
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2020

Novel approaches for constructing persistent Delaunay Novel approaches for constructing persistent Delaunay

triangulations by applying different equations and different triangulations by applying different equations and different

methods methods

Esraa Habeeb Khaleel Al-Juhaishi

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Al-Juhaishi, Esraa Habeeb Khaleel, "Novel approaches for constructing persistent Delaunay triangulations
by applying different equations and different methods" (2020). Doctoral Dissertations. 3031.
https://scholarsmine.mst.edu/doctoral_dissertations/3031

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/3031?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

NOVEL APPROACHES FOR CONSTRUCTING PERSISTENT DELAUNAY

TRIANGULATIONS BY APPLYING DIFFERENT EQUATIONS AND DIFFERENT

METHODS

by

ESRAA HABEEB KHALEEL AL-JUHAISHI

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2020

Approved by:

George Markowsky, Advisor

Ricardo Morales

Patrick Taylor

Siddhardh Nadendla

Robert Paige

 2020

Esraa Habeeb Khaleel Al-Juhaishi

All Rights Reserved

iii

ABSTRACT

Delaunay triangulation and data structures are an essential field of study and

research in computer science, for this reason, the correct choices, and an adequate design

are essential for the development of algorithms for the efficient storage and/or retrieval of

information. However, most structures are usually ephemeral, which means keeping all

versions, in different copies, of the same data structure is expensive. The problem arises

of developing data structures that are capable of maintaining different versions of

themselves, minimizing the cost of memory, and keeping the performance of operations

as close as possible to the original structure. Therefore, this research aims to aims to

examine the feasibility concepts of Spatio-temporal structures such as persistence, to

design a Delaunay triangulation algorithm so that it is possible to make queries and

modifications at a certain time 𝑡, minimizing spatial and temporal complexity. Four new

persistent data structures for Delaunay triangulation (Bowyer-Watson, Walk, Hybrid, and

Graph) were proposed and developed. The results of using random images and vertex

databases with different data (DAG and CGAL), proved that the data structure in its

partial version is better than the other data structures that do not have persistence. Also,

the full version data structures show an advance in the state of the technique. All the

results will allow the algorithms to minimize the cost of memory.

.

iv

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. George Markowsky, for his great

advising to my doctoral work. Dr. George Markowsky Provided me with every bit of

guidance, assistance, and expertise that I needed. this study would not have been as

enjoyable as it was without his great help, advising, motivation, and encouragement.

Words cannot express how grateful I am to have such an amazing advisor.

I would like to thank the members of my advisory committee: Dr. Ricardo Morales,

Dr. Patrick Taylor, Dr. Siddhardh Nadendla, and Dr. Robert Paige. Each member provided

valuable knowledge, great technical experience, and suggestions that continuously improved

my knowledge and understanding.

I would like to thank all the staff in the Computer Science Department for help.

I would like to thank the most important people in my life my parents, whose love

and guidance are with me in whatever I pursue. They are the ultimate role models. Most

importantly, I wish to thank my loving, motivating, and supportive husband, Wesam, and

my three fabulous children, Asawer, Aws, and Serein, who provide unending inspiration.

Last but not least, I would like to acknowledge the Ministry of Higher Education

and Scientific Research of Iraq for the support during this study.

.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES ... xi

SECTION

1. INTRODUCTION .. 1

1.1. GENERAL INTRODUCTION... 1

1.2. THE PROBLEM JUSTIFICATION AND MOTIVATION 3

1.3. THE PROBLEM STATEMENT AND THE OBJECTIVE 4

1.4. THE CONTRIBUTIONS OF THE PROBLEM ... 5

1.5. THE LAYOUT OF THIS DISSERTATION.. 5

2. REVIEW OF LITERATURE ... 7

2.1. GENERAL INTRODUCTION... 7

2.2. DEFINITIONS AND CONCEPTS .. 8

2.2.1. Triangulations. .. 8

2.2.2. Delaunay Triangulations and Voronoi Diagrams. 13

2.2.3. Persistent Data Structure. ... 15

2.3. DELAUNAY TRIANGULATIONS .. 16

2.3.1. Triangulation for a Set of Points in the Plane. 16

2.3.2. Constrained Delaunay Triangulations. ... 20

vi

2.3.3. Algorithms to Construct Delaunay Triangulations. 20

2.3.3.1. Local improvements algorithm. ...20

2.3.3.2. Incremental insertion algorithm. ..20

2.3.3.3. Gradual construction algorithms. ...21

2.3.3.4. Divide and conquer algorithm. ..21

2.4. PERSISTENT DATA STRUCTURES .. 21

2.5. TYPES OF PERSISTENCE DATA STRUCTURES 22

2.5.1. Partial Persistence Data Structures. .. 22

2.5.2. Full Persistence Data Structures. .. 23

2.5.3. Confluent Persistence Data Structures. .. 23

2.6. METHODS TO CREATE A PERSISTENT DATA STRUCTURES 24

2.6.1. Fat Nodes. ... 25

2.6.2. Path Copying Method. .. 26

2.7. THE INCREMENTAL ALGORITHM .. 27

2.8. RELATED WORKS ... 28

2.8.1. Location of Vertex in the Plane. ... 29

2.8.2. The Persistent Arrays. .. 30

2.8.3. Persistent Triangulations. ... 30

3. PERSISTENT DELAUNAY TRIANGULATIONS ... 32

3.1. THE WALK METHOD.. 32

3.1.1. Internal Structures. ... 32

3.1.2. Insert Operations. ... 35

3.1.3. The Operation for Loading Triangulations. ... 41

vii

3.1.3.1. The correctness test for loading triangulations.42

3.1.3.2. Correctness test for Algorithm 4 (Appendix).42

3.1.4. The Elimination Operation for the Walk Method. 43

3.2. THE BOWYER-WATSON ALGORITHM ... 45

3.3. THE HYBRID METHOD .. 47

3.4. THE GRAPH METHOD .. 50

3.5. THE FULL PERSISTENCE ... 51

3.5.1. The Correctness Test for the Full Persistence. 52

3.5.2. The Correctness Test of Algorithm 9 (Appendix).................................. 52

3.6. POINTS RATE IN DELAUNAY TRIANGULATIONS 53

3.7. DETERMINING THE MAXIMUM AND AVERAGE POINT RATE. 54

4. TESTS AND RESULTS .. 55

4.1. THE BOWYER-WATSON ALGORITHM RESULT 56

4.1.1. The Measurement for the Run Time. ... 56

4.1.2. Experiments of the Maximum Point Rate for a Given Vertices. 58

4.2. THE EXPERIMENTAL GROUPS TEST IN PARTIAL PERSISTENCE

DATA STRUCTURES .. 58

4.2.1. The Comparing of the Image Experiments Results................................ 62

4.2.1.1. The cost results for the CPU. ...62

4.2.1.2. The cost results for the RAM. ..63

4.2.2. The Experimental Results on the Random Dataset. 64

4.2.2.1. The cost results for the CPU with the random dataset.64

4.2.2.2. The cost results for the RAM with the random dataset.68

4.2.3. Query Experiments for the Incremental Random Datasets. 70

viii

4.3. THE EXPERIMENTAL GROUPS TEST IN FULL PERSISTENCE DATA

STRUCTURES .. 73

4.3.1. Search the Algorithm Evaluation. .. 73

4.3.2. Evaluation of the Proposal Method and the CGAL Method. 75

4.4. THE ALGORITHM COMPLEXITY ANALYSIS .. 78

5. CONCLUSION AND DISCUSSION .. 80

5.1. CONCLUSION ... 80

5.2. LIMITATION ... 82

APPENDIX ... 83

BIBLIOGRAPHY ..91

VITA ..95

ix

LIST OF ILLUSTRATIONS

 Page

Figure 2.1 Example on Tringle That Obtained from Half-Planes. 8

Figure 2.2 A Triangle with Circumcircle Property. .. 9

Figure 2.3 A Triangle with Edges and Angles. ... 10

Figure 2.4 An Example of Convex Hull with Domain Ω. .. 11

Figure 2.5 The Voronoi Region in the Plane. ... 14

Figure 2.6 An Example of Delaunay Triangulation.. 15

Figure 2.7 Thales’s Theorem. ... 18

Figure 2.8 The Flip Edge Operation. .. 19

Figure 2.9 Example of Partial Persistence. ... 22

Figure 2.10 Example of Full Persistence. ... 23

Figure 2.11 Example on Confluent Persistence. ... 24

Figure 2.12 Fat Node Example of a Simple Linked List. ... 25

Figure 2.13 Path Copying in a Binary Search Tree. ... 26

Figure 2.14 Incremental Insertion Algorithm. .. 27

Figure 2.15 Incremental Insert Result. .. 28

Figure 2.16 The Incremental Algorithm, Convex Polygon in 3 Dimensions. 31

Figure 3.1 The Triangulation Over Time. ... 33

Figure 3.2 Internal Representation for the Triangulation Over Time. 34

Figure 3.3 Representation of a Triangulation. .. 36

Figure 3.4 The Location of the Triangle. .. 37

x

Figure 3.5 Load Triangles That Contains At Least One Vertex. 39

Figure 3.6 Edges to Be Evaluated to Perform Flip Operations. .. 39

Figure 3.7 An Illegal Node Will be Loaded to Execute the Flip Operation. 39

Figure 3.8 Edges to Be Evaluated to Perform the Red Flip Operation. 40

Figure 3.9 The Elimination Operation of the Vertex. ... 44

Figure 3.10 Large Triangle (Contains All the Points Inside It). 46

Figure 3.11 The Initial Structure. .. 48

Figure 3.12 The Initial Structure After Inserting a Vertex. .. 49

Figure 3.13 The Initial Structure After Insert-Flip. .. 50

Figure 3.14 The Full Persistence. ... 51

Figure 4.1 The Run Time for the Bowyer-Waston Algorithms. 56

Figure 4.2 Results of Applying Triangulation Algorithms. .. 63

Figure 4.3 Comparison of CPU Performance Between Proposed Methods and CGAL

(Line Diagram) at Random Points. ... 68

Figure 4.4 Comparison of CPU Performance Between Proposed Methods and CGAL

(Line Diagram) at Random Points. ... 69

Figure 4.5 Consultations in Previous Times for the Delaunay Triangulation. 71

Figure 4.6 Delaunay Triangulation Load in Previous Times. ... 72

Figure 4.7 Comparison of Execution Times (in seconds) of a Brute Force-Based

Method Against the Walk Method for Full Persistence...................................74

Figure 4.8 Execution Time (in seconds) of Query Operations for Full Persistence. 75

Figure 4.9 Comparison of Execution Time (in seconds) Between Proposal Method and

CGAL for Full Persistence.. 77

Figure 4.10 RAM Memory Comparison (in Kbytes) Between Our Proposal and CGAL

for Complete persistence. .. 77

xi

LIST OF TABLES

 Page

Table 4.1 The Average Run Time for the Given Number of Vertices. 57

Table 4.2 The Maximum Point Rate for Given Vertices. ... 59

Table 4.3 The Maximum and Minimum Value of the Highest Number. 60

Table 4.4 The Average Value for a Given Number of Vertices. 61

Table 4.5 Analysis of the Temporal Cost (in seconds) of the Walk, Hybrid, Graph and

CGAL Methods. ... 65

Table 4.6 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid Graph and

CGAL Methods. ... 66

Table 4.7 Analysis of the Cost (in Kbytes) for the Walk, Hybrid Graph and CGAL

Methods. ... 67

Table 4.8 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid, Graph and

CGAL Methods at Random Points. .. 70

Table 4.9 Analysis of the Temporal Cost (in seconds) When Loading a Triangulation

in the Walk, Hybrid and Graph Methods at Random Points. 71

Table 4.10 Analysis of the Temporary Cost (in seconds) When Consulting the Walk,

Hybrid and Graph Methods at Random Points. .. 72

Table 4.11 Performance Results in Insertion Operation (in seconds) in Delaunay

Triangulation with Complete Persistence. .. 74

Table 4.12 Comparison of Efficiency (in seconds) and RAM Memory Consumption

(in Kbytes) Between CGAL and the Proposal for Complete Persistence. 76

1. INTRODUCTION

1.1. GENERAL INTRODUCTION

Data structures make up a fundamental field of study and research in computer

science, for this reason, the correct choice and an adequate design are essential for the

development of algorithms for the efficient storage and/or retrieval of information.

However, most structures are usually ephemeral, which means that in each insertion,

elimination, or modification operation, they lose the previous values or states. On the

other hand, persistent data structures are known as temporary data structures [1], they

allow them to maintain previous versions of the structure, so they retain previous states

when they are modified. All this, taking into account the computational and spatial cost

characteristics.

Delaunay triangulation is a fundamental data structure in computational geometry,

graphing, engineering, and other areas of algorithmic application [2], [3]. For this reason,

its usefulness and that of its dual (Voronoi diagrams) have various applications such as

solution to the problem of finding the closest point [4], land modeling [5], collision

detection [6], associative file search, a solution to the problem of data grouping, among

others.

On the other hand, Delaunay triangulation, which is currently implemented in

libraries such as CGAL (Computational Geometry Algorithms Library, [7]), does not

have partial persistence or total persistence, which implies that if a set of operations is

applied such as insertion, elimination or modification on the data structure in time, then,

it loses the previous states. This also occurs in all traditional data structures such as lists,

2

stacks, queues, balanced binary trees, B, B + trees, and many others. This type of

structure has the problem of not being able to return to previous state 𝑖, after applying n

modifications (0 < 𝑖 < 𝑛); it is for this reason that this type of classical structure is

known as ephemeral data structures.

For example, if the value of a node in a simple linked list is modified 𝑛 times, it is

not possible to know the value that it had at a previous time 𝑖 (0 < 𝑖 < 𝑛). This is

because the changes, in this type of structure, are not stored. On the other hand, keeping

all versions, in different copies, of the same data structure is expensive. Then, the

problem arises of developing data structures that are capable of maintaining different

versions of themselves, minimizing the cost of memory, and keeping the performance of

operations as close as possible to the original structure. These types of data structures are

called persistent data structures.

In general, data structures can be classified as partially persistent, fully persistent,

confluent, and functional. The first are those structures in which it is only possible to

make modifications in the current state, however, queries can be made in any state, that

is, in any past time. On the other hand, completely persistent data structures (the

definition in Section 2) are those to which modifications can be applied at any past time,

and at the same time, it is possible to make queries at any time or in any state. Then, it is

clear that the design of fully persistent data structures is more complex due to the amount

of memory they can use.

In the current literature, there is no fully persistent Delaunay triangulation data

structure yet. In this sense, this dissertation has a contribution: the proposal of a new

persistent data structure to represent a Delaunay triangulation.

3

1.2. THE PROBLEM JUSTIFICATION AND MOTIVATION

There are many libraries for calculating Delaunay triangulation, such as CGAL,

Fade2D, among others. These libraries have efficient algorithms for calculating Delaunay

triangulations; however, they do not have persistence characteristics; that is, they do not

have the possibility of maintaining versions of the structures every time operations are

carried out on them.

