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ABSTRACT 

Delaunay triangulation and data structures are an essential field of study and 

research in computer science, for this reason, the correct choices, and an adequate design 

are essential for the development of algorithms for the efficient storage and/or retrieval of 

information. However, most structures are usually ephemeral, which means keeping all 

versions, in different copies, of the same data structure is expensive. The problem arises 

of developing data structures that are capable of maintaining different versions of 

themselves, minimizing the cost of memory, and keeping the performance of operations 

as close as possible to the original structure. Therefore, this research aims to aims to 

examine the feasibility concepts of Spatio-temporal structures such as persistence, to 

design a Delaunay triangulation algorithm so that it is possible to make queries and 

modifications at a certain time 𝑡, minimizing spatial and temporal complexity. Four new 

persistent data structures for Delaunay triangulation (Bowyer-Watson, Walk, Hybrid, and 

Graph) were proposed and developed. The results of using random images and vertex 

databases with different data (DAG and CGAL), proved that the data structure in its 

partial version is better than the other data structures that do not have persistence. Also, 

the full version data structures show an advance in the state of the technique. All the 

results will allow the algorithms to minimize the cost of memory. 
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1. INTRODUCTION 

1.1. GENERAL INTRODUCTION 

Data structures make up a fundamental field of study and research in computer 

science, for this reason, the correct choice and an adequate design are essential for the 

development of algorithms for the efficient storage and/or retrieval of information. 

However, most structures are usually ephemeral, which means that in each insertion, 

elimination, or modification operation, they lose the previous values or states. On the 

other hand, persistent data structures are known as temporary data structures [1], they 

allow them to maintain previous versions of the structure, so they retain previous states 

when they are modified. All this, taking into account the computational and spatial cost 

characteristics. 

Delaunay triangulation is a fundamental data structure in computational geometry, 

graphing, engineering, and other areas of algorithmic application [2], [3]. For this reason, 

its usefulness and that of its dual (Voronoi diagrams) have various applications such as 

solution to the problem of finding the closest point [4], land modeling [5], collision 

detection [6], associative file search, a solution to the problem of data grouping, among 

others. 

On the other hand, Delaunay triangulation, which is currently implemented in 

libraries such as CGAL (Computational Geometry Algorithms Library, [7]), does not 

have partial persistence or total persistence, which implies that if a set of operations is 

applied such as insertion, elimination or modification on the data structure in time, then, 

it loses the previous states. This also occurs in all traditional data structures such as lists, 
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stacks, queues, balanced binary trees, B, B + trees, and many others. This type of 

structure has the problem of not being able to return to previous state 𝑖, after applying n 

modifications (0 < 𝑖 < 𝑛); it is for this reason that this type of classical structure is 

known as ephemeral data structures. 

For example, if the value of a node in a simple linked list is modified 𝑛 times, it is 

not possible to know the value that it had at a previous time 𝑖 (0 < 𝑖 < 𝑛). This is 

because the changes, in this type of structure, are not stored. On the other hand, keeping 

all versions, in different copies, of the same data structure is expensive. Then, the 

problem arises of developing data structures that are capable of maintaining different 

versions of themselves, minimizing the cost of memory, and keeping the performance of 

operations as close as possible to the original structure. These types of data structures are 

called persistent data structures. 

In general, data structures can be classified as partially persistent, fully persistent, 

confluent, and functional. The first are those structures in which it is only possible to 

make modifications in the current state, however, queries can be made in any state, that 

is, in any past time. On the other hand, completely persistent data structures (the 

definition in Section 2) are those to which modifications can be applied at any past time, 

and at the same time, it is possible to make queries at any time or in any state. Then, it is 

clear that the design of fully persistent data structures is more complex due to the amount 

of memory they can use. 

In the current literature, there is no fully persistent Delaunay triangulation data 

structure yet. In this sense, this dissertation has a contribution: the proposal of a new 

persistent data structure to represent a Delaunay triangulation. 
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1.2. THE PROBLEM JUSTIFICATION AND MOTIVATION 

There are many libraries for calculating Delaunay triangulation, such as CGAL, 

Fade2D, among others. These libraries have efficient algorithms for calculating Delaunay 

triangulations; however, they do not have persistence characteristics; that is, they do not 

have the possibility of maintaining versions of the structures every time operations are 

carried out on them. 

Furthermore, an important aspect that data structures should have is the ability to 

maintain past versions of themselves, in order to return to a previous 𝑡 version; so that it 

is feasible to evaluate the characteristics of the structure at that time. 

In this sense, this research proposes the development of a persistent data structure 

for the management of a Delaunay triangulation. This data structure, in addition to 

maintaining past versions of the structure, will maintain computational complexity and 

minimize spatial complexity. 

As mentioned above, in addition to the lack of a persistent data structure for 

Delaunay triangulation, the existence of such a data structure would be useful in different 

applications, such as on a two-dimensional map where different points have been marked, 

which indicate regions where different natural phenomena have originated. In this model, 

you want to perform simulations on the possible nearby areas that could be affected. In 

this sense, Delaunay's persistent triangulation results in a natural data structure for this 

problem, since it seeks to minimize RAM memory consumption in those computational 

problems that can be represented or solved using Delaunay triangulations and variable in 

time product of insertions, deletions and/or modifications. 
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On the other hand, let's imagine that we have a database of satellite images of a 

river [8], taken at different periods of time. We can represent the image of the river by 

means of a Delaunay triangulation. However, with the passage of time it is clear that the 

characteristics of the river bed change, increasing flow or modifying its shape, this means 

that several images of the same river are kept on different dates; therefore, different 

Delaunay triangulations should be constructed. However, our method generates a single 

Delaunay triangulation, which allows minimizing RAM memory and maintaining the 

reconstruction performance of the triangulation in a specific time. 

1.3. THE PROBLEM STATEMENT AND THE OBJECTIVE 

Ephemeral data structures do not have mechanisms to make queries in past times, 

in this sense, one of the most trivial ways of maintaining the information of the versions 

generated by the modifications in the data structures is through copies of themselves. the 

same after each modification. This method is clearly counterproductive when it comes to 

memory spending. 

On the other hand, the data structures that are currently known and used to 

represent the Delaunay triangulation are ephemeral, that is, it is not feasible to perform 

operations or queries on the historical data of the triangulation at a certain time 𝑡, nor 

operations to perform changes in structure in a past time. However, there are currently 

methods for maintaining versions of some trivial data structures such as lists, stacks, 

queues, and trees [3]. These methods have the ability to maintain information from past 

versions, minimizing the amount of RAM memory, and maintaining the algorithmic 

complexity of its operations. 
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In this sense, in this dissertation, a new partially persistent and fully persistent 

data structure is proposed and implemented, which can query and execute operations (at 

any previous time t) minimizing computational cost and use of RAM memory. 

Propose and implement a persistent Delaunay triangulation data structure, so that 

it is possible to query and modify previous versions, minimizing computational and 

spatial complexity. 

1.4. THE CONTRIBUTIONS OF THE PROBLEM 

The contributions of this dissertation are: A new algorithm for the generation of 

partially persistent and fully persistent versions of persistent Delaunay triangulation is 

proposed, maintaining the performance in memory and the algorithmic complexity in 

each operation. 

1.5. THE LAYOUT OF THIS DISSERTATION 

This study will be presented in five sections. Section 1 includes the general 

introduction of the problem and the motivation for the work. Section 2 contains a 

literature review on some definitions and on the previous related works, including types 

of persistence and mechanisms designed to maintain persistence in some basic data 

structures. Section 3 includes a description of algorithms proposed for the 

implementation of persistent Delaunay triangulations. Four algorithms, Bowyer-Watson, 

Walk, Hybrid, and Graph is proposed for the partial persistence insert operation. The 

vertex removal operation is also proposed for the Walk method. Subsequently, the Walk 

proposal is extended to create a fully persistent Delaunay triangulation. Section 4 
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contains a description explains the experimental results performed during the 

implementation. First, it is focusing on constructing a planar Delaunay triangulation that 

is modeled after the Bowyer-Watson algorithm. It also focuses on analyzing the temporal 

and spatial complexity of some methods (Walk, Hybrid, and Graph) that contrast to the 

CGAL library. Finally, the conclusions and recommendations for future work are 

presented in Section 5. Besides these five sections, one appendix was added to include 

the details of the algorithms which are using to obtain the results. 
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2. REVIEW OF LITERATURE  

2.1. GENERAL INTRODUCTION  

Delaunay triangulation is one of the most interesting triangulations because it is 

applicable for solving a multitude of apparently unrelated problems, due to its geometric 

properties, and because it has quite efficient algorithms for its calculation. All this also 

implies that there is a large amount of written material on this type of triangulation. 

Giving an idea of what this triangulation might look like could serve as an informal 

definition and could be done highlighting its most important characteristics: In a 

Delaunay triangulation. First, all the points are connected to each other and form as many 

triangles as possible without crossing their edges (essential for it to be a triangulation). 

Second, triangles are defined so that the closest points are connected to each other by an 

edge. This implies that the triangles formed are as regular as possible, that is, that their 

minor angles are maximized, and the length of their sides is minimized. These properties 

make this triangulation, as indicated at the beginning, interesting in several fields. 

Delaunay triangulation can be characterized in several ways, below some definitions that 

satisfy its properties. 

The purpose of this section is to conduct a comprehensive literature review of 

previous and related research on the subject of Delaunay triangulation and persistent data 

structures. Some definitions will describe, and types of persistence and mechanisms 

developed to maintain persistence in some basic data structures will be explained. 
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2.2. DEFINITIONS AND CONCEPTS 

The definition of the concept can be explained in the following.  

2.2.1. Triangulations. Triangulation can be defined as a collection of triangles. 

Definition 1 represents the meaning of the tringle. 

Definition 1: Triangle 𝑡 in the plane can be defined by three points 

𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3, 𝑤ℎ𝑒𝑟𝑒 (𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)). Every two points has an edge connected between 

them, denoted by 𝑒𝑖,𝑗 as shown in Figure 2.1 [9]. The tringle 𝑡 obtained from the 

intersection of three half-planes, as shown in equation 1 [9]: 

𝑡 = 𝐻1,2 ∩ 𝐻2,3 ∩ 𝐻3,1                                   (1) 

There are important properties that need to be checked for constructing 

triangulations, some of these properties are show below. 

 

Figure 2.1 Example on Tringle That Obtained from Half-Planes. 
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1. The circumcircle property: This property represents a circle that drown through 

the tringle three points (𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3). A point C is in the center of this circle in 

the plane that has an equal distance between the tringle three points 

(𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3), as shown in Figure 2.2. 

 

Figure 2.2 A Triangle with Circumcircle Property. 

2. The triangle angle property: Calculating the angle of the tringle is another 

important property for the triangulations. In this work, we will be interested in the 

smallest angle in the triangle. The equations that will be used are the sines and 

cosines. Equations (2) explain an equation for getting the angle in a given triangle 

[9, 10]. Where 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are represent the length of the edges. Also, the angles 

of the tringle are represented by 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾, Figure 2.3. 
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𝑠𝑖𝑛 α

a
=

𝑠𝑖𝑛 β

b
=

𝑠𝑖𝑛 γ

c
                                                   (2) 

 

Figure 2.3 A Triangle with Edges and Angles. 

3. The circle center property: The center of the circle can be found by intersected 

lines that split the angles. By using the corner points (𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3) we will be 

able to calculate the area of the tringle, this can be seen in equation (3) [9, 11]: 

𝐴(𝑝1, 𝑝2, 𝑝3) =
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| =
1

2
(𝑥1𝑦2 + 𝑥2𝑦3 + 𝑥3𝑦1 − 𝑥1𝑦3 − 𝑥2𝑦1 − 𝑥3𝑦2)       (3) 

Each point 𝑝 in the plane can be presented as a linear combination of the vertices 

(𝑝1, 𝑝2, 𝑝3) of the triangle, as shown in Equation (4): 

                        𝑝 = 𝑏1𝑝1 + 𝑏2𝑝2 + 𝑏3𝑝3                                              (4) 

To constructing triangulation for a given set of points 𝑃 = {𝑝𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 =

1, ⋯ , 𝑁, with the domain Ω. Where the boundary of Ω is closed simple polygons that is a 
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polygon which is not self-intersect, as shown in Figure 2.4. Such that Ω is represents the 

convex hull (Definition 2) of the point set. 

Definition 2 (Convex hull): The smallest convex set that containing 𝑃 is called a convex 

hull of 𝑃. A set 𝑆 is convex if any line segment joining two points in 𝑆 lies entirely in 𝑆. 

Figure 2.5 [12], show an example of a convex domain Ω for asset of points in the plane 

with a corresponding triangulation of these points [13]. 

 

Figure 2.4 An Example of Convex Hull with Domain Ω. 

It is important to find an appropriate representation of a triangulation for all the 

computational applications, that will need a suitable data structure to use it in computing 

programs. It is important to find an appropriate representation of a triangulation for all 

the computational applications, that will need a suitable data structure to use it in 

computing programs. Triangulations are used in different sciences and different 

applications so in this work we present the triangulations with different types of data 

structures.  
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There are many interesting properties that are obtained from planar graphs 

properties as shown in elementary graph theory [14]. The size of triangulation is very 

important for computer programing and designing data structure. Below we will explain 

the relationship between the numbers of the triangles, edges, and vertices.  

