑗 ∈ 𝐼 Indices used for and the set of activities 

𝑟, 𝑡 ∈ 𝑇 Indices used for and the set of periods (weeks) 

𝑘 ∈ 𝐾 Index used for and the set of modes 

(𝑖, 𝑗) ∈ 𝐴 Representation and the set of precedence relations 

Parameters: 

𝑎𝑖𝑗 Binary indicator for precedence relation between activities 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼 

𝜏𝑡 Time indicator for period 𝑡 ∈ 𝑇 

𝑒𝑖, 𝑑𝑖 Earliest start time and due date (i.e., time-window) for activity 𝑖 ∈ 𝐼  

𝑙𝑖 , 𝑢𝑖 
Minimum and the maximum number of workers who should and can 

simultaneously work on activity 𝑖 ∈ 𝐼 during a week, respectively 

𝐻𝑖 Amount of construction (labor) hours needed by activity 𝑖 ∈ 𝐼 to be completed 

ℎ𝑘 , 𝑐𝑘 
Number of hours per week a worker works and the hourly cost of a worker in mode 

𝑘 ∈ 𝐾, respectively 

Decision variables: 

𝑥𝑖𝑘𝑡 , 𝑿 
Integer number of workers assigned to activity 𝑖 ∈ 𝐼 in mode 𝑘 ∈ 𝐾 during period 

𝑡 ∈ 𝑇 and the array of 𝑥𝑖𝑘𝑡 variables, respectively 

𝑧𝑖𝑘𝑡 , 𝒁 
Binary indicator for workers assigned to activity 𝑖 ∈ 𝐼 in mode 𝑘 ∈ 𝐾 during period 

𝑡 ∈ 𝑇 and the array of 𝑧𝑖𝑘𝑡 variables, respectively 

𝑠𝑖𝑡 , 𝑺 
Binary indicator for activity 𝑖 ∈ 𝐼 starting at the beginning of period 𝑡 ∈ 𝑇 and the 

matrix of 𝑠𝑖𝑡 variables, respectively 

𝑓𝑖𝑡, 𝑭 
Binary indicator for activity 𝑖 ∈ 𝐼 finishing at the end of period 𝑡 ∈ 𝑇 and the matrix 

of 𝑓𝑖𝑡 variables, respectively 

𝑋𝑚𝑎𝑥 Maximum number of workers utilized throughout the project horizon 

 

A solution 𝑿′ ∈ 𝜒 is Pareto efficient for CSP if and only if there does not exist 

another solution 𝑿′′ ∈ 𝜒 such that 𝑇𝐶(𝑿′′) ≤ 𝑇𝐶(𝑿′), 𝑀𝑊(𝑿′′) ≤ 𝑀𝑊(𝑿′), and 

[𝑇𝐶(𝑿′′), 𝑀𝑊(𝑿′′)] ≠ [𝑇𝐶(𝑿′), 𝑀𝑊(𝑿′)]. Given 𝑿′ ∈ 𝜒 is Pareto efficient for CSP, the 
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point [𝑇𝐶(𝑿′), 𝑀𝑊(𝑿′)] is a non-dominated point for CSP and let 𝑃𝐹 and 𝑃𝐸 denote the 

set of non-dominated points (i.e., Pareto front) and Pareto efficient solutions of CSP, 

respectively. In what follows, we first discuss implementation of the well-known 

classical 𝜀-constraint method to generate 𝑃𝐹. After that, we present a method based on 

partial linear relaxation to generate approximated 𝑃𝐹, denoted by 𝑃𝐹̂. 

3.1. CLASSICAL ε-CONSTRAINT METHOD 

One of the most used methods for solving bi-objective optimization models is the 

𝜀-constraint method. In the 𝜀-constraint method, one of the objective functions is 

optimized while the other objective function is incorporated as a constraint with an upper 

bound on its value. This upper bound is iteratively reduced by 𝜀 until the constrained sub-

problem becomes infeasible. While 𝜀-constraint method would approximate the 

continuous Pareto front for continuous optimization models, it generates the exact finite 

Pareto front for bi-objective integer optimization models. As CSP is a bi-objective 

integer optimization model with a finite Pareto front, we can generate 𝑃𝐹 using 𝜀-

constraint method. 

Note that 𝑀𝑊(𝑿) is an integer-valued function by definition and, without loss of 

generality, one can consider that 𝑇𝐶(𝑿) is also an integer-valued function (by simply 

multiplying 𝑐𝑘ℎ𝑘 values with a sufficiently large number so that the products are 

integers). Therefore, we can implement the so-called classical 𝜀-constraint method (Özlen 

and Azizoğlu (2009)), which iteratively solves constrained weighted single-objective 

integer programming (CWSOIP) models to optimality |𝑃𝐹| times. The CWSOIP for 

CSP, simply referred to as sub-problem (SP), reads as follows. 
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SP:    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶(𝑿) + 𝜙𝑀𝑊(𝑿)    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑀𝑊(𝑿) ≤ Δ   

 𝑿 ∈ 𝜒.   

The optimal solution of SP corresponds to a point on 𝑃𝐹 under two conditions: (i) 

𝜙 is sufficiently small such that 𝜙(𝑀𝑊(𝑿′) − 𝑀𝑊(𝑿′′)) < 1 ∀𝑿′, 𝑿′′ ∈ 𝜒 and (ii) Δ ∈

[min{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒}, min{𝑀𝑊(𝑿): 𝑇𝐶(𝑿) = min {𝑇𝐶(𝑿): 𝑿 ∈ 𝜒}, 𝑿 ∈ 𝜒}].  

Condition (i) is necessary and it assures that the optimum solution of SP is the one 

which minimizes 𝑇𝐶(𝑿) and minimizes 𝑀𝑊(𝑿) over all the alternative solutions with the 

minimum cost value for SP. As noted in Özlen and Azizoğlu (2009), one can define 𝜙 =

1

𝑀𝑊𝑚𝑎𝑥−𝑀𝑊𝑚𝑖𝑛+1
, where 𝑀𝑊𝑚𝑎𝑥 ≥ max{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒}  and 𝑀𝑊𝑚𝑖𝑛 ≤

min{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒}. 

Remark 1. Let 𝜙 =
1

max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
}+1

. Then 𝜙(𝑀𝑊(𝑿′) − 𝑀𝑊(𝑿′′)) < 1 ∀𝑿′, 𝑿′′ ∈

𝜒.  

Proof. First, it can be noted from constraints (4)-(5), (7)-(8), and (11)-(12) that 

∑ ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝐼 ≤ ∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
 ∀𝑡 ∈ 𝑇 (i.e., the maximum number of workers that can be 

utilized in a given period is less than or equal to the sum of the maximum number of 

workers that can be utilized for a project over the projects that can be worked on during 

that period). This implies that 𝑋𝑚𝑎𝑥 ≤ max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
} ∀𝑿 ∈ 𝜒, which means we 

have max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
} ≥ max{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒}. Also, by definition, we have 𝑋𝑚𝑎𝑥 ≥
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0 ∀𝑿 ∈ 𝜒, i.e., 0 ≤ min{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒}. Therefore, 
1

max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
}−0+1

(𝑀𝑊(𝑿′) −

𝑀𝑊(𝑿′′)) < 1 ∀𝑿′, 𝑿′′ ∈ 𝜒. ∎ 

Based on Remark 1, we use 𝜙 =
1

max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
}+1

 while solving SP. 

Condition (ii) defines the range of 𝑀𝑊(𝑿) values of 𝑃𝐹. Particularly, we have 

𝑀𝑊(𝑿) ≥ min{𝑀𝑊(𝑿): 𝑿 ∈ 𝜒} by definition, and any point with 𝑀𝑊(𝑿) >

min{𝑀𝑊(𝑿): 𝑇𝐶(𝑿) = min {𝑇𝐶(𝑿): 𝑿 ∈ 𝜒}, 𝑿 ∈ 𝜒} is dominated by [min{𝑇𝐶(𝑿): 𝑿 ∈

𝜒} , min{𝑀𝑊(𝑿): 𝑇𝐶(𝑿) = min {𝑇𝐶(𝑿): 𝑿 ∈ 𝜒}, 𝑿 ∈ 𝜒}], therefore, is not on 𝑃𝐹.  

In the 𝜀-constraint method, Δ is iteratively reduced while solving SP. As the 

objective functions are integer valued in CSP, we set 𝜀 = 1. Let 𝑿Δ be the solution of SP 

for a given Δ. Algorithm 1 gives the description of the classical 𝜀-constraint method for 

generating 𝑃𝐹. 

 

Algorithm 1: Classical 𝜀-constraint method for CSP  

Step 0. Let 𝜙 =
1

max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
}+1

, Δ = max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
}, 𝑃𝐹 = ∅ and 𝑃𝐸 =

∅. Go to Step 1. 
 

Step 1. Solve SP given 𝜙 and Δ.  

i. If feasible, go to Step 2. 

ii. Else, go to Step 3. 

 

Step 2. Set 𝑃𝐹 ≔ 𝑃𝐹 ∪ {[𝑇𝐶(𝑿Δ), 𝑀𝑊(𝑿Δ)]}, 𝑃𝐸 ≔ 𝑃𝐸 ∪ {𝑿Δ}, and Δ =

𝑀𝑊(𝑿Δ) − 1; then, go to Step 1. 
 

Step 3. Stop and return 𝑃𝐹 and 𝑃𝐸.  

 

Note that, in Step 0 of Algorithm 1, Δ = max
𝑡∈𝑇

{∑ 𝑢𝑖𝑖∈𝐼:𝑒𝑖≤𝑡≤𝑑𝑖
} and this is 

sufficiently large such that 𝑀𝑊(𝑿) ≤ Δ is redundant when SP is solved for the first time 

(see, e.g., proof of Remark 1). Also, it is important to note that while 𝑃𝐹 is the exact 

Pareto front for CSP, it is possible that 𝑃𝐸 is not because, even if unlikely, there might be 
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different solutions corresponding to the same non-dominated point. As solutions 

corresponding to the same non-dominated point is equally preferable for the decision 

maker, we consider that it is sufficient to generate one solution for each non-dominated 

point in 𝑃𝐹. 

