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ABSTRACT 

Three geophysical datasets (self-potential, magnetics, and time - domain 

electromagnetics) were acquired at Wadi Al Khadra Ni-Cu prospect in southwest Saudi 

Arabia, and were processed and interpreted for the Saudi Geological Survey. The 

primary objectives were to map the distribution of metallic mineralization, map 

structures, verify the integration of the geophysical interpretations and its signatures in 

conjunction with boreholes information, distinguish the similarities and differences in 

the integrated interpretation of geophysical data, and design optimal processing and 

interpretation data parameters. The self-potential tool was used to map the variation in 

natural surface potential differences to map lateral variations in the distribution of 

shallow metallic minerals, specifically copper and nickel, qualitatively. The time-domain 

electromagnetic tool was utilized to measure the lateral and vertical variations in the 

conductivity of the subsurface to map the distribution of metallic mineralization to 

depths approximately 140 meters and structures (faults) that control the distribution of 

mineralization qualitatively.    A magnetic tool was used to map lateral variations in the 

magnetic field of the earth to map the distribution of magnetically susceptible 

mineralization (magnetite and nickel) and structures (faults) that control the distribution 

of mineralization and to map structures qualitatively. Surface-based geologic data and 

core hole control were used to constrain the interpretation of the geophysical data.  

The investigation was successful. The interpreted geophysical data sets are 

consistent with one another (re: distribution of metallic mineralization) and consistent 

with surface-based geologic control and core hole data. 
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1. INTRODUCTION 

1.1. OVERVIEW OF THE RESEARCH  

In 2016, Saudi Arabia launched the “2030 Vision” statement, including several 

initiatives, one of which is to improve the mining sector by exploration, extraction, and 

alloying. Based on this initiative, relevant departments at universities, academic 

institutes, and private mining companies focus their research efforts on this topic. 

Covering approximately 2 million km², Saudi Arabia is the largest country in the Middle 

East and the 14th largest country in the world. Saudi Arabia’s size and geology make it 

rich in minerals, oil, and gas - key raw materials for manufacturing and industrial 

development. These mineral resources represent one of the most important economic 

resources of Saudi Arabia, supporting the anticipation that the mining sector will become 

the third pillar of the Saudi economy after oil and petrochemicals.   

The exposed Proterozoic rocks of the Arabian Shield, in the western part of the 

kingdom, contain most metallic minerals (such as nickel and copper). The Wadi Al 

Khadra nickel-copper prospect (the study area for this research) lies in the Al Baha 

region in the southwest. 

 The Al Baha Region contains many sources of precious metals such as gold and 

silver, as well as base metals such as copper and zinc, in addition to some industrial metal 

ores. Long abandoned mining excavations such as pits, exploration adits, and shallow 

mining shafts, drifts, and tunnels lie in the Wadi Al Khadra prospect area. Some people 

assume that the mine works are more than 200 years old.  
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The Wadi Al Khadra prospect area interests copper-nickel explorers because 

metagabbro rocks, characterized by coarse-grained metamorphosed gabbro and minor 

anorthosite, are present. The area also contains syngenetic copper and nickel minerals 

disseminated within thin-layered, ultramafic to mafic lava flows that range from normal 

flows to agglomerates. 

  These mineral assemblages mainly consist of copper in oxidized and sulfide form 

and nickel, expressed by chalcopyrite, pyrite, niccolite, pentlandite, and arsenopyrite. 

Mineralization orebody is defined on the surface by a gossan-or iron-comprising 

brownish red oxidation and elongated zone containing mainly hematite, goethite, and 

limonite, and this orebody occurs in layered zones in mafic rocks of variable composition 

as veinlets, clusters, patches, and stringers along the foliation or fractures and 

mineralization.  

In terms of work related to the new mining initiative, this dissertation advances 

the processing and interpretation of geophysical data. This dissertation contains seven 

sections with the first section consisting of the introduction, significance, and objectives 

of this research. Section 2 presents a brief geology of Saudi Arabia and the geology of 

the study area. Section 3 consists of the distribution of mineral deposits in Saudi Arabia, 

while Section 4 contains the geophysics methodology. Section 5 identifies the 

geophysics acquisitions and processing.  Section 6 presents the geophysical results. 

Finally, Section 7 consists of the discussion and interpretation of the results and contains 

conclusions from the findings and suggested recommendations.  
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1.2.  SIGNIFICANCE OF THIS RESEARCH AND OBJECTIVES 

The main aim of this research is to enhance the exploration of nickel and copper 

mineralization occurrences using three geophysical survey tools: self-potential, 

magnetic, and time domain-electromagnetics. These geophysical data were acquired in 

2009 by the Saudi Geological Survey (SGS) across the Wadi al Khadra prospect area to 

assess the area’s nickel-copper prospect. . This study will assist the mineral exploration 

and effort; the results will be of genuine interest to those engaged in mineral exploration 

in Saudi Arabia and elsewhere. 

 Based on advanced processing and quantitative and qualitative interpretation of 

the integrated data of three geophysical datasets, nine primary specific objectives are 

addressed in this research in order to: 

I. Demonstrate that SP, MAG and TDEM data can be used to map the distribution 

of metallic mineralization. 

II. Demonstrate that geophysical methods can be used to map the orientation faults. 

III. Demonstrate that Borehole and Surficial geological data verify the 

reasonableness of the SP, MAG, and TDEM interpretations signatures. 

IV. Demonstrate and explain the differences / similarities between the interpretations 

of the SP, MAG and TDEM data. 

V. Design optimal acquisition interpretation parameters based on the assessment of 

the acquired data.  

VI. Design optimal processing parameters based on the assessment of the acquired 

data.  
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VII. Design optimal interpretation parameters based on the assessment of the acquired 

data. 

VIII. Summarize the strengths and limitations of the geophysical methods. 

IX. Develop recommendations for further exploration activities. 

1.3. PREVIOUS STUDIES OF THE WADI AL KHADRA AND JABAL 

IBRAHIM QUADRANGLE 

In 1973, a team of geoscientists from the United States Geological Survey 

(USGS) visited the Wadi al Khadra area. Sample assay results and observations were 

obtained and described (Greenwood, a 1975). In 1979, USGS geologists revisited the 

area and carried out mapping and detailed sampling that consisted of 24 grab, 50 spot, 

and 10 channel samples (Worl & Wynn, 1979). Based on all available data at that time, 

USGS geologists Worl and Wynn in 1979 recommended a drilling program over an 

identified oxidation zone in the Wadi al Khadra area (Worl & Wynn, 1982) ( From 

SGS,2015). In 1978, the Arabian Geophysical and Surveying Company (ARGAS) 

acquired geophysical data, including an electromagnetic and self-potential survey. A 

magnetic survey was also conducted by the USGS. These surveys were part of a regional 

study to evaluate airborne electromagnetic geophysical anomalies previously identified 

in the Wadi Bidah area (ARGAS, 1978). 

In between 1985 and 1986, the USGS, in cooperation with the Deputy Ministry 

for Mineral Resources of Saudi Arabia, conducted an integrated structural and 

geochemical study of the northern Nabitah fault zone in the Wadi Al Khadra area. The 

Nabitah fault system is a significant tectonic element of the Arabian Shield. This study 
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was conducted to more accurately determine relationships between structural and 

geochemical data and to develop structural and petrochemical evidence to define the 

tectonic role of the Nabitah fault (Quick &Bosch 1990). 

In 2009, the Saudi Geological Survey (SGS) carried out a detailed exploration 

program at the Wadi al Khadra Cu-Ni prospect to evaluate the encouraging results of 

1979. Exploration work included surface sampling, surveying, mapping, geophysical 

surveys, and core drilling. (Aljahdali, .at el, 2015). 

The geology of the Jabal Ibrahim quadrangle has been mapped in reconnaissance 

at 1:500,000 scale by Brown et al. (1963) and at 1:100,000 scale by Greenwood (1975a, 

c), Cater (1977), Hadley and Fleck (1980), and Greene and Gonzalez (1980). In 1980, 

the explanatory notes to the geologic map of the Jabal Ibrahim Quadrangle were written 

by Fred. Cater and Peter. Johnson, and the manuscript was approved by Ministry of 

Petroleum and Mineral Resources; Deputy Ministry for Mineral Recourses in Jeddah, 

Saudi Arabia (1986). 

1.4. PREVIOUS GEOPHYSICAL STUDIES CASES OF NICKEL AND 

COPPER DEPOSITS 

There are many studies cases that include the geophysical methods which have 

been used for this dissertation, perhaps the most of these studies as follows: 

1.4.1. Geophysics of the Voisey’s Bay Ni-Cu-Co Deposits (SEG, 1998). In 

Ontario, Canada, the Voisey’s Bay Ni-Cu-Co deposits were discovered in 1994. 

Geophysical surveys were conducted using methods including - low - frequency EM, 

surface time-domain electromagnetic TDEM, total magnetic field, and horizontal loop 
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EM. The EM method helped in easily identifying these deposits because of the high 

conductivity of the Ni-Cu sulphides. In detecting the conductive Ni-Cu sulfides to a 100 

m depth, the horizontal loop EM method was used in an effective manner. It was also 

successful in detecting the conductive mineralization to a 50m depth using 100-m coil 

spacing and to 100m depth using 200-m coil spacing. To detect the deep and large Ni-

Cu sulfide systems at this deposit, surface TDEM proved to be the most effective 

geophysical tool. The features of Ni-Cu sulfide deposits were not always well defined 

by the total magnetic field anomalies. (Balch et al. 1998). 

1.4.2. Geophysical Response of the Munali Ni-Cu Deposit (ASEG/PESA 

Conference, 2009).   In 1960 in southern Zambia, the Munali nickel – copper deposit 

was discovered. A geophysical survey was conducted using airborne techniques and 

ground techniques. The airborne techniques involved the Versatile Time Domain 

Electromagnetic (VTEM) system. Ground techniques involved magnetic, ground 

gravity, and fixed loop time-domain EM. The gabbro was determined to be anomalous 

conductivity, as evident from the data of the grid of the VTEM EM (Witherly, 2009). 

1.4.3. Time Domain EM and Magnetic Mapping of the Ferguson Lake 

Nickel-Copper-Cobalt-PGE Property (SEG, 2002). In the Ferguson Lake of 

Manitoba, Canada, a large deposit of gabbroic-hosted Ni-Cu-CO-PGE was discovered 

in 1950. A geophysical survey was conducted using methods such as the magnetic and 

the time domain electromagnetic TDEM. The current geophysical surveys and drillings 

have modified the site extensively to a large tonnage deposit. The presence of major 

structure near the surface magnetic anomaly along with the western extent of the EM 

survey is evident from the original drilling and the magnetic data. The magnetics 
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indicated that the mineralization also produced a significant magnetic response, which 

was later determined to have likely been caused by the associated magnetite and not the 

pyrrhotite. The EM survey indicated that the massive pyrrhotite, chalcopyrite, and 

pentlandite mineralization was extremely conductive > 2000 mhos and that the depth 

extent ranged from a few meters to a few hundred meters. (Visser, at el, 2002). 

1.4.4.  Geophysical Signature of the Jinchuan Ni-Cu-PGE Deposit, Gansu 

Province, China.  In 1958, the Jinchuan Ni-Cu-PGE deposit was discovered in Gansu, 

China. The geophysical survey completed several times. In the 1960s to the 1970s, the 

ground vertical magnetic data were collected. The aeromagnetic survey was done in 

1984. A self-potential survey was done in some areas of the deposit. Also, there are other 

geophysical methods that have been surveyed including gravity, time domain IP, 

resistivity, and seismic tomography. According to the results and conclusions from these 

geophysics surveys, the bouger gravity anomaly was not able to give helpful information 

regarding the mineralization but the residual anomaly proved to be effective in defining 

the host intrusion and it might be able to directly detect the orebodies. The regional scale 

aeromagnetic of the deposit was useful for mapping the ultramafic intrusion. Ground 

magnetics are able to define responses caused by blind mineralization during the 

intrusion. The self-potential survey gave strong anomalies on the mineralized body 

during the intrusion over the graphite ̶ bearing country rocks (Guo& Dentith, 1998). 
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2. GEOLOGY OF THE STUDY AREA  

2.1. INTRODUCTION OF GEOLOGY OF SAUDI ARABIA 

Saudi Arabia covers an area of about 2.25 million km2. Geologically, it has been 

divided into four distinct and extensive geological terrains: the Arabian Shield in the 

Precambrian age, which is located in the western part and  is comprised of the igneous; 

the metamorphic basement, the Arabian shelf from Cambrian to recent age, which covers 

the eastern and northern parts and contains sedimentary rocks; the tertiary 'harrats' 

(extensive basalt plateaus) mainly overlying the Arabian Shield; and the Red Sea rift 

basin which is comprised mainly of Tertiary and Quaternary sedimentary rocks and coral 

reefs (Figure 2.1). 

 

 
Figure 2.1 Map of geological divisions of the Kingdom of Saudi Arabia, (Sourced by 

SGS). 
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2.2. OVERVIEW OF THE ARABIAN SHIELD 

The Arabian Shield is a part of the Arabian-Nubian Shield, which covers all or 

parts of several countries, including Saudi Arabia, Egypt, Jordan, Eritrea, Ethiopia, 

Somalia, Sudan, and Yemen (Figure 2.2). The Arabian Shield is separated from the 

Nubian Shield by the Red Sea Rift in the early Tertiary age and represents the basement 

igneous and metamorphic Precambrian rocks which form 1/3 ( about 575000km2  ) of 

the area in the west, northwest, and southwest parts of the Saudi Arabia and hold the 

highest potential for metallic mineral sources (Al-Zahrani,2014). The Arabian Shield is 

narrow in the north and south parts. The width in the north is about 50-100 km and about 

200 km in the south. In the middle, the width reaches about 700 km. 

 

 
   Figure 2.2 Distribution of exposed Precambrian rocks in the Arabian Peninsula and 

adjacent parts of northeast Africa, (Johnson, 2006) 
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The Arabian shield is comprised primarily of two types of Proterozoic rocks: 

layered rocks, which are mainly volcanic and clastic sediments, and plutonic rocks. 

These Proterozoic rocks range from 1600 MA to 450 MA in age (Alshanti, 2009) (Figure 

2.3). 

 

 
Figure 2.3 Stratigraphic intervals in the Proterozoic (after Gradstein and others, 2004), 

showing the periods represented by the Proterozoic rocks in Saudi Arabia, PETER R. 

JOHNSON, SGS-TR-2006-4. 
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The Arabian Shield has been divided tectonically into eight tectonostratigraphic 

geologic terranes separated by zones of intense deformation (sutures). The geological 

terranes consist of two different groups in form and origin, one of these was formed of 

interoceanic island arc terranes and represents the western part of the Arabian shield 

which includes Asir, Hijaz, Jeddah, and Midyan (Figure 2.4).  

 

 
Figure 2.4 Arabian shield’s terranes and sutures (after Stoeser and Camp, 1985; 

Windley and others, 1996; and Johnson and Woldehaimanot, 2003). 
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The other groups were derived from mixed oceanic and evolved continental 

sources which include Afif, Hail, Ad Dwadimi, and Ar Rayn terrains. The suture zones 

are Umq, Yanbu, Nabitah, Halaban, and Al Amar sutures (Alshanti, 2009). 

2.3. LOCATION OF THE WADI AL KHADRA Ni-Cu PROSPECT  

The Wadi Al Khadra prospect has an area is approximately 375,000 m2, which is 

located in the Al Baha region, in the Southwestern part of Saudi Arabia at latitude 20◦ 

09’10’’ N. and longitude 41◦ 27’10’’ E. The average high of Wadi Al Khadra is 2, 130 

m above sea level. It is on a high plateau characterized by a rugged terrain with medium 

steep-sided canyons and escarpment that is characteristic of the region (Figure 2.5).  

 

 
Figure 2.5 Location map of the study area in Saudi Arabia. 
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2.4. GEOLOGY OF THE WADI AL KHADRA PROSPECT 

Regionally, the geology map of the Jabal Ibrahim quadrangle in the southern part 

of Arabian shield area described the Wadi Al Khadra prospect. Five principal units of 

Proterozoic rock are layered in the Jabal Ibrahim quadrangle. These layers are the Baish 

group, the Bahah group, the Qirshah formation, the Khutnah formation, and Ablah 

group. Carter and Johnson(1987) stated that the region is underlain by the meta volcanic 

Baish group (Bj) and Jof formation, which comprise a succession of volcanic, 

volcaniclastics, subordinate epiclastic rocks, portions of the metasedimentary Bahah 

group, and intruded by mafic and felsic sills and dikes that have a nearly north-south 

trend. They also noted that the intrusion of abundant, late-stage quartz veins with both 

directions 300°-320° azimuth and 60°. On the regional scale, the formations of rock have 

been metamorphosed to green schist, whereas on the local scale, they are amphibolite-

serpentinite facies. The age of all underlying rocks is Late Proterozoic (Figure 2.6). The 

mineral assemblage mainly consists of copper in oxidized and sulfide form, expressed 

by chalcopyrite, pyrite, niccolite, and arsenopyrite. Mineralization occurs in layered 

zones in mafic rocks of variable composition as veinlets, clusters, patches, and stringers 

along the foliation or fractures and mineralization. The shear zone strikes 300°-305° 

azimuth and dips 85° to 90° NE. 

The Bahah group and the Ras formation (br) is composed of fine to medium - 

grained elastic and volcaniclastics rocks interbedded with chert, marble, and locally 

basal conglomerates.  
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All of these units have been metamorphosed and structurally deformed to green 

schist facies. Geologists believe that these rocks overlie and are younger those of the Jof 

Formation. 

The sedimentary unit of the Rafa Formation of the Ablah Group appears only in 

east of study area, which uncomfortably overlies the older, layered rocks and diorite 

intrusion. According to Greenwood (1975a; 1975b) this unit consists mostly of medium- 

to coarse-grained arkose, but includes local, thick conglomerates at its base. 

 Locally, the study area is a part of the tectonic Asir terrane that is affected by 

sub-parallel and local faults that are involved in the main Nabitah fault zone in the east. 

There is a complex strike-slip fault divided into gabbro intrusion and metavolcanics. In 

general, all outcrops trend 330° azimuth in the study area. A volcanic rock consists of 

basalt, and a variety of lava flows intruded by mafic to felsic dikes faulted and folded 

with shear zones developing from east to west in a north-northwest tend. 

Structure geology of an area is shown by fractures, folds and shear zones, along 

with microfolds; the Halaban and Ablah formations meet this general trend. A secondary 

set of structures, fractures, faults, and joints, are ranged between 290°-335° azimuth and 

30°-60° azimuth, which could have occurred by a strain effect sustained by these rocks 

during different phases of tectonic movement (Figure 2.7). The Wadi has syngenetic 

copper and nickel minerals in a fairly disseminated style within thin-layered, ultramafic 

to mafic lava flows that range from normal flows to agglomerates. Due to different 

periods of structural deformation and intrusions, these rocks metamorphosed from 

mainly green schist up to local amphibolite-serpentinite facies. 
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 Due to the complexity of the host rocks found in the study area, there are types of rocks 

classified into different geological units. The geological units consist of gabbro (Meta), 

Meta basalt, amphibolite, metavolcanics agglomerates, and Meta andesite-dacite:- 

1.The Gabbro unit:  This unit occurs along the eastern and northwestern boundary 

of an elongated, North - trending mafic intrusion that is approximately 2 km long and is 

as much as 2 km wide in the study area. Inherent textures suggest that the original 

lithology of the rocks was gabbro, which metamorphosed to green schist facies, whereas 

parts of the body are anorthosite (Greenwood, 1975a). Furthermore, a complex, intrusive 

body of the gabbro unit comprises coarse, medium, and fine -¬ grained gabbro, dolerite, 

in addition to felsic and mafic dikes (SGS, 2009). Structurally, the local and regional 

faults have generated fractures, folds, and shear patterns orientated to this trend. The 

medium-grained gabbro unit is found primarily in the East and North part of the study 

area, whereas a few small outcrops appear in the Southeast zones. 

