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INTRODUCTION

Modulation of a radic frequencey carrier can be defined
as the variation of some wave parameter such as amplitude,
frequency, or phase, in accordance with intelligence to be
transmitted. An unmodulated carrier is simply a continuous
sine wave and contains no information other than the fact
that the transmitter has been turned on. The spectrum of
an unmodulated signal consists of a single frequency. Any
type of modulation is characterized by the appearance of
additional frequencies, known as sidebandse. One of the
fundamental problems in radio engineering is to reduce the
number of sidebands to a minimum and still adequately rep-
resent the information to be transmitted. The large number
of radio facilities required by modern civilization can be
accommodated in the radio spectrum only if each facility
uses bandwidth as sparingly as possible. Reduction of
bandwidth inevitably results in lower quality service, so
that final designs are compromises between conflicting
considerations. The purposes.of any modulation study are
to provide an understanding of the modulation process and
a basis for reducing bandwidth. Qbvicusly, the engineer
canmot efficiently take measures to reduce bandwidth until

he knows the ideal bandwidth requirement for a system.



A study of square wave modulation is of importance in
the field of radio telegraphy; telegraphic signals are
characterized by sudden transitions between two signal
conditions in both on-off keying and frequency shift key-
ing. It is the purpose of this paper to study the signal
spactra resulting when a carrier amplitude is modulated
by a square wave. These two types of modulation correspond

to on-off keying and frequency shift keying, respectivelye.



REVIEW OF LITERATURE

There 1is already considerable literature dealing with
quality of service versus bandwidth in both radio broad-
casting and telegraphy. A representative 1list of such
articles is given in the Bibliography of this paper. The
results published in these papers have been, for the most
part, obtained through experience with actual telegraphic
facilities. Although they are of considerable importance
in telegraphic art, only one of these publications deals
directly with the problem of this paper, the theoretical
spectrum resulting from square wave modulation. That
article was written by the Dutch engineer and mathematiecian,

(1)
Balth Van der Pol. = The work of Van der Pol would be

(1] Van der Pol, Balth, Frequency Modulation, Proc. l.R.B.,
Vol. 18, pp. 1194-1205, July 193Q.

rigorous in the case of pure frequency modulation without
phase shift of the radio frequency carrier. It is shown
in this paper that phase shift does occur, and in such a
way as to insure continuity of the resulting signal. When
the condition that the final signal be continuous is con-
sidered, it appears thst more than one type of signal

spectrum is possible, including that found by Van der Pol.



In addition to the articles listed in the Bibliogra-
phy, free use has been made of the fundamentals of modu-
lation theory as usually found in texts on radio engineer-
ing. References have been given where applicable. These
references are for convenience and are not meant to cite

original papers in the field.



DISCUSSION

l. Spectrum of a Carrier On-0ff Signal

The first signal to be considered consists of an
infinite train of sinusoidal pulses, the durations of the
"signal on" and "signal orf" conditions being the same.
This condition is convenient to handle mathematically and
is, to a close degrée of approximation, representstive of

(2)
the test signal ...RYRYRY... used in teletype practice.

(2) Watson, E. F., Fundanentals of Teletypewriters Used in
tge Bell System, Bell System Tech. Journal, p. 620, October
1938.

The mark and space arrangement of this combination of
letters in the teletype code is such as to require the
reversal of the relays in the system at the end of almost
every unit of time. Naturally, such a signal constitutes
the most stringent test of the system. Furthermore, it
requires the most frequent sterting and stopping of the
carrier (or shifting of the carrier when frequency shift
keying is used)e. Any other combination of letters would
insure the existence of the same signal conditions for more
than one unit of time; it is well Imown from Fourier anal-
ysis that a& sinusoidal pulse approaches monochromaticity as
the length of the pulse is increased. Hence, it seems

reasonable that the signal corresponding to square wave



keying will give the widest spectrum to be encountered in a
teletype system.

The signal to be analysed is shown in Figure l. A few
cycles of the radio frequency oscillation are shown. It is
impracticable to draw a high frequency oscillation to scale,
and it should be understood that there are a large number of
cycles in each pulse. A typical case might be a carrier
frequency of three megacycles per second and a pulse dur-
ation of 1/30 second, giving 100,000 cycles of radio fre-
quency in each pulse.