Furthermore, an important aspect that data structures should have is the ability to

maintain past versions of themselves, in order to return to a previous 𝑡 version; so that it

is feasible to evaluate the characteristics of the structure at that time.

In this sense, this research proposes the development of a persistent data structure

for the management of a Delaunay triangulation. This data structure, in addition to

maintaining past versions of the structure, will maintain computational complexity and

minimize spatial complexity.

As mentioned above, in addition to the lack of a persistent data structure for

Delaunay triangulation, the existence of such a data structure would be useful in different

applications, such as on a two-dimensional map where different points have been marked,

which indicate regions where different natural phenomena have originated. In this model,

you want to perform simulations on the possible nearby areas that could be affected. In

this sense, Delaunay's persistent triangulation results in a natural data structure for this

problem, since it seeks to minimize RAM memory consumption in those computational

problems that can be represented or solved using Delaunay triangulations and variable in

time product of insertions, deletions and/or modifications.

4

On the other hand, let's imagine that we have a database of satellite images of a

river [8], taken at different periods of time. We can represent the image of the river by

means of a Delaunay triangulation. However, with the passage of time it is clear that the

characteristics of the river bed change, increasing flow or modifying its shape, this means

that several images of the same river are kept on different dates; therefore, different

Delaunay triangulations should be constructed. However, our method generates a single

Delaunay triangulation, which allows minimizing RAM memory and maintaining the

reconstruction performance of the triangulation in a specific time.

1.3. THE PROBLEM STATEMENT AND THE OBJECTIVE

Ephemeral data structures do not have mechanisms to make queries in past times,

in this sense, one of the most trivial ways of maintaining the information of the versions

generated by the modifications in the data structures is through copies of themselves. the

same after each modification. This method is clearly counterproductive when it comes to

memory spending.

On the other hand, the data structures that are currently known and used to

represent the Delaunay triangulation are ephemeral, that is, it is not feasible to perform

operations or queries on the historical data of the triangulation at a certain time 𝑡, nor

operations to perform changes in structure in a past time. However, there are currently

methods for maintaining versions of some trivial data structures such as lists, stacks,

queues, and trees [3]. These methods have the ability to maintain information from past

versions, minimizing the amount of RAM memory, and maintaining the algorithmic

complexity of its operations.

5

In this sense, in this dissertation, a new partially persistent and fully persistent

data structure is proposed and implemented, which can query and execute operations (at

any previous time t) minimizing computational cost and use of RAM memory.

Propose and implement a persistent Delaunay triangulation data structure, so that

it is possible to query and modify previous versions, minimizing computational and

spatial complexity.

1.4. THE CONTRIBUTIONS OF THE PROBLEM

The contributions of this dissertation are: A new algorithm for the generation of

partially persistent and fully persistent versions of persistent Delaunay triangulation is

proposed, maintaining the performance in memory and the algorithmic complexity in

each operation.

1.5. THE LAYOUT OF THIS DISSERTATION

This study will be presented in five sections. Section 1 includes the general

introduction of the problem and the motivation for the work. Section 2 contains a

literature review on some definitions and on the previous related works, including types

of persistence and mechanisms designed to maintain persistence in some basic data

structures. Section 3 includes a description of algorithms proposed for the

implementation of persistent Delaunay triangulations. Four algorithms, Bowyer-Watson,

Walk, Hybrid, and Graph is proposed for the partial persistence insert operation. The

vertex removal operation is also proposed for the Walk method. Subsequently, the Walk

proposal is extended to create a fully persistent Delaunay triangulation. Section 4

6

contains a description explains the experimental results performed during the

implementation. First, it is focusing on constructing a planar Delaunay triangulation that

is modeled after the Bowyer-Watson algorithm. It also focuses on analyzing the temporal

and spatial complexity of some methods (Walk, Hybrid, and Graph) that contrast to the

CGAL library. Finally, the conclusions and recommendations for future work are

presented in Section 5. Besides these five sections, one appendix was added to include

the details of the algorithms which are using to obtain the results.

7

2. REVIEW OF LITERATURE

2.1. GENERAL INTRODUCTION

Delaunay triangulation is one of the most interesting triangulations because it is

applicable for solving a multitude of apparently unrelated problems, due to its geometric

properties, and because it has quite efficient algorithms for its calculation. All this also

implies that there is a large amount of written material on this type of triangulation.

Giving an idea of what this triangulation might look like could serve as an informal

definition and could be done highlighting its most important characteristics: In a

Delaunay triangulation. First, all the points are connected to each other and form as many

triangles as possible without crossing their edges (essential for it to be a triangulation).

Second, triangles are defined so that the closest points are connected to each other by an

edge. This implies that the triangles formed are as regular as possible, that is, that their

minor angles are maximized, and the length of their sides is minimized. These properties

make this triangulation, as indicated at the beginning, interesting in several fields.

Delaunay triangulation can be characterized in several ways, below some definitions that

satisfy its properties.

The purpose of this section is to conduct a comprehensive literature review of

previous and related research on the subject of Delaunay triangulation and persistent data

structures. Some definitions will describe, and types of persistence and mechanisms

developed to maintain persistence in some basic data structures will be explained.

8

2.2. DEFINITIONS AND CONCEPTS

The definition of the concept can be explained in the following.

2.2.1. Triangulations. Triangulation can be defined as a collection of triangles.

Definition 1 represents the meaning of the tringle.

Definition 1: Triangle 𝑡 in the plane can be defined by three points

𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3, 𝑤ℎ𝑒𝑟𝑒 (𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)). Every two points has an edge connected between

them, denoted by 𝑒𝑖,𝑗 as shown in Figure 2.1 [9]. The tringle 𝑡 obtained from the

intersection of three half-planes, as shown in equation 1 [9]:

𝑡 = 𝐻1,2 ∩ 𝐻2,3 ∩ 𝐻3,1 (1)

There are important properties that need to be checked for constructing

triangulations, some of these properties are show below.

Figure 2.1 Example on Tringle That Obtained from Half-Planes.

9

1. The circumcircle property: This property represents a circle that drown through

the tringle three points (𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3). A point C is in the center of this circle in

the plane that has an equal distance between the tringle three points

(𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3), as shown in Figure 2.2.

Figure 2.2 A Triangle with Circumcircle Property.

2. The triangle angle property: Calculating the angle of the tringle is another

important property for the triangulations. In this work, we will be interested in the

smallest angle in the triangle. The equations that will be used are the sines and

cosines. Equations (2) explain an equation for getting the angle in a given triangle

[9, 10]. Where 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are represent the length of the edges. Also, the angles

of the tringle are represented by 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾, Figure 2.3.

10

𝑠𝑖𝑛 α

a
=

𝑠𝑖𝑛 β

b
=

𝑠𝑖𝑛 γ

c
 (2)

Figure 2.3 A Triangle with Edges and Angles.

3. The circle center property: The center of the circle can be found by intersected

lines that split the angles. By using the corner points (𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3) we will be

able to calculate the area of the tringle, this can be seen in equation (3) [9, 11]:

𝐴(𝑝1, 𝑝2, 𝑝3) =
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| =
1

2
(𝑥1𝑦2 + 𝑥2𝑦3 + 𝑥3𝑦1 − 𝑥1𝑦3 − 𝑥2𝑦1 − 𝑥3𝑦2) (3)

Each point 𝑝 in the plane can be presented as a linear combination of the vertices

(𝑝1, 𝑝2, 𝑝3) of the triangle, as shown in Equation (4):

 𝑝 = 𝑏1𝑝1 + 𝑏2𝑝2 + 𝑏3𝑝3 (4)

To constructing triangulation for a given set of points 𝑃 = {𝑝𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 =

1, ⋯ , 𝑁, with the domain Ω. Where the boundary of Ω is closed simple polygons that is a

11

polygon which is not self-intersect, as shown in Figure 2.4. Such that Ω is represents the

convex hull (Definition 2) of the point set.

Definition 2 (Convex hull): The smallest convex set that containing 𝑃 is called a convex

hull of 𝑃. A set 𝑆 is convex if any line segment joining two points in 𝑆 lies entirely in 𝑆.

Figure 2.5 [12], show an example of a convex domain Ω for asset of points in the plane

with a corresponding triangulation of these points [13].

Figure 2.4 An Example of Convex Hull with Domain Ω.

It is important to find an appropriate representation of a triangulation for all the

computational applications, that will need a suitable data structure to use it in computing

programs. It is important to find an appropriate representation of a triangulation for all

the computational applications, that will need a suitable data structure to use it in

computing programs. Triangulations are used in different sciences and different

applications so in this work we present the triangulations with different types of data

structures.

12

There are many interesting properties that are obtained from planar graphs

properties as shown in elementary graph theory [14]. The size of triangulation is very

important for computer programing and designing data structure. Below we will explain

the relationship between the numbers of the triangles, edges, and vertices.

The relationship between the numbers of the triangles, edges, and vertices is

important [15]. Suppose faces (triangles) are denoted by 𝐹 and suppose edges are denoted

by 𝐸, where the vertices are denoted by 𝑉. In the triangulations 𝑉 = 𝑉𝐵 ∪ 𝑉𝐼, where 𝑉𝐵

represents the boundary vertices and 𝑉𝐼 represents the interior vertices. Equation (5),

shows the relationship between triangles, edges, and vertices as presented in [9].

|𝐹| = |𝑉𝐵| + 2|𝑉𝐼| − 2

 |𝐸| = 2|𝑉𝐵| + 3|𝑉𝐼| − 3 (5)

 In Equation (6), we can see a special type of the Euler Polyhedron Formula that

also named as Euler-Poincare formula.

|𝐹| = |𝐸| − |𝑉| + 1 (6)

Equations (6) was obtained from Equation (5). The numbers of triangles and

edges are fixed when the boundary of the triangulation is specified, and that happened by

using Equation (5). Furthermore, the number of triangles is increased by two and the

number of edges is increased by three, after inserting a point to an existing triangulation.

One other triangulation property is the degree (𝑑𝑒𝑔(𝑣𝑖)), it represents the number

of the edges that is happening with the vertices vi in the tringles. The summation of these

degree for the triangulation is satisfy Equation (7), [9].

∑ 𝑑𝑒𝑔(𝑣𝑖)
|𝑉|
𝑖=1 = 2|𝐸| (7)

13

The number of vertices in the boundary is smaller than the total number of

vertices when building a triangulations [16] from a large number of points such that the

boundary of tringles is the convex hull of the points [9], as shown in Equation (8):

∑ 𝑑𝑒𝑔(𝑣𝑖) = 2|𝐸| = 6|𝑉𝐼| + 4|𝑉𝐵| − 6 ≈ 6|𝑉||𝑉|
𝑖=1 (8)

Depends on what we said, we obtained that the average number of edges that happening

with a vertex in a triangulation is six.

2.2.2. Delaunay Triangulations and Voronoi Diagrams. In computational

geometry, there are two important constructs the Delaunay triangulation, and the Voronoi

diagram. These are used in different applications, and studies for many years.

 Voronoi diagrams have a close relationship with Delaunay triangulations. The

first investigated for the Voronoi diagrams was made by René Descartes [17], and it used

by Dirichlet for the quadratic forms. Voronoi was a Russian mathematician well known

in number theory and his contributions with respect to continued fractions.

Definition 3: Suppose 𝑃 is a set of points were 𝑃 = {𝑝1, ⋯ , 𝑝𝑁} in the plane. Let the

Euclidean distance denoted by 𝑑(𝑝𝑖, 𝑝𝑗), it is between 𝑝𝑖 and 𝑝𝑗. The Voronoi region in

the plane is shown in Equation (9) [9]:

 𝑉(𝑝𝑖) = {𝑥: 𝑑(𝑥, 𝑝𝑖) < 𝑑(𝑥, 𝑝𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, ⋯ 𝑁} (9)

Figure 2.5 [9] shows a Voronoi region point 𝑝𝑖. Voronoi diagrams have been

used in many scientific corrections to organize convergence information between points

distributed irregularly. For example, the climate scientist Thiessen used the regions of

Voronoi to collect climatic data from unevenly distributed weather stations [18]. For this

reason, the regions V (pi) are also called Thiessen regions.

14

Boris Nikolaevich Delaunay [19] presented the Delaunay triangulation of a point

set P. It satisfies the property that says, for a set of points S there is no point inside the

triangle's circumscribing disk.

Figure 2.5 The Voronoi Region in the Plane.

Definition 4: A Delaunay triangulation for a set of points 𝑃 in the plane is the

triangulation operation which satisfies the empty circumcircle condition. That is means

there is no point inside the circle from the set 𝑃.

This definition is more useful and geometric to use in a practical. In this work,

this definition will use as a rule to construct a Delaunay triangulation algorithms.

15

Figure 2.6 shows an example of a Delaunay triangulation [20] for a set of six points. The

five triangles satisfy the empty circle property. But the orange circle it not empty since it

is not a circumcircle for any of the five triangles.

Figure 2.6 An Example of Delaunay Triangulation.

2.2.3. Persistent Data Structure. These data structures are subject to are not

change effectively, as its operations do not (clearly) update the structure in place, but

instead, always provide a new updated structure. These data structures are subject to are

not change effectively, as its operations do not (clearly) update the structure in place, but

instead, always provide a new updated structure. There are different types of persistent

data structure, the partially persistent, confluently persistent, and the fully persistent data

structure.

The persistent data structure [21] is called partially persistent if all the versions

are able to access but the only version that can be modified is the newest version. The

persistent data structure is fully persistent if all versions can be accessed and modified

[22]. Confluently persistent is another type of persistent data structure, it is named

16

confluently if all the operation can be merged to get a new version of the data from the

previous versions. Were the ephemeral data means that the data structure is not persistent.

Most of these results use construction, with the exception of the article by [23] and by

[22].

2.3. DELAUNAY TRIANGULATIONS

This section describes what is a Delaunay triangulation, as well as its importance.

2.3.1. Triangulation for a Set of Points in the Plane. From a set 𝑃 =

{𝑝1, 𝑝2, ⋯ , 𝑝𝑛} made up of 𝑛 vertices in the plane, a triangulation T of P is defined as a

planar maximum subdivision where no edge connecting two vertices can be added

without change its planarity [24], in addition, there is always a triangulation of 𝑃 since

any polygon can be triangulated [25], on the other hand, the edges of the convex

envelope [26] of 𝑃 they belong to any triangulation 𝑇 that is made up of 𝑃 and that the

limitless or infinite face infinite is always a compliment to the convex envelope.

By Theorem 1, the number of triangles is the same in any triangulation of 𝑃, as

well as the number of edges, in addition, these depend on the number of vertices in 𝑃 that

are in the limit of the convex envelope of 𝑃 (including the vertices that are in some edge

of the convex envelope).

Theorem 1. Let 𝑃 be a set of 𝑛 vertices in the planar, not all collinear, and 𝑘 denotes the

number of vertices in 𝑃 that are at the limit of the convex hull of 𝑃. So, any triangulation

of 𝑃 has 2𝑛 − 2 − 𝑘 triangles and 3𝑛 − 3 − 𝑘 edges [24].

