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ABSTRACT

Knowledge of the initial conditions present in the early solar nebula is required to 

understand the evolution and its current volatile content. Comets were some of the first 

objects to accrete in the solar nebula. They are among the most pristine (primitive) 

remnants of the solar system formation, and their present-day volatile composition likely 

reflects the composition and conditions where (and when) they formed. Therefore, they are 

fossils of the solar system formation. High-resolution near-infrared spectroscopy is a 

valuable tool for sampling the parent volatile (i.e., ices subliming directly from the nucleus) 

composition of comets via analysis of fluorescence emission in cometary comae.

An overall goal of comet volatile composition studies is determining whether 

comets can be classified based on their volatile content and what this reveals about the 

history of the early solar system. Early work produced encouraging results, but recent work 

has left questions regarding whether a compositional taxonomy based on near-infrared 

measurements is feasible. These include questions such as: Are observed systematic 

compositional differences between Jupiter-family comets and Oort cloud comets the result 

of evolutionary effects or reflective of formative conditions? Is temporal variability in 

coma composition a common phenomenon, and if so, how can present-day measurements 

be related to natal solar system conditions? Can we place comet volatile compositions in a 

meaningful context? In this work we examine these questions in the context of near­

infrared measurements of Oort cloud comets and Jupiter-family comets, as well as a 

comparison between our results and extensive results from the Rosetta mission to comet 

67P/Churyumov-Gerasimenko.
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1. INTRODUCTION

1.1. BRIEF HISTORY OF THE SOLAR SYSTEM FORMATION

Our solar system originated as a dense clump in a giant molecular cloud. These 

clouds are enourmous (-20-200 parsec), such that thousands of solar systems can form out 

of them. They eventually undergo gravitational collapse. A star is born at the center of a 

dense clump when the local density becomes sufficiently high enough and the temperature 

raised to a certain level to ignite thermonuclear fusion, while the outer materials have 

flatten out into an accretion disk of gas and dust surrounding the central young star. All of 

the planets, asteroids, moons, and comets of a stellar system will accrete from this 

“protoplanetary disk” of gas and dust over the next several million years. The 

protoplanetary disk that formed our solar system is known as the solar (or protosolar) 

nebula.

Understanding the sequence of events and processes in the history and evolution of 

the solar system, from the formation of the planets to the source(s) of water and organic 

matter on Earth, requires knowledge of the initial composition and conditions present in 

the solar nebula. Comets are some of the smallest (few km in size) objects in the solar 

system and were among the first objects to accrete out of the solar nebula. Owing to their 

small size, comets lack a known mechanism for internal self-heating; thus, it is likely that 

the interior compositions of comets have not been significantly modified and should reflect 

the composition and the conditions where (and when) they formed.



2

1.2. COMETS: PRESENT-DAY RESERVOIRS AND ORIGINS

Comets that become available for studying can be placed into one of two dynamical 

groups: 1- Short period comets, such as the Jupiter-family comets (JFCs) and Encke type 

comets, which originate from the scattered Kuiper belt and have small orbital inclinations, 

and 2- Nearly isotropic Oort cloud comets (OCCs), which originate from the Oort cloud 

(outer reaches of the solar system) with random orbital inclinations.

The dynamical reservoir of a given comet can be identified using the Tisserand 

parameter, Tj, which measures Jupiter’s gravitational influence on a comet’s orbital path. 

Comets with Tj < 2 originate from the Oort cloud, a spherical distribution of comets in the 

outer solar system extending up to tens of thousands of Astronomical Units (AU) from the 

sun and possibly all the way to the next solar system. This includes dynamically new 

comets which are entering the inner solar system for the first time (e.g., comet ISON). Oort 

cloud comets have long orbital periods (hundreds to hundreds of thousands of years, such 

as comet ER61 with period of ~7600 years), and are often ejected from the solar system by 

Jupiter following a passage through the inner solar system. Comets with 2 < Tj < 3 are the 

JFCs, which reside in the Kuiper belt beyond the orbit of Neptune (30-50 AU). These 

comets have considerably shorter periods (several to tens of years) and thus offer the 

opportunity to study and learn about their composition more than once while we are alive. 

We can also study the effects of multiple close perihelion passages on their volatile 

composition. Comets with Tj > 3 are subdivided into two groups depending on the semi- 

maj or axis of their orbit: comets with a semi-maj or axis interior to that of Jupiter are Encke- 

type comets, whereas those with a semi-major axis exterior to that of Jupiter and interior 

to Neptune are Chiron-type comets. The term “ecliptic comets” is also used
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interchangeably to describe the JFCs, Encke, and Chiron-type comets, as they lie in or near 

the ecliptic plane of the solar system.

Historically, OCCs were thought to form at heliocentric distances (Rh) between 5­

30 AU from the Sun before getting scattered to their current reservior (Oort cloud), whereas 

ecliptic comets formed separately at even larger heliocentric distances. IR coma studies 

indicate that Jupiter-family comets (JFCs; originate from the Kuiper belt and have short 

orbital periods) are in general depleted relative to Oort cloud comets (OCCs; originate from 

the Oort cloud and have long orbital periods) in the hypervolatiles CO and CH4, which may 

reflect the effects of repeated close perihelion passages on their volatile content (Roth et 

al., 2020; Saki et al., 2020b; Dello Russo et al., 2016a). On the other hand, large optical 

surveys of product species found no correlation in depleted chemistry and dynamical age 

in JFCs, suggesting that compositional differences may instead be primordial and 

indicative of differences in formation histories for Jupiter-family comets compared to Oort 

cloud comets (A’Hearn et al., 1995). However, the detection of crystalline silicates in some 

comets, e.g., 1P/Halley (Bregman et al., 1987), 9P/Tempel 1 (via remote observations of 

material ejected during the Deep Impact mission (Harker et al., 2005)), and 81P/Wild 2 (in 

grains returned by the Stardust mission (Zolensky et al., 2006)) implies that material in 

their nuclei was processed at small Rh and mixed over ranges of distances in the solar 

nebula. Additionally, dynamical modeling (e.g., Gomes et al., 2005; Levison et al., 2011; 

Morbidelli et al., 2005) suggests that scattering processes and large-scale mixing of 

materials in the early solar nebula have complicated the distinction between comet-forming 

regions (Bockelee-Morvan et al., 2000, 2016; Gomes et al., 2005; Zolensky et al., 2006; 

Dello Russo et al., 2016b). Therefore, both the Oort cloud and Kuiper belt could contain



4

comets that represent varying (or, at the other extreme, largely overlapping) formation 

regions in the solar nebula. The Rosetta mission to comet 67P/Churyumov-Gerasimenko 

(hereafter 67P) revealed a heterogeneous nucleus, adding more complexity to these 

scenarios (Rickman et al., 2015; Le Roy et al., 2015; A ’Hearn 2017). However, this 

evidence suggests that comet formation was instead a more “spatially mixed” process.

Since their emplacement in the deep freeze of the outer solar system (either the Oort 

cloud or the Kuiper belt), the interior compositions of cometary nuclei have remained (at 

least to a large degree) unprocessed. Most processes that can change the properties of comet 

nuclei only affect a thin layer (a few meters deep) from the surface, which is thought to be 

excavated over the course of a perihelion passage into the inner solar system (Stern et al., 

2003; Le Roy et al., 2015; Gronoff et al., 2020; Saki et al., 2020a). Some comets exhibit a 

sudden eruption of materials, referred to as an outburst, close to their perihelion passage. 

Outbursts are known to start with the sudden appearance and steep brightening of an 

unresolved plume of material and are often described by brightness magnitude (Sekanina 

2010, 2017). Comets that outburst represent additional opportunities to probe the likely 

more pristine material below a comet’s topmost surface layers.

1.3. COMETS TAXONOMIES

To fully characterize comet population, knowledge of present-day dynamical 

reservoir is required. However, given the complex scattering processes which placed 

comets in their current orbits and the “spatially mixed” process of comet formation, the 

volatile compositions of cometary nuclei may represent widely varying formation regions 

in the protosolar nebula. Thus, a taxonomy based on the volatile composition among the
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comet populations is required for a more meaningful understanding of comets formation 

regions and conditions in the solar nebula. Certain primary volatiles — C2H2, CO, CH4, 

and OCS — are under-represented in studies of comets as a whole, thus making this task 

even more challenging (see Saki et al., 2020a; Dello Russo et al., 2016a for more details).

1.3.1. Compositional Taxonomies Measured at the Optical and Radio 

Wavelengths. Comets have been observed and characterized at optical wavelengths for 

over thirty years, leading to large databases of photometric and spectroscopic observations 

and the development of a taxonomy based on composition (e.g., see A ’Hearn et al., 1995; 

Cochran et al., 2012 and references therein). Fragment (daughter) species (e.g., CN, C2, 

C3, CS, NH, OH) formed by the photodissociation of bigger molecules in the coma. These 

species have emission features at optical wavelengths. Based on the fragment species, 

comets are classified as either “normal” or “carbon-chain depleted”, with several sub­

classes of the depleted type (seven distinct taxonomic subgroupings; Cochran et al., 2015; 

Schleicher and Bair, 2014). However, relating mixing ratios of fragment species to those 

of their parents is a difficult task, owing to possibly multiple parent volatiles for each 

fragment.

Some primary volatiles, including complex molecules such as ethylene glycol 

(C2H6O2), emit in the radio wavelength via rotational transitions. As of the time of writing 

this dissertation, there is no agreement on the existence of comet taxonomic classes based 

on their composition measured at radio wavelengths (Crovisier et al., 2009; Mumma and 

Charnley, 2011).
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1.3.2. Compositional Taxonomies as Measured at the Near-Infrared 

Wavelength. Parent (primary) volatiles (i.e., ices subliming directly from the nucleus) emit 

via ro-vibrational transitions at near-infrared wavelengths. Using modern near-infrared 

spectrographs such as CSHELL and iSHELL at the 3 m NASA Infrared Telescope Facility 

and NIRSPEC at the 10 m W. M. Keck Observatory, fundamental transitions of OCS, CO, 

H2CO, CH3OH, C2H6, CH4, HCN, C2H2, and NH3, along with transitions of H2O can be 

sampled from the ground in sufficiently bright comets. The outputs of these studies include 

best-fit rotational temperatures, molecular production rates, molecular abundances 

(“mixing ratios”) relative to both H2O (the dominant ice in most comets studied) and C2H6, 

and 2D maps of molecular column density along the slit, known as emission spatial 

distributions or profiles.

Figure 1.1 shows spatial profiles of emissions for many volatiles and dust grains in 

OCC C/2015 ER61 (PanSTARRS). These spatial profiles show that the emission intensity 

of volatiles peaks at the position of the nucleus and falls off with increasing nucleocentric 

distance (p) as 1/p, consistent with ices subliming directly from the nucleus with constant 

outflow speed. This suggests that these volatiles are “primary”. Thus, the hypothesis in our 

near-infrared measurements of comets is that once sublimation of H2O (the most abundant 

ice in most comets) is fully activated, the mixing ratios of primary volatiles in comet comae 

should remain relatively constant (assuming compositional homogeneity) and we can refer 

to those as the native compositions of the nucleus. Comets observed in the near-infrared to 

date suggest that this is true in general, although some primary volatiles (NH3, H2CO, and 

C2H2) and fragment species (CN and NH2) show a trend towards enhanced production at
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heliocentric distance (Rh) < 0.8 AU (possibly due to release from grains; e.g., see Dello 

Russo et al., 2016a).

It is a complex task to classify comets based on their primary volatiles in the current 

sample of the comet population. As of the time of writing this dissertation, there have been 

about 40 comets sampled in the near-infrared (~25 OCCs and ~15 JFCs). Early near­

infrared spectroscopic studies of the primary volatile compositions of comets 1P/Halley 

(Mumma et al., 1986), C/1996 B2 (Hyakutake) (Dello Russo et al., 2002b; DiSanti et al., 

2003; Magee-Sauer et al., 2002b; Mumma et al., 1996) and C/1995 O1 (Hale-Bopp) (Dello 

Russo et al., 2001, 2000; DiSanti et al., 2001; Magee-Sauer et al., 1999) revealed that they 

were chemically similar objects (Mumma et al., 2003). Subsequent observations of comet 

D/1999 S4 (LINEAR) prior to its complete disruption (Mumma et al., 2001) and of the 

split comet 73P/Schwassman-Wachmann 3B (Dello Russo et al., 2007; Villanueva et al., 

2006) showed two comets that were highly depleted in virtually all trace primary volatiles 

relative to water. At the other extreme, comets C/2001 A2 (LINEAR) (Magee-Sauer et al., 

2008) and later C/2007 W1 (Boattini) (Villanueva et al., 2011a) were enriched in the 

sampled trace primary volatiles. These results formed the basis for a proposed three-tiered 

taxonomy based on primary volatile abundance ratios, with comets classified as organics- 

enriched, organics-normal, or organics-depleted (e.g., Mumma and Charnley (2011) and 

references therein).

However, recent work has suggested that the three-fold classification scheme is 

incomplete and comet taxonomy in the near-infrared is probably more complex (see Dello 

Russo et al., 2016a for a recent review of comet taxonomies based on near-infrared 

spectroscopy). For example, the primary volatile compositions of comets 8P/Tuttle,
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C/2007 N3 (Lulin), and 2P/Encke (Bonev et al., 2008b; Gibb et al., 2012; Radeva et al., 

2013; Roth et al., 2018) show no systematic enrichment, depletion, or similarity to the 

mean value. These three comets all had high CH3OH abundances while being depleted in 

certain other molecules, for example C2H2, and “normal” in others, such as C2H6. Long 

period OCC C/2015 ER61 (a comet included in this work; see Section 3) was also enriched 

in CH3OH, normal in OCS, and close to depleted in the rest of the volatiles. This suggests 

that the chemical diversity among comets is more complex than the simple organics- 

enriched, organics-normal, and organics-depleted framework.

' i
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Figure 1.1 Spatial profile of multiple volatiles simultaneously measured with dust in 
comet ER61 on UT 2017 April 15. The slit was oriented along the projected Sun-comet 
line (position angle ~ 252°), with the Sun-facing direction to the left as indicated. The 
Sun-comet-Earth angle (phase angle, P) was ~ 61° on April 15.
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1.4. NATAL CONDITIONS, HETEROGENEITY AND VARIABILITY IN 
COMETS

Considerable compositional diversity exists in the comet population at all 

wavelengths. Jupiter-family comets are on average depleted in certain primary volatiles 

(e.g., CH4, CO) compared with Oort cloud comets. If these compositional differences are 

truly indicative of natal conditions (natal to comet formation regions), they would imply 

that JFCs formed in a compositionally distinct region in the protosolar nebula compared 

with OCCs.

On the other hand, these compositional differences could be due to multiple close 

encounters of these comets with the Sun, which could affect their volatile composition. 

Most processes that might alter the properties of the nucleus are expected to affect a thin 

layer near the surface (few meters deep) over the course of a typical perihelion passage. 

Short period (ecliptic) comets experiencing many perihelion passages into the inner parts 

of solar system may suffer more processing compared to dynamically young or new Oort 

cloud comets. In order to draw conclusions, place the results of present-day observations 

into a meaningful context, and interpret the clues of our solar system formation, we have 

to understand potential evolutionary effects, including any systematic differences between 

short period comets and OCCs. There are few facilities which are capable of performing 

these types of near-infrared measurements and acquiring observing time is difficult. 

Moreover near-infrared studies of primary volatile composition have largely been 

“snapshots” (observations over a single apparition and often near ~ 1 AU). Thus, 

overcoming the observational biases are important in interpreting the results of volatile 

compositional studies.
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Owing to the lack of spectral coverage, sensitivity and observational limitations, 

certain primary volatiles such as OCS, CO, CH4, and C2H2 are underrepresented in studies 

of comets as a whole. Fundamental ro-vibrational bands of CH4 and CO, are heavily 

populated in Earth’s atmosphere, resulting in highly opaque telluric counterparts. Thus, 

detection or stringent upper limits of these volatiles require that comets have sufficiently 

large geocentric velocities (Adot) to Doppler-shift corresponding cometary emissions away 

from their highly opaque telluric counterparts to a region of adequate atmospheric 

transmittance. JFCs are generally dim, and most observations take place near their closest 

approach to Earth which is where they have the smallest Adot. This precludes the 

measurements of CO and CH4. This has resulted in a significant paucity of detections of 

CO and CH4 in ecliptic comets. Improving the number of secure measurements of these 

species especially carbonyl sulfide (OCS), which is severely under-represented in comet 

studies, is one of the primary goals of this work (see Sections 2-4 for more details).

Some volatiles show asymmetries around perihelion. For instance, the Rosetta 

mission to comet 67P/C-G, found that mixing ratios of CO and CO2 in the coma varied due 

to seasonal effects on the nucleus (Le Roy et al., 2015; Hassig et al., 2015). In these 

seasonal effects, different portions of the nucleus receive seasonal illumination during 

different portions of an orbit due to the comet’s orientation with respect to the Sun, leading 

to distinct sources on the nucleus dominating outgassing at different times. In OCC C/2009 

P1 (Garradd), H2O production rates traced the predicted heliocentric dependence, rising 

and then falling near perihelion. However, CO production increased monotonically 

throughout the apparition, continuing to rise long after perihelion, perhaps due to seasonal

effects on the nucleus.
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Some comets have shown variation in volatile mixing ratios on smaller time scales 

due to diurnal effects (over the course of the rotation of the nucleus, see Bockelee-Morvan 

et al., 2016; Fink et al., 2016; Luspay-Kuti et al., 2015). For instance, non-uniform mixing 

ratios of CO/H2O were observed in OCC C/2009 P1 (Garradd) by both ground-based 

studies (McKay et al., 2015) and spaced-based studies from the High-Resolution 

Instrument Infrared Spectrometer aboard the Deep Impact Flyby spacecraft (Feaga et al.,

2014). Similar long- and short-term variability in primary volatiles abundances and 

production rates in OCC C/2015 ER61 (PanSTARRS) were observed during its 2017 

apparition (perhaps due to diurnal and seasonal effects).