Fourier analysis of the signal is possible only if the
signal is periodiec. The mathematical condi tion of periodi-
city for the signal can be stated as £(t;] = £(t; £ 2T)
whe re tl can have any value, and 2T is the fundame ntal
period of the keying wave. (The possibility of periodicity
based on several keying intervals will not be considered in
this paper; the condition of periodicity will be restricted
to the one given.) Physically, this means that each pulse
must begin with the same phase if Fourier analysis is to be
applicable. Keeping this necessary condition in mind, the

signal can be written as a function of time as follows:

(1) F&)= A ain (Wt +Am) Grut)T > t> 2nT
F) = o ZRnT >t (RAm+I)T

The phase angles &, in the above expression must be free to
take on whatever values are needed in order to satisfy the
condition of periodicity. (This is perfectly analogous to

representing the parts of a Saw tooth wave by £(t) = T a,
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T b,; the constants b, are necessarily dirferent for each
part of the saw tooth outline.) An interesting result is
obtained when there are an intéger number of cycles of
radio frequency in each pulse; such & signal could be pre-
sumed to be generated by keying the ideal radio frequency
amplifier shown in Figure 2. The amplifier is fed by an
oscillator which is'continually on; the amplifier itself is
turned on and off by means of the key. Absence of starting
and stopping transients is assumed. If the oscillator is
ideal, that is, perfect frequency and phase stability are
presumed, each pulse of radio frequency in the output will
begin with the same phase in the case under consideration.
Mathematieally speaking, if the carrier frequency is an
integer harmonic of the keying frequency the %4 of (1) will
all be equal. |
Before beginmning the Fourier analysis for this special
case, it is necessary to change the variable t which ranges
from QO to 2T during a fundamental period to one which ranges
from O to 27 during the same period. This change is shown
by the Z axis in Figure l. It can be seen that t =7 Z .
We can also write W, t in terms of z by noting that if X

1
is the number of cyeles of radio frequency in time T, then
N, = £; T. Hence, W, ¢t= W, Lz . But since w,- 27 ¥

and §,= 1;’_' , the equations (1) can be rewritten as:

(2) $@)= A ain (2Mz +«) T > E 7O
- §@)= o 272 7T



The Fourier coefficients are then given by

(3) An

)

, m
ﬁj‘,ﬂm(ZMZ.v/-O()&m'ni_Ai‘. +;,—if”(o)cow£dz;

(¢) Uy ;,'—f,, A@in 2N 2 +4) Qla N2 d;:+,71frr(0) diw NE AR

Reducing (3) and (4) by the trigonometric identity for

the sine of the sum of two angles, they become

.
X
(5) A, = i?’—ia«;«zmz— Coomz Az.+"""”°‘fo.mz~,i crnz Az

T  ar®
(6) dry = A2 [ adw 2M2 guanz dz + 4527 ) 2Nz cimzdz
[>]

T

The right hand integral of (8) is 0, except when
n = 2Nyj. Noting this faet and iﬁtégrating

(ﬂawg"'w“ coa@Mi-MZE  Caa (2N, #0)E ]})

-
z
L 2 (2M -n) 2(2Mm +m) —Z]a

(l'f m=2N)
The bracketed part of a, will be handled first, calling

/
it a, and substituting limits,

‘ Aeos d con(2M -n)TT co/:(ZNu 0T I o—_
(8) Qu = ~ z2(2m-n) T Z(Zwm #n) t 2@2m-n)  2(24,+n)

When n is even, the cosine terms in the numerators of

the first two terms in the bracket will be 1, since 2N, is

certainly even (2N1_i n]mT will be an even number of

~radians. Hence, the entire bracket will be zero when n is



even, unless it is equal to 2N, in which case a will have

1
to be evaluated separatelye.

For the special case when n = 2Nl

CoodX
(2) a,= 97, /),J/b\. 2NZE Csa AN £ LR O

This result is obtained by noting the trigonometric
identity sin x cos x = ¥ sin 2x, which when integrated
from QO to 77 yields Q.

Returning to the expression for an, it is seen that
when n is odd, the cosine terms in the numerators of the
first two terms will be -1 since (ZNi L n)7T will always
be an odd number of T radians. Reducing (7) and summar-

izing, the results thus far obtained

- fQCo’ad[ [
(10) aw-= 4N}-w Y AL
Am = AQ%‘M‘(‘ m = 2,‘/\/‘
The first integral in (6) will vanish except when
- ACoo &k
n= 2Ni in which case it will yield bn = Tz e The

second integral in (6) is like the first in (5), except
that the roles of 2Ni~and n are interchanged. This inter-
change will not affect the evaluation of cos(2N; tn)7",
but it will reverse the signs in the denominators of the
terms in (8). Hence, for b ~we write

(11) —fj’w = /)M 0(' ,\_i_/\/_/”__‘_ 7 g4 c'—z[;/

= - ————e

7 L 4mE-

Arv = ﬂ;g£§ a7 = RN,

10



IV = B
Letting the quantity 44,2, ~ » the Fourier

expansion of the signal can now be written as

(12) S@) = g;‘;wcmllt’.i: + i—cﬁé Z B8 coom &

01-'03)
+i‘c%o‘ﬁ'a*;“2'/\/'£--r"qwﬂ§5wo1£

m=43,5,-:

The Fourier expansion (12) can be further simplified.
The sin 2le and cos Zle terms are of the same frequency

and can be combined.

