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ABSTRACT

This investigation was performed to determine the 
burden at which hard rock would break utilizing decoupled 
and unstemmed charges when the free surface parallel to 
the borehole was the wall of an open hole* This open hole 
was created by burn cuts and by drilling holes of 7-7/8 in. 
and 12 in. diameter. Additional tests were performed 
using partially stemmed charges where the stemming was the 
same size as the explosive charge.

The explosive used was a 0.75 lb. slurry charge,
1.5 in. diameter and 10 in. long. The diameter and depth 
of the borehole were 2 in. and 3 ft., respectively.
The borehole pressure, P^, for cylindrical charges was 
found to vary with the explosion pressure, P^, and the 
ratio of the radius of the charge Rc , to the radius of the 
hole R^, by the relationship:

Pb = P3 < V Rh> 5

This equation relates the borehole pressure and the 
explosion pressure for the symmetrical decoupled condition.

For the non-symmetrical decoupled condition the average 
borehole pressure obtained for top, side, and bottom holes 
around a central opening was 57%, 35% and 11.5% of P^ 
respectively, with a decoupling ratio D = Rh/Rc “ 1.33. The 
reflection theory of rock breakage was used to determine 
the decay exponent, m, in the transition zone and from
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the experimental data, the maximum burden Rtmax was found 
to be a function of the radius of the hole, R^, the 
radial stress in the rock at the boundary of the cavity, 
Pm°, and the tensile strength of the rock, a^. These 
quantities are related by the equation

Rtmax = V 2 ^

with 1/m = 0.66, 0.71 and 0.84 for top, side, and bottom 
holes, respectively. The burden as a function of the 
diameter of the opening, cj>, for side holes was determined 
to be of the form:

R. (1-3 °-41<f)) tmax '

The relationship between burdens, for partially stemmed R̂ _
and unstemmed conditions R. depends on the exponential

rl
decay time t and by the equation

T/Ti = V Rtx

which was found to have a value of 1.113 in this investi­
gation.



iv

ACKNOWLEDGEMENTS

The writer wishes to express his sincere appreciation 
to his advisor, Dr. Ronald R. Rollins, for the personal 
interest shown and the valuable guidance made during the 
course of this investigation.

Thanks are also extended to Dr. Charles J. Haas and 
Professor Sylvester J. Pagano for their assistance given 
in this study.

The author is indebted to his fellow student, Wesley 
Patrick, who assisted in the figures included in this 
thesis.



TABLE OF CONTENTS
Page

ABSTRACT...............................................ii
ACKNOWLEDGEMENTS...................................... iv
LIST OF ILLUSTRATIONS.................................... vi
LIST OF T ABLES...........................................vii

I. Introduction................................. 1
II. Review of Literature........................  3

A. Theoretical Approach Relating the 
Burden as a Function of the
Decoupling Factor ....................  14
1. Critical Decoupling ...............  19
2. The Unstemmed Factor............... 2 0
3. Experimental Investigation........... 24

III. Results....................................... 30
A. Determination of the Average

Borehole Pressure and Constants . . . .  30
B. Relationship between Burdens 

for Unstemmed and Partially
Stemmed Charges.......................... 40

IV. Summary, Conclusions and
Recommendations ............................ 43

BIBLIOGRAPHY ..........................................  45
V I T A ................................................... 47
APPENDICES.............................................48

A. Theoretical Approach for 
Determining the Value of the
Exponent (n).............................. 48

B. Theoretical Determination of the
Average Borehole Pressure ..............  54

V



vi

LIST OF ILLUSTRATIONS
Figure Page

1 Decoupling Model After Atchison,
et. al., 1964, p. 3 ................................ 6

2 Relationship between Burden and Largest
Diameter of Opening..................................28

3 Relationship between Burden and Largest
Diameter of Opening................................. 29

4 Decoupled Charges around the Opening,
Showing Burden and Spacing Relationships ........  31

5 Different Loading Conditions for Coupled
and Decoupled Charges............................... 32

6 Decoupled Model for Non-Concentric
Ch a r g e .............................................. 54



vii

LIST OF TABLES
Table Page
I Influence of Loading Density on 

Borehole Pressure Pb . (After
Cook, 1958, p. 275)7 ............................  5

II Rock Properties...............   25
III Explosive Properties ............................  26



1

I. INTRODUCTION

Fragmentation of rock by blasting in mines and 
quarries is a function of several variables, including 
explosive density, detonation velocity, the characteristic 
impedance of the explosive and of the rock, maximum 
available energy, borehole pressure, the condition and 
properties of the rock, hole diameter, charge length, type 
of stemming, point of initiation, and the decoupling. All 
these factors must be carefully controlled for optimum 
performance of an explosive. The burden or "line of least 
resistance", depends on these factors as well as others.

This investigation studied the variation of the burden 
due to the decoupling factor, which is defined as the ratio 
of the radius of the hole, R^, to the radius of the charge, 
R . The decoupling factor is important because when an 
explosive charge does not fill the drill hole in which it 
is detonated then it is less efficient for fracturing 
rock than a charge of the same volume that does completely 
fill the borehole.

Another important parameter that affects the burden is 
the unstemming factor. In this experimental work the 
charges were normally unstemmed with only a few partially 
stemmed shots, which implies a decrease in the burden 
dimension as compared to stemmed shots.

A mathematical equation giving the burden directly as 
a function of the unstemming factor is very difficult
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to derive. However, its effect can be illustrated by 
adding constants to the theoretical expression developed 
in this thesis based on experimental data.
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II. REVIEW OF LITERATURE

Information on the effect of decoupling in the 
literature is very limited. However, an excellent contri­
bution towards a solution of this problem has been made

1 2 by Cook and Atchison, et. al. .
Cook found that the borehole pressure, is related

to the adiabatic or explosion pressure, Pg, by the
following:

Pb = P3An (1)

where n is approximately 2.5 and A is the loading density 
or the fraction of the borehole occupied by the explosive 
excluding the open hole above the charge. Thus for a 
cylindrical charge:

A = <V3/Vb) = (Rc/Rh)2 (2)

where
= Volume of the explosive charge 

V^ = Volume of borehole 
Rc = Radius of the charge 
R^ = Radius of the drill hole 

Considering that the decoupling D = R^/Rq , equation (1) 
becomes:

-5Pb = P3 (D) (3)
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Equation Cl) was obtained by Cook for loading densities
varying from 1 to 0.84, 1 to 0.85 and 1 to 0.64 with 90
percent straight gelatin, 40 percent straight gelatin, and
High Ammonia dynamite (10 percent NG), respectively (see
Table I). Therefore according to equation (1), the maximum
efficiency is attained when A = 1 or D = R^/Rc = If
because P, = P_ .b 3

