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ABSTRACT

The existence of gravitational waves (GWs), small perturbations in spacetime pro-
duced by accelerating massive objects was first predicted in 1916 as solutions of Einstein’s
Theory of General Relativity (Einstein, 1916). Detecting and analyzing GWs produced by
sources allows us to probe astrophysical phenomena.

The era of GW astronomy began from the first direct detection of the coalescence
of a binary black hole in 2015 by the collaboration of the advanced Laser Interferometer
Gravitational-wave Observatory (LIGO) (Aasi ef al., 2015) and advanced Virgo (Abbott
et al., 2016a). Since 2015, LIGO-Virgo detected about 50 confident transient events of GW
signals (Abbott et al., 2019d, 2021b).

To detect GW signals, the detectors must be extremely sensitive, causing them to
be susceptible to instrumental and environmental noise. Particularly, excess transient noise
artifacts, or glitches significantly impair the quality of detector data. Identification of the
source of these glitches is a crucial point for the improvement of GW signal detectability and
a better estimate of source parameters. However, glitches are the product of short-lived linear
and non-linear couplings among the interrelated detector-control systems that include optic
alignment systems and mitigation systems of ground motions, generally making it difficult
to find their origin. We present a new software called PyChChoo (Mogushi, 2021a) which
uses time series recorded in the instrumental control systems and environmental sensors
around times when glitches are present in the detector’s output read-out to reveal essential
clues about their origin. Using these time series, we subtract glitches using a machine
learning algorithm. We find that our method reduces 20-70% of excess power due to the
presence of glitches. For low-latency operations, we present another machine-learning
based algorithm called NNETFIX (Mogushi er al., 2021) to estimate the data containing a

GW signal that is partially removed due to the presence of an overlapping glitch.
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NOMENCLATURE

Description

Artificial Neural Network: a type of machine-learning algorithms that
uses interconnected artificial neurons (mathematical functions) to pro-
cess user-provided data. For example, ANNs are used for classifying
vehicle images and estimating the trend of the stock market in near
future.

Amplitude Spectrum Density: the square root of PSD.

On-site auxiliary sensors or control systems that monitor instrumental
and environmental disturbances in GW detectors. Auxiliary channels
can be potential witnesses for glitches present in the detector’s output
readout.

Binary Black Hole: a binary system of two black holes.
Binary Neutron Star: a binary system of two neutron stars.

Compact Binary Coalescence: for example, a binary system of two black
holes, two neutron stars, or a neutron star and a black hole.

Core-Collapse Supernovae.

Contour Level Enhancement: the ratio of the one minus the contour level
in the sky map obtained from the NNETFIX reconstructed data to one
minus the contour level of the sky map obtained from the gated data.

Convolutional neural network: a type of MLP consisting of a series of
layers, where small groups of neurons in each layer are convoluted with
window functions to learn local features in the input data. For example,
CNN s are generally used for image processing.

The sum of probability densities of pixels with their values greater than
the value of the pixel containing the sky location of the injected signal.
Smaller values of the contour level imply that the estimates of the source
sky location are more accurate.

Constant Q-transform: atype of wavelet-transformation that uses logarithm-

spacing frequency bins. Values of Q are defined as the ratio of the
characteristic frequency to the variance in frequency. Wavelet bases are
generally sinusoidal or Gaussian-modulated sinusoid functions.
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EM
ETG

FAR

FFT
FGT
FMG

FNR

Gate

GL

Glitch

GRB

GWs

H1

Xix

Coherent WaveBurst: an unmodeled GW search algorithm used in
LIGO and Virgo. ¢WB identifies candidate GW events by calculating
coherent excess power in the time-frequency representations via wavelet-
basis between multiple GW detectors maximized over all potential sky
locations.

Electromagnetic.

Event Trigger Generator: ETGs identify excess-power events by gener-
ally characterizing these events with a characteristic time, frequency, and
measure of loudness compared to the corresponding loudness measure
of stationary Gaussian noise.

False Alarm Rate: FAR is the rate of terrestrial-noise events with their
significance equal to or higher than the significance of an astrophysical
candidate event.

Fast Fourier transform: a type of discrete Fourier transform.
Fast Griffin-Lim: modified Griffin-Lin transform to converge faster.

Fractional match gain: the ratio of the match gained due to the NNET-
FIX reconstruction over the match lost due to a gate used to remove the
presence of a glitch overlapping a detected CBC signal.

Fraction of SNR reduction after subtracting glitches. In the context of
this dissertation, an extracted glitch waveform and the data before or
after glitch subtraction are used for calculating SNRs.

Techniques to remove the data affected by a glitch. One of the gating
techniques is to set the data affected by a glitch to be zero and smoothly
connect the gated portion to the surrounding parts using a window func-
tion.

Griffin-Lim: the GL transform creates time series from mSTFT by
estimating the phase

A transient noise artifact observed in ground-based gravitational-wave
detectors.

Gamma-ray burst: GRBs are extremely energetic astrophysical explo-
sions.

Gravitational waves: ripples of curved spacetime generated by acceler-
ated massive objects.

One of LIGO observatory sites located in Hanford, Washington in the
United States.



hVETO

iFAR
IMBBH

KS

L1

LHS

LIGO

LSC

Match

MLP

MSE

mSTFT

NNETFIX

NSBH

01

02

XX

hierarchical Veto: hVETO is an algorithm similar to UPV but finds
witness channels hierarchically to minimize the vetoed time as much as
possible.

Inverse false alarm rate

Intermediate Binary Black Hole: black holes between stellar black holes
and supermassive black holes which are believed to be at the center of
general galaxies.

Kolmogorov-Smirnov: one-simple KS test is typically used to compare
the similarity between an empirical set and an expected distribution
while a two-sample KS test is used to compare the similarity between
two empirical sets.

One of LIGO observatory sites located in Livingston, Louisiana in the
United States.

Left-Hand Side.

Laser Interferometer Gravitational-wave Observatory: two ground-based
GW interferometers with two 4-kilometer arms located in the United
States.

LIGO Scientific Collaboration.

The noise-weighted inner product of two time series, normalized to 1
for a perfect match.

Multi-Layered Perceptron: a type of ANN consisting of layers of artifi-
cial neurons, where information from neurons is fed into the preceding
layers.

Mean Square Error: MSE is the average of the squared difference of the
estimated and the true data.

magnitude of STFT

A Neural NETwork to ‘FIX* GW signal coincident with short-duration
glitches in detector data: a machine learning-based software package to
interpolate the data.

A binary system of a Neutron Star and a Black Hole.

The first LIGO-Virgo observation run from September 12, 2015 to
January 19, 2016.

The second LIGO-Virgo observation run from November 30, 2016, to
August 25, 2017.



03a

Omicron

PCA
PSD

PyChChoo

RHS

RS
sGRB

Sky localization
error region

SNR

SSR

STFT

SUT

TFR

TSS

XXi

The first half of the third LIGO-Virgo observation run from Apr 1, 2019
to September 30, 2019.

The primary ETG used in LIGO and Virgo, intended to identify glitches
using a generic sine-Gaussian time-frequency projection.

Principle Component Analysis.

Power Spectrum Density: PSD describes the distribution of power of
the data into frequency bins.

Python-based glitch Characterization tool: PyChChoo statistically iden-
tifies the auxiliary witness channels for glitches detected in the detector’s
output readout.

Right-Hand Side.
Ranking Statistic: RS is the significance of candidate GW events.

Short gamma-ray burst or short GRB: sGRBs are produced by BNS or
NSBH mergers.

Posterior distribution of the source location in the sky given data. Num-
erically, the sky localization error region is provided as probabilities over
pixelized solid angles in the sky (so-called sky map).

Signal-to-Noise-Ratio: SNR for a particular frequency range is the ratio
of the amplitude associated with a known waveform or an identified
waveform to the averaged amplitude over the analyzed time period.

Sum of Squares of Residuals: SSR is the sum of squares of the difference
between the predicted and the true data over the data set.

discrete Short-Time Fourier transform: STFT is obtained by calculating
discrete Fourier transforms in divided data portions.

Stationarity Upper Threshold: SUT represents the averaged upper thresh-
old of noise fluctuations in an auxiliary channel with a given duration
in a given frequency range during time periods when no glitches are
present in the detector’s output readout.

Time-Frequency Representation: a view of time series represented over
both time and frequency.

Total Sum of Squares: TSS is the sum of squares of the difference
between the true data and the mean of the true data over the data set.



UPV

Virgo

XXii

Use-Percentage Veto: UPV is an algorithm that finds the statistical
correlation using the percentage of the number of transients in each
auxiliary channel in coincidence with glitches in the detector’s output
readout, relative to the total number of transients to determine vetoed
periods in LIGO and Virgo.

A ground-based GW interferometer with two 3-kilometer arms in Italy.



1. INTRODUCTION

This chapter presents a brief introduction of Einstein’s special relativity (Einstein,
1905), general relativity (Einstein, 1915), the derivation of the field equations in the weak
gravitational field regime, polarizations, and the quadrupole moment approximation based
on Carroll (2003); Poisson and Will (2014); Saulson (1994). Also, the four primary classes

of gravitational wave (GW) sources will be described.

1.1. GRAVITATIONAL WAVES

In 1905, Einstein formulated special relativity (Einstein, 1905) where space and
time are interchangeable. The interval of two events described by a union of space and
time, or spacetime is invariant under coordinate transformations. In the spacetime, an event
is labeled with the spatial coordinates (x, y,z) and the time ¢. Using a unified coordinate
x* = (ct,x,y,z) where c is the speed of light and the index y runs over values {0, 1,2,3}

2

such that x° = ¢r, x! = x, x% = y, and 13 =z, the spacetime interval ds? is defined as

ds* = ndxtdx” (1.1)

where dx* are the coordinate displacements, and 1., = diag(-1,1,1,1) is the metric tensor
of the flat spacetime, or the Minkowski tensor. For more details, Appendix A shows the
conventions used in Equation (1.1). More specifically, the spacetime interval defined above
is invariant under Lorentz transformations as shown in Appendix A. Special relativity states

that all the laws of classical physics must be invariant in inertial systems.



To include gravity into the relativistic laws of physics, Einstein generalized special
relativity by introducing the notion of the curved spacetime in 1915 (Einstein, 1915). Using

a generalized metric g, for the curved spacetime instead of 17, the spacetime interval
ds* = g dx*dx” (1.2)

is invariant under general invertible coordinate transformations.
In the famous words from John A. Wheeler, the field equations tell “Spacetime tells
matter how to move; matter tells spacetime how to curve” (Misner et al., 1973). The field

equations are written as
1 8nG

R, - —-gwR=—
% 8uv o

3 Ty, (1.3)

where G is the gravitational constant, 7}, is the energy-momentum tensor, Ry, is the Ricci
tensor:

R, =R (1.4)

Hov»

where R* auf is the Riemann curvature tensor:

Raﬁ'y@ = 6’}’raﬁ6 _ 6(5Faﬁ,}, + l—*a'/[yl—*/lﬁé _ raﬂérﬂﬁy , (15)
where T'* ap ATC the Christoffel symbols:
H 1 Qv
op = 58" (0agvp + Opgva = vgap) - (1.6)

The Ricci scalar in Equation (1.3) is obtained by contracting the indices of the Ricci tensor
as

R =g Rap. (17)



Because the Ricci tensor and Ricci scalar are defined with derivatives of the metric up to
second order, Equation (1.3) describes a set of second-order, partial differential equations.
Importantly, Einstein’s field equations are defined in covariant form, i.e., the form of
equations is invariant under general invertible transformations.

One year later, in 1915, Einstein published an article on the linearized approximate
solution of Einstein’s field equations that suggested the existence of ‘ripples’ of the spacetime
known as gravitational waves (Einstein, 1916).

1.1.1. Einstein’s Equations in Weak Gravitational Field. In the linearized ap-
proximation, we consider a spacetime far enough from GW sources such that the metric g,
is ‘nearly’” flat. Comparing Equations (1.1) and (1.2), the metric of the curved spacetime is

given as a small perturbation added to the metric of the flat spacetime:
S =My +hyy  with || < 1. (1.8)

If we want to choose coordinates that satisfy several restrictions including (1) the metric in
the transformed coordinates is also the sum of the metric of the flat spacetime plus a small
perturbation; (2) the coordinate transformations include the Lorentz transformations; and
(3) the coordinate transformations are limited to small changes with the order of |/, |, the

coordinate transformations are formulated as
X =x+ (Y with |[7% <« 1, (1.9)

where £¢ is a vector field. To the first order in £¢, the metric in the new coordinates is given

as

8hp = Nap + hap = Datlpul” = dptian . (1.10)

For the first requirement to be satisfied, the perturbation must be

g = hap — Oulp — Opla (1.11)



where {, := 1,,4". Because the Minkowski tensor is the same before and after the Lorentz
transformations, %, is a tensor under any of the Lorentz transformations. This equation is
referred to as a gauge transformation, meaning that any small coordinate transformations
|£¥| < 1 canbe chosen to get Equation (1.8) while preserving the law of physics unchanged.

Let us rewrite the Einstein field equations in terms of the linearized metric. To first

order in h,,, the Ricci tensor becomes
1
and the Ricci scalar becomes
R=-0h+ aﬂthW, (1.13)

where h = n*”hy,, and O := n#70,,0, is the d’Alembert operator or the wave operator in the
flat spacetime. Substituting Equations (1.12) and (1.13) into Equation (1.3), the Einstein

field equations become

1 1 8nG
=5 (Bl + 01 = 3,0 oy = 0,07 ) + Sy (B = 9707 ) = T L. (114)

These linearized equations can be further simplified by defining a new variable called

“trace-reversed” perturbation:

_ 1
Ry = oy = 5. (1.15)

Using Equation (1.15), Equation (1.14) becomes

1/ - _ - - snG
=5 (B = 8,07 Ry = 0,0 Dy + 1003y ) = T (1.16)

The small perturbation / v in the weak gravitational field should obey these field equations.



