
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

1951 

Square wave modulation Square wave modulation 

Richard Henry Duncan 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Physics Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Duncan, Richard Henry, "Square wave modulation" (1951). Masters Theses. 3028. 
https://scholarsmine.mst.edu/masters_theses/3028 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/3028?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F3028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


SQUARE WAVE :MODULATION 

BY 

RIGF.;_.A.RD H. DUNCAN 

THESIS 

submitted. to the :faoulty o:f the 

SCHOOL OF 1riHES AND =."ETALLUHGY OF THE UNIVERSITY OF 11IS SOURI 

in partial :fulfillraent of the work req_uirecl :for the 

Degree of 

lf'LA.STER OF SCIENCE, PHYSICS l.IAJOR 

Rolla, Missouri 

1951 

Approved by - ~#~ roessoro£ Physi~· 



1 

TABLE OF C 01\fTE ~lr S 

Page 
Acknowledgments. • • • • • • • • • • • • ii 

List of Illustrations. • • iii 

Introduction • • • l 

Review of Literature . • • • • • • 3 

Spectrum of Carrier On-Off Signa.~. • • • 5 

Spectrum of FS Keyed Signal. • • • 19 

Comparison of the Derived Spectra :for 
an FS Keyed Signal . • • • 32 

Conclusions. • • • • • • • • • • • • • • 37 

Bibliography . • • • . • • • • • 38 

Vita . • • • • • • . • • • 39 



ii 

ACKNOWLEDGl~I:BlNT 

The author wishes to acknowledge the assistance and 

interest of Dr. Louis H. Lund of the Physics Department 

and Dr. J·anos z:aborszky of the Electrical Engineering 

Depar~ent o~ the Missouri School of ~nes and MBta11urgy. 



LIST OF ILLUSTP~TIONS 

Figure 

l.. 

2. 

3. 

On-0~~ Keyed Wave •• . . . . . . . . . 
Keyed Transmitter. • • 

1todulated Transmitter. 

. . . . . . . . 

. . . . . . . . 

Page 

7 

7 

7 

4. .Amplitude 1i.odulated Transmitter. • • • 7 

5. FS Keyed Wave •••••• 

6. Mechanical Oscillator. • 

7. Triangular Wave. • • . . 

• • • • • • • 

. . . . . 
• • • • • • • 

20 

20 

20 

8. Spectrum of FS Keyed Signal, 
Van der Pol Theory • • • • • • • • • 33 

9. Spectrum of FS Keyed Signal, 
Amplitude Modulation Theory. • • • • 34 

iii 



INTRODUCTION 

Modulation o~ a radio 'frequency carrier can be de'fined 

as the variation of some wave parameter such as amplitude. 

frequency, or phase. in accordance with Lntelligence to be 

transmitted. An unmodulated carrier is simply a continuous 

sine wave and contains no information other than the fact 

that the transmitter has been turned on. The spectrum of 

an unmodul.ated signal consists o:f a single frequency. A:n.y 

type o:f modulation is characterized by the appearance of 

additional frequeneies, known as sidebands. One of the 

fundamental problems in radio engineering is to reduce the 

number of sidebands to a minimum and still adequatel.T rep

resent the information to be transmitted. The large number 

of radio :facilities required by modern civilization can be 

accommodated in the radio spectrum only if each facility 

uses bandwidth as sparingly as possible. Reduction of 

bandwidth inevitably results in lower quality service. so 

that final designs are compromises between conflicting 

considerations. The purposes o~ any modulation stu~ are 

to provide an understanding of the modulation process and 

a basis for reducing band\vidth. Obviously, the engineer 

cannot efficiently taKe measures to reduce bandwidth until 

he knows the ideal bandwidth requirement for a system. 

l 



A study of square wave modulation is of importance in 

the field of radio telegraphy; telegra~hic signals are 

characterized by sudden transitions between two signa~ 

oonditions in both on-off keying and frequency shift key

ing. It is the purpose o:f this paper to study the signal 

s:pe otra resul. ting when a carrier amplitude is modulated 

2 

by a square: wave. These two types of modulation correspond 

to on-off keying and frequency shift keying, respective1y. 



REVIEVl OF LITERA.TURE 

There is already consid.e·rable literature dealing with 

quality of service versus ba...""ldwidth in both radio broad

casting and telegraphy. A representative list of such 

articles is given in the Bibliograp~ of this paper. The 

results published in these papers have been, for the most 

part, obtained through experience with actual telegraphic 

facilities. Although they are of considerable importance 
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in telegraphic art, only one of these publications deals 

directly with the problem of this paper, the theoretica1 

spectrun1 resulti1~ from square wave modulation. That 

article was written by the Dutch engineer and mathematician, 
(1} 

Bal.th Van der Pol.. .. The work of van der Pol \Vould be 

(11 Van der :Po.!, Ba:!th, Frequency Modulation. Proc. !.R.E:., 
Vol.. 1.8, pp. 11.94-1.205, J"uly 1.930. 

rigorous in the case of pure frequency modulation without 

phase shift of the radio frequency carrier. It is shown 

in this paper that phase shift does occur, and in such a 

way as to insure continuity of the resulting signal. When 

the condition that the final signal be continuous is con-

sidered, it appears thr-3.t more than one type of signal 

spectrum is possible, inc.luding that found. by Van der Pol.. 