Atchison, et. al. employed short cylindrical charges 
with a length-to-diameter ratio of 8, in granite and lime­
stone. They proposed a simplified mathematical theory to 
explain the decoupling effect considering three zones around 
a charge detonated in a cavity in rock? their mathematical 
model is illustrated in Fig. (1); thus, the three zones are: 
a) the source zone in the cavity, b) the transition zone 
surrounding the cavity, which is the region where non­
elastic effects occur such as crushing and cracking the 
rock, and c) the seismic zone where the propagation of the 
stress pulse is nearly elastic and if reflective boundaries 
are not encountered no fragmentation occurs. They considered 
that the following equations represent the pressures and 
stresses in the three respective zones, assuming a spherical 
charge at the center of a spherical cavity. Thus in the
source zone for R < R < R.c n

P = Pc (R/Rc )"3y (4)

where Pc is the detonation pressure of the explosive, P 
the pressure in the cavity, R the distance from the center



Table I. Influence of Loading Density on Borehole Pressure P^. (After Cook, 1958, p. 275)

Density
Borehole Density 

(lb/ft)
High Ammonia

90% Straight-Gelatin 40% Straight-Gelatin Dynamite, 10% NG 
(p3=450 tons/sq in) (p^=265 tons/sq in) (p^=265 tons/sq in)

[g/cc) 9" dia. 5" dia. A pb A pb A P.

1.35 37.2 11.5 - 1.0 265 -

1.3 35.9 11.0 - 0.96 245 -

1.25 34.5 10.6 1.0 450 0.925 220 -
1.2 33.1 10.2 0.96 405 0.890 205 -

1.15 31.7 9.8 0.92 368 0.85 185 -

1.1 30.4 9.3 0.88 330 - 1.0 265
1.05 29.0 8.9 0.84 275 - 0.95 245
1.0 27.6 8.5 - - 0.91 220
.9 24.8 7.6 - - 0.82 175
.8 22.1 6.8 - - 0.73 145
.7 19.3 5.9 — 0.64 115 tn

Pb = P3 A2.5
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OUTER L IM IT

Fig. 1. Decoupling Model (After Atchison, 
et. al., 1964, p . 3.)
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of the charge and y is the ratio of the specific heat of
3explosion gases. According to Brown , for most explosives

a value of y = 1.2 is a good approximation. Since
R = C - C for one mole of a perfect gas, from the g p v -> *

following relationship.

C /C = y = 1 + R /C p' v ’ g' v

The value of Cv is approximately 10 cal/mole °K where 
y = 1.2 and R = 1.987 cal/mol °k.

If equation (4) is evaluated at R = R^, the pressure 
at the outer limit of the cavity is

ph = W V 3Y <5)

In the transition zone for R, < R < R, ,h 1

a = ah (R/Rh)"m (6)

where a is the radial stress in the rock, the pressure 
exerted on the cavity wall by the explosion gases, and m a 
constant which describes the stress decay in the transition 
zone. Also, they considered that the radial stress

= k P^, where k is a proportionality constant determined 
from the ratio of the characteristic impedance of the 
explosive to that of the rock. The characteristic 
impedance of the explosive is defined as the product of 
the explosive density and detonation velocity, similarly 
the characteristic impedance of the rock is the product of 
the rock density and the longitudinal propagation velocity.
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Finally, in the elastic or seismic zone for < R < 00,

a = (7)

where is the stress at the outer limit of the transition 
zone and n is a constant which describes the stress decay 
in the seismic zone. The principal results of these 
studies carried out by Atchison, et. al. were as follows:

1. The amplitude of the strain pulse decreases as the 
decoupling increases.

2. The period of the strain pulse decreases at first 
and then increases as decoupling increases.

Previous to the investigation mentioned above, again 
4Atchison describes the influence of decoupling on the 

explosive performance by measuring the amplitude of the 
strain pulse produced by the detonation of explosive 
charges in drill holes as the ratio of the radius of the 
hole diameter to the charge diameter was varied. The 
tests were made in limestone, with a total of 18 shots, 
and charges with a length-to-diameter ratio of 8, the drill 
hole diameter varied from 1-7/8" up to 4-1/2", with de­
coupling (Rfr/Rc ) of 1 up to 2.

Atchison found that the strain is approximately 
proportional to the 1.5 power of the ratio of the charge 
diameter to the hole diameter.

Equation (4) was obtained by assuming a reversible,
adiabatic law, thus:
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P1V1Y = P2V2Y (8) 
5Clark gives a relationship between and for a loading 

density less than one, of the form

P3V3
YVb - V3 (y-1) (9)

Clark assumed ideal behavior of gases as a first
approximation; thus C = 3/2R , which implies thatv g
y = 1+R /C = 5/3. Substitution of this value in g v
equation (9) yields

3P3
Pb S(Vb/V3)-2

again using y = 1.2, equation (9) may be written as 
follows:

Pb 1.2(V, /V-,)-(0.2) (11)

Hino derived an equation for the condition where 
pressure transmitted to the rock is reduced by the void 
space around the explosive charge and called this the 
"cushion effect". The estimation of the borehole pressure, 
P^, given by Hino is as follows using the conventional 
approximation P2 = 2P^, where P2 and P^ are the detonation 
pressure and explosion pressure, respectively, and = T^, 
where T^ is the explosion temperature and the borehole 
temperature. The last assumption is valid for values of 
decoupling close to unity. Thus the explosion pressure
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P3 = 1/2 P2 (12)

For the explosion and borehole pressure: 
P3 (V3-CX3) = nRgT3

Pb (vb““b> = nRgT3
(13)

where
_ _ „ /M _ Volume of borehole __ • ̂v, = V,/M = ------ ■=---- «-- ----  = specific volumeb b' mass of explosive

of borehole.
v, = V,/M = Vo-lume of explosive_charge _ ific3 3' mass of explosive

volume of explosive charge.
R = Gas constant per mole.

g
n = Number of moles of gas per unit mass 
a = Co-volume

Equation (13) is a modified form of Abel's equation of 
state which has been employed successfully by Cook^ in 
his studies of the hydrodynamic theory of detonation.
Thus,

P3 (V3"“3) "

or
v3"a3Pb = V 2  P2 b b

The numerical relation between the co-volume a and 
the specific volume v is given by Hino from the results 
obtained by Cook as follows:

(14)

a = 0.92(1-1.07 e-1•39v) (15)
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Bergmann, et. al. found that the peak shot-hole pressure 
for different decoupling ratios is related by the empirical 
equation

P “ PDet X D"°'95 (16)
where

P = Peak shot-hole pressure 
PDet = Detonat;i-on Pressure
D = Decoupling ratio = (effective Shot-hole 

volume/Explosive volume)
Equation (16) is an empirical relationship based on 

the acceleration and the change in pressure acting on 
explosively driven plates with varying air gaps between 
the explosive and the plates.