The relationship between the numbers of the triangles, edges, and vertices is 

important [15]. Suppose faces (triangles) are denoted by 𝐹 and suppose edges are denoted 

by 𝐸, where the vertices are denoted by 𝑉. In the triangulations 𝑉 = 𝑉𝐵 ∪ 𝑉𝐼, where 𝑉𝐵 

represents the boundary vertices and 𝑉𝐼 represents the interior vertices. Equation (5), 

shows the relationship between triangles, edges, and vertices as presented in [9]. 

|𝐹| = |𝑉𝐵| + 2|𝑉𝐼| − 2 

                                                |𝐸| = 2|𝑉𝐵| + 3|𝑉𝐼| − 3                                               (5) 

  In Equation (6), we can see a special type of the Euler Polyhedron Formula that 

also named as Euler-Poincare formula.  

|𝐹| = |𝐸| − |𝑉| + 1                                                  (6) 

Equations (6) was obtained from Equation (5). The numbers of triangles and 

edges are fixed when the boundary of the triangulation is specified, and that happened by 

using Equation (5). Furthermore, the number of triangles is increased by two and the 

number of edges is increased by three, after inserting a point to an existing triangulation. 

One other triangulation property is the degree (𝑑𝑒𝑔(𝑣𝑖)), it represents the number 

of the edges that is happening with the vertices vi in the tringles. The summation of these 

degree for the triangulation is satisfy Equation (7), [9]. 

∑ 𝑑𝑒𝑔(𝑣𝑖)
|𝑉|
𝑖=1 = 2|𝐸|                                                  (7) 
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The number of vertices in the boundary is smaller than the total number of 

vertices when building a triangulations [16] from a large number of points such that the 

boundary of tringles is the convex hull of the points [9], as shown in Equation (8): 

∑ 𝑑𝑒𝑔(𝑣𝑖) = 2|𝐸| = 6|𝑉𝐼| + 4|𝑉𝐵| − 6 ≈ 6|𝑉||𝑉|
𝑖=1                              (8) 

Depends on what we said, we obtained that the average number of edges that happening 

with a vertex in a triangulation is six. 

2.2.2. Delaunay Triangulations and Voronoi Diagrams.  In computational 

geometry, there are two important constructs the Delaunay triangulation, and the Voronoi 

diagram. These are used in different applications, and studies for many years. 

 Voronoi diagrams have a close relationship with Delaunay triangulations. The 

first investigated for the Voronoi diagrams was made by René Descartes [17], and it used 

by Dirichlet for the quadratic forms.  Voronoi was a Russian mathematician well known 

in number theory and his contributions with respect to continued fractions. 

Definition 3: Suppose 𝑃 is a set of points were 𝑃 = {𝑝1, ⋯ , 𝑝𝑁} in the plane. Let the   

Euclidean distance denoted by 𝑑(𝑝𝑖, 𝑝𝑗), it is between 𝑝𝑖 and 𝑝𝑗. The Voronoi region in 

the plane is shown in Equation (9) [9]: 

                     𝑉(𝑝𝑖) = {𝑥: 𝑑(𝑥, 𝑝𝑖) < 𝑑(𝑥, 𝑝𝑗), 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, ⋯ 𝑁}                            (9) 

Figure 2.5  [9]  shows a Voronoi region point 𝑝𝑖. Voronoi diagrams have been 

used in many scientific corrections to organize convergence information between points 

distributed irregularly. For example, the climate scientist Thiessen used the regions of 

Voronoi to collect climatic data from unevenly distributed weather stations [18]. For this 

reason, the regions V (pi) are also called Thiessen regions. 
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Boris Nikolaevich Delaunay [19] presented the Delaunay triangulation of a point 

set P. It satisfies the property that says, for a set of points S there is no point inside the 

triangle's circumscribing disk. 

 

Figure 2.5 The Voronoi Region in the Plane. 

Definition 4: A Delaunay triangulation for a set of points 𝑃 in the plane is the 

triangulation operation which satisfies the empty circumcircle condition. That is means 

there is no point inside the circle from the set 𝑃. 

This definition is more useful and geometric to use in a practical. In this work, 

this definition will use as a rule to construct a Delaunay triangulation algorithms. 



 

 

15 

Figure 2.6 shows an example of a Delaunay triangulation [20] for a set of six points. The 

five triangles satisfy the empty circle property. But the orange circle it not empty since it 

is not a circumcircle for any of the five triangles. 

 

Figure 2.6 An Example of Delaunay Triangulation. 

2.2.3. Persistent Data Structure. These data structures are subject to are not 

change effectively, as its operations do not (clearly) update the structure in place, but 

instead, always provide a new updated structure. These data structures are subject to are 

not change effectively, as its operations do not (clearly) update the structure in place, but 

instead, always provide a new updated structure. There are different types of persistent 

data structure, the partially persistent, confluently persistent, and the fully persistent data 

structure. 

The persistent data structure [21] is called partially persistent if all the versions 

are able to access but the only version that can be modified is the newest version. The 

persistent data structure is fully persistent if all versions can be accessed and modified 

[22]. Confluently persistent is another type of persistent data structure, it is named 
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confluently if all the operation can be merged to get a new version of the data from the 

previous versions. Were the ephemeral data means that the data structure is not persistent. 

Most of these results use construction, with the exception of the article by [23] and by 

[22]. 

2.3. DELAUNAY TRIANGULATIONS 

This section describes what is a Delaunay triangulation, as well as its importance. 

2.3.1. Triangulation for a Set of Points in the Plane. From a set 𝑃 =

{𝑝1, 𝑝2, ⋯ , 𝑝𝑛} made up of 𝑛 vertices in the plane, a triangulation T of P is defined as a 

planar maximum subdivision where no edge connecting two vertices can be added 

without change its planarity [24], in addition, there is always a triangulation of 𝑃 since 

any polygon can be triangulated [25], on the other hand, the edges of the convex 

envelope [26] of 𝑃 they belong to any triangulation 𝑇 that is made up of 𝑃 and that the 

limitless or infinite face infinite is always a compliment to the convex envelope. 

By Theorem 1, the number of triangles is the same in any triangulation of 𝑃, as 

well as the number of edges, in addition, these depend on the number of vertices in 𝑃 that 

are in the limit of the convex envelope of 𝑃 (including the vertices that are in some edge 

of the convex envelope). 

Theorem 1. Let 𝑃 be a set of 𝑛 vertices in the planar, not all collinear, and 𝑘 denotes the 

number of vertices in 𝑃 that are at the limit of the convex hull of 𝑃. So, any triangulation 

of 𝑃 has 2𝑛 − 2 − 𝑘 triangles and 3𝑛 − 3 − 𝑘 edges [24]. 

If 𝑚 is the number of triangles that make up 𝑇, any other triangulation of 𝑃 will 

also be made up of m triangles, considering the 3𝑚 angles of the triangles of 𝑇, ordered 
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by their value in increasing order, such as 𝛼1, 𝛼2, ⋯ , 𝛼3𝑚, therefore, 𝛼𝑖 ≤ 𝛼𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 <

𝑗, is called 𝐴(𝑇) = (𝛼1, 𝛼2, ⋯ , 𝛼3𝑚) the vector angle of 𝑇. 

Let 𝑇 ́ be another triangulation of the same set of vertices 𝑃, and let 𝐴(𝑇́) =

(𝛼1́, 𝛼2́, ⋯ , 𝛼3𝑚́ ) its vector angle, the vector angle of 𝑇 is greater than the vector angle 

of 𝑇 ́ if 𝐴(𝑇) is lexicographically greater than 𝐴(𝑇 ́ ), that is, there is an index 1 ≤ 𝑖 ≤

3𝑚 such that 𝛼𝑗 = 𝛼𝑗́ for all 𝑗 < 𝑖 and 𝛼𝑖 > 𝛼𝑖́ , which is denoted as 𝐴(𝑇) > 𝐴(𝑇 ́ ), in 

addition an optimal angle  of triangulation 𝑇 can also be called if  𝐴(𝑇) ≥ 𝐴(𝑇 ́ ) for 

all triangulations 𝑇 ́ of 𝑃. To see if triangulation has an optimal angle, Theorem 2 is 

used, it called Thales’s Theorem, where the smallest angle defined by three vertices 

𝑝, 𝑞, 𝑟 is denoted by ∡𝑝𝑞𝑟. 

Theorem 2. Let 𝐶 be a circle, as shown in Figure 2.7, 𝑙 a line intersecting 𝐶 at vertices 

𝑎 𝑎𝑛𝑑 𝑏, let 𝑝, 𝑞, 𝑟 𝑎𝑛𝑑 𝑠 be vertices that are on the same side of 𝑙. It is assumed that 

𝑝 𝑎𝑛𝑑 𝑞 are found in 𝐶, and that 𝑟 is inside 𝐶, and that 𝑠 is outside 𝐶. Then: 

∡𝑎𝑟𝑏 > ∡𝑎𝑝𝑏 = ∡𝑎𝑞𝑏 > ∡𝑎𝑠𝑏                               (10) 

From Theorem 2, an edge 𝑒 = 𝑝𝑖𝑝𝑗 of a triangulation 𝑇 of 𝑃 is considered that 

is not an edge that is in the convex hull, that is, it is incident to two triangles 𝑝𝑖𝑝𝑗𝑝𝑘 and 

𝑝𝑖𝑝𝑗𝑝𝑙. If these two triangles form a convex quadrilateral, we can obtain a new 𝑇 ́ 

triangulation by removing 𝑝𝑖𝑝𝑗 from 𝑇 and inserting 𝑝𝑘𝑝𝑙 in its place. This operation is 

called a flip [27]. 

The only difference in the vector angle of 𝑇 and 𝑇 ́ is the six angles 

(𝛼1, 𝛼2, ⋯ , 𝛼6) in 𝐴 (𝑇), which are replaced by (𝛼1́, 𝛼2́, ⋯ , 𝛼6́) in 𝐴 (𝑇 ́). Figure 2.8 

shows this behavior. On the other hand, said edge (𝑝𝑖, 𝑝𝑗) is called illegal if Equation 2 
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is fulfilled, that is if by performing the flip operation the value of the smallest angle can 

be increased. 

min
1≤𝑖≤6

𝛼𝑖 < min
1≤𝑖≤6

𝛼í́́                                            (11) 

 

Figure 2.7 Thales’s Theorem. 

Otherwise, the following lemma can be considered in order to corroborate if an 

edge is illegal. 

Lemma 1: Let the 𝑝𝑖𝑝𝑗 edge be incident to the triangles 𝑝𝑖𝑝𝑗𝑝𝑘 and 𝑝𝑖𝑝𝑗𝑝𝑙 and let 𝐶 be 

the circle that passes through 𝑝𝑖𝑝𝑗𝑝𝑘; then the 𝑝𝑖𝑝𝑗 edge is illegal if and only if the vertex 

𝑝𝑙 is inside 𝐶. On the other hand, if the vertices 𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙 form a convex quadrilateral  

and are not in a common circle, so 𝑝𝑖𝑝𝑗 or 𝑝𝑘𝑝𝑙 is an illegal edge. 
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Figure 2.8 The Flip Edge Operation. 

Also, when the four vertices meet in a circle, both 𝑝𝑖𝑝𝑗 and 𝑝𝑘𝑝𝑙 are legal. On the 

other hand, the two triangles incident to an illegal edge must form a convex quadrilateral, 

so it is always possible to flip an illegal edge. 

In theory, a legal triangulation is defined as a triangulation that does not contain 

any illegal edge, also from Equation 2 it is concluded that any optimal angle in the 

triangulation is legal. Furthermore, a Delaunay triangulation is always legal as shown in 

Theorem 3. 

Theorem 3. Let 𝑃 be a set of vertices in the planar. A triangulation 𝑇 of 𝑃 is legal, if and 

only if, 𝑇 is a Delaunay triangulation of 𝑃. 

Since any an optimal angle triangulation must be legal, Theorem 2 implies that 

any optimal angle triangulation of 𝑃 is a Delaunay triangulation of 𝑃. When 𝑃 is in a 

general position (𝑃 is in general position if it contains no 4 points on a circle), there is 

only one legal triangulation, which is then the only optimal angle triangulation, that is, 

the only Delaunay triangulation. When 𝑃 is not in general position, there are many legal 
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triangulations of 𝑃, not all these Delaunay triangulations will be of optimal angle, 

however, all these triangulations will have the same value for the minimum angle of 

 their angle-vectors, this can be seen in theorem 4 and be verified by Thales' theorem. 

Theorem 4. Let 𝑃 be a set of vertices in the plane. Any angle-optimal triangulation of 

𝑃 is a Delaunay triangulation of 𝑃. In addition, any Delaunay triangulation of 𝑃 

maximizes the minimum angle over all triangulations of 𝑃. 

From the above, to obtain a Delaunay triangulation of 𝑇 from any triangulation 𝑇 ́ both 

triangulations of the set of vertices 𝑃, It is enough to verify if all edges are legal and if 

not, perform flip operations on illegal edges, until there are no illegal edges in 𝑇 ́. 

2.3.2. Constrained Delaunay Triangulations. In some cases, it is necessary to 

force the creation of certain edges within a triangulation, these are called Constrained 

Delaunay Triangulations [28]. 