Some primary volatiles such as NH3, H2CO, C2H2 display enhanced production at 

small Rh (< ~ 0.8 AU), perhaps due to grain sources (Dello Russo et al., 2016a). This 

emphasizes the need of primary volatile measurements over a large range of Rh. 

Determining to what extent these phenomena occur in the comet population is crucial to 

interpreting the results of volatile composition studies and placing them in a meaningful 

context.

1.5. A BRIEF OVERVIEW OF OBSERVATIONS AND DATA REDUCTION

This section will provide an overview of the techniques used for the near-infrared 

spectroscopic observations and procedures used for data reduction and analysis reported in 

this work (for more details see Section 3 in Saki et al., 2020b, 2021).

1.5.1. Observation. To address these pressing matters in cometary science, this 

study includes near-infrared spectroscopic measurements of the primary volatile 

compositions of four comets: the dynamically young, long period OCC C/2015 ER61
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(PanSTARRS), the OCC C/2002 T7 (LINEAR), the JFCs 21P/Giacobini-Zinner and 

46P/Wirtanen. These comets were measured using the state-of-the-art near-infrared 

spectrographs at ground-based observatories such as NASA Infrared Telescope Facility 

(IRTF). Comets presented in this work were observed and their spectra were acquired with 

the newly commissioned iSHELL spectrograph (Rayner et al., 2012, 2016) and CSHELL 

(the predecessor to iSHELL) at the 3m NASA Infrared Telescope Facility (IRTF). A brief 

overview of our observational techniques and data reduction precedures is given here, and 

a comprehensive description is provided in Section 2 and 3 in this dissertation (see Section 

3 in Saki et al., 2020, 2021).

Observations were performed using a standard ABBA nod pattern, with A and B 

beams symmetrically placed about the midpoint of the slit and separated by half its length 

(on-chip nodding). In the case of 21P/Giacobini-Zinner, some of the data were acquired 

using off-chip nodding, in which the A beam is placed at the midpoint of the slit whereas 

the B beam is placed perpendicular to the slit to the blank sky. Combining spectra of the 

nodded beams as A-B-B+A cancelled emissions from thermal background, instrumental 

biases, and “sky” emission (lines and continuum). The data were dark-subtracted, flat- 

fielded, and cleaned of cosmic ray hits and “hot” (high dark current) pixels. Flux calibration 

was performed using appropriately placed bright IR flux standards on each date.

1.5.2. Data Reduction. The data reduction procedures that we used are described 

extensively in the refereed literature (Dello Russo et al., 1998; Bonev, 2005; DiSanti et al., 

2006, 2014; Radeva et al., 2010; Villanueva et al., 2009). Their application to unique 

aspects of iSHELL spectra is detailed in §3.2 of DiSanti et al. (2017). Contributions from 

continuum and gaseous emissions were determined in the comet spectra as previously
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described (e.g. DiSanti et al., 2016). This procedure is illustrated in Figure 1.2. The fully 

resolved transmittance function was convolved to the resolving power of the data (X/AX 

~25,000 for CSHELL and ~40,000 for iSHELL) and scaled to the level of the comet 

continuum. The modeled continuum was then subtracted to isolate cometary emission 

lines.

Nucleocentric (or “nucleus-centered”) production rates (Qn c ) were determined 

using a well-documented formalism (Bonev, 2005; Dello Russo et al., 1998; DiSanti et al., 

2001; Villanueva et al., 2011a); see Section 3.2.2 of DiSanti et al., (2016) for further details. 

The nucleocentric production rates were multiplied by an appropriate growth factor (GF), 

which was determined using the well-established Q-curve methodology (e.g. Dello Russo 

et al., 1998; Bonev (2005); DiSanti et al., 2001; Gibb et al., 2012) to establish a total (or 

global) production rate, Q. This GF corrects for atmospheric seeing, which suppresses 

signals along lines of sight passing close to the nucleus due to the use of a narrow slit, as 

well as potential drift of the comet during an exposure sequence.

1.5.3. Molecular Fluorescence Analysis. Synthetic models of fluorescence 

emission for each targeted species were compared to observed line intensities, after 

correcting each modeled line intensity (g-factor) for the monochromatic atmospheric 

transmittance at its Doppler-shifted wavelength (according to the geocentric velocity, Adot, 

of the comet at the time of the observations). The g-factors used in synthetic fluorescence 

emission models in this study were generated with quantum mechanical models developed 

for each molecule. These models include CH4 (Gibb et al., 2003), C2H6 (Villanueva et al., 

2011b), H2O (Villanueva et al., 2012b), CH3OH (DiSanti et al., 2013; Villanueva et al., 

2012a), HCN (Lippi et al., 2013; Villanueva et al., 2011a), H2CO (DiSanti et al., 2006),
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OH* (Bonev et al., 2006), C2H2 (Villanueva et al., 2011a), CO (Paganini et al., 2013), and 

NH3 (Villanueva et al., 2013).
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Figure 1.2. Fluorescence emission of OH*, C2H6, and CH3OH in comet ER61 on UT 
2017 April 16. The yellow trace overplotted on the uppermost cometary spectra is the 
telluric absorption model (convolved to the instrumental resolution). Individual 
fluorescence emission models (color-coded by species for clarity) are plotted below. At 
the bottom of the panel is the residual spectrum (after subtracting the telluric absorption 
model and all relevant fluorescent emission models) with the 1o uncertainty envelope 
overplotted in bronze.
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A line by line analysis and a Levenberg-Marquardt nonlinear minimization 

technique (Villanueva et al., 2008) was used to fit fluorescence emission from all species 

simultaneously in each echelle order, allowing for high-precision results, even in spectrally 

crowded regions containing many spectral lines within a single instrumental resolution 

element. Production rates for each sampled species were determined from the appropriate 

fluorescence model at the rotational temperature o f  each molecule.

1.5.4. Determination of Rotational Temperature. Rotational temperatures were 

determined using correlation and excitation analyses as described in Bonev (2005); Bonev 

et al., (2008a); DiSanti et al., (2006); Villanueva et al., (2008). In general, well-constrained 

rotational temperatures can be determined for individual species with intrinsically bright 

lines and for which a broad range o f excitation energies is sampled. These conditions were 

satisfied for H2O in at least one setting in each data set.

1.6. UNCERTAINTIES IN MEASUREMENTS.

This section has been adopted from Bonev Ph.D. dissertation (Bonev, 2005) and 

Roth Ph.D. dissertation (Roth, 2019) and will provide the main sources of uncertainties for 

quantities measured or retrieved in this work (please see Roth, 2019 for more details). 

These quantities include molecular production rates (determined as the weighted mean of 

individual production rates for each measured line of a given species; Qiine), rotational 

temperatures (determined as the temperature which produces a zero-slope best-fit line 

when relating F/g vs. Eup for each line of a given species), and growth factors (see Roth, 

2019 and Bonev, 2005 for details). The reduction algorithms employed in this work 

calculate two sources of uncertainty for each quantity: stochastic error and standard error.
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The stochastic error is a measure of the signal-to-noise ratio (SNR) of each of the 

lines. For all but the brightest comets, the signal from emission lines in the coma is weaker 

than the background signal introduced by the sky, including continuum and emission lines 

from telluric species -  hence the dominant source of noise in the measured flux of each 

cometary line originates from thermal background noise (Bonev, 2005). The standard error 

is a measure of how quantities derived from the lines (e.g., Qi, Fi/gi) are spread about the 

weighted mean or about the best-fit line. In contrast to the stochastic error, the standard 

error is indicative of uncertainties introduced by modeled quantities (such as the g-factors): 

for instance, the flux of a C2H6 line may be measured with very high signal-to-noise, yet 

the production rate derived from the line may be in poor agreement with those derived from 

other C2H6 lines if its g-factor is poorly modeled.

In the case of global production rates and growth factors, these uncertainties are the 

stochastic and standard errors in the weighted means used to calculate each quantity. In the 

case of rotational temperatures derived with excitation analysis, the uncertainties are the 

stochastic and standard errors in a linear best fit. It is important to note that in most cases, 

the standard error is found to dominate over the stochastic error when using the 

instruments, models, and reduction algorithms employed in this work. The followings will 

examine how these quantities are incorporated into: (a) Uncertainties in molecular 

production rates introduced by uncertainties in rotational temperatures, uncertainties in 

growth factors, uncertainties in the telluric absorption model, and uncertainties in flux 

calibration. (b) Uncertainties in the abundance ratios, including for molecules whose 

transitions are in separate instrumental settings (i.e., abundance ratios between molecules 

that are not observed simultaneously).
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1.6.1. Uncertainties in Molecular Production Rate. The molecular production 

rates reported in this dissertation are the weighted averages of the production rates 

calculated for each line of an individual species (e.g., Disanti et al., 2005; Dello Russo et 

al., 1998; Bonev, 2005). The uncertainty associated with production rates for individual 

lines, Qi, is the stochastic error. When calculating the overall production rate using the 

weighted average of these quantities, both the stochastic error and the standard error of the 

average are calculated, and the larger of the two is taken to be the overall uncertainty. 

However, calculating this average production rate requires additional quantities, including 

the rotational temperature, the transmittance predicted by the telluric absorption model at 

the frequency of each line, the growth factor of each molecule, and the flux calibration 

determined for each spectral order.

In the case of the rotational temperature, uncertainties can be introduced in the slope 

of the best-fit line of F/g vs. Eup by uncertainties in the measured flux of each line, whether 

due to low signal-to-noise in the measured flux, uncertainties in modeling of the 

transmittance function (and hence the correction for telluric absorption) at the frequency 

of the line, or uncertainties in the applied flux calibration. Additional uncertainty can be 

introduced by the modeled g-factor, or the predicted intensity of the lines. Each of these 

will contribute to a greater spread in the derived F/g of individual lines about the best-fit 

line and are accounted for by the standard error calculation. In general, the possible spread 

in production rates due to uncertainty in rotational temperature is found to be well within 

the uncertainty limits given by the standard error of the weighted average production rates 

reported in this work.
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In the calculation of the growth factor, uncertainties are introduced by the spread 

of the production rates calculated at successive intervals along the slit about the “terminal” 

production rate value. The production rates at each position along the slit inside the 

terminal region are incorporated into a weighted average, and the standard and stochastic 

error are calculated, with the greater being taken as the overall uncertainty. Errors in the 

growth factor, especially when the growth factor of H2O is assumed for weaker trace 

species, are systematic: while they introduce uncertainties in the production rates, they do 

not affect the uncertainties in calculated mixing ratios.

Finally, uncertainty in flux calibration can introduce uncertainties in the derived 

production rates. Similar to the growth factor, these uncertainties are systematic within a 

given instrumental setting and will affect the production rates but not the derived mixing 

ratios. The algorithms employed in this work incorporate a 10% uncertainty due to flux 

calibration in the reported measurements.

1.6.2. Uncertainties in Abundance Ratios. Once the production rates have been 

calculated, the final task is to derive mixing ratios, or relative abundances. In this case, the 

standard errors of the weighted average production rates of each species are added in 

quadrature, which gives the uncertainty in their abundance ratio. However, for molecules 

whose transitions are not observed simultaneously (e.g., if  the mixing ratio CH4/H2O was 

calculated using Q(CH4) from the iSHELL Lp1 setting and QCH2O) from the M2 setting), 

an additional source of uncertainty is introduced due to the variable nature of the coma and 

the considerable amount of time required to take measurements in two separate settings 

(on the order of several hours). The uncertainty introduced in such measurements is 

estimated to be 10%, which is added to the uncertainty in the calculated mixing ratios.
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PAPER

I. CARBONYL SULFIE (OCS): DETECTIONS IN COMETS C/2002 T7 
(LINEAR), C/2015 ER61 (PANSTARRS), AND 21P/GIACOBINI-ZINNER AND 

STRINGENT UPPER-LIMITS IN 46P/WIRTANEN

ABSTRACT

Carbonyl sulfide (OCS) is one of the sulfur-bearing molecules detected in different 

astronomical environments, including comets. The present-day sulfur chemistry in comets 

may reveal much about the origin of these ices and their subsequent processing history. 

Cometary sulfur molecules such as H2S, H2CS, SO2, SO, CS, CS2, S2, and NS have been 

detected in many comets. However, OCS, the only sulfur-bearing species with fluorescence 

emission lines at infrared wavelengths, is under-represented in comet volatile studies, 

having been reported in only six comets so far. We targeted OCS at the NASA Infrared 

Telescope Facility (IRTF), in comets 46P/Wirtanen, 21P/Giacobini-Zinner, and C/2015 

ER61 (PanSTARRS) in 2017-2018 using the high resolution iSHELL spectrograph, and in 

C/2002 T7 (LINEAR) in 2004 using the heritage CSHELL spectrograph. In comet C/2015 

ER61, the OCS abundance was similar to those measured in bright comets such as comets 

C/2012 S1 (ISON) and C/1996 B2 (Hyakutake), while in C/2002 T7 it was relatively 

depleted. Our OCS measurement in 21P/Giacobini-Zinner is the first definitive detection 

of this molecule in a Jupiter Family comet from a ground-based facility and is close to the 

average OCS abundance determined in comet 67P/Churyumov-Gerasimenko by the 

Rosetta mission. Our 3o upper limit for comet 46P/Wirtanen is the lowest reported OCS
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abundance in any comet. We present production rates and mixing ratios (with respect to 

H2O) for these comets and place our results in the context of comets measured to date.

1. INTRODUCTION

Comets are volatile rich small bodies that are among the most primitive remnants 

of the early solar system. They were some of the first bodies that formed in the protosolar 

nebula in the giant planet region between 5 -  30 au (or more) from the Sun. Subsequent 

giant planet migration ejected them into their current dynamical reservoir of either the Oort 

cloud (Vokrouhlicky et al., 2019) or the Kuiper belt (Nesvorny et al., 2017). As comets 

enter the inner solar system (heliocentric distance < 3 au) increasing solar radiation causes 

their ices to sublime, creating a freely expanding atmosphere known as the coma, along 

with a dust tail and an ion tail. The chemical composition of nucleus ices should provide 

insights into the initial conditions and subsequent evolution of the early solar system. Most 

processes that may change the properties of comet nuclei only affect a thin layer (a few 

meters deep) from the surface, which is excavated over the course of a perihelion passage 

into the inner solar system (Stern et al., 2003; Gronoff et al., 2020). Because of their small 

size, comets lack a known mechanism for internal self-heating; thus, it is likely that the 

interior compositions of comets have not been significantly modified and should reflect the 

composition and the conditions where (and when) they formed (Mumma and Charnley 

2011; Bockelee-Morvan et al., 2004).

High resolution infrared (IR) spectroscopy is a valuable way to characterize the 

primary volatile composition of the nucleus through analysis of fluorescent emissions in
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the coma. Coupled with protoplanetary disk models, the nucleus composition inferred from 

these studies may place observational constraints on the nascent disk mid-plane where 

comets formed. With about 40 comets characterized in the IR and radio and more than 200 

comets cataloged at optical wavelengths, a large number of molecules have been identified 

in cometary atmospheres, both from ground- and space-based observations (Cochran et al., 

2015; Le Roy et al., 2015; Biver et al., 2015a; Dello Russo et al., 2016b; Roth et al., 2018).

Certain primary volatiles like C2H2, CO, CH4, and OCS are under-represented in 

studies of comets as a whole. IR coma studies indicate that Jupiter-family comets (relative 

to Oort cloud comets) are in general depleted in the hypervolatiles CO, CH4, and C2H6, 

which may reflect the effects of repeated close perihelion passages on their volatile content. 

On the other hand, large optical studies of product species found no correlation between 

dynamical family and carbon-chain depletion, suggesting that these differences may 

instead be primordial and indicative of differences in formation histories for Jupiter-family 

comets compared to Oort cloud comets (Dello Russo et al., 2016b and references therein). 

The detection of crystalline silicates in some comets coupled with updates in dynamical 

models (e.g., Levison et al., 2011) suggests that scattering processes and large-scale mixing 

of materials in the early solar nebula have complicated the distinction between comet­

forming regions (Bockelee-Morvan et al., 2000, 2016; Gomes et al., 2005; Zolensky et al., 

2006; Dello Russo et al., 2016b). Therefore, the Oort cloud and Kuiper belt contain comets 

that may represent varying (or, at the other extreme, largely overlapping) formation regions 

in the solar nebula. The Rosetta mission to comet 67P/Churyumov-Gerasimenko (hereafter 

67P) revealed a heterogeneous nucleus, adding more complexity to these scenarios 

(Rickman et al., 2015, Le Roy et al., 2015), stimulating fundamental questions concerning
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the extent to which abundances measured in cometary comae are representative of the 

pristine composition of nucleus ices (see A ’Hearn 2017 for a discussion of these questions). 

In this work we address these complex questions by significantly increasing the number of 

OCS measurements in comets, thereby advancing our understanding of their sulfur 

chemistry. We report the detection of OCS in two Oort cloud comets, C/2015 ER61 

(PanSTARRS) (hereafter ER61) and C/2002 T7 (LINEAR) (hereafter T7), and in one 

Jupiter-family comet (JFC), 21P/Giacobini-Zinner (hereafter G-Z). We also present a (3a) 

upper-limit for OCS in JFC 46P/Wirtanen (hereafter Wirtanen). In Section 2, we discuss 

the importance of OCS in comets. In Section 3, we discuss our observations and our data 

reduction methodology. In Section 4, we present our results. In Section 5, we discuss our 

results and place them in the context of comets characterized to date.