8 9Additional work has been done by Nicholls and Haas , 
to determine the energy effect of coupling explosives with 
rock.

Nicholls used the relation:
e = k(d/W1/3)n (17)

where
e = Peak compressive strain
k = Strain intercept
n = Slope 

1/3d/W = Scaled distance
d = Shot-hole gage distance
W1/3 = The cube root of the charge weight

7

He also assumed that
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(18)

where
p = Density of the rock
c = Longitudinal propagation velocity in the rock 
P = Applied pressure in the mediumm

Inasmuch as all tests were conducted in the same rock 
2pc was a constant, thus combining the last two equations 

gives

where A is a constant.
Nicholls pointed out, "if the detonation pressure is 

assumed to equal the pressure or stress in the medium at 
the cavity wall, a plot of peak strain intercept k, and 
detonation pressure P, should be linear", but it is inter­
esting to note that the relation between k and P found by 
Nicholls was a curved line. Thus the effect of the ratio of 
the characteristic impedance of the explosive to that of 
the rock was used to linearize the stress-strain relation­
ship.

Hence equation (19) becomes

where f[(pC)/(pC)l = a function of the ratio of the 
characteristic impedance of the explosive to that of the

k = A Pm (19)

(20)

rock.
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The medium stress, Pw , was calculated from them
following equation.

(K/P)p = . _z a p
m (K/P)Z=1 P (21)

where
Z = Ratio of characteristic impedances 
(K/P)„ = the value of (K/P) obtainedii—a

graphically by Nicholls, where Z=a 
represents the Z value of each explosive, 
and (K/P)z_^ = va^ue °f (K/P) , deter­
mined in the same way where Z=1.

Finally, the percentage of the calculated explosive 
energy transferred to the rock was expressed as the ratio
of H to NR T/y-1 where g

H = Radial strain energy per pound of explosive 
N = Moles of gaseous products of detonation per 

unit of weight of explosive 
R = The gas constant 
y = Ratio of specific heats 
T = Detonation temperature

Nicholls concluded that the maximum energy is transmitted 
to the rock by the detonation of an explosive if the charge 
diameter equals the drill hole diameter and if the 
characteristic impedance of the explosive equals that of 
the rock.

9Haas used specimens of 4x4x2 in., which were cut from 
slabs of Yule marble. In these experiments the air gap
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was varied from zero gap to 1 in. The explosive charges 
were 0.5 in. diameter by 1.5 in. long for all the tests.
The explosive used had a small critical diameter and is 
ideal for laboratory studies where stable detonation is 
desired.

The peak stress in the 2 in. thick marble depended on 
the length of the air gap. Values ranged from 33,800 psi, 
for direct contact between the explosive and marble to 
12,200 psi for a 1 in. air gap. Haas found that the 
fragmentation size decreased as the air gap increased. He 
also observed that the shock intensity near the explosion 
and the resulting fragmentation were strongly influenced 
by the contact area between the explosive and the rock.

A . Theoretical Approach Relating the Burden as a
Function of the Decoupling Factor. For a cylindrical

5charge, (I^/R^) according to equation (1).
Because the borehole pressure is a function of the 

explosion pressure, Cook^ says, "Experimental studies 
show that the explosive cannot really couple the detonation 
shock wave with a solid except under perfect contact at 
the end-not along the sides of the charge. Lateral coupling 
does not even involve the detonation wave directly because 
the detonation head does not extend all the way to the 
interface".

Inasmuch as the detonation pressure is a function of 
the detonation wave and it is moving within the explosive
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charge parallel to the explosive-rock interface it is quite 
reasonable to assume that no direct relationship exists 
between the borehole pressure and the detonation wave.

An important characteristic of the typical blasthole is 
that because of its shape practically all of the available 
energy is utilized and is transmitted through the walls of 
the borehole into the rock. Therefore, the explosion 
pressure is more significant than the detonation pressure 
as a performance factor in boreholes.

According to equation (1) the borehole pressure and the 
explosion state pressure are equal only when the explosive 
completely fills the hole or the loading density, A, is 
one.

If the volume of the borehole is slightly greater 
than the volume of the gaseous products in the explosion 
state, the borehole pressure will be significantly lower 
than the explosion state pressure, which indicates that 
the exponent n (equation 1), must be larger.

An approximation of the exponent n, Appendix A, 
gives good agreement with the value obtained by Cook.

The initial borehole pressure is a very important 
factor in determining the rock breakage, providing of 
course that the borehole contains the necessary total 
explosive energy to break up the burden properly. The 
transmitted stress or initial peak stress in the rock,
P °, is obtained from the impedance mismatch equation from
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elastic theory. This equation, in general form, may be 
written as follows:

2 (pv)t
Pt “ (pvYt + (pv).̂  Pi (22)

where
P. = The transmitted stress = P t m
P . = The incident stress = P. i b

and p and v are the density of the material and propagation 
velocity of the pulse respectively, and the subscripts i 
and t denote the incident and transmitted medium. Thus 
(pv)± = (Pv) eXpiosive = c*laracteristic impedance of the 
explosive and (pv)t = (Pv)rocjc = characteristic impedance 
of the rock. Therefore equation (22) becomes:

2P,
m

b
Q + 1 (23)

where Q = (pv) /(pv) , and is the relative effective
G X p  IT O C K

(borehole) impedance, thus the condition (Pv)eXp = p̂v^rock 
has a special significance in blasting. It is the condition 
of maximum energy transfer from the incident medium to the 
transmitted medium? since no energy goes back into the 
incident medium, therefore, it is desirable to have the 
characteristic impedance of the explosive match that of 
the rock (Q = 1).

The value of Q may also be expressed as follows, 
according to Clay, et. al.^; by means of the principles 
of conservation of mass, momentum and energy, the detonation 
pressure is given by the equation
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where

P2 = Pe D W

Pe = Explosive density
D = Detonation velocity 
W = Particle velocity of gases 

In condensed explosives the particle velocity, W, is 
approximately D/4. If the conventional approximation 
P2 - 2P^ is used then the last equation becomes

2P - ,  =  P,
D‘

3 - ^e "T (24)

or
2P3Pe = (peD/2)

Thus ,
(p D)  =  ( p V )  , . =  ( 8 p P ^ )Vhe / vk 'explosive v pe 3 1/2

(25)

(26)

Substitution of eq. (1) into (26) yields:

<PV) explosive = ( S p ^ A " 11)1/2

Therefore the effective (borehole) impedance Q may be 
given approximately by the relation:

Q = (8PePbA"n )1/2/(pv)rock

(27)

(28)

In the transition zone the radial stress a in the rock is 
related, according to equation (6), as follows:

a = (Jh (R/Rh)-m

where a, = P . n m
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The exponent (m) describes the stress decay in the 
transition zone and may be evaluated using the reflection
theory of rock breakage. According to Duvall and Atchison 
the primary cause of rock breakage is the reflection at the 
free surface of the compressive strain pulse generated in 
rock by the detonation of the explosive charge. Upon 
reflection this compressive strain pulse becomes a tensile 
strain pulse. As the strength of the rock in tension is 
much less than in compression, the reflected tensile pulse 
is able to break the rock in tension progressing from the 
free surface back towards the shot point.