If 𝑚 is the number of triangles that make up 𝑇, any other triangulation of 𝑃 will

also be made up of m triangles, considering the 3𝑚 angles of the triangles of 𝑇, ordered

17

by their value in increasing order, such as 𝛼1, 𝛼2, ⋯ , 𝛼3𝑚, therefore, 𝛼𝑖 ≤ 𝛼𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 <

𝑗, is called 𝐴(𝑇) = (𝛼1, 𝛼2, ⋯ , 𝛼3𝑚) the vector angle of 𝑇.

Let 𝑇 ́ be another triangulation of the same set of vertices 𝑃, and let 𝐴(𝑇́) =

(𝛼1́, 𝛼2́, ⋯ , 𝛼3𝑚́) its vector angle, the vector angle of 𝑇 is greater than the vector angle

of 𝑇 ́ if 𝐴(𝑇) is lexicographically greater than 𝐴(𝑇 ́), that is, there is an index 1 ≤ 𝑖 ≤

3𝑚 such that 𝛼𝑗 = 𝛼𝑗́ for all 𝑗 < 𝑖 and 𝛼𝑖 > 𝛼𝑖́ , which is denoted as 𝐴(𝑇) > 𝐴(𝑇 ́), in

addition an optimal angle of triangulation 𝑇 can also be called if 𝐴(𝑇) ≥ 𝐴(𝑇 ́) for

all triangulations 𝑇 ́ of 𝑃. To see if triangulation has an optimal angle, Theorem 2 is

used, it called Thales’s Theorem, where the smallest angle defined by three vertices

𝑝, 𝑞, 𝑟 is denoted by ∡𝑝𝑞𝑟.

Theorem 2. Let 𝐶 be a circle, as shown in Figure 2.7, 𝑙 a line intersecting 𝐶 at vertices

𝑎 𝑎𝑛𝑑 𝑏, let 𝑝, 𝑞, 𝑟 𝑎𝑛𝑑 𝑠 be vertices that are on the same side of 𝑙. It is assumed that

𝑝 𝑎𝑛𝑑 𝑞 are found in 𝐶, and that 𝑟 is inside 𝐶, and that 𝑠 is outside 𝐶. Then:

∡𝑎𝑟𝑏 > ∡𝑎𝑝𝑏 = ∡𝑎𝑞𝑏 > ∡𝑎𝑠𝑏 (10)

From Theorem 2, an edge 𝑒 = 𝑝𝑖𝑝𝑗 of a triangulation 𝑇 of 𝑃 is considered that

is not an edge that is in the convex hull, that is, it is incident to two triangles 𝑝𝑖𝑝𝑗𝑝𝑘 and

𝑝𝑖𝑝𝑗𝑝𝑙. If these two triangles form a convex quadrilateral, we can obtain a new 𝑇 ́

triangulation by removing 𝑝𝑖𝑝𝑗 from 𝑇 and inserting 𝑝𝑘𝑝𝑙 in its place. This operation is

called a flip [27].

The only difference in the vector angle of 𝑇 and 𝑇 ́ is the six angles

(𝛼1, 𝛼2, ⋯ , 𝛼6) in 𝐴 (𝑇), which are replaced by (𝛼1́, 𝛼2́, ⋯ , 𝛼6́) in 𝐴 (𝑇 ́). Figure 2.8

shows this behavior. On the other hand, said edge (𝑝𝑖, 𝑝𝑗) is called illegal if Equation 2

18

is fulfilled, that is if by performing the flip operation the value of the smallest angle can

be increased.

min
1≤𝑖≤6

𝛼𝑖 < min
1≤𝑖≤6

𝛼í́́ (11)

Figure 2.7 Thales’s Theorem.

Otherwise, the following lemma can be considered in order to corroborate if an

edge is illegal.

Lemma 1: Let the 𝑝𝑖𝑝𝑗 edge be incident to the triangles 𝑝𝑖𝑝𝑗𝑝𝑘 and 𝑝𝑖𝑝𝑗𝑝𝑙 and let 𝐶 be

the circle that passes through 𝑝𝑖𝑝𝑗𝑝𝑘; then the 𝑝𝑖𝑝𝑗 edge is illegal if and only if the vertex

𝑝𝑙 is inside 𝐶. On the other hand, if the vertices 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙 form a convex quadrilateral

and are not in a common circle, so 𝑝𝑖𝑝𝑗 or 𝑝𝑘𝑝𝑙 is an illegal edge.

19

Figure 2.8 The Flip Edge Operation.

Also, when the four vertices meet in a circle, both 𝑝𝑖𝑝𝑗 and 𝑝𝑘𝑝𝑙 are legal. On the

other hand, the two triangles incident to an illegal edge must form a convex quadrilateral,

so it is always possible to flip an illegal edge.

In theory, a legal triangulation is defined as a triangulation that does not contain

any illegal edge, also from Equation 2 it is concluded that any optimal angle in the

triangulation is legal. Furthermore, a Delaunay triangulation is always legal as shown in

Theorem 3.

Theorem 3. Let 𝑃 be a set of vertices in the planar. A triangulation 𝑇 of 𝑃 is legal, if and

only if, 𝑇 is a Delaunay triangulation of 𝑃.

Since any an optimal angle triangulation must be legal, Theorem 2 implies that

any optimal angle triangulation of 𝑃 is a Delaunay triangulation of 𝑃. When 𝑃 is in a

general position (𝑃 is in general position if it contains no 4 points on a circle), there is

only one legal triangulation, which is then the only optimal angle triangulation, that is,

the only Delaunay triangulation. When 𝑃 is not in general position, there are many legal

20

triangulations of 𝑃, not all these Delaunay triangulations will be of optimal angle,

however, all these triangulations will have the same value for the minimum angle of

 their angle-vectors, this can be seen in theorem 4 and be verified by Thales' theorem.

Theorem 4. Let 𝑃 be a set of vertices in the plane. Any angle-optimal triangulation of

𝑃 is a Delaunay triangulation of 𝑃. In addition, any Delaunay triangulation of 𝑃

maximizes the minimum angle over all triangulations of 𝑃.

From the above, to obtain a Delaunay triangulation of 𝑇 from any triangulation 𝑇 ́ both

triangulations of the set of vertices 𝑃, It is enough to verify if all edges are legal and if

not, perform flip operations on illegal edges, until there are no illegal edges in 𝑇 ́.

2.3.2. Constrained Delaunay Triangulations. In some cases, it is necessary to

force the creation of certain edges within a triangulation, these are called Constrained

Delaunay Triangulations [28].

2.3.3. Algorithms to Construct Delaunay Triangulations. The duality between

Delaunay triangulation and Voronoi diagrams is widely known [29], [30], and, therefore,

the algorithms for the construction of Voronoi diagrams serve to calculate Delaunay

triangulation. However, direct construction methods are generally more efficient because

the Voronoi diagram does not have to be calculated and stored. Algorithms for

constructing Delaunay triangulations [6], [31] can be classified as follows:

2.3.3.1. Local improvements algorithm. From an arbitrary triangulation, these

algorithms locally modify the edges of the adjacent vertex pairs through flip edge

operations until obtaining a Delaunay triangulation.

2.3.3.2. Incremental insertion algorithm. These algorithms insert the vertices

one at a time. The triangle that contains the new vertex is divided by inserting new

21

triangles adjacent to the new vertex. Then, the circle criteria are tested on all adjacent

vertices and, if necessary, the flip operation is applied to the edges.

2.3.3.3. Gradual construction algorithms. These algorithms transform the

vertices in the space of 𝑑 𝑡𝑜 𝑑 + 1 dimensions and then calculate the convex hull of the

transformed vertices. Delaunay triangulations is obtained with the projection of the

convex hull in 𝑑 dimensions [32].

2.3.3.4. Divide and conquer algorithm. Divide and conquer: They are based on

the repeated partition and the local triangulation of a set of vertices and then carry out a

combination phase, where the resulting triangulations are joined.

2.4. PERSISTENT DATA STRUCTURES

A data structure is persistent if it can maintain versions of itself as a result of

operations such as insertion, deletion or modification, which change the structure over

time [1].

For example, in the case of a binary tree, when performing an operation on the

structure, it increases, decreases, or changes the keys of the nodes according to the type

of operation: insertion, deletion or modification. However, in order to know the state of

the structure in a past time 𝑡, it would be necessary to store each version before a

modification, the simplest way would be to save the entire data structure in RAM before

undergoing a modification. In this way, there would be 𝑛 different copies of the structure,

one for each modification in time, so that recovering the state of the structure in a time 𝑡,

would imply instantiating a copy 𝑟, in that time 𝑡. However, this would imply sacrificing

memory space.

22

In this sense, persistent data structures seek to develop strategies to minimize the

space required by the new versions that are generated over time.

2.5. TYPES OF PERSISTENCE DATA STRUCTURES

The data structures can be classified as follow.

2.5.1. Partial Persistence Data Structures. A data structure is partially

persistent, it does allow modifications only to the current data structure, but it is possible

to query any previous version and at any past time 𝑡, [33].

These versions can be accessed because each node stores additional information.

This extra information refers to the creation time of that version, which indicates, to the

time where modification was made. The time, of each version, is known as a timestamp

(It is a sequence of characters information identifying when a certain event occurred,

usually giving date and time of day, sometimes accurate to a small fraction of a second).

An example of the behavior of this structure can be seen in Figure 2.9, where each node

represents a version of the data structure.

Figure 2.9 Example of Partial Persistence.

23

2.5.2. Full Persistence Data Structures. With this type of persistence data

structures, the versions do not form a simple linear trajectory, furthermore, they form a

tree version [33], as explained in Figure 2.10.

Figure 2.10 Example of Full Persistence.

2.5.3. Confluent Persistence Data Structures. This type of persistence allows

to modification and querying the versions in the past time. It also allows joining two or

more previous versions to create a new version. This version takes the form of a DAG

(direct acyclic graph), which can be seen in Figure 2.11.

Figures 2.9, 2.10, and 2.11 are shows the different types of persistence. In Figure

2.9 partial persistence can be seen. The first nodes are earlier versions, while the last node

is the only one that can be modified, in this way, a linear structure of persistence can

maintain. In Figure 2.10 a full persistent data structure can be seen. This structure can

modify any of the versions in time and, therefore, the versions make up a tree so that any

24

version in time can be modified. Where in Figure 2.11 shows the confluent persistence

that presents a group of versions induce a DAG structure on the version graph.

Figure 2.11 Example on Confluent Persistence.

Considering that the obvious way to provide persistence is to make a copy of the

data structure every time a modification operation is performed on the structure. Using

this way would have the disadvantage of requiring space and time proportional to the

space occupied by the original data structure. For that, a method is required to minimize

spatial and temporal complexity.

2.6. METHODS TO CREATE A PERSISTENT DATA STRUCTURES

Various methods have been proposed in the literature to make a persistent data

structure [22], below are general schemes to convert an ephemeral data structure into a

persistent data structure.

25

2.6.1. Fat Nodes. In this scheme, all changes made to the node fields are

recorded without deleting the old values of the fields. This makes the nodes of the

structure called Fat Nodes. Where each one contains the same information fields and

pointers as an ephemeral node, but they keep extra space to add additional values such as

old data and timestamp in which modifications were made [1].

Each additional data has an associated value and a timestamp that indicates the

version in which the field was changed by a specific value. In addition, each Fat Node

has its own timestamp, which indicates the version in which the node was created. Figure

2.12 [3] shows Fat Nodes in a simple linked list. Each node has, in addition to its data

and pointers, an additional field which stores new versions.

Figure 2.12 Fat Node Example of a Simple Linked List.

On the other hand, because Fat Nodes only have additional space limited to a

fixed number of modifications, then, in the case that a node has all its information fields

filled, it is necessary to create a new node. This new node must keep pointers to the

26

previous and next node in the list. In addition, it must be pointed by the previous and next

nodes, without losing the address of the previous version node.

2.6.2. Path Copying Method. Path Copying is a method that consists of making

a copy of all the nodes of the route, which contains the node to be modified. This

operation is performed in cascade to modify all those nodes so that all the nodes that

pointed to the old node should now be modified to point to the new node.

These modifications generate changes in a cascade until reaching the root of the

tree. Which makes each version have its own root, and in that sense, a series of roots

indexed by time must be maintained as shown in Figure 2.13. The data structure pointed

to the root of time 𝑡 is exactly the structure time 𝑡 [1].

There are more complex ways to make persistence, such as confluent persistence

[34], [35]. This structure allows the three versions of a data structure to be joined in a

new update operation. This research focuses on partial, full, and confluent persistence.

Figure 2.13 Path Copying in a Binary Search Tree.

27

2.7. THE INCREMENTAL ALGORITHM

A Delaunay triangulation of a set of vertices 𝑃 is calculated by inserting one

vertex after another, that is, the triangulation of the set of vertices 𝑃 inserted until 𝑅 is

maintained, where 𝑅 ⊆ 𝑃. For the insertion of the next vertex 𝑠, the triangulation is

updated to obtain the Delaunay triangulation of 𝑅 ∪ {𝑆}.

To avoid special cases, three artificial vertices (a triangle) are added to the vertex

set P that must wrap around all the vertices, that is, the convex envelope of the resulting

vertex set is a triangle. The incremental algorithm begins with the Delaunay triangulation

of the three artificial vertices. At each insertion of a vertex s, the triangle △=△

(𝑝, 𝑞, 𝑟) 𝑓𝑜𝑟 𝐷𝑇(𝑅) containing s must be found and replaced by the three resulting

triangles connected to the three vertices 𝑝, 𝑞, 𝑟 as seen in Figure 2.14 [36].

Figure 2.14 Incremental Insertion Algorithm.

To find the triangle that contains the vertex to be inserted, different algorithms

and/or data structures are proposed:

1. Data structures for inquiries from the nearest neighbor [37].

2. Algorithms for walking in triangulations [38].

28

Given the triangulation 𝑇 of 𝑅 ∪ {𝑠}, flips are performed in 𝑇 until obtaining

𝐷𝑇(𝑅 ∪ {𝑠}) is obtained as in Figure 2.15.

Figure 2.15 Incremental Insert Result.

Each incident 𝑠 edge that is created during the update is an edge of the Delaunay

graph of 𝑅 ∪ {𝑠} and therefore an edge that will be in 𝐷𝑇(𝑅 ∪ {𝑠}).

2.8. RELATED WORKS

The use of persistent data structures is involved in many areas of computer

science such as functional programming, computational geometry, and other algorithm

application areas [1], most of these applications require being able to perform queries in

previous states of the data structure.

There is a simple scheme to make any data structure persistent. In this scheme, the

operations are carried out as they have been ephemerally but before each update

operation, it is performed in the current version. New copies are created on which will

perform the required operation, keeping both versions in memory independently of each

29

other. This is obviously inefficient since the consumption of time and space is equal to

the number of elements of each version.

In general, persistent data structures are divided into two types: The first, seen

in the previous section, attempts to create general ways that would make any

ephemeral data structure persistent while keeping computational and spatial costs low.

The second, which presents specific solutions to generate persistent data structures,

some of which are described below.

2.8.1. Location of Vertex in the Plane. “One of the best-known geometric

applications is the algorithm for the location of a vertex in the plane that triggered the

development of the entire area. In the problem of locating a vertex in a plane, we are

given the subdivision of the Euclidean plane into polygons of n line segments that

intersect only at their ends " [39].