2. OCS IN COMETS

Carbonyl sulfide (OCS) is one of the parent volatiles (native ices) that has been 

stored for ~ 4.5 billion years in icy grains in the nuclei of comets. The present-day sulfur 

chemistry in comets may reveal much about the origin of these ices and their subsequent 

processing history, making the measurement of sulfur-bearing molecules in comets an 

important piece to the puzzle of cometary origins (Dello Russo et al., 1998). Sulfur species 

should be present in cometary nuclei since comets were likely formed in the mid-plane of 

the protoplanetary disk from icy grains, where volatiles (including OCS) could freeze out 

on the surface of dust grains. OCS serves as a link between sulfur and oxygen bearing- 

species. It is extremely under-represented in the current sample of measurements of
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cometary volatiles, and the only known sulfur-bearing species in comets with strong 

transitions at IR wavelengths; its V3 band near 4.85 |im is inherently very strong, being an 

order of magnitude stronger than the CO Vi band near 4.7 |im and rivaling the strength of 

the CO2 V3 band that renders the region from ~ 4.1 -  4.4 ^m totally opaque to ground-based 

observations. Our OCS measurements are well-suited to address the paucity of OCS 

detections in comets.

Despite being inherently strong, OCS has been detected in only six comets to date: 

C/1995 O1 Hale-Bopp (hereafter Hale-Bopp), C/1996 B2 Hyakutake (hereafter 

Hyakutake), 67P/Churyumov-Gerasimenko (via the Rosetta mission), C/2012 S1 (ISON), 

C/2014 Q2 (Lovejoy), and 2P/Encke (tentative); see discussion section for more details. 

The small number of OCS measurements is largely due to limitations in spectral coverage 

and/or sensitivity in previously available instruments. Owing to its piece-wise continuous 

nature, targeting OCS with NIRSPEC at Keck requires a second M-band setting in addition 

to the standard one used to measure H2O together with the strongest CO lines seen in 

comets (e.g., see Gibb et al., 2012), while the limited sensitivity and small spectral grasp 

of the previous facility spectrograph at IRTF (CSHELL; Tokunaga et al., 1990; Greene et 

al., 1993) limited measuring OCS to bright comets. With iSHELL, the OCS V3 band is 

fully encompassed together with H2O and CO within a single instrument setting (see Sec. 

3) and, unlike NIRSPEC or CSHELL, active guiding is feasible at wavelengths 

independent of the bandpass used to obtain spectra (specifically, for the observations of 

C/2015 ER61, 21P, and 46P included in this study, the iSHELL M2 setting; see Section 3).
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3. OBSERVATIONS AND DATA REDUCTION

We targeted OCS in comets Wirtanen, G-Z, and ER61 in 2017-2018 using the high- 

resolution (X/AX ~  40,000) IR immersion grating echelle spectrograph iSHELL (Rayner et 

al., 2012, 2016) at the 3-m NASA Infrared Telescope Facility (IRTF) on Maunakea, HI. 

The superior IR active guiding capabilities of iSHELL enabled us to achieve observing 

efficiency of up to 80%. This paper reports results from two iSHELL settings: our custom 

L-band setting (“Lcustom”, covering ~ 2.8 -  3.2 ^.m) which contains multiple strong 

transitions of H2O, sampling a range of excitation energies and enabling robust 

determination of rotational temperature (Trot), and M2 (covering ~ 4.5 -  5.2 ^m) which 

samples emissions of OCS and H2O simultaneously. The iSHELL observations were 

performed with a 0.75" wide (6-pixel wide) slit, oriented along the projected Sun-comet 

line on all dates.

We also present archival data of comet T7 acquired in 2004 using CSHELL at 

resolving power X/AX ~  25,000 using the 1.0" (5-pixel) wide slit. T7 was a daytime object, 

which precluded use of the optical guide camera in CSHELL. Instead, images of the comet 

were taken before and after each sequence of scans to monitor and correct for cometary 

drift. To correct slight errors in tracking and re-position the comet on the array, the 

CSHELL slit was set at its default position angle of 270° (east-west on the sky).

To achieve flux calibration, a suitably bright IR flux standard star was observed 

using a 4" wide slit on each date and for each setting (using a wider slit for the star than 

was used for the comet helps minimize loss of signal and thereby achieve a truer measure 

of the stellar continuum; see Bonev 2005; Radeva et al., 2010; Villanueva et al., 2011 for
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further details regarding flux calibrations). Table 1 shows the observing log for the data 

presented in this paper.

Table 1. OCS Observation Log.

Comet UT Date Instrument Time(UT) Rh(au) D(au) d D /d t  (km s-1) T int(mins)T7(a) 5-May-2004 CSHELL 15:52- 21:140.6710.631 -65.67 169-May-2004 CSHELL 15:44-21:05 0.7130.484 -61.37 12ER61(b) 12-May-2017 iSHELL 14:16-17:16 1.0431.251 9.25 94
G-Z(c) 25-July-2018 iSHELL 12:02-13:58 1.20 0.64 -13.66 8528-July-2018 iSHELL 13:32-15:44 1.18 0.61 -13.39 9629-July-2018 iSHELL 13:25- 15:23 1.17 0.61 -13.31 8646P(d) 14-Dec-2018 iSHELL 09:06-11:59 1.0550.078 -1.49 12219-Dec-2018 iSHELL 05:39-08:03 1.0580.079 2.00 114

Notes. Rh, dRh/dt, A, dA/dt, and Tint are heliocentric distance, heliocentric velocity, 
geocentric distance, geocentric velocity, and total on source integration time, respectively. 
For comets observed with iSHELL, the slit position angle (PA) was oriented along the 
projected Sun-comet line on all dates. (a) T7 reached perihelion (0.614 AU) on 2004 April 
23 and was closest to Earth (0.266 AU) on 2004 May 19. We targeted OCS on two dates, 
May 5 and May 9. (b) ER61 reached perihelion (1.042 AU) on 2017 May 10 and was closest 
to Earth (1.178 AU) on 2017 April 18, shortly after its outburst on April 4 (Saki et al., 
2021). We observed ER61 and targeted the OCS spectral region on 2017 May 12. (c) G-Z 
reached perihelion (1.010 AU) on 2018 September 10 and was closest to Earth (0.077 
AU) on the same day. (d)Wirtanen reached perihelion (1.055 AU) on 2018 December 12 
and was closest to Earth (0.077 AU) on 2018 December 16. We targeted the OCS spectral 
region on December 14 and 19.

All observations were performed using a standard ABBA nod pattern (sequence of 

four scans) where the A and B beams were placed symmetrically about the midpoint along 

the 15" (for iSHELL) or 30" (for CSHELL) long slit and separated by half its length. Thus, 

the comet was present in both beams, thereby providing increased signal-to-noise (by a 

factor of up to V2 compared with nodding to blank sky). Combining the frames as A-B- 

B+A (comet-sky-sky+comet) canceled out background thermal continuum, sky emission
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(lines and continuum), and instrumental biases to second order in airmass (see Figure 2 of 

DiSanti et al., 2001). The data were then dark-subtracted (to account for high dark-current 

pixels), flat-fielded (using an internal continuum lamp), cleaned of cosmic ray hits and hot 

pixels, and rectified to produce two-dimensional (spatial-spectral) frames, where each row 

corresponds to a constant (and unique) spatial position along the slit, and each column to a 

unique wavelength. We found that spatially resampling using a third-order polynomial 

more completely removed the curvature in the spatial dimension from iSHELL frames and 

so employed this in place of previously used second-order polynomials (DiSanti et al., 

2017; Roth et al., 2018). The spectral frames were spatially registered, and spectra were 

then extracted by summing signal over 15 rows (approximately 2.5"), seven rows to each 

side of the nucleus, defined as the peak of dust emission in a given spectral order. Our 

observational procedures and data reduction algorithms have been rigorously tested and 

well documented in peer-reviewed literature (Bonev 2005; Dello Russo et al., 1998; 

DiSanti et al., 2001, 2006, 2014, 2017; Villanueva et al., 2009; Radeva et al., 2010).

The Planetary Spectrum Generator (Villanueva et al. 2018) was used to generate 

atmospheric models, to assign a wavelength scale to the spectra, and to establish absolute 

column burdens of the component absorbing species in the terrestrial atmosphere. We 

convolved the fully resolved atmospheric transmittance function to the resolving power of 

the data and scaled it to the level of the comet continuum. We then subtracted the modeled 

continuum to isolate cometary emission lines as previously described (e.g., DiSanti et al., 

2016). The procedure is illustrated in Figure 1. Synthetic models of fluorescent emission 

for our targeted species were compared to observed line intensities, after correcting each 

modeled line intensity for the monochromatic atmospheric transmittance at its Doppler-
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shifted wavelength (according to the geocentric velocity of the comet at the time of the 

observation). The g-factors used in synthetic fluorescent emission models in this study 

were generated with quantum mechanical models for OCS, CN (Paganini and Mumma, 

2016), and H2O (Villanueva et al., 2012b).
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Figure 1. Extracted spectra showing clear detections of H2O in comet Wirtanen. The 
yellow trace overplotted on the uppermost cometary spectrum is the best-fit telluric 
transmittance model (convolved to the instrumental resolution). Directly below is the 
residual spectrum (after subtracting the telluric absorption model), with the H2O 
fluorescence emission model overplotted in red. At the bottom of the panel is the residual 
spectrum (after subtracting the telluric absorption model and H2O fluorescence model), 
with the 1o uncertainty envelope overplotted in bronze.
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4. RESULTS

We determined water rotational temperatures (Trot), OCS and H2O production 

rates (Qs), and the abundance (or “mixing”) ratio Qo c s /Qh 2 o  (expressed in %) for all 

comets in this paper. We found consistent results and excellent fits to the comet spectra 

(both for telluric absorptions and for cometary emission features).

4.1. SPATIAL PROFILE AS DIAGNOSTIC FOR OCS OUTGASSING SOURCE

In comet T7 the OCS emissions were sufficiently strong when coadded on both 

dates (May 5 and May 9) to determine the spatial profile along the slit (see Figure 2). 

The H2O production rate and the relative OCS abundances were consistent on both dates, 

thus we coadded the lines for both molecules to increase the SNR. Figure 2 suggests that 

the spatial distribution o f OCS in T7 followed that o f H2O as well as the dust within 

measurement uncertainties. Owing to limited S/N along the slit, we were unable to 

extract meaningful emission spatial profiles for OCS in the other comets presented here. 

Most high-resolution infrared observations of comets permit investigations of processes 

in the inner coma, where both nucleus and extended sources (i.e., release from one or 

more sources in the coma) may contribute to the production and spatial distribution o f a 

particular volatile. Analysis of spatial profiles for coma molecules can indicate whether 

their distribution differs from that expected for direct sublimation from the nucleus, as 

opposed to release from extended sources in the coma (Dello Russo et al., 1998, 2016a; 

DiSanti et al., 2001; Brooke et al., 2003). The spatial profile for molecules produced by 

direct sublimation peak in intensity at (or at least near) the position o f the nucleus before
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falling off with increasing nucleocentric distance (p) as p-1, whereas molecules having 

an extended source display a flatter distribution, falling off more slowly with p (e.g., see 

Figure 3 in Dello Russo et al., 1998). In our OCS study, the OCS spatial distribution is 

formally consistent with H2O; however, the low SNR does not allow for a definitive 

conclusion on the presence (or absence) of a distributed OCS source in the coma of comet 

T7 (see Figure 2), but the spatial profiles of H2O and OCS are consistent with common 

outgassing sources seen in other comets (e.g., Hale-Bopp, ISON).

OCS Spatial profile in comet T7

Projected Distance from the Nucleus (km)

Figure 2. Spatial profiles of OCS simultaneously measured with dust and H2O in 
comet T7 on UT 2004 May 5 and May 9 combined. The slit was oriented in its default 
position (East-West) with the Sun-facing direction to the right as indicated. The 
combined growth factor and its ±1o uncertainty measured from each profile are 
indicated at right.
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Evidence for the existence of OCS extended sources has been identified in bright 

comets Hale-Bopp near Rh = 1 au, and in ISON at Rh = 0.46 au. In comet Hale-Bopp 

near perihelion, the long-slit infrared observations suggested OCS originated 

substantially or even predominantly from extended sources (~ 70%; see Dello Russo et 

al., 1998 for further details). The broad and flat spatial distribution of OCS in comet 

ISON also suggested that a significant fraction may have come from an extended source 

(Dello Russo et al., 2016a).

4.2. ROTATIONAL TEMPERATURE

Rotational temperatures (Trot) were determined using correlation and excitation 

analyses that have been extensively described in the literature (e.g., Bonev 2005, Bonev 

et al., 2008a, DiSanti et al., 2006, Villanueva et al., 2008). In general, well-constrained 

rotational temperatures can be determined for individual species with intrinsically bright 

lines and for which a sufficiently broad range of excitation energies is sampled. These 

conditions are met for strong H2O lines centered near 3452 cm-1 in CSHELL spectra, and 

in Lcustom order 179 with iSHELL spanning ~ 3437.8 -  3465.8 cm-1 and are augmented 

by including H2O lines in additional iSHELL orders (see Figure 1 and Table 2).

For T7 the Trot for H2O on May 5 (104 K) was consistent with that from May

9 (106$ ' K). The H2O rotational temperature for ER61 was measured as 60$& K on May 

12. For our G-Z analysis, we calculated production rates and mixing ratios at Trot = 48 

K and 64 K, consistent with rotational temperatures derived from CO (64$"& K) and 

H2O (48$"( K) on July 28 and 29, respectively (Roth et al., 2020). We used three 

iSHELL settings for Wirtanen on Dec 14 and 19 and were able to retrieve well-
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constrained rotational temperatures on both dates. We found the Trot for H2O as measured 

from the Lcustom setting (84 ± 3 K) on December 14 was in agreement with that from 

the M2 setting (83 ± 7 K), thus we used Trot = 84 K when determining production rates 

and mixing ratios. The H2O Trot on December 19 was also consistent with that on 

December 14 (86$"" K). We were unable to measure rotational temperatures for OCS 

in any of the observations reported here, so we adopted the rotational temperature of 

simultaneously measured H2O within the same setting (M2). Rotational temperatures for 

different molecules within the same comet and the same instrumental setting are 

generally found to be consistent even for molecules with different photo-dissociation 

lifetimes (e.g., see DiSanti et al., 2006; Anderson 2010; Gibb et al., 2012; and DiSanti et 

al., 2016 supporting this approach).

4.3. PRODUCTION RATES AND MIXING RATIOS

Production rates for sampled species were determined using the appropriate 

fluorescence model at the measured (or assumed) rotational temperature. Nucleus- 

centered production rates (Qn c , molecules s-1) were calculated using the well-established 

formalism relating line flux, fluorescence g-factor, and physical (gas outflow speed, 

photo-dissociation lifetime) and geometric parameters (Rh, A; see Dello Russo et al., 

1998; DiSanti et al., 2001, 2006, 2014; Bonev 2005; Villanueva et al., 2011). Qn c  is 

then scaled by a growth factor (GF), which relates molecular production rates in the 

fraction of the coma along the column described by the beam (of size 0.75" x 2.5" for

iSHELL, and 1" x 3" for CSHELL) to the global production rate (Qgiobai). This method
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analyzes spatial profiles of emission using the “Q-curve” formalism, dating back to the 

analysis of OCS in comet Hale-Bopp (Dello Russo et al., 1998). A canonical spherically 

symmetric outflow velocity, vgas = 800 Rh-0 5 m s-1, was assumed in determining our 

production rates. This velocity is based on velocity-resolved observations of several 

moderately bright comets at radio wavelengths (Biver et al., 2006, 2011; Cordiner et al., 

2014; also see Bonev 2005 supporting this assumption). We were able to explicitly 

determine that OCS traced the spatial profile of H2O in comet T7 and the derived OCS 

GF (combined on both dates) is consistent with the GF derived for H2O (see Figure 2); 

therefore, we assumed the GF of simultaneously measured H2O when calculating OCS 

production rates (0s). Global production rates for all the comets targeted in this paper 

along with OCS mixing ratios relative to water are presented in Table 2.

For comet T7 we measured OCS mixing ratios of 0.036% ± 0.009% and 0.043% 

± 0.006% on May 5 and May 9 respectively. Figures 3 A-B show extracted spectra with 

clear OCS, CN, and H2O emissions in T7 (with traces and labels as described in Figure 

1). In ER61, the OCS mixing ratio was found to be 0.150% ± 0.031%. Figure 3C shows 

detections of H2O, CN, and OCS lines in ER61 on May 12. In the case of G-Z, since the 

H2O production rate and relative OCS abundances were consistent throughout our July 

observations, we coadded the spectra on all three dates (July 25, 28, and 29), and found 

OCS mixing ratios of 0.116% ± 0.022% (assuming Trot = 48 K) and 0.108% ± 0.021% 

(assuming Trot = 64 K), demonstrating that the abundance of OCS relative to H2O was 

not sensitive to the assumed Trot. Figure 3D shows the clear detections of OCS, CN and

H2O in G-Z.
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Table 2. OCS abundances.