(18) AL (e 2m2) + A% (pin 22 )= C pic(2m 2 + )

Expanding the right hand side of (13) by the trigono-

metric identity for the sine of the sum of two angles,

11

equating coefficients of like terms and solving for ¥ ana

C in the usual manner will give C = A/2 and Y=« . A simi-

lar combination of corresponding tems oceurring under the
sumnation signs will give terms of the type

A gL NV

2 == Cs(nz + <) where B has been replaced
by its value in terms of ZNl and ne The Fourier expansion

can now be rewritten as

(14) f(z,)- Qi (22 +4) + Z o 4—*—41—- Crmz2 +«)
M=1,3,8,
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It is convenient at this time to change the variable
back to t. Remembering that z = = ¢  and multiplying
numerator and denomix%ator by Zfl, z = %{E « The Fourier
expansion can now be written in terms of to.

(15) :f@ﬂ;; é% OMAth.+oU f‘£§: 3- 44/; ; ¢ 2%%%? + “v
/35‘

It has already been noted than Nl is a very large
number, the number of cycles of radio frequency occurring
during the period of an audio frequency. For this reason,
it will be convenient to rearrange the counting starting
with ZNl and counting ahead and back from Zl\Il; thereby
avoiding computations using the squares of large numberse.
Besides the added convenience, the rearrangement of the
counting will reveal a.characteristic of the signal which
is in itself interesting. We begin by letting n = 21\1‘11' K
where k is odd, then n will be odd as reguired in the above

summations. Substituting for the kth frequency of the

series (15]

(16) (ZM Ig)wt _ (z/v,w, " Kw‘)t-‘—(ws + 2ﬂ§,fc)t

Z M M T 2ZM 257

/

= (W, T KWt , §o=ZT
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Furthermore, the coefficients can be simplified as

follows:

| A Am _ __,9_[ 4 M J_ A 4V
(17) 7 AnEwt T LIV (2 iR T T+ 4N Kk +&7[
A__4M
TK (1 4V +K)

An approximation can be introduced at this point;
since Ny is a very large number, ;%f%j::’ will be very
nearly equal numericglly to 1 for a large range of values
of k begimming with l. It should also be noted that the
magnitudes of the coefficients will be negligibly small due
to the 1/k factor long before this approximation will cease
to be valid. Hence, the approximation will cause no error
in the terms of the series which are retained in any prac-
tieal computation. ZILetting k range from ZNi - 1 to infin-
ity so that n will range from 1 to infinity as required,

the expansion can now be written

2N, -1
(18) F(#)= 2 ain (Wit +«) + > cm[ZF(f,-Ké'o)t +« |
' ‘ K=4,3,5,. -
— A
- Z 2 Qm[Z';r (5, +k5) & +c¢]
K=i3s,. .

The final expression for the spectrum of the signal in
FLguré 1l will now be written with the limits on the summa-

tions omitted; it is to be understood that the summations
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will be run from 1 to whatever value is desired for compu-

tational accuracy, with k odd.
A v
(19) $@)= 2 eim(Wit +<) + 5 7= cos[Wi-rws)t + 7
A . < W, +
_.Zﬂ—:z CJ)'QE»»UI + K >)t qj

Inspection of (19) will reveal that it is identical to
the résult that would have been obtained by considering the
signal %o be composed of a carrier of amplitude A/2, ampli-
tude modulated by a square wave of amplitude A/2. The
treatment of amplitude modulation by a single sine wave tone
will be reproduced here in order to lend continuity to the
discussion. A carrier amplitude modulated by a single tone
is depicted in Figure 4. The carrier amplitude is caused
to vary by an amount * mA, where m is known as the percen-
tage modulation. lMathematically, the signal can be expres-

sed a8
(20) $@)= Ao [i+ om oim Wit [JRbn (Wit + <]

Subsequent multiplication and rearrangement of terms by

means of a trigonometric identity will yield

(1) S&)l= Ao dim(Wit +) + m:’f"m[(w,~-wo)t+ocj

— ML s [(Wirws) o+ <]

In order to derive (19) from amplitude modulation
theory, a more general type‘of expression for amplitude

modulation is needede When a carrier is modulated by an
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arbitrary fun?tion of time, the resulting signal can be
(3
written as

(3] Goldman, Stanford, Frequency Analysis, hodulztion and
Noise, lMcGraw-Hill Book Co., pp. 141-179, 1948.