One can note that SP is an integer programming mode and it is also NP-hard. 

Given that SP is to be solved |𝑃𝐹| times, Algorithm 1 becomes computationally 

burdensome as the problem size grows. Therefore, it is important to develop 

computationally efficient heuristic methods that will generate near-Pareto efficient 

solutions. Next, we discuss the details of the heuristic method we propose to approximate 

𝑃𝐹.    

3.2. PARTIAL LINEAR RELAXATION BASED APPROXIMATING METHOD  

Our approximation method is based on partial linear relaxation of SP, which is 

iteratively solved in Algorithm 1. Specifically, to reduce the number of integer variables 

in SP, we focus on solving its relaxed version and generate a set of possibly non-integer 

solutions. After that, we first use a rounding procedure to convert such solutions to 

integer solutions; then use an improvement procedure to improve the rounded solutions; 

and finally determine the Pareto efficient solutions within the set of integer solutions 

generated. Accordingly, our heuristic method to approximate 𝑃𝐹, i.e., generate 𝑃𝐹̂, 

consists of four main phases:  

(i)  Generating relaxed efficient solutions: In this phase, we execute Algorithm 1 

such that, instead of solving SP in Step 1, we solve its partial linear relaxation, denoted 

by RSP, which allows 𝑥𝑖𝑘𝑡 variables to be continuous while all other variables are binary 
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or integer. We refer to the solutions generated by using a partial linear relaxation of SP in 

Algorithm 1 as relaxed efficient solutions and let 𝑃𝐸̃ be the set of relaxed efficient 

solutions, 𝑃𝐹̃ be the corresponding set of points, and 𝑿̃ ∈ 𝑃𝐸̃ denote an arbitrary relaxed 

efficient solution. 

(ii)  Rounding non-integer relaxed efficient solutions: In this phase, each relaxed 

efficient solution 𝑿̃ ∈ 𝑃𝐸̃ goes through a rounding process, which assures that the 

returned solution, denoted by 𝑿̂, respects project schedules and the resulting 𝑥𝑖𝑘𝑡 

variables are integer. We note that rounding approaches have been used in assignment 

and staffing problems as well as for generic integer programming models (see, e.g., 

Vohra (1988), Saltzman and Hillier (1992), Miller and Franz (1996)). Here, rounding is 

done by executing Procedure 1, which is detailed below. Because of the randomness in 

Procedure 1, it is possible to generate different integer solutions from the same relaxed 

efficient solution. Therefore, to create alternative rounded solutions, we apply Procedure 

1 on each 𝑿̃ ∈ 𝑃𝐸̃ for a pre-specified number of times, denoted by 𝑁. 

(iii)  Improving rounded solutions: In this phase, each rounded solution goes 

through an improvement process, Procedure 2, which aims to decrease the maximum 

number of workers utilized. We use Procedure 2 on 𝑿̂ and generate 𝑿̅. 

(iv)  Determining Pareto efficient improved rounded solutions: At the end of phase 

(iii), we have a set of alternative integer solutions (a set of 𝑿̂s and 𝑿̅s). In this phase, we 

determine the Pareto efficient solutions within this set of alternative integer solutions and 

the corresponding non-dominated points using Procedure 3. 

Algorithm 2 gives the description of the heuristic approximation method for 

generating 𝑃𝐹̂. In the description of Algorithm 2 as well as the procedures detailed next, 
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we let 𝑈(ℓ) denote the ℓ𝑡ℎ element of set 𝑈. Steps 1, 2, 3, and 4 of Algorithm 1 

correspond to phases (i), (ii), (iii), and (iv), respectively, and the details of these phases 

are explained next. 

 

Algorithm 2: Partial linear relaxation based rounding heuristic for CSP  

Step 0. Given 𝑁, go to Step 1.  

Step 1. Execute Algorithm 1 by solving RSP in Step 1 and let 𝑃𝐸̃ be the set of 

returned relaxed efficient solutions. Set 𝑃 = ∅ and go to Step 2. 
 

Step 2. For ℓ = 1: |𝑃𝐸̃| 

Let 𝑿̃ = 𝑃𝐸̃(ℓ). 

For 𝑛 = 1: 𝑁 

Execute Procedure 1 with 𝑿̃, generate 𝑿̂, and set 𝑃 ≔ 𝑃 ∪ {𝑿̂}. 

End 

End 

Set 𝑃̂ = 𝑃 and go to Step 3. 

 

Step 3. For ℓ = 1: |𝑃| 

Let 𝑿̂ = 𝑃(ℓ), execute Procedure 2 with 𝑿̂, generate 𝑿̅, and set 𝑃̂ ≔
𝑃̂ ∪ {𝑿̅}. 

End 

Go to Step 4. 

 

Step 4. Execute Procedure 4 with 𝑃̂ and return 𝑃𝐹̂ = 𝑃𝐹(𝑃̂) and 𝑃𝐸̂ = 𝑃𝐸(𝑃̂).  

 

(i)  Generating relaxed efficient solutions: The partial linear relaxation of SP, i.e., 

RSP, replaces constraints (14) in definition of 𝜒 with 𝑥𝑖𝑘𝑡 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇. 

Relaxing only 𝑥𝑖𝑘𝑡 variables makes converting a potentially non-integer solution to a 

feasible integer solution easy because one does not need to consider mode selection and 

scheduling restrictions for feasibility (i.e., variables 𝒁, 𝑺, and 𝑭 do not need to be 

modified). Also note that, when RSP solved, the maximum numbers of workers utilized 

in a week can be non-integer in the resulting solution because of non-integer 𝑥𝑖𝑘𝑡 values. 

Nevertheless, the resulting solution’s 𝑀𝑊(𝑿) will be integer because we still restrict 

variable 𝑋𝑚𝑎𝑥 be to integer (i.e., constraint (18) is valid) in RSP. Therefore, using 𝜀 = 1 
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in Step 2 of Algorithm 1 basically updates Δ to be an integer, which corresponds to the 

rounded-down value of the non-integer maximum number of workers utilized in a week. 

Each relaxed efficient solution 𝑿̃ ∈ 𝑃𝐸̃ is converted to 𝑁 alternative integer solutions 

using a rounding approach, which is detailed next. 

(ii)  Rounding non-integer relaxed efficient solutions: In CSP, the projects are 

related to each other mainly through precedence relations, i.e., constraints (6). 

Furthermore, definition of 𝑋𝑚𝑎𝑥, i.e., constraints (13), are not required to be satisfied to 

have a functioning schedule.  Therefore, if we do not change 𝑺̃ and 𝑭̃ variables (i.e., 

projects start and finish time variables corresponding to 𝑿̃) while rounding 𝑿̃, we can 

work on each project separately. To this end, our rounding approach focuses on rounding 

only non-integer 𝑥̃𝑖𝑘𝑡 variables (note that 𝑥̃𝑖𝑘𝑡 = 0, i.e., integer, for 𝑡 < ∑ 𝜏𝑡𝑠̃𝑖𝑡𝑡∈𝑇  and 

𝑡 > ∑ 𝜏𝑡𝑓𝑖𝑡𝑡∈𝑇  ∀𝑖 ∈ 𝐼 and ∀𝑘 ∈ 𝐾). While rounding, we also need to be mindful of the 

increases in 𝑇𝐶(𝑿) as well as 𝑀𝑊(𝑿). For instance, simply rounding-up all non-integer 

𝑥̃𝑖𝑘𝑡 variables in 𝑿̃ will produce a feasible integer schedule; however, the total cost and 

the maximum of the number of workers utilized can significantly increase. Our rounding 

approach allows both rounding-down and -up of a non-integer 𝑥̃𝑖𝑘𝑡 value by decreasing or 

increasing the total number of hours provided by 𝑥̃𝑖𝑘𝑡. To do so, two non-zero 𝑥̃𝑖𝑘𝑡 values 

from the same project in 𝑿̃ are selected; and hours transferred between these two values 

so that at least one of them becomes integer. If there is only one non-zero 𝑥̃𝑖𝑘𝑡 value for a 

project, it is simply rounded-up. Below, we give the description of the rounding approach 

and then discuss its details. 
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Procedure 1: Rounding approach for a relaxed efficient solution 𝑿̃  

Step 0. Given 𝑿̃, set 𝑿̂ = 𝑿̃, 𝐼′ = 𝐼. Go to Step 1.  

Step 1. i. If 𝐼′ = ∅, go to Step 4. 

ii. Else, let 𝑖 = 𝐼′(1), define 𝑈𝑖 = {𝑥̃𝑖𝑘𝑡: 𝑥̃𝑖𝑘𝑡 > 0} such that its 

elements are randomly ordered, and then go to Step 2. 

 

Step 2. i. If |𝑈𝑖| = 1, let 𝑥𝑖𝑘𝑡 = ⌈𝑈𝑖(1)⌉, 𝐼′ ≔ 𝐼′\{𝑖}, and go to Step 1. 

ii. Else, let 𝑥̃𝑖𝑘1𝑡1
= 𝑈𝑖(1) and 𝑥̃𝑖𝑘2𝑡2

= 𝑈𝑖(2), and go to Step 2. 
 

Step 3. Calculate 𝜓1 = (𝑥̃𝑖𝑘1𝑡1
− ⌊𝑥̃𝑖𝑘1𝑡1

⌋)ℎ𝑘1
 and 𝜓2 = (⌈𝑥̃𝑖𝑘2𝑡2

⌉ − 𝑥̃𝑖𝑘2𝑡2
)ℎ𝑘2

: 

i. If 𝜓1 ≤ 𝜓2, set 𝑥𝑖𝑘1𝑡1
= ⌊𝑥̃𝑖𝑘1𝑡1

⌋, 𝑈𝑖(2) = 𝑥̃𝑖𝑘2𝑡2
+

𝜓1

ℎ𝑘2

, and 𝑈𝑖 ≔

𝑈𝑖\{𝑈𝑖(1)}. 

ii. Else, set 𝑈𝑖(1) = 𝑥̃𝑖𝑘1𝑡1
−

𝜓2

ℎ𝑘1

, 𝑥𝑖𝑘2𝑡2
= ⌈𝑥̃𝑖𝑘2𝑡2

⌉, and 𝑈𝑖 ≔ 𝑈𝑖\

{𝑈𝑖(2)}. 