In addition to the articles listed in the Bibliogra

phy, ~ree use has been made of the fundamentals of modu

lation theory as usually found in texts on radio engineer

ing. References have been given where applicable. These 

referenaes are for convenience and are not meant to cite 

original papers in the field. 

4 



DISCUSSION 

1. Spectrum of a Carrier On-Off Signa1 

The first signal to be considered consists of an 

infinite train of sinusoidal pulses, the durations of the 

"signa~ on" and "signal o:r:rrr conditions being the same. 

This condition is co::Clvenient to handle mathematically and 

is, to a close degree of approximation, representative of 
(2) 

the test signal ••• RYRYRY ••• used in teletype practice. 

(2) Watson, E. F., Fundainentais of Teletypewriters Used 1ri 
the Bell System, Bell System Tech. Journal, p. 620, October 
1938. 

The mark and space arrangement of this combination of 

l.et ·ters in the teletype code is such as to require the 

reversal of the relays in the system at the end of almost 

every w1it of time. Naturally, such a signal constitutes 

the most stringent test of the system. Furthermore, it 

requires the most frequent st~rting and stopping of the 

carrier (or shifting of the carrier when frequency shi:ft 

keying is used). Any other combination of letters would 

insure the existence of the same signal conditions for more 

than one unit of time; it is well lcnown from Fourier anal-

ysis that a sinusoidal pulse approaches monoahromatioity as 

the length of the pulse is increased. Hence, it seems 

reasonable that the signal. corresponding to square wave 
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keying will give the widest spectrum to be encountered in a 

teletype system. 

The signal to be analysed is shown in Figure 1. A :few 

cycles of the radio frequency oscillation are shown. It is 

impracticable to draw a high frequency oscillation to scale, 

and it should be understood that there are a large number of 

cycles in each pulse. A typical case might be a carrier 

frequency of three megacycles per second and a pulse dur

ation of 1/30 second, giving 100,000 cycles of radio fre

quency in eaab. pulse. 

Fourier analysis of the signal is possible only if the 

signal. is periodic. The mathematical cond.i tion of periodi

city for the signal can be stated as f(t1 l = f(t1 + 2T) 

where t 1 can have any value, and 2T is the f\Uldamenta.l. 

period of the keying wave. (The possibility of periodicity 

based on several keying intervals will not be considered in 

this pa:per; the condition of periodicity will. be restricted 

to the one given.) Physically, this means that each pulse 

must begin with the same phase if Fourier analysis is to be 

applicable. Keeping this necessar.r condition in mind, the 

signal can be written as a function of time as follows: 

{1) 5(t;)::: fJ ~ (w, -t 1- o( l)f) 

5(t:) = 0 

(..z ~ + 1) T 7 t: "7 2 n T 
~~T > t 7 r~;H. +I) r 

The phase angles ~M in the above expression must be free to 

take on whatever values are needed in order to satisfy the 

condition of periodicity. (This is perfectly analogous to 

representing the parts of a saw tooth wave by f(t) :+at 
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:t bn; the constants bn are! necessarily di:fferent for each 

part of the saw tooth outline.} An interesting result is 

obtained ·when there are an integer nwnber of cycles of 

radio :frequency in each pulse; such a signal could be pre

sumed to be generated by keying the ideal radio frequency 

amplifier shown in Figure 2. The amplifier is fed by an 

oscil1ator which is continually on; the amplifier itsel.:f is 

turned on and off by xre ans of the key. Absence of starting 

and stopping transients is assumed. If the oscillator is 

ide~, that is. perfect frequency and phase stability are 

presumed• each pulse of radio :frequencY: in the output will. 

begin with the sa.me phase in the case under consideration. 

Ivrathematioally speaking, if the carrier frequency is an 

integer harmonic of the keying :frequency the o(, of (1} will 

all. be equal. 

8 

Before beginning the Fourier analysis for this special 

case, it is necessary to change the variable t which ranges 

:from 0 to 2T during a fundamental. period to one which ranges 

from 0 to Ztr during the saroo period. This change is shown 

by the Z axis in Figure 1.. It can be seen that t-=- J c • 
We can also write W, t in te~ms of z by noting that i:f N

1 
is the number of cycles of radio freg_uency in time T, then 

Nl = :t1 T. Hence. uJ, t = w.r~ rr • But since w, :: 2-rr s-, 
and 5- "'' • the equations (l) can be rewritten as: ,_-

T 
(2} .f (le) : 11 ~ (.2.,N, Z + o() -,- 7 ~ 70 

f(~) = 0 A-7T 7 ~ 77T 
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The Fourier coefficients are then given by 

r 2~ 

( 3} a., "' _; l II~ (2Nd ... -1-u() Ceo 11 ~ ti'L + ;f..j,Jo I~"' t. t1 a. 

Reducing (3} and (4} by the trigonometric identity :for 

the sine of the sum of two angles, they become 

"(.,- . (-rr 
( 5) a.,: A~ Jo ~ 2«. ~ ~,_,a J..~ -1- ~~~ o( Jo C.&O ZN, j!, ~" i- J..i: 

J_ d ~o(.1-;r~ 2N, i:.. ~ 11 t. tA.~ + II~ ""17r~ 2/'1,~ ~ 11 t.. tl ~ 
(6) V"-w = 7r 7r 0 

The right hand integral of (5} is 0, except when 
.. 

n = 2N1 • Noting this fact and integrating 

t 7 ) a w ,_( II e.ro ._ ( ~ (2.N", -1'1) l. - ~ (.t IV, 1-YI )-t. 7 71") + .4 44-. .t. [_E] -,r 
. t 7T [ 2. (2-#, -Jt) 2.(21vi 1-'J1) Jo J 7T "k o 

(IS 1t ~ltv,) 

The bracketed part of a~ will be handled first, calling 
I 

it an and substituting ~imits. 