2. A metamorphic unit: This unit is amphibolite. Geologist describe the rock 

texture as a fine-grained gabbro, basaltic lava flows, and some other highly 

metamorphosed rocks with unidentifiable textures. This unit primarily consists of lava 

flows metamorphosed to amphibolite facies. The amphibolite unit with intense facies 

tends along SE - NW shear zone fault systems. Contacts between the gabbro unit and 

an amphibolite unit in the study area appear close to the mineralization zone, , where 

serpentine is the most common mineral and appears to reduce in intensity to green 

schist facies westward and away from the gabbro unit. Rocks have been 

metamorphosed from the Precambrian age to the present time. 
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3. The second - largest outcrop in the study area includes mafic metavolcanics, 

agglomerates, meta volcanic/meta sediments, chlorite schist, and tuffs, and has been 

classified as the volcanic unit. This unit covers almost half of the entire area and exists 

in the N - NW zones. Basaltic lava flows, which are mostly abundant, are fine-grained 

and possess textures oriented to the bedding and/or foliation because of later 

metamorphism. It is hard to identify the contact zones because of deformation by later 

metamorphism, which differs from green schist and is local to amphibolite facies in the 

eastern part. The mineralization is associated with the volcanic unit, as it is shown to 

be remobilized or undergoing to pressures by metamorphism (SGS, 2009). Shapes of 

coarse-grained agglomerates are irregular and flattened to rounded clasts that ranged 

between 3 and 15 cm in diameter. The composition of clasts in volcanic rock ranges 

between basalt to dacite, fine-grained, massive, and finely laminated tuff, and a small 

amount of fragmental quartz and feldspar. Zones of massive tuff, finely laminated ruff, 

and epidote-hornblende, volcanic/sedimentary rocks are interlayered with the 

agglomerate. Nearby the study area, agglomerates, volcanic rocks, vents, and conduits 

been occur. 

4. The meta – intrusive andesite:  This unit have been observed more clearly in 

drill holes. Despite the metamorphism that occurred, some textures of meta – intrusive 

andesites appear. The textures range from fine to medium-grained rock and consist of 

extrusive lava flows in wide, massive layers. The medium to coarse-grained rock is 

described as thin with a weak contact alteration zone. Some silicification and/or 

recrystallization within a 0.5 - to 2.0-m aureole occurred and extended easterly at depth. 
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In general, the andesite is characterized as fine-grained and metamorphosed, with 

sericitized plagioclase, partially chloritized amphibole phenocrysts, minor quartz, biotite, 

and some carbonates. 

5. The meta – intrusive unit:  composed of felsic dikes and quartz veins intersect 

the metavolcanic layered rocks and the gabbro. Many irregular and fine-grained felsic 

dikes extend from 20 to 30 m. Felsic dikes and pods consists of, mostly aplite, dacite, and 

fine-grained granite, and could represent the latest intrusive event. Some of these dikes 

occur close to the Wadi Al Khadra mineralized area and along the Wadi. Geologists 

observed four quartz vein systems at the Wadi Al Khadra prospect. The vein systems are 

associated with the fault and shear zones, with three of the vein systems trended with 

fracture stages and foliation. The last vein system is affected more by faulting and less by 

metamorphism. All of four quartz vein systems are barren of Cu-Ni mineralization. 

However, some of the quartz veins include 23% fragments with chlorite, sericite, and 

epidote alteration. The textures of these veins are milky white, holocrystalline, fine to 

mediumgrained crystals. The veins and veinlets are composed of massive quartz that has 

been deformed (fold-fault), sheared, and fractured. 

2.5. STRUCTURE TRENDS  

The most prominent structural trends of the study area represented in: 

2.5.1. The Northwest to Southeast Trends (Red Sea Trend). The correlation 

between the different rose diagrams revealed that the Northwest trend (the Eritrean or 

Arabian trend) represents the most predominant trend direction in the studied area. This 

trend cuts through the stable shelf in the most pronounced way and represents the most 
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significant manifestation. The trend occurred in the Mid-Tertiary time, as it appears 

related to the Red Sea and Gulf of Suez extent and direction as well as many other 

topographic features of the present day. Mesherf et al. (1980) stated that the Northwest 

trend has a local magnetic distribution along the Red Sea coast that fades away in areas 

at distances far from both sides of the Red Sea. He did not explain the cause responsible 

for this phenomenon. Mesherf (1990) also stated that the Eastern part of Saudi Arabia 

shows a series of strong positive magnetic anomalies of the Northwest trend as the result 

of the northward compressive force affecting the rocks west of the Arabian Peninsula. 

However, (Neev,1975) suggested that the Northwest ̶ trending tensional features were 

developed in the Red Sea region contemporaneously with the Northeast trend fold 

system initiated due to the expansion of the central plate that runs parallel to the Pelusium 

line.  

2.5.2. The Northeast to Southwest Trends (Aqaba Trends). The NE ̶ SW trend 

appears as the first major trend on the magnetic anomaly maps. The correlation between 

the rose diagrams of the observed and residual magnetic anomaly maps indicates that 

this trend has the same azimuth and intensity significance. Moreover, the NE trend 

appears as of trivial order on maps, this confirms that this trend is of older age than the 

NW trends.  In a similar manner, Said (1962) named this trend the Aualitic trend, which 

was developed and related to the Gulf of Aqaba rift tectonics. He also mentioned that it 

was less pronounced around the stable shelf and bound many of the fold systems located 

in the middle part of Egypt. Neev (1975) stated that the Jordan-Dead Sea-Aqaba rift, 

which has been active as a sinstral strike-slip fault since the Oligocene time, has 

developed into a graben since the late Pliocene time. 
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2.6. DRILL HOLES DATA  OF WADI AL KHADRA PROSPECT  

SGS bored four drill holes averaging 227.33m long with a total length of 905.95m 

and oriented at 200°-275° azimuth and with inclinations of 55°- 65°. These drill holes 

were located near the main oxidized outcrop on the large Southeast anomaly in the study 

area (Figure 2.8), and their samples were chemically analyzed. By studying the analysis 

results of the well samples, mineralization appeared as semi-hidden leaflets along the 

bed and / or foliage. 

 The southeastern part of the well - drilling area appears to be the most 

mineralized along the shear / fault area at an angle of 305 °, and this area is classified 

and depicted as having a secondary structure. This part of the mineral area is 0.8 to 1.5 

m in thickness and decreases by 85 ° North to an almost vertical angle from the surface 

of the property. However, this structure is uncertainly linked to the local shear zone of 

error, due to the presence of a vein of white quartz with a thickness of 0.8 to 1.0 m, and 

the azimuth and amphibious layers are accurately dissected at 240 ° by this metal 

structure coupled with the surface. 

2.6.1. Well (KAD-1). From the analysis of the rock samples of the well (KAD-

1),it is clear that the intersects the well with the mineralization range near the surface 

from 0.0 m to 26.5 m. Surface sample tests also showed results from 0.10 to 1.65 percent 

of copper and 0.16 to 0.39 percent of nickel. Note that these samples were the closest to 

the sampling line with a protrusion outside the surface sampling line. The results of total 

separation gave results showing that an average of 26.5 m was 0.39 percent copper and 

0.27 percent nickel (Fig 2.9a). 
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Figure 2.7 Geological map of Wadi Al Khadra prospect, SGS, 2013 
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2.6.2. Well (KAD-2). This well did not reach the same depth as the KAD-1 well, 

but the analysis shows that from the depth of 91.63 m to 102.57 m with an internal depth 

of 10.94m the proportion of copper concentration reaches 0.406 percent and 0.14 percent 

nickel (Fig 2.9b). 

2.6.3. Well (KAD-3). This well contains in a thickness ranging from 21.29 m to 

26.55 m of the vein with a metal separator of 5.55 m with an average of 0.33 percent 

copper and 0.32 percent nickel (Fig 2.9c). 

2.6.4. Well (KAD-4).  KAD-4 represents one of the most important wells; it 

shows the most substantial proportion of mineralization, also shows an intersection in 

the region for about 25 m. The well is located in the most prominent exploitative 

evaluation pillars (up to about 3m, 2m, and 3m) in the southwestern region of the Wadi 

Al Khadra. Surface sample assays at this site vary from 0.81 percent to 1.67 percent 

copper and 0.21 percent to 0.68 percent nickel (Fig 2.9 d). From this information, it is 

clear that there are two distinct concentrations of mineralization consistent with the 

geochemical anomalies of copper and nickel in the study area. The first concentration is 

located in the southern part of the area and the second concentration, which is located in 

the central part of the study area, is a long anomaly that may be a contact area. This 

anomaly partially dominates another area of minerals. These anomalies of copper and 

nickel permeate some of the geochemical abnormalities of silver and an extended, thin 

metal area northwestward. In the south, anomalies are distorted about 50 meters to 75 

meters from the geochemical anomalies of copper and nickel. 
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Figure 2.8  1) Location map of drilled well on RTP map of the study area, 2) Satellite 

map of location drill holes of the study area. 
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Figure 2.9 The distribution of the copper and nickel concentrations in the drilled holes. 
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3. DISTRIBUTION OF MINERAL DEPOSITS IN SAUDI ARABIA 

3.1. BRIEFLY INTRODUCTION OF MINERAL DEPOSITS  

        Mineral deposits in nature are usually formed in many geological environments 

and found on the surface of earth or in between layers of rocks which make the crust of 

the earth. The mineral deposits of Saudi Arabia are different in form, formations, and 

ages.  The metallic minerals resources (Figure 3.1) are contained in Precambrian rocks 

of the Arabian Shield, which is the major source of precious and basic minerals such as 

gold, silver, copper, nickel, zinc, chromium, manganese, tungsten, lead, 

 

 
Figure 3.1 Map distribution of metallic minerals deposits in Saudi Arabia, Data sources 

by SGS. 
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tin, aluminum and iron as well as other minerals, and is exposed in the west part of the 

Saudi Arabia.   

The industrial minerals and rocks commonly referred to as nonmetallic minerals 

(Figure 3.2) are contained in both Precambrian rocks and Phanerozoic rocks that that 

overlie the Arabian shield extensive sedimentary formations containing industrial 

minerals such as gypsum, kaolin, bauxite, phosphates, feldspar, mica, Sulphur and salt, 

and are exposed in the central and northern part of Saudi Arabia. (Industrial cluster, 

2019). 

 

 
Figure 3.2 Map distribution of nonmetallic minerals deposits in Saudi Arabia, Data 

sources by SGS. 

 

The government of Saudi Arabia has paid much attention to mineral prospecting 

and exploration for different mineral deposits, and huge sums of money have been spent 
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to search for many deposits. According to the recent statistics from the Ministry of 

Energy, Industry and Mineral Resources, the geologic storage of minerals in Saudi 

Arabia exceeds SAR4.9 trillion (1.3 trillion USD). Saudi's Vision 2030 aims at 

increasing the mining sector's economic contribution to 26 billion USD (SAR 97 billion), 

which is 18,000 times more than 2015 revenues of 140 million USD (SAR 520 million). 

(export.gov, 2018.Al-Awsat, 2018).  

3.2. PROPERTIES OF NICKEL  

Nickel is the fifth most common element in the crust of the earth and is 

concentrated in the core. It is a chemical element symbol (Ni), belongs to the transition 

metals, and has an atomic number 28 in the periodic table. Its characteristics are that is 

hard, ductile, and is silvery- white lustrous metal with a slight golden tinge (Chemistry, 

2019). Nickel is used in many applications and follows manganese in importance for the 

industry of iron and alloys for making stainless steel. In addition, it has many other uses, 

such as in other alloys that are used in industries such as aircrafts, electrical machinery, 

equipment’s, coinage, ceramics, magnets, and batteries (Chemistry,1952) (Anne, 2019). 

3.2.1. Occurrences of Nickel.  The most important minerals have an economic 

concentration of nickel such as Pentlandite, which occurs in the massive Cu-Ni 

Sulphides association with Chalcopyrite and Pyrrhotite, and the main minerals of nickel 

occur in laterites deposits such as Garnierite and nickeliferous limonite (Figure 3.3).  

  There are two types of ore nickel deposits which are: 

 Magmatic sulfides deposits: the primary source of nickel at the present, 

e.g. Cu-Ni Sulphides deposits in association with layered basic ultrabasic intrusions or 
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in association with ultramafic volcanics (either massive bodies or disseminated) or may 

occur as a cement for the footwall breccia of some mafic – ultramafic intrusions.   

 Laterites deposits: sometimes referred to residual deposits, which are a 

mixture of silicates of nickel that result after the weathering of ultramafic rocks and 

Serpentinites (Alshanti, 2009). 

 

 

Figure 3.3 1) Nickel, and 2) Nickel-Copper-Platinum Ore Locality. 

Sources by http://www.geologypage.com/2014/06/nickel.html 

 

3.2.2. Occurrences of Nickel in Saudi Arabia. Nickel has been reported at more 

than 50 localities, all of which are in late Proterozoic rocks of the Arabian shield. Eight 

of the nickel localities have been drilled (Figure 3.4). These localities are in three types 

as follows: strati form massive sulfide mineralization in volcaniclastics rocks, 

disseminated massive sulfides in mafic and ultramafic rocks, and Gossans (Table 3.1) 

(Ministry of Energy, Industry, and Mineral Resources reprinted, 2016). 

 

http://www.geologypage.com/2014/06/nickel.html
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           Figure 3.4 Map of nickel deposits and prospects drilled localities, sourced by 

SGS. 

 

3.2.2.1. Stratiform massive sulfide mineralization in volcaniclastic rocks. 

Hadbah and Jabal Mardah are two primary nickel occurrences in stratiform bodies in 

volcaniclastic rocks. The Hadbah nickel deposit in the Wadi Qatan area east of Abha in 

the southwestern part of the Arabian Shield is the largest and most extensively explored 

nickel in Saudi Arabia.  It was explored between 1972 – 1977 by the Arabian Shield 

Development and National Mining Company. Nineteen holes were drilled into the 

deposit at that time. The deposit is estimated to contain 2.5 Mt with an average grade, 

based on analysis of  a core from 15 holes with 0.92% Ni. In 1986-87, USGS drilled four 

holes in the Jabal Mardah prospect in the northeast part of the Arabian Shield to test the 

down dip extension of three of the larger gossans. Core from the holes showed the sulfide 

present to the chiefly pyrite. 39 m length of massive sulfides was obtained from one hole 
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Table 3.1 Nickel deposits and prospects tested by drill holes. (Ministry of Energy, 

Industry, and Mineral Resources Reprinted, 2016). 

 

 with an average of 0.97% Ni, of which 1 m contained 1.35% Ni. In 1988, exploration 

on the Jabal Mardah prospect was ceased and considered to be uneconomic (Carter & 

Tayeb, 1989). 

3.2.2.2. Disseminated massive sulfides in mafic and ultramafic rocks. Most 

of the nickel occurrences in the study area are in mafic and ultramafic rocks. The Jabal 

Judayr, southeast of the Arabian shield, is the stock of the serpentinite gabbro and 

pyroxenite and is marked by well-developed gossans that are anomalous in nickel. 



31 

 

Strong magnetic and electromagnetic anomalies, coincident with the gossan, are 

indicative of a shallow conductive body. In 1974, USGS tested drilled two holes in the 

Jabal Judayr prospect to test the down dip extension of gossans and did the geophysical 

anomalies. Eighty ̶ three samples of the sulfide core ranged from 0.03 – 0.43 % Ni and 

averaged 0.25% Ni which does not significantly change from the normal nickel content 

of ultramafic rocks. (Puffett et al, 1975). 

The Wadi Kamal prospect west of the Arabian shield is underlain by an 

ultramafic layered complex, which is capped by gossans and contains up to 2.3% Ni and 

2.5% Cu. In 1974, French Bureau de Recherches Geologiques et Minieres (BRGM) 

drilled 11 holes to test geophysical anomalies and the area beneath the gossans. The 

average nickel content was low and 17 m length of the core from one hole was averaging 

0.53% Ni. (Chevremont & Johan, 1981). 

3.2.2.3. Gossans. Gossans and underlying oxidizes zones cover all the previous 

deposits. 

3.3. PROPERTIES OF COPPER 

Copper is one of the oldest most abundant metals known and extracted by 

humans. It is a chemical element belonging to the transition metals, has the symbol (Cu), 

and has the atomic number 29 in the periodic table (Chemistry, 2019).  It is a distinctive 

color reddish – salmon pink, soft, heavy, malleable, and ductile metal with very high 

thermal properties and is a good conductor of electricity. Copper is widely used in 

modern industries regarding electrical, and electronic products. Brass and bronze are 

two important copper alloys (Anne, 2019), (Massaro, 2002). 

https://www.thoughtco.com/common-copper-alloys-and-their-uses-603710
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Figure 3.5 1) Copper from Bisbee, Arizona, and 2.Chalcopyrite, the most important ore 

of copper. Sources by https://geology.com/minerals/copper.shtml 

 

3.3.1. Occurrences of Copper.  In nature, copper occurs as metal in the native 

form and can be found with Sulphides or Oxidizes ores minerals. There are 

approximately 165 ore minerals that contain copper, and the most important are the 

Sulphides ore minerals, which have Chalcopyrite, Chalcocite, Bornite, and Enargite 

(Figure 3.5).  The Oxidized ores minerals have Malachite, Azurite, Chrysocolla, and 

Cuprite. (Ministry of Energy). The copper occurs in many deposits, and most of these 

are magmatic deposits for Cu-Ni, contact metasomatic deposits, porphyry copper 

deposits, stratiform copper deposits, volcano – sedimentary massive Sulphides deposits, 

and vein deposits with precious and base metal deposits. 

3.3.2. Occurrences of Copper in Saudi Arabia.  Copper mineralization is 

prevalent in the Proterozoic rocks of the Arabian shield. Many ancient sites that provide 

evidence of an extensive small -scale copper mining industry date back several thousand 

years. Many localities have been investigated by DGMR (Figure 3.6). Most of the copper 

https://geology.com/minerals/copper.shtml
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deposits in Saudi Arabia are of the complex ores which are associated with some zinc, 

lead, gold, and silver. 

3.3.2.1. Jabal Sayid copper – zinc deposit.   In 1965, French Bureau de 

Recherches Geologiques et Minieres (BRGM) discovered an ancient mine working at 

the Jabal Sayid deposit in the middle of the Arabian Shield. They started geologic 

mapping, geophysical surveys, bench-scale beneficiation, and diamond drilling. These 

activities concluded in 1979 (Bournant, 1981). 

3.3.2.2. Kutam copper – zinc deposit. The Kutam deposit is located in the Asir 

Mountains in the southern area of the Arabian Shield and was discovered after the USGS 

found the ancient mines working in Kutam in 1973. (Smith et al, 1977).  

3.3.2.3. Jabal Ash Shizm copper prospects. The Jabal Ash Shizm copper 

prospect, located in the northern part of the Arabian Shield, was studied by Charles 

Doughty in 1870. In 1930, the prospect was first examined as a potential source of copper 

by the Saudi Arabian Mining Syndicate (SAMS). In 1970, the prospect was subsequently 

explored by BRGM (Donzeau, 1980). 

3.3.2.4. Umm Ad Damar copper prospect. The Umm Ad Damar prospect 

located in the middle of the Arabian shield and is 20 km southeast of the Jabal Sayid 

deposit. In 1935-36, the first references to the prospect and examination of the ancient 

mines by SAMS. In between 1954 – 1965, the geologic mapping, sampling, geophysical 

survey, and drilling were done by DGMR.  BRGM was completed the previous stages 

for the prospect from 1966 – 1975 (Al-quorashi at el, 1989). 
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Figure 3.6 Map of Copper deposits and prospects drilled localities. Sourced by SGS. 
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4. GEOPHYSICAL METHODOLOGY 

4.1. INTRODUCTION OF GEOPHYSICAL METHODS IN MINERAL 

EXPLORATION 

Geophysical exploration is a branch of applied geophysics that measures the 

physical properties of rocks and minerals. Geophysical methods are grouped into two 

different groups; passive and active. The passive methods measure variations in natural 

fields, whereas the active methods measure the earth’s response to temporary man-made 

fields. For example, the gravity method measures variations in the natural gravitational 

field of the earth, whereas the time domain electromagnetic method measures the earth’s 

response to the emission of man-made electromagnetic radiation. In the case of mineral 

exploration, geophysical methods can be used for geological mapping to determine the 

extent of mineralization and in evaluating and delineating the ore (Dentith & Mudge, 

2014).  

4.2. SELF-POTENTIAL METHOD 

Self- potential (SP) method is a passive electrical method that measures the 

natural potential difference between two locations on the ground surface of the earth. 

The SP method is non-intrusive, fast, relatively inexpensive, and requires a few 

voltmeter and non-polarizing electrodes (Nyquist &Corry, 2002). The physical property 

of the self-potential method is electrical conductivity. The potential difference measured 

can range from less than a millivolt (mV) to over a volt, and the sign of potential 

difference as positive or negative is an important diagnostic factor in the SP 

interpretation of anomalies. SP anomalies are generated by several natural sources (Table 
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4.1).The SP method is widely used in mineral and base metal exploration to detect 

massive ore bodies, metallic sulfides, and magnetite. Furthermore, it has been used in 

groundwater and geothermal investigations and applied to environmental problems (Essa 

& Munschy 2019).  

 

Table 4.1 Types of SP anomalies and their respective geological sources (Reynolds, 

1995). 