First, processing must be done on the line segments, so that given a query vertex

𝑝, it is possible to efficiently determine which polygons contain it. The plane is divided

into vertical stripes by drawing a vertical line that passes through each vertex, that is, the

intersections of the line segments in the subdivision of the plane [1], the intersection of

the line segments with subdivision of a fragment are arranged, then it is possible to

answer each query using two binary searches. One binary search locates the fragment

containing the query, and another binary search locates the segment before the query

vertex within the fragment.

If we have the set of a specific segment, we can obtain the set of segments by

removing the segments that end at the limit between them and inserting segments that

start at that limit. As all the segments are swept from left to right, we have that in total

30

there are 𝑛 eliminations and n insertions; one deletes and one insert for each line

segment, thus reducing the problem of keeping partially persistent search trees to query.

2.8.2. The Persistent Arrays. Dietz's article [40] shows a general technique for

creating persistent arrangements, which takes time 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔 (𝑚)) to access the

arrangement and 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔 (𝑚)) amortized [41] to change the content of an entry, where

𝑚 is the total number of changes being the size of space used 𝑚.

Otherwise, n indicates the size of the array and it is assumed that 𝑛 < 𝑚, the

array is considered a Fat Node with 𝑛 fields. The list of values-versions that describe the

assignments to each entry in the array is represented in a data structure proposed by [42].

This data structure has spatial complexity linear to the number of elements, making use

of perfect dynamic hashing [43].

2.8.3. Persistent Triangulations. Blelloch [44] describes a method to construct

Convex Hull in 3 dimensions, to subsequently obtain the Delaunay triangulation from the

edges of the convex envelope, to obtain the Delaunay Triangulation partially persistent,

information is maintained about the edges, which they are stored in data structures with

an optimal query time, in particular, making use of balanced search trees, to be able to

query the data structure at an earlier time 𝑡.

Many algorithms, including the one proposed by Blelloch [44], are based on the

construction of the convex polygon in the dimension 𝑑 + 1. That is, given a vertex 𝑝

outside the convex polygon of a set of vertices, said polygon can be extended to include

this vertex as follows. Consider the vertex 𝑝 outside as a subset of the faces for the

polygon. These faces are eliminated in the construction.

31

The boundary of these faces is a set of edges called the horizon, then a pyramidal

polyhedron is created as in Figure 2.16 [45], whose vertex is the outer vertex and whose

base is the horizon. This construction the vertex 𝑝 as a New vertex of the related

component, the inner vertices to the polygon, are discarded.

Figure 2.16 The Incremental Algorithm, Convex Polygon in 3 Dimensions.

Otherwise, to obtain Delaunay Triangulations partially persistent, information is

kept about the adjacencies, which are stored in data structures with an optimal query

time, in particular the use of balanced search trees.

32

3. PERSISTENT DELAUNAY TRIANGULATIONS

This section explains the algorithms proposed for the implementation of persistent

Delaunay triangulation. Four algorithms, Bowyer-Watson, Walk, Hybrid and Graph are

proposed for the insertion operation in partial persistence, the vertex removal operation is

also proposed for the Walk method. Later the Walk proposal for the full persistent

Delaunay triangulation is extended.

3.1. THE WALK METHOD

The proposal consists of a structure, which is divided into two fundamental parts:

1. The first corresponds to the data structures, which will support the persistent

Delaunay triangulation and whose stage we will call the internal structure.

2. The second describes the persistent insertion and deletion that will support the

proposed Delaunay triangulation.

3.1.1. Internal Structures. The internal structure, unlike libraries such as CGAL,

considers the persistence of previous versions. It allows storing previous states, which

were generated as a result of some modification operation. The storage cost of previous

versions in the internal data structure will minimize the temporary cost and maintain

computational complexity.

One of the simplest, but least efficient ways of maintaining versions would be by

storing full copies of all past versions and considering that every time an insertion or

deletion operation is performed. A new state or version is generated, then implementing

this method would be counterproductive in time and space.

33

In this sense, the internal structure aims to minimize the amount of memory

necessary to maintain the versions of the structure and, in addition, maintain the

algorithmic complexity in each of the operations. Considering that each operation of

insertion or elimination, in the Delaunay triangulation, modifies the edges of one or

several vertices. Then, it is proposed to use an additional data structure, which will allow

storing the changes, only of the edges and the affected vertices in a certain time 𝑡.

Figure 3.1 The Triangulation Over Time.

In Figure 3.1, the changes in triangulation overtime after inserting operations can

be seen. Where 𝑇1 represents the initial Delaunay triangulation and for the other

triangulations, 𝑇𝑖 represents the Delaunay triangulation of 𝑇𝑖−1 ∪ {𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}. In the same

figure, the black nodes represent vertices that were entered in a past time and, on the

other hand, the blue nodes are those that are being entered in the 𝑇𝑖 time. Each node

stores information of the time 𝑇𝑖 in which it was inserted, the edges store information of

34

the time in which they were created, similarly the edges that connecting with the blue

nodes represent the edges created in the time 𝑇𝑖.

The internal structure of the persistent Delaunay triangulation is made up of a

set of data structures, which allow keeping the information of the changes made on the

triangulation. These additional structures have the main objective to minimize the

amount of RAM, which will allow storing any modification. And, to make

consultations in the past of the structure, maintaining the computational cost of the

regeneration of the triangulation in a previous time 𝑡.

On the other hand, it is proposed to store information about the neighborhood of

each vertex over time (vertices that at some time had some edge in common). An

example is observed in Figure 3.1, where each edge has an integer associated, which

indicates the time in which it was created. In addition, each vertex stores a set of data,

which represent the historical information about vertices with which there was some

relationship (edge) in the past.

Figure 3.2 Internal Representation for the Triangulation Over Time.

35

In Figure 3.2 the persistent representation of Delaunay's triangulation of Figure

3.1 can be seen. Figure 3.2 shows the vertices of the Delaunay triangulation. Each

vertex has a balanced binary search tree associated and, in addition, each node of the

tree symbolizes an edge between the vertex 𝑝 and the destination vertex 𝑞 in 𝑇. Even,

it maintains information of the creation time (TC) and the elimination time (TE) of the

edge between 𝑝 𝑎𝑛𝑑 𝑞. For example, the first tree indicates that vertex 1 is connected

to vertices (VD) 2, 3, 4 and 5 and the root of this tree, that is, node [TC=4, TE=Inf,

VD= 4], indicates that the edge was created at time 4, which has not removed and is

connected to vertex 4 (respectively).

In other words, each node of the tree has the structure [TC, TE, VD], where TC

represents the creation time of the edge. TE is the elimination time of the edge. The value

Inf represents the infinite value, which means that the edge has not been eliminated, and

finally the adjacent vertex. An example of an edge that was eliminated in time 6 can be

seen, in this same Figure 3.2, in the red nodes.

3.1.2. Insert Operations. In the present investigation, triangulation is

represented as a set of vertices and faces. Each face or triangle provides access to its three

vertices and its three neighboring faces clockwise 𝑐𝑤 or counterclockwise 𝑐𝑐𝑤. Each

face has three-pointers to its three vertices and three-pointers to the three adjacent faces.

These pointers are indexed by 0,1 and 2 counterclockwise, on each face. The

vertex indexed by 𝑖 is opposite to the adjacent face with the same index; as shown in

Figure 3.3 [7].

For the insertion operation, the incremental algorithm seen in Section 2.5 will be

used. This method is used because the persistence in time requires storing information

36

every time an operation is performed. That is, it is not feasible to insert n vertices

together, as the divide and conquer method would do.

Figure 3.3 Representation of a Triangulation.

As stated in the incremental algorithm, the first step to being able to insert into the

Delaunay triangulation is to find the triangle that contains the vertex to be inserted. See

Figure 3.4. To find this triangle, a modification to the algorithm proposed by Brown [38]

was implemented whose computational cost is 𝑂 (√(𝑛)). This is because the algorithm

had to be adapted to work in our internal data structure. Modification to this algorithm is

necessary because the search for the triangle that contains the vertex depends not only on

the structure but also on the version in which the vertex is to be inserted. Algorithm 1

(Appendix A), which calls PS-Search, performs this procedure.

37

The algorithm shows the proposed method to find a near vertex in persistent

triangulation. For this, the input data are the vertex 𝑝 to be inserted, the persistent data

structure of the Delaunay triangulation and an integer value 𝑡, which indicates the time

at which the insertion operation will be performed.

Figure 3.4 The Location of the Triangle.

The algorithm shows the proposed method to find a near vertex in persistent

triangulation. For this, the input data are the vertex 𝑝 to be inserted, the persistent data

structure of the Delaunay triangulation and an integer value 𝑡, which indicates the time at

which the insertion operation will be performed.

The computational cost required in the worst case is (𝑂(√𝑛 ∗ 𝑘 ∗ log(𝑘)));

where 𝑛 indicates the number of vertices in the entire triangulation, 𝑘 represents the

38

maximum degree of triangulation. Finally, since in practice the set of edges adjacent to

a vertex 𝑣 is usually very small in relation to n, then √𝑛 ∗ 𝑘 ∗ log 𝑘 ≤ 𝐶√𝑛, from

which it is concluded that the proposed algorithm has a computational complexity of

𝑂(√𝑛). It should be considered that Algorithm 1 (Appendix) returns one of the edges

of the triangle containing 𝑝. Next, it is necessary to find the other two vertices of the

triangle containing 𝑝. This is achieved by finding the neighboring edge so that both

edges form a triangle that contains 𝑝.

With the 3 vertices that make up the triangle that encloses the vertex 𝑝, the

triangulation is loaded. This procedure is performed in the internal structure and loading

only the triangles that will be modified, those that must be affected by a flip operation.

This allows us to strictly keep the information on the changes that will be made. In Figure

3.5, only the vertices and their respective edges are marked burble, which is loaded from

the internal structure. Next, 3 edges are created adjacent to the vertex to insert 𝑝 with the

vertices of the triangle that contains that vertex. Then, the edges of the triangle containing

𝑝 are evaluated and if there is any illegal edge (that does not comply with Delaunay's

condition). The flip operation on that edge must be carried out, to subsequently evaluate

the 2 opposite edges.

In Figure 3.6, the purple edges that is related to the purple nodes represent the

edges that will be evaluated in order to verify whether they are legal or illegal edges. If

illegal, the flip operation is applied.

39

Figure 3.5 Load Triangles That Contains At Least One Vertex.

Figure 3.6 Edges to Be Evaluated to Perform Flip Operations.

Figure 3.7 An Illegal Node Will be Loaded to Execute the Flip Operation.

40

In Figure 3.7, the blue edge is an illegal edge. Then, to apply the flip operation,

the opposite vertex of that edge is loaded into memory. The read node, in the same figure,

represents this behavior.

After applying these operations, the edges adjacent to the red node are loaded, and

the algorithm continues to perform the same process as long as an illegal edge is found.

Figure 3.8 shows in red, the set of edges that will be evaluated after applying the first flip.

It is important to note that in the persistent Delaunay triangulation only the set of vertices

and edges that will be evaluated after an insertion operation is loaded. This means that the

amount of RAM is limited only by the number of vertices and edges loaded in the

evaluation process.

Figure 3.8 Edges to Be Evaluated to Perform the Red Flip Operation.

41

Algorithm 2 (Appendix), presents the modification to the classic incremental

algorithm for Delaunay triangulations. The function in the internal data structure is part

of the proposal for persistent Delaunay triangulation.

Correctness test for the insertion operation is following the steps below.

1. Initialization: Initially there is a temporary Delaunay triangulation, which

contains all the triangles adjacent to the triangle that contains 𝑥. This state can

be seen in Figure 3.5. In this figure, only the purple triangulation is loaded

into a temporary Delaunay structure.

2. A temporary Delaunay triangulation is maintained in each iteration. In each

iteration, the following edge 𝐸 ∈ 𝐴 is evaluated. If a flip operation is

executed, then the pair of edges that could be affected and can give rise to

new flip operations is loaded. Then, a temporary triangulation is

maintained, according to the classic incremental algorithm, until it is not

possible to do more flip operations. Here, it is important to note that, in

practice, the number of flip operations in a Delaunay triangulation is

constant, including 𝑂(1) in random vertices distributions [46]. Therefore,

its effect on the performance of the proposed algorithm is minimal.

3. Termination: Since the number of flip operations is constant and finite, and

that the algorithm ends when there are no more edges in the array, then it is

guaranteed that the algorithm ends.

3.1.3. The Operation for Loading Triangulations. The internal data structure

does not store information about faces, order, and orientation, as well as information from

neighboring triangles. This in order to minimize RAM. In this sense, a procedure must be

42

carried out that allows loading the triangles but considering the correct orientation and

information of the neighborhood. For this, Algorithm 3 is used. This algorithm receives a

vertex 𝑝 as input and returns all its adjacent vertices, at a certain time 𝑡, arranged in a

counterclockwise direction.

In Algorithm 3 all the vertices are obtained within the search binary tree

associated with 𝑝, taking into account that, for each node of the tree, the argument 𝑡 of

the function, be within the initial range 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 𝑡 ≤ 𝑡𝑓𝑖𝑛𝑎𝑙. This function reconstructs

the set of triangles, which are necessary, to perform the flip operations only on the

vertices and edges that exist at that time 𝑡.

3.1.3.1. The correctness test for loading triangulations.

1. Initialization: Initially there is only one vertex, which is the vertex 𝑝.

2. Given 𝑝 ∈ 𝑇 then all vertices 𝑞 adjacent to 𝑝 are loaded. Once all

vertices adjacent to 𝑝 are loaded, they are ordered counterclockwise to

𝑝, the correctness of this procedure is given by the correctness of the

sorting algorithm to use.

3. Completion: it is guaranteed that this algorithm ends since different

vertices are inserted, therefore, 𝑖 is the number of neighboring vertices

and 𝑘 the total number of vertices inserted until time 𝑡, it is guaranteed

that the algorithm ends when 𝑖 = 𝑘 + 1.

Once the edges adjacent to vertex p are loaded, it is necessary to regenerate the

triangle formed by these edges. To achieve this, Algorithm 4 (Appendix) is applied.

3.1.3.2. Correctness test for Algorithm 4 (Appendix). Which performs the

loading of the temporary Delaunay triangulation, from our internal structure:

43

1. Initialization: when starting the algorithm, there is only one side, which will

consider as infinite or null (NULL).

2. since 𝑝 ∈ 𝑇, then all vertices 𝑞 adjacent to a 𝑝 are loaded, this process is shown

on line 1, then the initialization of each face is performed, this process is observed

on lines 5 through 8. It is like this that before the insertion of each vertex, the

Delaunay triangulation corresponding to the inserted vertices, and their respective

adjacent vertices, is kept loaded.

3. Completion: let 𝑖 be the number of nodes inserted until a given iteration and the 𝑛

total number of vertices inserted until time 𝑡, it is guaranteed that the algorithm

ends when 𝑖 = 𝑛 + 1 in the worst case.