(8) ~ = r ' ] 
~(2~ +- n) 

When n is even, the cosine terms in the numerators of 

the first two terms in the bracket will be 1, since 2N1 is 

certailly even (2N1 :! n)1T will be an even nwnber o:f 

radians. Hence, the entire bracket will be zero when n is 



even, tu~less it is equal to ZN1 in which case an will have 

to be evaluated separately. 

For the special case when n = 2N
1 

( g l , A eva d..JTi-a ... = 7T 0 A~2l~~ 

T'his result is obtained by noting the trigonometric 

identity sin x cos x = i sin 2x, which when integrated 

from 0 to 77· y ·ields o. 

Returning to the expression ~or a • it is seen that 
n 

when n is odd, the cosine terms in the numerators of the 

first two terms will be -1 since (2N
1 

i- n}tr will always 

be an odd number of Tr radians. Reducing (7) and summar

izing, the results thus far obtained 

The first integral in (6) will vanish except when 

n:: 
- I} C-M o(_ 

u 1 in which oase it will yield bn = ·-2 -···- • The 

second integral in (6) is like the first in (5), except 

that the roles of 2N
1 

and n are interchanged. This inter

change will not ~feet the evaluation of cos(2N1 ±n)7l- • 

but it will reverse the signs in the denominators of the 

terms in (8). 

(11) _j .- -
·J 'VI -

Henoe, forb we write 
n 

A~ oe r- 4N, 7 
-Tr -- L 4-M 2._11~ J 

8 __ ~~ 
7T 

/0 



4M 
Letting the quantity 4-hl~- 11 .,. - , the Fourier 

expansion o~ the signal can now be written as 
c:::ao 

(12) :f(-c,)== ~~~ ~}.,N,i:., + ~~~()( L .8 ~'Vf-a 
l)f =: I) 3.J ,S:: · · · 
~ 

+ fl.:;-r.. L 8 ~ '11£ 

l)t = IJ 3 I s: ... 

The· Fourier expansion (12) can be further simpJ.~ ie d. 

The sin 2N1 z and cos 2N1 z te.rr.as are of the same freg_uency 

and can be combined. 

Expanding the right hand side of (13 ) by the trigona-

11 

metric identity for the sine of the sum. of two angles. 

equating coefficients of like t erma and solving for II' and 

C in the usual manner will give C :: A/2 and 'P= o< • A simi-

l.ar combination of corresponding terms ocourring under the 

summation signs will give terms of the type 

where B has been replaced 

by its value in terms of 2N1 and n. The Fourier expansion 

oan now be rewritten as 



It is convenient at this time to change the variable 

back to t. - .,. Remembering that z - T -t; and mu1 t iplying· 

numerator and denominator by 2f
1

• z = • The Fourier 

expansion can now be written in terms of t. 

(15) f(t;) :: 1 ~(w. -t + o<.) + 2_ 
/')1 :::.I) ~~s ... .. 

~ ,, 

It has already been notecl than 1:r
1 

is a very la.rge 

number, the number of cycles of radio frequency occurring 

during the period of an audio frequency. For this reason, 

it will be convenient to rearrange the counting starting 

with 2N
1 

and counting ahead and back from 2N1 ; thereby 

avoiding compute.tions using the squares of large numbers. 

Besides the added convenience, the rearrangement of the 
. 

counting will reveal a characteristic o"f the signal. Wo.ich 

12 

is in itself interesting. We begin by letting n = 2N1 + K 

where k is odd. then n will be odd as re~uired in the above 

swrunations. Substituting for the kth frequency of the 

series (15} 

{1.6) (~IV, t ~) w,t: _ 
. ZM -

' 
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Furthermore. the coe:f:ficients can be simpli:fied as 

:follows: 

.f1_ 4N, ,q [ 4-M ] ,q 4M 
(17} - 7r +tv1,_- ( 2N; :t J<:.) ~ = 7T[+ 4/V; /<. +K.,_j 7T 4 11, 1

- Yl "1. 

= fJ 4M -"Tr/(, {± 411, +K) 

An approximation can be introduced at this point; 
~}/, 

since N1 is a very large number,. -:t- 4 ;11; +-K will be very 

nearly equal numerically to l for a large range of values 

of k beginning with 1. It should also be noted that the 

magnitudes o:f the aoefficients will be negligibly small due 

to the 1/k faator long be:fore this approximation will cease 

to be valid. Hence, the approximation will cause no error 

in the terms o:f the series which are retained in any prac

tical computation. Letting k range from 2N - 1 to in:fin-
1 

i ty so that n will range from l to infinity as required·, 

the expansion aan now be written 

2~-1 

ll.B} .:f (t) = :, ~ (w, t; +o() + L_ :~<:: ~ ~11"(5", -Kfo) t +-<.] 

~ L ~c-. [271" (S, +..tS..) t +o<.) 
K=-i,3,S: ... 