Go to Step 2. 

 

Step 4. Stop and return 𝑿̂.  

 

Procedure 1 applies the rounding method to each project individually. 

Particularly, for  𝑿̃, given 𝑖 ∈ 𝐼, Step 1 first determines the non-zero 𝑥̃𝑖𝑘𝑡 values. If there 

is only one such value for project 𝑖, it is rounded-up (see Step 2.i); otherwise, two such  

𝑥̃𝑖𝑘𝑡 values, 𝑥̃𝑖𝑘1𝑡1
 and 𝑥̃𝑖𝑘2𝑡2

, are randomly selected (see Step 1.ii and Step 2.ii) and Step 

3 is executed. In Step 3, first 𝜓1 = (𝑥̃𝑖𝑘1𝑡1
− ⌊𝑥̃𝑖𝑘1𝑡1

⌋)ℎ𝑘1
 and 𝜓2 = (⌈𝑥̃𝑖𝑘2𝑡2

⌉ −

𝑥̃𝑖𝑘2𝑡2
)ℎ𝑘2

 are calculated. Note that 𝜓1 defines the number of hours to subtract from 

ℎ𝑘1
𝑥̃𝑖𝑘1𝑡1

 so that (ℎ𝑘1
𝑥̃𝑖𝑘1𝑡1

− 𝜓1)/ℎ𝑘1
 is an integer and 𝜓2 defines the number of hours 

to add to ℎ𝑘2
𝑥̃𝑖𝑘2𝑡2

 so that (ℎ𝑘2
𝑥̃𝑖𝑘2𝑡2

+ 𝜓2)/ℎ𝑘2
 is an integer. After that, either 𝑥̃𝑖𝑘1𝑡1

 is 

rounded-down or 𝑥̃𝑖𝑘2𝑡2
 is rounded-up. Specifically, if 𝜓1 ≤ 𝜓2, we transfer 𝜓1 hours 

from ℎ𝑘1
𝑥̃𝑖𝑘1𝑡1

 to ℎ𝑘2
𝑥̃𝑖𝑘2𝑡2

 so that we have (ℎ𝑘1
𝑥̃𝑖𝑘1𝑡1

− 𝜓1)/ℎ𝑘1
= ⌊𝑥̃𝑖𝑘1𝑡1

⌋, i.e., it 

becomes an integer. Also note that, since 𝜓1 ≤ 𝜓2, we will have 𝑥̃𝑖𝑘2𝑡2
+ 𝜓1/ℎ𝑘2

≤

⌈𝑥̃𝑖𝑘2𝑡2
⌉. On the other hand, if 𝜓1 > 𝜓2, we transfer  𝜓1 hours from ℎ𝑘1

𝑥̃𝑖𝑘1𝑡1
 to ℎ𝑘2

𝑥̃𝑖𝑘2𝑡2
 

so that (ℎ𝑘2
𝑥̃𝑖𝑘2𝑡2

+ 𝜓2)/ℎ𝑘2
= ⌈𝑥̃𝑖𝑘2𝑡2

⌉, i.e., it becomes an integer. Also note that, since 
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𝜓1 > 𝜓2, we will have 𝑥̃𝑖𝑘1𝑡1
− 𝜓2/ℎ𝑘1

≥ ⌊𝑥̃𝑖𝑘1𝑡1
⌋. These then imply that either 𝑥̂𝑖𝑘1𝑡1

=

⌊𝑥̃𝑖𝑘1𝑡1
⌋ or 𝑥̂𝑖𝑘2𝑡2

= ⌈𝑥̃𝑖𝑘2𝑡2
⌉ at the end of Step 3. Noting that 𝑙𝑖 ≤ 𝑥̃𝑖𝑘𝑡 ≤ 𝑢𝑖 when 𝑥̃𝑖𝑘𝑡 >

0, we have 𝑙𝑖 ≤ ⌊𝑥̃𝑖𝑘𝑡⌋ ≤ ⌈𝑥̃𝑖𝑘𝑡⌉ ≤ 𝑢𝑖, which means that 𝑙𝑖 ≤ 𝑥̂𝑖𝑘𝑡 ≤ 𝑢𝑖. Also, one can note 

that the total number of hours allocated to project 𝑖 by 𝑿̃ does not change when Step 3 is 

executed. Rounding for project 𝑖 will be completed once Step 2.i is executed for project 𝑖 

and this is when the total number of hours allocated to project 𝑖 changes as noted in the 

following remark. 

Remark 2. Let 𝑿̂ be returned by Procedure 1 for a given 𝑿̃. Then, 𝑿̂ is integer 

such that ∑ ∑ ℎ𝑘𝑥̃𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 ≤ ∑ ∑ ℎ𝑘𝑥̂𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 < ∑ ∑ ℎ𝑘𝑥̃𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 + max
𝑘∈𝐾

{ℎ𝑘} ∀𝑖 ∈ 𝐼. 

Proof. First, note that 𝑈𝑖 defined in Step 1.ii will never be ∅ because 𝐻𝑖 > 0 ∀𝑖 ∈

𝐼; therefore, Step 2.i is executed exactly once in Procedure 1 for project 𝑖. Furthermore, 

Step 3 is executed until |𝑈𝑖| = 1; and total number of hours allocated to project 𝑖 does 

not change with an execution of Step 3. That is, total number of hours allocated to project 

𝑖 changes only when Step 1.ii is applied on a single 𝑥̃𝑖𝑘𝑡 value and no modification takes 

place for project 𝑖 after Step 1.ii is executed. Furthermore, since ℎ𝑘(⌈𝑥̃𝑖𝑘𝑡⌉ − 𝑥̃𝑖𝑘𝑡) <

max
𝑘∈𝐾

{ℎ𝑘} for any  𝑥̃𝑖𝑘𝑡, it then follows that ∑ ∑ ℎ𝑘𝑥̂𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 < ∑ ∑ ℎ𝑘𝑥̃𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 +

max
𝑘∈𝐾

{ℎ𝑘} ∀𝑖 ∈ 𝐼. Finally, since ℎ𝑘𝑥̃𝑖𝑘𝑡 ≤ ℎ𝑘⌈𝑥̃𝑖𝑘𝑡⌉, we have ∑ ∑ ℎ𝑘𝑥̃𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 ≤

∑ ∑ ℎ𝑘𝑥̂𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 . ∎ 

Remark 2 suggests that the total number of hours allocated to a project under a 

relaxed efficient solution increases when Procedure 1 is applied, which means that 𝑇𝐶(𝑿̃) 

is also likely to increase. However, this increase is expected to be relatively less, 

especially when 𝐻𝑖 ≫ ℎ𝑘. Also, 𝑀𝑊(𝑿̃) will change because of the rounding operations. 
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Therefore, once the relaxed efficient solution 𝑿̃ is converted to an integer solution 𝑿̂, we 

try to improve this rounded solution 𝑿̂ as detailed next. 

(iii)  Improving the rounded solutions: Suppose that 𝑿̂ is given such that 𝑥̂𝑖𝑘𝑡 is 

integer ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇. One can then calculate 𝑋̂𝑚𝑎𝑥 for 𝑿̂. Here, we present a 

simple procedure, Procedure 2, which aims at decreasing 𝑋̂𝑚𝑎𝑥. To reduce 𝑋̂𝑚𝑎𝑥, we 

focus on the periods where the total number of workers utilized is equal to 𝑋̂𝑚𝑎𝑥. As it is 

possible that there are multiple periods with 𝑋̂𝑚𝑎𝑥 workers, one should reduce the 

number of workers utilized in each of such periods. To reduce the number of workers in 

one such period, we attempt to change the mode of the workers allocated to a project in 

that period in the cost-minimum way possible. Below, we give the description of 

Procedure 2 and then discuss its details.  

In Procedure 2, Step 0 first determines the periods with the maximum number of 

workers and randomly orders them. Then, one of these periods (period 𝑡) is selected and 

the projects with some workers allocated in the selected period (projects in 𝐼𝑡) are 

determined in Step 1.ii. After that, one of these projects (𝑖) is (projects in 𝐼𝑡) are 

determined in Step 1.ii. After that, one of these projects (𝑖) is randomly selected and we 

determine the possible feasible mode changes that reduce the number of workers assigned 

to project 𝑖 in period 𝑡 (i.e., set 𝐾𝑡𝑖) in Step 2.ii. Specifically, a mode change from mode 

𝑘′ to 𝑘 is feasible and reduces the number of workers assigned to project 𝑖 in period 𝑖 

(i.e., 𝑥̅𝑖𝑘′𝑡) as long as 𝑙𝑖 ≤ ⌈𝑥̅𝑖𝑘′𝑡ℎ𝑘′/ℎ𝑘⌉ < 𝑥̅𝑖𝑘′𝑡 (note that, we already have 𝑥̅𝑖𝑘′𝑡 ≤ 𝑢𝑖 

because 𝑿̂ is feasible; therefore, ⌈𝑥̅𝑖𝑘′𝑡ℎ𝑘′/ℎ𝑘⌉ < 𝑢𝑖). If there is not any feasible mode 

change that can reduce  𝑥̅𝑖𝑘′𝑡, then we try another project (see Step 3.i) if there is one to 
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Procedure 2: Reducing 𝑋̂𝑚𝑎𝑥 of a rounded solution 𝑿̂  

Step 0. Given 𝑿̂, set 𝑿̅ = 𝑿̂ and determine 𝑇′ = {𝑡: ∑ ∑ 𝑥̅𝑖𝑘𝑡𝑘∈𝐾𝑖∈𝐼 = 𝑋̂𝑚𝑎𝑥} such 

that its elements are randomly ordered. Go to Step 1. 
 

Step 1. i. If 𝑇′ = ∅, go to Step 4. 

ii. Else, let 𝑡 = 𝑇′(1), define 𝐼𝑡 = {𝑖: ∑ 𝑥̅𝑖𝑘𝑡𝑘∈𝐾 > 0} such that its 

elements are randomly ordered, and then go to Step 2. 