Thus the "full crater" is obtained assuming that the 
intensity of the reflected tension wave at the center of 
the charge is:

= Pm ° (2W " m (29)

12

where

and
at = Tensile strength of the rock

= Maximum burden.
This assumption may be true in the case of a single 

reflection but in the case of brittle solids, such as rock, 
primary fractures occur due to multiple reflections, 
therefore equation (29) represents only an approximation? 
inasmuch as â ., P^0 and are known, and R̂ . is measured 
in the field, this implies that m must be obtained experi­
mentally. Finally the maximum burden Rfc is:



19

R, = R. = R,/2(P °/a.)1//m (30)tmax t h m ' t'

For tunnel rounds, initially the burden is a function of 
the diameter of the opening (j), when the shot holes located 
around the opening are fired, both burden and opening 
increase in size, until the burden reaches a maximum value, 
which remains constant even though the opening continues to 
increase in diameter, (see page 24). Therefore, it is 
necessary to obtain a function of the form:

f [ (l-k"u<fl) ]

such that for any value of <f>̂_>4>,
R,=0. Where<P

R. , and for 4>=0, tmax' Y

R, = The burden for tunnel rounds 
(j> = Diameter of opening
k and u = Constants to be evaluated from experi­

mental data
Thus, equation (30) becomes:

R4> R. (l-k-u<1>) tmax (31)

1. Critical Decoupling. According to Atchison,
2et. al. , if the elastic limit of the rock is a^, there will 

exist a critical decoupling, Dq , for a given explosive and 
type of rock that results in a stress of at the boundary 
of the cavity. According to equation (23):

2P,
(pv)
(pv)

exp
rock

+ 1
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5where P, = P0 (R /R, ) . By definition D = R, /R , thereforeb J e n  h e
-5P^ = P^ Dq for critical decoupling. Substitution of 

P^° by and P^ as a function of P^ and Dq , into equation 
(23) yields:

a

where 1/5

DO (32)

Equation (32) defines critical decoupling for cylindrical 
symmetry between the drill hole and the explosive charge.

2. The Unstemmed Factor. Stemming is used in the 
blasting process to confine the product gases for a 
sufficient time duration to allow the pressure to work 
against the borehole sidewall, fracturing the solid rock, 
prior to displacement and stemming ejection.

Experimental tests were made utilizing unstemmed 
charges and partially stemmed charges where the stemming 
was the same dimensions (length and diameter) as the explo­
sive charge, resulting in a partially, decoupled stemming. 
The maximum burden is less for these conditions than for a 
completely stemmed shot.

Consequently, it is necessary to determine a mathe­
matical relationship between burdens for both, unstemmed 
and partially stemmed charges.
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The maximum velocity of the burden V(R.) may bet max
estimated as follows :

E = 1/2 M r v(Rt)2max (33)

where

and
E = Available energy

ML = Mass of rock to be blasted, r
Taking into consideration a loss of about 10% of the total 
energy E, for leakage of gases through cracks and the 
borehole etc., equation (33) becomes

Thus10
0.9 E = 1/2 M 7 r V(Rt)2max

V(V m a x  = t1-8 E/Mr)1/2 04)

It is assumed that the effective force F = P(t) x A, 
where P(t) is the pressure and A the effective area equal 
to TrRhh, where R^ and h are the radius and the length of 
the drill hole containing explosive, respectively.

— t/ TFurther, assume that F = F^e 7 , i.e., the force
decreases exponentially in time (t), t being an exponential 
decay time constant, such that for t=T, F = F^/e, and F^ 
the initial force so that F^ = x A, where P^ is the 
borehole pressure. Then

-t/TF P^ x tt x x h x e (35)
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Applying Newton's equation
d2R

F = Mr x
dt

(36)

or

Thus

and

F = Mr x atC~dt°

F = Mr X
dVCRt)

dt

t V(R.)
J F dt = Mr J dV(Rt)
o o

(37)

(38)

(39)

where t = effective time of P(t) on the borehole sidewall. 
Substitution of equation (35) into (39) gives

P 7T R, h t . 
b h—  / e-t/T dt = V(RJ_)M t' max (40)

and finally

P, tt R,_ h D
M -—  T(l-e"t/T) = V(Rt)max (41)

thus for t=t.

Pt tt Rv h . /
b h —  t (l-e”tl/T) = V(t.)M (42)

Since t^ and V(t^) are unknown, the value of the constant 
x, cannot be determined, except for the value of t where 
V(t) = V(Rt)max, and for any time t2 > t, V(t2) = v (Rt^max' 
therefore e~t//T - 0, and t >> x, thus x may be obtained as 
follows from equation (41)
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T = V(Rt>max 
Pb * Rh h

M
(43)

but M r = (Rt -S*h)pr , where is the rock density, h is 
the hole depth, S the spacing between holes, and S/R^ = 2.3 
to 3, the values obtained from this experimental work
taking the first value of 2.3 equation (43) yields:

T = V(Rt)max 2 *3 Rt pr 
Pb 11 Rh

(44)

If t is considered as the exponential decay time for 
partially stemmed charges, then for unstemmed charges it 
will be:

Ti =
V (R. ) 2.3 R. pt^'raax t^ Kr
-------- FT'if K,b h

where remains constant. Thus the ratio t/t  ̂ is:

 ̂ V (R. ) R, 2t t max t
Ti R '2 max t„

but

V(Rt>max
v(Rt

2E/M M R
2E/M M R

1
T

thus

V <Rt>max
^ V m a x

Substitution of the (48) into equation (46) gives

(45)

(46)

(47)

(48)

(49)
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Inasmuch as the geometric parameters, and characteristics 
of explosive and rock remain constant, the ratio t/t  ̂ for 
side holes, around the central opening in a tunnel round, 
must be the same as for top and bottom holes, respectively 
Therefore, knowing t/t  ̂ and R it is possible to determine
R. , for any condition.
^1

3. Experimental Investigation. The purpose of this 
experimental investigation was to determine the burden at 
which hard rock would break utilizing decoupled and un- 
stemmed charges, when the free surface parallel to the 
borehole was the wall of an open hole. Also, additional 
tests were performed using partially stemmed charges 
where the stemming was the same length and diameter as the 
explosive charge and was also decoupled.