3.1.4. The Elimination Operation for the Walk Method. To perform the

removal of a vertex in a Delaunay triangulation and as seen in Section 2.4, it is enough to

eliminate the protruding edges of the vertex to be inserted along with the vertex. Then

perform the triangulation of the resulting polygon, as shown in Figure 3.9 the polygon

that should be triangulated is bounded by the purple nodes, with the added edges being

within the polygon.

In the case of the persistent data structure, the edges should be updated in the final

time as the time in which the vertex removal is performed. And add the new edges with

an initial time equal to the current time 𝑡 and infinite final time (still present in the current

triangulation).

There are numerous methods to perform the elimination of a vertex to Delaunay

triangulation, in this sense, it is proposed to use a simple and efficient complexity

44

elimination algorithm (𝑘𝑙𝑜𝑔𝑘) to eliminate the vertex in a Delaunay triangulation, based

on Shelling, to this will be used the following lemma [47].

Figure 3.9 The Elimination Operation of the Vertex.

Lemma 3.1: Consider the polygon 𝐻 = {𝑞0, 𝑞1, ⋯ , 𝑞𝑘} and a vertex 𝑝 such that the edges

of 𝑞𝑖𝑞𝑖+1 belong to the Delaunay triangulation of {𝑞0, 𝑞1, ⋯ , 𝑞𝑘, 𝑝}. If

|(𝑝, 𝑐𝑖𝑟𝑐𝑙𝑒(𝑞𝑖, 𝑞𝑖+1, 𝑞𝑖+2))| is maximum, then 𝑞𝑖𝑞𝑖+2 is an edge of the Delaunay

triangulation of {𝑞0, 𝑞1, ⋯ , 𝑞𝑘−1}.

Then the elimination of a vertex can be implemented by maintaining a

structure for storing ears and finding the lowest priority. In this implementation, the

remaining ears should be part of a doubly-linked list, to better represent the resulting

polygon in each iteration of Algorithm 5 (Appendix).

45

3.2. THE BOWYER-WATSON ALGORITHM

Bowyer [48] and Watson [49] simultaneously presented a random incremental

algorithm in their article, which considers Delaunay's rule as the primary criterion,

forming triangulations with almost unifying methods.

This algorithm begins with the formation of a sufficiently large artificial triangle

that captures all points from a given set 𝑃. Artificial points 𝑝−1, 𝑝−2 𝑎𝑛𝑑 𝑝−3 far enough

so that they do not affect the structure of Delaunay's triangulation over 𝑃, as shown in

Figure 3.10. Thus, the Delaunay triangulation was constructed over 𝑃 ∪ {𝑝−1, 𝑝−2, 𝑝−3}.

By defining a large artificial triangle, this ensured that all points from P are

located inside it. Further, the algorithm randomly selects a point from P and inserts it

into a triangulation. For each inserted point, first, find the corresponding triangle or

triangle, and then from all existing triangles in triangulation determine that whose

circumscribed circle contains the newly inserted point. These triangles are no longer

Delaunay's, so delete them from triangulation, and a hole is formed in their place. The

algorithm creates connections between the new point and the points that lie on the

boundary connections of the hole. In this way, we form new triangles, which are

Delaunay's, and fill them with a hole in the triangulation, as shown in Figure 3.9.

In the initial case, the first inserted point will fall inside the artificial triangle and

divide it into three smaller triangles, and then the division of the triangles and

replacement of the hole by the remaining points from 𝑃 will be carried out iteratively

until the entire set 𝑃 is processed. In the last step of the triangulation, the algorithm

deletes all triangles, of which at least one corner is formed by the point 𝑝−1, 𝑝−2, 𝑜𝑟 𝑝−3.

46

In this step, care must be taken not to destroy the edge of the convex triangulation

envelope. The result is a Delaunay triangulation over 𝑃.

Figure 3.10 Large Triangle (Contains All the Points Inside It).

The algorithm is scalable to several dimensions, and it takes 𝒪(𝑛1+1 𝑘⁄) time to

build Delaunay triangulation, where 𝑘 is the number of dimensions and 𝒪(𝑛) time to

manage the data structure [48]. For the two-dimensional Delaunay triangulation, the

points were to be sorted before being inserted into the algorithm, the algorithm to build

the Delaunay triangulation would take 𝒪(𝑛 log 𝑛) time. In practice, this is usually

negligible.

47

To start measuring the run time of the algorithm, we have chosen a step where

makes a random permutation over the read points. Then store the current time of the

algorithm.

The method stores the time value in nanoseconds. To finish measuring the run

time of the algorithm, determined the step when the algorithm verifies that all points

connections on the edge of the convex triangulation hull are present in the DAG and, if

not, form the corresponding triangles. In this step, the algorithm returns the Delaunay

triangulation and thus completes its purpose, so stopped the measurement after its

execution. To conclude the measurement, again use the System-Time method to save the

current value, which is greater than the previously stored value exactly for the time taken

by the Delaunay triangulation algorithm. Then subtract values from each other to give the

algorithm run time in nanoseconds, which is converted to milliseconds and seconds for

better transparency.

3.3. THE HYBRID METHOD

A modification to the Walk method is proposed, with this modification the

process of finding the triangle 𝑡𝑟 containing 𝑝 is accelerated, where 𝑝 is the vertex to be

inserted in the current triangulation 𝑇. For this, a structure for the location of vertices 𝐷 is

constructed, which is an acyclic directed graph [50]. The final nodes of 𝐷 correspond to

the triangles of the current triangulation 𝑇, the internal nodes of 𝐷 correspond to the

triangles that belonged to the triangulation at some previous time and that are no longer

part of the current triangulation.

48

The structure to find the vertex was taken from De Berg [24] and is constructed

as follows. Initially, a triangle is created large enough to contain inside all the vertices

to be inserted, this can be seen in Figure 3.11. In this figure, (a) represents a single

triangle which we will call Δ1. In (b) the data structure is shown; which, in this case,

only consists of a single node.

Figure 3.11 The Initial Structure.

Otherwise, in Figure 3.12, in (a), the insertion of a vertex inside Δ1 is observed.

This generates three new triangles, which we will call Δ2, Δ3 𝑎𝑛𝑑 Δ4. In (b), the data

structure (acyclic directed graph) of the triangulation in (a) is appreciated. As can be

seen, the root node remains Δ1, that is, the triangulation in the previous time. To this

node, nodes Δ2, Δ3 𝑎𝑛𝑑 Δ4 are added that correspond to the new triangles generated by

inserting the new vertex; In this way we maintain both the current version of the

triangulation and the previous ones.

49

Figure 3.12 The Initial Structure After Inserting a Vertex.

In addition, to perform a flip operation, in this data structure, you must find the

two triangles that share the edge in which the operation will be carried out. For

example, this behavior is shown in Figure 3.13. In (a1) it can be seen that Δ7 and Δ8

have an illegal edge and therefore a flip operation must be performed so that the

triangulation changes, eliminating Δ7 and Δ8 and generating triangles Δ11 and Δ12, as

shown in (a2).

On the other hand, this variation in triangulation must generate a change in the

data structure that represents it. This can be noticed in (b1) and (b2). Where (b1) and

(b2) are the directed acyclic graphs of (a1) and (a2) respectively. In (b2) triangles Δ11

and Δ12 have triangles Δ7 and Δ8 as parents, therefore Δ7 and Δ8 were replaced by Δ11

and Δ12. In this way all leaf nodes represent the current triangulation, while the other

nodes in the graph form triangles in times past. Then you can summarize the data

structure in Algorithms 6 and 7 (Appendix).

50

Figure 3.13 The Initial Structure After Insert-Flip.

3.4. THE GRAPH METHOD

The data structure seen above maintains persistence, as it contains all the

triangles that were once part of the triangulation. In addition to the triangles of the

current triangulation as final nodes of the graph. In addition, if a time identifier was

added in each node of the structure and would store in an array sequentially sorted in a

non-descending manner by the associated time. Then a triangulation could be retrieved

in a given time t making use of binary search on this arrangement and thus be able to

retrieve the final nodes of the structure in that certain time.

51

3.5. THE FULL PERSISTENCE

This section presents an additional contribution. In addition to partial persistence,

the data structure supports full persistence, as in Figure 3.14 [33].

To achieve this type of persistence, an integer value is added to each node of

the balanced binary search tree. This value indicates the version to which an edge

belongs, and, in this way, all operations remain equal to partial persistence.

Figure 3.14 The Full Persistence.

All the algorithms applied in the partial persistence method work similarly in the

full persistence, with the difference that it is now necessary to consider the value of the

version. One of the difficulties, in the method of complete persistence, is to find the

vertex in the version tree from where to start the path to find the triangle that contains the

vertex to be inserted. This procedure is complicated in contrast to its partial version.

Considering the version tree of Figure 3.14, the problem is reduced to finding an

ancestral random node of the version to be modified. So, it is proposed to use dynamic

programming to find the 𝑖𝑡ℎ ancestor of the node, that is to say the 𝑖 − 𝑡ℎ node on its way

52

to the root, with this it is guaranteed to find said vertex with a computational cost of

𝑂 (𝑙𝑜𝑔𝑛) of insertion by node, and a computational cost of consultation 𝑂 (𝑙𝑜𝑔𝑛) [51].

The focus is on pre-processing, using dynamic programming, sub-matrices of

length 2𝑘. Maintaining a matrix 𝑀 [𝑁][𝑙𝑜𝑔𝑁] where 𝑀 [𝑖] [𝑗] is the 2𝑗 ancestor of 𝑖.

In Algorithm 8 (Appendix), all 2𝑖 ancestors of 𝑝 are calculated.

3.5.1. The Correctness Test for the Full Persistence.

1. Initialization: At the beginning of the algorithm, the ancestor of vertex

𝑝 is the father of 𝑝.

2. At the end of each iteration, the 2𝑖 ancestor of 𝑝 is calculated, from the

following recurrence function, where 𝑇(𝑥) represents the father of 𝑥:

𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖; 𝑥) = {
𝑇(𝑥), 𝑖𝑓 𝑖 = 0

 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖 − 1; 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖 − 1; 𝑥)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (12)

3. Completion: the completion of the algorithm is guaranteed, since the

height of the version tree has 𝑎 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑛 where 𝑛 is the number of

versions. Therefore, let 𝑚 be the number of ancestors of 𝑝, it is guaranteed

that the algorithm ends in the worst case when 𝑖 > 𝑙𝑜𝑔2 (𝑛 + 1).

In Algorithm 9 (Appendix), a random node ancestor of 𝑝 is calculated. We check

if in the binary representation in nanometer the bit that corresponds to the position 𝑖 is on,

if it is, id Random Vertices is updated as its 𝑖 − 𝑡ℎ ancestor.

3.5.2. The Correctness Test of Algorithm 9 (Appendix).

1. Initialization: Initially the 0 ancestor of 𝑝 𝑖𝑠 𝑝.

2. Given the binary representation of ancestor, random vertex is updated to

be the next 2𝑖 ancestor of 𝑝.

53

3. Completion: Considering that the height of the tree has 𝑎 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑛,

where 𝑛 is the number of versions, and let 𝑚 be the number of

ancestors of 𝑝. Then, it is guaranteed that the algorithm ends in the

worst case when 𝑖 > 𝑙𝑜𝑔2 (𝑛 + 1).

3.6. POINTS RATE IN DELAUNAY TRIANGULATIONS

Many algorithms for constructing Delaunay triangulation depend in one way or

another on the number of connections to which each point belongs, that is, on the

degrees of the point in the triangulation. There is little mention in the literature on the

notion of the highest point rate in Delaunay triangulation. Bern, and Yao [52] proved

that the expected maximum point rate in a Delaunay triangulation planar, with points

plotted by a homogeneous Poisson process at the interval [0, √𝑛]
2
 , is known as

log 𝑛

log log 𝑛
.

𝑛 − 𝑒 + 𝑚 = 1 (13)

In practice, it turns out that the boundary is not sufficiently precise, since it is only

an approximation limited to the distribution of points by the Poisson process, nor does it

imply that in practice there are points that only they radiate at the edge of the convex hull

triangulation, many times higher than expected. Broutin, Devillers, and Hemsley [53]

have proved that for a random distribution, this 𝑐𝑘 in the planar in the Delaunay

triangulation is more accurate at the expected maximum radiance of this log2+𝜀 𝑛, for

each 𝜀 > 0. when that number of points n goes to infinity.

54

From Euler's formula (4) [12], the Delaunay triangulation 𝐷𝑇 over a set of power

points has 𝑛 less than 3𝑛 connections and 2𝑛 triangles. Since each connection contains

two points, the sum of point rates for all nodes in DT is less than 6n. If we divide this

sum by the number of all points in DT, we get an average point rate in DT less than 6.

3.7. DETERMINING THE MAXIMUM AND AVERAGE POINT RATE.

 The maximum and the average points rate was determined after the algorithm

has already constructed a Delaunay triangulation over a given set of points. A table

that will keep the vertices rate for each vertex in the given set was defined. Then, walk

across all the triangles that construct the Delaunay triangulation and store its degree

for each vertex in the table. This has been done by checking the number of occurrences

of vertices in triangles in the DAG. Each time a vertex sits in one of Delaunay

triangles, the time counter in the corresponding field in the table will be increased until

all vertices and triangles are processed.

Specific examples are vertices that lie on the edge of the convex hull, which

has a degree higher than the number of the triangles. Thus, a particular criterion is

added for these vertices to check that an individual vertex is part of the edge of the

convex hull of the Delaunay triangulation. If so, the rate of the corresponding vertices

is increased by one more, and the highest vertices rate is obtained by finding the

highest vertices in the vertices rate table. An iterative values comparison was held and

always store the maximum until all the vertices are processed. The average vertices

rate is obtained by summing all the vertices degrees with each other and dividing that

value by the number of vertices.

55

4. TESTS AND RESULTS

This section explains the tests and results performed during the implementation.

The tests were divided into three groups.

The first part of the test is focusing on constructing a planar Delaunay

triangulation that is modeled after the Bowyer-Watson algorithm. The data structure

that was used for this test is DAG because it allows us to easily navigate between the

contained nodes. It is one of the classic implementations with the HashMap class to

store the triangles for which created the new class.

The second group of the test is focusing on analyzing the temporal and spatial

complexity of the three proposed methods: Walk, Hybrid and Graph, in contrast to the

CGAL library. It is important to emphasize here that the three methods are persistent,

while CGAL does not. Therefore, in this experiment, it is intended to demonstrate that

the computational complexity of the methods with persistence is like the CGAL itself,

who does not store temporary information.

Where in the third group of experiments, the temporal and spatial behavior of

persistent structures was analyzed, with a set of random data. Finally, randomized data

tests were performed to analyze the behavior of the fully persistent data structure. In the

last case, tests were carried out with the Walk method because it is the only method that

has full persistence.

56

4.1. THE BOWYER-WATSON ALGORITHM RESULT

For this development of the experimental group the data set that used is the

DAG dataset. In this experiment, the procedure is to walk across all triangles in the

DAG dataset and remove triangles whose at least one endpoint is equal to the endpoint

of the initial triangle. This eliminated the artificial points and consequently. The edge

of the convex hull triangulation could be destroyed in this step, so it is necessary to

verify that all Delaunay triangulation connections lying on the edge of the convex

envelope are indeed located in the DAG.