 

Step 2. i. If 𝐼𝑡 = ∅, go to Step 4. 

ii. Else, let 𝑖 = 𝐼𝑡(1) and 𝑘′ = {𝑘: 𝑥̅𝑖𝑘′𝑡 > 0}, define 𝐾𝑡𝑖 = {𝑘: 𝑙𝑖 ≤

⌈
𝑥̅

𝑖𝑘′𝑡
ℎ

𝑘′

ℎ𝑘
⌉ < 𝑥̅𝑖𝑘′𝑡}, and go to Step 3. 

 

Step 3. i. If 𝐾𝑡𝑖 = ∅, set 𝐼𝑡 ≔ 𝐼𝑡\{𝐼𝑡(1)} and go to Step 2. 

ii. Else, let 𝑘′′ = arg min
𝑘∈𝐾𝑖

{⌈
𝑥̅

𝑖𝑘′𝑡
ℎ

𝑘′

ℎ𝑘
⌉ 𝑐𝑘}, set 𝑥̅𝑖𝑘′𝑡 ≔ 0, 𝑥̅𝑖𝑘′′𝑡: =

⌈
𝑥̅

𝑖𝑘′𝑡
ℎ

𝑘′

ℎ𝑘′′
⌉, and 𝑇′ ≔ 𝑇′\{𝑇′(1)}, and go to Step 1. 

 

Step 4. Stop and return 𝑿̅.  

 

try; and if there is not any other project that can be used to reduce the total number of 

workers in period 𝑡, it means that 𝑋̂𝑚𝑎𝑥 could not be reduced and we terminate our 

attempt in Step 2.i. On the other hand, if there is at least one such feasible mode change, 

then we select the one which has the minimum cost implication as noted in Step 3.ii; and 

update the worker assignments for project 𝑖 in period 𝑡. And in this case, we are able to 

reduce the total number of workers in period 𝑡, therefore, we repeat the process for 

another period, if any remains, that has the maximum number of workers (i.e., we go 

back to Step 1 after Step 3.ii). It is worthwhile to note that, given 𝑿̂, the solution returned 

by Procedure 2, i.e., 𝑿̅ guarantees that 𝑋̅𝑚𝑎𝑥 ≤ 𝑋̂𝑚𝑎𝑥; therefore, we have 𝑀𝑊(𝑿̅) ≤

𝑀𝑊(𝑿̂). On the other hand, it is both possible that 𝑇𝐶(𝑿̅) < 𝑇𝐶(𝑿̂) and 𝑇𝐶(𝑿̅) ≥

𝑇𝐶(𝑿̂). That is, it is possible that one solution Pareto-dominates the other. Therefore, in 

phase (iv), we assure that we compare  𝑿̅ and 𝑿̂ for Pareto dominance. 

(iv)  Determining Pareto efficient improved rounded solutions: At the end of Step 

3 of Algorithm 2, we have a set of integer solutions generated from relaxed efficient 
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solutions 𝑿̃ ∈ 𝑃𝐸̃. Particularly, for each 𝑿̃ ∈ 𝑃𝐸̃, we generate 𝑿̂ and 𝑿̅ 𝑁 times; 

therefore, the size of the set of integer solutions generated at the end of phase (iii) is at 

most 2𝑁, i.e. 𝑃̂ ≤ 2𝑁. In this phase, we determine the set of Pareto efficient solutions 

among these integer solutions generated. To do so, Procedure 3, which is detailed below, 

is used. 

We note that procedures similar to Procedure 3 exist in literature (see, e.g., 

Schaefer and Konur (2015), Konur and Schaefer (2016), Konur et al. (2017)). Next 

section presents the results of our numerical studies. 

 

Procedure 3: Determining Pareto efficient solutions within a given set of solutions 𝑃̂  

Step 0. Given 𝑃̂, update 𝑃̂ such that it has unique solutions and then sort the 

elements in 𝑃̂ such that 𝑇𝐶 (𝑃̂(ℓ)) ≤ 𝑇𝐶 (𝑃̂(ℓ + 1)) and 𝑀𝑊 (𝑃̂(ℓ)) ≤

𝑀𝑊 (𝑃̂(ℓ + 1)) when 𝑇𝐶 (𝑃̂(ℓ)) = 𝑇𝐶 (𝑃̂(ℓ + 1)) for 1 ≤ ℓ < |𝑃̂|. Go to 

Step 1. 

 

Step 1. Set 𝑃𝐹(𝑃̂) = [𝑇𝐶 (𝑃̂(1)) , 𝑀𝑊 (𝑃̂(1))], 𝑃𝐸(𝑃̂) = 𝑃̂(1), and go to Step 2.  

Step 2. For ℓ = 2: |𝑃̂| 

If 𝑀𝑊 (𝑃̂(ℓ)) < min
1≤𝐿≤ℓ−1

{𝑀𝑊 (𝑃̂(𝐿))}, 𝑃𝐸(𝑃̂): = 𝑃𝐸(𝑃̂) ∪ {𝑃̂(ℓ)} 

and 𝑃𝐹(𝑃̂): = 𝑃𝐹(𝑃̂) ∪ {[𝑇𝐶 (𝑃̂(ℓ)) , 𝑀𝑊 (𝑃̂(ℓ))]}. 

End 

Go to Step 3. 

 

Step 3. Stop and return 𝑃𝐸(𝑃̂) and 𝑃𝐹(𝑃̂).  

 
 

4. NUMERICAL STUDIES 

 

In Section 3, we presented two solution methods for CSP: Algorithm 1 is the 

implementation of the classical 𝜀-constraint method and it generates the exact Pareto 

front 𝑃𝐹 and Algorithm 2 is a heuristic method based on rounding and improving 
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solutions from Algorithm 1 when partial linear relaxations of the subproblems are solved 

and it generates an approximated Pareto front 𝑃𝐹̂. This section quantitatively and 

qualitatively compares Algorithms 1 and 2. Prior to the comparison results, we first 

discuss the problem instance generation process and the computational settings for 

solving the problem instances generated.  

4.1. PROBLEM INSTANCES AND COMPUTATIONAL SETTING 

To the best of our knowledge, there is no data set for the problem under 

investigation in this study; therefore, we generate new problem instances. In the 

generation process, we take similar approaches with Coughlan et al. (2015; 2010) as 

detailed below.  

We consider 10 problem sets, where each problem set is defined by |𝐼| such that 

|𝐼| ∈ {10, 12, 14, 16, 18, 20, 25, 30, 35, 40}. For each problem set, we randomly generate 

10 feasible problem instances. Each problem instance has 𝑙𝑖 = 2 (minimum number of 

workers that should simultaneously work on a project in a week) and 𝑢𝑖 = 10 (maximum 

number of workers that can simultaneously work on a project in a week) ∀𝑖 ∈ 𝐼. We 

consider two cases for each instance: 2-mode and 3-mode cases. In 2-mode case, |𝐾| = 2 

such that [ℎ1, ℎ2] = [40,50] and [𝑐1, 𝑐2] = [70,75]. In 3-mode case, |𝐾| = 3 such that 

[ℎ1, ℎ2, ℎ3] = [40,50,60] and [𝑐1, 𝑐2, 𝑐3] = [70,75,80]. These numbers are parallel with 

the practical settings we observed for the semiconductor manufacturing construction 

problem. Indeed, one can also note that ℎ𝑘 > ℎ𝑘+1 and 𝑐𝑘 > 𝑐𝑘+1, i.e., the hourly rate 

increases as the number of hours worked in a week increases, which is true for many 

practical settings considering overtime hours.  
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A problem instance is defined by its |𝑇| (length of the planning horizon), 𝐴 (set of 

precedence relations), 𝑒𝑖 and 𝑑𝑖 values (earliest start time and due dates for projects), and 

𝐻𝑖 values (construction hours required for projects). Specifically, we first generate 𝐻𝑖 

values randomly such that 𝐻𝑖~50 × 𝑈[20,40], where 𝑈[𝜆𝑙, 𝜆𝑢] denotes a discrete 

uniform distribution between 𝜆𝑙 and 𝜆𝑢. That is, 𝐻𝑖 values are randomly generated as 

multiples of 50 between 1,000 and 2,000 hours. Then, we generate 𝐴 and 𝑇 as follows. 

First, we define so-called project durations such that project 𝑖’s duration, 𝐷𝑖, is defined as 

⟦𝐻𝑖/(50 × 6)⟧, where ⟦𝜌⟧ rounds 𝜌 to the nearest integer. Here, 6 is the average number 

of workers (i.e., average of the minimum, 2, and maximum, 10, number of workers on a 

project) and 50 is the average number of hours by a worker in 3-mode case. Therefore, 𝐷𝑖 

defines how many weeks it would take to complete project 𝑖 when 6 workers assigned 

each week such that each worker works 50 hours. After that, chains of projects with 

varying lengths is generated by randomly generating chain lengths, denoted by Β, such 

that the sum of the chain lengths is equal to |𝐼|. Table 2 gives the chain lengths 

considered for each problem set. A chain of length Β = 𝛽 has 𝛽 projects such that a 

project precedes the next and, without loss of generality, we have project 𝑖 preceding 

project 𝑖 + 1, which is denoted by 𝑖 → 𝑖 + 1. For instance, for a problem instance with 

|𝐼| = 10, chain lengths of 3, 4, and 3 define the following chains: 1 → 2 → 3, 4 → 5 →

6 → 7, and 8 → 9 → 10.  

After the chains are created, we calculate the chain duration as the sum of the 

durations of the activities in the chain; and then, we set 𝑇 equal to the average of the 

chain durations. The chains created readily define a set of precedence relations. We 

randomly generate additional precedence relations 𝑖 → 𝑗 such that 𝑖 < 𝑗, 𝑖 is not the last 
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activity in a chain, and 𝑗 is not the first activity in the other chain. This guarantees that 

there does not exist any circles in the precedence network. This process is repeated at 

most 100 times to generate precedence relations in addition to the ones already created 

within the chains so that the total number of precedence relations is between |𝐼| and 2|𝐼|. 

Table 2 further gives the average |𝑇| and |𝐴| values over the 10 problem instances 

generated within each problem set. 