The above equations can be even further simplified by using the new coordinate

freedom in Equation (1.9) and imposing the Lorenz gauge condition:
" hy =0. (1.17)

This gauge condition is always achievable because one can find a coordinate transformation
such that the perturbation in the new coordinates satisfies the Lorenz gauge condition when
the perturbation in the old coordinates does not satisfy this gauge condition. Assuming
that the metric perturbation does not satisfy the Lorenz gauge condition, one can find the

perturbation in the new coordinates as

Ijl;w = hyy — 04y — 0Ly + N0y L7 (1.18)

where we have substituted Equation (1.15) into Equation (1.11). The metric perturbation

in the new coordinates satisfies the Lorenz gauge condition if
0=0"h,, =0 hy — 0, (1.19)

ie.,

Ol = 0" hyy - (1.20)

Equation (1.20) can be solved if & v 18 differentiable, i.e., v h w = fu(x7), the solutions are

L= / dyG(x - ) L), (1.21)

where G(x) is the Green’s function for the d’Alembert operator.
Because of the Lorenz gauge condition, the last three terms in Equation (1.16)

vanish, and finally, we get

- 167G
Dh/tv = —TTHV . (122)



Equation (1.22) implies that the perturbation generated by the energy-momentum tensor
propagates through the flat spacetime at the speed of light. Besides, substituting Equation
(1.22) into Equation (1.17) leads to the energy and momentum conservation 87, = 0, i.c.,
the matter fields and non-gravitational radiation that produce 7}, can exchange energy and
momentum with themselves but not with the gravitational field. Physically, the dynamics
of matter fields are dominated by non-gravitational fields rather than gravitational fields.
1.1.1.1. Propagation of gravitational waves in vacuum. Equation (1.22) shows
how GWs are generated from the fields expressed by the energy-momentum tensor. Here,
we focus on the properties of their propagation by studying the vacuum solutions of the

linearized Einstein’s field equations. In this case,
Oh, =0. (1.23)

To solve Equation (1.23) for EW, we impose the additional constraints, O, = 0, on the
coordinate transformations in addition to the Lorenz gauge condition Equation (1.17). It
follows that v 18 purely spatial, traceless, and transverse:

hou=0, h'.=0, d'h;=0, (1.24)

1

where the Roman indices run over the spatial components and the last two equations are due
to the Lorenz gauge condition. The above condition is called transverse-traceless gauge, or
TT gauge. Because the perturbation is now traceless, there is no difference between h v and
h,y. Importantly, the degrees of freedom in £, are reduced to two from ten by imposing
the above gauge condition.

Next, we present the matrix form of the surviving degrees of freedom. To do so, we

assume the form of the solution in Equation (1.23) to be

hly = Aue® (1.25)



where k7 = (w, l;) is a wave vector and A, is a symmetric tensor called polarization tensor.
w is the angular frequency of the GW with the dispersion relation of w/c = |l§|. For a plane
wave propagating in the direction parallel to the wave-vector 71 = k / |l;|, the Lorenz-gauge
condition implies A, k" = 0, i.e., that the non-zero components of the GW are transverse
to 71. In the special case where the GW is propagating in the z-direction, the wave solution

takes the form:

0 0 0 O
0 A A 0l ;

TT _ 11 12 (kz—wt)

A P W s (1.26)
0 0 0 O

We will show that Ay and Ay, are the amplitudes of the ‘plus’ and ‘cross’ polarizations of
the wave in TT gauge, respectively.

1.1.1.2. Slow-motion sources in linearized approximation. We now probe the
wave solution in a region that includes the matter fields. In this context, we will compute
the leading order contribution to the spatial components of the metric perturbation from a
source whose internal matter moves slowly compared to the speed of light. In the following
calculations, we use the Lorenz gauge and the energy-momentum conservation 0”7, = 0.
Using the Green function of the d’Alembert operator that describes the field at (cr, X) due

to the source element at (ct’, X’), the solution of Equation (1.22) takes the form:

1. o 167TG ’ o 1o 1o
Ry (x7) = — — /d4x G(x7, X'V (X7, (1.27)
where the Green function satisfies
0,G(x7, x'7) = §P(x7 = 1), (1.28)

and O, is the d’Alembert operator applied to the field at the point (cz, X). The solution for
this equation is the retarded Green function:

1 ¥ _ ¥
G x) = [~ | - E=E (1.29)
Az |x — X| c




Equation (1.27) becomes

’ )-5_)-5/ =7
= /d3 e |W( | - l,x). (1.30)

We evaluate the perturbation A v at a distance far away from the source assuming that the

radius d of the source is much smaller than the distance r := |X|, i.e., d < r. In this case,

we consider only the leading term in the expansion in 1/r
X=%|=r—i-¥+001/r), (1.31)

where 72 = X/|X|. Assuming that the motion of the source is slow compared to the speed
of light, we can replace |X — X’| with r in the energy-momentum tensor. Equation (1.30)

becomes

=3 /d3x’TW(t—r/c ). (1.32)

In the linearized theory, we keep only the leading order of |EW| so that the rais-
ing/lowering operator acting on 7, can be approximated with the Minkowski metric, leading
to TH = ntfn¥ T,

The radiative degrees of freedom are fully contained in the spatial part of the
perturbation, projected onto the transverse-traceless part. Therefore, we only focus on the
spatial part 7% in the following calculation. Taking a partial derivative of 8,7 = 0 with

respect to x° and combining it with 0,7% = 0, we get
8006T® = 8,0, TH . (1.33)

Multiplying both sides by x’x/, the energy-momentum tensor becomes

T = 3 [0000(T®x x7) = Okdy(TH X' %7 ) + 20 (T %) + TH XY . (1.34)



The right-hand side (RHS) of Equation (1.32) becomes

:_4 d3x/le — L4 / d3xl [a(l)a(l)(T()Oxllxlj) _ allcal/(Tklxnxlj)
c re

+ 20,(T*x"7 + TH x'h)]
_ 27G

== / d>x 0504 x'7)

2rnG i
= 0o / X' TOx"x"u . (1.35)
re
In the derivation of Equation (1.35), we have used the Gauss theorem to re-express the
volume integral as the surface integral. Because the source is bounded within the radius d,
the surface integrals become zero. Also, we take the time derivatives out of the integral and
convert 6(’) to dp sincet’ =t —r/c.

Using the notation 7% = pc?, where p is the mass density, Equation (1.32) becomes

- 2G §? , 2y i
hij = mﬁ/d% plt = r/e. % )x"x’
2G 9%
_ o 1.
ret (')IZIIJ(t rlc), (1.36)

where [;; is the moment of inertia of the source defined as
I = / Ax p(e, 7)x" 5" (1.37)

Because the non-vanishing components of GWs are contained in the traceless part, we take

the traceless part of the inertia tensor or the quadrupole moment tensor

1
Qij = 1Lij — §5ij1, (1.38)

where [ := [;; is the trace of the moment of inertia. Thus, the perturbation becomes
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_2G 9?
G

Qiit-r/c). (1.39)
This equation suggests that GWs are generated by any accelerated time-varying quadrupole
moment at the leading order O(1/r) in the linearized theory.

1.1.2. Extraction of the Transverse-Traceless Part. Because of the gauge free-
dom, the perturbation /; ; can be further simplified by extracting only the gauge-invariant
components of /; j. To get the gauge-invariant components, we formulate the transverse-
traceless extraction approach for a generic tensor. By defining a TT projector A, ; kK for a
generic tensor B¥ such as to be Bl.TjT = Al.j K By, the TT projector is constructed as

1

where P, ¥ is the transverse projector:

pri=6*—nnk, (1.41)
where n' = x'/r is the unit vector. By setting the unit vector to be along the direction
of the GW propagation, we get the transverse-traceless part of the metric perturbation as
thJT = A ; ¥ h. Note that vectors with identical upper and lower indices are the same in
the linearized theory, i.e., n; = n' because the raising/lowering operator is the Minkowski
metric, but we keep the notation for readability.

If the GW propagates along the z direction, i.e., i = Z, the transverse projector
ij is a diagonal matrix, diag(1,1,0). Then, the projected tensor will be in the x-y plane
transverse to the z direction. Under this assumption, the transverse-traceless part of Q; i
where the double dot denotes the second derivative with respect to ¢, is

- 1 . . 1 .
Aij lekl = (Pi kle _ EPijpkl)le = (PQP),'J' - EP,'J'TI”(PQ), (1.42)
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and its matrix representation is

) (O —__sz)/2 ) le_‘ 0
A “Ou = 021 -(@On—-02)/2 0 . (1.43)

0 0 0/..
ij

Because of the definition of the moment of inertia in Equation (1.37), Q; j is symmetric,
i.e., 012 = 021. Applying the transverse-traceless projector to the left-hand side (LHS)

of Equation (1.39) and comparing the components to the one in the RHS, we get the two

degrees of freedom:

G . .

hy = W(Qll - 0On), (1.44a)
2G ..

hx = —01. (1.44b)
re

The h. and hy are amplitudes of polarizations perpendicular to the direction of propagation.
For a generic direction of propagation, we can use Equation (1.40) by choosing the
unit vector 7 to be in a generic direction. In the spherical coordinates, where a direction is

given by the polar angle 6 and the azimuthal angle ¢, the unit vector 7 is defined as
il 1= [sin 6 cos ¢, sin @ sin ¢, cos 4], (1.45)
and the two orthogonal unit vectors are defined as

9 := [cos 6 cos ¢,cos 0 sin ¢, — sin 6], (1.46a)

@ = |—sing,cos ¢,0], (1.46b)

where the vector ) points in the direction of increasing colatitude and ¢ points in the
direction of increasing longitude. Using these basis vectors, the transverse projector P jk is
written as

Pf = 90" + ;6. (1.47)
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The above equation is invariant under the rotation of the transverse vectors ¢ and ¢ around
the radial-directional unit vector 7 so that ij is uniquely defined. Substituting Equation
(1.47) into Equation (1.40), the TT projector Al.j k¥ can be constructed for arbitrary directions
of the GW propagation. Applying this TT projector to both sides of Equation (1.39), the

TT part of the metric perturbation is obtained as

2G .
hift (1,0.0) = =28y Oult = r/c). (1.48)

Once the second time derivative of the quadrupole moment evaluated at the retarded time
t — r/c is computed in the RHS, we obtain the GW with two polarizations perpendicular to
the direction denoted with # and ¢ in the spherical coordinates.

1.1.3. The Effect of Waves on Masses. We have presented that GWs are generated
accelerated by a time-varying quadrupole moment. Here we look at the effect of GWs on
masses, which is relevant to the measurement of GWs. We first consider a single isolated
particle which is freely moving in the spacetime without the effect of any non-gravitational
field. Because there is always a locally inertial Lorentz-invariant frame, the path of such
a particle is locally straight everywhere. In other words, the path x#(r) of the particle,
parameterized by the time T measured by a clock moving along the path has its four-velocity
dx* [dt that stays constant both in direction and magnitude. The equation the path obeys is

called the geodesic equation, which is formulated as

d?xH dx® dx”
dt? ey At ’ (1.49)

where I'* ap ATC the Christoffel symbols defined in Equation (1.6). In the linearized theory,

the coordinate time ¢ for a particle at rest is approximately equal to 7 because |A,,| < 1. The
four-velocity is dx*/dt = (c,0,0,0). Using Equation (1.8), the geodesic equation becomes

d?x*
dt?

1
= —c*(doh, - Eaﬂhoo). (1.50)
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Because of the TT-gauge condition in Equation (1.24), we get

d?xH
a2

(1.51)

Equation (1.51) is still valid for a particle slowly moving compared to the speed of light
at leading order O(h,,). We conclude that the effect of GWs on a static or slowly moving
isolated particle is the same in the condition without GWs. Equation (1.51) is also valid for
another particle parameterized by the time measured by a clock moving along the path.

To see the non-vanishing effect of GWs on particles, we must consider the separation
EH(t) of a pair of particles, parameterized by the time of the first particle, where the first
particle is at x*(7) and the second particle is at x*(7) + £#(r) with |£#(7)| small compared
to the GW’s wavelength. The separation £#(t) follows the equation of geodesic deviation
at leading order, formulated as

L AP dx’

ar =~ Repeqr S (152

where R* Byo is the Riemann tensor defined in Equation (1.5). The non-vanishing Riemann

tensor can be shown to be R* 0y0 = —dodoh", /2. Equation (1.52) becomes

der 1, 9%,
—7 = Egyﬁhﬂ ,- (1.53)

Because the gauge-invariant part of the metric perturbation is fully contained in the TT part

hl.TJTT, the solution of the above equation at leading order is

. . 1 .
E() = £(0) + 5 hpréi(0). (154)

where &;(0) is the initial separation at = 0.
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Figure 1.1. The effect of the two polarizations of a GW on a set of test masses arranged as
aring shape in a plane perpendicular to the direction of the GW propagation.