The final expre·ssion for the spectrum of the signal in 

Figure 1 will now be written with the limits on the summa

tions omitted• it is to be understood that the summations 



will be run :from l to whatever value is desired f'or com:pu

tationa1 accuracy, with k odd. 

{,19) 5(t) == ~ ~ (w1t 1- c<) + L. ~ ~ [(w,- KLLio)t: + o<..] 

_ L_ .;:.~<; c:.o-:lgw, + K w") c + ""] 

14 

Inspection of' (19) will reveal that it is identical to 

the result that would have been obtained.. by considering the 

signal to be composed of a carrier of amplitude A/2, ampli

tude modulated.. by a square wave of amplitude A/2. The 

treatment of amplitude modulation by a single sine wave tone 

will be reproduced here in order to lend oontinuity to the 

discussion. A carrier amplitude modulated by a single tone 

is depicted in Figure 4. The carrier amplitude is caused 

to vary by an amount ± mA
0 

vmere m is known as the percen

tage modulation. lviathematically, the. signal oan be expres

sed as 

Subsequent multiplic.ation and rearrangement of' terms by 

meru~s of a trigonometric identity will yield 

(21) Jft:l"' Aa tJ.W(W,t -t-o<) -1- ~IJo ~[rw,-wo)-t + o<] 

- rm:-!' ~[(w,+wtJ) t +<?(] 

In order to derive ll9} from amplitude modulation 

theory, a more general type of expression. :for amplitude 

moduJ.ation is needed. When a carrier is modulated by an 



arbitrary fw1ction of time, the resul ti.ng signal can be 
l3) 

written as _ 

[31 Go'Idirian, Stanford., Frequency Arialysi s, liiodUla tion and 
Noise 1 M.cGrav1-HilJ. Book. Co. 1 ;pp. 141-179, 1948. 

In the above expression, mA
0
g(t) is the modulating 

function of time. For the signal under consideration 
<::X> 

here • g( t l :: ,L :.~- ~ I< V~Jot:: , the Fourier expansion 
I< :I, 31 s, ... 

].5 

of a square wave, the percentage of modulation is 1.00 if 

we consid.er the original carrier am_plitude to be A/2. Sub

stitution into (22) gives 

Multiplication and rearrangement of the ter.ms by means 

of a trigonometric identit:y gives (.19) identically, thus 

justifying the statement that the signal spectrum can be 

derived from either Fourier analysis or amplitude modu

lation theory. 

This result is not at all sur_prising; in the ideal 

case, modulation and keying amou:::;.t to the same thing phy

sically. Consider the idealized transmitter which has been 

referred to and is shown in Figure 2. (If one is to anal

yse idealized signals, he must be permitted to conceive of 

ideal transmitters.) The effect of keying is to va~ the 

pJ.ate voltage of the amplifier from 0 to A; a supplY of 
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voltage A being assumed. ~~e oscillator is on continu

ously, and its output will be ampli~ied anytime plate 

voltage is applied to the tube; and if the grid driving 

voltage is high enough, an oscillation of amplitude A will 

occur in the plate tuned circuit. Next, co nsid.er the 

idealized transmitter of Figure 3 which has a plate supply 

voltage of A/2 and. is modulated tbrough a transformer of 

perfectly linear frequency response by a square wave of 

amp~itude A/2. In this case, the plate voltage will vary 

from 0 on the negative lobes of the square wave to A on tre 

positive lobes. The effect of modulation in this ease is 

then to cause a plate voltage variation from 0 to A. This 

is the same result \\hich was produaed by keying the trans

mitter of Figure 2. In short, the two operations, modu

lation and keying produced the same signal.. 

So far, it appears that the obvious bas been proved. 

Actually, a highly special ease, name~, that of a carrier 

frequency which is an integer harmonic o~ the keying fre

quency was assumed. However, three separate oases can 

occur. They will now be discussed in order. 

Case ~. The carrier frequency is an integer harmonia 

of the keying frequency. 

This is the case which was just analysed l;>y two inde

pendent methods. I:f the carrier ~requenay is assumed to be 

an integer harmonic of the keying frequency-, each pulse 

will quite naturall.7 and of its own accord start with the 
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same phase. It will be recalled that the oscillators in 

the idealized transmitters were considered to be on con

tinuously. Thus, in this case, the mathematical condition 

of periodicity is satisfied automatically. In the preced

ing analysis. two independent methods yielded the same 

result for the signal ~ectrum, except for an approximation 

of little practical importance which was introduced in 

deriving the coefficients of the compone.nts of the spec

trum by Fourier analysis. The author has not yet been able 

to resolve the question of why the two analyses do not 

yield the same results identically without the approx~a

tion. While this anomaly has very ~ittle practical impor

tance, it is of mathematical interest. It might be related 

to the Gibbs phenomena whieh occurs at .discontinuities in 

functions treated by ]'ourier analysis. 

Case 2. The carrier :frequency is not an integer har

monic of the keying frequency; the carrier occurs in each 

pulse with its natural phase. 

If the carrier :frequency is not an integer harmonic of 

the keying frequency, and the oscillators of either of the 

two ideal transmitters are still assumed to operate con

tinuous1y, the pulses will each start with different phase. 

Hence, the condition of periodicity will not be fulfilled,. 

and a Fourier series representation based on a single key

ing interval will not be applicable. However, the carrier 

component of the spectrum wil1 have constant phase as 



required by amplitude modulation theory, and the signal. 

spectrum will be given by (19) as before. 