 

 

4.2.1. Occurrence of SP and Electrical Potentials.  In the case of mineral 

exploration, the natural ground potential is assumed to consist primarily of two 

components: the mineralization (or electrolytic contact potential) potential and the 

background potential. (Note: electro kinetic, liquid-junction, and Nernst potential are 

assumed to be insignificant). The mineralization potential is effectively constant due to 

the electrochemical process associated with the mineralization. The background 
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potential is time variant and is generated by temporal variations in natural current flow 

in the subsurface - for example, an electrical storm. 

4.2.2. Mechanism of Self-Potential. There are four principal mechanisms that 

produce SP potentials in the subsurface: 

 Electrokinetic potential or streaming potential: 

Caused by the flow of fluid electrolytes during a capillary or porous 

medium in different electrical properties to generate potentials along the flow 

path. The potentials are alternatively called electro filtration, electromechanical, 

or streaming potentials: 

                             𝐸𝑘 =  
𝜀𝜇𝐶𝐸𝛿𝑃

4𝜋𝜂
                                      (1) 

where 𝜀, 𝜇, and 𝜂 are the dielectric constant, resistivity, and dynamic viscosity of the 

electrolyte response, respectively. The pressure difference 𝛿𝑃  and CE is the electro 

filtration coupling coefficient.  

 Liquid-junction or diffusion potential: 

           Caused by the difference in motilities of anions and cations of dissimilar 

concentrations: 

                                                                 𝐸𝑑 =  
𝑅𝑇 ( 𝐼𝑎−𝐼𝑐 )

𝑛𝐹
 𝐼𝑛 (𝐶1

𝐶2 )⁄                (2) 

where Ia and Ic are the motilities of the anions (+ ve) and cations (- ve) respectively, R is 

the universal gas constant,T is the absolute temperature, n is ionic valence,  F is 

Faraday’s Constant, and C1 and C2 are the solution concentrations. 

 Nernst, or shale, potential: 
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Caused by two identical metal electrodes that engage in a homogeneous solution 

with the difference of the concentrations at those electrodes.   

                                    𝐸𝑑 =  
𝑅𝑇

𝑛𝐹
𝐼𝑛(𝐶1 𝐶2)⁄                                      (3) 

where Ia = Ic  in the diffusion potential equation.  

 Mineralization, or electrolytic contact potential: 

The potential associated with massive Sulphides ore bodies (Reynolds, 1995). 

The large negative potentials range from hundreds to more than thousands of millivolts, 

are frequently observed in association with bodies of disseminated and massive 

Sulphides, graphite, magnetite, and manganese mineralization. 

 These mineralization potentials are the signal of interest in mineral SP surveys. 

Sato and Mooney (1960) (Figure 4.1) provide an explanation of the electrochemical 

interactions between the mineralization and the groundwater. 

 In short summary, his SP anomalies are generated by the natural 

oxidization/reduction process associated with mineralized bodies that straddle the water 

table. The ions in the pore fluid below the water table are oxidized and release electrons, 

and the electrons flow vertically during the conductor to the point above the water table 

where they cause the reduction of electrolytes. 

4.3. MAGNETIC METHOD 

The magnetic (MAG) method is relatively inexpensive; it involves passive 

geophysical survey methods that measure spatial variation in the widely used for the 

direct detection of several different types of mineral deposits, for determining the 

location of subsurface geologic structures (e.g. faults, folds, dykes, and geologic contact) 
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Figure 4.1  A schematic model of the origin of the self-potential anomaly of an 

orebody. The mechanism depends on differences in oxidation potential above and 

below the water table (LOWRIE, 2007). 

 

 , for archeological investigations, and for pseudo -geological mapping. The spatial 

variations in the earth’s magnetic field of that are interest to those engaged in mineral 

exploration are caused in part by variations in the magnetic susceptibility of earthen 

materials and variations in the concentration of those materials (Dentith & Mudge, 2014) 

(Mickus,2014). The magnetic method, depending on the sophistication of the measuring 

instrumentation, typically involves the measurement of the relative or absolute earth’s 

magnetic field as either a vector or a scalar. (Mabey et al., 1974). The instrument used 

for this study measured the relative intensity of the earth’s magnetic field as a scalar. 

The magnetic technique has relatively high depth penetration compared to other 

geophysical techniques such as ground penetrating radar, high frequency 

electromagnetics, and DC-resistivity. The main disadvantages are that anomalies are 



40 

 

generated only if ferromagnetic or ferrimagnetic materials are present.  Also, the 

interpretation of magnetic anomalies is non-unique, which means the complementary 

data (e.g., other geophysical data or drill hole data) are often required to determine the 

cause of the magnetic anomalies (i.e. massive Sulphides as opposed to magnetite) 

(Mickus, 2014). 

The bar magnetic consists of two poles (dipolar), a positive north-seeking pole 

and a negative south-seeking pole, and these poles always exist as pairs (Figure 4.2). 

These two poles produce a magnetic field called the magnetic field intensity (H) 

(Mickus, 2014). 

In geophysics, the most commonly used unit of magnetic intensity is the gamma 

(γ), which equals 10-9 T or Nano tesla (nT). The magnetic field intensity of the earth in 

Polar Regions is of the order of 60,000 γ or 60,000 nT at the equator; the magnetic field 

is about 30,000 γ. 

 The magnetic field intensity in Saudi Arabia is between 40,000 – 42,000 nT. The 

inclination angle of the magnetic field is between 20 - 40 degrees; the declination field 

angle of Saudi Arabia is between 2 and 3.2 degrees. As mentioned previously, the 

magnetic instrumentation used for this study measured the earth’s magnetic field in a 

relative sense and also as a scalar. 

4.3.1. Magnetic Field of the Earth.  The magnetic field of the earth contains the 

three components: 1) the main field; 2) the external field; and 3) the field generated by 

magnetically susceptible material within the earth’s crust. The main field contributes 

over 90% of the earth’s total magnetic field and is caused by convection currents of 

conducting material (mainly iron and nickel) within the liquid outer core to a first order 
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Figure 4.2 Earth’s magnetic field depicted as the field of a bar magnet. The south pole 

of the magnet points to Earth’s magnetic north pole. The red and white compass 

needles represent the orientation of the magnetic field at various locations on Earth’s 

surface. 

 

approximation. The earth's magnetic field can be modeled as though it was generated by 

an imbedded dipole oriented about 11.5◦ to true north (Mickus, 2014). 

The external field is a small portion of the main magnetic field of the earth that 

represents about 10 % of the field, and it changes rapidly, randomly, and sometimes 

periodically. It is caused by the movement of charged particles within the differential 

flow of ions and electrons inside the magnetosphere and in the remove, italics form 

current systems in the ionosphere to the magnetic poles. These changes are called diurnal 

variation. The magnetic field of the earth is generated through the outer core within the 

convective movement of liquid iron. The earth’s magnetic (geomagnetic) field, “F,” at 

any point has few elements to represent its magnitude and direction.  



42 

 

 The components are: 1) amplitude of the field (F);  2) magnetic inclination (I), which is 

the dip of a magnetic compass needle from the horizontal direction; and  3) magnetic 

declination (D) which is the angle between geographic and magnetic north. All these 

components are shown in Figure 4.3, and these values are collectively known as the 

International Geomagnetic Reference Field (IGRF) (Mickus, 2014).  

Magnetic anomalies are caused by the superimposed presence of magnetic 

minerals and rocks on the normal geomagnetic field at that location. Anomalies are 

generally very complex and may be extremely difficult to interpret quantitatively 

(Haldar, 2013).  

 

 
Figure 4.3 Schematic diagram of geomagnetic field elements, (Dentith and Mudge 

2014). 
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4.3.2. Magnetic Susceptibility.  Magnetic susceptibility is the ratio of 

magnetization M to the applied magnetizing field intensity H. Magnetization M refers to 

the magnetic moment per unit volume. Magnetic susceptibility is the most important 

variable in magnetics; it measures ability of a rock to acquire a magnetization in the 

presence of a magnetic field (Mabey et al., 1974), (Telford et al., 2004). Magnetic 

susceptibility is a no dimensional quantity and is the fundamental physical property used 

in the magnetic method. The measurement of the total magnetic field (which includes 

the external magnetic field and the magnetization) is called the magnetic induction (B) 

and is written as: 

                                𝐵 =  𝜇°(1 + 𝐾)𝐻                         (4) 

where 𝜇° is the magnetic permeability of free space.  

The units of B are teslas, which is generally too large a number for applied 

magnetics work, so gammas (10-9 teslas) are more commonly used. Also, note that B is 

a vector quantity and in most magnetic work today, the amplitude of B is measured, and 

it is called the total magnetic field (Mickus, 2014).  

Rocks can be studied using different physical properties among which are 

resistivity, radioactivity, magnetic susceptibility, and so on (Keary, 1991). The magnetic 

susceptibility of minerals makes it possible for magnetic surveying to be used for the 

mapping of magnetic rocks due to the uneven distribution of magnetically susceptible 

minerals in rocks. The presence of magnetically susceptible minerals in rocks causes 

small scale (but often measurable) distortions in the earth’s magnetic field as observed 

on the earth’s surface. The induced field may add constructively or destructively to the 
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earth’s main field and generate a measurable anomaly. Magnetization is a function of 

location and varies from point to point (Blakely, 1995). 

Basic igneous rocks usually contain more magnetic minerals than sedimentary 

rocks. Metamorphic rocks contain variable concentrations of magnetically susceptible 

minerals while sedimentary rocks, in general, contain relatively little magnetically 

susceptible mineralization. 

 Basic and ultrabasic dykes, sills, lava flows, and magnetically susceptible ore 

bodies are the most common sources of magnetic anomalies in igneous rock (Table 4.2). 

The amplitude of the magnetic field contribution generated by rock types varies from as 

low as 20 nT in limestone and 800 nT in basic igneous rocks to more than 6000 nT over 

sulfide orebodies (Figure 4.4). Magnetic fields are generated by the presence of 

magnetically susceptible material that is superimposed on the main field of the earth in 

that location (Haldar, 2013). 

4.3.3. Types of Magnetic Materials. The materials in nature in terms of 

magnetic are divided into: 

1. Diamagnetic: - composed of atoms that have no net magnetic moments. 

A negative magnetization is produced when the material is exposed to the external 

magnetic field, and thus the susceptibility is negative (χ < 0) in the range of -10-6 to -    

10-5.  Examples of the diamagnetic materials are Cu, Ag, and Au (Figure 4.5). 

2. Paramagnetic: - magnetic moments do not interact with each other, and 

they are randomly arranged in the absence of a magnetic field. The atomic magnetic 

moments are aligned in the direction of the field, and that will induce a net positive 
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magnetization and positive susceptibility (χ > 0) in the range of 10-5 to 10-3.  Examples 

of the paramagnetic are Li, Na, and all platinum-group metals such as Ru and Pt. 

3. Ferromagnetic: - magnetic dipolar moments aligned parallel to each other 

even without an external applied magnetic field. Magnetic susceptibility is large and 

positive. The examples of ferromagnetic materials are Ni, Fe.  

4. Anti-ferromagnetic: - a special case of ferrimagnetism, where the 

alignment of the spin moment of the neighboring atoms is in opposite directions or iron 

in exactly opposite directions. Examples of the anti-ferromagnetic materials are MnO, 

FeO, and MnF2. 

5. Ferrimagnetic materials: a special case of antiferromagnetic materials; a 

phenomenon in which the magnetic interaction between any two dipoles align anti-

parallel to each other, where they have no different magnitude. It consists of more states 

of different transition elements, and has very large susceptibility and +ve. The magnitude 

of dipoles is not equal; however, the cancellation of magnetic moments will be 

incomplete and result in a net magnetization in the material. 

 

 
Figure 4.4 Magnetic susceptibility of common rocks, Exploration geophysics, Clark 

and Emerson (1991). 
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Table 4.2 Magnetic susceptibility of various rocks and minerals χ 103  SI (Telford et 

al., 2004). 
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Figure 4.5 Magnetic properties of some materials 

4.4.  TIME-DOMAIN ELECTROMAGNETIC METHOD 

One of the active geophysical methods is the time domain electromagnetic 

(TDEM method). In terms of mineral exploration, this tool is useful for locating and 

mapping subsurface metals, as it responds to the presence of electrical conductive 

materials such as metallic mineralization. On the downside, electrical conductivity is 

also a function of ground water salinity, percent saturation, and rock type, porosity, and 

permeability (McNeill, 1980 McNeill & Bosnar, 1986). One of the electromagnetic 

methods is the TDEM method. It was established in the early 1980 to image deeper 

structures. 

 The development of new instrumentation and interpretation methods has further 

redefined the concept of the TDEM method, and the redefinition enabled the application 

of the TDEM method to be incorporated in engineering, hydrogeological, geological, 
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and environmental studies. Today, TDEM forms a practical approach to assessing and 

analysing the electrical parameters of the subsurface medium.  

The characteristics of the EM method are based on a wide range of applications. 

However, the applications depend on the equipment being utilized. These applications 

comprise groundwater surveys, mineral resources evaluation, mapping of contaminants 

plumes, mineral exploration, geological mapping, permafrost, landfill surveys, and 

geothermal resource investigation. 

 Electromagnetic (EM) methods provide powerful means to measure subsurface 

electrical resistivity. In this case, metallic mineralization, the composition of fluids that 

fill the pore space, porosity, and permeability, as well as rock type, affect the electrical 

conductivity of rocks (Figure 4.6). 

 

 
Figure 4.6 Illustrates generally the resistivities and electrical conductivities of most 

rock groups (adapted from Palacky, 1987). 
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 One of the physical properties of the TDEM tool is that it is a transient technique. The 

method induces a strong direct current (DC), which is passed into the subsurface through 

a wire loop generally laid on the ground surface (but can be airborne). The DC current 

generates a stable magnetic field in the subsurface. This magnetic field will rapidly decay 

when the direct current is terminated abruptly (Figure 4.7). The TDEM tool measures 

the earth’s response (eddy currents associated with rapid decay of the magnetic field) to 

the termination of the DC current. 

 

 
Figure 4.7 Transmitter current wave-form in TEM method, EPA, (Agency 2016). 

 

Faraday’s law states that the decay of the primary magnetic field will cause the 

eddy current to flow downward and outward with reducing velocity. The current will 

cause the amplitude to reduce with time, which can be observed in the smoke ring 

portrayed in Figure 4.8. Equation (5) shows the velocity (Vz) with which the ring expands 

away from the transmitter at a time (t). 
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                                                 VZ=2√πσμt                              (5) 

where σ is the conductivity and μ is the magnetic permeability of the medium. 

The rate of change of these currents and of their respective secondary magnetic 

field depends on the size, shape, and conductivity of the subsurface conductors. 

 

 
Figure 4.8 System of equivalent current filaments at various times after current 

interruption in the transmitter loop, showing their downward and outward movement. 

EPA, (Agency 2016). 

 

The earth’s response is recorded using a receiving unit, which is engaged with 

the transmitter in the same unit. As shown in Figure 4.9, the received voltage response 

can be divided into three stages: 

1. The early-time stage, in which the response is constant with time where the 

eddy currents flow at the surface of the conductor. 

2. The intermediate-time stage, in which the response shape continually varies 

with time. The surface currents start dissipating through Ohmic losses, and the 

magnetic field decreases due to the inward diffusion of the eddy currents. 
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3. The in late-time stage, in which the response is now a straight line on the log-

log plot. Induced current distribution is invariant with time, and the only 

change observed is a decrease of the overall amplitude with time. 

 

 
Figure 4.9 Log plot-receiver output voltage versus time (one transient) EPA, (Agency 

2016). 

 

The late-time response then varies quite simply with time and conductivity, and 

the apparent resistivity can be estimated at a later time from Equation (6). 

                                𝜌𝑎(𝑡)
=

𝐾2𝑀2/3

𝑉(𝑡)
2/3𝑡5/3                                   (6) 

where, K2 = constant, M = product of I current (amps) * area (m2), t= time (seconds) and 

V (t) = output voltage from a single turn receiver coil of 1 m2 area. 
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Note that unlike the conventional resistivity measurements where the measured 

voltage varies linearly with terrain resistivity, for TEM the measured voltage V (t) varies 

as σ2/3. Thus, the TEM is intrinsically more sensitive to small variations in conductivity 

than conventional resistivity soundings. 
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5. GEOPHYSICAL DATA ACQUISITION AND PROCESSING 

5.1. INTRODUCTION OF DATA ACQUISITION 

This section describes the field geophysical data acquisition and processing of 

three geophysical data sets: SP, Magnetic, and TDEM. These data were recently acquired 

by the Saudi Geological Survey (SGS) in the Wadi Al Khadra area to assess the Ni-Cu 

prospect. The surveys and the processing software and steps are described in this chapter. 

5.2. SELF-POTENTIAL SURVEY DATA ACQUISITION 

The SP survey covers an area about 800 m by 400 m. The SP data were acquired 

at 25 m intervals along 32 traverses profiles taken with lengths of 400 m. A total of 544 

data points were acquired (Figure 5.1). An ELREC Lite instrument from IRIS, a French 

company, acquisition system were used to record the signature of the Wadi Al Khadra 

prospect. This instrument is handheld, has 2 channels, and is designed for mineral 

exploration (Figure 5.2).  

To acquire SP data, the gradient method was employed. This method utilizes two 

mobile electrodes spaced at 25m intervals with one electric wire running from each 

electrode to the recording instrument. The potential difference between two observation 

locations is recorded. In a progressive manner, the potential differences are recorded 

between stations 2 and 3, 3 and 4, and 4 and 5, etc. When they take a reading, the 

instrument reads the potential difference between the two electrodes and stores the value 

in its memory.  
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Figure 5.2 Elrec Lite instruments were using of SP survey, IRIS Company, France. 

5.3. SP DATA PROCESSING 

The first processing step is to download the data and to calculate the potential 

difference between the base station (station 1) and all the other stations. The map of self-

potential anomalies and values were plotted using Oasis MontajTM  Geosoft software 

version 7.0. The SP profiling data, in the form of electrical resistivity imaging, are 

processed by the ERT lab64, and each SP profile curve (1 per traverse) was generated 

by using Excel software.   

5.4. MAGNETIC SURVEY DATA ACQUISITION 

The ground magnetic survey covers an area about 800 m by 400 m (Figure 5.3) 

and was conducted by using a Geometrics G858 cesium magnetometer, a portable 

instrument designed to measure the magnitude of the magnetic field of the earth as a 

scalar (Figure 5.4). The magnetic data were acquired at 25 m intervals along thirty-two 

400 m long east-west traverses that were spaced at 25m intervals .A total of 544 magnetic 
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intensity values were recorded.  The diurnal variation in the total magnetic field was 

observed using a second proton magnetometer. After corrections for diurnal variations 

and drifts, the total magnetic field was gridded at a 25 m interval. 

5.5. MAGNETIC DATA PROCESSING 

 It is important and useful to better understand the geology, subsurface structure, 

and tectonic setting in the study area, especially the major tectonic trends that are related 

to the distribution of metallic minerals in the study area. These objectives can be 

achieved, at least to a certain extent, by interpreting the available mainly magnetic data. 

Before starting to the process of magnetic data, the data was uploaded by Magmap which 

corrected the data for diurnal variations and drift (Figure 5.5). 

 In order to achieve the objectives, the processing of ground magnetic data has 

been done using multiple different approaches to enhance all interpretations. The 

software employed incudes Oasis MontajTM Geosoft software version 7.0 and Golden 

software Surfer.  The processing approaches employed include: different kinds of 

separation and filtering, derivation of total magnetic intensity, reduction  to the pole, 

vertical derivative, upward  continuation, tilt derivative, high pass filtering, spectral 

analysis, analytical signal, 3-D Euler deconvolution, and  2D magnetic modeling. The 

multiple outputs of processing were interpreted with the primary goal of characterizing 

the igneous basement complex that has influenced the overlaying sedimentary section 

(i.e. sedimentary and structural basins/sub-basins), and also the major structural 

elements. 
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5.5.1. Reduction to the Pole (RTP).   Reduction to the pole filtering was applied 

using by Geosoft Oasis MontajTM.  Reduction to the pole modifies the data so that it 

appears the data were acquired at the north magnetic pole, where the earth’s magnetic 

field is vertical (LUO et al., 2010). It is an accepted part of the magnetic data processing 

approach for large-scale mapping, since it simplifies the interpretations. Anomalies are 

essentially centred over the causative features.  That is only made possible by removing 

the asymmetry which is introduced because of its influence by the inclined main field. 

The core field is only vertical at the south and north magnetic poles. Because of the 

declination and inclination of the induced magnetization vector from the magnetic poles, 

the determined magnetic field anomalies are changed from the centers of their magnetic 

sources (Figure 5.6). To reduce the polarity effect and align the peaks of magnetic 

anomalies directly over the source, RTP transformation is applied to the total magnetic 

data (Blakely, 1995) (Mendonca & Silvia, 1993). 