The tests were conducted in a granite quarry, approxi 
mately 90 miles from the UMR campus, located near 
Graniteville, Missouri. Some physical properties of this 
rock type are presented in Table II.

The explosive used in all the tests was a 0.75 lb. 
slurry charge, 1.5 in. diameter and 10 in. long. The 
relevant properties of the explosive used are given in 
Table III. The initial opening was created by burn cuts 
and by drilling holes of 7-7/8 in. and 12 in. diameter.

The burn cuts were formed by drilling six 2 in. 
diameter holes in a circular pattern with one in the 
center that was loaded with the explosive charges, that
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Table II. Rock Properties.

Property Missouri Red 
Granite

Specific gravity 2.60
Apparent porosity, % 0.40

2Compressive strength, kg/cm 1620.00
2Tensile strength, kg/cm 99.10

Ultimate strain, 10  ̂ cm/cm 2770.00
Ranked mechanical dr inability, 

rate basis* 8.00
Ranked mechanical drillability, 

diameter basis* 5.00
Rebound hardness 53.00
Secant modulus of elasticity, 

10^ kg/cm^ 5.83
Compressional wave velocity, 

km/sec 4.51

* for 10 rock types
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Table III. Explosive Properties

GENERAL:
GEL POWER A—1*

Theoretical density 
Actual density 
Oxygen balance 
Energy
Measured rate (1-1/2"

= 1.57 gm/cc
= 1.18 gm/cc
= +0.30% (w/o package)
= 982,446 ft-lbs/lb

(calculated) 
diameter, unconfined)

= 4400 mps

DETONATION STATE (CALCULATED)
Velocity 
Pressure 
Temperature 
Product gas 
Product density

5049 meters/sec 
61460 atmospheres 
2596 OK
36.6 g moles/kg 
1.4881 gm/cc

EXPLOSION STATE (CALCULATED)
Pressure 
Temperature 
Product gas 
Product density

28930 atmospheres 
2322 °K
36.6 g moles/kg 
1.1800 gm/cc

♦Trademark of Hercules, Inc.
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when detonated, broke to the ring of unloaded holes 
creating the desired opening in the rock, then the test 
hole was drilled parallel to the opening, with different 
burdens depending on the diameter of the opening, and shot 
to obtain the relationship between the burden and opening 
diameter (fig- 2).

Two charges in the same hole, fired by a single 
blasting cap, were used in the first ring of holes to 
ensure pulling the full length of the 3 ft. deep hole for 
the small burdens required by the initial holes until 
the center hole was opened up to about a 2 ft. diameter 
opening.

Also, test holes were drilled and fired, one at a 
time, around the burn cut, the 7-7/8 in. and 12 in. 
diameter drilled holes until the burden and spacing 
relationships for a 15 ft. diameter tunnel round were 
determined.

Six tunnel test rounds were thus fired to further 
develop and duplicate the desirable conditions to apply 
this new technique to driving a 15 ft. diameter tunnel in 
granite. The relationship between burden and diameter of 
the opening as it increases due to subsequent shots are 
shown in fig. (3). The diameter and depth of the holes 
were held constant at 2 in. diameter and 3 ft. deep.

A charge diameter of 1.5 in. results in a decoupling 
factor, D of Rj1/Rc = 1.33.
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Fig. 2. Relationship between Burden and Largest Diameter of Openina.
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Fig. 3. Relationship between Burden and Largest Diameter of Opening.
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A . Determination of the Average Borehole Pressure and
Constants

The data obtained from side holes for unstemmed 
charges, (fig. 3), were used to determine the constants m, 
k and u; since the majority of the holes around the opening 
are side holes, as shown in fig. 4.

Also, it is important to point out that the borehole 
pressure, P^, or the pressure at the outer boundary of the 
cavity, will be different at each point of the borehole 
sidewall, due to the lack of symmetry between the borehole 
and the position of the explosive charge. The best, inter­
mediate and worst coupling conditions correspond to the 
top, side and bottom holes respectively.

Four possible loading conditions in blasting 
operations are illustrated in fig. 5. The two bottom 
conditions applies to this investigation. Therefore, it 
is necessary to obtain an average borehole pressure on the 
sidewall area. An approximation to this problem for side, 
top and bottom holes is developed in Appendix (B).

From equation (30):

Rtmax = Rh/2 <pm°/at)1/m

where:
R, = Radius of the hole

III. RESULTS
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Fig. 4 Decoupled Charges around the Opening, Showing 
Burden and Spacing Relationships.



COUPLED CHARGE

CONCENTRIC DECOUPLING

NON-CONCENTRIC DECOUPLING

NON-CONCENTRIC DECOUPLING 
WITH PARTIAL STEMMING

OJro
Fig. 5 Different Loading Conditions for Coupled and Decoupled Charges.
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Pm
o radial stress in the rock at

the cavity boundary
= Borehole pressure

(pV) = Characteristic impedance of explosiveGXp

m = Decay exponent in the transition zone (to
be evaluated)

a^ = Static tensile strength of the rock
The static tensile strength of the solid rock, may be
considered constant only for homogeneous and isotropic 
solids, while in actual rocks this value depends on the 
probability of the existence of weakest points in the solid 
structure. This indicates that the tensile strength of 
the rock may have a range of values. A better choice would 
be the dynamic tensile strength, however this value is 
unknown for this rock. In general, the dynamic strength 
is believed to be higher than the static tensile strength.

The average borehole pressure, Pb(average)' f°r side 
holes is given by the equation

pb(average)
(50)

where

and
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as compared to (R^R^) which applies to cylindri­
cal symmetrical decoupling.

The numerical values for these variables are as 
follows:

5

*h = 1 in.
R = 0.75 in.c
Pr = Rock density = 2.6 gr/cc
V = Longitudinal velocity of the rock = 4,510 m/sec 
Pe = Explosive density = 1.18 gr/cc 
Ve = Detonation velpcity = 5,049 m/sec

2P^ = explosion pressure = 28,930 atm - 28,930 kg/cm 
= Static tensile strength of the rock =

99.1 kg/cm2 .
From equation (50) Pb(average) is 10,000 kg/cm2 (^35% P3)
and . exp + 1 - 1.51, thus P ° = 13,245 kg/cm2. From 

'p }rock m
figure (3), the maximum burden for side holes is R^ = 16 in. 
Therefore, the decay exponent (m) from equation (30) is 
calculated as:

m = 1.41 
1/m =0.71 

and finally

^  ,‘m ,0.71Rtmax “ Rt ---(_o7)
(51)

As an example for = 1.25 in. and Rc = 0.75 in., the 
average borehole pressure according to equation (50) is:

pb(average) = 5 '964 k5/CI"2
and
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P ° = 7,900 kg/cm2 m ^
Therefore

R, = 14 in. tmax
In the same way for = 1.5 in. and R^ = 0.75 in., Rtmax 
13.3 in. For tunnel rounds, the burden dimension R ., is
given by equation (31)

R , = Rtmax (l-k-U1̂ )

where the function f(1-k Ul*’) fits the experimental data 
very closely.