Molecules Trot (k) Growth Factor Q (molecules s-1) Abundance
(%)

Wirtanen Dec 14 -  2018
H2O 84 ± 3 2.32 ± 0.08 (5.95 ± 0.23) x 1027 100
OCS (84) (2.32) < 9.38 x 1023 <0.016(a)

Wirtanen Dec 19 -  2018
H2O 8 6 !" ' 1.98 ± 0.08 (6.04 ± 0.3) x 1027 100
OCS (86) (198) < 9.92 x 1023 <0.016(a)

G-Z July 25,28, and 29 (combined)
H2O (48)(b) 1.90 ± 0.04(c) (2.63 ± 0.20) x 1028 100
OCS
H2O

(48)
(64)(b)

(19)
1.90 ± 0.04(c)

(3.07 ± 0.41) x 
(2.86 ± 0.22) x

1025
1028

0.116 ± 0.022 
100

OCS (64) (19) (3.10 ± 0.46) x 1025 0.108 ± 0.021
ER61 May 12 -  2017

H2O 60!& 2.34 ± 0.36 (7.04 ± 0.25) x 1028 100
OCS (60) (2.34) (1.06 ± 0.19) x 1026 0.15 ± 0.031

T7 May 5 - 2004
H2O 104!"o 2.34 ± 0.03 (5.39 ± 0.25) x 1029 100
OCS (104) (2.34) (1.95 ± 0.47) x 1026 0.036 ± 0.009

T7 May 9 - 2004
H2O 106!& 2.51 ± 0.05 (5.08 ± 0.16) x 1029 100
OCS (106) (2.51) (2.22 ± 0.21) x 1026 0.043 ± 0.006

Note. values in parenthesis are assumed. (a) 3o upper limit. (b) Temperature from Roth et 
al., (2020). (c) The average of the growth factors (from Roth et al., 2020).

We were unable to detect any OCS emission lines with SNR greater than 5 for 

Wirtanen, yet our derived 3o upper limits on both December 14 and 19 are consistent 

(being <0.016%). Figure 1 shows the detection of H2O in comet Wirtanen in Lcustom 

order 179 on December 14. For the comets analyzed here, we have excluded OCS lines 

that are blended with CN and/or H2O. CN emissions in all of these comets were strong, 

consistent with other comets measured at the similar Rh (see Dello Russo et al., 2016b 

for more details).
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Individual OCS emission lines are not detected in all of the comets in this paper 

(see Figure 3); however, by combining the flux of all the unblended OCS lines we 

achieved a sensitive measurement of OCS production rate and its abundance relative to 

H2O in comets T7, G-Z, and ER61 and report a stringent upper limit in comet Wirtanen. 

Centered on the Doppler-shifted line frequency, line flux was measured for a given line 

by integrating over the spectral range of each line in each comet.

Identical measurements were performed away from the expected line centers (v \ 

= Vi + Av), with Av ranging from -0.3 to +0.3 cm-1. This method has been validated for 

weak species in other comets measured at IR wavelengths (see Villanueva et al., 2009; 

Paganini et al., 2017). In the case of sampling noise, the peak flux will occur offset from 

the Doppler-shifted line center. Instead, the peak composite flux for each comet is found 

at the expected position (see Figure 4). We performed the same measurement for H2O 

and found that OCS composite line has the same shape and width as the H2O composite 

line. As an example, we plotted the H2O composite line for comet G-Z in Figure 4(A).

5. DISCUSSION

5.1. OCS AND OTHER SULFUR-BEARING SPECIES IN COMETS

Roughly 40 comets have been sampled with high-resolution IR spectroscopy and 

differences in composition have been noted among both OCCs and JFCs. This relatively 

small sample size has made the development of a chemistry-based classification system

difficult.
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Figure 3. Fluorescence emissions of OCS, CN, and H2O in comets T7, G-Z, and ER61. 
The yellow traces overplotted on the uppermost cometary spectra are the telluric 
absorption models (convolved to the instrumental resolution), while the total modeled 
fluorescent emissions are overplotted in red. Individual fluorescent emission models 
(color-coded by species for clarity) are plotted below. At the bottom of each panel is 
the residual spectrum (after subtracting the telluric absorption model and all relevant 
fluorescent emission models) with the 1o uncertainty envelope overplotted in bronze. 
(A-D) shows the detections of OCS in comet T7, ER61, and G-Z respectively. The 
zoomed subplot highlights the location and intensity of OCS emission lines with 
respect to 1o uncertainty envelope plotted in bronze, each subplot has the same units 
as the larger plot.
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Figure 4. OCS composite emission line in comets T7, G-Z, and ER61. Panel A shows 
H2O composite emission line in comet G-Z. (B-E) shows the composite OCS emission 
line by combining unblended individual OCS lines for each comet. The 1o noise 
envelope is shown in dotted lines. The H2O and OCS models are plotted in blue and 
red respectively.

OCS is one of the under-represented molecules in comet studies due largely to 

limitations in sensitivity and lack of spectral coverage in earlier instruments (see Section 

1 & 2, and discussion in Dello Russo et al., 2016a). However, other sulfur species (e.g., 

H2S, H2CS, SO2, SO, CS, CS2, S2, and NS) have been detected in many comets (see 

Table 5 in Le Roy et al., 2015, Table 1 in Bockelee-Morvan et al., 2004, and Table A2 

in Calmonte et al., 2016 for the list of detected sulfur-bearing species and their 

abundances in comets).

In contrast, detections of OCS have been reported in only six comets to date 

(mostly OCCs). It was first detected through its radio lines at 145.947 GHz by Woodney
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et al., (1997) in comet Hyakutake, and confirmed by several other radio lines in comet 

Hale-Bopp (e.g., Bockelee-Morvan et al., 2000). Strong IR OCS lines close to 4.9 p,m 

were reported by Dello Russo et al., (1998) in both Hyakutake and Hale-Bopp. The 

Rosetta spacecraft detected OCS in comet 67P (Le Roy et al., 2015; Bockelee-Morvan 

et al., 2016). Additional ground-based detections have been reported for comets ISON 

(Dello Russo et al., 2016a), Lovejoy (Biver et al., 2015), and 2P/Encke (at 4o) (Roth et 

al., 2018). In this paper, we add two OCCs (comet T7 and ER61) and one JFC (G-Z) to 

this list (see Figure 5 and Table 2). Our OCS measurement in comet G-Z represents its 

first secure ground-based detection in a JFC. Abundances are given in Table 3.

Ecliptic (short period) comets and specifically JFCs are typically depleted in 

certain trace volatiles relative to OCCs, perhaps due to thermal processing (Dello Russo 

et al., 2016b; DiSanti et al., 2017; Roth et al., 2018, 2020). The first OCS measurement 

for a short period comet did not occur until 2015 via the Rosetta mission to comet 67P, 

for which the large orbital obliquity (~ 52 ) of its rotation axis leads to strong seasonal 

effects on its nucleus. Le Roy et al., (2015) searched for multiple sulfur species, 

including OCS, in the coma of 67P and found an OCS abundance of 0.017% relative to 

H2O (similar to our 3o upper limit in Wirtanen; Table 2) for summer and 0.098% (similar 

to our measured OCS abundance in G-Z, for Trot = 64 K) for the winter hemisphere (see 

Table 3 and Le Roy et al., 2015 for further details).

Bockelee-Morvan et al., (2016) found an average OCS abundance of 0.12% 

relative to H2O for pre-perihelion observations (8 July -  10 Aug 2015) and a higher 

average of 0.18% relative to H2O (due to outburst and high depth of ablation) for post­

perihelion observations (16 Aug -  27 Sep 2015). The average OCS abundance in comet



38

67P is similar to our measured abundance in comet G-Z. Recently, Calmonte et al., 

(2016) reported the detection of new sulfur-bearing species (e.g., CH3SH, C2H6S) in the 

coma of comet 67P.
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Figure 5. Measured OCS abundances (relative to H2O) in comets. (a) DiSanti et al., 
1992. (b) Dello Russo et al., 1998 (IR), Bockelee-Morvan et al., 2000 (Radio). (c) Dello 
Russo et al., 1998 (NIR). (d) Paganini et al., 2012. (e) Bockelee-Morvan et al., 1990. (f) 
Bockelee-Morvan et al., 2004. (g) Dello Russo et al., 2016. (h) Woodney et al., 1997, 
Biver et al., 1999. (l) Biver et al., 2015. (j) Le Roy et al., 2015, Bockelee-Morvan et al., 
2016. (k) Roth et al., 2018. (1) This work. (m) OCS unweighted mean abundance among 
comets (0.126 ± 0.034 %). Note: owing to the significance of Wirtanen’s upper limit 
we have included half of its value when calculating the unweighted mean.

Bockelee-Morvan et al., (2016) found an average OCS abundance of 0.12% 

relative to H2O for pre-perihelion observations (8 July -  10 Aug 2015) and a higher 

average of 0.18% relative to H2O (due to outburst and high depth of ablation) for post­
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perihelion observations (16 Aug -  27 Sep 2015). The average OCS abundance in comet 

67P is similar to our measured abundance in comet G-Z. Recently, Calmonte et al., 

(2016) reported the detection of new sulfur-bearing species (e.g., CH3SH, C2H6S) in the 

coma of comet 67P.

Table 3. OCS abundance (relative to H2O) in other comets.

Comet OCS Abundance in (%)
C/1999 H1 (Lee)a < 3.6

1P/Halleyb < 0.8
C/1989 C1 (Austin)c < 0.55

Hale-Boppd 0.413 ± 0.077
Hale-Boppe 0.4
Hyakutakef < 0.53
Hyakutakeg 0.21
Hyakutakeh 0.3
Hyakutake1 0.1
Hyakutake> 0.2
Lovejoyk 0.034 ± 0.006

ISON1 0.16 ± 0.04
67Pm 0.12
67Pm 0.18
67Pn 0.017
67Pn 0.098

2P/Enckeo 0.06 ± 0.01
C/1993 F2 Shoemaker-Levyp < 0.2

C/2009 P1(Garradd)q < 0.2
153P/Ikeya-Zhangr < 0.2

Note. a Biver et al., (2000). b Combes et al., (1988) (at 2.5o). c DiSanti et al., (1992). d 
Dello Russo et al., (1998) (near-IR). e Bockelee-Morvan et al., (2000) (radio). f Dello 
Russo et al., (1998) (3o upper limit on March 24.5). g Dello Russo et al., (1998) (March 
19). h Dello Russo et al., (1998) (using OH* production rate derived by Schleicher et al., 
1996; March 19). 1 Woodney et al., (1997) (radio). j Biver et al., (1999) (radio). k Biver 
et al., (2015). 1 Dello Russo et al., (2016a). m Bockelee-Morvan et al., (2016). n Le Roy 
et al., (2015). o Roth et al., (2018). p Bockelee-Morvan et al., (1990). q Paganini et al., 
(2012). r Bockelee-Morvan et al., (2004). The values reported for comets C/1999 H1 Lee 
and 1P/Halley are not stringent as they are much higher compared to the highest 
abundances measured in other comets and therefore we have excluded them from Figure 
5.
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5.2. FORMATION OF OCS

Carbonyl sulfide (OCS) has been identified in a variety of astronomical 

environments. OCS can catalyze the coupling of amino acids and so is of particular 

interest for astrobiology (Leman et al., 2004). It has been observed in the atmospheres 

of Venus, Jupiter, and Io as well as in interstellar ice and comets (e.g., Kamp & Taylor 

1990; Woodney et al., 1997, Dello Russo et al., 1998; Sakai et al., 2014; Le Roy et al.,

2015). Only < 0.1% of the sulfur cosmic abundance can be accounted for in gas-phase 

molecules (Tieftrunk et al., 1994; also see Le Gal et al., 2019 for further details), 

suggesting that most sulfur-bearing species are locked into icy mantles coating 

interstellar dust grains (Millar & Herbst 1990; Ruffle et al., 1999; Vidal et al., 2017; Laas 

& Caselli 2019).

Recent spectral line surveys have increased the number of known interstellar 

sulfur molecules (see Vastel et al., 2018 and references therein), and recent astrochemical 

models have improved our understanding of sulfur-bearing species in interstellar 

environments (e.g., Woods et al., 2015; Vidal et al., 2017; Vidal & Wakelam 2018). Laas 

and Caselli (2019) used a new sulfur depletion model that accurately reproduced most 

of the known gas-phase sulfur-bearing molecular abundances observed in interstellar 

clouds. Their model also predicts that most of the sulfur-bearing species are trapped on 

icy grains, consistent with observations. Processing of interstellar ice mixtures 

containing simple sulfur-bearing species yields a highly heterogeneous mixture of 

products similar to the chemistry that has been detected in both cometary ices and 

meteoritic material (see Ehrenfreund et al., 2002; Jimenez-Escobar et al., 2014; 

Calmonte et al., 2016 and references therein).



41

OCS is also one of the sulfur-bearing molecules detected in icy grain mantles 

toward protostars and disks (e.g., Geballe et al., 1985; Palumbo et al., 1997; Zasowski et 

al., 2009; Fuente et al., 2010; Guilloteau et al., 2013, 2016; Teague et al., 2018; Pacheco- 

Vazquez et al., 2016; Sakai et al., 2016; Phuong et al., 2018). Palumbo et al., (1997) 

found that OCS is embedded in CH3OH rich ices in protostar W33A. Understanding the 

path that could contribute to OCS formation in these environments requires both 

modeling and laboratory experiments.

Extensive experimental studies have been performed analyzing the formation of 

OCS both in H2O-free and H2O-dominated ices using CO or CO2 as the C-bearing 

species and H2S or SO2 as the sulfur-bearing sources (see Moore et al., 2007; Ferrante et 

al., 2008 and references therein). The CO abundance is relatively high in interstellar ices, 

and Hawkins et al., (1985) demonstrated that CO is capable of capturing S atoms to 

produce OCS. Experiments have also shown that H2S can dissociate into 2H and S 

(Isoniemi et al., 1999). Therefore, one possible reaction sequence to produce OCS is: 

H.S ^  2H +  S and S +  CO ^  OCS (see Ferrante et al., 2008).

OCS can also be produced, though at a lower abundance, from irradiation of a 

mixture of CO2, which dissociates the CO2 into CO, and H2S. We compared OCS with 

CO abundances for comets when both values were reported in the literature. Since the 

OCS vacuum sublimation temperature is ~ 85 K (Palumbo et al., 1995; Ferrante et al., 

2008), the high volatility and lower thermal threshold of CO makes evolutionary 

processing effects more important for CO than for OCS. Figure 6 suggests a higher CO 

abundance may be correlated with a higher OCS abundance, however the very small
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number of OCS measurements to date in comets precludes establishing a clear 

correlation between CO and OCS at this time.
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Figure 6. Average OCS abundances plotted against the average CO abundances (both 
relative to H2O in %). Number and color assigned to each comet are given in the plot 
legend. The references for OCS abundances are presented in Figure 5 caption. CO 
abundances are from: (1) McKay et al., 2021. (2) Biver et al., 2015. (3) Roth et al., 2018. 
(5) Roth et al., 2020. (6) Saki et al., 2021. (10) Le Roy et al., 2015. A7,8,9,10,11,13 Dello 
Russo et al., 2016b.

The free sulfur required to produce OCS can also come from the dissociation of 

sulfur dioxide (SO2) (Okabe 1978, p. 247; Ferrante et al., 2008). Sulfur atoms can also 

be oxidized by H2O molecules, yielding SO2 (Moore et al., 2007); sufficient oxidation 

might completely block OCS formation (see Figure 6 of Ferrante et al., 2008). Thus, the 

formation of OCS in H2O-dominated ices might be expected to be smaller, which could
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be the case in parts of the mid-plane of the proto-planetary disk where comets formed. It 

is not clear how much of the interstellar sulfur molecules survive during star formation 

to be incorporated into disks, or whether the sulfur chemistry in such environments is 

mostly reset.

6. CONCLUSION

OCS is an extremely under-represented species in the current taxonomy of 

cometary volatiles. In this work, (1) we found clear detections of OCS and H2O in comets 

T7, ER61, and G-Z, and presented a stringent 3a upper limit in comet Wirtanen, 

consistent with the lowest reported value in comets to date (see Figure 5, and Table 2 &

3) . (2) Our work significantly expands the range of OCS abundances, increases the 

number of OCS measurements in comets, and contributes extensively to establishing a 

more meaningful statistic for this prebiotically important sulfur-bearing species.

Compared to the mean abundances among comets observed to date (see Figure

4) , OCS mixing ratios in comets T7 and Wirtanen are consistent with depleted, while 

values for G-Z and ER61 are close to the unweighted mean value. The availability of 

future space-based platforms, such as James Webb Space Telescope (scheduled to launch 

in 2021), along with the powerful, recently commissioned facility spectrometer iSHELL 

at the NASA-IRTF enables for the first time simultaneously measuring OCS together 

with H2O and CO in comets, further improving our understanding of their chemical 

diversity.
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II. CHEM ICAL COM POSITION OF OUTBURSTING COM ET C/2015 ER61
(PANSTARRS)

ABSTRACT

Comet C/2015 ER61 (PanSTARRS) is a long period Oort cloud comet whose 

favorable approach to the inner parts of solar system in April-May 2017 enabled us to 

characterize its primary volatile composition using the iSHELL spectrograph mounted on 

the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. We used three 

iSHELL settings (covering ~ 2.8 -  5.2 |j,m) to sample fluorescent emissions from H2O, OH, 

CH3OH, HCN, C2H2, NH3, CO, CH4, C2H6, H2CO, and OCS on multiple dates ranging 

from UT 2017 April 15 (shortly after its April 4 outburst) to May 13, nearly 30 days before 

the detection of its double nucleus. Our observations also offered the opportunity to obtain 

sensitive 3o upper limits for cyanoacetylene (HC3N). We report rotational temperatures 

(Trot), production rates (Qs), abundance (mixing) ratios (relative to H2O and C2H6), and 

spatial distributions in the coma. ER61 exhibits variability in production rates of many 

species on short (day-to-day) and long (pre- vs. post-perihelion) timescales. The relative 

abundances of these volatile species remained consistent within uncertainties during our 

pre-perihelion observations but tended to decrease during our post-perihelion observations 

(with the exception of CH3OH and HCN). The short-timescale variability in the production 

rates of these volatiles could be due to diurnal effects (over the course of the rotation of the 

nucleus) and/or the effect of its outburst. The decrease in the production rates and hence 

the mixing ratios in some volatiles in post-perihelion dates could be due to the presence of

seasonal effects in ER61.
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1. INTRODUCTION

Comets are small, volatile-rich, relatively unprocessed remnants of the early solar 

system. They formed in the protosolar nebula in the giant planet region between 5 -  30 au 

(or more) from the Sun. They were ejected into their current stable dynamical reservoir of 

either the Oort cloud (Vokrouhlicky et al., 2019) or the Kuiper belt (Nesvorny et al., 2017) 

by the migration of giant planets. Owing to their small size, comets lack a known 

mechanism for internal self-heating; thus, it is likely that the interior compositions of 

comets have not been significantly modified and should reflect the composition and the 

conditions where (and when) they formed (Mumma and Charnley 2011; Bockelee-Morvan 

et al., 2004). Owing to increasing solar radiation as comets enter the inner solar system 

(heliocentric distance < 3 au), a freely expanding atmosphere (i.e., coma) along with dust 

tail and ion tail will form. We can study these features using spectroscopy. The primary 

volatile composition of the coma can be used as a proxy for the chemical composition of 

its nucleus, and therefore provide insights into the initial conditions and subsequent 

evolution of the early solar system.