2.3.3. Algorithms to Construct Delaunay Triangulations. The duality between 

Delaunay triangulation and Voronoi diagrams is widely known [29], [30], and, therefore, 

the algorithms for the construction of Voronoi diagrams serve to calculate Delaunay 

triangulation. However, direct construction methods are generally more efficient because 

the Voronoi diagram does not have to be calculated and stored. Algorithms for 

constructing Delaunay triangulations [6], [31] can be classified as follows: 

2.3.3.1. Local improvements algorithm.  From an arbitrary triangulation, these 

algorithms locally modify the edges of the adjacent vertex pairs through flip edge 

operations until obtaining a Delaunay triangulation. 

2.3.3.2. Incremental insertion algorithm.  These algorithms insert the vertices 

one at a time. The triangle that contains the new vertex is divided by inserting new 
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triangles adjacent to the new vertex. Then, the circle criteria are tested on all adjacent 

vertices and, if necessary, the flip operation is applied to the edges. 

2.3.3.3. Gradual construction algorithms.  These algorithms transform the 

vertices in the space of 𝑑 𝑡𝑜 𝑑 +  1 dimensions and then calculate the convex hull of the 

transformed vertices. Delaunay triangulations is obtained with the projection of the 

convex hull in 𝑑 dimensions [32]. 

2.3.3.4. Divide and conquer algorithm. Divide and conquer: They are based on 

the repeated partition and the local triangulation of a set of vertices and then carry out a 

combination phase, where the resulting triangulations are joined. 

2.4. PERSISTENT DATA STRUCTURES 

A data structure is persistent if it can maintain versions of itself as a result of 

operations such as insertion, deletion or modification, which change the structure over 

time [1]. 

For example, in the case of a binary tree, when performing an operation on the 

structure, it increases, decreases, or changes the keys of the nodes according to the type 

of operation: insertion, deletion or modification. However, in order to know the state of 

the structure in a past time 𝑡, it would be necessary to store each version before a 

modification, the simplest way would be to save the entire data structure in RAM before 

undergoing a modification. In this way, there would be 𝑛 different copies of the structure, 

one for each modification in time, so that recovering the state of the structure in a time 𝑡, 

would imply instantiating a copy 𝑟, in that time 𝑡. However, this would imply sacrificing 

memory space. 
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In this sense, persistent data structures seek to develop strategies to minimize the 

space required by the new versions that are generated over time. 

2.5. TYPES OF PERSISTENCE DATA STRUCTURES 

The data structures can be classified as follow.  

2.5.1. Partial Persistence Data Structures.  A data structure is partially 

persistent, it does allow modifications only to the current data structure, but it is possible 

to query any previous version and at any past time 𝑡, [33]. 

These versions can be accessed because each node stores additional information. 

This extra information refers to the creation time of that version, which indicates, to the 

time where modification was made. The time, of each version, is known as a timestamp 

(It is a sequence of characters information identifying when a certain event occurred, 

usually giving date and time of day, sometimes accurate to a small fraction of a second). 

An example of the behavior of this structure can be seen in Figure 2.9, where each node 

represents a version of the data structure. 

 

Figure 2.9 Example of Partial Persistence. 
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2.5.2. Full Persistence Data Structures.  With this type of persistence data 

structures, the versions do not form a simple linear trajectory, furthermore, they form a 

tree version [33], as explained in Figure 2.10. 

 

Figure 2.10 Example of Full Persistence. 

2.5.3. Confluent Persistence Data Structures.  This type of persistence allows 

to modification and querying the versions in the past time. It also allows joining two or 

more previous versions to create a new version. This version takes the form of a DAG 

(direct acyclic graph), which can be seen in Figure 2.11. 

Figures 2.9, 2.10, and 2.11 are shows the different types of persistence. In Figure 

2.9 partial persistence can be seen. The first nodes are earlier versions, while the last node 

is the only one that can be modified, in this way, a linear structure of persistence can 

maintain. In Figure 2.10 a full persistent data structure can be seen. This structure can 

modify any of the versions in time and, therefore, the versions make up a tree so that any 
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version in time can be modified. Where in Figure 2.11 shows the confluent persistence 

that presents a group of versions induce a DAG structure on the version graph. 

 

Figure 2.11 Example on Confluent Persistence. 

Considering that the obvious way to provide persistence is to make a copy of the 

data structure every time a modification operation is performed on the structure. Using 

this way would have the disadvantage of requiring space and time proportional to the 

space occupied by the original data structure. For that, a method is required to minimize 

spatial and temporal complexity. 

2.6. METHODS TO CREATE A PERSISTENT DATA STRUCTURES 

Various methods have been proposed in the literature to make a persistent data 

structure [22], below are general schemes to convert an ephemeral data structure into a 

persistent data structure. 
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2.6.1. Fat Nodes.  In this scheme, all changes made to the node fields are 

recorded without deleting the old values of the fields. This makes the nodes of the 

structure called Fat Nodes. Where each one contains the same information fields and 

pointers as an ephemeral node, but they keep extra space to add additional values such as 

old data and timestamp in which modifications were made [1]. 

Each additional data has an associated value and a timestamp that indicates the 

version in which the field was changed by a specific value. In addition, each Fat Node 

has its own timestamp, which indicates the version in which the node was created. Figure 

2.12 [3] shows Fat Nodes in a simple linked list. Each node has, in addition to its data 

and pointers, an additional field which stores new versions. 

 

Figure 2.12 Fat Node Example of a Simple Linked List. 

On the other hand, because Fat Nodes only have additional space limited to a 

fixed number of modifications, then, in the case that a node has all its information fields 

filled, it is necessary to create a new node. This new node must keep pointers to the 
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previous and next node in the list. In addition, it must be pointed by the previous and next 

nodes, without losing the address of the previous version node. 

2.6.2. Path Copying Method.  Path Copying is a method that consists of making 

a copy of all the nodes of the route, which contains the node to be modified. This 

operation is performed in cascade to modify all those nodes so that all the nodes that 

pointed to the old node should now be modified to point to the new node. 

These modifications generate changes in a cascade until reaching the root of the 

tree. Which makes each version have its own root, and in that sense, a series of roots 

indexed by time must be maintained as shown in Figure 2.13. The data structure pointed 

to the root of time 𝑡 is exactly the structure time 𝑡 [1]. 

There are more complex ways to make persistence, such as confluent persistence 

[34], [35]. This structure allows the three versions of a data structure to be joined in a 

new update operation. This research focuses on partial, full, and confluent persistence. 

 

Figure 2.13 Path Copying in a Binary Search Tree. 



 

 

27 

2.7. THE INCREMENTAL ALGORITHM 

A Delaunay triangulation of a set of vertices 𝑃 is calculated by inserting one 

vertex after another, that is, the triangulation of the set of vertices 𝑃 inserted until 𝑅 is 

maintained, where 𝑅 ⊆ 𝑃. For the insertion of the next vertex 𝑠, the triangulation is 

updated to obtain the Delaunay triangulation of 𝑅 ∪ {𝑆}. 

To avoid special cases, three artificial vertices (a triangle) are added to the vertex 

set P that must wrap around all the vertices, that is, the convex envelope of the resulting 

vertex set is a triangle. The incremental algorithm begins with the Delaunay triangulation 

of the three artificial vertices. At each insertion of a vertex s, the triangle △=△

(𝑝, 𝑞, 𝑟) 𝑓𝑜𝑟 𝐷𝑇(𝑅) containing s must be found and replaced by the three resulting 

triangles connected to the three vertices 𝑝, 𝑞, 𝑟 as seen in Figure 2.14 [36]. 

 

Figure 2.14 Incremental Insertion Algorithm. 

To find the triangle that contains the vertex to be inserted, different algorithms 

and/or data structures are proposed: 

1. Data structures for inquiries from the nearest neighbor [37]. 

2. Algorithms for walking in triangulations [38]. 
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Given the triangulation 𝑇 of 𝑅 ∪ {𝑠}, flips are performed in 𝑇 until obtaining 

𝐷𝑇(𝑅 ∪ {𝑠}) is obtained as in Figure 2.15. 

 

Figure 2.15 Incremental Insert Result. 

Each incident 𝑠 edge that is created during the update is an edge of the Delaunay 

graph of 𝑅 ∪ {𝑠} and therefore an edge that will be in 𝐷𝑇(𝑅 ∪ {𝑠}). 

2.8. RELATED WORKS 

The use of persistent data structures is involved in many areas of computer 

science such as functional programming, computational geometry, and other algorithm 

application areas [1], most of these applications require being able to perform queries in 

previous states of the data structure. 

There is a simple scheme to make any data structure persistent. In this scheme, the 

operations are carried out as they have been ephemerally but before each update 

operation, it is performed in the current version. New copies are created on which will 

perform the required operation, keeping both versions in memory independently of each 
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other. This is obviously inefficient since the consumption of time and space is equal to 

the number of elements of each version. 

In general, persistent data structures are divided into two types: The first, seen 

in the previous section, attempts to create general ways that would make any 

ephemeral data structure persistent while keeping computational and spatial costs low. 

The second, which presents specific solutions to generate persistent data structures, 

some of which are described below. 

2.8.1. Location of Vertex in the Plane. “One of the best-known geometric 

applications is the algorithm for the location of a vertex in the plane that triggered the 

development of the entire area. In the problem of locating a vertex in a plane, we are 

given the subdivision of the Euclidean plane into polygons of n line segments that 

intersect only at their ends " [39].  

First, processing must be done on the line segments, so that given a query vertex 

𝑝, it is possible to efficiently determine which polygons contain it. The plane is divided 

into vertical stripes by drawing a vertical line that passes through each vertex, that is, the 

intersections of the line segments in the subdivision of the plane [1], the intersection of 

the line segments with subdivision of a fragment are arranged, then it is possible to 

answer each query using two binary searches. One binary search locates the fragment 

containing the query, and another binary search locates the segment before the query 

vertex within the fragment. 

If we have the set of a specific segment, we can obtain the set of segments by 

removing the segments that end at the limit between them and inserting segments that 

start at that limit. As all the segments are swept from left to right, we have that in total 
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there are 𝑛 eliminations and n insertions; one deletes and one insert for each line 

segment, thus reducing the problem of keeping partially persistent search trees to query. 

2.8.2. The Persistent Arrays.  Dietz's article [40] shows a general technique for 

creating persistent arrangements, which takes time 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔 (𝑚)) to access the 

arrangement and 𝑂 (𝑙𝑜𝑔𝑙𝑜𝑔 (𝑚)) amortized [41] to change the content of an entry, where 

𝑚 is the total number of changes being the size of space used 𝑚. 

Otherwise, n indicates the size of the array and it is assumed that 𝑛 < 𝑚, the 

array is considered a Fat Node with 𝑛 fields. The list of values-versions that describe the 

assignments to each entry in the array is represented in a data structure proposed by [42]. 

This data structure has spatial complexity linear to the number of elements, making use 

of perfect dynamic hashing [43]. 

2.8.3. Persistent Triangulations.  Blelloch [44] describes a method to construct 

Convex Hull in 3 dimensions, to subsequently obtain the Delaunay triangulation from the 

edges of the convex envelope, to obtain the Delaunay Triangulation partially persistent, 

information is maintained about the edges, which they are stored in data structures with 

an optimal query time, in particular, making use of balanced search trees, to be able to 

query the data structure at an earlier time 𝑡. 

Many algorithms, including the one proposed by Blelloch [44], are based on the 

construction of the convex polygon in the dimension 𝑑 +  1. That is, given a vertex 𝑝 

outside the convex polygon of a set of vertices, said polygon can be extended to include 

this vertex as follows. Consider the vertex 𝑝 outside as a subset of the faces for the 

polygon. These faces are eliminated in the construction. 
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The boundary of these faces is a set of edges called the horizon, then a pyramidal 

polyhedron is created as in Figure 2.16 [45], whose vertex is the outer vertex and whose 

base is the horizon. This construction the vertex 𝑝 as a New vertex of the related 

component, the inner vertices to the polygon, are discarded. 

 

Figure 2.16 The Incremental Algorithm, Convex Polygon in 3 Dimensions. 

Otherwise, to obtain Delaunay Triangulations partially persistent, information is 

kept about the adjacencies, which are stored in data structures with an optimal query 

time, in particular the use of balanced search trees. 
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3. PERSISTENT DELAUNAY TRIANGULATIONS 

This section explains the algorithms proposed for the implementation of persistent 

Delaunay triangulation. Four algorithms, Bowyer-Watson, Walk, Hybrid and Graph are 

proposed for the insertion operation in partial persistence, the vertex removal operation is 

also proposed for the Walk method. Later the Walk proposal for the full persistent 

Delaunay triangulation is extended. 

3.1. THE WALK METHOD 

The proposal consists of a structure, which is divided into two fundamental parts: 

1. The first corresponds to the data structures, which will support the persistent 

Delaunay triangulation and whose stage we will call the internal structure. 

2. The second describes the persistent insertion and deletion that will support the 

proposed Delaunay triangulation. 

3.1.1. Internal Structures. The internal structure, unlike libraries such as CGAL, 

considers the persistence of previous versions. It allows storing previous states, which 

were generated as a result of some modification operation. The storage cost of previous 

versions in the internal data structure will minimize the temporary cost and maintain 

computational complexity. 