RTP was calculated in the frequency domain using the following equation:  

               𝐿(𝜃) =  
1

(sin(𝐼)+𝑖 cos (𝐼)cos (𝐷−𝜃))
                         (7) 

where Ɵ  is the wave number direction, I   the magnetic inclination, and  D the magnetic 

declination. 

5.5.2. First Vertical Derivative.  Derivatives are used in total magnetic data to 

differentiate anomalies generated by deeper sources from anomalies generated by 

shallower sources (Ravat, 1996). The rate of change of the magnetic field in the vertical 

direction forms the first derivative filter of the magnet intensity. The first derivative 

filtering enhances anomalies generated by near-surface features. The impact of the 

derivative is that higher frequency (short wavelength) magnetic features are enhanced. 
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Figure 5.4 G-858 Portable Cesium Magnetometer was using of magnetic survey 

/Gradiometer, Geometrics. 

 

 
Figure 5.5 IGRF model of the study area, geomag.bgs.ac.uk/data 
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Figure 5.6 Effects of using the reduction-to-pole correction. Ravat (2007). 

 

The computation enhances the resolution of the superposed anomalies and 

closely spaced anomalies. Therefore, the coincidence of the zero-value contour with 

vertical contacts at a high magnetic latitude forms the first property of vertical derivative 

maps (Hood, 1965). The first vertical derivation was calculated from the RTP magnetic 

data in the study area.  

5.5.3. Tilt Derivative. To improve the shallow geological sources and to 

approximate the depth, another method, known as tilt derivative, can be used. This 

method adopts the idea that the structures of the source have buried 2D vertical contacts. 

Also, the method is based on the ratio of horizontal and vertical derivatives of the field 

(Salem et al., 2007). Therefore, the mineral exploration targets and shallow basement 

structures are mapped by total horizontal derivatives and tilt derivatives. According to 

Miller and Singh (1994) and verduzco et al. (2004) the tilt derivative is defined as: 

               𝑇𝐷𝑅 = 𝑡𝑎𝑛−1 (
𝑉𝐷𝑅  ) 

𝑇𝐻𝐷𝑅 
                                  (8) 
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where VDR is first vertical derivative and THDR is the total horizontal derivative of the 

total magnetic intensity T. 

The tilt derivative is changing with an inclination within an amplitude range of 

±π/2. The zero crossing is near to the edges of the model structures according to 

inclinations of 0 and 90°. The edges of source bodies of the RTP and RTE fields are 

delineated by the zero contours of the tilt derivative map. The negative values of the zero 

contour are outside of the source (Miller & Singh, 1994). Also, the depth to the top of 

the contact, which is half the physical distance between ± 45
◦
 contours, is equal to the 

horizontal distance from 450 to 00 location of the tilt derivative.   

5.5.4. Upward Continuation Filtering.  In order to project the observed 

anomaly field to higher and lower elevations, the continuation method is used. Higher 

and lower elevations are referred to as upward and downward continuation (Yarger, 

1985). The method is important in that if the continuation does not extend into the 

sources, the character of the geo-potential field anomaly is retained. Therefore, the effect 

of the impact of near-surface bodies is reduced by upward and downward continuations.  

The upward continuation filter reduces the impact of higher wave number 

components associated with more local near surface anomalies (Lidiak et al, 1985). This 

means that, the continuation projects the observed anomaly field to higher elevations. 

Also, because of its ability to produce almost no side effects, which may require the 

application of other filters to correct, it is considered a clean filter. This ability enables 

the filter to minimize the impact of noise in the grid and shallow sources. In the study 

area, RTP magnetic data continued upward to 20 meters. 
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5.5.5. Analytical Signal Derivative (AS). The analytical signal (AS) is 

determined by finding the square root of the sum of the squares of the x, y, and z-

direction directives. The significant linear magnetic anomalies, such as steps and fault 

zones, are used to approximate the depth that is caused by applying the analytical signal 

derivative to examine the buried structures. Also, the steps and fault are used to locate 

the edges of the source anomaly and approximate its geometry by applying the same 

method. To get the amount of depth in the two dimensional of the digitized magnetic 

data, the method is directly applied based on the gradients of x, y, and z (dt/dx, dt/dy, 

and dT/dz). Besides, the method assumes that causative sources are two dimensions 

geological structures such as horizontal cylinder, dikes, and contacts.  

5.5.6. Regional and Residual Magnetic Maps.  The regional (low-pass) map is 

a filter that is used for smoothing and shows deep-seated structures of high amplitude 

positive and negative magnetic anomalies, while the residual (high-pass) filter is a filter 

that is used for sharpening and shows the sudden changes in the magnetic relief. It always 

accompanies the shallow-seated geological features and/or bodies of low amplitude 

positive and negative magnetic anomalies. 

5.5.7. 3-D Euler Deconvolution.  The Euler deconvolution is a technique used 

in the interpretation of magnetic and gravity data to create the mapping. This technique 

is showing the locations and depth of the geologic sources of the gravity or magnetic 

anomalies observed in the two-dimension grid. Therefore, the method approximates the 

outline and depth of boundaries of the source bodies. The depth estimate is utilized in 

defining the depth and location of the source that produces gravity or magnetic anomaly 

in mineral exploration. Euler’s homogeneity is the core determinant of three-dimensional 
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Euler deconvolution. Euler’s homogeneity is an equation that connects the gradient 

component and potential field to the source location with homogeneity. The 

homogeneity may be interpreted as a structural index. Based on the structure index (SI) 

choice, the depth approximation results in Euler deconvolution. The SI parameter is 

based on the potential field and source body type, and magnetic field of narrow 2-D 

Dyke. The 2-D Dyke has a structural index of SI=1. On the other hand, a vertical pipe or 

cylinder gives SI=2, while a sphere gives SI=3. Lastly, contact and steps have SI=0 

(Whitehead, 2010). The depth of this research was estimated using SI = 0, which 

corresponded to the contact, as well as a window size of 10x10 km. 

5.5.8. Radially Average Power Spectrum.  To determine the average depth 

analysis levels for the magnetic source for the location of the study area, the two 

dimensional radially averaged power spectrum techniques are used based on fast Fourier 

transform (FFT). This technique is important since it provides the interpreter with 

insights and general information about the hidden structures that have a geographic 

extension. The curves of the power spectrum consist of two parts of linear segments.  

The first part is linked with deeper sources, and it is where the rate of power decay is 

linear and can be estimated by a straight line. On the other hand, the second part is 

connected to shallower sources, and it is a high-frequency end (Spector & Grant, 1970; 

Reeves, 2005). 

5.5.9.  2D Modeling. The 2-D modeling approach to interpretation incorporates 

the fitting of geophysical parameters to potential data; thus, the potential problem that is 

carried out unambiguously could inversely be solved by potential modelling. From the 

theoretical view, the two reversed operations are completed sequentially. The first 



64 

 

operation involves a direct modelling process, while the second operation involves an 

inverse modelling process. The direct modelling process changes the alterations reflected 

by potential field data in the location of the study. The residual potential anomaly maps 

show the process of an expedient subsurface geological setting. On the other hand, 

inverse modeling pairs the calculated potential impacts with observed impacts, where 

the calculated impacts are produced from the inferred assumed potential models.  

5.6. TIME-DOMAIN ELECTROMAGNETIC SURVEY DATA ACQUISITION 

The time-domain electromagnetic (TDEM) survey was designed after the 

acquisition of magnetic and self-potential surveys in order to deeply investigate detected 

anomalies on the magnetic and self-potential data. The TDEM survey (Figure 5.7) was 

carried out along 7 profiles (TDEM soundings, 2268 stations) from east to west, and 

readings were taken every 25 m in order to gain some idea of the structure below the 

surface.  

The survey was done by using a Zonge Nano TEM system with receiver GDP-

32 (Figure 5.8) and the maximum transmitter loop size that could be used was 20m with 

a receiver loop size of 5m. Therefore, the maximum depth which could be observed was 

about 50 m below the survey area, and the delay times were used in the range of 20 m/s 

to 40 m/s. 

The arrangement of a common survey incorporates a square single-turn loop with 

a horizontal receiver coil placed at the centre (Figure 5.9). Also, at each secession of gate 

time, a series of values of the receiver output voltage is included in the data from a 

resistivity sounding. The gates are in time. 
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 The time can be between a few microseconds and hundreds of milliseconds. 

Afterwards, depending on the preferred depth of exploration, the location of the 

transmitter current is turned off. As a function of time, the receiver coil is used to 

determine the time rate of change of the magnetic field which is given by e (t) 2=dB/d t. 

The units of e (t) are V/m2 of the receiver coil area when properly calibrated. 

 Nevertheless, it is common to use measured decay and nV/m2, since the signals 

determined are extremely small. Basically, they range from many thousands of nV/m2 

at early times to less than 0.1 nV/m2 at late times. The calibration of the modern receivers 

has nV/m2 or V/m2. The calibration is checked by Q-coil, which is laid on the ground at 

an exact distance from the receiver coil. Q-coil is a small short-circuited multi-turn coil, 

which is used to give a transient signal of a renowned amplitude.  

5.7. TDEM DATA PROCESSING 

The processing and modeling of TDEM data was carried out using by Zond EM 

2D software. At the respective site, each of the collections of the model described the 

geo-electrical parameters of the subsurface section. These sections show the varieties 

acquired both vertically and along the side in the electrical resistivities and their relating 

geographical units. 
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Figure 5.7 Map of TDEM acquisition data of Wadi Al Khadra Prospect 

 



67 

 

 
Figure 5.8 GDP-32 receiver used for TDEM survey, A Zonge. 

 

 

 
Figure 5.9 Layout of TEM survey, adapted from Zonge International. 
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6. GEOPHYSICAL DATA RESULTS AND INTERPRETATIONS 

6.1. SELF-POTENTIAL RESULTS 

The self - potential results will be showing as map and profiles to better 

interpretation of data: 

6.1.1. Self-Potential Mapping. The interpretation of SP data shows that the 

values range from +109.7 mV to -189 mV. It is clear that there are relatively high 

negative values (negative anomalies) in three locations (1, 2, and 3) in the study area 

(Figure 6.1). The problem of distinguishing between possible anomalies (SP) of different 

origins in basement rocks was addressed using the SP / height gradient. Traditionally, 

area surveys have exhibited negative-positive / elevation gradients, usually between 0 

and -120 mV (Figures 6.2 – 6.10), while positive gradients vary over a wider range 

between 10 and 50 mV. Simple models show how these gradients are disturbed in the 

presence of basaltic rock catchments, or lateral variations of physical properties (e.g. 

resistance) or by positive deformations associated with higher mineral concentrations. 

 The SP / Alt color gamut is more sensitive to disturbances than the SP, and 

therefore, the color gamut was used to detect anomalies, using digital SP and topographic 

networks, the gradient can be calculated in 2D to illustrate this method. Anomalies are 

easily identified in the active central area, but they are difficult to distinguish in other 

areas. By contrast, anomalies are clearly displayed on the gradient map along with 

different types of terrain (different SP / height gradient values). In the rest area, where 

data coverage is dense, gradient information is compared as a function of SP map 

resolution to illustrate the sensitivity of the detection method for small-scale structures. 
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As a method, the gradual gradient appears to match the qualitative interpretation 

of SP surveys in non-sedimentary or basement areas and other environments.  

6.1.2. Self-Potential Profiling.  SP data were acquired along thirty-two 

measurement traverses in the Wadi Al Khadra prospect area. Data acquired along nine 

of the traverses are presented as profiles in Figures 6.2 - 6.10 it is clear from these 

profiles, given the significant variations in surface topography, indicated by the SP 

results, that the values change from place to place, with positive and negative values that 

could result from variations in rock types. The extent of the changes in SP values with 

location is also explained. 

 When looking at profiles, it is easy to observe the places, depths, and values of 

anomalies that form isolated objects with negative values. The strong gradient in redox 

potential within the upper 20 cm implies an abrupt change in the rock structure.  

The three locations characterized by negative SP anomalies (in Figure 6.1 - 1, 2 

and 3) are indicative of zones where subsurface metals are present (vertical transition 

from oxidizing to reducing conditions). 

Thus, the SP tool is suitable for determining the location of metals, (copper, 

nickel, and associated mineralization in this case). The amplitude of the negative 

anomalies is related to the concentration of metallic mineralization, the depth of that 

mineralization and the rate at which oxidization/reduction is occurring locally. 

 The size of the anomalies is presumed to be indicative of the areal extent of 

relatively high concentrations of metallic mineralization. 
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Figure 6.1 SP contour map of Wadi Al Khadra Prospect. 
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Figure 6.2 Self-potential anomaly in line 325 associated with grounded monitoring 

instruments. 

 

Figure 6.3 Self-potential anomaly in line 425 associated with grounded monitoring 

instruments. 

 
 

Figure 6.4 Self-potential anomaly in line 525 associated with grounded monitoring 

instruments. 

 

Figure 6.5 Self-potential anomaly in line 625 associated with grounded monitoring 

instruments. 
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Figure 6.6 Self-potential anomaly in line 725 associated with grounded monitoring 

instruments. 

 
Figure 6.7 Self-potential anomaly in line 825 associated with grounded monitoring 

instruments. 

 

Figure 6.8 Self-potential anomaly in line 925 associated with grounded monitoring 

instruments. 

 
 

Figure 6.9 Self-potential anomaly in line 1025 associated with grounded monitoring 

instruments. 
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Figure 6.10 Self-potential anomaly in line 1100 associated with grounded monitoring 

instruments. 

6.2. MAGNETIC DATA RESULTS 

The magnetic results consist of qualitative and quantitative interpretations of the 

potential field as follow: 

6.2.1. Overview of Magnetic Results.  It is important and useful to understand 

the geology, subsurface structure and tectonic setting in the study area better, especially 

the major tectonic trends that are related to the distribution of metallic minerals in the 

study area. These objectives can be achieved, at least to a certain extent, by interpreting 

the available mainly magnetic data. To achieve the objectives, the magnetic data were 

processed and interpreted using multiple approaches. The processing approaches 

included; different kinds of separation and filtering, total magnetic intensity, reduction 

to the pole, vertical derivative, upward / downward continuation, tilt derivative, high 

pass, spectral analysis, analytical signal, 3-D Euler deconvolution, and 2D magnetic 

modeling. 

   The multiple outputs of processing were used to characterize the igneous basement 

complex that has influenced the overlaying sedimentary section, i.e. sedimentary and 

structural basins/sub-basins, and, the major structural elements. 



74 

 

6.2.2. Qualitative Interpretation of the Potential Field. A qualitative 

assessment of magnetic data maps was used to infer the subsurface geology, subsurface 

structure, and subsurface lithology. Magnetic anomalies are generated most typically by 

the presence of magnetically susceptible minerals in the subsurface, where areas of high 

magnetic susceptibility (the presence of nickel in this case) are characterized by positive 

magnetic anomalies on RTP map. Areas of low magnetic susceptibility are characterized 

by lower magnitude anomalies. To complicate matters further, areas where the igneous 

bedrock is shallower are also characterized by higher amplitude positive magnetic 

values. In the absence of magnetically susceptible minerals, positive anomalies are often 

generated by structures such as anticlines, horsts, domes, or up-thrown sides of fault 

block. Negative magnetic anomalies are often attributable to structures such as synclines, 

grabens, basins, or down-thrown sides of fault blocks. In spite of the limitations of 

magnetic interpretation, useful qualitative analysis (in terms of estimated depth to 

igneous rock) is often possible. The relative positions of anomaly maxima, minima, and 

inflection points are functions of multiple factors including depth. 

The nature of the magnetic anomaly of a given magnetized body as mapped on 

the earth’s surface is complicated. This is because several factors affect the magnetic 

signature of a causative body, including: 

 Direction (inclination and deviation) of the earth's magnetic field at the study 

location. 

 Presence and concentration of magnetically susceptible minerals.  

 Magnetic susceptibility of the body causing the anomalies. 

 Direction of polarization of the magnetically susceptible minerals. 
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 Orientation of the causative body with respect to the Earth's magnetic field. 

 Locations where magnetic data are acquired. 

The purpose of the qualitative analysis is to infer the geological character of the 

subsurface structures based on the assessment of the suite of processed magnetic maps.  

6.2.2.1. Nature of the observed magnetic anomalies. The description of 

observed magnetic anomalies can involve the size, shape, sharpness, gradients, and 

positions of the anomalies. In the absence of magnetically susceptible minerals in the 

sedimentary section, these features can be used to infer the nature and dimensions of the 

igneous basement. The variables describing potential field anomalies are arranged in 

decreasing order according to (Rombering, 1958) as follows: 

i)  Size:  This gives an indication about the magnitude of the anomaly.  The size 

(volume) of a certain anomaly is directly proportional to the size of its causative body or 

structure and it can be computed if the depth to the source is known. 

ii) Sharpness: Sharp anomalies are easy to identify, whereas diffuse ones tend to 

merge with the general background, and they may not be overly visible or interpretable. 

iii) Perceptibility: This variable depends on the size, sharpness, and level of the 

background. If an anomaly generated by variable depth to igneous rock is masked by 

other anomalies (perhaps generated by the presence of magnetically susceptible 

minerals), it can be difficult to isolate and identify. 

iv) Resolution: Resolution depends on the separation between structures that 

generate the anomalies. The greater the separation, the clearer and more distinct the 

resolution will be. 
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v) Eccentricity: is an interesting aspect of resolution. A long irregular or eccentric 

geologic structure close to the surface gives an eccentric or elongated anomaly. 

vi) Elongation of contours: The direction of iso-anomaly contours at any map 

suggests the direction and length of the structures causing them. The length is to be 

understood in relation to the depth. 

vii) Shape: This is not a quantitative variable in an engineering sense, it is a 

criterion for the shape of the structure producing it. Many variables are involved in 

studying the relation between anomalies and structures. All these concepts of description 

are useful in defining the nature of causative features that generate observable magnetic 

anomalies. 

6.2.2.2. Description of the detailed ground magnetic data. The ground 

magnetic survey covered the study area. The magnetic data acquired in the study area 

was presented in the form of a total intensity contour map, which depicts two high- 

amplitude positive anomalies (labelled 1, and 2)  in the southeastern and northeastern 

portions of the study area (Figure 6.11). The maximum total magnetic intensity value 

was 40,751.7 nT and the minimum was 38,795.7 nT . As the following text explains, the 

total magnetic intensity map was not used for interpretational purposes. 

To interpret ground magnetic survey data , it is preferable to use the RTP map 

(Figure 6.12), to overcome the problems associated with the inclination and declination 

of the earth’s magnetic field (inclination is 28.808° and declination is  3.20°). The RTP 

magnetic map shows negative and positive magnetic anomalies as well as sharp gradients 

representing the shallow and / or near surface structural features affecting this. The main 

trends of the contour lines are aligned generally in the NW-SE directions. Negative 
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anomalies reflect relatively deeper basement. Positive magnetic anomalies may reflect a 

shallow basement and / or the basic nature of the composition of the underlying 

basement, but in this case, it could be the magnetic data reflecting presence of nickel 

and/or magnetite. 

Different types of rock usually have a connection with local magnetic anomalies 

or features. In this case, anomalies are created when different magnetic characteristics 

are added to the overall regional magnetic pattern. Areas of magnetism that are either 

lower or higher than the average magnetic field of the location are referred to as magnetic 

anomalies. 

In this case, a magnetic reading that is greater than the average magnetic field 

strength and is connected to more strongly magnetic rocks is referred to as positive 

magnetic anomaly. On the other hand, a reading that is below the average magnetic field 

is referred to as a negative magnetic anomaly. Irregularities in the bedrock surface 

beneath sedimentary cover can create positive anomalies. However, the development of 

a trough on the bedrock surface can also create negative anomalies. 

  In this case, the negative anomalies are represented by the concentration of 

minerals such as nickel and copper that have higher magnetic susceptibility than the 

surrounding rocks, which reflect positive anomalies. Using the results of the drilled and 

analyzed wells in section 3 (Geology of the Study Area), the phenomena of magnetic 

values and their relationships to the strength, signal and form of anomalies can be 

explained. The western part of the surveyed area is characterized by a closed negative 

short - wavelength magnetic anomaly (A1). However, a low magnetic relief reflecting 

relatively deeper basement characterizes the northeastern part (A 2). In the eastern part 
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(A3), there are three small circular negative anomalies that are interpreted as small basic 

intrusions with negative polarization i.e. reversed polarization (Wassif, 1989-1991 & 

Ghazala, 2000). 