Equation (1.54) can be further simplified. Choosing the TT-gauge and assuming
that the GW propagates in the z direction, only non-vanishing components of  are in the
x1land x2 directions. By renaming An = h+ and A12 = hx in Equation (6), (t) can be

written as £j (t) = (0) + £+(t) + £X(t), where

£+(t) = 2 h+ei(kz-M).f1(0), E£+(t) := - 2 h+ei(kz-“1t)f 2(0), (1.55a)

EX(1) = 2 hxei(kz=“0f 2(0), £ (t) := 1 hxci(tz-“9f 1(0). (1.55b)

where k is the z-component of the wave vector and m is the angular frequency of the wave.
Thus, the length of the separation of a pair of particles expands and squeezes periodically
over time due to two polarizations of GWs as shown in Figure 1.1.

1.1.4. Gravitational-Wave Sources. In the previous section, we have seen that the
amplitude of a GW is proportional to the second time-derivative of the quadrupole moment

in Equation (1.39). Physically, this implies that any accelerating bodies can generate a GW.
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As a simple toy model following Saulson (1994), we consider a dumbbell which has two
masses with each mass of M connected by a massless rod with a length of 2/, orbiting with a
frequency of f, in the x-y plane. After calculating the quadrupole moment of the dumbbell

and substituting it into Equation (1.44a), the cross and plus polarizations are obtained as

_327%G

hy = =———MIf; cos{2Q2m fy)t} . (1.56a)
rc
2
hy = ¥ 4GM12 f2sin{2Q2xf,)t} . (1.56b)
rc

These equations imply that the amplitude of the GW is proportional to the mass and the
square of the orbital frequency of the source. Also, the amplitude is inversely proportional
to the distance of the observer from the source. Heavier and faster-orbiting dumbbells
produce louder amplitudes of the waves. As an analogy to astrophysical objects, let us
calculate the amplitude of a GW produced by a dumbbell consisting of masses with M = 1
ton connected by a massless rod with 2-meter long in a lab, spinning at a frequency of
f, = 1 kHz around its middle. We find the amplitude of the GWs to be & ~ 1073 x %
To observe the metric perturbation as a GW in the linearized theory, the distance from the
observer to the source needs to be equal to or larger than the GW wavelength. Accounting
for this fact, the observer should be separated by the dumbbell at least by 300 km in this
example. At this distance, the amplitude is given as & ~ 107, Larger amplitudes can be
achieved with more massive sources. Similar to the dumbbell example discussed above,
a pair of massive stars such as black holes or neutron stars, orbit around each other and
shrink their separation by losing the angular momentum as GW radiation, and then merge
into a single object. For example, a pair of neutron stars with a mass of M ~ 10°° kg with
an orbital frequency of 30 Hz reduces its separation from ~ 350 km to ~ 60 km within 1
minute (Abbott et al., 2017¢). Let us consider a merging binary system of compact stars
with a mass of M ~ 100 kg, separated by ~ 60 km, orbiting at an orbital frequency of

Jo = 400 Hz, and located in the Virgo Cluster, at r ~ 15 Mpc. The amplitude of GWs
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would be & ~ 10721, The existence of binary systems of compact stars that emit GW was
supported by the discovery of the first binary pulsar named PSR 1913+16 by Hulse and
Taylor (1975). The orbital frequency of this binary pulsar gradually reduces over time by
emitting GWs. The observation of the orbital frequency evolution matches the prediction
based on general relativity with an accuracy of ~ 1%. Following the indirect measurement
of GWs, the ground-based GW detectors detected GWs from a binary black hole merger
in 2015 (Abbott er al., 2016¢) and then made about 50 confident detections (Abbott e al.,
2019d, 2021b). There are other GW sources in addition to binary mergers. We discuss the
four major types of astronomical GW sources categorized based on their waveforms.

1.1.4.1. Compact binary coalescing stars. GW signals produced from compact
binary coalescing objects have amplitude at ~ 100 — 1000 Hz at the end of the inspiral
period, where the ground-based GW detectors are tuned to be most sensitive. This type of
signal is well modeled compared to any other category. As the separation becomes smaller,
the orbital frequency and the amplitude of GW increases. Finally, the two objects merge
into a single massive object. The mass of the final object is related to the peak frequency
and the observable length of the signal: GWs from lighter stars such as neutron stars have a
peak frequency of ~ 1000 Hz and last about 1 minute in the most sensitive LIGO frequency
band; the signal from a pair of stellar-mass black holes have a typical peak frequency of
~ 100 Hz and last about a few hundred milliseconds. Among others, probing these types
of sources allows us to understand the age of the universe through the Hubble constant
estimate (Abbott er al., 2021a) and verify the validity of general relativity (Abbott er al.,
2021¢).

1.1.4.2. Continuous GWs. Continuous GWs are expected to be emitted for a long
time period at a nearly fixed frequency. One of the expected sources for this type of GWs
is a single rapidly spinning neutron star with a rotational frequency of ~ 100 Hz. Because
of its internal strong magnetic field, the neutron star could have a ‘bump’ of size ~ 10

centimeters and non-axisymmetric quadrupole moment. The spinning rate of such neutron
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stars gradually slows down by emitting GWs. Because spinning neutron stars with a small
bump have smaller quadrupole moments compared to compact binary coalescing stars, they
produce GWs with smaller amplitude. Therefore, scientists have developed techniques that
accumulate the SNR over a long stretch of data. Detecting this type of GWs will allow us
to understand the equation of state in neutron stars (Abbott et al., 2019a).

1.1.4.3. Stochastic background GWs. A superposition of many different GW
events such as unresolved low SNR binary black hole mergers, cosmic strings, and GWs
produced as early as ~ 107°° seconds after the Big Bang is expected to produce a stochastic
background of GWs (Abbott er al., 2016a). Because GWs interact weakly with matter,
observing this type of GWs potentially allows us to understand the physics dominated at
the beginning of the universe, which can not be achieved with the electromagnetic (EM)
observations. These signals are expected to be stationary, anisotropic in the sky, and
unpolarized.

1.1.4.4. Burst GWs. Burst GWs are signals lasting from a fraction of a second
to ~ 500 seconds with unknown waveforms or signals from unknown or unanticipated
sources. The expected sources include core-collapse supernovae (CCSN) (Abbott ef al.,
2016b; Burrows et al., 1995; Couch and Ott, 2015; Herant, 1995; Ott, 2009) and long
gamma-ray bursts (Abbott et al., 2019¢e, 2020b; Modjaz, 2011) that have a complicated
mechanism for generating GWs. Hence, predicting their theoretical waveforms is difficult.
Detection of burst GW's uses excess power and cross-correlation methods that do not rely
on known waveforms (Abbott er al., 2019b; Klimenko et al., 2016; Lynch et al., 2017;
Sutton er al., 2010). Despite the detection efficiency lower than that for compact binary

coalescence (CBC) signals, burst GW events would allow us to discover new physics.
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1.2. GRAVITATIONAL DETECTORS

Any accelerating massive object produces GWs. As seen in the previous section,
there are various types of astrophysical sources that can generate potentially detectable GW's
by ground-based detectors. We first discuss the Michelson interferometer as a GW detector
and how it measures GWs from arbitrary directions in the sky. Then, we discuss the modern
techniques involved in the detectors to enhance their sensitivities to detect GW signals with
amplitude of & ~ 1072! in the condition having various instrumental and environmental
noise disturbances.

1.2.1. Michelson Interferometer. Michelson and Morley (1887) experimented to
prove the existence of a hypothetical wind for light, or ‘acther’ in the space using an
interferometer. The Michelson-Morley interferometer consisted of an input light injected
into a beam splitter and two identical perpendicular arms to measure the interference of
the light bounced back from the mirrors at the end of each arm. If aether existed, the light
travel time in one arm is expected to be longer than the time in the other arm, leading to
the relative phase shift would be measured as interference fringes. The Michelson-Morley
did not show any evidence of the existence of aether. Laser Interferometer Gravitational-
wave Observatory (LIGO) interferometers located in Livingston, Louisiana and Hanford,
Washington, USA (Aasi et al., 2015) uses the concept of a Michelson-Morley interferometer
to detect GWs.

1.2.2. Interferometer as a GW Detector and Antenna Pattern. GWs stretch and
squeeze the space perpendicularly to their direction of propagation as seen in Equation
(1.54). When GWs pass through the interferometer, the distance between the beam splitter
and the mirrors at the end of each arm varies. The phase difference of the laser at the beam

splitter after bouncing back in each arm is

2
AD = T’T(zL1 _20,), (1.57)
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where A is the GW wavelength, and L1 and I are the arm lengths. To calculate the variation
of the interferometer’s arm lengths in the presence of a GW, we choose a coordinate system
S adapted to the detector in which the two orthogonal unit vectors é, and &, are aligned
to each arm, as seen in Figure 1.2. Assuming the GW wavelength to be much longer than
the arm lengths, i.e., L1, L, < A, the separation vectors between the beam splitter and the

mirrors in the arms are obtained from Equation (1.54) as

& =L, + 2h}",{ k (1.582)
& = Lo(e] + hJT,I e, (1.58b)

where L, is the length of each arm when the GW is absent. The arm lengths are obtained
by projecting the separation vector onto the unit vectors, i.e., taking the inner product with

the unit vectors as

Li=&e =1 (1+ 2 JT",I eleby, (1.592)
L, = yex = L,(1 + > jk y y) (1.59b)
Substituting Equation (1.59) into Equation (1.57), the phase difference becomes
4 1
il (e ek —e) e )h (1.60)

By rewriting A® = (47/A)h, h is defined as h(r) := (exe - ey k)hTT It is convenient to

define A(r) in terms of the detector antenna response factors F, and F as

h(t) := K.F.(6.4) + h, Fy(6.0). (1.61)



20

Figure 1.2. Geometric representation of the transformation from the source frame S' to the
detector frame S described in Equation (1.63).

The antenna factors F+ and Fx represent the projection of the relative lengths between the
arms due to the GW propagating from the direction (6, 0) in the detector frame S. We will
discuss F+ and Fx in more detail later in Equation (1.61). By choosing the basis vector to
be ex = (1,0,0) and ey = (0,1,0), Equation (1.61) becomes h = ( - hTJ)/2 in the frame

S. We can relate the two terms to the simpler expression of the GW polarizations:

Ih+  hX o\
T X he L, (1.62)
o 0 0

by defining the source frame S' such that the unit vector - N points to the direction of the
wave propagation and the two transverse vectors eR, eR are in the plane orthogonal to N, as

shown in Figure 1.2. The relation is given as

RT = & KRy Wd T, (1.63)
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where
cos¢ sing 0\fcosd O siné
R=|-sin¢g cos¢ O 0 1 0 (1.64)
0 0 1/\-sind 0O cosé

is an operator that rotates around the é§ with —6 and then rotates around the new z-axis

with —¢. Substituting Equations (1.62) and (1.64) into Equation (1.63), we obtain

thlT = I (cos® @ cos® ¢ — sin” @) + 2k (cos 6 cos ¢ sin @), (1.65a)

hng = hﬁr(cos2 6 sin® ¢ — cos® @) — 2hx(cos 6 cos ¢ sin @) . (1.65b)
Therefore, Equation (1.61) becomes
h(t) = h+%(1 + cos? 0) cos 2¢ + hy(cos 6 sin 2¢) . (1.66)
Equations (1.61) and (1.66) imply

1
F, = 5(1 + cos 0) cos 2¢, (1.67a)

Fy =cosfsin2¢. (1.67b)

Figure 1.3 shows the antenna response factors where the detector arms are aligned to the
x- and y-directions, respectively. The detector has the maximum response for incoming
GWs in the direction orthogonal to the detector plane. The detector has four blind spots
atd = n/2,¢ = /4 or ¢ = +371/4 where the GW causes no relative length difference
between the two arms.

Except for the four blind spots mentioned above, the detector is sensitive to GWs
coming from any direction. Therefore, the detector can observe the entire sky without
pointing in a particular direction. However, this comes at the cost of directional dependency

of the sensitivity.
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Figure 1.3. Antenna response patterns F+ (left), Fx (middle), and the quadrature sum
(F+ + F2)1/2 (right) for an interferometer with the two arms aligned to x- and y-axis. The
absolute value of the antenna response is shown as the radius with given values of polar and
azimuthal angles in the spherical coordinates. The colors are shown for visibility.

1.2.3. Modern Ground-Based GW Detectors. Having multiple GW detectors is
useful to increase the observable sky area which may cover blind spots of a detector
and useful for triangulation and the sky localization of sources. Currently, the global
network of ground-based GW detectors consists of two identical LIGO interferometers
with 4-kilometer arm length, located in Livingston, Louisiana, and Hanford, Washington,
USA (Aasi et al., 2015), operated together with the 3-kilometer arm-length Virgo detector
(Acernese et al., 2015) in Pisa, Italy. After the end of the third observation run in 2019-
2020, the 3-kilometer arm length interferometer KAGRA (Akutsu et al., 2020) consisting
of a cryogenically cooling system mounted in the interferometer under the ground in Gifu,
Japan joined the global network. The 600-meter long detector called GEO (Luck et al.,
2010) is located in Hannover, Germany. Another identical LIGO detector in India is under
construction and expected to join in 2025 (lyer etal., 2011).