One of the simplest, but least efficient ways of maintaining versions would be by 

storing full copies of all past versions and considering that every time an insertion or 

deletion operation is performed. A new state or version is generated, then implementing 

this method would be counterproductive in time and space. 
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In this sense, the internal structure aims to minimize the amount of memory 

necessary to maintain the versions of the structure and, in addition, maintain the 

algorithmic complexity in each of the operations. Considering that each operation of 

insertion or elimination, in the Delaunay triangulation, modifies the edges of one or 

several vertices. Then, it is proposed to use an additional data structure, which will allow 

storing the changes, only of the edges and the affected vertices in a certain time 𝑡. 

 

Figure 3.1 The Triangulation Over Time. 

In Figure 3.1, the changes in triangulation overtime after inserting operations can 

be seen. Where 𝑇1 represents the initial Delaunay triangulation and for the other 

triangulations, 𝑇𝑖 represents the Delaunay triangulation of 𝑇𝑖−1 ∪ {𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}. In the same 

figure, the black nodes represent vertices that were entered in a past time and, on the 

other hand, the blue nodes are those that are being entered in the 𝑇𝑖 time. Each node 

stores information of the time 𝑇𝑖 in which it was inserted, the edges store information of 
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the time in which they were created, similarly the edges that connecting with the blue 

nodes represent the edges created in the time 𝑇𝑖. 

The internal structure of the persistent Delaunay triangulation is made up of a 

set of data structures, which allow keeping the information of the changes made on the 

triangulation. These additional structures have the main objective to minimize the 

amount of RAM, which will allow storing any modification. And, to make 

consultations in the past of the structure, maintaining the computational cost of the 

regeneration of the triangulation in a previous time 𝑡. 

On the other hand, it is proposed to store information about the neighborhood of 

each vertex over time (vertices that at some time had some edge in common). An 

example is observed in Figure 3.1, where each edge has an integer associated, which 

indicates the time in which it was created. In addition, each vertex stores a set of data, 

which represent the historical information about vertices with which there was some 

relationship (edge) in the past. 

 

Figure 3.2 Internal Representation for the Triangulation Over Time. 
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In Figure 3.2 the persistent representation of Delaunay's triangulation of Figure 

3.1 can be seen. Figure 3.2 shows the vertices of the Delaunay triangulation. Each 

vertex has a balanced binary search tree associated and, in addition, each node of the 

tree symbolizes an edge between the vertex 𝑝 and the destination vertex 𝑞 in 𝑇. Even, 

it maintains information of the creation time (TC) and the elimination time (TE) of the 

edge between 𝑝 𝑎𝑛𝑑 𝑞. For example, the first tree indicates that vertex 1 is connected 

to vertices (VD) 2, 3, 4 and 5 and the root of this tree, that is, node [TC=4, TE=Inf, 

VD= 4], indicates that the edge was created at time 4, which has not removed and is 

connected to vertex 4 (respectively). 

In other words, each node of the tree has the structure [TC, TE, VD], where TC 

represents the creation time of the edge. TE is the elimination time of the edge. The value 

Inf represents the infinite value, which means that the edge has not been eliminated, and 

finally the adjacent vertex. An example of an edge that was eliminated in time 6 can be 

seen, in this same Figure 3.2, in the red nodes. 

3.1.2. Insert Operations.  In the present investigation, triangulation is 

represented as a set of vertices and faces. Each face or triangle provides access to its three 

vertices and its three neighboring faces clockwise 𝑐𝑤 or counterclockwise 𝑐𝑐𝑤. Each 

face has three-pointers to its three vertices and three-pointers to the three adjacent faces. 

These pointers are indexed by 0,1 and 2 counterclockwise, on each face. The 

vertex indexed by 𝑖 is opposite to the adjacent face with the same index; as shown in 

Figure 3.3 [7]. 

For the insertion operation, the incremental algorithm seen in Section 2.5 will be 

used. This method is used because the persistence in time requires storing information 
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every time an operation is performed. That is, it is not feasible to insert n vertices 

together, as the divide and conquer method would do. 

 

Figure 3.3 Representation of a Triangulation. 

As stated in the incremental algorithm, the first step to being able to insert into the 

Delaunay triangulation is to find the triangle that contains the vertex to be inserted. See 

Figure 3.4. To find this triangle, a modification to the algorithm proposed by Brown [38] 

was implemented whose computational cost is 𝑂 (√(𝑛)). This is because the algorithm 

had to be adapted to work in our internal data structure. Modification to this algorithm is 

necessary because the search for the triangle that contains the vertex depends not only on 

the structure but also on the version in which the vertex is to be inserted. Algorithm 1 

(Appendix A), which calls PS-Search, performs this procedure. 
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The algorithm shows the proposed method to find a near vertex in persistent 

triangulation. For this, the input data are the vertex 𝑝 to be inserted, the persistent data 

structure of the Delaunay triangulation and an integer value 𝑡, which indicates the time 

at which the insertion operation will be performed. 

 

Figure 3.4 The Location of the Triangle. 

The algorithm shows the proposed method to find a near vertex in persistent 

triangulation. For this, the input data are the vertex 𝑝 to be inserted, the persistent data 

structure of the Delaunay triangulation and an integer value 𝑡, which indicates the time at 

which the insertion operation will be performed. 

The computational cost required in the worst case is (𝑂(√𝑛 ∗ 𝑘 ∗ log(𝑘))); 

where 𝑛 indicates the number of vertices in the entire triangulation, 𝑘 represents the 
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maximum degree of triangulation. Finally, since in practice the set of edges adjacent to 

a vertex 𝑣 is usually very small in relation to n, then √𝑛 ∗ 𝑘 ∗ log 𝑘 ≤ 𝐶√𝑛, from 

which it is concluded that the proposed algorithm has a computational complexity of 

𝑂(√𝑛). It should be considered that Algorithm 1 (Appendix) returns one of the edges 

of the triangle containing 𝑝. Next, it is necessary to find the other two vertices of the 

triangle containing 𝑝. This is achieved by finding the neighboring edge so that both 

edges form a triangle that contains 𝑝. 

With the 3 vertices that make up the triangle that encloses the vertex 𝑝, the 

triangulation is loaded. This procedure is performed in the internal structure and loading 

only the triangles that will be modified, those that must be affected by a flip operation. 

This allows us to strictly keep the information on the changes that will be made. In Figure 

3.5, only the vertices and their respective edges are marked burble, which is loaded from 

the internal structure. Next, 3 edges are created adjacent to the vertex to insert 𝑝 with the 

vertices of the triangle that contains that vertex. Then, the edges of the triangle containing 

𝑝 are evaluated and if there is any illegal edge (that does not comply with Delaunay's 

condition). The flip operation on that edge must be carried out, to subsequently evaluate 

the 2 opposite edges. 

In Figure 3.6, the purple edges that is related to the purple nodes represent the 

edges that will be evaluated in order to verify whether they are legal or illegal edges. If 

illegal, the flip operation is applied. 
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Figure 3.5  Load Triangles That Contains At Least One Vertex. 

 

Figure 3.6 Edges to Be Evaluated to Perform Flip Operations. 

 

Figure 3.7 An Illegal Node Will be Loaded to Execute the Flip Operation. 
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In Figure 3.7, the blue edge is an illegal edge. Then, to apply the flip operation, 

the opposite vertex of that edge is loaded into memory. The read node, in the same figure, 

represents this behavior. 

After applying these operations, the edges adjacent to the red node are loaded, and 

the algorithm continues to perform the same process as long as an illegal edge is found. 

Figure 3.8 shows in red, the set of edges that will be evaluated after applying the first flip. 

It is important to note that in the persistent Delaunay triangulation only the set of vertices 

and edges that will be evaluated after an insertion operation is loaded. This means that the 

amount of RAM is limited only by the number of vertices and edges loaded in the 

evaluation process. 

 

Figure 3.8 Edges to Be Evaluated to Perform the Red Flip Operation. 
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Algorithm 2 (Appendix), presents the modification to the classic incremental 

algorithm for Delaunay triangulations. The function in the internal data structure is part 

of the proposal for persistent Delaunay triangulation. 

Correctness test for the insertion operation is following the steps below. 

1. Initialization: Initially there is a temporary Delaunay triangulation, which 

contains all the triangles adjacent to the triangle that contains 𝑥. This state can 

be seen in Figure 3.5. In this figure, only the purple triangulation is loaded 

into a temporary Delaunay structure. 

2. A temporary Delaunay triangulation is maintained in each iteration. In each 

iteration, the following edge 𝐸 ∈ 𝐴 is evaluated. If a flip operation is 

executed, then the pair of edges that could be affected and can give rise to 

new flip operations is loaded. Then, a temporary triangulation is 

maintained, according to the classic incremental algorithm, until it is not 

possible to do more flip operations. Here, it is important to note that, in 

practice, the number of flip operations in a Delaunay triangulation is 

constant, including 𝑂(1) in random vertices distributions [46]. Therefore, 

its effect on the performance of the proposed algorithm is minimal. 

3. Termination: Since the number of flip operations is constant and finite, and 

that the algorithm ends when there are no more edges in the array, then it is 

guaranteed that the algorithm ends. 

3.1.3. The Operation for Loading Triangulations.  The internal data structure 

does not store information about faces, order, and orientation, as well as information from 

neighboring triangles. This in order to minimize RAM. In this sense, a procedure must be 
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carried out that allows loading the triangles but considering the correct orientation and 

information of the neighborhood. For this, Algorithm 3 is used. This algorithm receives a 

vertex 𝑝 as input and returns all its adjacent vertices, at a certain time 𝑡, arranged in a 

counterclockwise direction. 

In Algorithm 3 all the vertices are obtained within the search binary tree 

associated with 𝑝, taking into account that, for each node of the tree, the argument 𝑡 of 

the function, be within the initial range 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≤ 𝑡 ≤ 𝑡𝑓𝑖𝑛𝑎𝑙. This function reconstructs 

the set of triangles, which are necessary, to perform the flip operations only on the 

vertices and edges that exist at that time 𝑡. 

3.1.3.1. The correctness test for loading triangulations.  

1. Initialization: Initially there is only one vertex, which is the vertex 𝑝. 

2. Given 𝑝 ∈ 𝑇 then all vertices 𝑞 adjacent to 𝑝 are loaded. Once all 

vertices adjacent to 𝑝 are loaded, they are ordered counterclockwise to 

𝑝, the correctness of this procedure is given by the correctness of the 

sorting algorithm to use. 

3. Completion: it is guaranteed that this algorithm ends since different 

vertices are inserted, therefore, 𝑖 is the number of neighboring vertices 

and 𝑘 the total number of vertices inserted until time 𝑡, it is guaranteed 

that the algorithm ends when 𝑖 =  𝑘 +  1. 

Once the edges adjacent to vertex p are loaded, it is necessary to regenerate the 

triangle formed by these edges. To achieve this, Algorithm 4 (Appendix) is applied. 

3.1.3.2.  Correctness test for Algorithm 4 (Appendix).  Which performs the 

loading of the temporary Delaunay triangulation, from our internal structure: 
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1. Initialization: when starting the algorithm, there is only one side, which will 

consider as infinite or null (NULL). 

2. since 𝑝 ∈ 𝑇, then all vertices 𝑞 adjacent to a 𝑝 are loaded, this process is shown 

on line 1, then the initialization of each face is performed, this process is observed 

on lines 5 through 8. It is like this that before the insertion of each vertex, the 

Delaunay triangulation corresponding to the inserted vertices, and their respective 

adjacent vertices, is kept loaded. 

3. Completion: let 𝑖 be the number of nodes inserted until a given iteration and the 𝑛 

total number of vertices inserted until time 𝑡, it is guaranteed that the algorithm 

ends when 𝑖 = 𝑛 + 1 in the worst case. 

3.1.4. The Elimination Operation for the Walk Method.  To perform the 

removal of a vertex in a Delaunay triangulation and as seen in Section 2.4, it is enough to 

eliminate the protruding edges of the vertex to be inserted along with the vertex. Then 

perform the triangulation of the resulting polygon, as shown in Figure 3.9 the polygon 

that should be triangulated is bounded by the purple nodes, with the added edges being 

within the polygon. 

In the case of the persistent data structure, the edges should be updated in the final 

time as the time in which the vertex removal is performed. And add the new edges with 

an initial time equal to the current time 𝑡 and infinite final time (still present in the current 

triangulation). 

There are numerous methods to perform the elimination of a vertex to Delaunay 

triangulation, in this sense, it is proposed to use a simple and efficient complexity 
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elimination algorithm (𝑘𝑙𝑜𝑔𝑘) to eliminate the vertex in a Delaunay triangulation, based 

on Shelling, to this will be used the following lemma [47]. 

 

Figure 3.9 The Elimination Operation of the Vertex. 

Lemma 3.1: Consider the polygon 𝐻 = {𝑞0, 𝑞1, ⋯ , 𝑞𝑘} and a vertex 𝑝 such that the edges 

of 𝑞𝑖𝑞𝑖+1 belong to the Delaunay triangulation of {𝑞0, 𝑞1, ⋯ , 𝑞𝑘, 𝑝}. If  

|(𝑝, 𝑐𝑖𝑟𝑐𝑙𝑒(𝑞𝑖, 𝑞𝑖+1, 𝑞𝑖+2))| is maximum, then 𝑞𝑖𝑞𝑖+2 is an edge of the Delaunay 

triangulation of {𝑞0, 𝑞1, ⋯ , 𝑞𝑘−1}. 