 
Figure 6.11 Map of total magnetic intensity (TMI) of Wadi Al Khadra Prospect. 
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In the southern part (A4), there is a high positive short – wavelength magnetic 

anomaly. Figure 6.13 presents tilt derivatives data. The tilt derivatives vary markedly 

with inclination within an amplitude range of ±π/2. For inclinations of 0 and 90°, the 

zero crossing is close to the edges of the model structures. The tilt derivative has its zero 

values close to the edges of the body for RTP and RTE fields. This contribution shows 

that it is relatively simple with existing potential field data to construct images of the 

study area by using the tilt derivative of RTP, which provides an effective alternative to 

the vertical derivative to map the continuity of structures and to enhance the magnetic 

fabric. The advantages of the tilt derivative are its abilities to normalize a magnetic field 

image and to discriminate between signal and noise. Since the zero crossing of the tilt 

derivative is close to the edge of the structure for RTP, then applying a threshold cutoff 

of 0.0 isolates all bodies with positive susceptibility contrast.  

  Figure 6.14 presents the first vertical derivative data. The first vertical 

derivative was calculated from the RTP magnetic data of Wadi Al Khadra, and it is the 

rate of change of the magnetic field in the vertical direction. Computation of the first 

vertical derivative removed long-wavelength.  Features of the magnetic field and 

significantly improved the resolution of closely spaced and superposed anomalies. A 

property of the first vertical derivative maps is the coincidence of the zero-value contour 

with vertical contacts at high magnetic latitudes (Hood, 1965). 

6.2.2.3. Regional and residual maps of the ground magnetic data. A least 

square polynomial fitting was applied to the RTP magnetic data of the study area. 

Upward continuation and high filters were used to deduce deep and shallow structure in 

this area. Figure 6.15, showed that this was a large area with a high magnetic anomaly 
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in the southeastern and northeastern parts and a low magnetic anomaly in the eastern 

parts. 

However, Figures 6.16-6.17 present high- and low-pass magnetic anomaly maps 

derived from different techniques, which contain the largest positive anomalies in the 

Middle Eastern and southern part of the study area. There is another moderately negative 

anomaly in the eastern and some places on the western parts of the study area. 

6.2.2.4. Structural trend analysis. Geological interpretation of the potential 

field data is based mainly on deducing any relationships between the available data and 

the prevailing subsurface structural conditions in the studied area. Structural trend 

analysis techniques have frequently been used in various fields of geology and 

geophysics to define structural problems. Affleck (1963) discussed the possible 

relationship between crust forces and the strength expression of the magnetic anomaly 

trends, as the tectonic history of the rocks is reflected in both the magnitude and the 

pattern of the anomalies. Hall (1964) stated that there is a significant relation between 

the direction, pattern, and intensity of the magnetic anomaly trends. 

This is because the distinctness with which faults appear on the magnetic map 

depends principally on the existence and the strength of magnetic contrast in the relevant 

body of rocks. Hall discussed the significance of the anomaly peaks affecting the 

basement rocks as follows: 

a. a sharp peak with small standard deviation may indicate a trend caused by 

fracturing of uniform medium in response to stress of constant direction; 

b. a broad peak with large standard deviation may be expected to be formed by 

successive renewals of shifting stress direction; and 
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Figure 6.12 Reduce to the pole (RTP) map of the Wadi AL Khadra Prospect. 
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c. a peak with moderate symmetry may be formed by larger and smaller 

stresses in different directions. 

The RTP magnetic anomaly and the residual anomaly maps were interpreted to 

determine the common structural trends affecting the area of study. The azimuth and 

length of each detected lineament on the different maps probably represent the faults 

and/or contacts of varied length and directions (Figures 6.15-6.17). 

 Rose diagrams are used to plot and to analyze the structure system statistically 

(Figure 6.18). The rose diagrams revealed a predominant structural trend, which has 

variable length and intensities. 

 Therefore, from the magnetic point of view, the NW-SE trend represents the 

most dominant tectonic trend affecting the examined location. The rose diagram also 

portrays another minor NE-SW structural trend; however, the trends are less significant 

in this location. All the major trend categories are described briefly in decreasing order, 

as shown in Figure 6.18. 

Because the basement rocks generally have much more magnetic susceptibility 

than the overlying sediments, the potential field anomalies can be used to compute the 

depth to the basement causing these anomalies. 

In all cases, the following criteria must be taken into consideration in magnetic 

data interpretation as a measure of the quality for the characteristics and depth estimators: 

 The profile must be taken normal to the anomaly strike. 

 The length taken from the profile must be readily identifiable for the 

anomaly. 
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 The profile must not extend too much outside the anomaly to avoid 

interference from neighboring anomalies. 

6.2.3. Quantitative Interpretation of the Potential Field Data.  Quantitative 

interpretation of magnetic data includes applying different techniques to delineate 

analytical parameters for the anomaly sources. Computation of the depth of the anomaly 

sources plays an important part in such an interpretation; however, this subject includes 

numerous limitations and assumptions, in the sense that one should not consider the 

process as clear cut. 

6.2.3.1. Spectral analysis methods.  2D radially averaged power spectrum 

techniques were applied to determine the average depths of the magnetic sources in the 

area of study. This gave the interpreter general information about hidden structures with 

geographic extension in the area. In the present work, this technique was applied to the 

RTP magnetic data using Geosoft Oasis Montaj™ V.7. The resulting diagram of the 

radially averaged power spectrum illustrates the estimated average depth levels to the 

deep, intermediate, and/or shallow depth segments in the study area (Figure 6.20). 

The 2D power spectrum diagram of the magnetic source bodies indicates that the 

deeper sources have an average height above sea level of about 2,097 m, the intermediate 

sources are about 2,100 m above sea level, and the shallow or near surface sources are 

about 2,191 m above sea level. Moreover, the average heights in the selected area of 

ground ranged from 2,097 m to 2,191 m. These levels in the area of study were taken 

into consideration during the application of the different types of filter, as mentioned 

previously. 
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Figure 6.13 Tilt derivative (contour at zero level) map of the Wadi Al Khadra Prospect. 
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Figure 6.14 First vertical derivative map of Wadi Al Khadra Prospect. 
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Figure 6.15 Residual  anomaly map from Upward continuation. 
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Figure 6.16 Regional anomaly (low pas map). 
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Figure 6.17 Residual anomaly (High pass map). 
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Figure 6.18 Rose diagram shows analyzed and plotted structure trends systems in the 

study area. 

 

 
Figure 6.19 2D radially averaged power spectrum for magnetic survey. 
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6.2.3.2. Analytical signal derivative.  The analytical signal derivative map 

(Figure 6.20) was calculated from the RTP magnetic data of the Wadi Al Khadra using 

by Geosoft Oasis Montaj™ V.7. The application of the analytical signal derivative is a 

powerful technique to evaluate buried structures causing significant linear magnetic 

anomalies, such fault zone and steps. This method was directly applied to get the depth 

in the two dimensions of the digitized magnetic data for the gradients of x, y, and z 

(dT/dx, dT/dy and dT/dz).  

This map displays several circular and linear maxima closures, which are just 

over the subsurface magnetic source bodies in the study area. Furthermore, this analytical 

signal map can be directly used to yield the corresponding depth value for the expected 

source bodies with respect to the level of observation. Figure 6.21 illustrates the 

basement relief map for the study area using analytical signal results. It may represent 

the best-fit subsurface basement configuration. The terrain elevation of the study area 

ranges between 2,098 and 2,192 m above sea level. 

Obviously, there is a noticeable gradient in heights. The lowest portion is in the 

north and northern west part, whereas the highest portion is in the southern and northern 

east part of the study area. This gradient in elevation may indicate that there is a gradient 

in the rock transition stages, perhaps due to the sedimentation of relatively heavy weight 

metals such as copper. Therefore, there may be a mating or twinning of both minerals in 

the metagabbro rocks that transformed from gabbro. 

6.2.3.3. 3D euler deconvolution method. The Euler deconvolution for the area 

of study using Geosoft Oasis Montaj™ V.7. was calculated by applying a structural 

index equal to zero and a window size of 10x10 km. The Euler plots are in Figure 6.22. 
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They show more or less linear, accurate sigmoid Euler anomalies representing the 

location, trend, and depth of the sources. The Euler anomalies ranged from 5 to 50 m in 

depth. The linear clusters of the Euler plot showed that the extension of the expected 

linear step of distinct magnetic susceptibility has contrasts due to faulting at different 

depths. These linear Euler anomalies have varied lengths and extensions. A close 

inspection of the Euler anomaly cluster indicates that the shallower trends are in the 

central part of the study area extending in the NE and SW directions. On the other hand, 

the deepest Euler anomaly trends predominated in the remaining parts of the study area. 

Furthermore, most of the Euler anomaly trends are in the same position, confirming that 

these normal features have depth extent due rejuvenation along these features that is 

associated with the eastward and northwestward compression stresses affecting the 

western parts of the Arabian Peninsula. 

6.2.3.4. 2D modeling.  2D modeling techniques of interpretation usually involve 

fitting geophysical parameters to potential data. Strictly speaking, potential molding 

could be the inverse solution to a potential problem that cannot be resolved 

unambiguously. Theoretically, two reversed operations are performed sequentially; the 

first is a direct modeling process and the second is an inverse modeling process. 

The direct modeling process transforms the variations reflected by potential field 

data in an area of study, as shown by the residual potential anomaly maps, into a 

convenient subsurface geological setting. However, the inverse modeling process 

matches the calculated potential effects resulting from the inferred assumed potential 

models with the observed effects. With more geological control and better data, we can 

get information about the surface and subsurface magnetic susceptibility variations, 
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established geological contacts, and structural knowledge; the modeling can be 

performed with a higher degree of confidence. 

The 2D magnetic modeling technique was applied along two long extended 

magnetic anomaly profiles passing through the major magnetic anomalies in the area of 

study, running in the north-south and east-west directions. The location of these anomaly 

profiles is in Figure 6.23. Moreover, two magnetic anomaly profiles were also interpreted 

for the selected area of ground magnetic survey. Figures 6.24 and 6.25 show the 

interpreted geologic cross-sections of the individual magnetic anomaly profiles in the 

area. 

A close inspection and correlation between the constructed interpreted cross 

sections indicated that the minimum and maximum depths of the basement surface were 

2,097 and 2,191m, respectively. These results are consistent with the previously 

constructed terrains elevation map (Figure 6.21). Moreover, the major horst and graben 

structures are clearly visible along these cross sections. 

 These structural features are delimited with high angle dipping basement due to 

normal faulting. On the other hand, the subsurface configuration in the area of ground 

magnetic survey was established along the interpreted cross sections. The location of 

these anomaly profiles is shown in Figure 6.23. 

 It can be seen that the interpreted cross-section along the magnetic anomaly 

profile A-A', extends for about 856.5m from the north to the south of the study area. It 

shows the shape and dimension of the northern basin, which show the general eastward 

dipping of the basement surface (Figure 6.24). The geologic cross section B-B' extends 

for about 696m in the west to east direction. It shows structurally controlled rock with a   
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Figure 6.20 Analytical signal map of magnetic survey. 
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 high angle normal faults. Some local structural highs and lows of small dimensions 

represent the horst and graben structures. These sections indicated that the basement 

surface has a maximum depth of about 2,097m in the Middle Western part of the study 

area (6.25). 

6.2.3.5. Magnetic susceptibility.  First, based on alignment against the field, if 

χ < 0, this is known as diamagnetism, while the second category is based on an alignment 

with the magnetic field, χ > 0, known as para-magnetism. The assumed magnetic 

susceptibility of the underlying basement rocks is taken to range from 0.358 to 0.377 in 

CGS units; however, it is assumed to be zero for the nonmagnetic sedimentary cover 

(Figure 6.26). The higher values of magnetic susceptibility are located in the 

southeastern parts of the study area, elongated to the west and in the middle, whereas the 

lowest values are located in the middle. 

6.3. TIME-DOMAIN ELECTROMAGNETIC RESULTS 

A qualitative and quantitate interpretations have been used of TDEM results to 

better understand for the subsurface structures.   

6.3.1. Overview of TDEM Results. A qualitative interpretation of the TEM 

sounding data from Wadi Al Khadra prospect was carried out to illustrate the general 

mineralization picture. It also demarcated the resistivity change behavior within the 

probed formations. This complemented the analysis of the results through the 

construction and description of several conductivity contour maps for several specified 

loop values. The interpreted resistivity data are represented as maps. The processed data 

included response profiles. The profiles included graphs of measured voltage at preferred 
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decay times at all the stations in the decay. Also, the processed data included transient 

decay, which can be displayed on a graph of voltage (in mV) vs. time of decay (in m.s). 

 

 
Figure 6.21 The elevation map of the study area. 
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Figure 6.22 Map of Euler Deconvolution.   
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Figure 6.23 RTP of magnetic anomaly map, showing location of the selected profiles 

for 2D modeling. 
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Figure 6.24 Two-dimension magnetic model along the profile A-A' 

 

 
Figure 6.25 Two-dimension magnetic model along the profile B-B' 
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Figure 6.26 Map of Magnetic Susceptibility in the study area. 

 

Last, the processed data included response contours, which were the result of 

plotting response profile data in map form. Ideally, there are different stages of 

interpretations, just like the types of data systems and data plots. There were two stages 

of interpretation: 

1. The first stage involved designating the possible subsurface target. The 

designation was based on the size, shape, and location of any deviation 

evident on maps and profiles of pertinent parameters. 

2. The second stage was based on the quantitative approach. It was used to 

ascertain the quality of the conductor by focusing on the time constants, which 

 are obtained from decay plots of the field intensity. 
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Different applications are important to various types of display parameters. The 

final step of the interpretation process is quantitative interpretation. In this case, 

quantitative interpretation of TDEM sounding involved determining the thickness and 

actual resistivity of varied formations. The quantitative interpretation of the resistivity 

and the TEM data for the present study included: 

 Automatic interpretation of the electromagnetic sounding curves with Zond 

EM software (2017); 

 Illustration and analysis of the geoelectrical cross-section, which reflects the 

lithological implications of the studied sections; and 

 Preparing isopach maps of the layers and their depths. 

6.3.2. Two Dimension Sounding (Resistivity Profiles).  If the location of each 

sounding is known, it is possible to draw profiles to illustrate the distribution of 

resistivity values in the study area. Due to the large and uneven resistance values, a 

standard logarithm was used to express them. Three measurements were carried out at 

each station with voltages of 0.1, 1 and 10 volts, and the measurements were repeated 

1,000 times to obtain high-quality data representing different depths. The average of 

these measurements was taken and processed to develop a one-dimensional model 

showing the distribution of electrical resistance with depth at each station. Finally, 

connecting these stations to obtain a 2D sector shows the change of electrical resistance 

in the horizontal direction along the profile (Figures 6.27-6.33). 

With observation of electrical values, it is possible to locate low resistivity values, 

which are concentrated in some surface areas and some deep places. The shallow parts 

appear in soundings 575, 650, and 725, with horizontal extent of about 100 m, while the 
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deeper body starts to appear in the other profiles. This body looks like a tube starting 

from the east in the southern sounding (350) at heights from 2,080 to 2,060 m above sea 

level with a width of about 9 m, and it extends whenever it goes north in sounding 375; 

the diameter of this body and its width increase. The range in height is between 2,090 

and 2045 m above sea level, and it reaches a maximum in Profile 400, with height ranges 

from 2,040 to 2,100 m above sea level. It disappears in the next two soundings (575, 

650) to appear again in sounding 750 with a little bend to the west in the last sounding 

(1025). 

The depth of this body starts from 75 m in sounding No. 350 and reaches to 25 

m in sounding No. 725. Both shallow and deep bodies have resistivity values ranging 

from 0.01 to 1.2 log10 Ωm; there may be a mineral concentration of copper and nickel 

here. The high values may refer to the hostel basement rock. 

 

 
Figure 6.27 TDEM sounding No. 350 in the Wadi Al Khadra prospect survey. 
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Figure 6.28 TDEM sounding No. 375 in the Wadi Al Khadra prospect survey. 

 

 
Figure 6.29 TDEM sounding No. 400  in the Wadi Al Khadra prospect survey. 

 

 
Figure 6.30 TDEM sounding No. 575  in the Wadi Al Khadra prospect survey. 
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Figure 6.31 TDEM sounding No. 650  in the Wadi Al Khadra prospect survey. 

 

 
Figure 6.32 TDEM sounding No. 725  in the Wadi Al Khadra prospect survey. 

 

 
Figure 6.33 TDEM sounding No. 1025  in the Wadi Al Khadra prospect survey. 
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6.3.3. Two Dimension of Electrical Resistivities Change with the Depth. To 

illustrate the distribution of electrical resistivity values with the change in the depth, five 

maps were created in different depths. It turns out that there is a body with a noticeably 

low electrical resistivity value. This body clearly appears in the three top maps at 

different heights from 2,040 to 2,115 m above sea level; it then disappears and starts to 

come into view again at 2,140 m above sea level (Figure 6.34). 

 The surface layers in the study area exhibited high to middle resistivity values 

that may be attributable to the nature of the weathered basement rocks in such arid 

regions covered with transported sediments; such high values may reflect mixed gravel 

and sand lithology (Figure 6.34a). 

 There was very low resistivity in two parts: the first was in the surface layers 

with an extended width of about 100 m in the middle to western middle parts. The second 

was in the deepest part: this part appears as a connected body, it appears at a depth of 

about 25 m in the north, it disappears in the middle part, and it reappears in the south. 

Both parts could be accumulations of copper and nickel. 

6.3.4. 3D Dimension.  Five 3D maps were created to facilitate the identification 

of bodies with similar electrical resistivity values (Figure 6.35). Every map shows the 

distribution of electrical resistivity ranges (0-1 Ωm, 1-2 Ωm, 2-3 Ωm, 3-4 Ωm, and 4-5 

Ωm). 

 The maps show a general increase in resistivity towards the west, which may be 

due to an increase in the thickness of the probed formations , since the eastern part is 

localized in a topographic high area. 
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 These maps were prepared by contouring the apparent resistivity values for a 

certain frequency of all TEM stations, which are distributed throughout the study area. 

Construction of these maps assisted the interpretation as follows: 

 It showed the different resistivity layers affected by the artificial 

electromagnetic waves traveling through the ground. 

 It detected the basement layers and the locations of mineral 

concentrations. 

 It illustrated the lateral variations along certain horizontal planes. 

 It explained the probable regions of the mineral accumulations in the 

study area. 

 It gave an exact geological and mineralogical picture of the study area. 

There was a noticeable gradient in the distribution of resistance values in the 

study area, despite the convergence of some values. This convergence shows the 

homogeneity of the layers in terms of origin. 

 The resemblances between anomalies and the drifts of the contour lines for most 

of the TDEM maps gave an image of the electrical homogeneity of the area. Abnormal 

changes in resistivity values are probably due to concentrations of copper and nickel, 

especially since the resistivity values of these anomalies are very small compared to the 

surrounding values. 
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Figure 6.34 2D TDEM sounding maps in different depth level shows the distribution of 

resistivity values. 
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Figure 6.35 3D TDEM sounding maps in different depth shows the distribution of 

resistivity values. 
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7. DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

 

This section focuses on the interpretation of the integrated data set as it pertains 

to the nine specific objectives presented in the introductory section. 

7.1. GEOPHYSICAL METHODS CAN BE USED TO MAP THE 

DISTRIBUTION OF METALLIC MINERALLIZATION 

The areas characterized by negative SP values in Figure 7.1 are interpreted as 

mineralized zones that consist, in part, of nickel, copper, magnetite, and other metallic 

minerals. SP is a shallow tool with a maximum depth of approximately 40 m, and it can 

be used to map areas where oxidation and reduction reactions are occurring. Areas in 

Figure 7.1 characterized by SP values more negative than -30 mV are interpreted as being 

comprised, in part, of higher concentrations of conductive metals. 

 The magnetic method is used to image the subsurface to depths greater than 

those available with the SP tool. The magnetic tool is used to map the presence of nickel, 

magnetite, and other magnetically susceptible minerals. In Figure 7.2, areas 

characterized by positive high magnetic intensity (intensities greater than 16.3 nT) are 

interpreted as higher concentrations of magnetically susceptible minerals.  

The TDEM tool, as applied to the study area, was used to generate a suite of 2D 

resistivity profiles of the subsurface. These 2D profiles were used to generate a suite of 

plan view maps, each of which depicts the resistivity of the subsurface at specific 

elevations. Figure 7.3 presents a map showing the resistivity of the subsurface at a depth 

of 25 m. Areas of low resistivity (values lower than 1.6 Ωm) are interpreted as areas with 
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higher concentrations of metallic mineralization. In Figure 7.4, SP, magnetic, and TDEM 

maps show the distribution of metallic minerals in the study area. 

7.2. GEOPHYSICAL METHODS CAN BE USED TO MAP THE 

ORIENTATION FAULTS 

The magnetic, SP, and TDEM maps can be used to infer the orientations of faults 

(Figure 7.5). These interpreted faults, superposed on the suite of maps presented as 

Figure 7.6, generally trend NW-SE, essentially parallel to the (Rea sea trend). The 

assumption is that mineralization occurred along and in proximity to pre-existing faults. 