(22) §@)= Ao [/+ m g@] em[wt +«7

In the above expression, ong(t) is the modulating
function of time. For the signal under consideration

= 24
here, g(t) = pop” RAim KWVt
’ K=/I-als;"’

, the Fourier expansion

of a square wave, the percentage of modulation is 1.00 if
we consider the original carrier amplitude to be A/2. Sub-

stitution into (22) gives

(23) f@)= £. [1 + 7.00 Z;ﬁz;c wbwotjw(w,t + )

Multiplication and rearrangement of the terms by means
of a trigonometric identity gives (19) identically, thus
Justifying the statement that the signal spectrum can be
derived from either Fourier analysis or amplitude modu-
lation theorye. |

This result is not at all surprising; in the ideal
case, modulation and keying amount to the same thing phy-
sically. Consider the idealized transmitter which has been
referred to and is shown in Figure 2. (If one is to anal-
yse idealized signals, he must be permitted to conceive of
ideal transmitters.) The effect of keying is to vary the
plate voltage of the amplifier from Q to A; a supply of
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voltage A being assumed. The oscillator is on continu-
ously, and its output will be amplified anytime plate
voltage is applied to the tube; and if the grid driving
voltage is high enough, an oscillation of amplitude A will
ocecur in the plate tuned circuit. Next, consider the
idealized transmitter of Figure 3 which has a plate supply
voltage of A/2 and is modulated through a transformer of
perfectly linear frequency response by & square wave of
amplitude A/2. In this case, the plate voltage will vary
from O on the negative lobes of the square wave to A on the
positive lobes. The effect of modulation in this case is
then to cause a plate voltage variation from Q to A. This
is the same result which was produced by keying the trans-
mitter of Figure 2. In short, the two operations, modu-~
lation and'keying produced the same signale.

So far, it appears that the obvious has been proved.
Actually, a highly special case, namely, that of a carrier
frequency which is an integer harmonic of the keying fre-
quency was assumed. However, three separate cases can
occure They will now be discussed in ordere.

Case ls The carrier frequency is an integer harmonic
of the keying frequencye.

This is the case which was just analysed by two inde-
pendent methods. If the carrier frequency is assumed to be
an integer harmonic of the keying frequency, each pulse

will quite naturally and of its own accord start with the
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same phase. It will be recalled thet the oscillstors in
the idealized transmitters were considered to be on con-
tinuously. Thus, in this case, the mathematical condition
of periodicity is satisfied automatically. In the preced-
ing analysis, two independent methods yielded the same
result for the signal spectrum, except for an approximation
of little practical importance which was introduced in
deriving the coefficients of the components of the spec-
trum by Fourler analysis. The author has not yet been able
to resolve the question of why the two analyses do not
yield the same results identically without the approxima-
tione While this anomaly has very little practical impor-
tance, it is of mathematical interest. It might be related
to the Gibbs phenomena which occurs atAQiscontinuities in
funcections treated by Fourier analysis.

Case 2. The carrier frequency is not an integer har-
monic of the keying frequency; the carrier occurs in each
pulse with its natural phase.

I£ the carrier frequency is not an integer harmonic of
the kéying frequency, and the oscillators of either of the
two ideal transmitters are still assumed to operate con-
tinuously, the pulses will each start with different phase.
Hence, the condition of periodiecity will not be fulfilled,
and a Fourier series representation based on a single key-
ing interval will not be applicable. However, the carrier

component of the spectrum will have constant phase as
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required by amplitude modulation theory, and the signal
spectrum will be given by (19) as before.

case 3. The carrier freQueney is not an integer har-
monie of the keying frequeney, and each pulse is forced to
start with the same phase.

This case is very much like Case 2, except that the
condition of periodicity is obtained by adjusting the phase
of the oscillators at the beginning of each pulse. Direct
Fourier analysis will be applicable; since the carrier
- component will not have constant phase, modula tion theory
cannot be applied. As a matter of fact, the carrier itself
will not appear in the spectrum since only those frequen-
cies which are harmonics of the fundamental period of
integration appear in a Fourier spectrum. If the analysis
were carried out, one would expect both even and o0dd har-
monics of the fundamental in the spectrum expansion. Only
odd hammonics were found in Case 1 by Fourier analysis and
modul ation theory. There is no contradiction here; modu-
lation theory is simply not applicable.