Following the creation of the precedence network, we determine 𝑒𝑖 and 𝑑𝑖 values 

for the projects as follows. We first add a dummy project, project 0, with 0 duration that 

precedes all of the first projects in the initial chains created. The arcs representing the 

 

Table 2. Chain lengths and averages of T and |A| for problem sets with varying |I|. 

|𝐼| 10 12 14 16 18 20 25 30 35 40 

Β~ 𝑈[2,4] 𝑈[2,4] 𝑈[3,5] 𝑈[3,5] 𝑈[4,6] 𝑈[4,6] 𝑈[5,7] 𝑈[6,8] 𝑈[7,9] 𝑈[8,10] 

Avg. |𝑇| 14.2 14.7 21.8 20.4 22.6 23.8 31.6 37.8 44.4 45.9 

Avg. |𝐴| 14.1 16.9 19.3 22.9 23.7 24.9 30.7 36.9 38.4 43.9 

 

 

precedence relations have processor project’s duration as its length; that is, arc 𝑖 → 𝑗 has 

a length of 𝐷𝑖. To assign 𝑒𝑖, we find the shortest path from project 0 to project 𝑖: if this 

length is less than 𝑇, we set it as 𝑒𝑖; otherwise, we subtract 𝐷𝑖 from the shortest path until 

𝑒𝑖 is less than |𝑇|. The first projects in the initial chains created will have 𝑒𝑖 = 0; and 

therefore, we set their 𝑒𝑖 = 1. To assign 𝑑𝑖, we find the longest path from project 0 to 

project 𝑖 and add 𝐷𝑖 to the longest path: if the longest path plus 𝐷𝑖 is less than |𝑇|, we set 

it as 𝑑𝑖; otherwise, we set 𝑑𝑖 = |𝑇|. Finally, we check if 𝑒𝑖 ≥ 𝑑𝑖; if not, we either increase 

𝑑𝑖 or decrease 𝑒𝑖 by 1 until 𝑒𝑖 ≥ 𝑑𝑖. 
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Once 𝑇, 𝐴, and 𝐻𝑖, 𝑒𝑖, and 𝑑𝑖 values are generated as discussed above, we check 

the feasibility of the corresponding instance by solving the following schedule feasibility 

problem, SFP, such that there is only one mode 𝐾 = {2} with ℎ2 = 50 (a common mode 

for 2-mode and 3-mode cases): 

SFP:    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑥𝑖𝑘𝑡𝑡∈𝑇𝑖∈𝐼     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (1) − (6), (9) − (10), (16) − (17)   

 ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾 ≤ 𝑢𝑖 ∑ 𝑠𝑖𝑟
𝑡
𝑟=1   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇  (19) 

 ∑ 𝑥𝑖𝑘𝑡𝑘∈𝐾 ≤ 𝑢𝑖 ∑ 𝑓𝑖𝑟
|𝑇|
𝑟=𝑡   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇  (20) 

 𝑥𝑖𝑘𝑡 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇. (21) 

In SFP, the objective is minimization of the total number of workers assigned, 

which is an arbitrary objective function. Recall that constraints (1)-(6) are the scheduling 

and precedence restrictions, constraints (9)-(10) assure at least one worker in start and 

finish weeks of a project, and constraints (16)-(17) are binary definitions of project-start 

and -finish times variables, i.e., 𝑺 and 𝑭. As there is only one mode, 𝑧𝑖𝑘𝑡variables are not 

used in SFP. Therefore, instead of constraints (7), (8), and (12), we use constraints (19) 

and (20), which assure that at most 𝑢𝑖 workers are used on a project between its start and 

finish periods. On the other hand, SFP ignores 𝑥𝑖𝑘𝑡 ≥ 𝑙𝑖 constraints (which would require 

𝑧𝑖𝑘𝑡 type of variables). Finally, as noted in (21), the worker assignments variables are 

continuous in SFP. 

Remark 3. Given a problem instance, if SFP is feasible, then CSP is feasible for both 2-

mode and 3-mode cases. 
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Proof. Let 𝑥𝑖2𝑡
∗ , 𝑠𝑖𝑡

∗ , and 𝑓𝑖𝑡
∗ be the optimum solution of SFP for a given problem instance. 

Now, consider the following solution. Let 𝑠̂𝑖𝑡 = 𝑠𝑖𝑡
∗  and 𝑓𝑖𝑡 = 𝑓𝑖𝑡

∗ ∀𝑖 ∈ 𝐼 ∀𝑡 ∈ 𝑇; 𝑥̂𝑖1𝑡 = 0 

and 𝑥̂𝑖2𝑡 = max{⌈𝑥𝑖2𝑡
∗ ⌉, 𝑙𝑖} when 𝑥𝑖2𝑡

∗ > 0 and 𝑥̂𝑖2𝑡 = 0 when 𝑥𝑖2𝑡
∗ = 0 ∀𝑖 ∈ 𝐼 ∀𝑡 ∈ 𝑇; and 

𝑧̂𝑖1𝑡 = 0 and 𝑧̂𝑖2𝑡 = min{1, 𝑥̂𝑖2𝑡} ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇. Since 𝑠𝑖𝑡
∗  and 𝑓𝑖𝑡

∗ values are optimal for 

SFP, it then follows that 𝑠̂𝑖𝑡 and 𝑓𝑖𝑡 satisfy constraints (2)-(6). Furthermore, since 𝑥𝑖2𝑡
∗ ≤

𝑢𝑖, we have max{⌈𝑥𝑖2𝑡
∗ ⌉, 𝑙𝑖} ≤ 𝑢𝑖 given that 𝑙𝑖 ≤ 𝑢𝑖; and therefore, either 𝑙𝑖 ≤ 𝑥̂𝑖2𝑡 ≤ 𝑢𝑖 or 

𝑥̂𝑖2𝑡 = 0. Along with definition of  𝑧̂𝑖𝑘𝑡 and 𝑥𝑖2𝑡
∗ , 𝑠𝑖𝑡

∗ , and 𝑓𝑖𝑡
∗ satisfying (19) and (20), it 

follows that  𝑧̂𝑖𝑘𝑡 and 𝑥̂𝑖𝑘𝑡 values satisfy constraints (7)-(12). Noting that 

∑ ∑ ℎ𝑘𝑥̂𝑖𝑘𝑡𝑡∈𝑇𝑘∈𝐾 ≥ ∑ ℎ2𝑥𝑖2𝑡
∗

𝑡∈𝑇 ≥ 𝐻𝑖 by definition, 𝑥̂𝑖𝑘𝑡 values satisfy constraints (1). 

Finally, by definition, 𝑥̂𝑖𝑘𝑡 values are integer and 𝑧̂𝑖𝑘𝑡 values are binary. It then follows 

that 〈𝑿̂, 𝒁̂, 𝑺̂, 𝑭̂〉 is feasible for CSP under 2-mode case. Similarly, one can construct a 

solution that is feasible for CSP under 3-mode case (in addition to the above 

construction, one just needs to define 𝑥̂𝑖3𝑡 = 0 and 𝑧̂𝑖3𝑡 = 0 ∀𝑖 ∈ 𝐼 ∀𝑡 ∈ 𝑇). ∎ 

For each problem set, we generate instances and solve SFP until 10 problem 

instances, which are feasible for both 2- and 3-mode cases, are generated. The data for 

the problem instances are available at http://dx.doi.org/10.17632/ngh6cvyfr7.1. In all of 

the feasible problem instances generated, we have |𝐴| ≥ |𝐼|, min
𝑖∈𝐼

{𝑒𝑖} = 1, and 

max
𝑖∈𝐼

{𝑑𝑖} = 𝑇 

Feasibility of a problem instance implies that |𝑃𝐹| ≥ 1 and |𝑃𝐹̂| ≥ 1. We solve 

each problem instance with 2-mode and 3-mode cases using both Algorithms 1 and 2. 

The 2-mode and 3-mode solutions for each problem instance are posted at 

http://dx.doi.org/10.17632/ngh6cvyfr7.1. In Algorithm 2, we set 𝑁 = |𝐼|. Both 
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Algorithms 1 and 2 are coded in Matlab 2019a. We use Gurobi 9.0.1 for solving 

subproblems SP and RSP. Time limit is set to 1,800 seconds for solving any subproblem. 

All problem instances are solved on Inter Core i5-7600 at 3.5 GHz with 4 cores and 16 

GB of RAM under 64-bit Windows 10 operating system. 

4.2. COMPARISON OF THE SOLUTION METHODS  

In this section, we compare Algorithms 1 and 2 for CSP under 2- and 3-mode 

cases. Our comparison is two-fold: (i) quantitative comparison and (ii) qualitative 

comparison. The details follow below. 

(i)  Quantitative comparison: Quantitative comparison focuses on computational time and 

the number of solutions returned by each algorithm. The computational times of 

Algorithms 1 and 2 are denoted by 𝑐𝑝𝑢1 and 𝑐𝑝𝑢2, respectively, and given in terms of 

seconds. Table 3 gives the averages over 10 problem instances solved within each 

problem set (i.e., |𝐼|) under both 2- and 3-mode cases for the number of solutions 

returned (|𝑃𝐹| and |𝑃𝐹̂|), percentage of problem instances when one algorithm returned 

more solutions than the other (% |𝑃𝐹| > |𝑃𝐹̂| and % |𝑃𝐹| < |𝑃𝐹̂|) and computational 

times (𝑐𝑝𝑢1 and 𝑐𝑝𝑢2) under each algorithm used for solving CSP. The last row is the 

average of the averages, i.e., average of these statistics over the 100 problem instances. 

We have the following observations. 