Geologic mapping in the area verified the legitimacy of some, but not all, of the fault 

interpretations (Figure 7.7). 

7.3. BOREHOLE AND SURFICIAL GEOLOGICAL DATA TO VERIFY THE 

REASONABLENSS  OF THE SP, MAGNETIC, AND TDEM 

INTERPRETATIONS SIGNATURES 

The mineralized zones of the Wadi Al Khadra prospect have been mapped using 

geological, geochemical and geophysical methods. Based on the sulfide content and 

mineral associations, the mineralized zone is a volcanogenic massive sulfide type, which 

has been highly altered and metamorphosed (SGS, 2013). 

The observations seem to indicate that mineralization is related to local structural 

zones, that it originated in mafic volcanic rocks, and that mineralization occurs as 

discreet disseminations along bedding and/or foliation. Oxidized outcrops are found 

along these faults, but they are probably directly associated with mafic volcanic rocks 

(SGS, 2013).  
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According to the geochemical analysis of surficial samples data of Ni and Cu, 

there are three prominent concentrations of mineralization in the study area (Figure 7.8). 

One zone is in the southern part of the area; the other two locations are in the central part 

of the study area. It is worth noting that other metallic minerals (magnetite, pyrite, 

pyrrhotite, and chalcopyrite) are present in the study area; however, their concentrations 

do not rise to industrial or extraction significance. Figure 7.9 shows the interpreted 

distribution of nickel and copper concentrations anomalies in the study area based on an 

integrated assessment of the SP, Magnetic, and TDEM.  

With respect to SP results, the high-amplitude negative anomalies are almost 

certainly generated by the oxidization/reduction of metallic mineralization in the shallow 

subsurface, which means the SP anomalies in the study area are generated by nickel, 

copper, and associated metallic minerals, including magnetite. The depths to which the 

measurement reached varied along each SP line and from SP line to SP line. Line SP 425 

(Figure 7.10) is in the southern part of the study area. Elevations along the profile vary 

between 2,120 and 2,170 m above sea level. The SP values along this line range from 50 

mV to -120 mV. Based on the assay results and the drill hole data, oxidation was observed 

at depths greater than 8.60 m. Relatively high concentrations of copper and nickel were 

present in drill hole cores. In addition, magnetite, hematite, small amounts of limonite, 

and traces of disseminated pyrite, pyrrhotite, and chalcopyrite were identified. 

The magnetic anomalies are generated by magnetically susceptible minerals in 

the subsurface (e.g., magnetite, nickel, iron). The high-amplitude positive magnetic 

anomalies identified in the study area were interpreted as being generated by nickel and 

associated magnetite.  Magnetic Line 425 (Figure 7.11) is located  along the same of the   



111 

 

 

 

 

 

F
ig

u
re

 7
.1

 S
P

 m
ap

 s
h
o
w

in
g
 t

h
e 

d
is

tr
ib

u
ti

o
n
 o

f 
n
eg

at
iv

e 
S

P
 a

n
o
m

al
ie

s 
o
f 

th
e 

st
u
d
y

 a
re

a.
 



112 

 

 

F
ig

u
re

 7
.2

 R
T

P
 m

ap
 s

h
o
w

in
g
 t

h
e 

d
is

tr
ib

u
ti

o
n
 o

f 
p
o
si

ti
v
e 

m
ag

n
et

ic
 a

n
o
m

al
ie

s 
o
f 

th
e 

st
u
d
y
 a

re
a.

 



113 

 

 

 

Figure 7.3 TDEM map shows a distribution at depth  between 25m – 75m. 
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Figure 7.7 The main fault trends interpreted from geophysical data.
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traverse as SP Line 425. The magnetic data values along this line range from -225 nT to 

1,152 nT. The depth of sources of the anomalies can be estimated for this line using the 

Euler deconvolution method, and they range from approximately 5-30 m. There are also 

relatively high concentrations of copper and nickel, accompanied by high levels of iron 

to a depth of 35.40 m from the borehole data with a total depth of 250 m. 

The TDEM results illustrate the distribution of resistivity values in the study area. 

TDEM Profile 400 (Figure 7.12) is located within 25 m of SP Line 425 and MAG Line 

425. The elevation of this profile is between 2,040 and 2,160 m above sea level. 

Resistivity values along TDEM Profile 400 range from 0.01-1.2 Ωm. Based on the assay 

results and the drill hole information, it is concluded that mineralization diminishes to < 

15% of massive sulfides, disseminated pyrite, and chalcopyrite. Also, there are excellent 

observed concentrations of copper and nickel at depths of 54.15-60 m. The lithology 

from Sounding 400 can be divided into three main layers based on the change in 

electrical resistivity values and borehole information. The first and top layer consists of 

ultramafic lava flows with elevation ranges from 2,140 to 2,170 m above sea level, and 

it has a range of electrical resistivity values between 1.21 log10 Ωm and 2.01 log10  Ωm. 

The second layer represents ultramafic rocks with elevation ranges from 2,130 to 2,160 

m above sea level, and it has a range of electrical resistivity values between 2.21 log10 

Ωm and 4.01 log10 Ωm. The third layer has elevation ranges from 2,040 to 2,090 m above 

sea level, and it has high resistivity values between above 3.0 log10 Ωm and in the middle 

there is a very low resistivities layer with 0.01 to 1.01 log10 Ωm, which represents a 

massive sulfide interval with mafic rocks. Each of the geophysical methods employed 

contributed significantly to the generation of maps depicting the distribution of 
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mineralization in the study area and the location and orientation of shear zones. They 

clarified in one way or another the possibility of identifying rock structures. 

7.4. THE DIFFERENCESS  AND SIMILARITIES  BETWEEN THE 

INTERPRETATIONS OF THE OF THE SP, MAGNETIC AND TDEM 

DATA 

Figure 7.4 presents the interpreted distributions of metallic minerals in the study 

area. The SP map shows the effects of minerals with low potential values 

(oxidation/reduction) at depths range in 10 - 40 m. The magnetic map shows high 

anomaly values in these areas, which are associated with nickel and magnetite at depths 

ranging from 5-50 m. The TDEM map shows very low resistive values in the same areas 

associated with massive sulfide minerals (Ni, Cu) with average shallow depths of 25 m 

while a deeper depth represents of 75m. 

7.5. OPTIMAL ACQUISITION PARAMETERS BASED ON THE 

ASSESSMENT OF  THE  ACQUIRED DATA 

In this study, a grid was designed to determine and map the structures and 

mineralization. The grid was controlled by the accessibility of the location which is 

surrounded by mountains. A grid of 80 x 40 m boxes was laid out with a spacing interval 

of 25 m. This interval was determined based on search for the general geological 

structures and the appearance of copper sulfide veins on the surface to acquire accurate, 

detailed information and to reduce the cost. The best coverage of data acquisition aids in 

mapping the structures and the changes in lithology well. 

To reduce field expenses and to get the best high-resolution image of the 

subsurface, the magnetic survey was carried out first to provide information for the SP 
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and TDEM. It was easy to cover the area well to get the necessary information, but in 

future, it would be useful to extend the geophysical survey to the southern part of the 

study area. 

 The recommendation for any future geophysical explorations survey is to start 

the survey with the magnetic tool, which is a quick use tool that can operate in a 

continuous mode. In the continuous mode, more readings can be acquired within a short 

time, covering more areas. 

7.6. OPTIMAL PROCESSING PARAMETERS BASED ON THE 

ASSESSMENT OF  THE  ACQUIRED DATA 

Powerful software was used to process the geophysical data effectively. Geosoft 

Oasis Montaj™ software was used in the SP mapping, and some correction and filtrations 

were applied. In the magnetic survey, the data were processed with Geosoft Oasis 

Montaj™ and Golden Software’s Surfer, while the TDEM data were processed with 

Zond EM 2D software. 

The magnetic data processing included the use of multiple filters to enhance the 

final maps. Many filters were applied to the RTP map, which worked very well. For 

example, the Euler deconvolution filter worked well to map the depths of the anomalies. 

The 2D model showed the faults and layers, whereas the downward filter did not work 

very well. There were also many ways to process the TDEM data, and they were largely 

dependent upon the instrument system used to acquire the original data. Most TEM 

systems record the transient voltage at several discrete intervals during the voltage decay, 

after the applied current is switched off. Each time the current is applied and then stopped 
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Figure 7.9 Map showing the distribution of Nickel/Copper deposits in the study area 

from surficial samples and using integrated geophysical data from SP, Mag, and 

TDEM methods. 
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Figure 7.12 TDEM Sounding 400 showing the lithological. 

 

measurements are taken; when the current is applied again and switched off, and a repeat 

set of measurements is taken. This process may be repeated many tens of times at a given 

location, with all the data are being logged automatically. Consequently, these data can 

be processed to improve the signal-to-noise ratio. After processing the geophysical data 

using different tools, we noticed that many Geosoft filters clarified the anomalies well 

for magnetic data, except the downward filter, which did not give good results. This may 

be from the result of the shallow targets. 

7.7. OPTIMAL INTERPRETATION PARAMETERS BASED ON THE 

ASSESSMENT OF THE ACQUIRED DATA 

Each geophysical method measures one of the physical properties of the relevant 

materials. For instance, in magnetic data, total magnetic intensities are measured in nT 

to differentiate the different types of rocks. However, a high total magnetic intensity may 

indicate igneous rocks. In contrast, a low anomaly may indicate sedimentary rocks. The 
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magnetic data provide a clear image of the differences in lithology and mapping 

structures. The SP measurements indicate areas with high and low voltages, which may 

indicate sources of minerals. TDEM data interpretation may utilize the differences in 

resistivity values of the subsurface. A high resistivity layer may indicate the existence of 

igneous rocks, and lower values may indicate sedimentary rocks. From both magnetic 

and TDEM data, different types of rocks and structures can be mapped. To interpret the 

data accurately, ground constraints should be considered in any interpretation. In 

addition, interpretation relies on experience. 

7.8. STRENGTHS AND LIMITATIONS OF THE GEOPHYSICAL METHODS 

The SP method measures the natural potential difference between two locations 

on the surface of the earth, and it is widely used in mineral exploration, groundwater, 

and geothermal investigations. It is usually relatively easy to acquire SP data in the field. 

A one- or two-person crew is generally sufficient to complete the survey. SP is an 

excellent, non-intrusive, fast, and relatively inexpensive reconnaissance tool, and it 

requires a voltmeter and non-polarizing electrodes. In spite of this, this method has some 

limitations. Data can be interpreted only qualitatively. Additionally, the tool images the 

subsurface to a depth less than 40 m. Also, SP anomalies can result from factors other 

than the oxidization/reduction of minerals. For example, water seepage can cause SP 

anomalies. Borehole data indicate that the study area anomalies were generated by 

oxidation/reduction. Water was not encountered in the core holes. 

Magnetic methods measure spatial variations in the magnetic field of the earth, 

and they can be used to estimate relative variations in the concentration of magnetically 
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susceptibility minerals, to determine the location and orientation of subsurface 

geological structures, and for general geological mapping. It is relatively simple, 

inexpensive, and efficient to record in the field, where the data can be acquired rapidly 

by a one-person crew. Magnetic surveys can be land-based, underwater, or airborne, 

where magnetometers respond to the presence and concentration of magnetically 

susceptible material and provide a signal when an anomaly is detected. However, there 

are certain limitations of the magnetic method. Magnetometers only respond to metals 

that are magnetically susceptible. Anomalies are generally very complex, and they may 

be extremely difficult to interpret quantitatively. The interpretation of data is usually 

qualitative. Magnetic methods cannot detect copper, but they can find magnetite. 

TDEM soundings are measures of subsurface electrical conductivity, and they 

can identify subsurface mineralization. There are multiple tools (shallow to deep). They 

are cost-effective means of establishing regional control, and they do not need to be 

coupled to the earth, so data can be acquired rapidly and inexpensively. Also, the 

interpretation of the data can be remarkably accurate, especially if constrained by drill 

hole data or other subsurface controls. 

TDEM is useful for locating and mapping subsurface metals, as it responds to the 

presence of electrically conductive materials such as metallic mineralization and 

geological mapping. It generally provides more precise depth estimates if the target depth 

is greater than about 50 m, and it can obtain the vertical distribution of the resistivity of 

the ground. It is an efficient method to investigate the vertical distribution of ground 

resistivity. Based on borehole data that show the existence of minerals at different depths. 

No well log data are available to confirm fully whether there were any effects of water. 
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However, there are many limitations to this method. It can be affected by cultural 

features, e.g., metal fences, buried pipelines, or electric power lines, as the metal objects 

in the vicinity of the sounding site will create electromagnetic fields that the receiver coil 

will detect. This will distort the data from the ground, and it may produce data that are 

not interpretable. 

7.9. CONCLUSIONS 

In this dissertation, the aim was to aid government organizations, researchers, and 

private companies that are working in mining industries in best decision making. It has: 

1. Demonstrated that the geophysical methods can be used to map the 

distribution of metallic mineralization. 

2. Demonstrated that the geophysical methods can be used to map 

structures. 

3. Used borehole and surficial geological data to verify the reasonableness 

of the SP, Magnetic, and TDEM interpretations signatures. 

4. Demonstrated and explained differences and similarities between the 

interpretations of the SP, MAG and TDEM data. 

5. Designed optimal acquisition parameters based on the assessment of the 

acquired data. 

6. Designed optimal processing parameters based on the assessment of the 

acquired data. 

7. Designed optimal interpretation processes based on the assessment of the 

acquired data. 
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8. Summarized the strengths and limitations of the geophysical methods. 

The primary objectives were realized on this research. The interpretation of this 

study follows: 

The study area has a rocky composition of metagabbro, which can contain many 

metal clusters of copper and nickel elements. To confirm these results, a geophysical 

survey was carried out. The best ways to search for metals include SP, Magnetic, and 

TDEM, because all these methods depend on the extent of the measured anomalies, 

which are highly responsive to the mineral elements in the rocks of the region. The 

mineralization zones in the study area are characterized by low resistivity values in 

TDEM, high negative voltages in SP, and high-amplitude positive anomaly values in 

Magnetic. 

The SP method showed clear, relatively high negative values in three locations, 

which indicated the zones where subsurface metals are present. 

The magnetic method (by RTP) detected high positive magnetic anomalies in two 

locations, which indicated the zones where there are subsurface metals. 

TDEM measurement showed that that there are three places with mineral 

accumulations. These places correspond to specific places identified by the magnetic 

method, and the structures derived from them are clear in the 2D profiles. It is possible 

that there will be a difference in the extent of mineralization between shallow and deep 

ground. However, with the use of the SP method, it is possible to offset and reinforce the 

possibility of detecting minerals in places identified by the previous magnetic and TDEM 

methods. The results of the chemical analysis of the well samples were satisfactory, and 

there was an acceptable match to the results from the geophysical methods. It is worth 
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noting that the structures found by the magnetic method and those from the analyses of 

rock samples helped greatly in developing a good visualization of the places likely to 

hold mineral accumulations. 

This study has determined and mapped structures based on the geophysical results 

associated with the geological map. From the magnetic method, according to the RTP 

map of the study area, the direction of these faults trends toward the NW-SE. The tilt 

derivatives have zero values close to the edges of the body for RTP. Also, upward 

continuation has deduced deep and shallow structure. In addition, the 2D magnetic 

modeling technique indicated the major horst and graben structures. 

The depth of the source bodies in the study area, found by the Euler anomalies, 

was about 94m. A close inspection of the Euler anomaly cluster indicates that the 

shallower trends are in the central part of the study area extending in a SW direction, 

while the deepest trends are in the central part of the study area extending in the NE 

direction. 

The average depth levels of the magnetic sources obtained from a 2D radially 

average power spectrum indicates that the deeper sources have an average elevation of 

about 2,097 m above sea level, the intermediate sources are about 2,100 m above sea 

level, and the shallow or near surface sources is are about 2,191 m above sea level. 

Moreover, the average elevation in the selected area of ground magnetic survey ranged 

from 2,097 m to 2,191 m above sea level. 

From the TDEM soundings, the northerly anomaly source is at a shallow depth 

of 25m, while the stronger southern anomaly source present at deep depth of around 75m. 
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From SP profiles, the depth of anomaly sources is around 10 – 40m. From magnetic, the 

depth of the source bodies in the study area from 5 – 50m. 

The interdependence and complementarity between geological and geophysical 

methods indicates the ideal way for mineral exploration. This integration increases with 

the knowledge of structures and the chemical analyses of drilled core samples. It is very 

important to point out that the choice of geophysical methods to measure similar physical 

properties strengthens and supports the conclusions that relate to the most important 

point, which is the determination of places, depths, and thicknesses of the target, 

especially when this target has economic significance, such as mineral exploration and 

exploitation. 

Integrated results from all research methods show that there are three promising 

places containing clusters of copper and nickel. These specific areas may be confined 

within the boundaries of the study area, but it is advisable to increase the area of the study 

area to determine the extent of these clusters and the economic benefit of the presence of 

these metals. 

Since magnetic sensitivity is a proportional constant without dimensions that 

indicates the degree of magnetization of the material in response to an applied magnetic 

field, and since magnetism is the ratio between the magnetic moment and the density of 

magnetic flux (International Union of Pure and Applied Chemistry, 1997), the density 

and susceptibility volume distinguish the mineral elements from each other. There is a 

strong convergence between the natural density of the two metals (density of copper = 

8,920 kg/m3 and density of Nickel = 8,900 kg/m3), while they differ in their volume 

susceptibility (copper = 7.66×10−7 CGS and Nickel = 48 CGS).  This could explain why 
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the magnetic anomalies changed and how affected they are by the presence of copper 

rather than nickel in the region. Therefore, the presence of nickel mixed in most places 

with copper caused a noticeable change in places with anomalous magnetic maps from 

SP and TDEM. The magnetic anomalies are a function of the contributions of the 

mineralization as a whole, so one must not lose sight of the presence of other minerals in 

the region, such as iron oxides, gold, silver, and zinc. Despite their small concentrations, 

they somehow affect the signals of the measured magnetic anomalies, and they can result 

in a deformation or a change in the shape of the anomalies. 

7.10. RECOMMENDATIONS 

 For future work, it would be useful to extend the geophysical survey to the 

southern part of the study area.  

 For time-domain electromagnetic data, it is perfect to acquire more than two 

profiles in the middle of the study area, to clarify the nature of the low resistive 

layer.  

 Would drill another 2 exploratory core holes could be in middle and northern part 

of the study area to additionally verify and constrain the data interpretation.  
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area. 

Surficial 

sample No. 

GPS READINGS UTM Coordinates Cu Ni 

 

LAT. 

 

LONG. 