Long period Oort cloud comets represent excellent targets for study as their nuclei 

have likely been less modified since their formation than those of short-period comets 

(Vokrouhlicky et al., 2019). Most processes that can change the properties of comet nuclei 

only affect a thin layer (a few meters deep) from the surface, which is thought to be 

excavated over the course of a perihelion passage into the inner solar system (Stern et al., 

2003; Le Roy et al., 2015; Gronoff et al., 2020; Saki et al., 2020a). This emphasizes the 

importance of obtaining both pre- and post-perihelion observations of comets whenever
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possible. Some comets exhibit a sudden eruption of materials, referred to as an outburst, 

close to their perihelion passage. Outbursts are known to start with the sudden appearance 

and steep brightening of an unresolved plume of material and are often described by a 

nuclear magnitude (Sekanina 2010, 2017). Comets that outburst represent additional 

opportunities to probe the likely more pristine material below a comet’s topmost surface 

layers.

High-resolution infrared (IR) spectroscopy is a valuable way to characterize the 

primary volatile composition of the nucleus through analysis of fluorescent emissions in 

the coma. Coupled with protoplanetary disk models, the nucleus composition inferred from 

these studies may place observational constraints on the physics and chemistry operating 

in the nascent protoplanetary disk mid-plane where comets formed. With about 40 comets 

characterized in the IR and radio and more than 200 comets cataloged in photo-dissociation 

products at optical wavelengths, a large number of species have been identified in cometary 

atmospheres, both from ground- and space-based observations (e.g., Cochran et al., 2015; 

Le Roy et al., 2015; Biver et al., 2015a; Dello Russo et al., 2016b; Roth et al., 2018; Saki 

et al., 2020a, 2020b).

Certain primary volatiles — C2H2, CO, CH4, and OCS — are under-represented in 

studies of comets as a whole (Saki et al., 2020a; Dello Russo et al., 2016a). IR coma studies 

indicate that Jupiter-family comets (JFCs; originate from the Kuiper belt and have short 

orbital periods) are in general depleted relative to Oort cloud comets (OCCs; originate from 

the Oort cloud and have long orbital periods) in the hypervolatiles CO and CH4, which may 

reflect the effects of repeated close perihelion passages on their volatile content (Roth et 

al., 2020; Saki et al., 2020b; Dello Russo et al., 2016a). On the other hand, large optical
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surveys of product species found no correlation in depleted chemistry and dynamical age 

in JFCs, suggesting that compositional differences may instead be primordial and 

indicative of differences in formation histories for Jupiter-family comets compared to Oort 

cloud comets (A’Hearn et al., 1995). The detection of crystalline silicates in some comets, 

coupled with updates in dynamical models (e.g., Levison et al., 2011), suggests that 

scattering processes and large-scale mixing of materials in the early solar nebula have 

complicated the distinction between comet-forming regions (Bockelee-Morvan et al., 

2000, 2016; Gomes et al., 2005; Zolensky et al., 2006; Dello Russo et al., 2016b). 

Therefore, both the Oort cloud and Kuiper belt could contain comets that represent varying 

(or, at the other extreme, largely overlapping) formation regions in the solar nebula. The 

Rosetta mission to comet 67P/Churyumov-Gerasimenko (hereafter 67P) revealed a 

heterogeneous nucleus, adding more complexity to these scenarios (Rickman et al., 2015; 

Le Roy et al., 2015; A ’Hearn 2017).

In this work we characterize the chemical composition of comet C/2015 ER61 

(PanSTARRS) (hereafter ER61) shortly after its 2017 April 4 outburst. We report the 

detection of H2O, OCS, C2H6, CH3OH, H2CO, NH3, C2H2, and HCN, as well as stringent 

3a upper-limits for CO, CH4, and HC3N. In Section 2, we discuss the outburst of ER61. In 

Section 3, we discuss our observations and our data reduction methodology. In Section 4, 

we present our results. In Section 5, we discuss our results and place them in the context

of comets characterized to date.



57

2. OUTBURST IN ER61

Outbursts appear to be activated by gases released from a reservoir of a highly 

volatile material stored in the nucleus that heats up and/or becomes pressurized as the 

comet gets closer to the Sun (Sekanina 2017). An in-situ example is provided by cliff 

collapses in comet 67P’s northern and southern hemispheres and outbursts near the sharp 

boundary in the small lobe observed in 2015, during the Rosetta mission (Vincent et al., 

2016; El-Maarry et al., 2017, Pajola et al., 2017). The products observed during an outburst 

are the escaping gases and ice/dust grains that are dragged from the nucleus by the released 

gases, and outbursts are characterized as gas-dominated or dust dominated depending on 

which component prevails (see Sekanina 2017 for details).

These two types of outburst (dust- or gas-dominated) have both similarities and 

differences (see Figure 6 in Sekanina 2017). An important similarity is an active phase: the 

activity of the outburst source on the nucleus begins at the time of onset and terminates at 

the time of peak magnitude. The duration of the active phase is thus defined as the interval 

between the onset and the peak. The light curves can be used to distinguish between the 

two types of outbursts. Dust-dominated outbursts are exemplified by a plateau during 

which the comet’s brightness subsides gradually. Gas-dominated outbursts are 

characterized by a steep decline in brightness after the peak that nearly mirrors the initial 

brightening (see Section 2.4 of Sekanina 2017 for details). This occurs because the 

brightness variations in the gas-dominated outbursts are determined by the fairly short 

dissociation and ionization lifetimes of the radiating molecules in the coma, coupled with 

relatively high gas velocities (~1 km s-1). Because of the lower velocities of solid particles,
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however, the residence times of dust in the coma are substantially longer than those of 

radiating molecules, so a post-peak plateau in the dust-dominated outbursts is observed.

If the outburst is preceded by one or more precursor eruptions, the event becomes 

a composite explosion. Dust particles might also fragment in the coma, expanding their 

total cross-sectional area and increasing the comet’s brightness over a longer period of 

time; such a scenario is referred to as an extended dust-dominated outburst (Sekanina 2010, 

2017). The sources of outbursts typically have a fairly limited extent on the scale of nuclear 

dimensions, so most outbursts can be classified as either local or regional episodes. Under 

exceptional conditions, a major part of the nucleus may be involved. Such events are global 

in extent, with potentially severe implications for the comet’s future evolution; they are 

referred to as giant explosions (Sekanina 2010, 2017). However, most cometary outbursts 

appear to be fairly short-lived, at least in terms of the total brightness, with the light curve 

exhibiting a sharp peak rather than a plateau, and thus no signature of dust dominance (see 

Figures 1- 4 in Sekanina 2017; Clements & Fernandez 2021).

Outbursts have been observed in many comets such as 29P/Schwassmann- 

Wachmann 1 (Wierzchos & Womack 2020), 73P/Schwassmann-Wachmann (Kobayashi et 

al., 2007), 168P/Hergenrother (Sekanina 2014), 17P/Holmes (Shinnaka et al., 2018), and 

1P/Halley (Gronkowski 2002), and in the extreme signifying disruption of the nucleus in 

comets such as C/2001 A2 (Sekanina et al., 2002) and C/1999 S4 (Chubko et al., 2005; 

Dello Russo et al., 2005). Examination of the visual light curve for ER61 indicates that its 

magnitude was 8.3 on UT April 3.8 (equal in brightness to two days earlier), whereas 9 

hours later, on UT April 4.17, it was estimated to be 7.4, 0.7 magnitude brighter, implying 

a brightening rate of 1.9 mag per day. This suggests that the outburst likely started on UT
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April 3.9 ± 0.1 and peaked on UT April 6.5 (±1 day). The overall variation in amplitude 

amounted to 2.1± 0.1 mag (see Section 4 of Sekanina (2017) for a detailed discussion).

Two months after its outburst, on UT 2017 June 13, a double nucleus was observed, 

with a faint companion, of apparent magnitude ~16, located in the primary’s coma but 

displaced ~ 0.2' in the anti-sunward direction (Masi & Schwartz 2017; Sekanina 2017). An 

in-depth investigation of the companion’s motion and its variable magnitude over a course 

of three weeks in June-July 2017 was conducted by Sekanina (2017). Given the temporal 

correlations between outbursts and nucleus fragmentation of many comets, Sekanina 

(2017) concluded that the observed outburst and nuclear fragmentation of ER61 might be 

the products of the same event (Sekanina, 2017). Our ER61 April observations were 

conducted approximately 11 days after its major outburst and our May observations were 

conducted about 30 days before the first detection of its double nucleus.

3. OBSERVATIONS AND DATA REDUCTION

ER61 is a long period Oort Cloud comet which was first spotted in several images 

taken under the auspices of the Pan-STARRS project with the 180-cm f/2.7 Ritchey- 

Chretien reflector on Haleakala, Maui, on March 14-15, 2015 (Tubbiolo et al., 2015, 

Sekanina 2017). It was originally classified as an asteroid (2015 ER61) by the Minor Planet 

Center (2015), even though it was almost 9 AU from the Sun and following a nearly 

parabolic orbit (Sekanina 2017). The object was subsequently detected in several earlier 

Pan-STARRS images from January and February 2015 (Tubbiolo et al., 2015). When signs
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of cometary activity were first noticed in late December 2015 and confirmed in January 

2016, the object was re-classified as a long-period comet (Sekanina 2017).

ER61 reached perihelion (1.042 AU) on UT 2017 May 9.77, approximately 35 days 

after its major outburst on April 4, and was closest to Earth (1.18 AU) on UT 2017 April 

18. We observed ER61 on UT 2017 April 15-17 (near closest approach to Earth) and May 

11-13 (near perihelion) using the high-resolution (X/AX ~  40,000) IR immersion grating 

echelle spectrograph iSHELL (Rayner et al., 2012, 2016) at the 3-m NASA Infrared 

Telescope Facility (IRTF) on Maunakea, HI. We characterized ER61 using three iSHELL 

settings: (1) our custom L-band setting (“Lcustom”, ~ 2.8 -  3.2 |j,m) that contains emissions 

from C2H2, HCN, NH3, and H2O; (2) the M2 setting (~ 4.5 -  5.2 |j,m) that samples emissions 

of OCS, CO, and H2O; and (3) the Lp1 setting (~ 3.2 -  3.6 |j,m) that samples emission lines 

of CH4, C2H6, CH3OH, H2CO, and OH* (OH* represents OH from prompt emission, which 

is a direct proxy for the production and spatial distribution of H2O; see Bonev et al., 2006). 

The fluorescence emissions of H2O in the Lcustom setting sample a range of excitation 

energies and enable a robust determination of rotational temperature (see Figure 1, and 

Section 4.3). We also determined rotational temperatures for C2H6, HCN, and CH3OH, 

which were all found to be consistent with that for H2O, although less well constrained.

Table 1 shows our observing log for comet ER61. Observations were performed 

with a 0.75" (6-pixel) wide slit, oriented along the projected Sun-comet line with position 

angle (PA) ~ 252° on all dates. All observations were performed using a standard ABBA 

nod pattern (sequence of four scans) where the A and B beams were placed symmetrically 

about the midpoint along the 15" long slit and separated by half its length. Thus, the comet
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was present in both beams, thereby providing increased signal-to-noise (by a factor of up 

to V2 compared with nodding to blank sky).

A p r il 17 2 .8 8 2  l ( ^ m )  2 .8 9 0 2 .8 9 8

1 0

-Telluric Model 
-Observed

Su

0

o
*

cfi
S34)

5
*j3

0
...aIi i l n u . 'iiiiii'M'i!Ji'JJlJi, iiii 1 iljiiiiLi ill L [lil i I , iiMilkLii

-1oI

J_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____I_____L
3475 3470 3465 3460 3455 3450 3445

_L _L _L

Frequency (cm-1)

Figure 1. Extracted spectra showing fluorescence emission of H2O and OH* in ER61. 
The yellow trace overplotted on the uppermost cometary spectrum is the best-fit telluric 
transmittance model (convolved to the instrumental resolution). The fluorescence 
emission models of H2O and OH* (color-coded for clarity) are plotted below. At the 
bottom of the panel is the residual spectrum (after subtracting the telluric absorption 
model and the fluorescence models), with the 1o uncertainty envelope overplotted in 
bronze.

Combining the frames as A-B-B+A (comet-sky-sky+comet) canceled out 

background thermal continuum, sky emission (lines and continuum), and instrumental 

biases to second order in airmass (see Figure 2 of DiSanti et al., 2001). The data were
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cleaned of cosmic ray hits and hot pixels and rectified to produce two-dimensional (spatial- 

spectral) frames, where each row corresponds to a constant (and unique) spatial position 

along the slit, and each column to a unique wavelength.

Table 1. Observing Log for ER61.

UT Date (2017)- UT Rh A dA/dt Tint Slit
Setting time (AU) (AU) (km s-1) (minutes) PA

April 15- Lp1 15:29-15:48 1.11 1.18 -2.29 20 253°
April 16-Lp1 15:24-17:44 1.11 1.17 -1.62 76 252°

April 16-Lcustom 18:37-20:12 1.11 1.17 -1.25 44 252°
April 17-Lcustom 15:01-15:40 1.10 1.17 -1.19 36 252°

May 11-Lp1 14:29-15:44 1.04 1.24 8.94 96 250°
May 12-M2 14:16-17:16 1.04 1.25 9.21 94 250°
May 12-Lp1 17:36-19:25 1.04 1.25 9.56 60 250°

May 13-Lcustom 14:34-20:55 1.04 1.25 9.68 80 250°

Notes. Rh, A, and dA/dt are heliocentric distance, geocentric distance, and geocentric 
velocity, respectively, of ER61, and Tint is total integration time on source. The slit position 
angle (PA) was oriented along the projected Sun-comet line on all dates.

The Planetary Spectrum Generator (Villanueva et al., 2018), optimized for 

Maunakea’s atmospheric conditions, was used to generate atmospheric models, to assign 

wavelength scales to the spectra, and to establish absolute column burdens of the 

component absorbing species in the terrestrial atmosphere. The atmospheric models were 

binned to the resolution of the comet spectrum and scaled to the comet’s continuum 

intensity. They were then subtracted from each row of the cometary spectra; co-addition of 

multiple rows (15 rows, approximately 2.5") resulted in the comet emission spectra. Figure 

1 shows this procedure. The fully-resolved best-fit model provided a precise value for the 

transmittance at each Doppler-shifted line position. Our observational procedures and data
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reduction algorithms have been rigorously tested and well documented in peer-reviewed 

literature (Bonev 2005; Dello Russo et al., 1998; DiSanti et al., 2001, 2006, 2014, 2017; 

Villanueva et al., 2009; Radeva et al., 2010). We note that spatially resampling using a 

third-order polynomial more completely removed the curvature in the spatial dimension 

from iSHELL frames, so we employed this in place of the previously used second-order 

polynomials (DiSanti et al., 2017; Roth et al., 2018).

For flux calibration, a suitably bright IR flux standard star was observed using a 4" 

wide slit on each date and for each setting (using a wider slit for the star than was used for 

the comet helps minimize loss of signal and thereby achieve a truer measure of the stellar 

continuum; see Bonev 2005; Radeva et al., 2010; Villanueva et al., 2011a, 2011b for further 

details regarding flux calibrations). Seeing was consistently ~0.7" in our April dates. It was 

~0.6" on UT May 11, and ~ 0.8" and 0.7" on UT May 12 and May 13 respectively.

4. RESULTS

We determined rotational temperatures (Trot), volatile production rates (Q, 

molecules s-1), and the abundance (or “mixing”) ratios Qx /Qh 2 o  (expressed in %) for 

volatile species in ER61. We found consistent results and excellent fits to the comet 

spectra, both for telluric absorptions and for cometary emission features.