To detect the small-amplitude h ~ 1021 of GWs, corresponding ~ 10-18 meters in
the kilometer-scale GW interferometers, GW detectors use various techniques in addition

to the configuration of a Michelson interferometer.
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The LIGO detectors have several modifications from the configuration of a Michel-
son interferometer including 1) a partially transmissive cavity called power-recycling cavity
located in the input port to resonantly buildup the laser power from 20 Watts to 700 Watts
(Abbott et al., 2016e); 2) a Fabry-Perot cavity in each arm made by two test mass mirrors
to further increase the power to 100 kilowatts, resulting in an increase of the effect of GWs
by a factor of ~ 300 (Bond ez al., 2016); and 3) a signal-recycling cavity at the output port
to improve the extraction of GWs in the frequency range of interest (Meers, 1988). Since
the first half of the third observation run (O3a), LIGO and Virgo began using a technique
so-called “quantum squeezer” located between and the signal recycling cavity and the pho-
todetector at the end of the interferometer to reduce the “quantum noise” coupled with the
laser (Abadie er al., 2011; Schnabel et al., 2010; Yu et al., 2020). The quantum noise is
caused by 1) the statistical fluctuations in the arrival time of photons at the photodetector at
the end of the interferometer and 2) the fluctuations in the photon flux to push the mirror.
The quantum squeezer improves the detectable distance for hypothetical binary neutron
stars (BNSs) by ~ 15% by tuning the fluctuations in the arrival time and the intensity of
the photons created from the vacuum coupled with the laser (Tse et al., 2019). Figure 1.4
shows the schematic layout of the LIGO detector configuration.

1.2.4. Interferometer Noise. The main factor of the sensitivity of GW detectors
is determined by the physics related to their design, the laser light, the mirror coatings, and
the optic suspension systems (Aasi et al., 2015). Above ~ 1000 Hz, the fluctuations of the
photon arrival time, or shot noise at the output-port photodiode or harmonic couplings of
fibers in the optic suspensions dominate the detector noise budget. In the frequency range of
100 - 1000 Hz, the fluctuating laser intensity in the arm cavities and the thermal fluctuations
of the mirror coatings are major noise sources. At low frequencies below ~ 100 Hz, the
dominating noise sources are due to the residual gas molecules in the vacuum system and
environmental disturbances such as wind and earthquakes shaking the buildings (Abbott

etal., 2017a).



24

Figure 1.4, Schematic diagram of a 4-kilometer arm-length LIGO detector with three
resonance cavities: the power-recycling cavity at the input port, a Fabry-Perot cavity in each
arm, and a signal recycling cavity at the output port. The relative arm length difference
induced by a GW is measured with the photodetector at the end port.

GW detectors use numerous subsystems including optic alignment systems and mit-
igation of seismic disturbances. For instance, the misalignment of the laser beam pointing at
the test mass mirrors due to vibrations of the laser cooling system cause broadband noise, or
jitter noise, in the frequency band ~ 100 - 1000 Hz. By studying auxiliary sensors/control-
systems monitoring instrumental and environmental disturbances, the physical couplings
among instruments or environmental-noise sources can be understood or statistical cou-
plings among the noise recorded in these sensors/control-systems and the detector's output
readout can be found. As aresult, the noise in the detector’s output readout can be mitigated.
By finding the linearly coupled witness sensor with the detector’s output, thejitter noise can
be subtracted (Davis et al., 2019). The noise sources discussed above typically last longer

than ~ 4 seconds.
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Other than the noise sources discussed above, excess-power transient noise artifacts,
glitches with a duration of ~ 0.01 ~ 1 seconds impact the quality of the detector data and
the detection of astrophysical GW signals. Because glitches are the product of short-lived
linear and non-linear couplings of interrelated instruments, identifying their causes and
modeling their noise couplings are typically difficult. In particular, unmodeled GW search
pipelines are susceptible to the presence of glitches. Therefore, scientists veto periods
of data containing glitches with known causes or statistically verified to be of terrestrial
origin. For CBC searches, the significance of GW signal candidates detected with a single
GW detector is reduced using the probability of the presence of glitches estimated with
the data from auxiliary sensors/control-systems (Biswas et al., 2013) to reduce the false
identification of GW signals. The Bayesian inference method to model a signal and glitches

is available for a signal from the CBC sources (Chatziioannou et al., 2021; Cornish, 2021).

1.3. NOTORIOUS GLITCHES

As mentioned in the previous section, glitches are present in the detector’s output
readout and adversely affect the detections of astrophysical signals. We briefly discuss what
kinds of glitches exist. Also, we discuss the characteristic frequencies and SNRs of three
glitch classes mainly focused on in this dissertation.

In O3a with the calendar time period of ~ 183 days, the duty cycle factors of each
detector are 71%, 76%, and 76% for the LIGO-Hanford (H1), LIGO-Livingston (L1), and
Virgo detectors, respectively (Abbott er al., 2021b). According to glitches with SNR above
7.5 in the glitch database created by a machine-learning classification algorithm called
Gravity Spy (Zevin et al., 2017), each detector had about 1 glitch per 2 minutes during their
observing times. Figure 1.5 shows the total number of events of 24 different glitch classes
from three detectors during O3a. A class of glitches called Scattered light was the most
frequently observed with ~ 14% out of all 24 glitch classes and have a peak frequency of

~ 30 Hz with SNR of ~ 17 on average, where the peak frequency is the frequency of a pixel
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Figure 1.5. Number of glitches with SNR above 7.5 in O3a. The Gravity Spy (Zevin et al.,
2017) data set for the LIGO-L1, LIGO-H1 and Virgo detectors is used.

with the highest energy in the time-frequency representation using Q-transform (Robinet
et al., 2020). The second most frequently observed glitch class is called Low frequency
burst with a peak frequency of - 18 Hz and SNR of - 19 on average. Low frequency
burst glitches are typically eliminated with a high-pass filter at 20 Hz applied to the data in
searches for GW signals.

Besides Scattered light glitches, another glitch class called Extremely loud also
adversely affect GW searches because they have extremely high SNRs with SNR - 1500 on
average, and the power is distributed widely in bandwidth from 2 - 2048 Hz with the peak
frequency is at 110 Hz on average, where the detector is most sensitive. Scattered light
and Extremely loud glitches typically have witness channels so that scientists can veto time
periods where these glitches are present. However, there are glitches with no witnesses. for
example, Blip glitches. Blip glitches generally last - 0.2 seconds and have a peak frequency

of - 220 Hz.
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Figure 1.6. Distributions of peak frequency and SNR about three notorious glitch classes
with SNR above 7.5. The Gravity Spy (Zevin et al., 2017) data set for the LIGO-L1,
LIGO-H1 and Virgo detectors in O3a is used.

Figure 1.6 shows the distributions of SNRs and peak frequencies about three major
notorious glitch classes discussed above. Figure 1.7 shows the time-frequency representa-
tions of these three classes of glitches. In this dissertation, we mainly focus on Scattered

light, Extremely loud, and Blip glitches.

Time (s) Time (s) Time (s)

Figure 1.7. Time-frequency representations of three notorious glitch classes. Time-
frequency representations of Blip (left), Extremely loud (middle), and Scattered light (right)
glitches are created using the Q-transform (Robinet et al., 2020).
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1.4. DETECTION PIPELINES FOR GRAVITATIONAL WAVES

Assuming the noise in the detector’s output readout is stationary and Gaussian and
there are no couplings between the noise and a signal, the detector’s output data stream

when a signal is present can be expressed as
s(t) = h(A; 1) + n(t), (1.68)

where h(Z; t) is the time series of a signal with a set of parameters A depending on a source
and an observer (e.g., masses, spins, the direction of the source and the source orientation,
peak time, polarization angle, etc) and n(z) is the time series of noise. The ensemble average

of the noise time series is

N
1 .
= 1 — @ =
<n(t) > ]\}mloN E n'(t) =0, (1.69)

i=1
where n¥(¢) is a realization of the noise at the time 7 and N is the total number of different

noise realizations. The ensemble average of the Fourier transform 7i( f) is

[oe] [oe]

mu»:<[anf%W>:[fom»f%mzo, (1.70)

~2nmift

because e is the same for all noise realizations. According to the Wiener-Khinchine

theorem (Kittel, 2004), the covariance of the noise is related to its one-sided power spectral

density (PSD) S,,(| f]) (Finn, 1992) as

PR = 58700 = 1), (70
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where S,(| f|) is a real non-zero even function and §( f — f”) is the Dirac delta function. The

probability density of obtaining the data in the presence of a signal (Finn, 1992) is

p(s]0) = Cexp [—%(ﬁlﬁ)] , (1.72)

where C is a normalization constant which depends only on the noise PSD and the inner

product (-|-) is defined (Brown, 2004; Finn, 1992) as

)= [ AU + 3B () .

Sl ’

where d and b are the Fourier transform of the time series a(¢) and b(¢), respectively. If a(r)

and b(r) are real, Equation (1.73) can be written as

& ())b(f)
/ Y5 (174

where Appendix E shows details of the derivation. The probability density of obtaining the

data when a signal is present is
| I
p(s|h) = Cexp [_E(S - h|§ - h)] . (1.75)

Hence, the likelihood ratio is given as

p(S”’l) e—(E—leE—fz)/Z
TG0 T e

(1.76)
and the log-likelihood ratio is written as

InA = (5]h) —%(lefz) : (1.77)
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Detecting GW signals, there are two classes of errors, namely, false alarm and false
dismissal. The false alarm is to identify the noise as a signal while the false dismissal is
to identify a signal as the noise. According to the Neyman-Pearson criterion (Neyman and
Pearson, 1933), the likelihood ratio in Equation (1.76) should be maximized for a given rate
of false alarms to reduce the false dismissal.

1.4.1. Matched-filter Pipeline. The matched-filter technique is the optimal linear
filter to search for a signal when signals are theoretically modeled in priori. In particular,
the matched-filter technique has been used to search for CBC signals by maximizing the
likelihood ratio over the constant amplitude scaling factor, merger time, and coalescence
phase analytically, as well as over the other parameters such as masses and spins using a
template bank. We present a brief introduction about this technique based on (Allen, 2005;
Brown, 2004; Finn, 1992).

Suppose we know the waveform of a signal in priori except a constant amplitude

scaling factor Ag such that h = Aofz, Equation (1.77) becomes
- I 5z %
InA = Ag(5|h) — §A0(h|h)- (1.78)

We want to maximize the likelihood ratio (equivalently log-likelihood ratio) with respect to
Ap. The log-likelihood ratio is maximized in the condition d In A/d Ag = 0. The maximized

log-likelihood ratio is given as

=

G a2

)

il

In Al = (1.79)

N—’

h

I~
=

We show the physical meaning of In A|,,, in Equation (1.79) by considering the

cross-correlation between a linear filter Q(¢) and the data containing a signal:

h(r) = Aoh(t — to), (1.80)
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where 1 is the merger time. We have explicitly showed the merger time in Equation (1.80).
However, we typically do not know the merger time before applying the filter Q(¢) to the
data. We will discuss this point later.

We want to find the optimal linear filter Q(¢) to search for a signal from the data

using the zero-lag cross-correlation:

z(to)

/_ " a0,

[ [ aromesn [ apsin.

/_: af /_ : af' Qs /_ : dte2mit(f+f)

/_ dfO(3(-1).

/_ a0 (5.
(08n.5)/2. (1.81)

The ensemble average of z is

(08, () + h)/2,
(0Sn.h)/2,

(0S,, Aghe 27112 (1.82)

(2)

Let us consider the first term <z2> of the variance of z = <Z2> - (2)2:

(=)

< / " / AP N0 [0 + RN [ + fz(f')]> ,

/_ df / 43N0 ) [GDRU) + B (O ()]
(081, 080)/4 + (0Sy, h)* /4. (1.83)
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Hence, the variance of z is

<Z2> - <Z>2 = (QSn, QSn)/4 . (1.84)

The optimal choice of the linear filter Q is obtained by maximizing the ratio of the expected
value of z to the standard deviation of z with respect to (J, equivalently maximizing the

square of the ratio. According to the variation principle:

(z)?
0 (5[<Z2>_<Z>2]Q,
_ s [ (O, h)? ]
08,081y’
2(0Sn, 1)(60Sn, B)(OSn, OSp) — 208, ))2(60Sn. OSn)
(01, OSn)? ’
(608 1) (01 OSp) — (08, 1)(505,. 0Sy).

(608, (0S8, OS)h = (OSn, H)OSy) . (1.85)

Hence, the optimal filter which satisfies Equation (1.85) is

h(f)
S
h(f) o 2mifto

U5

Qopt(f )
(1.86)
Hence, the optimal filter is the noise-weighted signal. To see the meaning of this optimal

filter in a sense of cross-correlation, let us substitute Equation (1.86) into Equation (1.81).

We get

™
Il

/ df Aoh* () 0d (1),

AO/ df/ dt/ di’ h(t)d(1") e/ =1 +o)

Ag / " dth(t — 1)d(t). (1.87)
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Equation (1.87) shows that the optimal filter is cross-correlation with the lag of 7. As
mentioned above, the true merger time is not known in real cases. To estimate the merger
time, we find a value of 1y which corresponds to the largest value of z(zy), as shown in Figure
1.8.

The signal-to-noise ratio SNR is conventionally defined as the observed filter output

7z to its expected standard deviation (Allen, 2005; Brown, 2004) as

~O 7d
SNR = &

(Qopt, Ijlopt)
7w ,2mift
. e (1.88)
(h, )

;

=

which does not depend on the constant amplitude Ag. Suppose we know the merger time
such that 1y = 0, we get

SNR? =2 In Al (1.89)

by comparing Equations (1.88) and (1.78). Hence, the square of matched-filter SNR is the
maximized log-likelihood ratio with a factor of 2.