O0f the three cases discussed, the first two are of the
most practical importance. Generation of the type of sig-
nal discussed in Case 3 by either of the ideal transmitters
would entail the addition of a perfect phase control. The
process of phasing and keying a wave is certainly different
from that of simply keying the wave, being a combination of
phase and amplitude modulation. In any practical case,
amplitude modulation theory is simple to apply, and it has
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been shown to give the correct result. However, it is not
meant to discredit the signals of Case 3. All of the ideas
presented so far will be used to advantage in the next

section in the treatment of frequency shift keyinge

2. Spectrum of a Signal Employing Frequency Shift Keying

A frequency shift signal is shown in Figure 5. The
common practice of referring to such a signal as an FS
signal will be employed here. OUnce again, a square wave
has been taken as the keying wave. The mark condition is
denoted by one Irequency, uvhe space condition By another.
Such signals are derived physieally by injecting the key-~
ing wave 1nto a reactance tube circuit, changes in tuned
circuit reactance being caused by changes in reactance
tube current. Such circuits are easily found in the

(4)
literature and need not be fully discussed here.. Phy-

{4} Terman, Frederick R., Radio Engineering, MeGraw-nill
Book Co., p. 493, 1947.

gsically, then the signal of Figure & is the result of
frequency modulating a carrier with a square wave.

Just as in the case of start-stop keying, it is neces-
sary to consider the phase with which each pulse of radic
frequency begins before making a Fourier analysis. One
condition should be evident; the signal should be contin-
uous at transition points. A simple mechanical analogy

will make this clear. Consider the mechanical oscillator



n |
) (L0 A0 [\ (ORA N ANAAA A A0OR A £
VUL VUTIU VI U VT 0Oy

Fie. 5. FS Keveo waveE.

/ K

AVAVAV V= I

/ i ,
7 », %
7

/

Fie 6. M N 0 TOR

SSTE AN
N Y L

Fr6 7 TrRiANM6ULAR WAVE.



21

of Figure 6. The mass M oscillates zbout the point Q
between the limits ¥ a, and at the instant under consi-
deration is moving toward the right. Now, consider a
sudden change in one of the circuit parameters, either
the mass M or the spring constant k. The mass will con-
tinue to move to the right, but the oscillation will con-
tinue with a new frequency determined by the new circuit
parameters. Intuitively, one would require continuity of
motion in any mathematical description of the problem.
Since transients are being neglected in this treatment,
continuity would imply that the oscillatory functions
representing the motion in two successive intervals be
equal at the transition point between the intervals. Con-
sideration of transients would require that the functions
and their derivatives be equal at the transition pointe.
Analogously, continuity of the functions representing
the FS signal will be requirede It will be shown that such
continuity follows quite naturallj from frequency modu-
lation theory. The mature of the FS signal will now be
investigated mathematicallye A brief review of the treat-
ment of frequenecy modulation by a single sine wave tone
will add to the clarity of the discussion; this treatment
can be found in any fundamental text on radio engineering,

(8)
a reference is given for convenience.. The usual

(6) Goldman, op. cit., pp. 141-179.
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presentation begins with defining the instantaneous angular

frequency in a frequency modulated system by

(24lerr 41; = fo + (4F) pin WoT

In this expressionm, fc is the frequency of the carrier
being modulated; ( AF ) is the frequency deviation and
depends upon moduiator'design; fo is the modulating fre-
quency. The expression (24) is then integrated, and the
function of time resulting from frequency modulation is

taken as

(28) S()= Ann 6 = HMCZv:ﬁt - —f CooW,t + ¥ |

The final expression (25) can then be expanded by Besselts
function identities to obtain the signal spectrum.

An extension of the above procedure is needed in order
to analyse frequency modulation by a square wave. For mul-
titone moduletion, the instantaneous frequenecy can be de-

fined as

(z6) 25 48 de - WLZ(A,c ) i KWLt

In this expression, f is the frequeucy of the carrier; fo
is the fundamental freouency component of the keying wave;
( AcS) is the deviation caused by the kth component of the
keyiné wave. In frequency modulation, the deviation caused
by a modulating component is directly proportional to the
amplitude of that component. Eof a square wave modulating

signal, the (AKf) can be replaced by ( ) where (Aj'-) is
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arbitrary and will depend upon modulator designe.
P —4

! 46 A rox Tt
(27) Zr gz * Fe +KZ=“’§“_,€ Aaee ’

When (27 ) is integrated, the result including the
constant of integration is

AS KWwet +C
(28) ©= Wet -2 xif, 077 ’

5
(29] SE)= A eca|(wet +e,) -2 57 oo /cwotj

In (29) the counstant Cl which has the nature of a
phaseAangle has been lumped with the carrier component. It
will be later shown that Gl can be set to zero. Now the
surmation is the Fourier expansion of the saw tooth wave
shown in Figure 7. The saw tooth wave will have the same
period as the modulating signal, since it was obtained by
integrating the keying wave. The various lines making up
the saw tooth wave form can be expressed as F(t) =T atz bn.
This means that the swwmation in (29) is replaceable by the

equation of a line in appropriate intervals and that (29)

itself will break up into functions of the type
S@E)= A oin (Wet +C, * at + 4w
» €ach defined in an appropriate

interval. However, the slopes and intercepts of the lines
must be investigated, keeping in mind the condition of con-
tinuity of the sine functions at the transition points.