4.1. SPATIAL PRO FILE

Long-slit high-resolution infrared observations of comets permit investigations of 

processes in the inner coma, where both nucleus and extended sources (i.e., release from
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one or more sources in the coma) may contribute to the production and spatial distribution 

of a particular volatile. Analysis of spatial profiles of emissions for coma molecules can 

indicate whether their distributions differ from that expected for direct sublimation from 

the nucleus, as opposed to release from extended sources in the coma (Dello Russo et al., 

1998, 2016a; DiSanti et al., 2001; Brooke et al., 2003). The spatial profiles for molecules 

produced by direct sublimation peak in intensity at (or at least near) the position o f the 

nucleus before falling off with increasing nucleocentric distance (p) as p-1, whereas 

molecules having an extended source display a flatter distribution, falling o ff more slowly 

with p (e.g., see Figure 3 in Dello Russo et al., 1998, and Figure 5 in Dello Russo et al.,

2016). By summing the spatial profiles of all individual lines for each species within a 

grating setting, we were able to extract spatial profiles for emission from H2O, CH3OH, 

HCN, OH* and C2H6 in ER61 (see Figure 2 A-H).

There is a slight asymmetry in dust profile on April 16 and on May 12-13. Our 

measurements may suggest a consistent enhancement in the sunward direction of H2O and 

C2H6 compared to the dust profile on May 11. The signal-to-noise ratio is not sufficient to 

say with certainty whether CH3OH also follows this trend. The profiles for dust and all 

molecules track one another, suggesting that molecules are co-released.

4.2. M OLECULAR FLUORESCENCE ANALYSIS

Synthetic models of fluorescence emission for each targeted species were compared 

to observed line intensities, after correcting each modeled line intensity (g-factor) for the 

monochromatic atmospheric transmittance at its Doppler-shifted wavelength (according to 

the geocentric velocity o f  the comet at the time o f the observations).
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Figure 2. Spatial profile of multiple species measured in comet ER61. Panels A-H show 
spatial profiles of multiple volatiles simultaneously measured with dust (red dash line) 
in comet ER61 spanning UT 2017 April 15 to May 13. The slit was oriented along the 
projected Sun-comet line (position angle ~ 252°), with the Sun-facing direction to the 
left as indicated. The Sun-comet-Earth angle (phase angle, P) is also shown on each panel 
for each date.
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The g-factors used in synthetic emission models in this study were generated with 

quantum mechanical models developed for H2O (Villanueva et al., 2012a), OH* (Bonev et 

al., 2006), C2H6 (Villanueva et al., 2011b), CO, C2H2, and CH4 (Paganini et al., 2013; 

Villanueva et al., 2011a; Gibb et al., 2003), NH3, HCN (Villanueva et al., 2013; Lippi et 

al., 2013), H2CO (DiSanti et al., 2006), and CH3OH (Villanueva et al., 2012b; DiSanti et 

al., 2013). Production rates for each sampled species were determined from the appropriate 

fluorescence model at the best-fit rotational temperature of each molecule (see Section 4.3).

A line by line analysis and a Levenberg-Marquardt nonlinear minimization 

technique (Villanueva et al., 2008) was used to fit fluorescence emission from all species 

simultaneously within each echelle order, allowing for high-precision results, even in 

spectrally crowded regions containing many spectral lines within a single instrumental 

resolution element.

4.3. DETERM INATION OF ROTATIONAL TEM PERATURE

Rotational temperatures (Trot) were determined using correlation and excitation 

analyses that have been extensively described in the literature (e.g., Bonev 2005; Bonev et 

al., 2008; DiSanti et al., 2006; Villanueva et al., 2008). In general, well-constrained 

rotational temperatures can be determined for individual species with intrinsically bright 

lines and for which a sufficiently broad range of excitation energies is sampled. These 

conditions are met for several molecules in multiple iSHELL orders, including strong H2O 

lines in Lcustom order 179 with iSHELL spanning ~ 3437.8 -  3465.8 cm-1; these are 

augmented by including H2O lines in additional iSHELL orders (see Figure 1 and Table 

2).
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We found consistent rotational temperatures for several molecules on all of our 

dates. The Trot for CH3OH was well constrained on April 15 (78 ± 8 K) and was consistent 

(within uncertainty) with those for C2H6 and H2CO on the same date, and with those of 

HCN, CH3OH, and H2O on April 16 and 17 (see Table 2). Rotational temperatures for our 

May dates were also in agreement, being 61± 8 K and 63!"" K for CH3OH on May 11 and 

May 12, 60$& K and 61$"" K for H2O on May 12 (Saki et al., 2020a) and May 13, 

respectively. The Trot derived for other molecules were in formal agreement with those of 

H2O in ER61 (see Table 2); however, we adopted the rotational temperature of 

simultaneously measured H2O (or CH3OH and C2H6 in Lp1 setting with no H2O emission 

lines) within the same setting for species without a well-constrained Trot (C2H2, NH3, OCS, 

CO, CH4, HC3N).

Although ER61 was slightly closer to the Sun in May (1.04 AU) compared with 

April (1.11 AU), our measurements are consistent with a higher Trot in April compared 

with May, perhaps owing to the higher production rates (Qs) of volatiles in the coma in 

April resulting from the recent outburst (Wesolowski et al., 2020). Higher production rates 

and Trot have also been observed in other outbursting comets (see Sekanina 2010, 2017 and 

references therein).

Rotational temperatures for different molecules for the same comet and within the 

same instrumental setting are generally found to be consistent, even for molecules with 

differing photo-dissociation lifetimes (e.g., see Bonev 2005, DiSanti et al., 2006; Gibb et 

al., 2012; and DiSanti et al., 2016 supporting this approach).
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Table 2. Molecular species measured in comet ER61.

Molecule T GF(b) Q(c) Qx/QH 2 O (d) Qx/Qc 2 H 6 (e)

(K) (molecules s-1) (%)
2 0 1 7  A p r i l  15, Rh = 1 .1 1  au , A = 1 .1 8  au , d A /d t  = - 2 .3 9  k m  s -1, L p 1  s e t t in g

OH*® (78) 2.37±0.20 (1.22 ± 0.17) x 1029 100 156 ± 27
CH3 OH 78±8 2.33±0.32 (3.22 ± 0.15) x 1027 2.63 ± 0.45 4.13 ± 0.47
H2 CO (78) (2.37) (4.50 ± 0.88) x 1026 0.36 ± 0.11 0.57 ± 0.13

74!"& (2.37) (4.39 ± 0.85) x 1026 0.35 ± 0.10 0.56 ± 0.12
C2H6 78! jo 2.37± 0.15 (7.89 ± 0.24) x 1026 0.64 ± 0.11 1
2 0 1 7  A p r i l  16, Rh = 1 .1 1  au , A  = 1 .1 7  au , d A /d t  = -1 .2 5  k m  s 1 , L c u s to m  a n d  L p 1  s e t t in g

H2O 75±4 2.27± 0.16 (6.50 ± 0.31) x 1028 100 152 ± 17
C2H2 (75) (2.27) < 7.28 x 1025 < 0.11(g) <0.17
HCN 68!%' (2.27) (8.76 ± 0.8) x 1025 0.14 ± 0.02 0.20 ± 0.03

(75) (2.27) (9.05 ± 0.91) x 1025 0.13 ± 0.02 0.21 ± 0.03
HC3N (75) (2.27) < 1.32 x 1025 < 0.02(g) <0.03
NH3 (75) (2.27) < 4.99 x 1026 < 0.76(g) <1.17

CH3 OH (75) (2.27) (2.24 ± 0.07) x 1027 3.44 ± 0.40 5.25 ± 0.58
68±8 (2.27) (2.06 ± 0.06) x 1027 3.17 ± 0.36 4.83 ± 0.53

H2 CO (75) (2.27) (2.08 ± 0.15) x 1026 0.32 ± 0.11 0.48 ± 0.06
C2H6 (75) (2.27) (4.26 ± 0.15) x 1026 0.65 ± 0.07 1.00

2 0 1 7  A p r i l  17, Rh = 1 .1 0  au , A  = 1 .1 7  au, d A /d t  = - 1 .1 9  k m  s -1, L c u s to m  s e t t in g

H2O 74!& 2.34 ± 0.12 (1.07 ± 0.03) x 1029 100 N/A
C2H2 (74) (2.34) (1.39 ± 0.37) x 1026 0.13 ± 0.04(l) N/A
HCN 87!j& (2.34) (1.22 ± 0.16) x 1026 0.11 ± 0.02 N/A

(74) (2.34) (1.18 ± 0.15) x 1026 0.11 ± 0.02 N/A
HC3N (74) (2.34) < 1.45 x 1025 < 0.01(g) N/A
NH3 (74) (2.34) (7.47 ± 1.40) x 1026 0.70 ± 0.14 N/A

Notes. a Rotational temperature. Values in parentheses are assumed. b Growth factor. 
Values in parentheses are assumed. c Global production rate. Errors in production rate 
include line-by-line deviation between modeled and observed intensities and photon 
noise (see Dello Russo et al., 2004; Bonev 2005; Bonev et al., 2007). d Molecular 
abundance with respect to H2O. e Abundance ratios with respect to C2H6 (for dates on 
which C2H6 was measured). f OH* (OH prompt emission) used as a proxy for H2O. g 
3o upper limit. h The GF of CH3OH (2.50 ± 0.38) on April 16 was in agreement with 
that of H2O. For CH3OH and C2H6, the GF was 2.19 ± 0.36 and 2.38 ± 0.20 on May12 
respectively; thus, we assumed the GF of H2O when calculating Qs and mixing ratios 
for those molecules. 1 4o detection. j Values for H2O and OCS are from Saki et al., 
(2020a).



69

Table 2. Molecular species measured in comet ER61. (Cont.)

2 0 1 7 M a y  11, Rh = 1 .0 4  au , A  = 1 .2 4  au , d A /d t  = 9 .0 0  k m  s '1, L p 1  s e t t in g
OH*® (61) 2 .2 1± 0.20 (7.22 ± 0.95) x 1028 100 174 ± 32

CH3 OH 61± 8 (2 .2 1 ) (2.12 ± 0.15) x 1027 2.94 ± 0.79 5.10 ± 0.75
H2 CO (61) (2 .2 1 ) (2.03 ± 0.63) x 1026 0.28 ± 0.09 0.48 ± 0.16

67!%* (2 .2 1 ) (2.18 ± 0.66) x 1026 0.30 ± 0.11 0.52 ± 0.17
CH4 (61) (2 .2 1 ) < 4.81 x  1027 < 0.89(g) < 11.6
C2H6

55 + 18 
55-13 (2.25±0.20) XCOCO0+1p

1026 0.56 ± 0.15 N/A
(61) (2 .2 1 ) (4.15 ± 0.34) x 1026 0.57 ± 0.15 1.00

2 0 1 7  M a y  12, Rh =: 1 .0 4  au , A  = 1 .2 5  au , d A /d t  = 9. 2 5  k m  sf 1, M 2  a n d  L p 1  s e t t in g

H2O 60-& 2.34 ± 0.36 (7.04 ± 0.25) x 1028 100 283 ± 34
OCS (60) (2.34) (1.06 ± 0.19) x 1026 0.15 ± 0.03 0.42 ± 0.09
CO (60) (2.34) < 4.44 x  1026 < 0.63(g) < 1.79

CH3 OH (60) (2.34) (1.42 ± 0.10) x 1027 2.02 ± 0.26 5.72 ± 0.77
63-11 (2.34) (1.38 ± 0.13) x 1027 1.96 ± 0.28 5.56 ± 0.82

H2 CO (60) (2.34) (8.40 ± 1.77) x 1025 0.12 ± 0.03 0.34 ± 0.08
CH4 (60) (2.34) < 4.01 x  1026 < 0.57(g) <1.61
C2H6 (60) (2.34) (2.48 ± 0.14) x 1026 0.35 ± 0.04 1.00

2 0 1 7  M a y  13, Rh =  1 .0 4  au , A =  1 .2 5  au , d A /d t  = 9 .7 0  k m  s '1, L c u s to m  ,s e t t in g

H2O 61-81 2.19 ± 0.15 (3.98 ± 0.45) x 1028 100 N/A
C2H2 (61) (2.19) (2.87 ± 0.19) x 1025 0.07 ± 0.01 N/A
HCN 57 ± 9 (2.19) (4.30 ± 0.33) x 1025 0.10 ± 0.02 N/A

(61) (2.19) (4.62 ± 0.83) x 1025 0.11 ± 0.02 N/A
HC3N (61) (2.19) < 5.20 x 1024 < 0.04 (g) N/A
NH3 (61) (2.19) (1.51± 0.29) x 1026 0.37 ± 0.09 N/A

Notes. a Rotational temperature. Values in parentheses are assumed. b Growth factor. 
Values in parentheses are assumed. c Global production rate. Errors in production rate 
include line-by-line deviation between modeled and observed intensities and photon noise 
(see Dello Russo et al., 2004; Bonev 2005; Bonev et al., 2007). d Molecular abundance 
with respect to H2O. e Abundance ratios with respect to C2H6 (for dates on which C2H6 was 
measured). f OH* (OH prompt emission) used as a proxy for H2O. g 3o upper limit. h The 
GF of CH3OH (2.50 ± 0.38) on April 16 was in agreement with that of H2O. For CH3OH 
and C2H6, the GF was 2.19 ± 0.36 and 2.38 ± 0.20 on May12 respectively; thus, we 
assumed the GF of H2O when calculating Qs and mixing ratios for those molecules. 1 4o 
detection. j Values for H2O and OCS are from Saki et al., (2020a).
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4.4. PRODUCTION RATES AND M IXING RATIOS

Production rates for sampled species were determined using the appropriate 

fluorescence model at the measured (or assumed) rotational temperature. Nucleus-centered 

production rates (Qnc, molecules s-1) were calculated using the well-established formalism 

relating line flux, fluorescence g-factor, and physical (gas outflow speed, photo­

dissociation lifetime) and geometric parameters (Rh, A; see Dello Russo et al., 1998; 

DiSanti et al., 2001, 2006, 2014; Bonev 2005). Qnc is then scaled by a growth factor (GF), 

which relates molecular production rates in regions of the coma along the column included 

in the beam (of size 0.75" x 2.5") to the global production rate (Qgiobai). This method 

analyzes spatial profiles of emission using the “Q-curve” formalism, dating back to the 

analysis of OCS in comet Hale-Bopp (Dello Russo et al., 1998). A canonical spherically 

symmetric outflow velocity, vgas = 800 Rh-05 m s-1, was assumed in determining our 

production rates. This velocity is based on velocity-resolved observations of several 

moderately bright comets at radio wavelengths (Biver et al., 2006; Cordiner et al., 2014; 

also see Bonev 2005 supporting this assumption). When calculating production rates, we 

assumed the GF of simultaneously measured OH* (proxy for H2O, when water is not 

sampled) on April 15 and May 11 (consistent with the GF measured for C2H6 and CH3OH 

on April 15 and with C2H6 on May 11) and of H2O on April 16-17 and on May 12-13. This 

is supported by their similar profiles (Figure 2). Global production rates for all the targeted 

species and their mixing ratios relative to water are presented in Table 2. Figures 3A-B 

show sampled extracted spectra with clear emissions from many volatiles in comet ER61 

(with traces and labels as described in Figure 1. Using alternative compositional baselines 

other than H2O (Qx/Qh2o %) can provide richer insights in comparing comets. For instance,
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Biver & Bockelee-Morvan (2019) used CH3OH as their measurement baseline in 

comparing complex organic molecules in comets.

April 1 6  3 . 3 3 3 3.344 M ^ m ) 3.355 3.366

Figure 3. Fluorescence emission of multiple species in comet ER61. Panels A-B show 
cometary spectra on UT 2017 April 16 and 17, respectively. The yellow traces 
overplotted on the uppermost cometary spectra are the telluric absorption models 
(convolved to the instrumental resolution). Individual fluorescence emission models 
(color-coded by species for clarity) are plotted below. At the bottom of each panel is the 
residual spectrum (after subtracting the telluric absorption model and all relevant 
fluorescent emission models) with the 1o uncertainty envelope overplotted in bronze. 
The zoomed subplot in Figure B highlights the location and intensity of emission lines 
of many volatiles with respect to the 1o uncertainty envelope plotted in bronze; each 
subplot has the same units as the larger plot.
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Figure 3. Fluorescence emission of multiple species in comet ER61. Panels A-B show 
cometary spectra on UT 2017 April 16 and 17, respectively. The yellow traces 
overplotted on the uppermost cometary spectra are the telluric absorption models 
(convolved to the instrumental resolution). Individual fluorescence emission models 
(color-coded by species for clarity) are plotted below. At the bottom of each panel is the 
residual spectrum (after subtracting the telluric absorption model and all relevant 
fluorescent emission models) with the 1o uncertainty envelope overplotted in bronze. 
The zoomed subplot in Figure B highlights the location and intensity of emission lines 
of many volatiles with respect to the 1o uncertainty envelope plotted in bronze; each 
subplot has the same units as the larger plot. (Cont.)

Owing to the low vacuum sublimation temperature of C2H6, distinct outgassing 

morphologies in many comets compared with H2O, and the easy detectability of this 

molecule at near-infrared wavelengths, C2H6 can serve as a possible alternative
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compositional baseline (see Section 5.4.2 in Bonev et al., 2021 for details). Therefore, we 

present abundances with respect to both H2O and C2H6 (when we have C2H6 detection 

available; see Table 2).

5. DISCUSSION

5.1. VARIABILITY OF PRODUCTION RATES AND M IXING RATIOS

The nucleus of ER61 was estimated to be ~10 km in radius (Meech et al., 2017). 

Its geocentric distance and obscuration by the bright coma make it impossible to directly 

measure individual surface sublimation regions. However, as a comet rotates, different 

sublimation regions of the nucleus are activated and may give rise to short-term variability 

in production rates or (in the case of a heterogeneous nucleus) mixing ratios (e.g., Roth et 

al., 2018; Hassig et al., 2015).