In addition to Ag and 7y, we can analytically maximize the matched-filter SNR over
the coalescence phase. The Fourier transform of an amplitude-normalized signal can be

written (Allen er al., 2012) as

(f) = ho(f)e 2%, (1.90)

=1

where ¢¢ is the termination phase and fzo is the waveform when tp = 0 and ¢9 = 0. The

termination phase is related to the coalescence phase ¢, by

F. 2
x_£COSt ) , (1.91)

2¢¢ = 2¢, — arctan | —
%o = 20 (F+ 1 + cos?e
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where Fx and F. are the antenna response factors in Equation (1.67) and ¢ is the inclination
angle, i.c., the angle between the orbital angular momentum and the observer’s line of sight.
Because maximizing SNR over the coalescence phase is equivalent to maximizing SNR
over the termination phase, we focus on the termination phase in the following. Also, the
denominator in Equation (1.88) does not depend on ¢q so that we consider the nominator

(h, se*f0) Using Equation (1.90), we get

X omifiey @ (s()eiso
sy = 2 [ S

0 fz*( [)e2idog( f)e2rifio
AR [ dr >
I

Zre COS 27 + Zim Sin 271, (1.92)

where we define z, and z;, as

RO Y) i
S0 A s =7

= B()S()eIo
48/0 af 5.0 . (1.93)

Zre

Zim
Setting the derivative of Equation (1.92) with respect to ¢g, we get the maximum:
% . 1
(o, 5¢™™ 0 = 2+ 2y At o = 5 are(ze + iZim). (1.94)
Hence, the SNR time series maximized over the coalescence phase is obtained as
-1/2
ho(/)P
df ——— . (1.95)
URE

Equation (1.95) is the optimal SNR analytically maximized over the constant amplitude Ay,

SNR(zo) = |4

RO Y) i
Ty

the merger time fy, and the termination phase ¢g (equivalently the coalescence phase ¢.).
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Figure 1.8. Left: waveform of a simulated binary black hole (BBH) signal with the
component masses (m1,m2) = (20,15) MO and no spins injected into the colored simulated
Gaussian noise data (gray) with LIGO’s design sensitivity. Right: the corresponding SNR
time series. The dotted lines denote the merger time.

In real cases, the data has a finite sample rate so that the upper cutoff frequency in
Equation (1.95) should be less than the Nyquist frequency of the data. The lower-cutoff
frequency can be chosen to focus on the frequency range where a signal is expected to be
dominated in the data. Also, we do not know a true signal contained in the data. Hence,
scientists use a bank of templates generated with a set of source-specific parameters, or
intrinsic parameters such as masses and spins of CBCs. For example, a bank used for the
first detected BBH called GW150914 had ~ 250,000 template waveforms (Abbott et al.,
2016d). The combined SNR, or network SNR among different detectors is defined as a
guadrature sum of SNRs in each detector. The network SNR of GW150914 was ~ 24.

In the above, we present the derivation of SNR under the hypothesis that the noise
in the data is Gaussian and stationary. However, the noise in the actual GW detector
data contains non-stationary noise and/or glitches that might generate triggers with high
values of SNR. To account for these factors, one of the matched-filter pipelines called
PyCBC (Usman et al., 2016) uses a chi-square statistic to down-weight SNR for triggers
with terrestrial origin. If a trigger is a CBC signal, the time-frequency distribution of

power in the data is consistent with the expected power distribution of the matched template
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waveform (Allen et al., 2012). Therefore, the reduced chi-square statistic x> = x?/(2n—2),
where y? is the chi-square statistic and n is the number of frequency bins, is closed to one.
On the other hand, triggers with terrestrial origin have higher values of y?. Hence, the

chi-square weighted SNR is defined (Usman ez al., 2016) as

=

SNR,: - |SNR || it 2>, (1.96)
SNR it y2<1.
PyCBC uses SNR > as a ranking statistic for signal candidates.

1.4.2. Pipelines for Unmodeled Transient GW Signals. There are astrophysical
sources that are expected to generate GW signals with their waveforms are difficult to
be modeled. In this case, techniques which do not rely on waveforms are better to be
used than the matched-filter technique discussed in the previous section. The LIGO-Virgo
collaboration has been using various unmodeled GW search pipelines including cWB
(Klimenko et al., 2008, 2016), Omicron-LIB (Lynch et al., 2017), BayesWave (Cornish and
Littenberg, 2015), and X-pipeline (Sutton er al., 2010) for short-lived transient GW signals
with a duration from milliseconds to a few seconds (Abbott er al., 2019¢) as well as cWB
(Klimenko et al., 2008, 2016), STAMP-AS (Abbott et al., 2016¢), X-SphRad (Cannon,
2007) for long-lived transient GW signals with a duration from 10 to 500 seconds (Abbott
etal., 2018). We focus on techniques used for short-lived transient GW searches and present
the theoretical framework based on Sutton er al. (2010) and show example output of a cWB
run (Klimenko et al., 2008, 2016).

Unlike the matched-filter technique which maximizes the likelihood ratio over the
constant amplitude factor as shown in Equation (1.78), we want to maximize the likelihood
ratio over an unknown GW signal for a given source direction in the sky. Unmodeled search
pipelines use the time-frequency representations of the data from multiple detectors. The
sampling rate and the duration of the data are finite so that the time-frequency representations

are pixelized. Hence, we present the framework with discretized data.
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Let us consider the data of the o™ detector, where @ € [1,..., D] with D denoting
the total number of detectors in the network, to be the linear combination of a signal and
the noise as

Sa(t + Ato(Q)) = h(t: Q) + n(t + A1, (Q)), (1.97)

where Q is a particular direction in the sky, Az, (Q) is the time delay between the position 7,
of the o™ detector from a reference position 7y which is typically chosen to be the geocenter
of the earth:

1 R
Atol() = (7 —T0) - . (1.98)

Using Equation (1.61), the signal A(z; Q) recorded in the o™ detector can be written as
h(t: Q) = Fy (Qh. (1) + Fhy(1). (1.99)

where h, and hy are the plus and cross polarizations of a GW signal. In Equation (1.99),
we have assumed the different data streams d,,(¢) to be time-shifted within possible arrival-
time differences of a signal between 7, and /5. With this assumption, we have written
hy := hy(t,7,,t) and hy := hy(t,7,, 1) in Equation (1.99).

Let us write the discrete Fourier transforms §(k) of the time series 5[] as

5[k] = Z j= 0Nt jle2mikIN, (1.100)
= o

5[] = NZS[k]e_z””k/N, (1.101)
k=0

where N is the number of data points in the time series. Using the discretized noise data,
Equation (1.71) under the assumption that the noise in different detectors are uncorrelated,

is written (Sutton et al., 2010) as

(7 [kfiglk']) = %&yﬁ(skk/sa[k], (1.102)
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where S,[k] is the one-sided PSD. As we have seen in the previous section, the data is
whitened to calculate the likelihood ratio. For convenience, we define the whitened data,

noise, and antenna response function as

Swalk] = M, (1.103)
5 Salk]
fiwalk] = ﬁ“—[k], (1.104)

£

N Salk
FP Q)

Fo (k. Q) = ,
3 Salk]

(1.105)
where F,;” denotes F or F.X. The factor N in the denominator is due to the discretization
of the Fourier transform that can been seen in Equation (1.102) and the factor 1/2 in the
denominator is for the convenience such that the inner product defined in Equation (1.74)
is written simpler with the discrete Fourier transforms.

With these notations, Equation (1.97) can be written as a vector form including all

detectors in the network as

§=Fh+i, (1.106)
where
Sw2 - A i
=", k= (f”), io=| . (1.107)
hise :
and
Ffl FX1
Fi2 FX2
F:=(F* F¥)=| " <1, (1.108)
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Figure 1.9. Spectrograms of simulated BBH signals with the component masses (m1m2) =
(20,15) Mq, no spins and an injected network SNR of 28.2 added into the simulated colored
Gaussian-noise data in the two-detector network with the LIGO’s design sensitivity. The
color scale denotes the normalized energy.

and the log-likelihood ratio in Equation (1.77) is written as
~ 1, _~2
- 18 o
InA = Zk: [s Fh — - |Fi| ] : (1.109)

where ~ denotes the conjugate transpose and we now assume that the discrete Fourier
transforms are taken in each divided segment of the time series so that we let k run over
pixel indices of the time-frequency representation. Figure 1.9 shows example spectrograms
of simulated BBH signals injected into the simulated colored Gaussian-noise data in the
two-detector network with the LIGQO’s design sensitivity.

We want to maximize the log-likelihood ratio over an unknown signal h. Mathe-

matically it is written as
dinA
0=

1.110
i (1.110)

The hmex is

hmex = (FFF)-LFtS, (1.111)
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and when i = ﬁmax, Equation (1.109) becomes

| =

In Apax =

ZgTPg, (1.112)
k

where

P.=F(F'FY'F7, (1.113)

is a projection operator that projects the data onto the subspace of the vectors F* and F*,
The In Ay« is the so-called standard likelihood.

Similar to Equation (1.89), the maximum amount of normalized energy (so-called
standard-likelihood energy) which is consistent with a GW for a given sky position can be

defined using In A« with a factor of 2 as
Eq =2InApax - (1.114)

The square root of Egy is the network SNR. Using the total energy:

Eo= ) 1817, (1.115)
k

which contains only auto-correlation terms without cross-correlation terms, the null energy

is defined as

Enit = Euou— Es. = ) §7(I - P)3, (1.116)
k

where I is the identity matrix with a dimension of D, and pl—1_PpPig orthogonal to P.
Eqyn is the minimum amount of energy in the data inconsistent with a hypothetical signal
from a given sky position.

We can simplify Equation (1.114) with particular basis vectors constructed with
F . and Fy by rotating the original basis in the direction of the GW polarization angle.

Equation (1.99) is invariant with a rotation with an arbitrary polarization angle ¢ because
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h and F are rotated in the opposite directions (Klimenko et al., 2005, 2006) as

B = ROWih, (1.117)

F'' = ROy)FT, (1.118)

where R () is the 2-dimensional rotation operator and its matrix representation is

RO(y) = ( cosy _sm‘”) : (1.119)

—sinys  cosyr

The most convenient choice of the frame is the so-called dominant polarization frame
(Klimenko et al., 2005, 2006), where the first basis is aligned with F~, the second basis
vector is aligned with F*, and these two basis vectors are orthogonal to each other. In the
dominant polarization frame, the detector network has the maximum antenna response in
the direction projected by P, and the minimum response in the direction projected by P™!!.
To find the rotation angle ¢, we write the new vectors f* and f* as a rotation applied to

old basis vectors F* and F* as

ff=cosyF* +sinyF*, (1.120)

[T =—sinyF* +cosyF*. (1.121)

By requiring f* - f* = 0, the solution ¢ for Equation (1.120) is

1
Yy = — arctan (

2F* . FX
: ) (1.122)

|F*|12 + |F*)?
In the dominant polarization frame, the projection operator becomes P = e*e*’ + eXe*",
where et := f*/|f"| and e* := f*/|f*|. Therefore, the standard-likelihood energy

becomes

Es=y [le" 57 + e 5F . (1.123)
k
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and Equation (1.111) becomes

Fomax = (:X '.55//||J{|X|-) (1.124)

Hence, the whitened reconstructed GW signal received in the o™ detector is

j.rec i+ + 7. X X
ha hmaxfa + hmaxfa ’
e s

MY

_ e+~§f+
L

£ (1.125)

The algorithm of the cWB pipeline creates the time-frequency pixels using a wavelet
transformation, in particular, fast Wilson-Daubechies basis (Necula et al., 2012) to obtain
Eq1. and obtain the reconstructed waveform in Equation (1.125) using the inverse transform.
As a ranking statistic, cWB constructs the coherent energy E. from Eg, and uses Eyyp as a
penalty factor because E; contains larger energy and Eq,y contains smaller energy when a
signal is present in the data of the detector network.

By rewriting Egp, explicitly with indices of the projection operator P in Equation

(1.113) and the data vector § in Equation (1.106):

Egq. = Zng;Paﬁsﬁ,
K of
= > Eap (1.126)

k apf

where « and S run over the detector’s indices [1,. .., D], we can get the coherent energy by

taking only cross-correlation terms (i.e., off-diagonal terms):

EC:;ZEW. (1.127)
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The network correlation coefficient is defined (Drago, 2010) as

E.

cC=————,
Ec + Enull

(1.128)

where cc ~ 1 for a signal. To make the ranking statistic more robust, let us consider the
incoherent energy which is constructed by taking only auto-correlation terms (i.e., diagonal

terms) in Equation (1.126):
Ea:ZZEw. (1.129)
k a

In the physically allowed situation, where 0 < E. < E,, we expect E. ~ E, for signals and

E. < E, for glitches. Using the Pearson’s correlation coefficient:
(1.130)

the reduced correlated energy is defined as

ec= > > Eaplrapl. (1.131)

k a#f

With e, cc and the total number of detectors D, cWB uses the effective correlated SNR:

p= 1/%cc, (1.132)

as a ranking statistic. When a signal is fully coherent between detectors, the reduced
correlated energy becomes ¢, = Fg1./2 and cc = 1, leading to p = SNRye(/ V2D, where
SNRye; is the network SNR. Figure 1.10 shows Esp, and Eyyp of a simulated BBH signal
shown in Figure 1.9. This trigger has p = 15.9. Appendix F shows the comparison of the

accuracy between the sky maps obtained with a modeled search and cWB.
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Figure 1.10. Scalograms of standard energy (left) and corresponding null energy (right) of

a simulated BB H signal shown in Figure 1.9.