4.1.1. The Measurement for the Run Time. The running time of the Bowyer-

Waston algorithm was examined. Table 4.1 presents the results for the test samples.

Figure 4.1 shows the running time of the algorithm as a function of the vertices number.

Figure 4.1 The Run Time for the Bowyer-Waston Algorithms.

57

Table 4.1 The Average Run Time for the Given Number of Vertices.

Number of vertices Average run-time (in seconds)

2000 1.054

4000 3.851

6000 9.008

8000 16.552

10000 25.593

12000 37.522

14000 50.801

16000 66.588

18000 84.716

20000 100.503

22000 105.864

24000 110.413

26000 115.587

28000 120.841

58

It is observed that the average execution time of the algorithm increases with

the number of vertices but remains within the limit 𝑂(𝑛).

4.1.2. Experiments of the Maximum Point Rate for a Given Vertices. The

highest points rate in the Delaunay triangulation over the given sample is calculated.

Table 4.2 presents the results for the average value of the highest point rate. Table 4.3

lists the maximum and minimum point rate of all samples for the given number of

vertices. The results show that when increasing the number of vertices, a regular growth

in the value of the highest point rate occurs. It observed that samples up to and including

12000 vertices far exceed the theoretically expected maximum level. Also, samples from

16000 vertices fall below the expected limit on average. It was observed that among 6000

samples for each number of vertices, there was such a model where the maximum rate

exceeded the expected limit.

The average point rate in the Delaunay triangulation over the given sample was

tested. The results are presented in Table 4.4. As the number of vertices increases, it is

clear there is an increase in the average point rate. As the number of vertices increases,

it is clear there is an increase in the average vertex rate that approaches asymptotically

the limit 6.

4.2. THE EXPERIMENTAL GROUPS TEST IN PARTIAL PERSISTENCE

DATA STRUCTURES

For the development of the experiments, two databases were considered, one

consisting of a set of images and the other by random vertices. Each of them is described

below.

59

Table 4.2 The Maximum Point Rate for Given Vertices.

Number of vertices

The highest rate for

vertices

The expected value of the

highest rate for vertices

2000 10.15 8.56

4000 11.355 10.45

6000 11.925 11.56

8000 12.555 12.431

10000 13.085 13.311

12000 13.335 14.021

14000 13.515 14.611

16000 13.805 15.121

18000 14.125 15.571

20000 14.655 15.981

22000 14.775 16.391

24000 14.895 16.751

26000 15.185 17.031

28000 15.475 17.465

60

Table 4.3 The Maximum and Minimum Value of the Highest Number.

Number of vertices
The maximum value

of the highest

vertices rate

The minimum value

of the highest

vertices rate

2000 12 8

4000 12 8

6000 14 8

8000 14 9

10000 15 9

12000 16 10

14000 16 11

16000 18 12

18000 18 12

20000 18 12

22000 19 13

24000 20 13

26000 21 14

28000 22 14

61

Table 4.4 The Average Value for a Given Number of Vertices.

Number of vertices The average value of the vertices rate

2000 4.514

4000 5.171

6000 5.289

8000 5.289

10000 5.413

12000 5.433

14000 5.441

16000 5.445

18000 5.446

20000 5.448

22000 5.45

24000 5.45

26000 5.47

28000 5.52

62

The first experiment was developed using a database of 15 images of different

sizes. Harris's algorithm [54], it was applied to each of the images to obtain the most

representative set of pixels in the image, these pixels are called key points. Subsequently,

the key points were stored in files and from them, the Delaunay triangulation was

generated with the 3 proposed methods (Walk, Hybrid and Graph).

In the second experiment, several tests were carried out with different sets of

random vertices. 15000, 25000, 35000, 45.000, 55.000, 65.000,75.000 and 95.000

vertices were taken. In both experiments, comparisons were made regarding temporal

cost and space cost. The results obtained for each of the test groups are described below.

4.2.1. The Comparing of the Image Experiments Results. Figure 4.2 shows

Images in three columns, the first shows the real images, the second column shows the

result of applying the Harris algorithm [54] on the images of the first column to obtain

the most representative set of pixels of the images (key points). Finally, in the third

column the Delaunay triangulation is shown carried out on the vertices of the second

column.

4.2.1.1. The cost results for the CPU. Table 4.5 shows the results obtained (in

seconds) when applying the proposed methods (Walk, Hybrid and Graph) in comparison

with the results of CGAL. In this table, the first column represents the number of vertices

(key points) obtained in each image. Finally, columns 2, 3, 4, and 5 are the results, in

seconds, of the computational cost of the Hybrid, Graph, Walk, and CGAL algorithms,

respectively. In the results, it can be observed that, as the number of vertices is greater,

the Graph method has a better performance than CGAL.

63

Figure 4.2 Results of Applying Triangulation Algorithms.

On the other hand, the Walk and Hybrid method have a lower performance,

because the first one uses the modified search algorithm which increases the

computational cost by a factor of 𝑂(√𝑛). While in the second, it combines the internal

data structure with the data structure of the Graph method, so that it is necessary to load

the triangles of the internal structure each time an insert is made.

4.2.1.2. The cost results for the RAM. In the same way as in the experiment to

evaluate the temporary cost or cost in CPU, Table 4.5 shows the results of RAM

consumption of the three proposed methods Walk, Hybrid and Graph compared with

CGAL.

64

While Table 4.6 shows that, of the three methods proposed to build a persistent

data structure, the lowest RAM consumption was obtained by the Graph method. It is

important to note, at this time, that the CGAL library requires less RAM. However,

CGAL is not persistent, which implies that it does not maintain information from past

versions and in that sense, it is expected that its spatial complexity or consumption of

RAM memory is much lower than the 3 proposed methods.

4.2.2. The Experimental Results on the Random Dataset. This section will

contain the cost result for the CPU and RAM.

4.2.2.1. The cost results for the CPU with the random dataset. In the same

way as previous experiments, in Table 4.7 the temporal behavior of the proposed

algorithms (Walk, Hybrid and Graph) can be seen in comparison with CGAL for the

construction of the Delaunay triangulation for a certain number of vertices. Although

CGAL does not admit persistence in any of its types, the objective was to analyze

whether any of the proposed algorithms, in addition to being persistent, it could execute

Delaunay triangulation competitively with CGAL.

Figure 4.3 shows that the Walk method, for the random dataset, has a

computational cost greater than the Hybrid and Graph methods and obviously CGAL.

In addition, we can see that the Graph method has a computational cost lower than the

two proposed methods (Walk and Hybrid) and is even competitive with CGAL. In

summary, the proposed Graph method proved to be the most efficient of the proposed

methods.

65

Table 4.5 Analysis of the Temporal Cost (in seconds) of the Walk, Hybrid, Graph and

CGAL Methods.

No. of

vertices

Hybrid

method

Graph

method

Walk method CGAL

1239 0.432 0.254 0.541 0.066

4362 1.123 0.623 1.289 0.242

4624 1.276 0.665 1.560 0.278

4954 1.3.14 0.679 1.658 0.308

5231 1.357 0.682 2.170 0.364

7436 2.851 1.103 2.946 0.648

9753 3.182 1.558 3.688 0.874

13245 6.001 2.099 5.480 1.296

21669 6.487 3.776 11.605 2.603

21788 10.406 3.799 11.714 2.621

30689 13.754 6.091 16.768 5.147

33579 36.845 6.831 21.386 5.417

125889 37.583 25.853 103.931 34.907

128588 43.167 27.204 104.992 38.415

131478 49.475 27.259 106.477 39.075

66

Table 4.6 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid Graph and CGAL

Methods.

No. of

vertices

Hybrid

method

Graph method Walk method CGAL

1239 48.376 1798 46.580 448

4362 53.164 6110 49.696 740

4624 54.112 6914 50.588 736

4954 54.152 7298 50.597 740

5231 54.468 7358 51.689 740

7436 59.608 12.078 55.221 1032

9753 64.904 16.990 58.717 1440

13245 71.468 22.786 62.849 1728

21669 90.300 40.050 75.777 2808

21788 90.312 40.354 75.879 2808

30689 109.008 56.714 87.515 3832

33579 113.948 62.974 90.955 4008

125889 284.204 213.186 204.863 13.672

128588 284.542 213.576 205.654 13.672

131478 301.910 228.960 217.446 14.628

67

Table 4.7 Analysis of the Cost (in Kbytes) for the Walk, Hybrid Graph and CGAL

Methods.

Random

insertion

Hybrid

method

Graph

method

Walk

method

CGAL

5000 2.154 1.112 3.254 1.019

15000 3.774 2.096 6.929 1.886

25000 5.447 3.105 8.757 2.831

35000 7.333 4.103 12.179 3.502

45000 9.388 5.165 16.027 4.575

55000 10.896 6.204 19.454 5.655

65000 13.439 7.687 23.054 6.900

75000 13.954 8.390 28.559 9.094

85000 17.616 11.081 33.656 9.494

95000 18.844 11.412 36.424 11.732

This behavior is due to the fact that in the Graph method, the algorithm to find the

triangle which contains the vertex that is intended to be inserted, has a 𝑙𝑜𝑔𝑛

computational cost, in relation to the Walk method whose search algorithm has a cost of

√𝑛. On the other hand, the hybrid method adds, to the Walk data structure, an additional

structure to allow the triangle search to be done in 𝑙𝑜𝑔 (𝑛) time, however, by requiring

68

loading all the triangles affected by the process of insertion, its computational cost is

increased and, for this reason, its performance is lower than the Graph method.

Figure 4.3 Comparison of CPU Performance Between Proposed Methods and CGAL

(Line Diagram) at Random Points.

In conclusion, we can say that the Graph method is the method with the best

results in terms of computational cost and, it meets the objective of developing a

persistent data structure that minimizes computational time when performing

operations on the structure. In this specific case, of the operations from insertion.

4.2.2.2. The cost results for the RAM with the random dataset. Table 4.8

shows the results in the consumption of RAM (Kbytes) of the proposed algorithms

(Walk, Hybrid and Graph) compared to CGAL. Although CGAL does not admit

69

persistence in any of its types, the objective was to analyze whether any of the proposed

algorithms, in addition to being persistent, could execute Delaunay triangulation

competitively with CGAL.

Figure 4.4 diagram line data shown in Table 4.8, in this figure the Graph method

requires less memory than the Hybrid Walk and methods. It can be concluded that,

without including the implementation in CGAL, the method that consumes less RAM is

the Graph method, this is because in random distributions the depth of the graph is

𝑂 (𝑙𝑜𝑔𝑛).

Figure 4.4 Comparison of CPU Performance Between Proposed Methods and CGAL

(Line Diagram) at Random Points.

70

Table 4.8 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid, Graph and CGAL

Methods at Random Points.

Random

Insertion

Hybrid

method

Graph

method

Walk

method

CGAL

5000 69.548 18.836 59.748 1440

15000 80.240 29.232 66.744 2048

25000 91.716 38.832 74.440 2660

35000 102.408 48.204 81.296 3228

45000 113.232 59.624 88.300 3832

55000 125.512 69.392 96.572 4524

65000 136.204 78.926 103.568 5060

75000 147.028 88.440 110.564 5584

85000 157.720 97.812 117.548 6188

95000 168.412 107.184 124.556 6792

4.2.3. Query Experiments for the Incremental Random Datasets. In the same

way as previous experiments, in Table 4.9 and in Figure 4.5 you can see the temporal

cost of the proposed algorithms (Walk, Hybrid and Graph) on a triangulation of 95000

vertices, where queries are made to be able to recover a certain triangulation in a previous

time 𝑡, from a total of 𝑡 vertices, for the algorithms (Walk, Hybrid and Graph).

Where Table 4.10 and Figure 4.6 show the computational cost of fully loading a

triangulation at an earlier time 𝑡 for the Walk, Hybrid and Graph methods.

71

Figure 4.5 Consultations in Previous Times for the Delaunay Triangulation.

Table 4.9 Analysis of the Temporal Cost (in seconds) When Loading a Triangulation in

the Walk, Hybrid and Graph Methods at Random Points.

No. of Vertices Hybrid method Graph method Walk method

5000 0.034 0.068 0.038

15000 0.035 0.107 0.040

25000 0.037 0.145 0.042

35000 0.039 0.182 0.044

45000 0.043 0.217 0.047

55000 0.045 0.253 0.049

65000 0.051 0.282 0.051

75000 0.053 0.311 0.054

85000 0.055 0.333 0.057

95000 0.059 0.354 0.060

72

Table 4.10 Analysis of the Temporary Cost (in seconds) When Consulting the Walk,

Hybrid and Graph Methods at Random Points.

No. of Vertices Hybrid method Graph method Walk method

5000 0.236 0.187 0.247

15000 0.330 0.348 0.334

25000 0.429 0.499 0.437

35000 0.531 0.654 0.562

45000 0.635 0.792 0.644

55000 0.745 0.936 0.746

65000 0.856 1.075 0.858

75000 0.967 1.192 0.963

85000 1.072 1.338 1.074

95000 1.195 1.477 1.187

Figure 4.6 Delaunay Triangulation Load in Previous Times.

73

4.3. THE EXPERIMENTAL GROUPS TEST IN FULL PERSISTENCE DATA

STRUCTURES

Unlike the previous partial persistence, in this experiment, Delaunay triangulation

was constructed considering that each insertion operation is carried out in a version of the

structure so that each modification will produce a new version.

In this section, experiments were carried out to determine the computational cost

of the search method for the triangle containing the inserted vertex. Comparisons were

made between the proposed algorithm and a brute force technique. On the other hand,

comparisons were made between the fully persistent structure and CGAL modified to

simulate total persistence.

4.3.1. Search the Algorithm Evaluation. Table 4.11 shows the times to find the

triangle that contains the vertex to be inserted, as well as the loading operations of the

triangles that contain this vertex and the flips necessary to construct the Delaunay

Triangulation. Where Figure 4.7 shows the differences in performance when using the

two types of algorithms to search for the triangle that contains the vertex to be inserted

(brute force and random vertex).

To analyze the performance of the queries in the proposed data structure, a fully

persistent Delaunay triangulation with 15,000 vertices was created. It should be noted

that the queries allow finding the number of neighbors of a vertex in a certain time t, and

of a certain version. As in the previous experiment, the queries maintain a similar

performance and independent the size of the triangulation for the time of the query and

the version in which it is located. In Figure 4.8, it can be seen that since the nodes are

directly indexed, the query time maintains an almost constant value per search time.

74

Table 4.11 Performance Results in Insertion Operation (in seconds) in Delaunay

Triangulation with Complete Persistence.

No. of Vertices Walk method Brute Force Method

500 0.002 0.007

1000 0.058 0.054

3500 0.836 0.927

10000 6.729 8.043

15000 18.109 21.043

Figure 4.7 Comparison of Execution Times (in seconds) of a Brute Force-Based Method

Against the Walk Method for Full Persistence.

75

Figure 4.8 Execution Time (in seconds) of Query Operations for Full Persistence.