Based on Table 3, we can conclude that Algorithm 2 is significantly more 

efficient than Algorithm 1 for solving CSP in terms of computational time for all 

problem sets. The overall average times for Algorithms 1 and 2 are around 270 and 12 

seconds for 2-mode case, respectively (Algorithm 2 is more than 20 times faster than 



 

 

76 

Algorithm 1); and, 968 and 56 seconds for 3-mode case, respectively (Algorithm 2 is 

almost 20 times faster than Algorithm 1). Indeed, in all of the problem instances solved  

 

Table 3. Quantitative comparison of Algorithms 1 and 2 for CSP. 

|𝐼| 
2-mode Average Results 3-mode Average Results 

|𝑃𝐹| 𝑐𝑝𝑢1 |𝑃𝐹̂| 𝑐𝑝𝑢2 
% |𝑃𝐹|

> |𝑃𝐹̂| 
% |𝑃𝐹|

< |𝑃𝐹̂| 
|𝑃𝐹| 𝑐𝑝𝑢1 |𝑃𝐹̂| 𝑐𝑝𝑢2 

% |𝑃𝐹|

> |𝑃𝐹̂| 
% |𝑃𝐹|

< |𝑃𝐹̂| 

10 7.3 9.2 6.9 0.8 40% 40% 10.9 376.9 9.9 2.1 60% 10% 

12 6.8 8.3 6.8 0.9 20% 20% 12.0 28.4 11.9 3.0 20% 20% 

14 7.2 206.1 6.8 2.2 40% 20% 10.5 327.1 9.5 7.4 70% 0% 

16 6.9 14.7 7.2 2.3 20% 50% 10.8 49.3 10.4 8.7 30% 20% 

18 6.9 20.6 6.9 3.4 10% 20% 10.5 418.6 10.4 14.9 30% 30% 

20 7.3 203.8 7.4 3.3 20% 30% 11.2 790.4 11.7 11.3 10% 60% 

25 7.6 414.3 7.5 6.7 30% 30% 11.7 1271.4 11.5 29.9 20% 10% 

30 7.6 546.2 7.6 26.4 30% 30% 12.4 1816.7 11.8 134.1 50% 10% 

35 7.5 586.8 7.5 46.2 10% 10% 11.6 2407.5 11.9 219.6 20% 30% 

40 8.0 692.1 8.3 29.7 0% 30% 12.4 2193.6 12.8 126.1 20% 40% 

Avg. 7.3 270.2 7.3 12.2 22% 28% 11.4 968.0 11.2 55.7 33% 23% 

 
 

under both 2- and 3-mode cases, Algorithm 2 was faster. Furthermore, in terms of the 

number of solutions returned, Algorithms 1 and 2 are very close for all problem sets and 

overall average: overall averages are both 7.3 under 2-mode case and 11.4 vs. 11.2 under 

3-mode cases, with Algorithm 1 returning slightly more solutions under both cases on 

overall average. Specifically, one can note that, both algorithms returned the same 

number of solutions for 50% and 44% of all problem instances solved under 2- and 3-

mode cases, respectively; and, the percentages of the number of instances when 

Algorithm 1 returned more solutions (22% and 33% under 2- and 3-mode cases, 

respectively) are relatively close to the percentages of the number of instances when 

Algorithm 2 returned more solutions (%25 and 23% under 2- and 3-mode cases, 

respectively). Therefore, we conclude that, Algorithm 2 returns similar number of 

solutions with significantly less computation time. In particular, Algorithm 1 takes 
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around 37 seconds and 85 seconds per solution under 2- and 3-mode cases, respectively, 

whereas, Algorithm 2 takes around 1.7 seconds and 5 seconds per solution under 2- and 

3-mode cases, respectively. 

Figures 1 and 2 demonstrate 𝑃𝐹 and 𝑃𝐹̂ for two different problem instances under 

both 2- and 3-mode cases. In these figures, two extreme points (denoted by 𝐸𝑃1 and 𝐸𝑃2 

for 𝑃𝐹 and 𝐸𝑃1̂ and 𝐸𝑃2̂  for 𝑃𝐹̂) and the density points (denoted by 𝐷𝑃 and 𝐷𝑃̂ for 𝑃𝐹 

and 𝑃𝐹̂, respectively)  of 𝑃𝐹 and 𝑃𝐹̂ are illustrated, which are used in our qualitative 

comparison and detailed below. We also posted these figures for all of the problem 

instances at http://dx.doi.org/10.17632/ngh6cvyfr7.1  for the interested reader. It can be 

seen from the figures that 𝑃𝐹 and 𝑃𝐹 are parallel and close to each other. In what 

follows, we systematically compare 𝑃𝐹 and 𝑃𝐹̂; and, given that 𝑃𝐹 is the exact Pareto 

front, our aim is to assess the quality of 𝑃𝐹̂.  

 

 
Figure 1. Illustration of the average extreme and density points for Instance 10 of |I| = 20.  

 

 

Figure 2. Illustration of the average extreme and density points for Instance 10 of |I| = 40.   
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(ii)  Qualitative comparison: Qualitative comparison compares 𝑃𝐹 and 𝑃𝐹̂ using several 

qualitative measures. In what follows, we discuss how 𝑃𝐹 and 𝑃𝐹̂ compare based on 

each measure. 

The first set of measures we use include the extreme and the density points of the 

Pareto fronts. Each Pareto front has two extreme points: cost-minimum, denoted by 𝐸𝑃1 

and 𝐸𝑃1̂  for 𝑃𝐹 and 𝑃𝐹̂, respectively, and maximum workers-minimum, denoted by 𝐸𝑃2 

and 𝐸𝑃2̂  for 𝑃𝐹 and 𝑃𝐹̂, respectively. One can note that 𝐸𝑃1 =

[min
𝑿∈𝑃𝐸

{𝑇𝐶(𝑿)}, max
𝑿∈𝑃𝐸

{𝑀𝑊(𝑿)}] and 𝐸𝑃2 = [max
𝑿∈𝑃𝐸

{𝑇𝐶(𝑿)}, min
𝑿∈𝑃𝐸

{𝑀𝑊(𝑿)}]; and 𝐸𝑃1̂ =

[min
𝑿∈𝑃𝐸̂

{𝑇𝐶(𝑿)}, max
𝑿∈𝑃𝐸̂

{𝑀𝑊(𝑿)}] and 𝐸𝑃2̂ = [max
𝑿∈𝑃𝐸̂

{𝑇𝐶(𝑿)}, min
𝑿∈𝑃𝐸̂

{𝑀𝑊(𝑿)}]. A density 

point, denoted by 𝐷𝑃 and 𝐷𝑃̂ for 𝑃𝐹 and 𝑃𝐹̂, respectively, defines the averages of 

𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) over the solutions within a set of solutions. That is, 𝐷𝑃 =

[
1

|𝑃𝐹|
∑ 𝑇𝐶(𝑿)𝑿∈𝑃𝐸 ,

1

|𝑃𝐹|
∑ 𝑀𝑊(𝑿)𝑿∈𝑃𝐸  ] and 𝐷𝑃̂ =

[
1

|𝑃𝐹̂|
∑ 𝑇𝐶(𝑿)𝑿∈𝑃𝐸̂ ,

1

|𝑃𝐹̂|
∑ 𝑀𝑊(𝑿)𝑿∈𝑃𝐸̂  ]. 

Tables 4 and 5 summarize the averages of the extreme and density points (𝐸𝑃1, 

𝐸𝑃2, 𝐷𝑃 and 𝐸𝑃1̂, 𝐸𝑃2̂ , 𝐷𝑃̂) over the 10 problem instances solved within each problem 

set under 2- and 3-mode cases, respectively, and document the overall overages of these 

density points. Figures 3 illustrates 𝐸𝑃1 vs. 𝐸𝑃1̂  (see Figures 3.a and 3.b), 𝐷𝑃 vs. 𝐷𝑃̂ 

(see Figures 3.c and 3.d), and 𝐸𝑃2 vs. 𝐸𝑃2̂  (see Figures 3.e and 3.f) for 2- and 3-mode 

cases. 

 

 



 

 

79 

We have the following observations from Tables 4 and 5, and Figure 3. 

• Based on cost-minimum extreme points (i.e., 𝐸𝑃1 vs. 𝐸𝑃1̂ ), we can see that the 

cost-minimum solutions returned by Algorithm 2 are close to the cost-minimum 

solutions returned by Algorithm 1 in terms of not only the total cost but also the 

maximum number of workers utilized. Particularly, overall average of 𝑇𝐶(𝑿) and 

𝑀𝑊(𝑿) of the cost-minimum solutions returned by Algorithms 1 and 2 are 

2342640 vs. 2349958 and 31.6 vs. 32.3 for 2-mode cases; and, 2342560 vs. 

2350058 and 31.6 vs. 32.2 for 3-mode cases. The average increases in 𝑇𝐶(𝑿) and 

𝑀𝑊(𝑿) values of 𝐸𝑃1̂ compared to 𝐸𝑃1 are around 0.3% (0.30% on average for 

2-mode cases, 0.32% on average for 3-mode cases, the maximum was %0.64 

under a 3-mode case)  and %2 (2.03% on average for 2-mode cases and 1.97% on 

average for 3-mode cases). We note that, while 𝑇𝐶(𝑿) of 𝐸𝑃1 is guaranteed to be 

less than or equal to 𝑇𝐶(𝑿) of 𝐸𝑃1̂, that is not necessarily the case for 𝑀𝑊(𝑿) 

values. Indeed, even though, 𝑀𝑊(𝑿) of 𝐸𝑃1 tends to be and on average is less 

than 𝑀𝑊(𝑿) of 𝐸𝑃1̂, in 28% and 30% of problem instances under 2-mode and 3-

mode cases, respectively, 𝑀𝑊(𝑿) of 𝐸𝑃1̂  was slightly less than or equal to the 

𝑀𝑊(𝑿) of 𝐸𝑃1. 