Then the elimination of a vertex can be implemented by maintaining a 

structure for storing ears and finding the lowest priority. In this implementation, the 

remaining ears should be part of a doubly-linked list, to better represent the resulting 

polygon in each iteration of Algorithm 5 (Appendix). 
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3.2. THE BOWYER-WATSON ALGORITHM 

Bowyer [48] and Watson [49] simultaneously presented a random incremental 

algorithm in their article, which considers Delaunay's rule as the primary criterion, 

forming triangulations with almost unifying methods. 

This algorithm begins with the formation of a sufficiently large artificial triangle 

that captures all points from a given set 𝑃. Artificial points 𝑝−1, 𝑝−2 𝑎𝑛𝑑 𝑝−3 far enough 

so that they do not affect the structure of Delaunay's triangulation over 𝑃, as shown in 

Figure 3.10. Thus, the Delaunay triangulation was constructed over 𝑃 ∪ {𝑝−1, 𝑝−2, 𝑝−3}. 

By defining a large artificial triangle, this ensured that all points from P are 

located inside it. Further, the algorithm randomly selects a point from P and inserts it 

into a triangulation. For each inserted point, first, find the corresponding triangle or 

triangle, and then from all existing triangles in triangulation determine that whose 

circumscribed circle contains the newly inserted point. These triangles are no longer 

Delaunay's, so delete them from triangulation, and a hole is formed in their place. The 

algorithm creates connections between the new point and the points that lie on the 

boundary connections of the hole. In this way, we form new triangles, which are 

Delaunay's, and fill them with a hole in the triangulation, as shown in Figure 3.9. 

In the initial case, the first inserted point will fall inside the artificial triangle and 

divide it into three smaller triangles, and then the division of the triangles and 

replacement of the hole by the remaining points from 𝑃 will be carried out iteratively 

until the entire set 𝑃 is processed. In the last step of the triangulation, the algorithm 

deletes all triangles, of which at least one corner is formed by the point 𝑝−1, 𝑝−2, 𝑜𝑟 𝑝−3. 
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In this step, care must be taken not to destroy the edge of the convex triangulation 

envelope. The result is a Delaunay triangulation over 𝑃. 

 

Figure 3.10 Large Triangle (Contains All the Points Inside It). 

The algorithm is scalable to several dimensions, and it takes 𝒪(𝑛1+1 𝑘⁄ ) time to 

build Delaunay triangulation, where 𝑘 is the number of dimensions and 𝒪(𝑛) time to 

manage the data structure [48]. For the two-dimensional Delaunay triangulation, the 

points were to be sorted before being inserted into the algorithm, the algorithm to build 

the Delaunay triangulation would take 𝒪(𝑛 log 𝑛) time. In practice, this is usually 

negligible. 
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To start measuring the run time of the algorithm, we have chosen a step where 

makes a random permutation over the read points. Then store the current time of the 

algorithm.  

The method stores the time value in nanoseconds. To finish measuring the run 

time of the algorithm, determined the step when the algorithm verifies that all points 

connections on the edge of the convex triangulation hull are present in the DAG and, if 

not, form the corresponding triangles. In this step, the algorithm returns the Delaunay 

triangulation and thus completes its purpose, so stopped the measurement after its 

execution. To conclude the measurement, again use the System-Time method to save the 

current value, which is greater than the previously stored value exactly for the time taken 

by the Delaunay triangulation algorithm. Then subtract values from each other to give the 

algorithm run time in nanoseconds, which is converted to milliseconds and seconds for 

better transparency. 

3.3. THE HYBRID METHOD 

A modification to the Walk method is proposed, with this modification the 

process of finding the triangle 𝑡𝑟 containing 𝑝 is accelerated, where 𝑝 is the vertex to be 

inserted in the current triangulation 𝑇. For this, a structure for the location of vertices 𝐷 is 

constructed, which is an acyclic directed graph [50]. The final nodes of 𝐷 correspond to 

the triangles of the current triangulation 𝑇, the internal nodes of 𝐷 correspond to the 

triangles that belonged to the triangulation at some previous time and that are no longer 

part of the current triangulation. 
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The structure to find the vertex was taken from De Berg [24] and is constructed 

as follows. Initially, a triangle is created large enough to contain inside all the vertices 

to be inserted, this can be seen in Figure 3.11. In this figure, (a) represents a single 

triangle which we will call Δ1. In (b) the data structure is shown; which, in this case, 

only consists of a single node. 

 

Figure 3.11 The Initial Structure. 

Otherwise, in Figure 3.12, in (a), the insertion of a vertex inside Δ1 is observed. 

This generates three new triangles, which we will call Δ2, Δ3 𝑎𝑛𝑑 Δ4. In (b), the data 

structure (acyclic directed graph) of the triangulation in (a) is appreciated. As can be 

seen, the root node remains Δ1, that is, the triangulation in the previous time. To this 

node, nodes Δ2, Δ3 𝑎𝑛𝑑 Δ4 are added that correspond to the new triangles generated by 

inserting the new vertex; In this way we maintain both the current version of the 

triangulation and the previous ones. 
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Figure 3.12 The Initial Structure After Inserting a Vertex. 

In addition, to perform a flip operation, in this data structure, you must find the 

two triangles that share the edge in which the operation will be carried out. For 

example, this behavior is shown in Figure 3.13. In (a1) it can be seen that Δ7 and Δ8 

have an illegal edge and therefore a flip operation must be performed so that the 

triangulation changes, eliminating Δ7 and Δ8 and generating triangles Δ11 and Δ12, as 

shown in (a2). 

On the other hand, this variation in triangulation must generate a change in the 

data structure that represents it. This can be noticed in (b1) and (b2). Where (b1) and 

(b2) are the directed acyclic graphs of (a1) and (a2) respectively. In (b2) triangles Δ11 

and Δ12 have triangles Δ7 and Δ8 as parents, therefore Δ7 and Δ8 were replaced by Δ11 

and Δ12. In this way all leaf nodes represent the current triangulation, while the other 

nodes in the graph form triangles in times past. Then you can summarize the data 

structure in Algorithms 6 and 7 (Appendix). 
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Figure 3.13 The Initial Structure After Insert-Flip. 

3.4. THE GRAPH METHOD 

The data structure seen above maintains persistence, as it contains all the 

triangles that were once part of the triangulation. In addition to the triangles of the 

current triangulation as final nodes of the graph. In addition, if a time identifier was 

added in each node of the structure and would store in an array sequentially sorted in a 

non-descending manner by the associated time. Then a triangulation could be retrieved 

in a given time t making use of binary search on this arrangement and thus be able to 

retrieve the final nodes of the structure in that certain time. 
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3.5. THE FULL PERSISTENCE 

This section presents an additional contribution. In addition to partial persistence, 

the data structure supports full persistence, as in Figure 3.14 [33]. 

To achieve this type of persistence, an integer value is added to each node of 

the balanced binary search tree. This value indicates the version to which an edge 

belongs, and, in this way, all operations remain equal to partial persistence. 

 

Figure 3.14 The Full Persistence. 

All the algorithms applied in the partial persistence method work similarly in the 

full persistence, with the difference that it is now necessary to consider the value of the 

version. One of the difficulties, in the method of complete persistence, is to find the 

vertex in the version tree from where to start the path to find the triangle that contains the 

vertex to be inserted. This procedure is complicated in contrast to its partial version. 

Considering the version tree of Figure 3.14, the problem is reduced to finding an 

ancestral random node of the version to be modified. So, it is proposed to use dynamic 

programming to find the 𝑖𝑡ℎ ancestor of the node, that is to say the 𝑖 − 𝑡ℎ node on its way 
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to the root, with this it is guaranteed to find said vertex with a computational cost of 

𝑂 (𝑙𝑜𝑔𝑛) of insertion by node, and a computational cost of consultation 𝑂 (𝑙𝑜𝑔𝑛) [51]. 

The focus is on pre-processing, using dynamic programming, sub-matrices of 

length 2𝑘. Maintaining a matrix 𝑀 [𝑁][𝑙𝑜𝑔𝑁] where 𝑀 [𝑖] [𝑗] is the 2𝑗 ancestor of 𝑖. 

In Algorithm 8 (Appendix), all 2𝑖 ancestors of 𝑝 are calculated. 

3.5.1. The Correctness Test for the Full Persistence. 

1. Initialization: At the beginning of the algorithm, the ancestor of vertex 

𝑝 is the   father of 𝑝. 

2. At the end of each iteration, the 2𝑖 ancestor of 𝑝 is calculated, from the 

following recurrence function, where 𝑇(𝑥) represents the father of 𝑥: 

𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖;  𝑥) = {
𝑇(𝑥),                                                                𝑖𝑓 𝑖 = 0                   

 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖 − 1;  𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑖 − 1;  𝑥))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          
      (12) 

3. Completion: the completion of the algorithm is guaranteed, since the 

height of the version tree has 𝑎 𝑣𝑎𝑙𝑢𝑒 ≤  𝑛 where 𝑛 is the number of 

versions. Therefore, let 𝑚 be the number of ancestors of 𝑝, it is guaranteed 

that the algorithm ends in the worst case when 𝑖 > 𝑙𝑜𝑔2 (𝑛 +  1). 

In Algorithm 9 (Appendix), a random node ancestor of 𝑝 is calculated. We check 

if in the binary representation in nanometer the bit that corresponds to the position 𝑖 is on, 

if it is, id Random Vertices is updated as its 𝑖 − 𝑡ℎ ancestor. 

3.5.2. The Correctness Test of Algorithm 9 (Appendix). 

1. Initialization: Initially the 0 ancestor of 𝑝 𝑖𝑠 𝑝. 

2. Given the binary representation of ancestor, random vertex is updated to 

be the next 2𝑖 ancestor of 𝑝. 
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3. Completion: Considering that the height of the tree has 𝑎 𝑣𝑎𝑙𝑢𝑒 ≤  𝑛, 

where 𝑛 is the number of versions, and let 𝑚 be the number of 

ancestors of 𝑝. Then, it is guaranteed that the algorithm ends in the 

worst case when 𝑖 >  𝑙𝑜𝑔2 (𝑛 +  1). 

3.6. POINTS RATE IN DELAUNAY TRIANGULATIONS 

Many algorithms for constructing Delaunay triangulation depend in one way or 

another on the number of connections to which each point belongs, that is, on the 

degrees of the point in the triangulation. There is little mention in the literature on the 

notion of the highest point rate in Delaunay triangulation. Bern, and Yao [52] proved 

that the expected maximum point rate in a Delaunay triangulation planar, with points 

plotted by a homogeneous Poisson process at the interval [0, √𝑛]
2
 , is known as 

log 𝑛

log log 𝑛
. 

𝑛 − 𝑒 + 𝑚 = 1                                                        (13) 

In practice, it turns out that the boundary is not sufficiently precise, since it is only 

an approximation limited to the distribution of points by the Poisson process, nor does it 

imply that in practice there are points that only they radiate at the edge of the convex hull 

triangulation, many times higher than expected. Broutin, Devillers, and Hemsley [53] 

have proved that for a random distribution, this 𝑐𝑘 in the planar in the Delaunay 

triangulation is more accurate at the expected maximum radiance of this log2+𝜀 𝑛, for 

each 𝜀 > 0. when that number of points n goes to infinity. 
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From Euler's formula (4) [12], the Delaunay triangulation 𝐷𝑇 over a set of power 

points has 𝑛 less than 3𝑛 connections and 2𝑛 triangles. Since each connection contains 

two points, the sum of point rates for all nodes in DT is less than 6n. If we divide this 

sum by the number of all points in DT, we get an average point rate in DT less than 6. 

3.7. DETERMINING THE MAXIMUM AND AVERAGE POINT RATE.  

 The maximum and the average points rate was determined after the algorithm 

has already constructed a Delaunay triangulation over a given set of points. A table 

that will keep the vertices rate for each vertex in the given set was defined. Then, walk 

across all the triangles that construct the Delaunay triangulation and store its degree 

for each vertex in the table. This has been done by checking the number of occurrences 

of vertices in triangles in the DAG. Each time a vertex sits in one of Delaunay 

triangles, the time counter in the corresponding field in the table will be increased until 

all vertices and triangles are processed. 

Specific examples are vertices that lie on the edge of the convex hull, which 

has a degree higher than the number of the triangles. Thus, a particular criterion is 

added for these vertices to check that an individual vertex is part of the edge of the 

convex hull of the Delaunay triangulation. If so, the rate of the corresponding vertices 

is increased by one more, and the highest vertices rate is obtained by finding the 

highest vertices in the vertices rate table. An iterative values comparison was held and 

always store the maximum until all the vertices are processed. The average vertices 

rate is obtained by summing all the vertices degrees with each other and dividing that 

value by the number of vertices. 
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4. TESTS AND RESULTS 

This section explains the tests and results performed during the implementation. 

The tests were divided into three groups. 