Case 3. The carrier frequency is not an integer har

monic of the keyil~ frequency, and each pulse is forced to 

start with the same phase. 

18 

~is case is very muoh like Case 2, except that the 

condition of periodicity is obtained by adjusting the phase 

of the oscillators at the beginning of eaoh pulse. Direct 

Fourier analysis will be applicable; since the carrier 

component \'will not have constant phase, modulation theory 

cannot be applied. As a matter of fact, the oarrier itself 

will not appear in the spectrum since only those frequen

oie s vvhich are harmonics of the fundamental period of 

integration appear in a Fourier spectrum. If the analysis 

were oarried out, one would expect both even and odd har

monics of the fundamental in tl:e speotrum expansion. Only 

odd hamtonics were found in Case l. by Fourier analysis and 

modulation theory. There is no oontradiotion here; modu

lation theory is simply not applicable. 

Of the three cases discussed, the first two are of the 

most practical importance. Generation of the type of sig

nal discussed in Case 3 by either of the ideal. transmitters 

would entai1 the addition of a perfect phase control. The 

prooess of phasing and keying a wave is certainly different 

from that of simply keying the wave, being a combination of 

phase and amplitude modulation. 1n any practical case. 

amplitude modulation theory is simple to app17. and it has 
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been shown to give the correct result. How·ever, it is not 

meant to discredit the signals o~ Case 3. All of the ideas 

presented so far will. be used to advantage in the next 

section in the treatment of ~requency shi~t keying. 

2. Spectrum o~ a Signal Employing Frequency Shift Keying 

A frequency shift signal is shov1n in Figure 5. The 

common :practioe of referring to su<lh a signal as an FS 

signal will be employed here. Once again, a square wave 

has been taken as the keying wave. The mark condition is 

denoted by one :tre quency, ·~11 e space condi t.ion by another. 

Such signals are deriveu ~hysically by injecting the key

ing wave into a reactance tube circuit, changes in tuned 

circuit reactance being caused by changes in reactance 

tube current. Such circuits are easil.y :found in the 
(4) 

literature and need not be :fully discussed here. . Phy-

(4) Terman, Frederiak E., Radio Engineering, kcGraw-Hiii 
Book Co., p. 493, 1..947. 

sicall.y, then the signal. of Figure 5 is the result of 

frequency modulating a carrier with a square wave. 

J"ust as in the case o~ start-stop keying, it is neces

sary to consider the phase with which each pulse of radio 

frequency begins before making a Fourier analysis. One 

condition should be evident; the signal should be contin

uous at transition points. A. simple mechanical. analogy 

wi11 make this clear. Consider the mechanical oscillator 
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of Figure 6. The mass M oscillates about the point 0 

between the l~its + a, and at the instant under consi

deration is moving toward the right. Now, consider a 

sudden change in one o'f the circuit parameters, either 

the mass ~ or the spring constant k. The mass wi11 ~on

tinue to move to the right, but the oscillation wi~ con

tinue with a new frequency determined by the new circui'ti 

parameters. Intuitively, one would require continuity of 

motion ~ any mathematical. description of the problem. 

Since transients are being neglected in this treatment. 

continuity would imply that the oscillatory functions 

representing the motion in two successive intervals be 

equal. at the transition point between the intervals. Con

sideration o:f transients would require that the functions 

and their derivatives be equal. at the transition point. 

Ana1ogous1y, continuity of the funations representing 

the FS signal. will. be required. It will be sho\m. that such 

continuity follows quite naturally fran frequency modu-

1 ati on the cry. The m ture of the FS signal wiJ.l. now be 

investigated mathematically. A brief review o:f the treat

ment o:f frequency modulation by a single sine wave tone 

wiJ.J. add to the clarity o'f tbe discussion; this treatment 

can be :found in any fundamental text on radio engineering • 
(li) 

a reference is given for convenience. _ The usua1 

(6) Gol.dman, .2R..• 2!l•• PP• 1.41.-179. 
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pre sent a ti on begins with def'ining the instantaneous angular 

:frequency in a ~requency modulated system by 

In this, expression, f
0 

is the :frequency of' the carrier 

being modulated; ( A 5 ) is the frequency deviation and 

de:ponds upon modulator design; f
0 

is the modulating fre

quency. The expression (24) is then integrated, and the 

function of t~e resulting :from frequency modulation is 

taken as 

The final expression (25) can then be expanded by Bessel's 

:function identities to obtain the signa1 spectrum. 

An extension of the above procedure is needed in order 

to analyse frequency modulation by a square wave. For mul

titone modulation, the instantaneous frequency can be de-

fined as 

(26) 
_I_ 
Z7T 

In this expression, f is the frequency of the carrier; :f c 0 

is the fundamental :frequency component of' the keying wave; 

( A~~l is the deviation caused by the kth component of the 

keying wave. In :frequency modulation, the deviation caused 

by a modulating componen~ is direct1y proportiona1 to the 

amplitude of that component. F"or a square wave modulating 

signal, the ( AKf l can be replaced by ( 1.c-s ) where { Llf) is 



arbitrary and ~nll depend upon modulator design. 

( 27 ) )., .,. 