Altitude 

(m) 

 

Easting 

 

Northing 

1.00 

ppm 

1.00 

ppm 

KAD-01 20.157 41.454 2137 756381.7 2230805.1 341 452 

KAD-02 20.157 41.454 2133 756372.4 2230801.6 5,017 935 

KAD-03 20.157 41.453 2130 756342.2 2230787.9 204 513 

KAD-04 20.157 41.453 2126 756309 2230771.9 19,672 4,581 

KAD-05 20.157 41.453 2125 756314.2 2230776.4 968 995 

KAD-06 20.157 41.453 2145 756265.5 2230744.6 1,020 1,179 

KAD-07 20.157 41.453 2150 756257.2 2230736.8 1,370 1,173 

KAD-08 20.157 41.452 2154 756251.2 2230722.3 6,654 4,128 

KAD-09 20.157 41.452 2157 756230.2 2230724.2 8,306 2,224 

KAD-10 20.157 41.452 2157 756230.2 2230724.2 23,611 2,850 

KAD-11 20.157 41.452 2158 756224 2230721.9 11,335 6,521 

KAD-12 20.157 41.452 2158 756224 2230721.9 461 271 

KAD-13 20.156 41.453 2153 756284.2 2230680.7 5,584 7,319 

KAD-14 20.156 41.453 2164 756256.8 2230693.6 3,922 434 

KAD-15 20.156 41.452 2152 756245 2230715.5 17,671 3,051 

KAD-16 20.157 41.452 2152 756218.7 2230726.2 48,227 1,388 

KAD-17 20.157 41.452 2152 756219.7 2230726.2 16,982 1,297 

KAD-18 20.156 41.454 2135 756382.7 2230708.8 149 483 

KAD-19 20.156 41.453 2126 756355 2230705 979 358 

KAD-20 20.156 41.453 2147 756327.8 2230701 2,166 1,579 

KAD-21 20.156 41.453 2148 756321.9 2230700.9 1,418 1,328 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-22 20.156 41.453 2149 756310.2 2230703.9 4,556 3,029 

KAD-23 20.156 41.453 2150 756301.5 2230706.7 2,207 1,060 

KAD-24 20.156 41.453 2162 756284 2230706.5 2,119 1,357 

KAD-25 20.156 41.453 2166 756278.3 2230706.4 1,870 1,036 

KAD-26 20.156 41.453 2161 756257.9 2230703.1 1,708 1,664 

KAD-27 20.156 41.452 2171 756240.7 2230696.6 2,353 1,709 

KAD-28 20.156 41.452 2167 756234.8 2230699.7 116 99 

KAD-29 20.156 41.452 2171 756217.2 2230702.5 100 49 

KAD-30 20.16 41.453 2130 756293 2231082 2,037 1,005 

KAD-31 20.16 41.453 2136 756272.7 2231084.8 238 615 

KAD-32 20.16 41.453 2140 756264 2231078.5 188 615 

KAD-33 20.16 41.453 2140 756261.1 2231081.5 7,668 1,299 

KAD-34 20.16 41.453 2140 756258.2 2231081.5 1,509 337 

KAD-35 20.16 41.453 2138 756255.3 2231081.4 1,296 808 

KAD-36 20.16 41.453 2142 756255.3 2231081.4 12,355 3,866 

KAD-37 20.16 41.452 2141 756243.6 2231084.4 2,128 1,139 

KAD-38 20.16 41.452 2141 756243.6 2231084.4 9,563 1,622 

KAD-39 20.16 41.452 2138 756240.7 2231081.2 6,532 2,841 

KAD-40 20.16 41.452 2131 756240.7 2231081.2 306 187 

KAD-41 20.157 41.454 2125 756381.8 2230733.1 135 420 

KAD-42 20.157 41.454 2121 756373.4 2230732.9 143 422 

KAD-43 20.157 41.453 2126 756349.3 2230732.6 639 1,115 

KAD-44 20.157 41.453 2130 756343.1 2230732.5 458 977 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-45 20.157 41.453 2124 756341 2230732.5 680 1,077 

KAD-46 20.157 41.453 2125 756338.9 2230732.4 917 917 

KAD-47 20.157 41.453 2128 756329.5 2230732.3 995 1,066 

KAD-48 20.157 41.453 2132 756314.8 2230732.1 1,161 1,010 

KAD-49 20.157 41.453 2134 756310.6 2230732 717 814 

KAD-50 20.157 41.453 2136 756296 2230731.8 4,731 1,364 

KAD-51 20.157 41.453 2140 756279.3 2230731.5 2,292 1,051 

KAD-52 20.157 41.453 2145 756258.4 2230731.2 853 1,492 

KAD-53 20.157 41.452 2147 756255.2 2230731.2 3,812 763 

KAD-54 20.157 41.452 2154 756231.2 2230730.8 1,802 940 

KAD-55 20.157 41.452 2156 756221.7 2230730.7 7,538 4,388 

KAD-56 20.157 41.452 2157 756207.1 2230730.5 2,726 2,744 

KAD-57 20.157 41.452 2156 756218.7 2230726.2 10,982 6,888 

KAD-58 20.157 41.452 2156 756218.7 2230726.2 16,774 2,131 

KAD-59 20.157 41.452 2156 756218.7 2230726.2 8,199 4,785 

KAD-60 20.157 41.452 2156 756218.7 2230726.2 396 380 

KAD-61 20.157 41.454 2126 756379.3 2230760.7 251 545 

KAD-62 20.157 41.453 2119 756354.2 2230760.3 173 516 

KAD-63 20.157 41.453 2124 756315.5 2230759.8 1,364 1,100 

KAD-64 20.157 41.453 2128 756307.1 2230759.6 934 1,081 

KAD-65 20.157 41.453 2128 756302.9 2230759.6 601 925 

KAD-66 20.157 41.453 2130 756291.4 2230759.4 550 936 

KAD-67 20.157 41.453 2135 756279.9 2230759.2 553 1,094 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-68 20.157 41.453 2138 756269.4 2230759.1 638 1,311 

KAD-69 20.157 41.452 2141 756234.9 2230758.6 6,170 634 

KAD-70 20.157 41.452 2144 756225.5 2230758.4 1,077 620 

KAD-71 20.157 41.452 2144 756223.4 2230758.4 362 137 

KAD-72 20.157 41.452 2145 756219.2 2230758.4 1,001 622 

KAD-73 20.157 41.452 2145 756218.2 2230758.3 345 361 

KAD-74 20.157 41.454 2136 756379 2230780.6 618 719 

KAD-75 20.157 41.453 2131 756359.1 2230780.3 138 582 

KAD-76 20.157 41.453 2129 756347.6 2230780.2 117 539 

KAD-77 20.157 41.453 2128 756345.5 2230780.1 748 807 

KAD-78 20.157 41.453 2127 756327.7 2230779.9 209 482 

KAD-79 20.157 41.453 2119 756312 2230779.7 1,124 1,874 

KAD-80 20.157 41.453 2123 756298.4 2230779.5 1,003 1,598 

KAD-81 20.157 41.453 2125 756291.1 2230779.3 16,540 3,891 

KAD-82 20.157 41.453 2129 756288 2230779.3 515 1,169 

KAD-83 20.157 41.453 2130 756271.2 2230779.1 547 1,282 

KAD-84 20.157 41.452 2132 756247.2 2230778.7 425 2,016 

KAD-85 20.157 41.452 2136 756237.8 2230778.6 419 938 

KAD-86 20.157 41.452 2137 756231.5 2230778.5 174 283 

KAD-87 20.157 41.452 2138 756227.3 2230778.4 205 405 

KAD-88 20.157 41.452 2140 756222.1 2230778.3 610 222 

KAD-89 20.157 41.452 2143 756208.5 2230778.1 226 136 

KAD-90 20.157 41.453 2125 756321 2230808.6 1,900 325 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-91 20.157 41.453 2121 756312.7 2230806.3 320 70 

KAD-92 20.157 41.453 2119 756307.4 2230808.4 1,300 1,986 

KAD-93 20.157 41.453 2113 756291.7 2230809.3 490 1,095 

KAD-94 20.157 41.453 2114 756281.3 2230806.9 920 1,551 

KAD-95 20.157 41.453 2126 756265.6 2230806.7 540 1,260 

KAD-96 20.157 41.453 2129 756257.2 2230806.5 890 1,207 

KAD-97 20.157 41.452 2137 756231.1 2230806.2 100 685 

KAD-98 20.157 41.452 2145 756220.6 2230807.1 151 200 

KAD-99 20.158 41.454 2141 756407.4 2230835.3 310 644 

KAD-100 20.157 41.454 2134 756380.3 2230830.5 680 612 

KAD-101 20.158 41.454 2133 756363.5 2230834.7 300 80 

KAD-102 20.158 41.453 2132 756346.8 2230832.2 280 227 

KAD-103 20.158 41.453 2134 756334.2 2230834.3 190 120 

KAD-104 20.157 41.453 2126 756311.3 2230827.3 230 126 

KAD-105 20.158 41.453 2129 756297.6 2230834.8 100 24 

KAD-106 20.158 41.453 2118 756285.1 2230830.2 195 96 

KAD-107 20.157 41.453 2121 756274.7 2230828.9 790 1,053 

KAD-108 20.157 41.452 2128 756247.6 2230824.1 760 1,453 

KAD-109 20.158 41.452 2138 756218.1 2230833.7 270 71 

KAD-110 20.158 41.452 2140 756206.7 2230831.3 140 278 

KAD-111 20.158 41.452 2143 756181.6 2230829.8 120 39 

KAD-112 20.158 41.452 2145 756179.5 2230828.7 10 29 

KAD-113 20.158 41.451 2151 756115.2 2230860.9 10 6 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-114 20.158 41.451 2150 756123.6 2230861.1 10 12 

KAD-115 20.158 41.452 2145 756157.1 2230856 90 35 

KAD-116 20.158 41.452 2131 756203.2 2230852.3 90 44 

KAD-117 20.158 41.452 2130 756217.9 2230851.4 80 157 

KAD-118 20.158 41.452 2130 756217.9 2230851.4 420 558 

KAD-119 20.158 41.452 2125 756232.5 2230853.8 720 880 

KAD-120 20.158 41.452 2121 756251.3 2230854.1 80 19 

KAD-121 20.158 41.452 2122 756253.4 2230855.2 60 28 

KAD-122 20.158 41.453 2123 756269 2230858.8 190 87 

KAD-123 20.158 41.453 2130 756309.8 2230858.3 100 72 

KAD-124 20.158 41.453 2133 756325.5 2230857.4 150 33 

KAD-125 20.158 41.453 2137 756348.4 2230864.4 5,000 3,587 

KAD-126 20.158 41.454 2138 756378.5 2230882.5 580 586 

KAD-127 20.158 41.453 2136 756345.1 2230878.7 3,800 3,880 

KAD-128 20.158 41.453 2135 756330.4 2230880.7 4,600 2,334 

KAD-129 20.158 41.453 2137 756309.4 2230883.7 40 28 

KAD-130 20.158 41.453 2130 756282.3 2230880 120 83 

KAD-131 20.158 41.453 2126 756270.8 2230879.8 50 37 

KAD-132 20.158 41.453 2121 756255.1 2230879.6 70 37 

KAD-133 20.158 41.452 2119 756237.2 2230886 1,500 163 

KAD-134 20.158 41.452 2117 756225.7 2230885.8 200 60 

KAD-135 20.158 41.452 2121 756234.1 2230882.6 500 311 

KAD-136 20.158 41.452 2123 756242.5 2230881.6 46 30 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-137 20.158 41.452 2123 756244.7 2230879.5 140 99 

KAD-138 20.158 41.453 2125 756256.1 2230881.8 225 42 

KAD-139 20.158 41.453 2131 756265.7 2230872 54 60 

KAD-140 20.158 41.453 2132 756270.8 2230882.1 64 25 

KAD-141 20.158 41.453 2134 756282.3 2230880 312 54 

KAD-142 20.158 41.453 2135 756307.4 2230880.4 800 542 

KAD-143 20.158 41.453 2141 756331.5 2230880.7 1,600 871 

KAD-144 20.158 41.453 2140 756350.3 2230881 2,300 1,280 

KAD-145 20.158 41.454 2141 756381.7 2230881.5 325 605 

KAD-146 20.158 41.454 2151 756432.6 2230904.4 95 529 

KAD-147 20.158 41.454 2144 756407.4 2230906.2 232 715 

KAD-148 20.158 41.454 2139 756383.3 2230909.2 298 708 

KAD-149 20.158 41.454 2133 756360.3 2230908.9 1,800 945 

KAD-150 20.158 41.453 2127 756349.9 2230906.5 2,200 651 

KAD-151 20.158 41.453 2136 756323.8 2230906.1 1,100 425 

KAD-152 20.158 41.453 2130 756310.1 2230910.3 470 473 

KAD-153 20.158 41.453 2124 756281 2230894.4 19 6 

KAD-154 20.158 41.452 2116 756210.9 2230901.1 375 186 

KAD-155 20.158 41.452 2116 756208.8 2230898.9 84 8 

KAD-156 20.158 41.452 2120 756193 2230904.2 202 17 

KAD-157 20.158 41.452 2132 756166.9 2230906 46 43 

KAD-158 20.158 41.451 2134 756144.9 2230902.4 70 25 

KAD-159 20.158 41.451 2138 756139.8 2230900.1 171 22 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-160 20.158 41.451 2142 756118.7 2230905.3 117 24 

KAD-161 20.158 41.451 2146 756111.4 2230905.2 93 20 

KAD-162 20.158 41.451 2146 756067.5 2230902.3 27 23 

KAD-163 20.158 41.451 2146 756048.7 2230904.3 110 15 

KAD-164 20.158 41.45 2142 756041.2 2230913 85 10 

KAD-165 20.159 41.452 2115 756217 2230981 610 226 

KAD-166 20.159 41.452 2111 756191.1 2230964 215 51 

KAD-167 20.159 41.452 2130 756150.3 2230964.5 198 41 

KAD-168 20.159 41.454 2162 756432.6 2230970.8 225 70 

KAD-169 20.159 41.451 2108 756110.6 2230963.9 19 11 

KAD-170 20.159 41.451 2111 756103.3 2230962.7 20 7 

KAD-171 20.159 41.451 2114 756068.7 2230962.1 2,500 1,340 

KAD-172 20.159 41.451 2117 756061.4 2230962 1,900 1,950 

KAD-173 20.159 41.45 2124 756039.5 2230961.7 128 43 

KAD-174 20.159 41.45 2128 756014.3 2230964.7 95 28 

KAD-175 20.159 41.453 2119 756274.4 2230988.4 203 645 

KAD-176 20.159 41.452 2120 756209.6 2230989.7 1,400 742 

KAD-177 20.159 41.452 2118 756201.1 2230997.3 422 224 

KAD-178 20.159 41.452 2117 756193.9 2230989.5 520 206 

KAD-179 20.159 41.451 2107 756092.4 2230990.2 39 15 

KAD-180 20.159 41.451 2108 756052.6 2230990.7 2,860 1,660 

KAD-181 20.159 41.45 2117 756019.2 2230991.3 111 30 

KAD-182 20.159 41.45 2104 755961.6 2230990.5 77 23 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-183 20.159 41.454 2158 756434.6 2230979.7 265 646 

KAD-184 20.159 41.454 2157 756426.2 2230981.8 184 676 

KAD-185 20.159 41.454 2153 756408.4 2230981.6 173 631 

KAD-186 20.159 41.454 2145 756374.9 2230983.3 122 588 

KAD-187 20.159 41.453 2146 756354 2230980.8 150 556 

KAD-188 20.159 41.453 2146 756337.3 2230982.7 600 833 

KAD-189 20.159 41.453 2145 756305.9 2230982.3 1,400 1,362 

KAD-190 20.159 41.453 2144 756296.5 2230983.2 3,200 1,080 

KAD-191 20.159 41.453 2141 756293.4 2230977.7 334 201 

KAD-192 20.159 41.453 2134 756293.5 2230972.1 1,100 809 

KAD-193 20.159 41.453 2133 756282.8 2230987.5 1,100 798 

KAD-194 20.159 41.453 2132 756279.8 2230977.5 185 45 

KAD-195 20.159 41.452 2124 756251.5 2230981.5 380 245 

KAD-196 20.159 41.452 2120 756243.2 2230979.1 116 54 

KAD-197 20.159 41.452 2116 756191.9 2230981.7 230 186 

KAD-198 20.159 41.452 2120 756149 2230983.3 74 13 

KAD-199 20.159 41.451 2122 756139.6 2230983.1 48 8 

KAD-200 20.159 41.451 2124 756138.6 2230980.9 96 4 

KAD-201 20.159 41.451 2121 756128.2 2230975.2 244 45 

KAD-202 20.159 41.451 2124 756120.8 2230979.5 2,100 1,206 

KAD-203 20.159 41.451 2131 756099.9 2230974.8 2,600 1,612 

KAD-204 20.159 41.451 2128 756084.2 2230980.1 500 73 

KAD-205 20.159 41.451 2129 756052.8 2230981.9 68 24 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-206 20.159 41.45 2132 756033.9 2230981.6 124 17 

KAD-207 20.159 41.454 2148 756432.1 2231004.1 129 30 

KAD-208 20.159 41.454 2149 756408.1 2231005.9 295 721 

KAD-209 20.159 41.454 2151 756402.9 2231003.6 205 554 

KAD-210 20.159 41.454 2148 756387.1 2231005.6 97 515 

KAD-211 20.159 41.454 2148 756373.5 2231006.5 460 684 

KAD-212 20.159 41.454 2149 756368.3 2231008.7 240 727 

KAD-213 20.159 41.453 2146 756332.7 2231008.1 158 552 

KAD-214 20.159 41.453 2150 756319.1 2231005.7 425 547 

KAD-215 20.159 41.453 2147 756300.3 2231005.5 1,000 774 

KAD-216 20.159 41.453 2147 756289.8 2231007.5 2,800 1,896 

KAD-217 20.159 41.453 2145 756277.3 2231007.3 2,600 1,368 

KAD-218 20.159 41.453 2144 756272.1 2231005 1,250 425 

KAD-219 20.159 41.453 2138 756264.8 2231004.9 500 247 

KAD-220 20.159 41.453 2140 756259.5 2231007.1 86 40 

KAD-221 20.159 41.453 2124 756256.4 2231007 225 118 

KAD-222 20.159 41.453 2133 756259.5 2231004.8 207 159 

KAD-223 20.159 41.453 2129 756256.4 2231004.8 45 19 

KAD-224 20.159 41.452 2129 756251.2 2231004.7 163 85 

KAD-225 20.159 41.452 2128 756248 2231004.7 53 37 

KAD-226 20.159 41.452 2126 756243.8 2231006.8 90 114 

KAD-227 20.159 41.452 2124 756235.5 2231004.5 67 13 

KAD-228 20.159 41.452 2125 756230.3 2231004.4 344 95 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-229 20.159 41.452 2121 756228.2 2231004.4 153 53 

KAD-230 20.159 41.452 2119 756225 2231004.3 348 128 

KAD-231 20.159 41.451 2120 756136.1 2231003 83 56 

KAD-232 20.159 41.451 2123 756130.9 2231002.9 287 393 

KAD-233 20.159 41.451 2123 756128.8 2231007.3 59 39 

KAD-234 20.159 41.451 2124 756112 2231007.1 474 255 

KAD-235 20.159 41.451 2125 756107.9 2231004.8 189 129 

KAD-236 20.159 41.451 2125 756101.6 2231004.7 1,332 787 

KAD-237 20.159 41.451 2120 756089 2231007.9 247 73 

KAD-238 20.159 41.451 2122 756076.5 2231006.6 177 74 

KAD-239 20.159 41.451 2124 756049.3 2231004 68 36 

KAD-240 20.159 41.45 2127 756036.8 2231003.8 98 28 

KAD-241 20.159 41.454 2144 756431.8 2231029.5 289 665 

KAD-242 20.159 41.454 2148 756378.4 2231028.8 560 929 

KAD-243 20.159 41.453 2147 756334.5 2231030.3 155 603 

KAD-244 20.159 41.453 2147 756284.3 2231029.6 1,652 1,046 

KAD-245 20.159 41.453 2138 756266.5 2231031.5 1,947 810 

KAD-246 20.159 41.452 2127 756233 2231032.1 199 98 

KAD-247 20.159 41.452 2118 756190 2231035.9 23 25 

KAD-248 20.159 41.452 2113 756180.6 2231035.8 326 84 

KAD-249 20.159 41.451 2118 756123.2 2231029.4 18 12 

KAD-250 20.159 41.451 2117 756116.9 2231032.6 99 201 

KAD-251 20.159 41.451 2116 756109.6 2231032.5 133 165 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-252 20.159 41.451 2117 756099.1 2231034.6 89 22 

KAD-253 20.159 41.451 2120 756081.3 2231029.9 4 49 

KAD-254 20.159 41.451 2121 756052.1 2231023.9 105 52 

KAD-255 20.16 41.454 2141 756428.3 2231053.9 226 442 

KAD-256 20.16 41.454 2140 756402.1 2231056.8 355 450 

KAD-257 20.16 41.454 2147 756357.1 2231055 73 514 

KAD-258 20.16 41.453 2144 756334.1 2231054.7 357 646 

KAD-259 20.16 41.453 2140 756263 2231054.7 1,399 1,350 

KAD-260 20.16 41.452 2136 756247.3 2231056.7 8,382 2,063 

KAD-261 20.16 41.452 2138 756239.9 2231056.6 557 391 

KAD-262 20.16 41.452 2129 756236.8 2231056.6 329 397 

KAD-263 20.16 41.451 2115 756121.8 2231054.9 233 289 

KAD-264 20.16 41.451 2118 756103.9 2231057.9 144 64 

KAD-265 20.16 41.451 2121 756072.6 2231056.4 32 11 

KAD-266 20.16 41.451 2120 756058.9 2231059.5 24 12 

KAD-267 20.16 41.451 2123 756054.8 2231057.2 178 194 

KAD-268 20.155 41.454 2139 756431 2231084 390 830 

KAD-269 20.16 41.454 2136 756406.9 2231081.2 164 731 

KAD-270 20.16 41.454 2131 756370.4 2231077.4 297 1,169 

KAD-271 20.16 41.453 2130 756331.7 2231076.8 918 1,373 

KAD-272 20.16 41.453 2138 756263.6 2231082.4 15,104 1,519 

KAD-273 20.16 41.453 2137 756253.2 2231081.2 12,348 12,397 

KAD-274 20.16 41.452 2134 756241.6 2231086.5 6,869 3,804 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-275 20.16 41.452 2127 756226 2231080.8 349 426 