The expansion of a saw tooth wave in (29) has as its lead-
ing coefficient %_é where A€ is arbitrary and would
depend upon a particular modulator designe. So the
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amplitude of the wave has been taken arbitrarily as E.
From the assumed amplitude, the known period, aznd known
points on the lines, the slopes and intercepts of each can

be calculated quite simplye. The results are tabulated

belowe

(30) Ffe)= %6¢- £ T >t 5o

| Fit) =-%5¢t + 3£ 277 t >T
Fit) = 282 - 5E 3r>¢+->27
F)=-25t +7£& 4T 72 737

L J o e [ ] . . L] - [

When these results are substituted into (29), the
result is: (Cl hes been set to zero for simplicity; this

step will be Jjustified later.)

(31} 5&)=A%(Wﬁt+—2:’-r£t—5) T % 70
C S@®)= A bin (Wet - LE52+3E) 27 7 t7T
SE) = A tin (Wet + -5 £) 3r > tr2r
SE) = H%(Wctﬂ-‘g’_’—f‘t+7f) 47 7 73T

® s - L [ . . . . . . - . .

Now that the equations of the pulses of radio fre-
guency in an FS signal are known, we can see if they
satisfy the continuity condition as required. The second
and third of the above equations should matech at t = 2T

To test, we ask if
(32) We ZT"’Z:’E (2.7') +3& = Wc_(ZT) + ZE(Z 7-)_ S £
) , T -

E = £
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Further tests will show that the functions are matched
at each transition point as required. The matching is
independent of Cl
thermore, the matching condition reduces to an identity in

since it affects each pulse equally; fur-

B so that E, which is related to an arbitrary frequency
shift, is itself entirely arbitrery. Since E#? has the
dimensions of frequency, we can set We +‘§£€=‘U/ and
We - %#? = Wz ; E has the nature of a phase constant,
permitting the spectrum functions to be written in the

follocwing compact f orm:

(833) 5@)= A u[wit - {4c+ri)d] (2k+)T>25 2kT
SE)= A ain [Wet +(4 6 +3)pT (21c42)T > 7 RK+1)T

In the above set of functions, the first two pulses
to the right of the origin are accounted for by k = 0; the
next two by kx = 1, and so on. It must be stressed that
the phase angle ?5 is not arbitrary, except insofar as it
is related to the arbitrary frequeney shift, and cannot be
set to zero. Furthermore, it has been retained in the
functions (33) because théy satisfy the necessary condition
that the pulses be Jjoined at transition points. The match-
ing came about quite naturally from frequency modulation
theory and was in no way forced. It is possible, of course,
for certain combinations of frequency deviation and keying

frequency to cause ¢ to be an even number of 7 radians,

in which case it is effectively zero in (33). This special

case will be considered later.



26

The signal should be examined for periodicity. (We
are still concermned only with periodicity based on a single
keying interval.) The presence of the phase aangles is
enough to make one suspect that periodicity does not exist.
Before testing for periodicity, it is necessary to evaluate
the constant E in terms of the signal parameters. The
leading term of the Fourier expansion of a triangular wave

4E

of amplitude E is = , the leading term of the expansion

dealt with here is 4%/f,. Equating and solving, there

- rAS ) .
results E=g= Tz e It is suffiecient for the present
purposes to test for a pafticular case rather than to for-
mulate a general condition in terms of one of the k's in
(33)s Take for example £( %f) which should be equal ta
£(Z’ ). Substituting in (33), there results as the

réquirément for periodicity

_ . . ‘ as
(84) i (Wi T - %‘g): Qi (w1 57 - 243 £ 207

which is reducible to

(55) m = —E;,—:i - '2—'A'§—~f‘;

The condition required by (35) is not satisfied except
for special choices of W, , 4 f; aﬁd fo’ so that we may con-
clude that periodicity of the signal is a special case
rather than the general one. To summarize briefly at this
point, it has been shown that the result of freguency modu-
lating a carrier frequency fc with a square wave of funda-

mental £, is to produce a signal which consists of altermate
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pulses of frequencies fl and fz; the pulses are joined at
the transition points from fl to fz; veriodicity of the
signal does not exist except as a special case; the fre-
quencies fl and fz are respectively above and below fc by
the same amount. It can be secen that four cases might
arise: (1) the puises of fl and fa start with their natu-
ral phases, and periodicity does not exist; (2) periodicity
exists, but the pulses do not start with their natural
phases; (3) the pulses start with their natural phases, and
periodicity also exists; (4) the pulses do not start with
their natural phases, and périodicity does not exist. Each
case will give rise to a different type of spectrum which
will be discussed in turn.

Case 1. The pulses start with their natural phases,
and periodicity does not exist.