143 Conﬁdence in S|gna| DeteCtiOI’]S. The real noise in the detector’s output
readout is neither stationary nor G aussian. Triggers might be generated due to noise in
chance coincidence betw een detectors. To quantify how rare signal-candidate triggers are
generated due to the noise, LIG O -V irgo collaboration uses the rate of triggers due to the
noise w ith their ranking statistics equal or greater than the ranking statistic of a signal

candidate, or false alarm rate (FAR):

FAR = N - Vhh (1.133)
Thbkg

w here r is the ranking statistic of a trigger due to the noise, rh is the ranking statistic of
a signal candidate, and Tbkg is the total time period of the analysis tim e to obtain noise
triggers. Smaller values of FA R im ply that the signal candidate is due to astrophysical
origin w ith high confidence.

The duration ofthe actual data is finite and notsufficiently long forcalculating FA R Ss.
To compensate for this lim itation, scientists apply time shifts to either of the detectors to

enlarge the duration of the data (A bbott etal., 2005), as shown in Figure 1.11.
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Figure 1.11. Schematic picture of time shifts applied to either of the detectors.

For example, the FAR of GW150914 was 1 event per 203,000 years (Abbott et al.,
2016e), implying that the ranking statistic of GW150914 could be obtained only by the

noise if the detectors were operated over 203,000 years.
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2. BACKGROUND TO PAPER I

Because glitches may resemble astrophysical signals, the presence of glitches also
reduces the significance of GW signal candidates. Hence, the identification of the glitch ori-
gin is the crucial point to improve the detectability of GW signals. However, it is generally
difficult to find their origin. GW detectors employ approximately two hundred thousand
auxiliary channels such as sensors/control-systems reading-out environmental or instru-
mental conditions inside and around detectors in parallel to the detector’s output readout
in the time domain. Those channels can be potential witnesses of coupling mechanisms
of glitches and their output can be used to mitigate the effect of glitches on the detector’s
output. In the next chapter, we present a software package that statistically identifies wit-
ness channels for glitches observed in the detector’s output. Starting with the software
architecture, we validate the software using a class of glitches observed during the second
observation run (02). Also, we show its application to triggers of the noise events generated
by one of the burst GW search pipelines called cWB (Klimenko er al., 2008, 2016), and
compare our results with the LIGO’s current infrastructure. With PyChChoo, we can find
that triggers with high ranking statistics due to glitches can be vetoed. Hence, FAR can be
smaller for signal candidates as seen in Equation (1.133). The next chapter is a reprint of
an article (Mogushi, 2021a) that has been submitted to arXiv.org and has been published

by Classical and Quantum Gravity Journal for publication.
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3. BACKGROUND TO PAPER I

After the identification of witness channels for glitches, removing glitches from
the data of the detector’s output is desirable. One of the techniques to remove the effect
of glitches on searches for astrophysical signals is to veto time present where glitches are
present because glitches are the product of short-lived linear and non-linear couplings in
the detector and their coupling mechanisms are generally difficult to be understood. The
LIGO-Virgo collaboration has been adapting the veto technique at the cost of reducing the
analyzable data and use another technique that reduces the significance of signal candidates
based on the probability of the presence of glitches (Abbott er al., 2021b) (discussed in
more detail in the next section). To increase the significance of signal candidates without
reducing the analyzable data, we present a machine learning-based algorithm to subtract
glitches using auxiliary channels. We apply two classes of glitches that adversely affect
c¢WB (Klimenko ez al., 2008, 2016) trigger with high values of significance and quantify the
performance of our tool. Adding simulated astrophysical signals before subtraction and then
comparing the recovered signal before and after subtraction, as well as the recovered signal
added into a clean time period, we assess the robustness of our method not to manipulate
or introduce any biases to those astrophysical signals. The next chapter is a reformatted

version of an article (Mogushi, 2021b) that has been submitted to arXiv.org.
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PAPER

I. APPLICATION OF A NEW TRANSIENT-NOISE ANALYSIS TOOL FOR AN
UNMODELED GRAVITATIONAL-WAVE SEARCH PIPELINE

Kentaro Mogushi
Institute of Multi-messenger Astrophysics and Cosmology
Missouri University of Science and Technology
Physics Building, 1315 N. Pine St.
Rolla, MO 65409, USA
mogus261 @gmail.com

ABSTRACT

Excess transient noise events, or “glitches”, impact the data quality of ground-
based GW detectors and impair the detection of signals produced by astrophysical sources.
Identification of the causes of these glitches is a crucial starting point for the improvement
of GW signal detectability. However, glitches are the product of linear and non-linear
couplings among the interrelated detector-control systems that include mitigation of ground
motion and regulation of optic motion, which generally makes it difficult to find their
origin. We present a new software called PyChChoo which uses time series recorded in
the instrumental control systems and environmental sensors around times when glitches
are present in the detector’s output to reveal essential clues about their origin. Applying
PyChChoo to the most adversely affecting glitches on background triggers generated by one
of unmodeled GW detection pipelines called coherent WaveBurst (c(WB) operated in the
data from the LIGO detectors between January 1st, 2020 and February 3rd, 2020, we find
that 80% of triggers are marked as either being vetoed or unvetoed in common between our
analysis and the current LIGO infrastructure.

Keywords: gravitational waves, glitch, statistics
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1. INTRODUCTION

The dawn of gravitational-wave (GW) astronomy was opened with the first direct
detection of a GW signal produced from a BBH merger (Abbott er al., 2016) on September
14, 2015.

During the first and second observing runs of LIGO (Aasi et al., 2015) and Virgo
(Acernese et al., 2015), nine additional BBH mergers and a BNS merger were detected
with high confidence (Abbott er al., 2019). Furthermore, 39 events were observed with
high confidence during the first half of the third observation run (Abbott e al., 2021). The
detection rate was approximately 1 per week.

In order to detect GW signals, the ground-based GW detectors must be extremely
sensitive, causing them to become susceptible to instrumental and environmental artifacts
(Abbott e al., 2019). In particular, transient noise artifacts, or glitches may mimic GW
signals in their morphology so that it is crucial to differentiate if trigger events identified by
GW detection pipelines are astrophysical or terrestrial in origin to reduce false detections.

The initial and essential task to identify an event trigger as a glitch is to understand
the origin of the glitch. Glitches are, however, the product of linear and non-linear coupling
among the interrelated detector-control systems that include mitigation of ground motion
and regulation of optical motion, which typically makes it difficult to find their origin. Clues
of the origin may be recorded in some of around fifty thousand auxiliary channels such
as instrumental sensors and environmental monitors. Because the number of channels is
numerous, the task to find the clues is typically made by automated software packages.

LIGO-Virgo collaboration has been using software engines that find the statistical
correlation between the excess power recorded in the auxiliary channels and glitches present
in the detector’s output. An algorithm called use-percentage veto (UPV) (Isogai, 2010) finds
the statistical correlation using the percentage of the number of the excess power events
identified in each of the auxiliary channels in coincidence with glitches in the detector’s

output, relative to the total number of excess power events. As a consequence, UPV vetoes
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time periods that have a high correlation factor. Similarly, hierarchical Veto (hVETO)
(Smith ez al., 2011) uses a coincidence statistic to find the correlation while minimizing
the vetoed time as much as possible. For finding the correlation for a single glitch, Pointy
Poisson (Essick er al., 2021) uses a statistical confidence level that can reject the chance-
coincidence hypothesis estimated from the excess power events in the longer time window.
iDQ (Biswas et al., 2013) calculates the probability that glitches are present in the detector’s
output as a function of time, inferred from excess power in the auxiliary channels.

In this paper, we present a new software (publicly accessible in https://git.
ligo.org/kentaro.mogushi/origli) called PyChChoo (“Python-based glitCh Char-
acterization tool”) designed to identify the clue of the origin of glitches in GW detectors
and remove the effect in the detector’s output. Using a set of glitches, PyChChoo conditions
the time series recorded in the auxiliary channels around the glitch-time and then counts the
fraction of frequency bins above a threshold in a given frequency band in order to quantify
the excess power in coincidence with the glitch. To identify highly correlated channels
(so-called witness channels), PyChChoo uses the probability showing the loudness of the
excess-power measure in the glitch set compared with the measure in another set which
is created with randomly selected timestamps when the detector’s output is quiet. After
witness channels are identified, removable glitches are determined by the probability that
the excess-power measure for a glitch belongs to the glitch set.

The most novel feature of this algorithm is that it can be used as a “targeted”
approach. To understand the origin of a particular population of glitches having their
specific characteristics denoted such as the peak frequency, SNR and/or time-frequency
morphology, a user can choose the list of those glitches for running PyChChoo. Instead
of providing a single channel that is the most significantly correlated, the algorithm can
find multiple channels to help a thorough understanding of potential unknown physical
couplings inside instruments. Besides, the ultimate goal of GW searches is to detect

more signals. Not all glitches are adversely affecting GW detection pipelines. Therefore,
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studying all glitches present in the detector’s output that typically is made with UPV and
hVETO might introduce redundant removal time periods. To compensate for this issue,
only adversely affecting glitches for a GW pipeline can be chosen for running this algorithm.
We demonstrate the “targeted” approach using triggers with high-ranking statistics that are
generated by one of unmodeled GW detection pipelines. Finding the witness channels
is particularly beneficial for unmodeled GW detection pipelines (Klimenko ez al., 2008,
2016; Sutton et al., 2010) because they are more susceptible to glitches than matched-filter
pipelines (Nitz et al., 2017; Sachdev et al., 2019) by their design. Conversely, they have
potential capabilities to detect GW signals with unknown waveforms or signals empowered

by unknown sources.

2. SOFTWARE ARCHITECTURE

PyChChoo aims to identify the essential clues of the origin of glitches in the
detector’s output and remove the effect of those glitches. A set of glitches can be selected
from any event trigger generators (ETGs) or glitch databases, e.g., Omicron (Robinet ez al.,
2020), pyCBC-live (Nitz er al., 2018), the database created based on Gravity Spy (Zevin
et al., 2017), or user-defined glitches on demand. Those glitches can be further down-
selected based on their characteristics such as peak frequencies, SNRs, and/or particular

glitch-class, etc.

2.1. QUANTIFY EXCESS POWER

In order to identify the origin of glitches driven from terrestrial disturbances, a set
of system control sensors and environmental monitors that do not causally follow from
the detector’s output (so-called safe auxiliary channels) is used. To identify safe channels,

LIGO uses hVETO (Smith et al., 2011) and Pointy Poison (Essick ez al., 2021).
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Witness channels are expected to show excess power in coincidence with a glitch
detected in the detector’s output. Those channels might record excess power in different
frequency bands. Also, a measure quantifying the excess power depends on a provided time
window used to calculate itself. To account for these dependencies on excess-power values,
PyChChoo uses the one-sided amplitude spectrum density (ASD) that indicates the noise

amplitude. The one-sided ASD is a square root of the one-sided PSD S(f) defined as

200 = 80 = GO 0

where the brackets (---) denote an ensemble average over noise realizations (Cutler and
Flanagan, 1994), and 7i(f) and 7i( /*) are the Fourier transforms of the time series n(z) at the
frequencies f and f’, respectively. Using the ASD of the time series recorded in a set of
safe channels in the quiet time, we define the stationarity upper threshold (SUT) as follows.

The SUT is obtained from the time series when no glitches are present in the detec-
tor’s output. We consider Omicron triggers (Robinet et al., 2020) with SNR < 5.5 to be the
absence of glitches. To calculate values of SUT, PyChChoo first selects random timestamps
during the quiet period and then chooses time windows for each of the timestamps by ran-
domly selecting durations (#4,s) which are log-uniformly distributed between the minimum
duration (f4min) and the maximum duration (fgmqx). The value of #4,,, is chosen to be
0.02 seconds because of the computational requirement for the ASD calculation in GWpy
(Virtanen ef al., 2020). The value of 4,4y is typically chosen to be 35 seconds where the
majority of glitches (82% of glitches in the Gravity Spy glitch database in the O2) have
durations less than this value. After setting the time window for each of the timestamps,
the ASD is calculated using the time series in this time window. This ASD is subsequently
normalized with the median value of ASDs of overlapping periodograms with a single fast
Fourier transform (FFT) duration of #4 5 in the time window of 128 seconds spanning around

the timestamp.
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Using a set of timestamps, the value of SUT is defined as a 3-~ standard deviation
above the mean value of the normalized ASD for each channel in a given frequency band
with a given duration. To obtain values of SUT for any durations, PyChChoo interpolates
SUT as a function of duration for each channel in a given frequency band. We find that the
polynomial best fit with the degree of 10 while removing the outliers outside of the median
absolute error with a 6-” is suitable. Figure 1shows the interpolated SUT as a function of
duration for the two representative channels in particular frequency bands. The interpolated

SUT are saved and to be used to evaluate glitches like the following.

Figure 1. SUT of two representative channels: L1:ASC-SRC2_Y_OUT_DQ in 1-128 Hz
(left) and L1:PEMEX_MAG_VEA_FLOOR_Y_DQ in 2048-4096 Hz (right) as a function
of duration. The red curves are the polynomial best fits with the degree of 10 obtained from
the gray curves that denote the values SUT for 8010 different random samples. Outlying
values of SUT outside of the median absolute error with a 6-" are removed.

For each glitch, PyChChoo conditions the time series recorded in each of the safe

channels in the time window:

W = [tg- atd,tg+ (1 - a)td] , 2
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where ¢, is the time of a glitch, #, is its duration, and « is a fraction of the duration before .
A value of & = 0.5 sets the window to be evenly spanned around the glitch time ¢,. A value
of ¢4 can be chosen to be the duration provided by an ETG or manually selected if needed.
Witness channels are expected to record excess power in particular frequency bands in this
window when the glitch is present in the detector’s output.