Using the method of least squares, the constants k 
and u have been determined for side hole, unstemmed 
charges, fig. (3). The value of the constants thus 
obtained are: k = 3 and u = 0.41.

Therefore the above equation may be written:

R* = Rtmax^-3"°*414>) for a11 * > 2 ft- (52)

(below 2 ft. there was not complete breakage) with <J> in 
ft. and R, in in.

The average borehole pressure for top hole (fig. 4) 
is given by the equation:
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_ P3Rc 
b (average) tt R,

3(4a2-2b)2-4b2
8b4

(4a -2b)

+ [-R4+(4a2-2b)R2-b2]1/2 1 3(4a2-2b)2+2b
T TZb R

+ arctg (4a2-2b)R2—2b2
2b[-R4+(4a2-2b)R2-b2]1//2

(4a -2b) 
^---

]
2b'

3 (4a2-2b)2-4b2
(53)

where

a - % .~ Rc

b = Rc2-2RhRc 
R = fRh2+(Rh-Rc)2]1/2

Thus, for R, = 1 in. and R = 0.75 in. h c
a = 0.25
b = -0.9375
R = (1.0625)1/2, and
(4a2-2b) = 4R, 2+2R 2-4R, R = 2.125 h c h e

Substitution of these values into equation (53) yields:

pb (average) = 16'675 ks/CI"2 f'"57* P3>

The constant 1/m must be theoretically the same as 
determined previously, for side holes 1/m = 0.71, since the 
geometric parameters and characteristics of the explosive 
and of the rock remain constant.
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Thus, according to equation (30) we have:
R. = R. = R, /2 (P °/cf) tmax t h ' m t

for
R, = 1 in. h
at = 99.1 kg/cm2

and
Pm° = 22,086 kg/cm2

The value of the burden for top holes (unstemmed charges) 
is Rt = 18 in. (fig. 3) . Therefore:

1/m = 0.663 = 0.66 
Thus for top holes

Rtmax = Rt = Rh/2 (Pm°/°t)

The value of the decay constant for (side holes) is 
1/m = 0.71, whereas the decay constant for (top holes) is 
1/m = 0.66, a difference of 0.05, which indicates good 
agreement.

Following the same process, the average borehole 
pressure for a bottom hole (fig. 4) is given by the 
equation:
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P-,R '> — c b (average) tt R,
7T
2

3 (4a2-2b)2-4b2 
8b7

(4a -2b) 
2b3

+ I-R4+(4a2-2b)R2-b2]1/2 3 (4a2-2b)+2b2 
4b3R4 2 2' bzRz

+ arctg (4a2-2b)R2-2b2
2b[-R4+(4a2-2b)R2-b2]1/2

3 (4a2-2b2-4b2
81?

where

(4a -2b) 
2b3 (54)

a = R , - R  n c
b = Rc2-2RhRc 
R = [Rh2+ (Rh-Rc)2]l/2

Thus for R^ = 1 in., Rq = 0.75 in. and P^ = 28,930 kg/cm2, 
we have

a = 0.25
b = -0.9375
R = (1.0625)1/2, and
(4a2-2b) = 4R. ̂ +2R 2-4R, R = 2.125 h c h e
Pb (average) = 3 '320 (*11.5% P3)

As before, the decay constant (1/m) to be determined,
must be the same theoretically as previously obtained. 
Again from equation (30)

=  Rtmax = V 2 V m
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for
Rh = 1 in.
at = 99.1 kg/cm2
Pm° = 4,397 kg/cm2

The value of the burden for bottom holes (unstemmed 
charges) is = 12 in. (fig. 3).

Therefore

1/m = 0.84.

Here, the decay exponent for bottom holes differs by 0.13 
from that of side holes (1/m = 0.71). It is interesting 
to note that if the burden is 10 in. instead of 12 in., 
the decay exponent decreases to 0.79, and for 9 in. it 
equals 0.76. This shows that the decay exponent is very 
sensitive to small variations in rock properties, particu­
larly the tensile strength which is assumed constant. 
Also relatively little data was obtained for bottom holes.

The critical decoupling Dq , taking into consideration 
perfect symmetry between the drill hole and the explosive 
charge, is as follows from equation (32):

2P 3
r ,ev,« * p  . j

L t L (pV)r o c k  J

for
P3 = 28,930 atm. - 28,930 kg/cm 
at = 99.1 kg/cm2

2
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and
(pv)
TpvT

exp
rock

+ 1 1.51

The critical decoupling Dq is:

Dq = 3.29 - (2.5/0.75)

Therefore, with a hole diameter of 5 in. and a charge 
diameter of 1.5 in., theoretically, the rock will not break.

B. Relationship between Burdens for Unstemmed and Partially
Stemmed Charges

According to equation (34), the maximum velocity of
the burden V v  is:

K̂t'max

where

for

V (Rt)max (1.8 E/Mr )1/2

E = Available Energy
M = Mass of rock to be blasted r
E = 982,446 ft-lbs/lb expl (see Table III)
Mr = (RtxSxh)pr

Rt = 20 in. = 0.508m for top holes, partially 
stemmed (fig. 3)

S = 2.3 Rt = 1.168m = spacing between holes
h = 36 in. = 0.914m = depth of hole

3Pr = 2,600 kg/m = rock density
Thus
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M = 1,410 kg r
and for a mass of explosive of 0.75 lb.

E = 987,446 ft-lbs/lb expl x 0.75 = 736,834 ft-lbs 
= 999,147 Joules

Therefore

V(Rt>max = 26'62 m /sec
and the decay exponent t from equation (44) is:

T = V(Rt>max 2>3 V  pr 
Pb * *h

where
2p£ = 16,675 kg/cm (previously calculated)

R, = 1 in. = 2.54 cm 
h 3
p = ^ k£/m, (expressed in force units)
r 980 cm/sec^

Thus
-4t = 3.15 x 10 sec

Similarly for top hole, unstemmed charge the value of
R. = 18 in. (fig. 3), and 
^1

v =29.6 m/sec 
^ t ^ m a x

-4= 2.83 x 10 sec
Therefore

1.113

or
R^ (partially stemmed) 1.113 R. (unstemmed) 

*1
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Thus, for (bottom holes)

= 1.113 x 12 in. = 13.36 in., which is in
good agreement with the value of (partially 
stemmed) = 14 in. from fig. (3) determined 
experimentally.