The mathematical requirement in this case is that the
phase angle P be an even multiple of 7 radians since a
shift of Z#7 radians is physically equivalent to no shift
at all. Note that this condition requires that the pulse
beginning at the origin start with 0. Physically, this
could be taken care of by adjusting the timing of the key-
ing or translating the axes to such a pulse. Translation
of axes will not affect the nature of the signal and its
spectrum. Mathematically, then, it is required that

(36) &= ZAS - 2mm  Le 4S5

== = 7
4—50 35_'0
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Since periodicity does not occur in this case, Fourier
analysis based on a keylng interval would not be correct.
However, the signal can be regarded as two interlocking
waves, each amplitude modulated with a square wave. The
pulses of fl and fz start with their natural phases so
that application of amplitude modulation theory is per-
fectly rigorous. The spectrum is then obtained by super-
imposing two functions of the type (19)e. The fz spectrum
should inelude a phase factor of T to account for the
relative displacement of the fl and fz pulses, but since
the amplitudes and frequencies involved are the major point
of interest in the signal spectrum, it is sufficient to

omit phase angles and write
(37) S@)= % Qi W T +Z7—'%< Coolw -KWo)t 'Z.T’qu co.,(w,+/<w,)t-

-+ L;_i Oim Wat 1—277"’%)( CM(W:.— K‘Uv)t -Zﬁ.’%c CM(W,+ KWo)f

Case 28, Periodicity exists, but the pulses do not
start with their natural phasese.

Non-periodicity in the general case has been previ-
ously demonstrated in order to show the nature of the
signals dealt with. However, at this time, the conditions
for periodicity should be examined closely, bearing in
mind that it must be satisfied for successive fz pulses as
well as fl pulses. Remembering that a particular k in (33)

accounts for a pair of pulses, an analysis similar to that
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used to develop (36) and applied to kth and (k + 1l)th pairs

of pulses will yield, the k dropping out

F-
, AS _ é%_ b7
(38) M= - 55 avro P= 5 * 73,

In the above expressions n and p are integers which come
from adding angles of 2aw 9 2pm as in the derivation
of (36). Adding the above expressions and changing n+Dp,
which is an integer to the integer n, the condition for

periodicity is obtained.

$ + 5=

(39) m = £

The spectrum for this case has been obtained by Balth
Van der Pol. However, the various special cases treated in
this article are not treated in the work of Van der Pol.
He obtained the spectrum of the signal without regard to
the constants which amount to phase shift, and his work
would be applicable in any case to a signal in which pure
frequency modulstion without phase shift is considered to
be the end result. Such a signal would be difficult to
obtain physically inasmuch as the constants provide for
continuity of the signal, and coatinuity would seem to be
required in any circuit containing inductance. The spec-
trun obtained by Van der Pol in the notation of this

article follows:
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(40) 5:(.&): _72;’3[7% 44»«7’:21" Coo Wt

+ P e l;,—*—",(w@-wo)t-ww+w°)t}

m=/*
PN M((w(w—zwo)tw_n(wrzwo)t)?
m-2.* Z
o e 1 cnali3m)tn (@13
m-3" 2 ) )
M Qe TM {w(tu- fuw, )t + Cn(W 44 )2
+ = =
m=-4
45 :Fa -f— Sl
wm = g:‘ fc e —_—_E);__,.*-

Case 3. The signal is periodic, and the pulses start
with their natural phases.

The mathematical conditions for this case have already
been derived; it is required that conditions (36) and (39)

be satisfied simultaneously, so that

S+ s
R T mexs » and p are
integerse.

Since both conditions are satisfied in this case, we
would expect (37) and (40) to give the same result although
they are of somewhat different forme. Since the frequency
ghift in this case is a harmonic of fo’ and the condition

S, + 5
— =%, = M is also satisfied, it follows that f£,, £,

fz are each also harmonics of fo. Thus, each sideband of

'by an integer harmonic

(37) differs from either £es £, fz
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of fo; and for each frequeney of the part of the spectrum

whieh is centered on £ there is an equal frequeney in the

1°
fz spectrum, enabling one to rearrange the counting to

start With.fc. Consider, by way of illustration, the nth
sideband above fo’ and presume also that it is the kth side-
band above fl. Evidently for the fl spectrum, k is given
by n minus Afjﬁ;, and the same frequency will be found in
the £, spectrum when k equals A5/f, plus m. The total term

for this frequency component is then

coolo o= 208 gy ool i

(42) = 7= 33)

which becomes
4

2A S0 ot (We + mWo)E
(el = %7 sy, (
' 5o
This last expression is the nth upper sideband of the
s A5
Van der Pol spectrum since Ce» %%’ Z =1 because <, is

an even integer andﬁla.%f %? is zero for the same reason.
For this special case, then, the spectrum of the signal is
given equally well by either (37) or (40]).