4.3.2. Evaluation of the Proposal Method and the CGAL Method. The last

experiment was developed in order to compare the performance, in terms of RAM

memory and efficiency, between the proposal and the CGAL (Computational Geometry

Algorithms Library), which is a library of geometric algorithms widely used in various C

++ applications.

The experiment was developed considering that CGAL does not have persistence,

in this sense, and to be fair, vertices were inserted incrementally both in CGAL and in the

proposal. On the other hand, after each insertion, a copy was made of the entire structure

in CGAL to allow persistence and contrast results with our proposal. In this way,

demonstrate that, indeed, our persistent structure drastically reduces the amount of RAM

memory, and is also more efficient than maintaining persistence in CGAL with the naive

method of keeping copies.

76

Table 4.12 shows the amount of RAM memory, in Kbytes, required by CGAL

and by the proposal. Also, the results are observed, in seconds, of the efficiency of our

proposal in contrast to CGAL. In the results, it can be seen that as the number of vertices

to be inserted increases, CGAL consumes significantly a greater amount of RAM

memory in contrast to the proposal. On the other hand, you can also notice the

computational efficiency of our proposal.

In Figures 4.10 and 4.11, you can see the delay times as well as the use of RAM

memory, for the given proposal and its naive implementation in CGAL. In both cases, it

is confirmed in practice, the asymptotic differences between both implementations.

Table 4.12 Comparison of Efficiency (in seconds) and RAM Memory Consumption (in

Kbytes) Between CGAL and the Proposal for Complete Persistence.

 Vertices 500 1000 3500 10000 15000

Proposed

Method

RAM 24 1875 6573 11.764 14.652

CPU 0.103 0.431 3.752 4.375 6.869

CGAL

Method

RAM 28 61.212 98.431 6.186.564 8.256.432

CPU 0.365 0.984 13.457 102.587 150.768

77

Figure 4.9 Comparison of Execution Time (in seconds) Between Proposal Method and

CGAL for Full Persistence.

Figure 4.10 RAM Memory Comparison (in Kbytes) Between Our Proposal and CGAL

for Complete persistence.

78

4.4. THE ALGORITHM COMPLEXITY ANALYSIS

This section analyzes the computational complexity of the proposed data

structures. The main difference between the Walk, Hybrid and Graph methods is given

by the search procedure for the triangle that contains the inserted vertex in the Delaunay

triangulation. The Walk method chooses a random vertex on which it makes a journey

until finding a vertex of the triangle containing the vertex to be inserted. While the

Hybrid and Graph methods use the structure described in subsections 3.2 and 3.3, the

difference between these two methods is due to the way persistence is maintained, since,

in the Graph method, only one use is made. Data structure to store all the triangles

generated during the triangulation, as well as the corresponding time, in which they were

created.

In the three proposed methods, the only one capable of supporting the removal

operation is the Walk method. This is because the other two proposed methods Graph,

and Hybrid still lack an optimal way to perform this operation. Each routine is then

evaluated separately.

1. Label assignment method: For this method, the algorithm described in

subsection 3.1.1 is used, which uses a hash table, whose complexity is O (1).

This routine is used in the Walk and Hybrid method.

2. Triangles around a vertex loading method: The complexity of this routine is

𝑂 (𝑘𝑙𝑜𝑔𝑘) where k is the number of neighbors for a vertex. This routine is used

in the Walk method since the number of adjacent triangles is usually amortized

constant, we can consider that the cost of this procedure is a constant C.

79

3. Search method for a triangle in a triangulation: This algorithm varies

depending on the proposed method. In the case of walk, it has a computational

complexity of √𝑛, however, for the hybrid and Graph methods, its

computational time is 𝜃(log(𝑛)).

The triangle load depends on the number of neighboring vertices of a vertex in

a Delaunay triangulation, it is usually constant. Therefore, the Walk method has an

asymptotic complexity greater than 𝑂(𝐶) when loading the triangles affected by the

vertex to be inserted. In the case of the Hybrid and Graph, this cost is 0, since all the

triangles are already loaded in the structure.

Then the final complexity of the persistent data structures proposed when

inserting a vertex is 𝑂(√𝑛) for the Walk method, 𝑂(𝑙𝑜𝑔 (𝑛)) for the Hybrid method and

𝜃(log(𝑛)) for the Graph method.

80

5. CONCLUSION AND DISCUSSION

5.1. CONCLUSION

This dissertation deals with the field of Delaunay triangulations. Different types

of data structures were proposed and developed for Delaunay triangulations.

The first implementation was used the DAG data structures with incremental

insertion algorithm. The time measurements of the execution of the improved

incremental algorithm has shown that the actual execution time is within the theoretical.

However, choosing a DAG for a data structure is not the most optimal choice for

incremental construction algorithms. Guibas and Stolfi [55] have presented a quad edge

data structure designed to triangulate vertex in two- and three-dimensional spaces. O.

Devillers [47] presented a data structure of the Delaunay hierarchy that operates on the

location of a vertex that is relative to its closest neighbors. The structure takes up a much

smaller percentage of memory compared to DAG. Upgrading our algorithm with an

improved data structure would optimize memory consumption, thus increasing the

complexity of the algorithm. Broutin, Devillers, and Hemsley derived the theoretical limit

for the asymptotic behavior of the maximum vertex rate in Delaunay triangulation as the

number of vertices increases [53]. Analysis of the results of our measurements showed

that, in practice, the highest vertex rate will remain below the expected limit for a large

number of vertices, which is estimated at 4000 vertices in the selected sample. The

theoretically expected value of the average vertex rate should not exceed 6. The results of

this dissertation's measurements confirm this. By increasing the number of vertices, in

practice, the value of the average vertex rate asymptotically approaches the expected

81

value of 6 and does not exceed it. With increasing the number of vertices, both the

highest and the average rate vertex gradually increases. Since the point patterns are

arranged at the same interval, it can be concluded that the maximum and average point

rates depend on the density of the vertices distribution.

Where the second and third implementations presents three data structures (Walk,

Hybrid and Graph) that deals with Walk, Hybrid and Graph. The Walk method has a

computational cost, for the insertion operation, of 𝑂(√𝑛) and, a computational cost for

the elimination operation of 𝑂 (𝑘𝑙𝑜𝑔 (𝑘)); where k is the number of adjacent vertices and

𝑛 is the total number of vertices. For the Hybrid method, the insertion algorithm has a

complexity of 𝑂 (𝑙𝑜𝑔 (𝑛)), however, it does not support deletion. Finally, the Graph

method has an insertion cost of 𝜃(𝑙𝑜𝑔 (𝑛)) and does not support deletion either.

In addition, correction evaluations of each of the proposed algorithms were

carried out and tests with random image and vertex databases were developed, reaching

the following conclusions:

The data structure, in its partial version, is competitive with respect to other data

structures raised and even better than those that do not have persistence, the latter being

the big difference. In addition, it can be used without using persistence.

In the full version, the data structure shows an advance in the state of the art, this

is because, in the literature, there is currently no data structure for Delaunay triangulation

with complete persistence.

In the partial version, the Graph method demonstrated a better performance in

relation to the Walk and Hybrid methods, both in computational cost and in the use of

RAM. However, Graph does not present persistent elimination. In comparison, the

82

Walk method, although it is the least efficient of the other two, has persistent

elimination and, since the efficient insertion algorithm is related to the performance of

the search algorithm of the triangle that contains the vertex to be inserted, which is

𝑂(√𝑛), so it is possible to create a more efficient persistent search algorithm to

improve the results of this method.

5.2. LIMITATION

In the fully persistent version, the edge loading operation still has problems with

its performance. This is due to the need to store information about the version number

and start time and end time values at which there are adjacent edges with other vertices.

Performing the search for the triangle that contains the vertex to be inserted has

an amortized complexity of 𝑂(√𝑛). Therefore, the possibility of minimizing this

dimension through a more efficient search algorithm is still pending.

83

APPENDIX

ALGORITHMS

Algorithm (1): PS-Search (Vertex 𝑝, Internal Structure 𝑇, Integer 𝑡).

Data: Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡

Result: Edge E

1. v: = Random Vertex (𝐷𝑇, 𝑡);

2. E: = DT-LoadEdges (𝑣, 𝐷𝑇, 𝑡);

3. E: = Sort (𝐸, 𝑝);

4. e: = takes an edge∈ 𝐸;

5. if Right Of (𝑋, 𝑒) then

6. e: = Sym.e

7. end;

8. while true do

9. if X = e. Dest or X=e.Org then

10. return e;

11. else

12. p: = 0;

13. if not Right Of (X, e.O next) then

14. p: =1;

15. if not Right Of (X, e.D prev) then

16. p: =2;

17. if p is 0 then

18. return e;

19. else

20. if p is 1 then

21. e: = e.O next;

22. else

23. if p is 2 then

24. e: = e.D prev;

25. else

26. if dist (e.O next, X)<dist (e.D Prev, X) then

27. e: = e.O next;

28. else

29. e: = e.D Prev;

return e

84

The Algorithm 1 shows the proposed method to search for a near vertex in the

persistent triangulation. For this, the input data is: the vertex 𝑝 to insert, the Delaunay

triangulation persistent data structure and an integer value 𝑡, which indicates the time at

which the insert operation will be performed.

Inline 1 of the algorithms, the RandomSpeed function is executed, which returns,

at random, a vertex of the structure. This procedure is performed in 𝑂(1) order because

the vertices are indexed in a hash table. Once the vertex v is loaded; then, in line 2, all the

edges of this vertex are retrieved, which are stored in a balanced search tree, as long as

the creation time of the adjacent edges are within the range of parameter 𝑇. This

procedure takes a time of 𝑂(𝑘), where 𝑘 is the number of edges adjacent to 𝑣. Line 3

orders the edges of 𝑣 counterclockwise and the ordering is done in a time 𝑘𝑙𝑜𝑔(𝑘). Inline

4, an edge of 𝐸 is taken and, from line 5 onwards, the algorithm is the same as that

proposed by [38], with the additional difference, that each time a visit is required a new

vertex, both that vertex and its adjacent ones must be loaded from the internal structure.

85

Algorithm (2): DT-Insert Vertex (Internal Structure 𝐷𝑇, Vertex 𝑥, integer 𝑡).

Data: Internal Structure 𝐷𝑇, Vertex 𝑥, integer 𝑡

Result: Internal Structure 𝐷𝑇 with 𝑥 inserted at time 𝑡

1. 𝑖𝑑𝑥= Get Id (𝑥, 𝐷𝑇);

2. Assert (𝑖𝑑𝑥 ∉ 𝐷𝑇);

3. E = PS-Search (𝐷𝑇, 𝑥, 𝑡);

4. 𝑖𝑑𝑝= E.org;

5. 𝑖𝑑𝑞=E. dest;

6. 𝑖𝑑𝑟=get-vertex (E, p);

7. stack A;

8. stack V;

9. temp-tri = create DT ();

10. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑝);

11. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑞);

12. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑟);

13. A. insert (𝑖𝑑𝑝, 𝑖𝑑𝑞);

14. V. insert (𝑖𝑑𝑥);

15. A. insert (𝑖𝑑𝑞 , 𝑖𝑑𝑟);

16. V. insert (𝑖𝑑𝑥);

17. A. insert (𝑖𝑑𝑟 , 𝑖𝑑𝑝);

18. V. insert (𝑖𝑑𝑥);

19. for E=A.pop (),𝑖𝑑0=V.pop () do

20. 𝑖𝑑𝑐𝑎=E.org;

21. 𝑖𝑑𝑐𝑏=E. dest;

22. Face FH=temp-tri. face (𝑖𝑑𝑐𝑎, 𝑖𝑑𝑐𝑏 , 𝑖𝑑0);

23. Assert (FH! = NULL);

24. 𝑖𝑑𝑜𝑝=FH. Neighbor (FH. index (𝑖𝑑0));

25. If temp-tri. Illegal-Edge (E) then

26. DT-Load Triangles (temp-tri, Dt, o, t);

27. temp-tri.Flip (E);

28. DT.update-time (E);

29. DT.create-Edge (𝑖𝑑0, 𝑖𝑑𝑜𝑝, 𝑡);

30. A. insert (𝑖𝑑𝑜𝑝, 𝑖𝑑𝑐𝑎);

31. V. insert (𝑖𝑑𝑐𝑏);

32. A. insert (𝑖𝑑𝑜𝑝, 𝑖𝑑𝑐𝑏);

33. V. insert (𝑖𝑑𝑐𝑎);

86

Algorithm 2 presents the modification to the classical incremental algorithm

for Delaunay triangulations, to work in the internal data structure, which is part of the

proposal for the persistent Delaunay triangulation.

Line 1 of the algorithm, gets the identifier of the balanced binary tree that stores

information about the edges of vertex p. It is important to note that the first time this tree

is empty. Line 3 returns in E one of the three edges that form the triangle that contains p.

Lines 4, 5 and 6 obtain the identifiers of three vertices of the triangle that contains vertex

p. In lines 10 to 18, the edges that make up the triangle are created and inserted together

with their vertices in arrays A and V respectively. These edges will be used to analyze

whether they are legal or illegal edges. The analysis process runs on lines 19 through 33.

The most important part of this code segment is found on lines 25 through 33; Here, we

directly evaluate whether an edge is illegal and if it is, only the triangles that will be

affected by the flip operation and that can subsequently trigger new flip operations are

loaded.

Algorithm 3: DT-Load Edges (Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡).

Data: Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡

Result: Arrangement 𝑉

1. Arrangement V;

2. 𝑖𝑑 = GetId (𝑝, 𝐷𝑇);

3. for each node 𝑥 in the tree connected with 𝑖𝑑 do

4. Add 𝑥: 𝐷𝑉 to 𝑉;

5. Sort (𝑉, 𝑝);

6. return 𝑉

87

In Algorithm 3, line 2 returns the identifier of the balanced search binary tree,

which is indexed by p and is stored in the internal structure. The time required to recover

this vertex is 𝑂(1). Subsequently, in lines 3, 4 and 5, all vertices are obtained within the

search binary tree connected with 𝑝.

Algorithm 4: DT-Load Triangles (Triangulation 𝑇, Internal Structure 𝐷𝑇, Vertex

𝑝, Integer 𝑡).

Data: Triangulation 𝑇, Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡

Result: loaded Triangulation 𝑇 with triangles adjacent to 𝑝

1. Array 𝑉 = DT-Load Edges (𝑝, 𝐷𝑇, 𝑡);

2. Sort (𝑉, 𝑝);

3. for Each Vertex 𝑞 in 𝑉 do

4. T. Create (triangle (𝑝, q Previous, 𝑞);

5. for Each Vertex 𝑞 in 𝑉 do

6. triangle 𝑡𝑟 = T. get Reference (triangle (𝑝, 𝑞 Previous, 𝑞));

7. neighbor.tr = Next Triangle;

8. neighbor.tr (q) = Previous Triangle;

Once the edges adjacent to vertex p are loaded, it is necessary to regenerate the

triangle formed by these edges. To achieve this, Algorithm 4 is applied. This algorithm,

on line 1, obtains all the edges adjacent to vertex 𝑝, later on, lines 3 and 4 the triangles

are created within the current triangulation 𝑡. On lines 5 through 8, the neighborhood

information is initialized for each vertex of each triangle. This in order to guarantee the

correct operation of the incremental algorithm.