We saw clear variability in production rates of most species over the course of our 

ER61 observations (UT 2017 April 15 -  May 13). The production rates of H2O, CH3OH, 

C2H6, H2CO decreased from April 15 to April 16, followed by an increase in the production 

rates of H2O, NH3, C2H2, HCN from April 16 to 17, whereas the 3o upper-limits for HC3N 

were consistent. CH3OH, C2H6, and H2CO were not targeted on April 17, making it 

difficult to compare their production rates with those on April 16. We observed a clear 

decrease in the production rates of some volatile species from April 17 to May 11 (near 

perihelion) through May 13 (post-perihelion) (see Figure 4). Our measured abundances 

indicate that (within uncertainties) the mixing ratios of CH3OH, C2H6, H2CO, HCN, NH3 

and C2H2 remained consistent from 3-plus weeks pre-perihelion to near perihelion (May
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11), whereas abundances of all volatile species except CH3OH, HCN, and the 3o upper- 

limit for HC3N decreased post-perihelion (May 12-13). ER61 was more volatile poor (with 

respect to H2O) post- vs. pre-perihelion. This could be because of its recent outburst on 

April 4 (close to our April observations). Outbursts release more material from subsurface 

areas of the nucleus that may be more volatile rich, causing a possible variability in the 

production rates and mixing ratios of volatiles similar to those seen in ER61.

Chemically heterogeneous sources on the nucleus, dominating volatile release at 

different times owing to seasonal effects, may be the most plausible cause for the observed 

pre- vs. post-perihelion variability in ER61. Such asymmetries with respect to perihelion 

are observed in some previous comets, including 2P/Encke (A’Hearn et al., 1985; Roth et 

al., 2018), 67P (e.g., Hassig et al., 2015; Le Roy et al., 2015), and C/2009 P1 (Garradd; 

Bodewits et al., 2014; McKay et al., 2015).

The Rosetta mission to comet 67P found that mixing ratios of some species (e.g., 

CO, CO2, OCS) varied owing to seasonal effects on the nucleus (Hassig et al., 2015). In 

comet C/2009 P1 (Garradd) the production rate of CO increased even after the comet 

passed perihelion, perhaps owing to the existence of seasonal effects, whereas the 

production rate of H2O followed the predicted heliocentric dependence (decreasing as the 

comet passed perihelion, Bodewits et al., 2014; McKay et al., 2015). The depleted CH3OH 

reported during Encke’s 2017 apparition (Roth et al., 2018) compared with its enriched 

abundance in 2003 (Radeva et al., 2013), plus other compositional differences observed in 

2017 compared to 2003, may also have resulted from seasonal effects (see Roth et al., 2018 

for a detailed discussion of seasonal effects on the volatile content of comets).



75

Figure 4. Production rates and mixing ratios (in %  relative to H2O) of trace species 
sampled on multiple dates in ER61. Variability of production rates and mixing ratios of 
some volatile species on short and long-time scales are shown.

5.2. THE 3g UPPER-LIM IT OF HC 3N

The improved sensitivity and spectral coverage of iSHELL allowed us to measure 

or constrain molecules that we previously could not, such as HC3N, which has been 

suggested as a possible parent for CN (e.g., Fray et al., 2005; Bockelee-Morvan and
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Crovisier, 1985). HC3N has been observed via radio wavelengths in many comets (with 

mixing ratios ranging from 0.002 -  0.07 %  with respect to H2O). Upper limits for HC3N 

have also been reported in many comets, including comet 46P/Wirtanen during its 2018 

apparition with an abundance of <0.007% (the most stringent upper limit to date at near­

infrared wavelengths; Khan et al., 2021), similar to its abundance in comet 1P/Halley (see 

Khan et al., 2021; Bockelee-Morvan et al., 1987). Crovisier et al., (1993) reported a 3o 

upper limit of < 0.00019% in radio observations of comet Levy 1990 XX (the lowest 

abundance yet reported in any comet). In ER61, combining the unblended HC3N lines (see 

Figure 5) enabled us to achieve a sensitive 3o upper limit (< 0.02 %, averaged over three 

days), similar to those reported for comets C/2009 P1 (Garradd) (< 0.03%; Villanueva et 

al., 2012a) and 103P/Hartley 2 (< 0.024%; Dello Russo et al., 2011).

5.3. COM PARISON W ITH  OTH ER OCCS

Compared to mean abundances among OCCs characterized to date at near-infrared 

wavelengths (Dello Russo et al., 2016a), our measurements in ER61 indicate that CH3OH 

was enriched pre-perihelion and ‘typical’ post-perihelion. HCN was slightly depleted both 

pre- and post-perihelion. NH3, H2CO, C2H2, and C2H6 were typical pre-perihelion and 

slightly depleted post-perihelion, whereas OCS was typical (see Table 3 and Figure 6; also 

see Figure 5 in Saki et al., 2020 and Table 8 in Dello Russo et al., 2016a).

With the large spectral grasp of iSHELL, many of the trace molecules reported here 

were observed simultaneously (and with H2O and/or OH*) within a single iSHELL setting. 

This is not necessarily the case for comets observed with other near-infrared spectrographs 

that represent the current database of IR observations used to delineate abundance
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categories, and the effects of non-simultaneous measurements of H2O and other trace 

species must be considered when interpreting mixing ratios (Dello Russo et al., 2016a).

^ O b s e r v e d  — Telluric M odel — H C 3N (x3) — H C N  —  C 2H 2 —  O H * —  H 2O

J____ J_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ L
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Figure 5. Fluorescence emissions of cyanoacetylene (HC3N) centered around 3325 cm-1 
on UT 2017 April 16, 17 and May 13. The yellow traces overplotted on the uppermost 
cometary spectra are the telluric absorption models (convolved to the instrumental 
resolution). Individual fluorescence emission models (color-coded by species for clarity) 
are overplotted.

Early results obtained at near-infrared wavelengths suggested three taxonomic 

classes: (1) organics-depleted, (2) organics-normal, and (3) organics- enriched (Mumma & 

Charnley 2011), but additional observations have revealed comets that do not fit neatly into 

these taxonomic classes (i.e., comets can be depleted in certain volatiles while enriched in
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others; e.g., Gibb et al., 2012, Radeva et al., 2013, Dello Russo et al., 2016, Roth et al.,

2017). Recently, new (and still evolving) taxonomic classes and volatile relationships in 

comets have been suggested (see Dello Russo et al., 2016a for details). The overall 

weighted averages in ER61 indicate that it is enriched in CH3OH, consistent with average 

in OCS (Saki et al., 2020a) and depleted in the remaining volatiles (see Figure 6). The pre- 

to post-perihelion variation in relative abundances makes it difficult to classify ER61, 

though it has the most compositional similarities on its pre-perihelion dates to comet 

2P/Encke and on post- perihelion dates to comet C/2012 S1 ISON when it was at Rh > 0.83 

AU (Dello Russo et al., 2016a and references therein). Table 3 shows mean primary volatile 

abundance ratios (for species with more than a single measurement) in ER61 on pre­

perihelion, near-perihelion and post-perihelion dates and the mean abundances among 

OCCs.

Table 3. ER61 mean abundances for molecules with more than a single measurement.

Molecule Pre-perihelion abundance (a) (%)
Near-Perihelion abundance (b) (%)

Post-perihelion abundance (c) (%)
OCCAverage (d) (%)C2H2 0.13 ± 0.04 0.07 ± 0.01 0.16 ± 0.03HCN 0.12 ± 0.01 0.11 ± 0.02 0.22 ± 0.03NH3 0.70 ± 0.15 0.37 ± 0.09 0.91 ± 0.30H2CO 0.34 ± 0.06 0.30 ± 0.09 0.12 ± 0.03 0.33 ± 0.08CH3OH 3.11 ± 0.23 2.94 ± 0.79 2.02 ± 0.26 2.21 ± 0.24C2H6 0.64 ± 0.06 0.57 ± 0.15 0.35 ± 0.04 0.63 ± 0.10

Notes. In calculating the mean abundances, we have excluded the 3o upper limits for 
species with both detections and upper limits as reported in this work (see Table 2.). (a) 
Weighted mean of all the pre-perihelion measurements. (b) Near-perihelion measurements 
on May 11. (c) OCS (Saki et al., 2020a), CO, and CH4 (upper-limits) were only measured 
on May dates (see Table 2), so these species have been excluded from this table. (d) 
Averages among all OCCs from Dello Russo et al., (2016a).
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Figure 6. Comparison of ER61’s mixing ratios with other comets measured to date. Near­
infrared measurements of each volatile in OCCs and JFCs are shown in black and red 
respectively, while the respective mean values for each volatile among OCCs is plotted 
in green (Dello Russo et al., 2016, 2020; DiSanti et al., 2017; Roth et al., 2017, 2018, 
2020; Faggi et al., 2018; Saki et al., 2020a). Error bars indicate 1o uncertainties on 
detections, whereas downward arrows indicate 3o upper limits (for hypervolatiles CO, 
and CH4). Note that for plotting purposes we have excluded the highly enriched CO 
comets such as C/2016 R2 (PanSTARRS) (Biver et al., 2018; McKay et al., 2019), and 
C/2010 G2 Hill (Kawakita et al., 2014) with >100% CO content relative to H2O.
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6. SUMMARY

We characterize ER61 primary volatile composition and spatial associations using 

iSHELL at NASA-IRTF on UT 2017 April 15-17 (shortly after its April 4 outburst) and on 

May 11-13. Our measurements indicate the following results:

(1) We obtained production rates and mixing ratios with respect to H2O (and C2H6 

when a C2H6 measurement was available) of the primary volatiles CH3OH, HCN, 

C2H2, NH3, H2CO, OCS, and obtained a stringent 3o upper-limit for CO, CH4, and 

HC3N.

(2) We were able to extract spatial profiles for H2O, C2H6, CH3OH, OH*, HCN, and 

co-measured dust on pre-perihelion, near-perihelion, and post-perihelion dates. 

These profiles might suggest a slight asymmetric outgassing of dust on April 16 

and May 13. Our measurements on May 11 suggest a consistent enhancement in 

the sunward direction of H2O and C2H6 compared to the dust profile. Owing to a 

low signal-to-noise ratio, it is not clear if  CH3OH follows this trend.

(3) We found that ER61 exhibits short-term (day-to-day) and long-term (pre- vs. post­

perihelion) variability, perhaps owing to its outburst on April 4 (shortly before our 

April measurements) or seasonal effects along its orbit similar to variability seen in 

comets 2P/Encke and 67P/C-G.

(4) We placed the chemical composition of ER61 in the context of other OCCs 

measured to date at near-infrared wavelengths and found that ER61 is overall 

enriched in CH3OH, consistent with the average in OCS, and depleted in the 

remaining volatiles. The pre- to post-perihelion variation in relative abundances
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makes it difficult to classify ER61, though it has the most compositional similarities 

on its pre-perihelion dates to comet 2P/Encke and on post- perihelion dates to comet 

C/2012 S1 ISON when it was at Rh > 0.83 AU. Differences in observational 

circumstances, techniques, and instruments need to be considered in order to better 

compare properties between comets within the population.

(5) Our ER61 measurements indicate the necessity of comet volatile measurements in 

both short (day-to-day) and long (pre- vs. post-perihelion) timescales to address the 

“snapshot” bias associated with cometary observations taken over a limited range 

of dates and/or heliocentric distances.
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SECTION

2. AN INVESTIGATION OF THE ABUNDANCES OF HYPERVOLATILES CO, 
CH4, AND C2H 6 IN JUPITER-FAM ILY COMET 46P/W IRTANEN

About 40 comets have been characterized in the near-IR and radio and more than 

200 comets have been cataloged at optical wavelengths. A large number of molecules have 

been identified in cometary atmospheres, both from ground- and space-based observations 

(Dello Russo et al., 2016a; Gibb et al., 2012; Bonev et al., 2017; Le Roy et al., 2015; Roth 

et al., 2018; Biver et al., 2015; Cochran et al., 2015). Roughly 15 Jupiter Family comets 

(JFCs) have been sampled in the near-IR, albeit at vastly different levels of detail (Roth et 

al., 2018, 2020; Bonev et al., 2021). Detections (or significant upper limits) are even 

sparser for the hypervolatiles CO and CH4 due to observational challenges associated with 

this dynamical family. Although differences in abundances of parent species have been 

noted, such a small sample size has hampered development of a chemistry-based 

classification system.

2.1. DATA REDUCTION AND OBSERVATION OF 46P/W IRTANEN

46P/Wirtanen is a JFC whose favorable and close approach to Earth in Dec 2018 - 

Feb 2019 provided a great opportunity to improve our understanding of the distribution of 

volatiles in the early solar system and in this potential mission target. We observed 

46P/Wirtanen using the high-resolution (X/AX ~  40,000) IR immersion grating echelle 

spectrograph iSHELL at the 3-m NASA Infrared Telescope Facility (IRTF) on UT 

February 4 and 5, 2019 (see Table 2.1). The superior IR active guiding capabilities of
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iSHELL enabled us to achieve observing efficiency of up to 80%. Our observations were 

performed with a 0.75" wide (6-pixel wide) slit, oriented along the projected Sun-comet 

line on all dates. To achieve flux calibration, a suitably bright IR flux standard star was 

observed using a 4" wide slit on each date and for each setting (using a wider slit for the 

star than was used for the comet helps minimize loss of signal and thereby achieve a truer 

measure of the stellar continuum).

Table 2.1. Observing Log of 46P/Wirtanen.

UT Date iSHELL UT time Rh A dA/dt Tint Slit
(2019) Setting (AU) (AU) (km s-1) (minutes) PA
Feb 4 M2 09:37-11:30 1.27 0.33 13.20 78 187°

Lp1 11:39-13:00 1.27 0.33 13.20 80 187°
Feb 5 Lp1 09:42-10:52 1.27 0.34 13.27 46 185°

Notes. Rh, A, and dA/dt are heliocentric distance, geocentric distance, and geocentric 
velocity, respectively, of 46P/Wirtanen, and Tint is total integration time on source. The slit 
position angle (PA) was oriented along the projected Sun-comet line on all dates.

We used two iSHELL settings: M2 (covering ~ 4.5 -  5.2 |im) which samples 

emissions of CO, CN, and H2O simultaneously, and LP1 (covering ~ 3.2 -  3.6 ^m) samples 

emission lines of CH4, CH3OH, C2H6, and H2CO. All observations were performed using 

a standard ABBA nod pattern (sequence of four scans) where the A and B beams were 

placed symmetrically about the midpoint along the 15" long slit and separated by half its 

length. Thus, the comet was present in both beams. Combining the frames as A-B-B+A 

(comet-sky-sky+comet) canceled out background thermal continuum, sky emission (lines 

and continuum), and instrumental biases to second order in airmass. The data were then 

dark-subtracted (to account for high dark-current pixels), flat-fielded (using an internal



93

continuum lamp), cleaned of cosmic ray hits and hot pixels, and rectified to produce two­

dimensional (spatial-spectral) frames, where each row corresponds to a constant (and 

unique) spatial position along the slit, and each column to a unique wavelength. We found 

that spatially resampling using a third-order polynomial more completely removed the 

curvature in the spatial dimension from iSHELL frames and so employed this in place of 

previously used second-order polynomials (DiSanti et al., 2017; Roth et al., 2017, 2018).

The spectral frames were spatially registered, and spectra were then extracted by 

summing signal over 15 rows (approximately 2.5"), seven rows to each side of the nucleus, 

defined as the peak of dust emission in a given spectral order. The Planetary Spectrum 

Generator (Villanueva et al., 2018) was used to generate atmospheric models, to assign a 

wavelength scale to the spectra, and to establish absolute column burdens of the component 

absorbing species in the terrestrial atmosphere. We convolved the fully resolved 

atmospheric transmittance function to the resolving power of the data and scaled it to the 

level of the comet continuum. We then subtracted the modeled continuum to isolate 

cometary emission lines as previously described. Synthetic models of fluorescent emission 

for our targeted species were compared to observed line intensities, after correcting each 

modeled line intensity for the monochromatic atmospheric transmittance at its Doppler- 

shifted wavelength (according to the geocentric velocity of the comet at the time of the 

observation).

2.2. RESULTS

We determined rotational temperatures (Trot), volatile production rates (Q, 

molecules s-1), and the abundance (or “mixing”) ratios Qx/Qh2o (expressed in %) for
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volatile species in 46P/Wirtanen. We found consistent results and excellent fits to the 

comet spectra, both for telluric absorptions and for cometary emission features.

2.2.1. Spatial Profile. Long-slit high-resolution infrared observations of comets 

permit investigations of processes in the inner coma, where both nucleus and extended 

sources (i.e., release from one or more sources in the coma) may contribute to the 

production and spatial distribution of a particular volatile. Analysis of spatial profiles of 

emissions for coma molecules can indicate whether their distributions differ from that 

expected for direct sublimation from the nucleus, as opposed to release from extended 

sources in the coma (Dello Russo et al., 1998, 2016a; DiSanti et al., 2001; Brooke et al., 

2003). The spatial profiles for molecules produced by direct sublimation peak in intensity 

at (or at least near) the position of the nucleus before falling off with increasing 

nucleocentric distance (p) as p-1, whereas molecules having an extended source display a 

flatter distribution, falling off more slowly with p (e.g., see Figure 3 in Dello Russo et al., 

1998, and Figure 5 in Dello Russo et al., 2016). By summing the spatial profiles of all 

individual lines for each species within a grating setting, we were able to extract spatial 

profiles for emission from H2O and C2H6 in 46P/Wirtanen (see Figure 2.1.).

The signal-to-noise ratio is not sufficient to see weaker species spatial profiles. The 

profiles for dust H2O and C2H6 molecules track one another, suggesting that molecules are 

co-released.