Table 4. 2-mode results. 
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Table 5. 3-mode results. 

|𝐼| 
Average Points for Algorithm 1 Average Points for Algorithm 2 

𝐸𝑃1 𝐷𝑃 𝐸𝑃2 𝐸𝑃1̂ 𝐷𝑃̂ 𝐸𝑃2̂  

10 [1096895, 29.6] [1146072, 24.2] [1227255, 19.1] [1100595, 29.5] [1151967, 24.6] [1239705, 20.0] 

12 [1255595, 32.9] [1307928, 27.4] [1390190, 21.9] [1259720, 33.5] [1318411, 27.9] [1418970, 22.4] 

14 [1522580, 27.9] [1581956, 22.7] [1686185, 17.9] [1526515, 27.5] [1590534, 23.1] [1713910, 18.7] 

16 [1728490, 31.1] [1807581, 25.8] [1927290, 20.8] [1733635, 31.5] [1814398, 26.5] [1954320, 21.8] 

18 [1877230, 30.5] [1956228, 25.6] [2077300, 20.8] [1882540, 31.1] [1964034, 26.4] [2111555, 21.6] 

20 [2114945, 32.3] [2213119, 27.2] [2359200, 22.1] [2122375, 33.4] [2230908, 28.0] [2417400, 22.6] 

25 [2716610, 32.4] [2834489, 27.1] [3023910, 21.7] [2724875, 33.0] [2852952, 27.8] [3077715, 22.5] 

30 [3149305, 32.7] [3278119, 27.0] [3488995, 21.3] [3158705, 33.4] [3288326, 28.0] [3528570, 22.5] 

35 [3757645, 32.2] [3915766, 26.9] [4163565, 21.6] [3769665, 33.4] [3932128, 27.9] [4231660, 22.4] 

40 [4206305, 34.4] [4400226, 28.7] [4698790, 23.0] [4221950, 35.7] [4424250, 29.8] [4777905, 23.9] 

Avg. [2342560, 31.6] [2444148, 26.2] [2604268, 21.0] [2350058, 32.2] [2456791, 27.0] [2647171, 21.8] 

 

 

• Based on density points (i.e., 𝐷𝑃 vs. 𝐷𝑃̂), we can see that the averages of the 

solutions within 𝑃𝐹 and 𝑃𝐹̂ are close in terms of both 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) values. 

Particularly, average of 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) values over all of the solutions 

returned by Algorithms 1 and 2 are 2389167 vs. 2398520 and 28.3 vs. 29.0 for 2-

mode cases; and, 2444148 vs. 2456791 and 26.2 vs. 27.0 for 3-mode cases. The 

average increases in 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) values of 𝐷𝑃̂ compared to 𝐷𝑃 are less 

than 0.6% (0.38% on average for 2-mode cases, 0.54% on average for 3-mode 

cases, and the maximum was  1.8% for a 3-mode case) and less than 3% (2.31% 

on average for 2-mode cases and 2.88% on average for 3-mode cases).   

• Based on maximum workers-minimum extreme points (i.e., 𝐸𝑃2 vs. 𝐸𝑃2̂ ), we can 

see that the solutions with minimum 𝑋𝑚𝑎𝑥 values returned by Algorithms 1 and 2 

are close in terms of both total cost and 𝑋𝑚𝑎𝑥 values. Particularly, overall average 

of 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) values of 𝐸𝑃2 vs. 𝐸𝑃2̂  points are 2457293 vs. 2462184 

and 25.2 vs. 25.8 for 2-mode cases; and, 2604268 vs. 2647171 and 21.0 vs. 21.8 



 

 

81 

 
Figure 3. Illustration of average extreme and density points. 
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for 3-mode cases. Note that, by definition, 𝑀𝑊(𝑿) of 𝐸𝑃2 is less than or equal to 

𝑀𝑊(𝑿) of 𝐸𝑃2̂ ; whereas, 𝑇𝐶(𝑿) of 𝐸𝑃2 can be less than or greater than or equal 

to  𝑇𝐶(𝑿) of 𝐸𝑃2̂ . For 2-mode cases, the average increases in 𝑇𝐶(𝑿) and 

𝑀𝑊(𝑿) values of 𝐸𝑃2̂  compared to 𝐸𝑃2 are 0.18% and 2.53%, respectively, and 

the maximum increase in 𝑀𝑊(𝑿) value was 8%. Furthermore, for 40% of the 

instances under 2-mode case, Algorithm 2 was able to determine the minimum 

𝑋𝑚𝑎𝑥 value (i.e., 𝐸𝑃2 vs. 𝐸𝑃2̂  had the same 𝑀𝑊(𝑿) values); and, even though 

𝑇𝐶(𝑿) of 𝐸𝑃2 tends to be and on average is less than 𝑇𝐶(𝑿) of 𝐸𝑃2̂ , in 35% of 

problem instances under 2-mode cases, 𝑇𝐶(𝑿) of 𝐸𝑃2̂  was slightly less than or 

equal to the 𝑇𝐶(𝑿) of 𝐸𝑃2. For 3-mode cases, the average increases in 𝑇𝐶(𝑿) 

and 𝑀𝑊(𝑿) values of 𝐸𝑃2̂  compared to 𝐸𝑃2 are 1.66% and 4.05%, respectively, 

and the maximum increase in 𝑀𝑊(𝑿) value was 10%. Furthermore, under 3-

mode case,  Algorithm 2 was able to determine the minimum 𝑋𝑚𝑎𝑥 value for 25% 

of the instances 𝑇𝐶(𝑿) of 𝐸𝑃2̂  was slightly less than or equal to the 𝑇𝐶(𝑿) of 

𝐸𝑃2 for 6% of the instances. 

Our comparison of 𝑃𝐹 and 𝑃𝐹̂ based on extreme and density points can be 

summarized as follows. On average, Algorithm 2 is able to determine extreme points that 

are close to the actual extreme points in terms of both 𝑇𝐶(𝑿) and 𝑀𝑊(𝑿) values. 

Furthermore, the density points of 𝑃𝐹 and 𝑃𝐹̂ are close as well. Recalling that both 

algorithms return similar number of solutions, we can say that Algorithm 2 finds a close 

point for each actual non-dominated point on average. 
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The second set of measures compare 𝑃𝐹 and 𝑃𝐹̂ over the objective space of 𝑃𝐹 ∪

𝑃𝐹̂. For notational simplicity, let us define where 𝑇𝐶𝑚𝑎𝑥 = max
𝑿∈𝑃𝐸∪𝑃𝐸̂

{𝑇𝐶(𝑿)}, 𝑇𝐶𝑚𝑖𝑛 =

min
𝑿∈𝑃𝐸∪𝑃𝐸̂

{𝑇𝐶(𝑿)}, 𝑀𝑊𝑚𝑎𝑥 = max
𝑿∈𝑃𝐸∪𝑃𝐸̂

{𝑀𝑊(𝑿)}, and 𝑀𝑊𝑚𝑖𝑛 = min
𝑿∈𝑃𝐸∪𝑃𝐸̂

{𝑀𝑊(𝑿)}. 

Furthermore, let 𝑀𝑊𝑚 and 𝑇𝐶𝑚 denote the 𝑀𝑊(𝑿) and 𝑇𝐶(𝑿) values for the solution 

𝑿 corresponding to the 𝑚𝑡ℎ point in 𝑃 such that 1 ≤ 𝑚 ≤ |𝑃|; and, without loss of 

generality, we assume that the points within 𝑃 are ordered such that 𝑇𝐶𝑚−1 ≤ 𝑇𝐶𝑚 and 

𝑀𝑊𝑚−1 ≥ 𝑀𝑊𝑚.  

The measures considered based on the objective space are the actual and percent 

differences between the hypervolumes of 𝑃𝐹 and 𝑃𝐹̂. Hypervolume is typically used to 

compare Pareto fronts (see, e.g., Knowles and Corne (2002), Zitzler et al. (2008))  and it 

is defined based on a reference point. The hypervolume for a set of points 𝑃, denoted by 

𝐻𝑉(𝑃), is defined as   𝐻𝑃(𝑃) = ∑ [𝑀𝑊𝑚−1 − 𝑀𝑊𝑚] × [𝑇𝐶|𝑃|+1 − 𝑇𝐶𝑚 ]
|𝑃|
𝑚=1 , where 

𝑀𝑊0 is the 𝑀𝑊 of the reference point and 𝑇𝐶|𝑃|+1 is the 𝑇𝐶 of the reference point. 

Then, the total volume, denoted by 𝑇𝑉, will be 𝑇𝑉 = (𝑇𝐶|𝑃|+1 − 𝑇𝐶𝑚𝑖𝑛) × (𝑀𝑊0 −

𝑀𝑊𝑚𝑖𝑛). Similar to Minella et al. (2011), we define the reference point for the objective 

space using 20% increments from the worst objective function values; that is, 

[1.2𝑇𝐶𝑚𝑎𝑥 , 1.2𝑀𝑊𝑚𝑎𝑥] is the reference point. We define hypervolumes of the Pareto 

fronts as the percentages of the total volume captured. In particular, we define 

hypervolumes of 𝑃𝐹 and 𝑃𝐹̂, denoted by 𝐻𝑉 and 𝐻𝑉̂, by letting 𝐻𝑉 = 100 ×
𝐻𝑉(𝑃𝐹)

𝑇𝑉
% 

and 𝐻𝑉̂ = 100 ×
𝐻𝑉(𝑃𝐹̂)

𝑇𝑉
%. Note that hypervolume defines the area, which is dominated 

by a Pareto front; therefore, a larger hypervolume implies a better Pareto front. It should 
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be noted that, by definition, we will have 1 ≥ 𝐻𝑉 ≥ 𝐻𝑉̂ ≥ 0 because 𝑃𝐹 is the actual 

exact Pareto front for CSP. Then, the two difference measures between 𝐻𝑉 and 𝐻𝑉̂ are: 

actual difference 𝐴𝐷𝑉 = (𝐻𝑉 − 𝐻𝑉̂) and percent difference 𝑃𝐷𝑉 = (100 ×
𝐻𝑉−𝐻𝑉̂

𝐻𝑉
%) 

(see also Kovacs et al. (2015)).  