KAD-276 20.16 41.452 2120 756208.2 2231080.5 388 312 

KAD-277 20.16 41.452 2120 756187.3 2231080.2 997 1,451 

KAD-278 20.16 41.451 2112 756116 2231093.6 4,081 4,036 

KAD-279 20.16 41.451 2113 756100.5 2231078.9 290 971 

KAD-280 20.16 41.451 2117 756067 2231079.5 66 186 

KAD-281 20.159 41.451 2120 756045 2231012.8 262 69 

KAD-282 20.16 41.454 2142 756430.6 2231107.1 632 787 

KAD-283 20.16 41.454 2128 756404.5 2231106.7 216 1,080 

KAD-284 20.16 41.454 2130 756401.3 2231108.8 1,300 1,286 

KAD-285 20.16 41.453 2122 756345.9 2231108 323 1,075 

KAD-286 20.16 41.453 2127 756333.4 2231105.6 664 861 

KAD-287 20.16 41.453 2130 756277.9 2231104.8 215 717 

KAD-288 20.16 41.453 2133 756257 2231108.9 294 637 

KAD-289 20.16 41.452 2138 756228.8 2231106.3 1,548 1,090 

KAD-290 20.16 41.452 2124 756179.6 2231105.6 407 633 

KAD-291 20.16 41.452 2117 756157.6 2231107.5 186 338 

KAD-292 20.16 41.451 2116 756085.4 2231107.5 139 33 

KAD-293 20.16 41.451 2119 756075.1 2231100.7 170 74 

KAD-294 20.16 41.451 2120 756056.2 2231106 225 99 

KAD-295 20.16 41.451 2119 756042.8 2231090.3 121 21 

KAD-296 20.16 41.454 2152 756430.3 2231131.4 121 535 

KAD-297 20.16 41.454 2141 756408.3 2231131.1 2,217 764 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-298 20.16 41.454 2129 756380.1 2231130.7 112 1,057 

KAD-299 20.16 41.453 2124 756319.4 2231133.1 185 939 

KAD-300 20.16 41.453 2128 756273.4 2231129.1 177 879 

KAD-301 20.16 41.452 2130 756244.1 2231130.9 179 893 

KAD-302 20.16 41.452 2133 756210.6 2231130.4 1,113 1,185 

KAD-303 20.16 41.452 2131 756194.9 2231131.3 2,281 2,080 

KAD-304 20.16 41.452 2125 756178.2 2231129.9 1,361 451 

KAD-305 20.16 41.452 2123 756165.6 2231130.8 195 75 

KAD-306 20.16 41.452 2119 756152 2231130.6 128 117 

KAD-307 20.16 41.451 2117 756079.9 2231129.6 99 9 

KAD-308 20.16 41.451 2121 756048.5 2231131.3 111 39 

KAD-309 20.16 41.45 2119 756040.1 2231133.4 125 27 

KAD-310 20.16 41.454 2141 756439.3 2231157 88 487 

KAD-311 20.16 41.454 2140 756407.9 2231156.6 641 772 

KAD-312 20.16 41.454 2129 756371.3 2231156 152 131 

KAD-313 20.16 41.453 2117 756320.1 2231155.3 104 734 

KAD-314 20.16 41.453 2128 756256.3 2231156.5 1,013 1,165 

KAD-315 20.16 41.452 2133 756230.1 2231156.2 602 793 

KAD-316 20.16 41.452 2133 756194.6 2231155.6 4,674 2,493 

KAD-317 20.16 41.452 2130 756178.8 2231157.6 3,383 1,026 

KAD-318 20.16 41.452 2121 756167.4 2231155.2 5,817 1,362 

KAD-319 20.16 41.452 2120 756144.4 2231154.9 6,054 468 

KAD-320 20.16 41.451 2120 756130.8 2231152.5 1,265 236 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-321 20.16 41.451 2114 756113 2231154.4 189 111 

KAD-322 20.16 41.451 2122 756057.5 2231156.9 15 17 

KAD-323 20.16 41.453 2119 756348.2 2231161.2 112 22 

KAD-324 20.161 41.454 2122 756433.7 2231181.3 65 511 

KAD-325 20.161 41.454 2121 756408.6 2231180.9 312 690 

KAD-326 20.161 41.454 2123 756381.4 2231182.8 470 785 

KAD-327 20.161 41.453 2121 756332.3 2231179.8 442 806 

KAD-328 20.161 41.453 2121 756308.2 2231179.5 71 863 

KAD-329 20.161 41.453 2119 756303 2231179.4 140 148 

KAD-330 20.161 41.453 2118 756290.4 2231181.4 531 923 

KAD-331 20.161 41.452 2127 756248.6 2231180.8 606 764 

KAD-332 20.161 41.452 2126 756219.2 2231185.9 277 728 

KAD-333 20.162 41.452 2128 756185.2 2231365.9 516 844 

KAD-334 20.161 41.452 2126 756170.1 2231180.7 2,305 608 

KAD-335 20.161 41.452 2116 756144 2231180.4 123 191 

KAD-336 20.161 41.451 2121 756138.7 2231184.7 255 35 

KAD-337 20.161 41.451 2116 756115.7 2231179.9 148 52 

KAD-338 20.161 41.451 2112 756105.2 2231185.3 187 33 

KAD-339 20.161 41.451 2118 756041.4 2231183.3 121 23 

KAD-340 20.161 41.454 2132 756433.3 2231206.8 822 734 

KAD-341 20.161 41.454 2123 756405.1 2231205.3 90 854 

KAD-342 20.162 41.454 2115 756370.3 2231296.7 304 715 

KAD-343 20.161 41.453 2120 756347.5 2231207.7 596 922 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-344 20.161 41.453 2117 756313 2231209.4 141 182 

KAD-345 20.161 41.453 2116 756293.2 2231206.9 1,174 1,337 

KAD-346 20.161 41.453 2118 756256.6 2231204.2 926 1,121 

KAD-347 20.161 41.452 2126 756172.9 2231207.4 158 139 

KAD-348 20.161 41.452 2125 756166.6 2231207.3 702 384 

KAD-349 20.161 41.452 2123 756148.8 2231207 175 99 

KAD-350 20.161 41.451 2121 756140.5 2231206.9 995 330 

KAD-351 20.161 41.451 2120 756127.9 2231207.8 33 11 

KAD-352 20.161 41.451 2116 756115.3 2231209.8 344 16 

KAD-353 20.161 41.451 2115 756109.1 2231207.5 150 51 

KAD-354 20.161 41.451 2111 756098.6 2231207.4 260 44 

KAD-355 20.161 41.454 2134 756431.9 2231231.1 133 464 

KAD-356 20.161 41.454 2128 756416.3 2231229.8 7 9 

KAD-357 20.161 41.454 2121 756374.4 2231232.5 256 500 

KAD-358 20.161 41.453 2116 756339.9 2231232 276 527 

KAD-359 20.161 41.453 2115 756277.1 2231234.4 88 85 

KAD-360 20.161 41.452 2122 756229 2231232.6 235 273 

KAD-361 20.161 41.452 2123 756184 2231229.7 1,840 1,114 

KAD-362 20.161 41.452 2126 756156.8 2231231.5 96 407 

KAD-363 20.161 41.451 2121 756141.1 2231232.4 191 146 

KAD-364 20.161 41.451 2119 756114 2231229.8 44 33 

KAD-365 20.161 41.451 2116 756105.6 2231228.5 81 30 

KAD-366 20.161 41.451 2115 756100.4 2231227.3 127 59 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-367 20.161 41.451 2115 756094 2231232.8 19 19 

KAD-368 20.161 41.451 2113 756092 2231231.7 52 16 

KAD-369 20.161 41.451 2112 756052.2 2231233.3 89 61 

KAD-370 20.161 41.45 2112 756038.6 2231234.2 15 6 

KAD-371 20.161 41.45 2113 756031.3 2231231.9 99 10 

KAD-372 20.161 41.454 2133 756433.6 2231257.7 231 389 

KAD-373 20.161 41.454 2126 756408.5 2231257.4 113 376 

KAD-374 20.161 41.453 2118 756329.1 2231256.2 84 353 

KAD-375 20.161 41.453 2119 756307.1 2231255.9 322 262 

KAD-376 20.161 41.453 2115 756270.5 2231257.5 16 465 

KAD-377 20.161 41.452 2108 756232.8 2231254.8 97 272 

KAD-378 20.161 41.452 2115 756206.7 2231253.3 621 465 

KAD-379 20.161 41.452 2119 756181.6 2231256.2 500 508 

KAD-380 20.161 41.451 2112 756125.1 2231256.5 334 142 

KAD-381 20.161 41.451 2113 756118.8 2231256.4 5 12 

KAD-382 20.161 41.451 2111 756112.5 2231258.5 9 13 

KAD-383 20.161 41.451 2108 756053.9 2231258.8 144 61 

KAD-384 20.161 41.451 2110 756042.4 2231260.8 110 12 

KAD-385 20.161 41.45 2111 756032 2231256.2 71 34 

KAD-386 20.162 41.454 2130 756433.3 2231282.1 151 389 

KAD-387 20.162 41.454 2122 756383.1 2231280.3 106 370 

KAD-388 20.162 41.454 2119 756352.7 2231280.9 111 175 

KAD-389 20.162 41.453 2116 756280.6 2231277.6 125 386 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-390 20.162 41.453 2113 756264.9 2231279.6 27 562 

KAD-391 20.162 41.452 2112 756217.9 2231273.4 4,573 972 

KAD-392 20.162 41.452 2116 756200 2231279.8 95 272 

KAD-393 20.162 41.452 2116 756163.4 2231279.2 538 504 

KAD-394 20.162 41.452 2119 756157.1 2231280.2 1,335 666 

KAD-395 20.162 41.451 2114 756138.3 2231282.2 55 71 

KAD-396 20.162 41.451 2108 756116.3 2231280.8 53 23 

KAD-397 20.162 41.451 2108 756110.1 2231279.6 14 20 

KAD-398 20.162 41.451 2107 756067.2 2231280 13 15 

KAD-399 20.162 41.454 2122 756395.3 2231302.6 106 374 

KAD-400 20.162 41.454 2122 756368 2231307.7 240 438 

KAD-401 20.162 41.453 2120 756346.2 2231301.9 114 324 

KAD-402 20.162 41.452 2110 756211.1 2231307.6 335 543 

KAD-403 20.162 41.451 2110 756102.4 2231301.6 198 92 

KAD-404 20.162 41.452 2111 756167.3 2231302.5 1,545 1,370 

KAD-405 20.162 41.452 2113 756149.5 2231305.6 47 17 

KAD-406 20.162 41.452 2112 756142.2 2231304.4 73 24 

KAD-407 20.162 41.451 2104 756113.9 2231307.3 51 15 

KAD-408 20.162 41.451 2105 756096.1 2231308.1 64 39 

KAD-409 20.162 41.454 2130 756430.5 2231330.8 101 255 

KAD-410 20.162 41.454 2129 756388.6 2231330.2 42 235 

KAD-411 20.162 41.454 2127 756352 2231328.5 49 247 

KAD-412 20.162 41.453 2126 756329 2231330.4 31 258 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-413 20.162 41.453 2118 756292.4 2231328.8 85 227 

KAD-414 20.162 41.452 2107 756196.2 2231327.3 102 290 

KAD-415 20.162 41.452 2106 756177.4 2231328.2 3,214 1,772 

KAD-416 20.162 41.452 2108 756165.8 2231329.1 746 329 

KAD-417 20.162 41.451 2111 756137.6 2231330.9 82 24 

KAD-418 20.162 41.451 2109 756129.2 2231330.8 14 15 

KAD-419 20.162 41.454 2133 756430.1 2231355.2 129 308 

KAD-420 20.162 41.454 2139 756413.2 2231362.7 31 168 

KAD-421 20.162 41.454 2133 756391.4 2231353.5 66 225 

KAD-422 20.162 41.454 2131 756355.8 2231357.4 56 201 

KAD-423 20.162 41.453 2129 756328.6 2231358.1 35 202 

KAD-424 20.162 41.453 2122 756298.3 2231356.5 141 180 

KAD-425 20.162 41.453 2115 756256.4 2231357 33 232 

KAD-426 20.162 41.452 2113 756190.6 2231353.8 85 94 

KAD-427 20.162 41.452 2105 756161.2 2231357.8 325 207 

KAD-428 20.162 41.452 2109 756155 2231354.4 6,345 1,039 

KAD-429 20.162 41.451 2108 756135.1 2231354.1 179 56 

KAD-430 20.162 41.454 2144 756433.8 2231384 55 556 

KAD-431 20.162 41.454 2145 756406.7 2231382.5 303 541 

KAD-432 20.163 41.454 2135 756353.3 2231386.2 160 500 

KAD-433 20.162 41.453 2131 756323.1 2231378 81 474 

KAD-434 20.163 41.453 2121 756269.6 2231383.8 190 476 

KAD-435 20.163 41.452 2116 756209 2231382.9 212 492 
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Table A.1. Surficial samples assay results of Ni and Cu in Wadi Al Khadra prospect 

area (Cont.) 

 

KAD-436 20.163 41.452 2115 756161.9 2231382.2 64 378 

KAD-437 20.162 41.451 2107 756124.3 2231379.5 58 21 

KAD-438 20.163 41.451 2108 756054.2 2231384 7 11 

KAD-439 20.163 41.451 2113 756051.1 2231380.6 96 14 

KAD-440 20.163 41.454 2158 756430.5 2231398.4 88 354 

KAD-441 20.163 41.454 2154 756416.8 2231404.8 439 616 

KAD-442 20.163 41.454 2159 756413.7 2231405.9 16 13 

KAD-443 20.163 41.454 2154 756389.6 2231405.5 88 363 

KAD-444 20.163 41.453 2141 756331 2231405.8 154 304 

KAD-445 20.163 41.453 2132 756281.9 2231405 228 193 

KAD-446 20.163 41.452 2121 756221.2 2231406.4 202 362 

KAD-447 20.163 41.452 2115 756168.9 2231408.9 197 457 

KAD-448 20.163 41.451 2113 756060.1 2231407.3 6 10 

KAD-449 20.163 41.451 2115 756052.8 2231406.1 30 14 

KAD-450 20.163 41.454 2162 756430 2231432.7 183 500 

KAD-451 20.163 41.454 2170 756397.6 2231428.9 145 358 

KAD-452 20.163 41.453 2145 756339.1 2231428 67 361 

KAD-453 20.163 41.453 2133 756285.7 2231430.6 75 284 

KAD-454 20.163 41.453 2131 756279.4 2231432.7 57 40 

KAD-455 20.163 41.452 2111 756166.5 2231429.9 58 90 

KAD-456 20.163 41.451 2106 756130.9 2231431.6 283 455 

KAD-457 20.163 41.451 2104 756113.1 2231430.2 2,138 358 

KAD-458 20.163 41.451 2112 756050.3 2231430.4 20 19 

 



 

 

 

 

 

 

 

 

APPENDIX B. 

MINERALIZATION ZONES OF DRILL HOLES IN WADI AL KHADRA 

PROSPECT AREA 
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Table B.1. Mineralization zones of drill hole Co01 

 
Depth 

(meter) 

 
Drill KAD -  Co01 

 

Mineralization 

 
 

0.00 – 4.90 m 

 Oxidation zone is observed down to 8.60m. 

 Hematite and small amount of limonite are observed only along the 
fractures. 

 Traces of disseminated pyrite, pyrrhotite, and chalcopyrite are found 
scattered. 

 
 
 
 

4.90 – 26.50 m 

 From 5 to 6m, micro veins of milarite, chalcopyrite and pyrite <4% finely 
disseminated in the metamorphosed groundmass. 

 

 From 9.30 to 9.40m, a pyrite and chalcopyrite micro vein is found 
associated to chlorite follow the axis of the core. <4%. 
 

 From 9.40 to 26.50 m, mineralization interval with massive sulfides 
comprised by 10% of pyrrhotite,  15% of pyrite,  10% of chalcopyrite 
,and traces of sphalerite. 

 
 

 
 

26.50 – 32.50 
m 

 

 Massive lava flow layer only metamorphosed; some pyrrhotite, pyrite 
and pyrite along foliation <5%. 

 
 

32.50 – 34.10 
m 

 

 Stringer and veinlets vary from 1cm to 6 cm in thickness; comprise by 
pyrrhotite, pyrite, chalcopyrite <45% with increasing associated quartz 
content <15% 

 

 
34.10 – 66.10 

m 

 

 Traces of cubic pyrrhotite and pyrite along stringers, blebs and 
veinlets of chlorite which are sub parallel to the incipient foliation 

 
 

66.10 – 80.20 
m 

 
 pyrrhotite, pyrite and magnetite  <3% in grains along fractures 
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Table B.2. Mineralization zones of drill hole Co02 

 

Depth 
(meter) 

 

Drill KAD - Co02 

 
Mineralization 

 

0.00 – 39.72 m 

 Oxidation zone is observed down to 17.80m. 

 Hematite and small amount of limonite are observed only along 

the fractures. 

 Traces of disseminated pyrite, pyrrhotite, and magnetite are found 

scattered. 

 

39.70 – 43.05 m 

 

 Hematitic (oxides) veinlets diminishes < 2% with a thickness of 
about 2mm. 

 Traces of pyrite in small grains in groundmass 

 

43.05 – 48.80 m 

 

 Traces of pyrrhotite along foliation 

 

48.80 – 62.80 m 

 

 Traces of disseminated cubic pyrite 

 

62.80 – 70.40 m 

 

 Strong chloritization and silicification. 

 Quartz micro veinlets and micro veins < 5%, Traces of pyrrhotite.  
 Epidote increases <10% 

 

 
71.40 – 78 m 

 
 Traces of pyrrhotite along the texture of veinlets 

 
78.40 – 83.23 m 

 
 

 Traces of pyrrhotite and pyrite along the texture of veinlets 

 
83.23 – 92.10 m 

 

 Chlorite and silicification < 20% 

 
92.10 – 102.45 

m 

 
 Pyrite and chalcopyrite are seen in traces along the foliation < 3% 
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Table B.3. Mineralization zones of drill hole Co03 

 

Depth 

(meter) 

 

Drill KAD - Co03 

 

Mineralization 

 

0.00 – 4.80 m 

 Iron oxides < 10% comprised by hematite and some goethite 

 Oxidation zone affecting also some pyroxenes 
 Traces of pyrite and chalcopyrite are found along foliation 

 

4.80 – 8.20 m 

 

 Traces of pyrrhotite and magnetite 

 

8.20 – 18.65 m 

 

 Traces of disseminated magnetite and pyrrhotite 

 

21.29 – 21.55 m 

 

 Disseminated pyrrhotite along rock and along thin CO3 veinlets < 
3% 

 

 

21.55 -  23.55 m 

 
 Mineralization diminishes to a stringer < 15% of massive sulfides 

 

23.55 – 34.80 m 

 

 Zone of mineralization, abundant of sulfide, stringers, pyrrhotite + 
presence of chalcopyrite, sph along fractures with CO3 

 

34.80 – 68.90 m 

 

 Disseminated pyrite and chalcopyrite along the foliation and 
disseminated in the groundmass 

 

 

68.90 - 80 m 

 

 Sulfides decreases to traces along foliation and filled plagioclase-
quartz 

 

 

80 – 92.34 m 

 

 Traces of pyrrhotite and pyrite disseminated bordering the 
plagioclase cloths 

 
92.34 – 95 m 

 

 Traces of pyrrhotite and pyrite disseminated in groundmass 
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Table B.4. Mineralization zones of drill hole Co04 

 

Depth 

(meter) 

 

Drill KAD - Co04 

 

Mineralization 

 

0.00 – 7.10 m 

 Traces of pyrite are found along fractures but highly oxidized <4%. 
 Oxidation zone close to the surface. 

 

7.10 – 8.40 m 

 Oxidation zone traces of pyrite and chalcopyrite along foliation.  
 Oxidized millerite are found along foliation <3% 

 

8.40 – 12.60 m 

 

 Traces of  pyrite, chalcopyrite, and pyrrhotite are found in this 

oxidation zone 

 

12.60 – 19.75 m 

 Oxidation is found along the fracture walls <10% and in blebs 
within the ground mass. Pyrite and chalcopyrite associated are 
seen <3% , and some copper oxides are seen <2% 

 

19.75 – 23.10 m 

 Strong chlorite, quartz and plagioclase alteration <60%. 
 Pyrite and chalcopyrite in discreet and elongated grains <4% 

 

23.10 – 32.10 m 

 

 Traces of  pyrite, chalcopyrite, and pyrrhotite 

 

32.10 – 47 m 

 

 Traces of epidote and pyrrhotite 

 

47 – 54.90 m 

 Pyrrhotite and pyrite are found disseminated and stringers <3% 
along foliation and fractures of average 2mm. 

 

54.90 - 72 m 

 Pyrite (15%), chalcopyrite (10%), millerite(2%) and Pyrrhotite are 
among the most common sulfides present in these veins and 
magnetite < 2% 
 

 
72 – 118 m 

 Traces of po along induced foliation. Also, chalcopyrite and pyrite 
grains <2%.  

 Traces of magnetite crystals. 
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