43

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The effect of decoupled and unstemmed charges for 
determining the burden at which rock would break when the 
free surface parallel to the borehole was the wall of a 
cylindrical opening was investigated. The following con­
clusions are indicated.

The peak borehole pressure is critically dependent on 
the ratio of the radius of the charge to the radius of the 
hole, and will be significantly lower than the explosion 
state pressure if the voluine of the borehole is slightly 
greater than the volume of the gaseous products in the 
explosion state. Likewise, the co-volume exerts a great 
influence on the borehole pressure, inasmuch as the co­
volume is an appreciable fraction of the borehole specific 
volume.

A good approximation for the borehole pressure can be 
obtained for cylindrical charges from the following 
expression:

Pb = p3 <RC/Rh)ni
where the value of the exponent, n^, is approximately 5. 
This equation may be applied, with accuracy, for values 
of R ^ R ^  near unity (0.6 - 1.0, approximately) where the 
exponent n1 remains nearly constant.

The burden or "line of least resistance", is largely 
dependent on the borehole pressure and is one of the most
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important factors in determining rock breakage because 
almost all the area over which the pressure must act to 
perform work lies on the borehole sidewall. The ratios of 
burdens for unstemmed and partially stemmed charges are 
directly proportional to the ratios of the exponential 
decay times when an infinite reaction rate is assumed.
The theoretical approach and test results together provide 
a guide for predicting the effects resulting from de­
coupled and unstemmed charges on the burden dimension in 
hard rock. Two areas in which further study is needed 
are:

1. Further verification of the theory of decoupling 
presented in this investigation requires additional tests 
extending the range of decoupling up to and above critical 
decoupling, preferably using cylindrical charges in 
cylindrical cavities. In this way it is possible to 
determine whether or not the exponent n̂. remains constant. 

Similar experiments on other rock types.2.
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APPENDIX A

Theoretical approach for determining the value of the 
exponent (n).

According to Cook'*' the borehole pressure P^ is related 
to the adiabatic or explosion pressure P^ by a relation of 
the form

Pb
n (1)

where n = approximately 2.5 and A = the loading density 
or the fraction of the borehole occupied by the explosive 
excluding the open hole above the explosive.

Thus

= P 2.5
3 (W  = v w

2.5 (2 )

where
V, = Volume of borehole b
V3 = Volume of explosive charge

= v /M = Volume of borehole v b vb/ mass of explosive
of borehole

specific volume

= v /M = Vo-*-uine Explosive charge v3 V3'M mass of explosive
volume of explosive charge. 

Equation (2) may be written as follows

specific

_ 2.5 _ 2.5
Pbvb = P3V3 (3)

The relationship between pressure and volume in an adiabatic, 
reversible process is given by the equation:



where y is the ratio of the specific heat capacities of 
the explosion gases, and for most explosives a value of 
Y s 1.2 is a good approximation.

Thus, equation (5) becomes

1.2 1.2 ( 6 )

or
1.2 1.2 (7)

Comparing equation (3) with (7), gives a difference of the 
exponent of a factor of two.

Because the expansion of gases is not truly reversible, 
a correction factor (£) will be used as an approximation. 
Therefore, equation (5) becomes:

From the laws of thermodynamics it is known that a change 
in internal energy of gases is given by

K = constant (8 )

dE = dq - dw (9)

where q is heat and w work.
Equation (9) may be written as follows.



50

For an adiabatic expansion dq = 0 and equation (10) 
becomes

n C dT = -Pdv v (11)

where n = number of moles of gases per unit of mass. T, P 
and v are temperature, pressure and specific volume, and 
Cv = specific heat capacity of gaseous products at constant 
volume.

For one mole of an ideal gas R = C - C , then
*  g p v'

C R_R = Y = 1 -r> T r* ( 12)
v V

where = the gas constant and = specific heat 
capacity of gaseous products at constant pressure. For
Y = 1.2 and R = 1.987 cal

9 mol °k v
, C = 1 0 cal

mol °k
Substitution of P from equation (8) into (11) gives

n cv dT + -S_ dv = 0
V

(13)

Integration from the state , v^ to the state T^, v^ gives

n C JTbdT + JVb dv = 0 (14)v J J vT v13 v3
or

n Cv (Tb-T3>
V.

V.
= 0 (15)
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but P = -— 7-/ therefore

n C (T, -TO + v b 3 MM? - 0

and finally
Pr-Vt —P o vo

n Cv (Tb-T3) + = 0

Using the equation of state

Pb (vb-ab) “ nRgTb

Where a is the co-volume, and the equation

P v ^  = p v ^r3v3 *bvb

and also

P3 (v3-a3> = nRgT3

Subtracting (20) from (18) gives the following

" P3 (V3-d3) = nRg (Tb-T3)

Dividing by and multiplying by Cv gives:

Pb "P3 (v3-<x3)] = n Cv (Tb-T3)

Substituting eq. (22) into (17) gives:

Pbvb-P3v3 C
(1-YC) + R™~ [Pb (vb-°tb)-p3 (v3-“3)] == 0

or

(16)

(17)

(18)

(19)

( 20)

(21)

( 22)

(23)
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—  *Rgv3 + Cy(-1*“'Ŷ ) tv3-a3)] 
= [RgVb + CV (1_YC) (vb-“b)J

From (19) we have:

P v ^  = P v ^  3V3 ^bvb

(24)

Thus

(v3/vb)YC (V3/Vb )Y? (25)

and

tRgV3 + CV (1-TS)(v3-a3)] _ # / ^
lRgVb + Cv Cl-YC)'(vb-ab J] (v3/vb> (26)

where y = 1.2, Cv - 10 cal and R = 1.987 cal
mol °k ^ mol °k

The
explosive used in the experimental work was a 0.75 lb.
slurry charge, 1.5 in. diameter, and 10 in. long, with a
density p3 = 1.18 gr/cc.

1Thus v 0 = ^3 p = 0.8474.
The density in the borehole for a diameter of 2 in.,

^ ____ 1is p^ = 0.663 gr/cc.

V3 = 0.8474, “3 = °-
vb = 1.5083, ab = °*

With these data
C !- 2.1 then n = yC

= 1.5083. Thus for
(1 )

becomes:

Pb = P3 < W 2.5 (27)
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For cylindrical charges, this may be written as 
follows:

P, = P0 (R /R, ) 5 b 3 c ' h (28)

Values of C for different loading densities were ob­
tained from (26) and the data in Table I giving a range of 
values between 2 and 2.2 and consequently n - 2.5, gives 
an excellent agreement with Cook’s approximation.