2.2.2. M olecular Fluorescence Analysis. Synthetic models of fluorescence 

emission for each targeted species were compared to observed line intensities, after 

correcting each modeled line intensity (g-factor) for the monochromatic atmospheric 

transmittance at its Doppler-shifted wavelength (according to the geocentric velocity of the
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comet at the time of the observations). The g-factors used in synthetic emission models in 

this study were generated with quantum mechanical models developed for H2O (Villanueva 

et al., 2012a), C2H6 (Villanueva et al., 2011b), CO, and CH4 (Paganini et al., 2013; 

Villanueva et al., 2011a; Gibb et al., 2003), H2CO (DiSanti et al., 2006), and CH3OH 

(Villanueva et al., 2012b; DiSanti et al., 2013). Production rates for each sampled species 

were determined from the appropriate fluorescence model at the best-fit rotational 

temperature of each molecule.

Spatial Profile in Comet 46P (Feb 2019)

-600 -400 -200 0 200 400 600
Projected Distance from the Nucleus (km)

Figure 2.1. Spatial profile of H2O, C2H6, and dust in comet 46P/Wirtanen on UT 2019 
February 4. The slit was oriented along the Sun-comet line (~186°) for all of our 46P’s 
February observations. The profiles suggest that the spatial distributions of C2H6 and 
H2O tracked that of measured dust.
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A line-by-line analysis and a Levenberg-Marquardt nonlinear minimization 

technique (Villanueva et al., 2008) was used to fit fluorescence emission from all species 

simultaneously within each echelle order, allowing for high-precision results, even in 

spectrally crowded regions containing many spectral lines within a single instrumental 

resolution element (see Figure 2.2).

2.2.3. Rotational Tem perature, Production Rates, and Mixing Ratios.

Maximum brightnesses of JFCs are often near their closest approach to Earth, when 

geocentric velocities (Adot) are small. Measuring CO and CH4 requires sufficiently high 

Adot to shift cometary emissions from their highly opaque telluric counterparts to 

wavelengths with the adequate atmospheric transmission.

At the time of 46P/Wirtanen’s closest approach (UT 2018 Dec-16), the geocentric 

velocity was insufficient for studies of CO and CH4; however, by January (Adot~10 km s-1; 

McKay et al., 2021) to early February 2019 (Adot ~ 13 km s-1; this work) the geocentric 

velocity became large enough while the comet was still sufficiently bright to characterize 

46P/Wirtanen hypervolatile content and place stringent upper limits on CO and CH4.

Additionally, our February observations included fluorescent emission from other 

volatile species (most notably CH3OH, and CN). We detected fluorescent emission from 

H2O, C2H6, CH3OH, and CN (at 4o) and derived 3o upper limits for CO, CH4, and H2CO 

(see Table 2.2). Mixing ratios of 46P/Wirtenen hypervolatiles in February were consistent 

with their mean values from our January observations (see McKay et al., 2021).

When calculating production rates, we assumed the GF of simultaneously measured 

H2O, C2H6 on Feb 4 and Feb 5. Global production rates for all the targeted species and 

their mixing ratios relative to water are presented in Table 2.2.
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(A )

Figure 2.2 Fluorescence emissions of C2H6 and CH3OH in comet 46P/Wirtanen on UT 
2019 February 4. The gold trace overplotted on cometary spectrum is the telluric 
absorption model, while the sum of fluorescent emission models for all species is 
overplotted in red. Individual fluorescent emission models (color-coded by molecule) 
are plotted directly below, offset vertically for clarity. At the bottom of the panel is the 
residual spectrum (after subtracting the telluric absorption model and all fluorescent 
emission models) with the 1o error envelope overplotted in bronze.

Rotational temperatures (Trot) were determined using correlation and excitation 

analyses that have been extensively described in the literature (e.g., Bonev 2005; Bonev et 

al., 2008; DiSanti et al., 2006; Villanueva et al., 2008). In general, well-constrained 

rotational temperatures can be determined for individual species with intrinsically bright 

lines and for which a sufficiently broad range of excitation energies is sampled. These 

conditions were met for H2O in M2 and C2H6 lines in Lp1 settings. The Trot for H2O was 

well constrained on Feb 4 (59 ± 10 K) and was consistent with that for C2H6 (59 ± 7 K) on

the same date.
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Table 2.2. Molecular species measured in comet 46P/Wirtanen.

Molecule Tro/a) GF(b) Q(c) Qx/QH2O(d) Qx/Qc2H6(e)
(K) (molecules s-1) (%)

2019 Feb 4, Rh = 1.27 au, A = 0.33 au, dA/dt = 13.20 km s 1, M 2 an dL p1  settings
H2O 59 ± 10 2.10 ± 0.20 (2.64 ± 0.34) x 1027 100 118 ± 20
CO (59) (2.14) < 1.49 x 1025 < 1.69(f) < 2.00
CN (59) (2.14) (3.03 ± 0.55) x 1025 1.14 ± 0.28 1.35 ± 0.29

C2H6 59 ± 7 1.95 ± 0.15 (2.23 ± 0.10) x 1025 0.84 ± 0.14 1
CH4 (59) (195) < 8.43 x 1024 < 0.95(f) < 1.13

CH3OH (59) (195) (3.01 ± 0.64) x 1025 1.14 ± 0.30 1.34 ± 0.32
H2CO (59) (1.95) < 5.30 x 1024 < 0.60(f) < 0.71

2019 A pril 5, Rh = 1 .2 7 au, A = 0.34 au, dA /dt = 13.27 km s 1, Lp1 setting
CH4 (59) (195) < 2.75 x 1025 < 3.12(f) < 3.69

CH3OH (59) (195) < 1.55 x 1025 < 1.76(f) < 2.08
H2CO (59)____ (195) < 7.60 x 1024 < 0.86(f) < 1.02

Notes. a Rotational temperature. Values in parentheses are assumed. b Growth factor. 
Values in parentheses are assumed. c Global production rate. Errors in production rate 
include line-by-line deviation between modeled and observed intensities and photon noise 
(see Dello Russo et al., 2004; Bonev 2005; Bonev et al., 2007). d Molecular abundance 
with respect to H2O. e Abundance ratios with respect to C2H6. f 3o upper limit.

We adopted the rotational temperature of simultaneously measured H2O (or C2H6 

in Lp1 setting with no H2O emission lines) within the same setting for species without a 

well-constrained Trot (e.g., CO, CH4). We also adopted the rotational temperature of H2O 

and C2H6 from Feb 4 to analyse our data on Feb 5. Rotational temperatures for different 

molecules for the same comet and within the same instrumental setting are generally found 

to be consistent, even for molecules with differing photo-dissociation lifetimes (e.g., see 

Bonev 2005, DiSanti et al., 2006; Gibb et al., 2012; and DiSanti et al., 2016 supporting this 

approach).

Using alternative compositional baselines other than H2O (Qx/Qh2o %) can provide 

richer insights in comparing comets. For instance, Biver & Bockelee-Morvan (2019) used
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CH3OH as their measurement baseline in comparing complex organic molecules in comets. 

Owing to the low vacuum sublimation temperature of C2H6, distinct outgassing 

morphologies in many comets compared with H2O, and the easy detectability of this 

molecule at near-infrared wavelengths, C2H6 can serve as a possible alternative 

compositional baseline (see Section 5.4.2 in Bonev et al., 2021 for details). Therefore, we 

present abundances with respect to both H2O and C2H6. C2H6 is one of the frequently 

observed molecules among comet populations (Dello Russo et al., 2016a). Its fluorescence 

emissions are located at regions of adequate atmospheric transmittance regardless of 

geocentric velocity (Adot). Unlike water, C2H6 is a hypervolatile with one of the lowest 

vacuum sublimation temperatures and has shown distinct outgassing behavior in some 

comets, thus deriving mixing ratios with respect to C2H6 can be used as an alternative 

compositional baseline for future work (Bonev et al., 2021).

2.2.4. 46P/W irtanen’s Hypervolatiles Content in Context of O ther Comets to 

Date. Hypervolatile abundances have been securely measured in only 22 comets to date in 

which only 4 of them are ecliptic comets (see Roth et al. 2020 for details). This highlights 

the statistics for these species in ecliptic comets (particularly CO and CH4) are far from 

being firmly established (Roth et al. 2020). Figure 2.3 shows relative hypervolatile 

abundances and their wide range reported in all comets to date, including 46P and the 

measurements taken by Rosetta for comet 67P/Churyumov-Gerasimenko.

2.3. DISCUSSION

The water production rate (molecules s-1) as measured in our February observation 

was approximately 50 -  75% smaller compared with January observations (McKay et al.,
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2021). McKay et al., (2021) reported a clear variability in H2O production rates on time 

scales of days and hours (The rotation period of the 46P’s nucleus is ~ 9 hours; see Farnham 

et al., 2018), making it plausible that changes in water production rate could occur on time 

scales of a few hours (2-4 hours), owing to changes in insolation patterns that result from 

nucleus rotation.

Figure 2.3. Ratios of hypervolatiles in comets measured to date. Comets are labeled with 
a bold number in the figure and in the figure’s legend. The number of comets in which 
the complete hypervolatile inventories are available is small (22 comets so far, see Roth 
et al., 2020 for more details). The downward- and leftward-facing arrows indicate the 
(3o) upper limits of CO/C2H6 and CH4/C2H6. Comet are color coded by their mixing 
ratio of C2H6/H2O (%) with the exception of comet C/2006 W3 (Christensen), #34 and 
pink in the figure, for which H2O was not detected.
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Our derived mixing ratio for C2H6, and 3o upper limits for CO and CH4 are 

consistent with those in our January observations (see McKay et al., 2021). Additionally, 

our February observation also detected CN, and CH3OH. McKay et al., (2021) reported a 

higher mixing ratio relative to H2O (and closer to mean among comet population) for 

CH3OH, whereas our February mixing ratios show a lower abundance for this molecule (~ 

80 % smaller). This might indicate the existence of heliocentric related change in mixing 

ratios, however comparison of mixing ratios of C2H6 and CH3OH from December -  

January do not show such asymmetry for these molecules (Bonev et al., 2021; McKay et 

al., 2021, Khan et al., 2021; Roth et al., 2021). Comparison with narrowband CN imaging 

from UT Feb 5 and 7 could help better our understanding of 46P/Wirtanen's CN content.
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3. A SUMMARY OF THIS DISSERTATION AND FUTURE IN TH E
COM ETARY SCIENCE

3.1. GOALS ADDRESSED BY THIS DISSERTATION

This dissertation is comprised of the results of eight observing programs with 

iSHELL; spread over three years as well as two observing proposals with CSHELL in 

2004. These results have either been published (Saki et al., 2020a) or accepted for 

publication (Saki et al., 2021) in peer-reviewed academic journals. This section is dedicated 

to the major science goals addressed in each work and place these goals into the context of 

cometary science. An overview of future work and opportunities in the field of cometary 

science is also provided.

3.1.1. Carbonyl Sulfide (OCS): Detections in Comets C/2002 T7 (LINEAR), 

C/2015 ER61 (PanSTARRS), and 21P/G iacobini-Zinner and Stringent Upper-limits 

in 46P/W irtanen. OCS is an extremely under-represented species in the current taxonomy 

of cometary volatiles. Saki et al., (2020) addressed this major paucity by reporting 

detections of this molecule in two Oort cloud comets (C/2015 ER61 and C/2002 T7) and 

for the “first” time in a Jupiter-family comet (21P/G-Z) from a ground-based facility. Saki 

et al., (2020) also reported a stringent 3o upper-limit in 46P/Wirtanen (lowest reported in 

any comet). The first OCS measurement for a short-period comet did not occur until 2015 

via the Rosetta mission to comet 67P. Saki et al., (2020) reported the detection of OCS in 

comet 21P/G-Z by combining the spectra of three dates. Jupiter-family comets are 

generally dim and not productive perhaps owing to repeated close perihelion passages into 

the inner solar system. The limitations in sensitivity in earlier instruments (see the 

discussion in Dello Russo et al., 2016a) and non-simiultanous measurements with other
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volatiles along with the low productivity of these comets were the main reasons of this 

paucity.

Furthermore, Saki et al., (2020) searched for a possible correlation between OCS 

and CO when both measurements were available in literature. Owing to the OCS vacuum 

sublimation temperature of 85 K, the high volatility and lower thermal threshold of CO 

makes evolutionary processing effects potentially more important for CO than for OCS. 

Figure 6 in Saki et al., (2020) may suggest a higher OCS abundance is correlated with high 

CO abundance; However, the very small number of OCS measurements to date in comets 

precludes establishing a clear correlation between CO and OCS at this time. Saki et al., 

(2020) significantly expanded the range of OCS abundances, increased the number of OCS 

measurements in comets, and contributed extensively to establishing a more meaningful 

statistic for this prebiotically important sulfur-bearing species.

3.1.2. Chemical Composition of O utbursting Comet C/2015 ER61. Comet 

ER61 was a dynamically new young Oort cloud comet whose favorable approach in 2017 

provided an excellent opportunity to examine its primary chemical composition. We 

observed comet ER61 in UT 2017 April 15-17 (shortly after its April 4 major outburst) as 

well as in May 11-13 when it just passed perihelion (May 10). Saki et al., (2021) found that 

ER61 exhibited variability in production rates of many species on short (day-to-day) and 

long (pre- vs. post-perihelion) timescales. The relative abundances o f  these volatile species 

remained consistent within uncertainties during pre-perihelion observations but tended to 

decrease during post-perihelion observations (with the exception of CH3OH and HCN).

The short-timescale variability in the production rates of these volatiles could be 

due to diurnal effects (over the course of the rotation of the nucleus) and/or the effect of its
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outburst. The decrease in the production rates and hence the mixing ratios in some volatiles 

in post-perihelion dates could be due to the presence of seasonal effects in ER61 (similar 

to the observed variations in comet 2P/Encke (Roth et al., 2018) and comet 67P/C-G (e.g., 

Le Roy et al., 2015)). Saki et al., (2021) also reported detection of weaker (difficult to 

detect) species such as C2H2, H2CO, OCS and a sensitive 3o upper limits for 

cyanoacetylene (HC3N).

3.1.3. An Investigation of the Abundances of Hypervolatiles CO, CH4, and 

C2H 6 in Jupiter-fam ily Comet 46P/W irtanen. Comet 46P/Wirtanen is a Jupiter-family 

comet whose very close and favorable apporoch to Earth in December 2018 - February 

2019 offered an excellent opportunity to measure the primary volatile composition in this 

potential mission target. At the time of 46P’s closest approach (December 16), the 

geocentric velocity was insufficient for studies of CO and CH4; however, by January (A ~ 

10 km s-1, McKay et al., 2021) to early February 2019 (A ~ 13 km s-1, this work) the 

geocentric velocity became large enough while the comet was still sufficiently bright to 

characterize 46P hypervolatile content and place stringent upper limits on CO and CH4.

Additionally, our 2019 February observations included fluorescent emission from 

other volatile species (most notably CH3OH, and CN). We detected fluorescent emission 

from H2O, C2H6, CH3OH, and CN (at 4o) and derived 3o upper limits for CO, CH4, and 

H2CO (see Table 2.2). Mixing ratios of 46P/Wirtenen hypervolatiles in February were 

consistent with their mean values from our January observations (see McKay et al., 2021).
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3.2. THE NEXT GENERATION OF COM ETARY ASTRONOMY

The combination of new/upgraded and upcoming state-of-the-art instruments, such 

as the Atacama Large Millimeter/Submillimeter Array (ALMA), iSHELL at NASA-IRTF, 

NIRSPEC-2 (upgraded NIRSPEC) at W. M. Keck II, and the James Webb Space Telescope 

(JWST; schedule to lauch in late 2021) is enabling the next generation of cometary 

astronomy. These facilities are enabling searches for novel and less-understood behaviors 

in comets, such as compositional variability and small Rh studies (iSHELL), the detection 

and mapping of complex organics and tests of isotopic ratios in moderately bright comets 

(ALMA), and testing coma composition and spatial associations with unprecedented 

sensitivity and at large Rh (JWST).

JWST will provide highly complementary results to ground-based observations of 

comets. It will be particularly powerful for observing comets at Rh > 3 AU (where H2O is 

not fully activated, and cometary activity is driven by CO and CO2) and at excellent spatial 

resolution, enabling studies of coma volatile composition and spatial distributions at 

heliocentric distances that are often out of reach to ground-based IR and mm/sub-mm 

observatories. JW ST will enable comprehensive studies of CO2 in comets, a primary driver 

for cometary activity along with H2O and CO, but which is unobservable from the ground 

and therefore not well understood (Kelley et al., 2016 and refs. therein). JWST will enable 

simultaneous or contemporaneous studies of the abundances and spatial distributions of all 

three species in comets over a range of Rh, providing highly complementary results to the 

ground-based spatial studies conducted at smaller Rh and dramatically improving the 

understanding of cometary behavior over all portions of an orbit.
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The work in this dissertation will be continued and complemented by author’s 

postdoctoral research addressing these topics as well as the archival near-infrared data of 

comets C/2002 T7 (LINEAR) and C/2017 T2 (PanSTARRS) (Saki et al., in prepration for 

Astronomical Journal).

3.3. FINAL REM ARKS

The results of comet missions such as Deep Impact, EPOXI, and Rosetta have led 

to fundamental questions (posed by A ’Hearn (2017)) regarding the nature of comets: How 

(or whether) the properties and behaviors of comets change with time? To what degree do 

comets retain cosmogonic signatures in their nuclei? How are comets ices put together? 

Are the behaviors seen by these missions exceptional or common? The results reported in 

this work seek to address these questions by characterizing the primary volatile 

composition of four comets and using these results to decode the history of volatile matter 

in the early solar system.
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