When (27) is integrated, the result including the 

constant of integration is 

(28) 

(29) 

S= 
AS ~ t<Wo-t +C!, 

k&..Jo 
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In (29) the constant c
1 

vvhich has the nature of a 

phase ar:~gle has been lumped with the carrier component. It 

will be later shown that c
1 

can be set to zero. Now the 

sunmation is the Fourier expansion of the saw tooth wave 

shov1n in Figure 7. The saw tooth wave will have the same 

period as the modulating signal, since it was obtained by 

integrating the keying wave. The various lines making up 

the saw tooth wave form can be expressed as F(t) =t at:t b • 
n 

This means that the sumr:1 ation in (29) is replaceable by the 

equation of a line in appropriate intervals and that (29} 

itself will break up into fm1ctions of the type 

5(t.)= A~ (w4t +C, ra.t:. r .,(,-...,) 
• each defined in an appropriate 

interval. liowever, the slopes and intercepts of the lines 

must be investigated, keeping in mind the condition of con

tina.i ty of the sine fw1ctions at the transition points. 

The expansion of a saw tooth wave in (29) has as its lead

ing coefficient ~ where llf is arbitrary and would 

depend upon a particular modulator design. So the 



amplitude o:f the wave has been taken arbitrarily as E. 

From the assumed amplitude, the knO\wt period, and known 

points on the lines, the slopes and interaepts o:f each can 

be calculated quite simply. The results are tabulated 

bel.ow. 

(30 l F(t) = Z£ t 
I 

-£"" T~ t. 7 Q 

F(t) = - g t:. + 3£ 
T 

1vT7 't71 

Fft) = b.E-t- S"£ 
T 

3r7 t?~T 

~{t:.) =- ~-t. -t-7£ -r fT7'C '7..3T 

• • • • • • • 

When these results are substituted into (29 ), the 

result is: (c1 has been set to zero for simplicity; this 

step will. be justi:fied later.) 

(31) 5 (t.) = A ~ (We. t + 2.. E"t:_ E 
T 

) T7 t:.?O 

5- (t:.) = A~ {Wt "t - ~14:+:3£) 'ZT7 t=?l -,-
5~) = ,q ~ {we-t + ~t- 5"E) .ar 7 -t7zr 

T 

s (-t:) -= 11 ~ (Wc.t- ~t. +7E) 4T 7 i:.73T 

• 

N~v that the equations of the pulses of radio :fre

g_uenay in an FS signal are: known, we can see i:f they 

satis:fy the aontinuity condition as required. The second 

and third of the above eq_uations should w.a tch at t = 2T. 

To test, we ask ~ 

(32} We t,r-~£ {2..,r) +-.3£-=- We{zr) + ~{zr)- S£ 
T T 

£=£ 

24 
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F·urther tests wil.~ show that the functions are matched 

at each transition p·o.int as required. The matching is 

independent of a
1 

since it affects each pulse equal~y; fur

thermore, the matching condition reduces to an identity in 

E so that E, which is related to an arbitrary frequency 

shift, is itse~f entirely arbitrz.ry. 
2-£ 

Since - has the I 

dimensions o:f :frequency, we can set W(! + ~ = w, and 

We. - 'L~ -== w%. ; E. has the nature of a phase constant • 
T 

permitting the spectrum functions to be written in the 

following compact form: 

(33} S(-t)= fl ~[w,t- (41C+-1)¢] 

5 (t) = A ~ [UJ2"t +(4 K. -t-3) ¢] 

(2 1< -1-1) T 7 t. 7 2/t. T 

( ~l<+z)T '? -t 7 (~K.-t-1) T 

In the above set of functions, the first two pulses 

to the right o:f the origin are accounted for by k = 0; the 

next two by k = i, and so on. It must be stressed that 

the phase angle ¢ is not arbitrary, except insofar as it 

is related to the arbitrary :frequency Shift, and cannot be 

set to zero. Furthermore, it has been retained in the 

functions (33} because they satisfy the necessary condition 

that the pulses be joined at transition points. The match

ing came about. quite na tural.l.y from frequency modulation 

theory and~ in~ way forced. It is possible, of course, 

for certain combinations o:f frequency deviation and keying 

frequency to cause (> to be an even nwnber of 7r radians. 

in which case it. is effectively zero in (33}. This special. 

case will. be considered later. 
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The signal. should be examined for periodicity. (We 

are still concerned onl.y with periodicity based on a single 

keying interval..) The presence of the phase angles is 

enough to make one suspect that periodicity does not exist. 

Before testing for periodicity, it is necessar.y to eva:Luate 

the constant E in terms of the signal parameters. The 

leading term of the Fourier expansion of a triangular wave 

of amplitude E is ~ , the leading term of the expansion 

dealt with here is ~ 5/.:f 0 • Equa. t ing and so 1. ving, there 
-,r-45 

results E. -= ¢ -= -;r:-s:; • It is sufficient for the present 

purposes to test for a particular case rather than to for-

mulate a general condition in terms of one of the kts ~ 

(33). Take for example :f( I } which should be equal to 
.ST 

f{ ~- }. Substituting in (33}, there results as the 

requirement for periodicity 

(34} 

which is reducible to 

(35} 

The condition required by (35} is not satisfied except 

for special choices of W1 • d f, and :f • so that we may con-
e 

elude that periodicity of the signal is a s_pecial case 

rather than the general one. To summarize briefly at this 

point, it has been shown that the result of fre~uency modu

lating a carrier frequency f
0 

with a square wave of funda

menta1 f 0 is to produce a signal. which consists of alternate 



pulses of ~requen~ies f 1 and f 2 ; the pulses are joined at 

the transition points from :r
1 

to ::r
2

; periodicity of the 

signal does not exist except as a special case; the fre-

quencies f
1 

and f are respectively above and below f by 
2 c 

the same amount. It can be seen that ~our cases might 
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arise: (1) the pulses o~ f
1 

and f
2 

start with their natu

ral phases, and periodicity does not exist; (2} periodicity 

exists, but the pulses do not start with their natura1 

phases; (3} the pulses start with their natural phases. and 

periodicity also exists; l4} the pulses do not start with 

their natural phases, ru1d periodicity does not exist. Each 

case will give rise to a different type of spectrum which 

will be discussed in turn. 