For values of A close to unity, the value of n - 2.5, 
is a good approximation. The equation of state, P(v-a) = 
nR^T, gives excellent results over a range of v from 0.2 to 
2 cc/gr. If v^ is too high and outside of this range this 
equation cannot be applied with accuracy, also the bore­
hole pressure, P^, will be low and another equation of 
state such as Van der Waal's must be used.
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APPENDIX B

Theoretical determination of the average borehole 
pressure.

Fig. 6. Decoupled Model for Non-Concentric Charge.

The relationship for symmetrical decoupling of a 
cylindrical charge is:

where P^ = borehole pressure, P^ = explosion pressure,
Rc = radius of the charge and = radius of drill hole. 
For non-symmetrical decoupling, the radial distance from 
the center of the charge to the wall of the borehole, R, 
changes with respect to the angle 0 (fig. 6). Thus,

DRILL HOLE A

EXPLOSIVE CHARGE

5 (1)
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equation (1) must be modified as follows for non-symmetrical 
decoupling.

Pb = P3 ( V R) 5 (2)

where R = f (0).
Taking a differential of area, dA, the 

between force F and borehole pressure is
relationship

dF = Pb ♦ dA (3)

where dF = differential force acting over the area dA, 
and dA = Rd0 assuming a hole of unit depth. Substitution 
of equation (2) into (3) yields

dF = P3 (Rc/R)5 dA (4)

F = J P3 (Rc/R)5 dA. (5)

According to the cosine law the relationship between 
R and 0 is:

R2+2R (R, -R ) cos 0+ (R 2-2R,R ) = 0 h e  c h c

or
R + 2 R a cos 0 + b = 0 (6)

where a = R. -R and b = R -2R, R . From equation (6) : xi c c n c
„ 1 ,R +b,

cos 9 = - 2{— R~) 

differentiation of both sides of eq. (7) gives:
(7)



56

sin 9 de = [5-^1] dR
R

( 8 )

or

(i-cos2e)1^2 ae = (-- ̂ b ) dR (9)

Substitution of eq. (7) into (9) yields:

[4a2R2-(R2+b)2]1/2 d0 = (5=-̂ -) dRR

and
JQ _ (R2-b)du - ---- ------ 2--- y T7T dRR[4a^R -(R tb)^]1^

(10)

thus dA = R d0 becomes:

dA = (R2-b)
[4a2R2-(R2+b)2]1/2 dR

Therefore equation (5) yields:

(11)

or

F = / P.
R K
(— )5 v R ;

(R2-b)
r4 a 2R2M R 2'+b ) 2T r /2

dR

F = P-R 3 c f (R2_b) drJ --- T ~ J — 5---5 T/2 dRRd [4a R -(R^+b) z ] L/z

(12)

(13)

Considering the pressure acting on the sidewall for a half 
circumference A B :

b (average) ttR. (14)

Thus

b (average)
P3Rc
ttR,̂ _(R2-b)

R5 [4a2R2-(R2+b)2]1/2
dR (15)
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And the solution of the integral is:

b (average)
P-R , 3 c 1
ttR 2 h

2_u2,l/2[-R+(4a -2b)R -b ]
-------- 2 T

+ arctg (4a2-2b)R2-2b2
2b' 2b[-R4+ (4a2-2b)R2-b2]1//2

3(4a2-2b)+2b2 [_R4+(4a2_2b)R2_b2]l/2 
4bJR4

3 (4a2-2b)2-4b2 (4a2-2b)R2-2b2
------ *-------- arCtg -----4. ,. 2 _ „ 2  .2,1/2

R.

8b 2b [-R + (4a -2b)R -b ]
(16)

At the limiting condition when = R , from equation (6)
2 2 we have R = -b where a = 0 and b = -Rc Thus =

-Rc (0 = 0°) and = Rc (0 = 180°) and equation (16) 
becomes:

P~ R_S_ (_E_ + _2L_) = P  TT 4 _ 4; *3R R.b (average)
C C

The lower limit and upper limit of the definite integral
considering the average borehole pressure acting on the 
half circumference AB (side holes in fig. 6) are according 
to equation (6) R^ = Rc = 0°) and R2 = ^Rh”Rc ^  = ^®0°) •
Equation (16) then becomes:

P3Rc 5 Pb (average) 2ttR.
(4a2-2b) . , , 3 (4a2-2b)-4b2—̂ — arctg (°°) - —

2b' 8b

arctg (») - i4* ! ^  arctg (-») + 3 (4a2-2b) -4b2 arctg(_„) 
2bJ 8b4
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Therefore

b (average)
P~R 3 c
2ttR,

5 r
3 ( 4 a 2 - 2 b ) 2 ,3ir

-j \ 28b4 ^
7T,

( 4 a  - 2 b )  ,377 ttx
3 K 2 22h '

and the average borehole pressure for (side holes) is:
5

b (average) T tTr ,
P 3 Rc ~  I 3 ( 4 a 2 - 2 b ) 2 - 4 b 2 ( 4 a 2 - 2 b )

8b 2b '
(17)

w h e r e  a  =  R ^ - R c , b  =  Rc 2 - 2 R ^ R c , a n d  ( 4 a 2 - 2 b )  =  4 R ^ 2 + 2 R c 2 -

4RhRc -

Again when Rq = Rh (17) becomes Pfo (average) = P3. 
Following the same process, the average borehole pressure 
for (top holes) acting on the half circumference (DBC) 
(fig. 6) is:

P0R> = 3 c b (average) ttR, P
+  [ - R 4 + ( 4 a 2 - 2 b ) R 2 - b 2 ] 1 / 2  f e i

2 2 2 . (4a -2b)R -2bzarctg -i---- ----- 2---

tt J3 ( 4 a 2 - 2 b ) 2 - 4 b 2 ( 4 a 2 - 2 b )

8 b 2b' -]

3 ( 4 a 2 - 2 b ) + 2 b 2

2 b [ - R  + ( 4 a  - 2 b ) R  - b  ]C T7T72 [
4 b 3 R 4

( 4 a  - 2 b )  
3—

]+
2b

3(4a2-2b)2-4b2
8b3 ]| (18)

where R = [Rh2+(Rh-Rc) 2]lŷ 2 .
And for (bottom holes) considering the half circum­

ference (DAC) (fig. 6) is:
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b (average)
p ~r 5 I 3 c j

k  1[3(4a2-2b)2-4b2 (4a2-2b)l
ttR,h r  1L 8b4 2b3 J

+ I-R4+ (4a2-2b)R2-b2]1/2 | -Ula2_-2b)+2b2 _[ 4b3R4

+ arctg (4a2-2b)R2-2b2
2b[-R4+(4a2-2b)R2-b2]1/2

r 3(4a2-2b)2-4b2

(4a -2b) 
2b3

Likewise when R^ = Rc equations (18) and (19) become 

Pb (average) ~~ P3 *

(19)
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