The first part of the test is focusing on constructing a planar Delaunay 

triangulation that is modeled after the Bowyer-Watson algorithm. The data structure 

that was used for this test is DAG because it allows us to easily navigate between the 

contained nodes. It is one of the classic implementations with the HashMap class to 

store the triangles for which created the new class. 

The second group of the test is focusing on analyzing the temporal and spatial 

complexity of the three proposed methods: Walk, Hybrid and Graph, in contrast to the 

CGAL library. It is important to emphasize here that the three methods are persistent, 

while CGAL does not. Therefore, in this experiment, it is intended to demonstrate that 

the computational complexity of the methods with persistence is like the CGAL itself, 

who does not store temporary information. 

Where in the third group of experiments, the temporal and spatial behavior of 

persistent structures was analyzed, with a set of random data. Finally, randomized data 

tests were performed to analyze the behavior of the fully persistent data structure. In the 

last case, tests were carried out with the Walk method because it is the only method that 

has full persistence. 
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4.1. THE BOWYER-WATSON ALGORITHM RESULT 

For this development of the experimental group the data set that used is the 

DAG dataset. In this experiment, the procedure is to walk across all triangles in the 

DAG dataset and remove triangles whose at least one endpoint is equal to the endpoint 

of the initial triangle. This eliminated the artificial points and consequently. The edge 

of the convex hull triangulation could be destroyed in this step, so it is necessary to 

verify that all Delaunay triangulation connections lying on the edge of the convex 

envelope are indeed located in the DAG. 

4.1.1. The Measurement for the Run Time. The running time of the Bowyer-

Waston algorithm was examined. Table 4.1 presents the results for the test samples. 

Figure 4.1 shows the running time of the algorithm as a function of the vertices number.  

 

Figure 4.1 The Run Time for the Bowyer-Waston Algorithms. 
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Table 4.1 The Average Run Time for the Given Number of Vertices. 

Number of vertices Average run-time (in seconds) 

2000 1.054 

4000 3.851 

6000 9.008 

8000 16.552 

10000 25.593 

12000 37.522 

14000 50.801 

16000 66.588 

18000 84.716 

20000 100.503 

22000 105.864 

24000 110.413 

26000 115.587 

28000 120.841 
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It is observed that the average execution time of the algorithm increases with 

the number of vertices but remains within the limit 𝑂(𝑛). 

4.1.2. Experiments of the Maximum Point Rate for a Given Vertices.  The 

highest points rate in the Delaunay triangulation over the given sample is calculated. 

Table 4.2 presents the results for the average value of the highest point rate. Table 4.3 

lists the maximum and minimum point rate of all samples for the given number of 

vertices. The results show that when increasing the number of vertices, a regular growth 

in the value of the highest point rate occurs. It observed that samples up to and including 

12000 vertices far exceed the theoretically expected maximum level. Also, samples from 

16000 vertices fall below the expected limit on average. It was observed that among 6000 

samples for each number of vertices, there was such a model where the maximum rate 

exceeded the expected limit. 

The average point rate in the Delaunay triangulation over the given sample was 

tested. The results are presented in Table 4.4. As the number of vertices increases, it is 

clear there is an increase in the average point rate. As the number of vertices increases, 

it is clear there is an increase in the average vertex rate that approaches asymptotically 

the limit 6. 

4.2. THE EXPERIMENTAL GROUPS TEST IN PARTIAL PERSISTENCE 

DATA STRUCTURES 

For the development of the experiments, two databases were considered, one 

consisting of a set of images and the other by random vertices. Each of them is described 

below.  
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Table 4.2 The Maximum Point Rate for Given Vertices. 

Number of vertices 

The highest rate for 

vertices 

The expected value of the 

highest rate for vertices 

2000 10.15 8.56 

4000 11.355 10.45 

6000 11.925 11.56 

8000 12.555 12.431 

10000 13.085 13.311 

12000 13.335 14.021 

14000 13.515 14.611 

16000 13.805 15.121 

18000 14.125 15.571 

20000 14.655 15.981 

22000 14.775 16.391 

24000 14.895 16.751 

26000 15.185 17.031 

28000 15.475 17.465 
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Table 4.3 The Maximum and Minimum Value of the Highest Number. 

Number of vertices 
The maximum value 

of the highest 

vertices rate 

The minimum value 

of the highest 

vertices rate 

2000 12 8 

4000 12 8 

6000 14 8 

8000 14 9 

10000 15 9 

12000 16 10 

14000 16 11 

16000 18 12 

18000 18 12 

20000 18 12 

22000 19 13 

24000 20 13 

26000 21 14 

28000 22 14 
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Table 4.4 The Average Value for a Given Number of Vertices. 

Number of vertices The average value of the vertices rate 

2000 4.514 

4000 5.171 

6000 5.289 

8000 5.289 

10000 5.413 

12000 5.433 

14000 5.441 

16000 5.445 

18000 5.446 

20000 5.448 

22000 5.45 

24000 5.45 

26000 5.47 

28000 5.52 
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The first experiment was developed using a database of 15 images of different 

sizes. Harris's algorithm [54], it was applied to each of the images to obtain the most 

representative set of pixels in the image, these pixels are called key points. Subsequently, 

the key points were stored in files and from them, the Delaunay triangulation was 

generated with the 3 proposed methods (Walk, Hybrid and Graph). 

In the second experiment, several tests were carried out with different sets of 

random vertices. 15000, 25000, 35000, 45.000, 55.000, 65.000,75.000 and 95.000 

vertices were taken. In both experiments, comparisons were made regarding temporal 

cost and space cost. The results obtained for each of the test groups are described below. 

4.2.1. The Comparing of the Image Experiments Results. Figure 4.2 shows 

Images in three columns, the first shows the real images, the second column shows the 

result of applying the Harris algorithm [54] on the images of the first column to obtain 

the most representative set of pixels of the images (key points). Finally, in the third 

column the Delaunay triangulation is shown carried out on the vertices of the second 

column. 

4.2.1.1. The cost results for the CPU.  Table 4.5 shows the results obtained (in 

seconds) when applying the proposed methods (Walk, Hybrid and Graph) in comparison 

with the results of CGAL. In this table, the first column represents the number of vertices 

(key points) obtained in each image. Finally, columns 2, 3, 4, and 5 are the results, in 

seconds, of the computational cost of the Hybrid, Graph, Walk, and CGAL algorithms, 

respectively. In the results, it can be observed that, as the number of vertices is greater, 

the Graph method has a better performance than CGAL. 
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Figure 4.2 Results of Applying Triangulation Algorithms. 

On the other hand, the Walk and Hybrid method have a lower performance, 

because the first one uses the modified search algorithm which increases the 

computational cost by a factor of 𝑂(√𝑛). While in the second, it combines the internal 

data structure with the data structure of the Graph method, so that it is necessary to load 

the triangles of the internal structure each time an insert is made. 

4.2.1.2. The cost results for the RAM.  In the same way as in the experiment to 

evaluate the temporary cost or cost in CPU, Table 4.5 shows the results of RAM 

consumption of the three proposed methods Walk, Hybrid and Graph compared with 

CGAL. 
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While Table 4.6 shows that, of the three methods proposed to build a persistent 

data structure, the lowest RAM consumption was obtained by the Graph method. It is 

important to note, at this time, that the CGAL library requires less RAM. However, 

CGAL is not persistent, which implies that it does not maintain information from past 

versions and in that sense, it is expected that its spatial complexity or consumption of 

RAM memory is much lower than the 3 proposed methods. 

4.2.2. The Experimental Results on the Random Dataset.  This section will 

contain the cost result for the CPU and RAM. 

4.2.2.1. The cost results for the CPU with the random dataset.  In the same 

way as previous experiments, in Table 4.7 the temporal behavior of the proposed 

algorithms (Walk, Hybrid and Graph) can be seen in comparison with CGAL for the 

construction of the Delaunay triangulation for a certain number of vertices. Although 

CGAL does not admit persistence in any of its types, the objective was to analyze 

whether any of the proposed algorithms, in addition to being persistent, it could execute 

Delaunay triangulation competitively with CGAL. 

Figure 4.3 shows that the Walk method, for the random dataset, has a 

computational cost greater than the Hybrid and Graph methods and obviously CGAL. 

In addition, we can see that the Graph method has a computational cost lower than the 

two proposed methods (Walk and Hybrid) and is even competitive with CGAL. In 

summary, the proposed Graph method proved to be the most efficient of the proposed 

methods. 

 



 

 

65 

Table 4.5 Analysis of the Temporal Cost (in seconds) of the Walk, Hybrid, Graph and 

CGAL Methods. 

No. of 

vertices 

Hybrid 

method 

Graph 

method 

Walk method CGAL 

1239 0.432 0.254 0.541 0.066 

4362 1.123 0.623 1.289 0.242 

4624 1.276 0.665 1.560 0.278 

4954 1.3.14 0.679 1.658 0.308 

5231 1.357 0.682 2.170 0.364 

7436 2.851 1.103 2.946 0.648 

9753 3.182 1.558 3.688 0.874 

13245 6.001 2.099 5.480 1.296 

21669 6.487 3.776 11.605 2.603 

21788 10.406 3.799 11.714 2.621 

30689 13.754 6.091 16.768 5.147 

33579 36.845 6.831 21.386 5.417 

125889 37.583 25.853 103.931 34.907 

128588 43.167 27.204 104.992 38.415 

131478 49.475 27.259 106.477 39.075 
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Table 4.6 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid Graph and CGAL 

Methods. 

No. of 

vertices 

Hybrid 

method 

Graph method Walk method CGAL 

1239 48.376 1798 46.580 448 

4362 53.164 6110 49.696 740 

4624 54.112 6914 50.588 736 

4954 54.152 7298 50.597 740 

5231 54.468 7358 51.689 740 

7436 59.608 12.078 55.221 1032 

9753 64.904 16.990 58.717 1440 

13245 71.468 22.786 62.849 1728 

21669 90.300 40.050 75.777 2808 

21788 90.312 40.354 75.879 2808 

30689 109.008 56.714 87.515 3832 

33579 113.948 62.974 90.955 4008 

125889 284.204 213.186 204.863 13.672 

128588 284.542 213.576 205.654 13.672 

131478 301.910 228.960 217.446 14.628 
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Table 4.7 Analysis of the Cost (in Kbytes) for the Walk, Hybrid Graph and CGAL 

Methods. 

Random 

insertion 

Hybrid 

method 

Graph 

method 

Walk 

method 

CGAL 

5000 2.154 1.112 3.254 1.019 

15000 3.774 2.096 6.929 1.886 

25000 5.447 3.105 8.757 2.831 

35000 7.333 4.103 12.179 3.502 

45000 9.388 5.165 16.027 4.575 

55000 10.896 6.204 19.454 5.655 

65000 13.439 7.687 23.054 6.900 

75000 13.954 8.390 28.559 9.094 

85000 17.616 11.081 33.656 9.494 

95000 18.844 11.412 36.424 11.732 

 

This behavior is due to the fact that in the Graph method, the algorithm to find the 

triangle which contains the vertex that is intended to be inserted, has a 𝑙𝑜𝑔𝑛 

computational cost, in relation to the Walk method whose search algorithm has a cost of 

√𝑛. On the other hand, the hybrid method adds, to the Walk data structure, an additional 

structure to allow the triangle search to be done in 𝑙𝑜𝑔 (𝑛) time, however, by requiring 
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loading all the triangles affected by the process of insertion, its computational cost is 

increased and, for this reason, its performance is lower than the Graph method. 

 

 

Figure 4.3 Comparison of CPU Performance Between Proposed Methods and CGAL 

(Line Diagram) at Random Points. 

In conclusion, we can say that the Graph method is the method with the best 

results in terms of computational cost and, it meets the objective of developing a 

persistent data structure that minimizes computational time when performing 

operations on the structure. In this specific case, of the operations from insertion. 

4.2.2.2. The cost results for the RAM with the random dataset.  Table 4.8 

shows the results in the consumption of RAM (Kbytes) of the proposed algorithms 

(Walk, Hybrid and Graph) compared to CGAL. Although CGAL does not admit 
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persistence in any of its types, the objective was to analyze whether any of the proposed 

algorithms, in addition to being persistent, could execute Delaunay triangulation 

competitively with CGAL. 

Figure 4.4 diagram line data shown in Table 4.8, in this figure the Graph method 

requires less memory than the Hybrid Walk and methods. It can be concluded that, 

without including the implementation in CGAL, the method that consumes less RAM is 

the Graph method, this is because in random distributions the depth of the graph is 

𝑂 (𝑙𝑜𝑔𝑛). 

 

Figure 4.4 Comparison of CPU Performance Between Proposed Methods and CGAL 

(Line Diagram) at Random Points. 
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Table 4.8 Analysis of the Spatial Cost (in Kbytes) of the Walk, Hybrid, Graph and CGAL 

Methods at Random Points. 