Case 1. The pulses start with their natural phases, 

and periodicity d.oes not exist. 

The mathematical requirement in this case is that the 

phase angle p be an even multiple of "ff radians sinc:e a 

shift of 2n7T radians is physically equivalent to no shi:ft 

at all. Note that this condition requn~es that the pulse 

beginning at the origin start with a. Physically, this 

could be taken care of by adjusting the timing of the key-

ing or translating the axes to such a :pulse. Translation 

of axes will not affect the nature of the signal and its 

spectrum .. 

(36) ¢ = 

1Ia them a tical1y, 

7T~f'-::.Z"Jit71 
4-fo 

·t;h en, it is required that 

.as = rrt. 
¥§o 
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Since periodicity does not occur in this case, Fourier 

analysis based on a keying interval ·t;ould not be correct. 

However, the signal ca.:n. be regarded as two interloclcing 

waves, each amplitude modulated with a square wave. The 

pulses o:f f
1 

and f
2 

start v1ith their natural phases so 

that application o:f amplitude modulation theory is per

fectly rigorous. The spectrum is then obtained by super

imposing, two :functions of the type (.19). The :e
2 

spectrum 

Should include a phase factor of T to account for the 

relative displacement of the f
1 

and f
2 

pulses, but since 

the amplitudes and :frequencies involved are the major point 

oi interest in the signal spectrum, it -is sufficient to 

omit phase angles and write 

{37) 5(-t) ::: f ~ fN 1-t -t- L. .:I< Cr.f.w.- J<. '-'.Jo) ~-L :.K c.n(w,-+- K- Wo)t' 

-+: ~W1t t-L~ ~(W1.- KCA.Jo)t -L.:~<- ~(W,rK.Wo)i: 

Case 2. Periodicity exists, but the pulses do not 

start with their natural phases. 

Non-periodicity in the general case has been previ

ously demonstrated in order to Show the nature of the 

signals dealt with. However, at this time, the conditions 

for periodicity should be examined closely, bearing in 

mind that it must be satisfied for successive f
2 

pulses as 

wel.l. as f
1 

pul.ses. Remembering that a partiouJ.ar k in (33) 

accounts for a pair of pulses, an analysis similar to that 
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used to devel..op (36) and appl.ie d to kth and (k +- 1. }th pairs 

of pulses will yield, the k dropping out 

(38) p= + 
25o 

In the above expressions n and p are integers which come 

from adding angles o:f ~ tt~ 4 2. f 7r as in the derivation 

o:f (36). Adding the above expressions and changing n+p, 

which is an integer to the integer n, the condition for 

periodicity is obtained. 

(39) ~-
s, + 5'2.. 

5o 

The spectrum :for this case has been obtained by Balth 

Van der Pol. However, the various special cases treated in 

this article are not treated in the work of Van der Pol. 

He obtained the spe otrum of the signal. vfi thout regard to 

the constants which amount to phase shift, and his work 

would be applicable in any case to a signal. in which pure 

:frequency modul[-~.tion v1i thout phase shift is considered to 

be the end result. Such a siBllal would be difficult to 

obtain physically inasmuch as the constants provide for 

continuity of the signal, and. co~1tinuity ·would seem to be 

required in any circuit containing inductance.. The spec-

trum obtained by Van der Pol in the notation of this 

article follows: 



(.40} 

:f. + s 2. 

Case 3. The signal is periodic, and the pulses start 

with their natural phases. 

30 

The mathematical conditions for this ease have alreacq 

been derived; it is required that conditions [36) and (39) 

be satisfied simultaneously, so that 

(41.} J where n and p are 

integers. 

Sinae both conditions are satisfied in this ease, we 

would expect (37) and (40) to give the same result although 

they are of somewhat different :form. Since the frequency 

shift in this case is a harmonic of f , and the condition 
0 

is also satisfied, it follows that fa• f 1 , 

f 2 are eaah also harmonics of f 0 • Thus, each sideband of 

(37} differs from either ~c. ~l, :f 2 by an integer harmonic 
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of f
0

; and for each freq_uenay of the part of the spectrum 

which is centered on f
1

, there is an equal fre~uency in the 

f
2 

spectrum, enabling one to rearrange the counting to 

start with f.. Consider, by way of illustration, the nth 
0 

sideband above f
0

, and })reswne also that it is the kth side-

band abov-e :t
1

• Evidentl.y for the :e
1 

speotrum, k is given 

by n minus ~5/fo , and the same frequency will be found in 

the f
2 

speotrum when k equals IJ. 5/~, plus n. The total term 

for this frequency component is then 

which becomes 

(43} 

This last ex.p ression is the nth upper sideband of the 

~ 
,1~ rr· J.f 

Van der Po~ speotrum since 5o 
-- -I because .:5-o is 7.- -

an even integer and~ .l15 7T is z.ero for the same reason. b-~· z 
For this special case, then, the spect~n of the signal is 

given equally well by either (37) or (40}. 