To quantify the excess power for a glitch, PyChChoo firstly calculates the ASD of
the time series in the window W, secondly normalize the ASD with the median value of
ASDs which are obtained from the time series in the 128-second window spanning evenly
around f,, finally counts the fraction (g) of the frequency bins above the value of SUT in a
given frequency band. Because the sampling frequencies differ between channels (from 256
Hz to 16384 Hz), the lower and/or upper bounds of a chosen frequency band can be greater
than the Nyquist frequency of some channels. When only the upper bound is above the
Nyquist frequency, we use the frequency bins up to the Nyquist frequency for calculating g.

When the lower bound is above the Nyquist frequency, we define the value of g to be zero.

2.2. PROBABILISTIC INSIGHT

After a set of glitches (hereafter called target set) is quantified with values of g from
each of the safe auxiliary channels in different frequency bands, the probabilistic measure
is used to identify witness channels. Channels with large values of g in the target set could
have large values of ¢ during the absence of glitches as well. Channels that record excess
power regardless of the presence of glitches indicate no or mild correlation with the glitches.
The probabilistic measure accounts for this factor to identify witness channels.

To identify witness channels, PyChChoo compares the target set with another data
set (null set). The null set is created by randomly generating time periods with durations
being distributed as that of the target set, and then selecting only the subset of these time

periods that do not overlap with any glitches being present in the detector’s output. We
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typically consider Omicron triggers with SNR < 5.5 to be the absence of glitches. Because
the null set represents the data set when the detector’s output is quiet, channels with large
values of ¢ in the null set imply no or mild correlation with the targeted glitches.

Witness channels are expected to show a larger number of samples with greater
values of ¢ in the target set than the null set. To formulate this manifestation, we consider
the distributions #(¢) and n(q) of g in the target and null sets, respectively. The probability
that the target set has values in the small interval (g, g + Ag) is t(q)Aq, while the probability
that the null set has values less than g is A(g) = foq n(q’)dq’, which is known as the
cumulative distribution. Multiplying ¢(¢)Ag and A(g) gives the probability of the pair
of the above two situations occur in unison. Summing t(¢q)AgN(q) over the range of all

possible values of g, formulated as

1
Pg = /0 )N (q)dq ., (3)

is the probability that arbitrary values of ¢ in the target set are greater than values in the null
set. Channels with p, < 0.5 imply chance coincidences. Channels with p, ~ 1 indicate
evidence of being the witness for the glitches. Therefore, PyChChoo uses p, to identify
the witness channels. In experiments, only a finite number of samples can be obtained.
To compensate for this experimental limit, a continuous distribution is preferred to make
a robust measure for Equation (3). Because values of g are bounded between 0 and 1, a
candidate distribution for g is a Beta distribution. The shape of the Beta distribution is
obtained with the first and second moments estimated from the measured samples.

After witness channels are identified, the effect of the glitches on the GW detection
pipelines can be mitigated. The simple and standard procedure is to veto the time periods
of glitches that are correlated with witness channels. For a glitch, a value of ¢ obtained
from the witness channel implies either of two mutually exclusive situations: a value of g

follows the target set with being greater than values in the null set, or a value of g follows
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the null set with being greater than values in the target set. Thus, the probability that ¢

belongs to the target set is given as

Dy = N (9)
" U N(g) + T(@nlg)’

4

where 7 (g) is the cumulative distribution of ¢ in the target set. A value of p,, ~ 1 indicates
evidence of a strong correlation between excess power in the witness channel and the glitch.

PyChChoo uses p, as a veto criterion.

3. SOFTWARE VALIDATION

For validating PyChChoo’s performance to identify witness channels, we use a class
of glitches with the known instrumental origin that was identified during O2. The L1 detector
was contaminated with a new class of glitches between February 9th, 2017 and April 10th,
2019 due to the magnetic coupling between the magnetic field produced from electronics
racks and the detector’s internal components such as cables, connectors, and actuators
(Cavaglia er al., 2019). These glitches were short-lived spikes with a duration of ~ 0.3
seconds and appeared in the frequency band of ~ 50-60 Hz in the detector’s output. hVETO
(Smith er al., 2011) identified a series of coincident excess power in auxiliary channels in
the Physical Environmental Monitor (PEM) mains voltage monitor (MAINSMON) of the
Electronics Bay (EBay) in the X-arm end station (EX) as well as in the EX magnetometers.
The follow-up study conducted by Cavaglia et al. (2019) using the machine-learning-based
tools called Karoo GP (Staats er al., 2017) and Ranpom Forgst (Breiman, 2001), identified
a physically coupled channel called ISI-ETMX_ST1_BLND_Z_T240_CUR_ IN1_DQ in
the active seismic isolation internal to the vacuum system (ISI) in addition to the EX

magnetometer channels.
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A's the target set, we choose 595 glitch samples with SNR > 7.5 from this magne'
tometerset. Also, we create the null setw ith a sam ple size of 477 by analyzing the random ly
chosen tim estam ps when no Omicron triggers with SN R > 5.5 are present in the detector’s
output. W e analyze 700 safe auxiliary channels with 8 different frequency bands. Figure 2
shows values of g for the target and null sets. One of the EX m agnetometer channels called
PEM -EX_MAG_VEA_FLOOR_X_DQ in the PEM sub-system has values of q > 0.6 for

93% of the target set and 0% of the null set. The Alignment Sensing and Control (ASC)

channels show random fluctuating values of g both in the target and null sets.
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Figure 2. Left: Values ofthe excess powermeasure g for 700 safe auxiliary channels w ith 8

differentfrequency bands in coincidence w ith 595 m agnetom eter glitch setw ith SN R > 7.5.
Right: values of q for the null setw ith a sam ple size of 477. The channels in the 8 different
frequency bands are shown side by side from left to right where the chosen frequency
bands are 1-128 Hz, 128-256 Hz, 256-512 Hz, 512-1024 Hz, 1024-2048 Hz, 2048-4096
Hz, 4096-8192 Hz, and the range from 1 H z to the N yquist frequency. The dark and light
gray bars in the top denote each of the channel groups in the com mon sub-instrum ental

sensor or environmental monitor.

U sing the targetand null sets in Figure 2, we calculate the probability pgin Equation
(4) for channels in each frequency band. Figure 3 shows values ofpgforthemagnelometer
set. PyChcChoo successfully identifies the witness channels including the EX m agnetom eter
channels as wellas ISI-ETM X _ST1_BLND _Z_T240_CUR_IN1_DQ channelin 1-128 Hz

w ith pg = 0.95, in agreem entw ith Cavaglia etal. (2019).
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Figure 3. pg obtained from the 700 safe auxiliary channels in 8 different frequency bands
forthe m agnetometer set. The red (cyan) bars denote channels with a given frequency band
with pg > 0.9 (< 0.9). The channels in the 8 different frequency bands are shown side
by side from left to right where the chosen frequency bands are 1-128 Hz, 128-256 H z,
256-512 Hz, 512-1024 Hz, 1024-2048 Hz, 2048-4096 Hz, 4096-8192 Hz, and the range
from 1 H z to the Nyquistfrequency. The dark and lightgray background colors denote each
of the channel groups in the com m on sub-instrum ental sensor or environmental monitor.
The table shows the top five channels in different frequency bands. PaSS (fail)in the last

columnn in the table shows whether values ofpg are above (below) 0.9.

4. APPLICATION TO AN UNMODELED GW DETECTION PIPELINE

In GW signal searches, the detection pipelines generate triggers with ranking statis-
tics (RSs) (e.g., SNR). Typically, triggers from astrophysical signals have SNR > 8. The
confidence in detecting astrophysical signals is characterized by a FA R, w hich is the rate of
terrestrial-noise triggers w ith RSs equal or higher than the RS ofan astrophysical candidate

event. The FAR is typically required to be sm aller than 2.0 per year (A bbott etal., 2021).
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For increasing confidence in GW detections, it is crucial to reduce outlying noise triggers
with large values of RS. As mentioned earlier, unmodeled detection pipelines are typically
susceptible to glitches, causing a large number of noise triggers with high values of RS.
Hence, we focus on noise triggers generated with one of the unmodeled pipelines called
c¢WB (Klimenko ez al., 2008, 2016) in the analysis.

We use a set of background-mode cWB triggers created from the data of the L1 and
H1 detectors between January 1st, 2020 and February 3rd, 2020. Because the background-
mode cWB applies some time shifts much longer than the light-travel time between detectors,
these triggers represent noise artifacts. In our analysis, there is no trigger of astrophysical
signals in origin. In this period, the detector’s output was significantly contaminated with
glitches, resulting in 40 cWB triggers with the RS of p > 9 being generated. Around the
trigger time in the L1 detector, we analyze the data from auxiliary channels with PyChChoo.

Because more than one trigger representing a same glitch could be generated in the
proximity of trigger times in a detector, we cluster the cWB triggers by keeping the subset
of triggers with the largest value of p in the window of 0.5 seconds to avoid double-counting
glitches. For the target set, we choose the 39 clustered outlying trigger with p > 9. We
consider the clustered trigger times as the center times for the target samples. Also, we
manually choose the duration of 1 second for these samples because the durations provided
by ¢WB are found to be too small (typically ~ 0.01 seconds) to represent the durations of
glitches. For the null set, we create 200 samples with a duration of 1 second during the quiet
period when there is no Omicron trigger with SNR > 5.5. We use the 759 safe channels in
the L1 detector and 9 different frequency bands for each of the channels. In this analysis,
we have a band of 1-50 Hz in addition to a list of bands used in the previous section because
the peak frequency of some cWB triggers is around 20 Hz and the witness of those triggers

are expected to have excess power only in the low-frequency (below ~ 40 Hz) region.
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Figure 4 shows three witness channels with values ofpg> 0.9. The first-ranked
channel (ASC-CSOFT) monitors the motions of m irrors in the arm in the G W detector.
The second-ranked channel (LSC-REFL) typically m onitors the laser intensity dips. The
third-ranked channel (SUS-ETM X ) monitors the displacem entin the suspension system in

the end station in the X -arm

Figure 4. pg obtained from the 759 safe auxiliary channels in 8 differentfrequency bands for
the clustered outlying cWBtriggerswithp>9fr0m January 1stto February 3rd, 2020. The
red (cyan) bars denote channels with a given frequency band with pg > 0.9 (< 0.9). The
channels in the 9 different frequency bands are shown side by side from left to right w here
the chosen frequency bands are 1-50 Hz, 1-128 Hz, 128-256 Hz, 256-512 Hz, 512-10214
Hz, 1024-2048 Hz, 2048-4096 Hz, 4096-8192 Hz, and the range from 1 Hz to the Nyquist
frequency. The dark and light gray background colors denote each of the channel groups
in the common sub-instrum ental sensor or environmental monitor. The table shows the top
five channels in different frequency bands. Pass(fail)in the last column in the table shows

w hether values ofpg are above (below) 0.9.
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Using values of p,, obtained with the top two channels in the frequency band in Figure
4, we consider triggers to be vetoed using the 1-second window around the trigger. We find
that the channels up to the second-ranked are sufficient because no additional triggers can be
removed by adding the third-ranked channel. For vetoing triggers, we choose a conservative
criterion of p, > 0.95. The left panel in Figure 5 shows the cWB outlying triggers which
can be vetoed. The triggers with a central frequency less than 80 Hz are typically vetoed
with the ASC-CSOFT channel because the mirror motion produces low-frequency glitches
shown in the left panels in Figure 6. Because the glitches produced by the laser power
intensity dips typically have a large bandwidth ranging from ~10 to ~ 2000 Hz, vetoed
triggers with the LSC-REFL have the central frequencies of either less than ~ 110 Hz or
greater than ~ 800 Hz. Figure 6 shows two representative glitches witnessed with either the
ASC-CSOFT or LSC-REFL channels. Overall, 72.5% of 40 outlying triggers in this search
period can be vetoed with our analysis. The right panel in Figure 5 shows that the rates of
p in the cWB triggers before and after the veto.

As a complementary check, we compare our veto performance with that obtained by
the current LIGO infrastructure. Using a set of veto periods obtained from three different
flag categories indicating: 1) a critical issue with an abnormally operating detector (CAT1)
; 2) times of glitches with understood physical coupling between auxiliary channels and
the detector’s output (CAT2); and 3) times of glitches with unknown causes but statistical
correlation (CAT3), 35 out of the cWB outliers can be vetoed. Because the periods of the
CATI flag are already removed commonly for the analyses, we compare unvetoed triggers
between our analysis and the union of the CAT2 and CAT3 flags. There are 4 commonly
unvetoed triggers. We veto a single trigger that is not vetoed with the CAT2 and CAT3 flags
because of the chance-coincident excess power witnessed with the LSC-LEFT channel.
Seven triggers are vetoed with the CAT2 and CAT3 flags but not vetoed with our analysis.
This discrepancy can be explained for two reasons. Because our veto window is 1 second

around the trigger time, the quantity for the excess power outside this window is not large
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Central frequency [Hz] cWB ranking statistic

Figure 5. Left: 40 outlying baCkgrOUnd. cW B triggers w ith the ranking statistic of p > 9.
Right: Rate of all the background cW B triggers between January 1st, 2020 and February
3rd, 2020. The orange-x (blue-+) markers denote the triggers vetoed with ASC-CSOFT
(LSC-REFL) channels based on the criterion ofpV> 0.95. The black circles denote the
rem aining triggers in our analysis. The green squares denote the triggers vetoed w ith the
CAT2 and CA T3 flags. The grey and red histogram s denote the rates w ith ¢cW B triggers
before and after our veto, respectively. The blue-dashed histogram 1is the rate after the CA T

and CA T3 flags applied.

enough to pass our veto criterion. O therwise, channels other than the two high-ranked
w itness channels selected in our analysis might witness coincident excess power. Table 1
summ arizes details about these triggers. In conclusion, we have 80% of 40 triggers are in

common between our analysis and the CA T2 and CA T3 flags.