Random 

Insertion 

Hybrid 

method 

Graph 

method 

Walk 

method 

CGAL 

5000 69.548 18.836 59.748 1440 

15000 80.240 29.232 66.744 2048 

25000 91.716 38.832 74.440 2660 

35000 102.408 48.204 81.296 3228 

45000 113.232 59.624 88.300 3832 

55000 125.512 69.392 96.572 4524 

65000 136.204 78.926 103.568 5060 

75000 147.028 88.440 110.564 5584 

85000 157.720 97.812 117.548 6188 

95000 168.412 107.184 124.556 6792 

 

4.2.3. Query Experiments for the Incremental Random Datasets.  In the same 

way as previous experiments, in Table 4.9 and in Figure 4.5 you can see the temporal 

cost of the proposed algorithms (Walk, Hybrid and Graph) on a triangulation of 95000 

vertices, where queries are made to be able to recover a certain triangulation in a previous 

time 𝑡, from a total of 𝑡 vertices, for the algorithms (Walk, Hybrid and Graph). 

Where Table 4.10 and Figure 4.6 show the computational cost of fully loading a 

triangulation at an earlier time 𝑡 for the Walk, Hybrid and Graph methods. 
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Figure 4.5 Consultations in Previous Times for the Delaunay Triangulation. 

Table 4.9 Analysis of the Temporal Cost (in seconds) When Loading a Triangulation in 

the Walk, Hybrid and Graph Methods at Random Points. 

No. of Vertices Hybrid method Graph method Walk method 

5000 0.034 0.068 0.038 

15000 0.035 0.107 0.040 

25000 0.037 0.145 0.042 

35000 0.039 0.182 0.044 

45000 0.043 0.217 0.047 

55000 0.045 0.253 0.049 

65000 0.051 0.282 0.051 

75000 0.053 0.311 0.054 

85000 0.055 0.333 0.057 

95000 0.059 0.354 0.060 



 

 

72 

Table 4.10 Analysis of the Temporary Cost (in seconds) When Consulting the Walk, 

Hybrid and Graph Methods at Random Points. 

No. of Vertices Hybrid method Graph method Walk method 

5000 0.236 0.187 0.247 

15000 0.330 0.348 0.334 

25000 0.429 0.499 0.437 

35000 0.531 0.654 0.562 

45000 0.635 0.792 0.644 

55000 0.745 0.936 0.746 

65000 0.856 1.075 0.858 

75000 0.967 1.192 0.963 

85000 1.072 1.338 1.074 

95000 1.195 1.477 1.187 

 

 

Figure 4.6 Delaunay Triangulation Load in Previous Times. 
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4.3. THE EXPERIMENTAL GROUPS TEST IN FULL PERSISTENCE DATA 

STRUCTURES 

Unlike the previous partial persistence, in this experiment, Delaunay triangulation 

was constructed considering that each insertion operation is carried out in a version of the 

structure so that each modification will produce a new version. 

In this section, experiments were carried out to determine the computational cost 

of the search method for the triangle containing the inserted vertex. Comparisons were 

made between the proposed algorithm and a brute force technique. On the other hand, 

comparisons were made between the fully persistent structure and CGAL modified to 

simulate total persistence. 

4.3.1. Search the Algorithm Evaluation.  Table 4.11 shows the times to find the 

triangle that contains the vertex to be inserted, as well as the loading operations of the 

triangles that contain this vertex and the flips necessary to construct the Delaunay 

Triangulation. Where Figure 4.7 shows the differences in performance when using the 

two types of algorithms to search for the triangle that contains the vertex to be inserted 

(brute force and random vertex). 

To analyze the performance of the queries in the proposed data structure, a fully 

persistent Delaunay triangulation with 15,000 vertices was created. It should be noted 

that the queries allow finding the number of neighbors of a vertex in a certain time t, and 

of a certain version. As in the previous experiment, the queries maintain a similar 

performance and independent the size of the triangulation for the time of the query and 

the version in which it is located. In Figure 4.8, it can be seen that since the nodes are 

directly indexed, the query time maintains an almost constant value per search time. 
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Table 4.11 Performance Results in Insertion Operation (in seconds) in Delaunay 

Triangulation with Complete Persistence. 

No. of Vertices Walk method Brute Force Method 

500 0.002 0.007 

1000 0.058 0.054 

3500 0.836 0.927 

10000 6.729 8.043 

15000 18.109 21.043 

 

 

 

Figure 4.7 Comparison of Execution Times (in seconds) of a Brute Force-Based Method 

Against the Walk Method for Full Persistence. 
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Figure 4.8 Execution Time (in seconds) of Query Operations for Full Persistence. 

4.3.2. Evaluation of the Proposal Method and the CGAL Method.  The last 

experiment was developed in order to compare the performance, in terms of RAM 

memory and efficiency, between the proposal and the CGAL (Computational Geometry 

Algorithms Library), which is a library of geometric algorithms widely used in various C 

++ applications. 

The experiment was developed considering that CGAL does not have persistence, 

in this sense, and to be fair, vertices were inserted incrementally both in CGAL and in the 

proposal. On the other hand, after each insertion, a copy was made of the entire structure 

in CGAL to allow persistence and contrast results with our proposal. In this way, 

demonstrate that, indeed, our persistent structure drastically reduces the amount of RAM 

memory, and is also more efficient than maintaining persistence in CGAL with the naive 

method of keeping copies. 
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Table 4.12 shows the amount of RAM memory, in Kbytes, required by CGAL 

and by the proposal. Also, the results are observed, in seconds, of the efficiency of our 

proposal in contrast to CGAL. In the results, it can be seen that as the number of vertices 

to be inserted increases, CGAL consumes significantly a greater amount of RAM 

memory in contrast to the proposal. On the other hand, you can also notice the 

computational efficiency of our proposal. 

In Figures 4.10 and 4.11, you can see the delay times as well as the use of RAM 

memory, for the given proposal and its naive implementation in CGAL. In both cases, it 

is confirmed in practice, the asymptotic differences between both implementations. 

Table 4.12 Comparison of Efficiency (in seconds) and RAM Memory Consumption (in 

Kbytes) Between CGAL and the Proposal for Complete Persistence. 

 

 Vertices 500  1000 3500 10000 15000 

Proposed 

Method 

RAM 24 1875 6573 11.764 14.652 

CPU 0.103 0.431 3.752 4.375 6.869 

CGAL 

Method 

RAM 28 61.212 98.431 6.186.564 8.256.432 

CPU 0.365 0.984 13.457 102.587 150.768 
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Figure 4.9 Comparison of Execution Time (in seconds) Between Proposal Method and 

CGAL for Full Persistence. 

 

 

Figure 4.10 RAM Memory Comparison (in Kbytes) Between Our Proposal and CGAL 

for Complete persistence. 
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4.4. THE ALGORITHM COMPLEXITY ANALYSIS 

This section analyzes the computational complexity of the proposed data 

structures. The main difference between the Walk, Hybrid and Graph methods is given 

by the search procedure for the triangle that contains the inserted vertex in the Delaunay 

triangulation. The Walk method chooses a random vertex on which it makes a journey 

until finding a vertex of the triangle containing the vertex to be inserted. While the 

Hybrid and Graph methods use the structure described in subsections 3.2 and 3.3, the 

difference between these two methods is due to the way persistence is maintained, since, 

in the Graph method, only one use is made. Data structure to store all the triangles 

generated during the triangulation, as well as the corresponding time, in which they were 

created. 

In the three proposed methods, the only one capable of supporting the removal 

operation is the Walk method. This is because the other two proposed methods Graph, 

and Hybrid still lack an optimal way to perform this operation. Each routine is then 

evaluated separately. 

1. Label assignment method: For this method, the algorithm described in  

subsection 3.1.1 is used, which uses a hash table, whose complexity is O (1).  

This routine is used in the Walk and Hybrid method. 

2. Triangles around a vertex loading method: The complexity of this routine is 

𝑂 (𝑘𝑙𝑜𝑔𝑘) where k is the number of neighbors for a vertex. This routine is used 

in the Walk method since the number of adjacent triangles is usually amortized 

constant, we can consider that the cost of this procedure is a constant C. 



 

 

79 

3. Search method for a triangle in a triangulation: This algorithm varies 

depending on the proposed method. In the case of walk, it has a computational 

complexity of √𝑛, however, for the hybrid and Graph methods, its 

computational time is 𝜃(log(𝑛)). 

The triangle load depends on the number of neighboring vertices of a vertex in  

a Delaunay triangulation, it is usually constant. Therefore, the Walk method has an 

asymptotic complexity greater than 𝑂(𝐶) when loading the triangles affected by the 

vertex to be inserted. In the case of the Hybrid and Graph, this cost is 0, since all the 

triangles are already loaded in the structure. 

Then the final complexity of the persistent data structures proposed when 

inserting a vertex is 𝑂(√𝑛) for the Walk method, 𝑂(𝑙𝑜𝑔 (𝑛)) for the Hybrid method and 

𝜃(log(𝑛)) for the Graph method. 
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5. CONCLUSION AND DISCUSSION 

5.1. CONCLUSION 

This dissertation deals with the field of Delaunay triangulations. Different types 

of data structures were proposed and developed for Delaunay triangulations.  

The first implementation was used the DAG data structures with incremental 

insertion algorithm. The time measurements of the execution of the improved  

incremental algorithm has shown that the actual execution time is within the theoretical. 

However, choosing a DAG for a data structure is not the most optimal choice for 

incremental construction algorithms. Guibas and Stolfi [55] have presented a quad edge 

data structure designed to triangulate vertex in two- and three-dimensional spaces. O. 

Devillers [47] presented a data structure of the Delaunay hierarchy that operates on the 

location of a vertex that is relative to its closest neighbors. The structure takes up a much 

smaller percentage of memory compared to DAG. Upgrading our algorithm with an 

improved data structure would optimize memory consumption, thus increasing the 

complexity of the algorithm. Broutin, Devillers, and Hemsley derived the theoretical limit 

for the asymptotic behavior of the maximum vertex rate in Delaunay triangulation as the 

number of vertices increases [53]. Analysis of the results of our measurements showed 

that, in practice, the highest vertex rate will remain below the expected limit for a large 

number of vertices, which is estimated at 4000 vertices in the selected sample. The 

theoretically expected value of the average vertex rate should not exceed 6. The results of 

this dissertation's measurements confirm this. By increasing the number of vertices, in 

practice, the value of the average vertex rate asymptotically approaches the expected 
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value of 6 and does not exceed it. With increasing the number of vertices, both the 

highest and the average rate vertex gradually increases. Since the point patterns are 

arranged at the same interval, it can be concluded that the maximum and average point 

rates depend on the density of the vertices distribution. 

Where the second and third implementations presents three data structures (Walk, 

Hybrid and Graph) that deals with Walk, Hybrid and Graph. The Walk method has a 

computational cost, for the insertion operation, of 𝑂(√𝑛) and, a computational cost for 

the elimination operation of 𝑂 (𝑘𝑙𝑜𝑔 (𝑘)); where k is the number of adjacent vertices and 

𝑛 is the total number of vertices. For the Hybrid method, the insertion algorithm has a 

complexity of 𝑂 (𝑙𝑜𝑔 (𝑛)), however, it does not support deletion. Finally, the Graph 

method has an insertion cost of 𝜃(𝑙𝑜𝑔 (𝑛)) and does not support deletion either. 

In addition, correction evaluations of each of the proposed algorithms were 

carried out and tests with random image and vertex databases were developed, reaching 

the following conclusions: 

The data structure, in its partial version, is competitive with respect to other data 

structures raised and even better than those that do not have persistence, the latter being 

the big difference. In addition, it can be used without using persistence. 

In the full version, the data structure shows an advance in the state of the art, this 

is because, in the literature, there is currently no data structure for Delaunay triangulation 

with complete persistence. 

In the partial version, the Graph method demonstrated a better performance in 

relation to the Walk and Hybrid methods, both in computational cost and in the use of 

RAM. However, Graph does not present persistent elimination. In comparison, the  
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Walk method, although it is the least efficient of the other two, has persistent 

elimination and, since the efficient insertion algorithm is related to the performance of 

the search algorithm of the triangle that contains the vertex to be inserted, which is 

𝑂(√𝑛), so it is possible to create a more efficient persistent search algorithm to 

improve the results of this method. 

5.2. LIMITATION 

In the fully persistent version, the edge loading operation still has problems with 

its performance. This is due to the need to store information about the version number 

and start time and end time values at which there are adjacent edges with other vertices. 

Performing the search for the triangle that contains the vertex to be inserted has 

an amortized complexity of 𝑂(√𝑛). Therefore, the possibility of minimizing this 

dimension through a more efficient search algorithm is still pending.



83 

 

APPENDIX  

ALGORITHMS  

Algorithm (1): PS-Search (Vertex 𝑝, Internal Structure 𝑇, Integer 𝑡). 

Data: Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡 

Result: Edge E 

1. v: = Random Vertex (𝐷𝑇, 𝑡); 

2. E: = DT-LoadEdges (𝑣, 𝐷𝑇, 𝑡); 

3. E: = Sort (𝐸, 𝑝); 

4. e: = takes an edge∈ 𝐸; 

5. if Right Of (𝑋, 𝑒) then 

6. e: = Sym.e 

7. end; 

8. while true do 

9. if X = e. Dest or X=e.Org then 

10. return e; 

11. else 

12. p: = 0; 

13. if not Right Of (X, e.O next) then 

14. p: =1; 

15. if not Right Of (X, e.D prev) then 

16. p: =2; 

17. if p is 0 then  

18. return e; 

19. else 

20. if p is 1 then  

21. e: = e.O next; 

22. else 

23. if p is 2 then 

24. e: = e.D prev; 

25. else 

26. if dist (e.O next, X)<dist (e.D Prev, X) then 

27. e: = e.O next; 

28. else 

29. e: = e.D Prev; 

return e 
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The Algorithm 1 shows the proposed method to search for a near vertex in the 

persistent triangulation. For this, the input data is: the vertex 𝑝 to insert, the Delaunay 

triangulation persistent data structure and an integer value 𝑡, which indicates the time at 

which the insert operation will be performed. 