The last set of measures are unary measures, which assign a single value for 

comparing 𝑃𝐹 and 𝑃𝐹̂. The first unary measure we consider is the unary-indicator, 

denoted by 𝑈𝐼, such that 𝑈𝐼 = max
𝑿′∈𝑃𝐸

{ min
𝑿′′∈𝑃𝐸̂

{max {
𝑇𝐶(𝑿′′)

𝑇𝐶(𝑿′)
,

𝑇𝐶(𝑿′′)

𝑇𝐶(𝑿′)
}}} (see, e.g.,  Zitzler et 

al.  (2003), Kovacs et al. (2015)). Note that when 𝑃𝐹 ≡ 𝑃𝐹̂, 𝑈𝐼 = 1; and we have 𝑈𝐼 ≥ 1 

by definition. We convert the 𝑈𝐼 value to percentage by letting 𝑈𝐼 → 100 × 𝑈𝐼%. The 

second unary measure considered is the generational distance, denoted by 𝐺𝐷, such that 

𝐺𝐷 =
√∑ 𝑑(𝑿′′)2

𝑿′′∈𝑃𝐸̂

|𝑃𝐹̂|
, where 𝑑(𝑿′′) =

min
𝑿′∈𝑃𝐸

{√(𝑇𝐶(𝑿′′) − 𝑇𝐶(𝑿′))
2

+ (𝑀𝑊(𝑿′′) − 𝑀𝑊(𝑿′))
2

} for a 𝑿′′ ∈ 𝑃𝐸̂ (see, e.g., 

Rudolph (1998), Van Veldhuizen and Lamont (2000), Kovacs et al. (2015)). That is, 

𝑑(𝑿′′) defines the minimum of the distances from the point corresponding to 𝑿′′ within 

𝑃𝐹̂ to the points within 𝑃𝐹. To get relative distance measure, we redefine 𝑑(𝑿′′) as a 

percentage of the maximum possible distance, denoted by 𝑀𝐷, which is defined as 

𝑀𝐷 = √(𝑇𝐶𝑚𝑎𝑥 − 𝑇𝐶𝑚𝑖𝑛)2 + (𝑀𝑊𝑚𝑎𝑥 − 𝑀𝑊𝑚𝑖𝑛)2. That is, we let 𝑑(𝑿′′) →

100 ×
𝑑(𝑿′′)

𝑀𝐷
% while calculating 𝐺𝐷.   

Table 6 documents the averages of 𝐴𝐷𝑉, 𝑃𝐷𝑉, 𝑈𝐼, and 𝐺𝐷 values over the 10 

problem instances solved within each problem set under 2- and 3-mode cases. Figure 4 
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shows how these average values change for problem sets with increasing |𝐼| for 2- and 3-

mode cases. 

We have the following observations from Table 6 and Figure 4. 

• Based on the actual and percent differences (i.e., 𝐴𝐷𝑉 and 𝑃𝐷𝑉) of the 

hypervolumes of 𝑃𝐹 and 𝑃𝐹̂ documented in Table 6, we can see that these 

differences are around 6% on overall average for both 2- and 3-mode cases (6% 

and 6.24% for 2-mode cases and 6% and 6.52% for 3-mode cases). As expected,  

𝑃𝐹̂ dominates a smaller area than 𝑃𝐹 does; however, the difference is relatively 

small, which implies that 𝑃𝐹 and 𝑃𝐹̂ are close to each other. Furthermore, we can 

observe from Figure 4 that, these differences do not follow an increasing or a 

decreasing pattern as |𝐼| grows, which indicates that how close 𝑃𝐹̂ is to 𝑃𝐹 does 

not change with the problem size. 

 

Table 6. Comparison of PF and PF based results on hypervolume and unary measures. 

  |𝐼| 
2-mode results  3-mode results  

𝐴𝐷𝑉 𝑃𝐷𝑉 𝑈𝐼 𝐺𝐷 𝐴𝐷𝑉 𝑃𝐷𝑉 𝑈𝐼 𝐺𝐷 

10 6.11% 6.35% 103.63% 2.73% 6.17% 6.71% 105.14% 1.51% 

12 4.84% 5.02% 102.37% 3.40% 4.98% 5.40% 104.11% 1.74% 

14 5.05% 5.26% 102.93% 3.11% 6.16% 6.68% 105.23% 2.04% 

16 4.81% 5.02% 102.70% 2.27% 6.71% 7.32% 105.24% 1.57% 

18 5.76% 6.01% 103.11% 2.36% 5.90% 6.39% 104.88% 1.81% 

20 5.49% 5.74% 102.84% 2.24% 4.92% 5.34% 104.03% 1.93% 

25 7.02% 7.31% 103.46% 1.99% 5.79% 6.28% 104.46% 1.56% 

30 6.42% 6.69% 103.15% 2.69% 7.14% 7.73% 105.61% 1.22% 

35 7.60% 7.94% 103.62% 2.15% 5.87% 6.36% 104.78% 1.53% 

40 6.78% 7.08% 103.14% 2.08% 6.44% 7.01% 105.20% 1.48% 

Avg. 5.99% 6.24% 103.09% 2.50% 6.01% 6.52% 104.87% 1.64% 
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    a) 2-mode case            b) 3-mode case 

Figure 4. Illustration of average extreme. 

 

• Based on unary-indicator (i.e., 𝑈𝐼), we can see that it is around 103% for 2-mode 

cases and 105% for 3-mode cases on overall average. These indicate that, for each 

point on 𝑃𝐹, 𝑃𝐹̂ had a point that deviates by at most 3% and 5% on overall 

average for 2- and 3-mode cases, respectively. Note that these numbers are 

consistent with the percent differences between average density points of 𝑃𝐹 and 

𝑃𝐹, i.e., average 𝐷𝑃 and 𝐷𝑃̂, documented in Tables 4 and 5. Furthermore, it can 

be observed from Figure 4 that average 𝑈𝐼 values do not follow an increasing or a 

decreasing pattern as |𝐼| grows, which indicates that the unary-indicator value 

does not change with the problem size.  

• Based on generational distance (as a percentage of the maximum distance, i.e., 

𝐺𝐷), we have similar observations with 𝑈𝐼.  

Our comparison of 𝑃𝐹 and 𝑃𝐹̂ based on hypervolume differences and the two 

unary indicators can be summarized as follows. On average, Algorithm 2 can find points 

that do not significantly deviate from the points returned by Algorithm 1. Particularly, all 

these measures (hypervolume differences and unary indicators) imply that 𝑃𝐹 are 𝑃𝐹 are 
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in close proximity; and the problem size does not have an observable impact on this 

proximity.  

 

5. CONCLUDING REMARKS 

 

Motivated from construction planning requirements in a semiconductor 

manufacturing facility, we presented a bi-objective multi-mode flexible resource profile 

project scheduling problem with a single unconstrained renewable discrete resource 

under discrete time. The project activities are installation, demolition, and modification of 

the machines/tools within the manufacturing facility and the resource is the labor utilized 

for. Individual activities have work-content requirements, time windows, and lower and 

upper limits on the resource that can be simultaneously used. Furthermore, the project 

schedule has a deadline. The objectives considered are total labor cost minimization and 

maximum resource (labor) usage minimization throughout the project schedule. Finally, 

preemption is allowed. To the best of our knowledge, a project scheduling problem with 

these settings has not been investigated in the literature. 

We first present the bi-objective optimization model for this problem. After that, 

we discuss the implementation of the well-known classical 𝜀-constraint method for 

generating the exact Pareto front of the problem. Given the computational complexity of 

the problem, we then develop a simple approximation method. This approximation 

method is based on partial linear relaxation of the problem and uses rounding and 

improvement procedures to find near Pareto efficient solutions. Based on a set of 

numerical studies and qualitative comparison metrics, we believe that the proposed 
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approximation method is computationally very efficient and finds solutions within close 

proximity of the exact Pareto front. 

We realize that generalized settings remain as future research directions. One 

immediate resource direction is to consider multiple constrained and/or unconstrained 

resources (renewable and nonrenewable). Furthermore, different resource leveling 

objectives can be considered. Another potential research direction is to analyze different 

heuristic methods for the problem and its possible extensions. We believe that the 

problem instances we generated and the solution method we proposed can be useful in 

such future research studies. 
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SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

2.1. CONCLUSIONS  

This research presents the development of a novel multi-objective scheduling 

optimization model for multiple construction projects in a manufacturing and operations 

environment.  The novelty arises from the scheduling flexibility through the use of 

optional overtime and non-continuous resource allocation to a project once it starts.  The 

multiple objectives that were studied are the minimization of total labor cost and the 

minimization of total resource leveling.  The model was tested to solve resource-

constrained problem that were randomly generated to avoid bias.  After this proof of 

concept, this research developed a heuristic utilizing partial linear relaxation and 

rounding method and compared the heuristic and exact method against case studies of 

multiple lengths.  The analysis of the results prove that the novel model can be scaled to 

generate near optimum schedule for large projects.  The model enables project managers 

to plan work across multiple projects in a manufacturing setting and properly allocate the 

available trade resources.   

The final step in this research generated multiple Pareto Fronts utilizing various 

techniques for resource leveling.  The techniques that were compared include the 

minimization of the sum of the absolute deviations in resource usage for a determined 

time interval, the minimization of the maximum resource usage for a determined time 

interval, and the minimization of the maximum deviation in resource usage for a 
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determined time interval.  The results from this study demonstrate that the technique 

utilized in resource leveling greatly affect the schedules that are generated, and the 

project management team must have clear insight to the risks that are to be minimized 

prior to choosen a model.  

2.2. RECOMMENDATIONS 

The model developed and tested in this research is a novel and useful scheduling 

method for construction in manufacturing environments.  The model should be run 

multiple times throughout the lifespan of a program.  Running the model during the 

positioning and planning section allows the project management team to make an 

educated and accurate forecast of the total program cost based on how much risk the team 

is willing to take.  The outcome of the model is dependent on the market conditions with 

the total number of resources available as an input.  As the market conditions change the 

model need to be updated to reflect current conditions.   

While this model is not designed for a traditional construction scheduling project, 

there are many aspects of it that can be expanded upon in future research.  Our model is 

novel in its utilization of resources and the interrelation between a task’s duration and the 

number of allocated resources.   Future research could expand on this aspect while 

adapting the model to shift non-critical activities to achieve the model’s objective.  As 

this current model does not have non-critical activities (since each project is 

independent), we were not able to test its functionality against existing methods in 

literature.   
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The first part of our research involved converting the parameters of the 

manufacturing construction environment into a linear model.  To accomplish this task, we 

had to include additional constraints and parameters to convert a non-linear system into a 

format to solve utilizing linear programming optimization techniques.  Future research 

can explore how the output of the model described in our research compares to the results 

of a non-linear approach.  We believe that the model developed in this research is a great 

starting point for continued research on non-traditional construction scenarios.
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