Case 4. The signal pulses do not start with their
natural phases; and the signal is not periodice.

This last case is, of course, the one most likely to

occur in practice. Neither of the spectra thus far derived

is rigorously applicable, and there is no elementary method
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of determining mathematically what the spectrum really ise.
Fourier integral analysis can usually be employed to find
the spectrum of a non-periodic funetion provided the inte-
gral of the function from minus to plus infinity is finite
and determinates A signal of infinite extent and oscil-
latory in nature such as the one being analysed here cannot
be attacked directly, if at all, by the Fourier integral.
The physical appearance of the signal in this case is
very little different from that of Case 1. It would appear
reasonable to consider (37) as an approximation to the sig-
nal spectrum. Since the signal consists of a high frequen-
oy oscillation, it will be almost periodic, and it would
seem just as reasonable to accept the Van der Pol spectrum
as an approximation. However, since neither is rigorously
applicable, one would have no right to set either up as a

standard over the othere.

3¢ Comparison of the Derived Spectra for an FS Signal

A signal corresponding to Case 4 of Section 2 has
been chosen Ffor plotting and comparison of (37) and (40];
the plotted spectra are shown in Figures 8 and 2. The
values of the parameters chosen are typical of those that
might be encountered in radioc teletype practice, a carrier
frequeney of 6 me/s, a keying frequency of 23 c¢/s, and a
frequency shift of 425 ¢/s. At best, the plots are approx-
imations to the spectrum of the particular signal under
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study. The line frequencies in Figure 8 are not the same
as those in Figure 9 and should not be taken very seriously
in either case. The gemneral outline, maximum amplitudes,
distance between peaks, and bandwidth are properties of
the spectra which are of more importance.

The bandwidth ocf (37) is easily computed. Following
a common prcctice in radib engineering, the band will be
taken as including all components which are not more than
40 DB below the unmodulated carrier. The unmodulated
carrier is of amplitude A since when the transmitter is
not being keyed, the output is a wave of amplitude A and
frequency £,; in practice, a transmitter rests on steady
"ma rk" during idle periods. We can solve for the compo-

ﬁent ﬁhich is 40 DB below the carrier as follows:

A
A/

(44) 40= 20 Log

The component satisfying this equation to the nearest whole
number is the 31lst, but it must be remembered that the
counting of k is with respect to components which are dis-
placed 425 cps from the center of the spectrum and that

there are two such kth components, one below f and the

l’
other above fz. The bandwidth is then

(a5) B, = 2[233B/)+ 425]= 2276 </s

Computation of the bandwidth for the Van der Pol spec-
trum is somewhat more tedious. The decibel relation be-

tween the amplitude of the unmodulated carrier and the nth
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sideband can be written as

< - m T . mT
(46) 2= Log |2A mé 6=Con = OR pPn Z
- mE=n*

The largest value of n which is found to satisfy the above
equation for the chosen parameters is 34; hence, the band-

width is given by

(47) B,= 2 [34(3)[= /s64 /=

With regard to the very important detail of bandwidth,
the two spectra of (37) and (40) give widely different
results. It is common practice in FS keyed transmitters to
employ a keying filter to remove some of the higher order
harmonics of the keyingGXave, thereby reducing the actual

transmitted bandwidthe. Whether or not the bandwidth

(6] Spregue, Robert M., Frequency Shift Radio Teletype and
Telegraph System, Electronics, pp. 127-131l, November 1944.

requirement is actually reduced by such a keying filter is
a question which cammot be answered by the techniques
employed in this paper, since the spectrum without the
filter is not rigorously given by either (37) or (40). It
is to be presumed that manufacturers of FS keying equipment
have experimental verification of the benefit in bandwidth
reduction to be obtained by using a keying filter. However,

there seems to be no simple analytical method of computing

the benefite.
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CONCLUSIONS

The conclusions to this paper are to be found in the
derived signal spectra (19), (37), and (40), each appli-
cable as noted under vafiods bossible cases in the Discus-
sion. No rigorous spectrum distribution was found for the
most general case of FS keying, ani it was found that vhen
(37) and (40) are considered separately as approximations
to the spectrum in the general case, widely different re-
sults were obtained. The question as to which is the
better approxima tion cannot be answered unless the actual
spectrum distribution is known precisely, either through
experiment or a more extended analysis. Analysis should
probably proceed on the basis of the Fourier integral,
although it is not directly applicable toc the problem in
a simple mamner. A second possibility for extensiaon of
the theory is through joint use of amplitude, frequeney,
and phase modulation theory since it was shown that fre-
quency modulation of a carrier by a square wave results in
phase shift by an amount necessary to insure continulty
of the resulting signal. Any extension of the results of
this paper should also irclude the special case where

periodicity of the signal can be based on more than one

keying interval.
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