88

Algorithm 5: DT-Delete (Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡).

Data: Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡

Result: DT with removed 𝑝 at time 𝑡

1. Array 𝑃 = DT-Load Edges (𝑝, 𝐷𝑇, 𝑡);

2. Ears List;

3. Min-Heap 𝑃𝑄;

4. N = P.size ()

5. for 𝑖 = 1; 𝑖 < 𝑁; 𝑖 + +𝑑𝑜

6. current ear = Ear (𝑖, (𝑖 + 1) mod N, (𝑖 + 2) mod N);

7. if Counterclockwise (current) then

8. PQ.insert (Power (𝑝, Get-Vertices (𝑃, ear)), current);

9. while PQ.empty () == false do

10. current ear = PQ.min ();

11. if isEar (Ears, ear) then

12. add (𝐷𝑇, 𝑒𝑎𝑟, 𝑡);

13. creation 𝑡

14. next ear = Get-Next (Ears, current);

15. previous ear = Get-Previous (Ears, current);

16. PQ.insert (Power (𝑝, Get-Vertices (𝑃, next)), next));

17. PQ.insert (Power (p, Get-Vertices (P, previous)), previous));

18. Update (Ears, current);

Algorithm 6: Insert Vertex (Structure D, Vertex x).

Data: Structure 𝐷, Vertex 𝑥

Result: Structure 𝐷 with inserted 𝑥

1. Triangle tr = Find Triangle (D.root);

2. Vertex 𝑝 = 𝑡𝑟 ≥ 𝑝0;

3. Vertex 𝑞 = 𝑡𝑟 ≥ 𝑝1;

4. Vertex 𝑟 = 𝑡𝑟 ≥ 𝑝2;

5. Triangle newchild0 = Triangle (𝑝, 𝑞, 𝑥);

6. Triangle newchild1 = Triangle (𝑞, 𝑟, 𝑥);

7. Triangle newchild2 = Triangle (𝑞, 𝑟, 𝑥);

8. 𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑0);

9. 𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑1);

10. 𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑2);

89

Algorithm 7: Find Triangle (Triangle 𝑡𝑟, Vertex 𝑥).

Data: Triangle 𝑡𝑟, Vertex 𝑥

Result: Triangle 𝑡𝑟 containing 𝑥

1. if 𝑡𝑟 ≥ 𝑖𝑠 − 𝑆ℎ𝑒𝑒𝑡() then

2. return 𝑡𝑟;

3. for Each Triangle ctr in tr do

4. if 𝑐𝑡𝑟 ≥ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥) then

5. return Find Triangle (𝑐𝑡𝑟𝑙, 𝑥);

In Algorithm 7 inline 1 we arrive at the base case, in which we have arrived at the

triangle that contains 𝑥, from lines 3 to 5, we search for a triangle recursively (in the child

nodes) that contains 𝑥.

Algorithm 8: LCA-Calculate (Matrix 𝑀, Depth Array, Vertex 𝑝, Vertex parent-𝑝).

Data: Matrix 𝑀, Depth Array, Vertex 𝑝, Vertex parent-𝑝

Result: 𝑀 with inserted 𝑝

1. id = GetId (𝑝, 𝐷𝑇);

2. 𝑝𝑖𝑑 = GetId (𝑝𝑎𝑟𝑒𝑛𝑡 − 𝑝, 𝐷𝑇);

3. 𝑀[𝑖𝑑][0] = 𝑝𝑖𝑑;

4. depth [𝑖𝑑] = depth [𝑝𝑖𝑑] + 1;

5. for i=1; 𝑖 < log 2 (depth [𝑖𝑑]); 𝑖 + + do

6. 𝑀[𝑖𝑑][𝑖] = 𝑀[𝑀[𝑖𝑑][𝑖 − 1]][𝑖 − 1];

In Algorithm 8, all 2𝑖 ancestors of 𝑝 are calculated. In lines 1 and 2, indexed

labels are obtained through the vertices. In line 3 the base case of the recursion is

considered, that is, the ancestor of 𝑝 is its father. In line 5, the depth of node p is

90

calculated, this to obtain the 𝑖 − 𝑡ℎ ancestor of 𝑝; Subsequently, in lines 5 and 6 the 2𝑖

ancestor of 𝑝 is calculated, for 𝑖 > 0 which defines 2𝑖 ancestor of 𝑝 as 2𝑖−1 ancestor of

2𝑖−1 ancestor of 𝑝.

Algorithm 9: Random Ancestor (Matrix 𝑀, Depth Fix, Vertex 𝑝).

Data: Matrix 𝑀, Depth arrangement, Vertex 𝑝

Result: 𝑀 with inserted 𝑝

1. Vertical Random 𝑖𝑑 = Get Index (𝑝);

2. ancestor = Random (depth [𝑖𝑑]);

3. for 𝑖 = 0; 𝑖 < log 2 (𝑑𝑒𝑝𝑡ℎ [𝑖𝑑]); 𝑖 + +𝑑𝑜

4. if ancestor (1 < 𝑗) then

5. randomVerticeid = 𝑀 [randomVerticeid] [𝑖];

6. return RandomVerticeid;

In Algorithm 9, an ancestor random node of 𝑝 is calculated. Inline 1, the label

of 𝑝 is obtained. Inline 2, a random number is obtained, which indicates the 𝑖 − 𝑡ℎ

ancestor of 𝑝. Inline 3 the result is initialized, which must be initialized as 𝑝, in lines 4

to 6, the 𝑖 − 𝑡ℎ ancestor is decomposed into sums of powers of 2, in line 5, we ask if in

the binary representation of ancestor the bit corresponding to the position 𝑖 is on, if it

is, idVerticeRandom is updated as its 𝑖 − 𝑡ℎ ancestor.

91

BIBLIOGRAPHY

1. Mehta, D.P. and S. Sahni, Handbook of data structures and applications. 2004:

Chapman and Hall/CRC.

2. Fiat, A. and H. Kaplan, Making data structures confluently persistent. Journal of

Algorithms, 2003. 48(1): p. 16-58.

3. Demaine, E.D., S. Langerman, and E. Price. Confluently persistent tries for

efficient version control. in Scandinavian Workshop on Algorithm Theory. 2008.

Springer.

4. Shamos, M.I. and D. Hoey. Closest-point problems. in 16th Annual Symposium

on Foundations of Computer Science (sfcs 1975). 1975. IEEE.

5. Razafindrazaka, F.H., Delaunay triangulation algorithm and application to

terrain generation. postgraduate diploma.–African Institute for Mathematical

Sciences May, 2009.

6. Aurenhammer, F., Voronoi diagrams—a survey of a fundamental geometric data

structure. ACM Computing Surveys (CSUR), 1991. 23(3): p. 345-405.

7. Boissonnat, J.-D., et al. Triangulations in CGAL. in Proceedings of the sixteenth

annual symposium on Computational geometry. 2000.

8. Mohammed-Ali, W., C. Mendoza, and R.R. Holmes, Riverbank stability

assessment during hydro-peak flow events: The lower Osage River case

(Missouri, USA). International Journal of River Basin Management, 2020: p. 1-9.

9. Hjelle, Ø. and M. Dæhlen, Triangulations and applications. 2006: Springer

Science & Business Media.

10. Rippa, S., Minimal roughness property of the Delaunay triangulation. Computer

Aided Geometric Design, 1990. 7(6): p. 489-497.

11. Faugeras, O.D., E. Le Bras-Mehlman, and J.-D. Boissonnat, Representing stereo

data with the delaunay triangulation. Artificial Intelligence, 1990. 44(1-2): p. 41-

87.

12. Cheng, S.-W., T.K. Dey, and J. Shewchuk, Delaunay mesh generation. 2012:

CRC Press.

13. Eddy, W.F., A new convex hull algorithm for planar sets. ACM Transactions on

Mathematical Software (TOMS), 1977. 3(4): p. 398-403.

14. McHugh, J.A., Algorithmic graph theory. Vol. 68056. 1990: Citeseer.

92

15. Saramäki, J., et al., Generalizations of the clustering coefficient to weighted

complex networks. Physical Review E, 2007. 75(2): p. 027105.

16. Lipton, R.J. and R.E. Tarjan, A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 1979. 36(2): p. 177-189.

17. Dirichlet, G.L., Über die Reduction der positiven quadratischen Formen mit drei

unbestimmten ganzen Zahlen. Journal für die reine und angewandte Mathematik,

1850. 1850(40): p. 209-227.

18. Thiessen, A.H., Precipitation averages for large areas. Monthly weather review,

1911. 39(7): p. 1082-1089.

19. Delaunay, B., Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie

Matematicheskii i Estestvennyka Nauk, 1934. 7(793-800): p. 1-2.

20. Snoeyink, J. and M. Van Kreveld. Linear-time reconstruction of Delaunay

triangulations with applications. in European Symposium on Algorithms. 1997.

Springer.

21. Pocchiola, M. and G. Vegter. Pseudo-triangulations: theory and applications. in

Proceedings of the twelfth annual symposium on Computational geometry. 1996.

22. Driscoll, J.R., et al. Making data structures persistent. in Proceedings of the

eighteenth annual ACM symposium on Theory of computing. 1986.

23. Overmars, M.H., Searching in the past ii: general transforms. 1981, Tech. Rep.

RUU.

24. De Berg, M., et al., Visibility graphs, in Computational geometry. 2000, Springer.

p. 307-317.

25. Mirzaian, A., Triangulating simple polygons: Pseudo-triangulations. 1988,

Citeseer.

26. Ramaswami, S., Convex hulls: Complexity and applications (a survey). Technical

Reports (CIS), 1993: p. 264.

27. Aichholzer, O., W. Mulzer, and A. Pilz, Flip distance between triangulations of a

simple polygon is NP-complete. Discrete & computational geometry, 2015. 54(2):

p. 368-389.

28. Chew, L.P., Constrained delaunay triangulations. Algorithmica, 1989. 4(1-4): p.

97-108.

29. Fortune, S., Voronoi diagrams and Delaunay triangulations, in Computing in

Euclidean geometry. 1992, World Scientific. p. 193-233.

93

30. Preparata, F.P. and M.I. Shamos, Computational geometry: an introduction. 2012:

Springer Science & Business Media.

31. Cignoni, P., C. Montani, and R. Scopigno, DeWall: A fast divide and conquer

Delaunay triangulation algorithm in Ed. Computer-Aided Design, 1998. 30(5): p.

333-341.

32. Avis, D., D. Bremner, and R. Seidel, How good are convex hull algorithms?

Computational Geometry, 1997. 7(5-6): p. 265-301.

33. Demaine, E.D., et al., Dynamic optimality—almost. SIAM Journal on Computing,

2007. 37(1): p. 240-251.

34. Buchsbaum, A.L. and R.E. Tarjan, Confluently persistent deques via data-

structural bootstrapping. Journal of Algorithms, 1995. 18(3): p. 513-547.

35. Kaplan, H., C. Okasaki, and R.E. Tarjan, Simple confluently persistent catenable

lists. SIAM Journal on Computing, 2000. 30(3): p. 965-977.

36. Gärtner, B. and M. Hoffmann, Computational Geometry Lecture Notes1 HS 2012.

Dept. of Computer Science, ETH, Zürich, Switzerland, 2013.

37. Roussopoulos, N., S. Kelley, and F. Vincent. Nearest neighbor queries. in

Proceedings of the 1995 ACM SIGMOD international conference on

Management of data. 1995.

38. Brown, P.J. and C.T. Faigle, A robust efficient algorithm for point location in

triangulations. 1997, University of Cambridge, Computer Laboratory.

39. Sarnak, N. and R.E. Tarjan, Planar point location using persistent search trees.

Communications of the ACM, 1986. 29(7): p. 669-679.

40. Dietz, P.F. Fully persistent arrays. in Workshop on Algorithms and Data

Structures. 1989. Springer.

41. Tarjan, R.E., Amortized computational complexity. SIAM Journal on Algebraic

Discrete Methods, 1985. 6(2): p. 306-318.

42. van Emde Boas, P., R. Kaas, and E. Zijlstra, Design and implementation of an

efficient priority queue. Mathematical systems theory, 1976. 10(1): p. 99-127.

43. Dietzfelbinger, M., et al., Dynamic perfect hashing: Upper and lower bounds.

SIAM Journal on Computing, 1994. 23(4): p. 738-761.

44. Blelloch, G., et al., Persistent triangulations. Journal of Functional Programming,

2001. 11(5): p. 441-466.

94

45. Seidel, R. Constructing higher-dimensional convex hulls at logarithmic cost per

face. in Proceedings of the eighteenth annual ACM symposium on Theory of

computing. 1986.

46. Lischinski, D., Incremental delaunay triangulation. Graphics gems IV, 1994: p.

47-59.

47. Devillers, O., The delaunay hierarchy. International Journal of Foundations of

Computer Science, 2002. 13(02): p. 163-180.

48. Bowyer, A., Computing dirichlet tessellations. The computer journal, 1981.

24(2): p. 162-166.

49. Watson, D.F., Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes. The computer journal, 1981. 24(2): p. 167-172.

50. Kao, T., Dynamic maintenance of Delaunay triangulations. work, 1991. 9: p. 32.

51. Bender, M.A. and M. Farach-Colton. The LCA problem revisited. in Latin

American Symposium on Theoretical Informatics. 2000. Springer.

52. Bern, M., D. Eppstein, and F. Yao, The expected extremes in a Delaunay

triangulation. International Journal of Computational Geometry & Applications,

1991. 1(01): p. 79-91.

53. Broutin, N., O. Devillers, and R. Hemsley, The Maximum Degree of a Random

Delaunay Triangulation in a Smooth Convex. 2014.

54. Yi-bo, L. and L. Jun-Jun, Harris corner detection algorithm based on improved

contourlet transform. Procedia Engineering, 2011. 15: p. 2239-2243.

55. Guibas, L.J., D.E. Knuth, and M. Sharir, Randomized incremental construction of

Delaunay and Voronoi diagrams. Algorithmica, 1992. 7(1-6): p. 381-413.

95

VITA

Esraa Habeeb Khaleel Al-Juhaishi was born in Baghdad, Iraq. She received her

bachelor’s degree in Mathematics and Computer Applications Science in 2003 from Al-

Nahrain University, Bagdad, Iraq. Esraa received her master's degree in Mathematics and

Computer Applications Science in 2006 from Al-Nahrain University, Bagdad, Iraq. In

2009 Esraa started working as a faculty member in the college of Mathematics and

Computer Science at Tikrit University, Iraq. In 2014, Esraa awarded a Ph.D. scholarship

by the Ministry of Higher Education and Scientific Research of Iraq and started a Ph.D.

degree at Missouri University of Science and Technology. In 2019 she received her

second master's degree in Applied Mathematics from the Missouri University of Science

and Technology. Esraa received her third master's degree in Computer Science from

Missouri University of Science and Technology in 2020. In August 2020, Esraa received

her Ph.D. in Computer Science from Missouri University of Science and Technology.

.

	Novel approaches for constructing persistent Delaunay triangulations by applying different equations and different methods
	Recommended Citation

	II