Case 4. The sisnal pulses do not start with their 

natural phases, and the signal is not periodic. 

This last case is, of course, the one most likely to 

occur in practice. Neither of the spectra thus far derived 

is rigorously applicable, and there is no elementary method 
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of determining mathematiaally what the spectrum really is. 

Fourier integral analysis can usually be employed to find 

the ~ectrum of a non-periodic funetion provided the inte

gral of the· function from minus to plus infinity is finite 

and determinate. A signal o~ infinite extent and osc11-

latoey in nature such as the one being analysed here cannot 

be attacked directly, if at all, by the Fourier integral. 

The physical appearance of the signa1 in this case is 

very little different from that of Case 1. It would appear 

reasonable to consider (37} as an approximation to the sig

nal ~ectrwm. Since the signal consists of a high frequen

cy oscillation, it will be almost periodic, and it would 

seem just as reasonable to accept the Van der Po~ spectrwm 

as an approximation. liowever, since neither is rigorously 

applicable, one would have no right to set either up as a 

standard over the other. 

z. Comparison of the Derived Spectra for an FS Signal 

A signal corresponding to Case 4 of Section 2 has 

been chosen for plotting and comparison of (37} and (40); 

the plotted spectra are shown in Figures 8 and 9. The 

values of the parameters chosen are typical of those that 

might be encountered in radio teletype practice, a carrier 

frequency of o me/a, a keying frequency of 23 c/s, and a 

frequency shift of 425 c/s. At best, the plots are approx

imations to the spectrum of the particular signal. under 
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study. The line frequencies in i'igure 8 are not JGhe same 

as those in Figure 9 and should not be talcen very seriously 

in either case. The general outline, maximum amplitudes. 

distance between peaks, and bandwidth are properties of 

the spectra which are of more importance. 

The bandwidth of l37} is easily computed. Following 

a common pre:.ctice in radio engineering, the band will be 

taken as including all components which are not more than 

40 DB below the unmodulated carrier. The unmodulated 

carrier is of amplitude A since when the transmitter is 

not being keyed, the output is a w~ve of amplitude ~ and 

frequency f 1 ; in practice, a transmitter rests on stea~ 

ttmark" during idle periods. We can solve :for the compo-

nent which is 40 DB below the carrier as follows: 

(44} 

The component satisfying this equation to the nearest whole 

number is the 31st, but it must be .remembered that the 

counting of k is with respect to components which are dis-

placed 425 o»s :from the center of the spectrum and that 

there are: two such kth components, one below f 1 , and the 

other above t 2 • The bandwidth is then 

l45l /3, = z [ :2.8(31) + 425] = 22. 7' 

Computation of the bandwidth for the Van der Pol spec

trum is somewhat more tedious. The decibel relation be

tween the amplitude of the unmodulated carrier and the nth 

35 
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sideband can be written as 

(46} 

The largest value o:f n which is foWld to satisfy the above 

equation for the chosen parameters is 34; hence, the band

width is given by 

(47) f62.:::: 2 [ 3 4-(23 )] -== 1 s 6 4 ~/s 

With regard to the very important detail of bandwidth, 

the two spectra of (37) and {40) give widely different 

results. It is common practice ~ FS keyed transmitters to 

employ a keying filter to remove some of the higher order 

harmonics of the keying wave, thereby reducing the actual 
l6l 

transmitted bandwidth. . Vlhether or not the bandwidth 

( 6} Sprague, Robert :Kt., Fre. quency shift Radio Teletype and 
Telegraph System, Electronics, I>P• 127-131, November 1944. 

requirement is actually reduced by such a keying filter is 

a questi.on which cannot be a.nsvvered by the techniques 

employed in this paper, since the spectrwm without the 

filter is not rigorously given by either {37) or (40). It 

is to be presumed that man~acturers of FS keying equipment 

have experimental verification of the benefit in bandwidth 

reduction to be obtained by using a keying filter. However, 

there seems to be no simple analytical method of computing 

the benefit. 
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CONCLUSIONS 

The conclusions to this paper are to be found in the 

derived signal. spectra (1.9), (37), and (40}, each appli

cable as noted under various possible cases in the Discus

sion. No rigorous spectrUL~ distribution was found ~or the 

most general. case o-:f F'S keying, and it was ~ound that when 

(37) and (40) are considered separately as approximations 

to the spectrum in the general case, widely di~ferent re

sults were obtained. The question as to which is the 

better approxina tion cannot be answered unless the actual 

spectrwn distribution is known precisely, either through 

experiment or a more extended analysis. Analysis should 

probably proceed on the basis o~ the Fourier integral. 

although it is not directly applicable to the problem in 

a simple manner. A second possibility for extension of 

the theory is through joint use of amplitude, frequency. 

anu phase modulation theory since it was shown that fre

quency modulation of a carrier by a square wave results in 

phase shift by an amount necessary to insure continuity 

of the resulting signal. .A:ny extension of the results o'f 

this paper should also il:iClude the special. case where 

periodicity of the signal can be based on more than one 

keying interval.. 
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