Inline 1 of the algorithms, the RandomSpeed function is executed, which returns, 

at random, a vertex of the structure. This procedure is performed in 𝑂(1) order because 

the vertices are indexed in a hash table. Once the vertex v is loaded; then, in line 2, all the 

edges of this vertex are retrieved, which are stored in a balanced search tree, as long as 

the creation time of the adjacent edges are within the range of parameter 𝑇. This 

procedure takes a time of 𝑂(𝑘), where 𝑘 is the number of edges adjacent to 𝑣. Line 3 

orders the edges of 𝑣 counterclockwise and the ordering is done in a time 𝑘𝑙𝑜𝑔(𝑘). Inline 

4, an edge of 𝐸 is taken and, from line 5 onwards, the algorithm is the same as that 

proposed by [38], with the additional difference, that each time a visit is required a new 

vertex, both that vertex and its adjacent ones must be loaded from the internal structure. 
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Algorithm (2): DT-Insert Vertex (Internal Structure 𝐷𝑇, Vertex 𝑥, integer 𝑡). 

Data: Internal Structure 𝐷𝑇, Vertex 𝑥, integer 𝑡 

Result: Internal Structure 𝐷𝑇 with 𝑥 inserted at time 𝑡 

1. 𝑖𝑑𝑥= Get Id (𝑥, 𝐷𝑇); 

2. Assert (𝑖𝑑𝑥 ∉ 𝐷𝑇); 

3. E = PS-Search (𝐷𝑇, 𝑥, 𝑡); 

4. 𝑖𝑑𝑝= E.org; 

5. 𝑖𝑑𝑞=E. dest; 

6. 𝑖𝑑𝑟=get-vertex (E, p); 

7. stack A; 

8. stack V; 

9. temp-tri = create DT (); 

10. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑝); 

11. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑞); 

12. create-edge (DT, t, 𝑖𝑑𝑥, 𝑖𝑑𝑟); 

13. A. insert (𝑖𝑑𝑝, 𝑖𝑑𝑞); 

14. V. insert (𝑖𝑑𝑥); 

15. A. insert (𝑖𝑑𝑞 , 𝑖𝑑𝑟); 

16. V. insert (𝑖𝑑𝑥); 

17. A. insert (𝑖𝑑𝑟 , 𝑖𝑑𝑝); 

18. V. insert (𝑖𝑑𝑥); 

19. for E=A.pop (),𝑖𝑑0=V.pop () do 

20.     𝑖𝑑𝑐𝑎=E.org; 

21.     𝑖𝑑𝑐𝑏=E. dest; 

22.     Face FH=temp-tri. face (𝑖𝑑𝑐𝑎, 𝑖𝑑𝑐𝑏 , 𝑖𝑑0); 

23.     Assert (FH! = NULL); 

24.      𝑖𝑑𝑜𝑝=FH. Neighbor (FH. index (𝑖𝑑0)); 

25.      If temp-tri. Illegal-Edge (E) then 

26.              DT-Load Triangles (temp-tri, Dt, o, t); 

27.              temp-tri.Flip (E); 

28.              DT.update-time (E); 

29.              DT.create-Edge (𝑖𝑑0, 𝑖𝑑𝑜𝑝, 𝑡); 

30.              A. insert (𝑖𝑑𝑜𝑝, 𝑖𝑑𝑐𝑎); 

31.              V. insert (𝑖𝑑𝑐𝑏); 

32.              A. insert (𝑖𝑑𝑜𝑝, 𝑖𝑑𝑐𝑏); 

33.              V. insert (𝑖𝑑𝑐𝑎); 
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Algorithm 2 presents the modification to the classical incremental algorithm 

for Delaunay triangulations, to work in the internal data structure, which is part of the 

proposal for the persistent Delaunay triangulation. 

Line 1 of the algorithm, gets the identifier of the balanced binary tree that stores 

information about the edges of vertex p. It is important to note that the first time this tree 

is empty. Line 3 returns in E one of the three edges that form the triangle that contains p. 

Lines 4, 5 and 6 obtain the identifiers of three vertices of the triangle that contains vertex 

p. In lines 10 to 18, the edges that make up the triangle are created and inserted together 

with their vertices in arrays A and V respectively. These edges will be used to analyze 

whether they are legal or illegal edges. The analysis process runs on lines 19 through 33. 

The most important part of this code segment is found on lines 25 through 33; Here, we 

directly evaluate whether an edge is illegal and if it is, only the triangles that will be 

affected by the flip operation and that can subsequently trigger new flip operations are 

loaded. 

 

Algorithm 3: DT-Load Edges (Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡). 

Data: Vertex 𝑝, Internal Structure 𝐷𝑇, Integer 𝑡 

Result: Arrangement 𝑉 

1. Arrangement V; 

2. 𝑖𝑑 = GetId (𝑝, 𝐷𝑇); 

3. for each node 𝑥 in the tree connected with 𝑖𝑑 do 

4.        Add 𝑥: 𝐷𝑉 to 𝑉; 

5. Sort (𝑉, 𝑝); 

6. return 𝑉 
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In Algorithm 3, line 2 returns the identifier of the balanced search binary tree, 

which is indexed by p and is stored in the internal structure. The time required to recover 

this vertex is 𝑂(1). Subsequently, in lines 3, 4 and 5, all vertices are obtained within the 

search binary tree connected with 𝑝. 

 

Algorithm 4: DT-Load Triangles (Triangulation 𝑇, Internal Structure 𝐷𝑇, Vertex 

𝑝, Integer 𝑡). 

Data: Triangulation 𝑇, Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡 

Result: loaded Triangulation 𝑇 with triangles adjacent to 𝑝  

1. Array 𝑉 = DT-Load Edges (𝑝, 𝐷𝑇, 𝑡); 

2. Sort (𝑉, 𝑝); 

3. for Each Vertex 𝑞 in 𝑉 do 

4.        T. Create (triangle (𝑝, q Previous, 𝑞); 

5. for Each Vertex 𝑞 in 𝑉 do 

6.        triangle 𝑡𝑟 = T. get Reference (triangle (𝑝, 𝑞 Previous, 𝑞)); 

7.        neighbor.tr = Next Triangle; 

8.        neighbor.tr (q) = Previous Triangle; 

 

 

Once the edges adjacent to vertex p are loaded, it is necessary to regenerate the 

triangle formed by these edges. To achieve this, Algorithm 4 is applied. This algorithm, 

on line 1, obtains all the edges adjacent to vertex 𝑝, later on, lines 3 and 4 the triangles 

are created within the current triangulation 𝑡. On lines 5 through 8, the neighborhood 

information is initialized for each vertex of each triangle. This in order to guarantee the 

correct operation of the incremental algorithm. 
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Algorithm 5: DT-Delete (Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡). 

Data: Internal Structure 𝐷𝑇, Vertex 𝑝, Integer 𝑡 

Result: DT with removed 𝑝 at time 𝑡 

1. Array 𝑃 = DT-Load Edges (𝑝, 𝐷𝑇, 𝑡); 

2. Ears List; 

3. Min-Heap 𝑃𝑄; 

4. N = P.size () 

5. for 𝑖 = 1; 𝑖 < 𝑁;  𝑖 + +𝑑𝑜 

6.        current ear = Ear (𝑖, (𝑖 +  1) mod N, (𝑖 +  2) mod N); 

7.        if Counterclockwise (current) then 

8.             PQ.insert (Power (𝑝, Get-Vertices (𝑃, ear)), current); 

9. while PQ.empty () == false do 

10.       current ear = PQ.min (); 

11.       if isEar (Ears, ear) then 

12.            add (𝐷𝑇, 𝑒𝑎𝑟, 𝑡); 

13.            creation 𝑡 

14.            next ear = Get-Next (Ears, current); 

15.            previous ear = Get-Previous (Ears, current); 

16.           PQ.insert (Power (𝑝, Get-Vertices (𝑃, next)), next)); 

17.           PQ.insert (Power (p, Get-Vertices (P, previous)), previous)); 

18.          Update (Ears, current); 

 

 

 

Algorithm 6: Insert Vertex (Structure D, Vertex x). 

Data: Structure 𝐷, Vertex 𝑥 

Result: Structure 𝐷 with inserted 𝑥 

1. Triangle tr = Find Triangle (D.root); 

2. Vertex 𝑝 = 𝑡𝑟 ≥ 𝑝0; 

3. Vertex 𝑞 = 𝑡𝑟 ≥ 𝑝1; 

4. Vertex 𝑟 = 𝑡𝑟 ≥ 𝑝2; 

5. Triangle newchild0 = Triangle (𝑝, 𝑞, 𝑥); 

6. Triangle newchild1 = Triangle (𝑞, 𝑟, 𝑥); 

7. Triangle newchild2 = Triangle (𝑞, 𝑟, 𝑥); 

8.  𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑0); 

9. 𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑1); 

10. 𝑡𝑟 ≥ 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐ℎ𝑖𝑙𝑑𝑠. (𝑛𝑒𝑤𝑐ℎ𝑖𝑙𝑑2); 
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Algorithm 7: Find Triangle (Triangle 𝑡𝑟, Vertex 𝑥). 

Data: Triangle 𝑡𝑟, Vertex 𝑥 

Result: Triangle 𝑡𝑟 containing 𝑥 

1. if 𝑡𝑟 ≥ 𝑖𝑠 − 𝑆ℎ𝑒𝑒𝑡() then 

2.       return 𝑡𝑟; 

3. for Each Triangle ctr in tr do 

4.     if 𝑐𝑡𝑟 ≥ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥) then 

5.         return Find Triangle (𝑐𝑡𝑟𝑙, 𝑥); 

 

In Algorithm 7 inline 1 we arrive at the base case, in which we have arrived at the 

triangle that contains 𝑥, from lines 3 to 5, we search for a triangle recursively (in the child 

nodes) that contains 𝑥. 

 

Algorithm 8: LCA-Calculate (Matrix 𝑀, Depth Array, Vertex 𝑝, Vertex parent-𝑝). 

Data: Matrix 𝑀, Depth Array, Vertex 𝑝, Vertex parent-𝑝 

Result: 𝑀 with inserted 𝑝 

1. id = GetId (𝑝, 𝐷𝑇); 

2. 𝑝𝑖𝑑 = GetId (𝑝𝑎𝑟𝑒𝑛𝑡 − 𝑝, 𝐷𝑇); 

3. 𝑀[𝑖𝑑][0] = 𝑝𝑖𝑑; 

4. depth [𝑖𝑑] = depth [𝑝𝑖𝑑] + 1; 

5. for i=1; 𝑖 < log 2 (depth [𝑖𝑑]); 𝑖 + + do 

6.       𝑀[𝑖𝑑][𝑖] = 𝑀[𝑀[𝑖𝑑][𝑖 − 1]][𝑖 − 1]; 

 

In Algorithm 8, all 2𝑖 ancestors of 𝑝 are calculated. In lines 1 and 2, indexed 

labels are obtained through the vertices. In line 3 the base case of the recursion is 

considered, that is, the ancestor of 𝑝 is its father. In line 5, the depth of node p is 
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calculated, this to obtain the 𝑖 − 𝑡ℎ ancestor of 𝑝; Subsequently, in lines 5 and 6 the 2𝑖 

ancestor of 𝑝 is calculated, for 𝑖 >  0 which defines 2𝑖 ancestor of 𝑝 as 2𝑖−1 ancestor of 

2𝑖−1 ancestor of 𝑝. 

 

Algorithm 9: Random Ancestor (Matrix 𝑀, Depth Fix, Vertex 𝑝). 

Data: Matrix 𝑀, Depth arrangement, Vertex 𝑝 

Result: 𝑀 with inserted 𝑝 

1. Vertical Random 𝑖𝑑 = Get Index (𝑝); 

2. ancestor  = Random (depth [𝑖𝑑]); 

3. for 𝑖 = 0; 𝑖 < log 2 (𝑑𝑒𝑝𝑡ℎ [𝑖𝑑]); 𝑖 + +𝑑𝑜 

4.      if ancestor (1 < 𝑗) then 

5.            randomVerticeid = 𝑀 [randomVerticeid] [𝑖]; 

6. return RandomVerticeid; 

 

 

In Algorithm 9, an ancestor random node of 𝑝 is calculated. Inline 1, the label 

of 𝑝 is obtained. Inline 2, a random number is obtained, which indicates the 𝑖 − 𝑡ℎ 

ancestor of 𝑝. Inline 3 the result is initialized, which must be initialized as 𝑝, in lines 4 

to 6, the 𝑖 − 𝑡ℎ ancestor is decomposed into sums of powers of 2, in line 5, we ask if in 

the binary representation of ancestor the bit corresponding to the position 𝑖 is on, if it 

is, idVerticeRandom is updated as its 𝑖 − 𝑡ℎ ancestor.
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