5. CONCLUSION

In this paper, we have presented a new software, PyChChoo, designed to identify
the origin of glitches and rem ove the effect of glitches.

Using a set of tim e series recorded in the instrum ental and environmental m onitors
w hich do notcausally follow from the detector’s output, PyChChoo queries the tim e series
from each of the sensors around the times of glitches and then counts the fraction (q)of
frequency bins above the stationarity upper threshold to quantify excess power. Comparing

w ith another data setw hen the detector’s outputis quietthatis analyzed in the same way, the
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Figure 6. The time-frequency representation of the glitches in the detector’s output (top) and
the excess power in the witness auxiliary channels (bottom) using the Q-transform (Robinet
et al., 2020). The left and right panels show the glitches witnessed with the ASC-CSOFT
and LSC-REFL channels, respectively. The trigger times are marked as zero on the maps.
The ASC-CSOFT channel in 1-50 Hz and the LSC-REFL channel in 1-128 Hz have the
values of pv =0.999 and pv = 0.954 for each glitch, respectively.

witness sensors are probabilistically identified based on values of g. To remove the effect of
the glitches in the detector’s output, time periods when the witness sensors monitor excess
power in coincidence with the glitches, are marked as a veto. The veto criterion is given as
a probability that a value of g obtained with a witness channel belongs to the distribution
of g in the glitch set.

To demonstrate the effect on GW searches, we have used the background triggers
given by the cWB pipeline running on the L1 and H1 detectors from January 1st, 2020
to February 3rd, 2020. Because these triggers are generated by applying some time shifts
longer than the light-travel time between detectors, there is no trigger of astrophysical
signals in origin in our analysis. During this period, the detector’s output was significantly
contaminated with glitches. We analyze the data of the L1 auxiliary channels using the L1

trigger time of the outlying triggers with the ranking statistic of p > 9. We find at least
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Table 1. List of 11 unvetoed outlying baCkgrOUnchB triggers Wilhp>9in our analysis
using a threshold of pV > 0.95 for the first and second ranked withness channels with
comments for triggers in the discrepancy between our analysis and the CA T2 and CATS3
flags. The trigger in the last row is vetoed because of the chance-coincident excess power
w itnessed by the LSC-REFL channel. The values in the columns of ASC-CSOFT and
LSC-REFL denote values of pv. The shaded rows denote the unvetoed triggers based on

the CA T2 and CA T3 data quality flags of LI1G O

G PS time ASC-CSOFT LSC-REFL
Comments
in L1 in 1-50 H z in 1-128 Hz
Excess powerin (-2.0, -0.7) seconds
1262326892.30 0.874 0.905
in LSC-RELF
Excess power in 1-50 H z
1262403661.68 0.824 0.936
in LSC-REFL with pv = 0.953
1262655787.22 0.785 0.942 G litches in (0.4,1.0) seconds at ~ 25 H z
1262674230.37 0.8714 0.930 A glitch at -1.4 seconds at ~ 12 H z
1262676098.05 0.785 0.938 G litches below 9 H z
1262758399.380 0.785 0.950 Q uiet w ithin (-8, 8) seconds
1262842889.30 0.824 0.899 -
1263363175.48 0.874 0.905 -
1263715708.16 0.941 0.903 -
1264327099 .43 0.785 0.905 -
1264703139.12 0.785 0.905 A glitch in (-2 .5,0) seconds
1262664659 .84 0.824 0.960 Excess power in the LSC-REFL channel

tw o kinds of adversely affecting glitches to the pipeline, one of which seem s to be due
to the m irror-m otions witnessed by the A SC-CSOFT channel and the other one seem s to
be typically caused by the laser intensity dips w itnessed by the LSC-REFL channel with
high confidence. U sing these two witness channels, we consider that72.5% of 40 outlying
triggers to be vetoed. W e find thatnone of the cW B triggers marked as being vetoed are in
coincidence w ith super events reported in the database server of the candidate G W events

(GraceD B) (Prestegard etal., 2021).



65

As a complementary check, we compare our results with the current LIGO infras-
tructure; the CAT2 and CAT3 flags. We veto a single trigger that is not vetoed with the
CAT?2 and CAT?2 flags because of the coincident excess power witness with the LSC-LEFT
channel. Our analysis does not veto 7 triggers that are vetoed with the CAT2 and CAT3 flags
because the excess power is present outside of the 1-second window used in our analysis or
the coincident excess power is not witnessed with our selected two channels. Overall, 80%
of the triggers are in common between our analysis and the LIGO infrastructure.

As mentioned, these 40 outlying triggers seem to have at least two distinct sources
of glitches. In our analysis, we have used all triggers to calculate p,. Values of p, could
be higher by grouping glitch samples based on ¢ of all channels and calculate p, for each
group. To group samples, machine-learning clustering algorithms such as Gaussian Mix-
TURE CLUSTERING (Ghosh and Sen, 1984; Hartigan, 1985) or AGGLOMERATIVE CLUSTERING
(Gower and Ross, 1969) can be applied after using some dimensionality reduction algo-
rithms including PrincieLE CompoNENT ANarysis (PCA) (FR.S., 1901; Hotelling, 1933;
Minka, 2000) in ScikiT-LEarN (Pedregosa et al., 2011). PyChChoo has the in-progress
implementation using GaussiaN MixTURE CLUSTERING and PCA incorporating statistical
tests such as a one-sided binomial test and a one-sided Welch’s t-test (WELCH, 1947) to
determine the number of clusters. Also, because the background cWB triggers are generated
by applying some time shifts between detectors, our analysis might have a bias due to one
realization of time shifts. To reduce the bias, a higher number of time shifts can be chosen
to generate a larger number of background cWB triggers.

PyChChoo has several advantages. Firstly, it can work with any ETGs running only
on the detector’s output without the use of them running on auxiliary channels. Secondly,
because a list of glitches can be chosen by a user, it can be used to help to understand
the origin of glitches which are only adversely affecting a particular GW detection pipeline
with specific parameters, e.g., high ranking statistic. The current existing veto infrastructure

typically uses Omicron ETG. Omicron is intended to capture a wide variety of glitches
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including those that are not similar to astrophysical GW signals. Analyzing only the data set
obtained from a particular GW detection pipeline might make improvements in reducing
veto times. Also, it takes less than 1 minute to analyze all the safe auxiliary channels
and identify potentially witness channels for a given trigger. Therefore, it can be used for
medium latency operations to assess if a trigger is due to astrophysical or terrestrial origin.

In addition to the purpose of vetoing glitches and the usage for the medium latency
operations, PyChChoo has another crucial advantage. As discussed in Sec. 3, PyChChoo
can find witness channels that hVETO might miss so that it can be used for the follow-up
study about glitches identified by hVETO. This feature is beneficial for understanding more
thoroughly about noise couplings inside the instruments. For glitches with the instrumental
origin, noise couplings that cause glitches could be potentially mitigated by tuning the
pieces of equipment setting or replacing them with improved ones. If mitigating of the
cause is difficult to operate or the cause is of environmental origin, we envision that those
glitches can be subtracted using the data recorded in witness channels based on a method
similar to Ormiston et al. (2020) but adapted to transient noise artifacts. The Bayesian
inference approach to subtract glitches is available for a signal from the compact binary
merger (Chatziioannou et al., 2021; Cornish, 2021). However, a subtraction method using
auxiliary channels could have a significant impact on unmodeled search pipelines in the
future.

As the detector’s sensitivity increases, in particular, at the low-frequency region
below ~ 80 Hz, unmodeled GW detection pipelines play important roles in observing
intermediate binary black hole IMBBH) following the detection on May 21%, 2019 (Abbott

et al., 2020). Understanding the cause of glitches and mitigating those will be more crucial.
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ABSTRACT

Excess transient noise artifacts, or “glitches” impact the data quality of ground-
based GW detectors and impair the detection of signals produced by astrophysical sources.
Mitigation of glitches is crucial for improving GW signal detectability. However, glitches are
the product of short-lived linear and non-linear couplings among the interrelated detector-
control systems that include mitigation of ground motion and regulation of optic motion,
generally making it difficult to model noise couplings. Hence, typically time periods
containing glitches are vetoed to mitigate the effect of glitches in GW searches at the cost
of reduction of the analyzable data. To increase the available data period and improve
the detectability for both model and unmodeled GW signals, we present a new machine
learning-based method which encompasses on-site sensors monitoring the instrumental
and environmental disturbances to model noise couplings and subtract glitches in GW
detector data. We find that our method reduces 20-70% of the glitch signal-to-noise ratio.
By injecting software simulated signals into the data and recovering them with one of
the unmodeled GW detection pipelines, we address the robustness of the glitch-reduction
technique to efficiently remove glitches with no unintended effects on GW signals.

Keywords: gravitational-waves, glitch, statistics
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1. INTRODUCTION

The first detection of a GW signal from a BBH merger (Abbott ef al., 2016b) on
September 14th, 2019 was the breakthrough of GW astronomy. One of the dominating
factors for the breakthrough in 2015 was the improvement of the detector sensitivity by
a factor of ~ 10 at the detector’s most sensitive frequency compared to the initial LIGO
(Aasi et al., 2015a). Reducing transient and periodic noise sources in instrumental and
environmental origin may enhance the identification of GW signals by increasing the
significance of candidate events of astrophysical signals and avoiding classifying them
as sub-threshold triggers (Abbott er al., 2019; Riles, 2013).

The physical couplings due to the detector design are noise sources such as the
fluctuating amplitude of laser light in the arm cavities, fluctuations of the photon arrival time
at the output-port photodiode, thermal fluctuations of mirror coatings, and optic suspension
(Aasi et al., 2015b). Besides, during observation runs, environmental and instrumental
noise sources including wind or ground motions as well as optic-controlling systems limit
the detector sensitivity (Abbott er al., 2016a). Reducing the effect of these noise sources
on the detector’s output, strain channel, is crucial to improve the detectability of any GW
signals and better understand physics in the universe.

The Advanced LIGO (aLLIGO) detector use approximately twenty hundred thousand
auxiliary channels, or sensors/control-subsystems that monitor different aspects of envi-
ronmental and instrumental conditions inside and around the detectors in parallel to the
strain channel in the time domain. These auxiliary channels can be potential witnesses of
couplings of noise sources and can be used to subtract the noise in the strain channel.

Long-lasting noise sources with a duration longer than ~ 4 seconds have linear
and/or non-linear non-stationary coupling mechanisms (Ormiston et al. (2020) set the
analysis window to be 8 seconds for the long-lasting noise). Among others, the main
technique to subtract linearly coupled long-lasting noise sources is to calculate coherence

between the witness channels and the strain channel. For example, the main source in
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~ 50 — 1000 Hz frequency band coupled linearly with the jitter of the pre-stabilization laser
beam in angle and size was subtracted (Davis er al., 2019; Driggers et al., 2019; Kwee
et al., 2012; Schofield, 2016). For non-linearly and non-stationary coupled noise sources in
environmental and instrumental origin, techniques with machine learning algorithms show
successful subtractions and improve the detector sensitivity (Meadors et al., 2014; Mukund
et al., 2020; Ormiston et al., 2020; Tiwari et al., 2015; Vajente et al., 2020).

Other than long-lasting noise, transient noise artifacts, or glitches significantly impair
the quality of GW detector data and reduce confidence in the significance of candidate GW
events because glitches may resemble astrophysical signals. Glitch removal is crucial for
GW signal searches. However, glitches are the product of short-lived linear and non-linear
couplings among interrelated detector subsystems, generally making it difficult to find their
coupling mechanisms. To mitigate the effect of glitches on GW searches, LIGO-Virgo
collaboration vetoes time periods where glitches are present (Abbott et al., 2021; Davis
et al., 2021) or reduces the significance of GW candidates based on the probability of
the glitch presence (Godwin er al., 2020). Software engines such as UPV (Isogai, 2010),
hVETO Smith er al. (2011), Pointy Poisson Essick er al. (2021), PyChChoo (Mogushi,
2021), and 1IDQ (Biswas er al., 2013; Essick et al., 2020) find the statistical correlation
of glitches between the detector’s output and numerous auxiliary channels to identify the
presence of glitches while avoiding the mitigation of astrophysical signals.

The above mitigation techniques have disadvantages: reduction of the analyzable
data which might contain GW signals or remaining the effect of the glitch contamination
on the data. Therefore, it is desirable to subtract glitches for overcoming the above disad-
vantages. The functional forms to model the coupling mechanisms of glitches can require
detailed knowledge of instrumental subsystems and a large number of parameters (Was
et al., 2021). Also, there exist situations where functional forms can not be obtained be-
cause of unknown physical mechanisms about glitches. In addition to subtraction techniques

for long-lasting noise sources noted above, other machine learning techniques have shown
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promising applications to GW astronomy (Cuoco et al., 2021). For instance, (Mukund ez al.,
2017) present a method using various techniques including the wavelet decomposition to
classify transient excess-power waveforms injected into the simulated Gaussian data and
real data during the LIGO’s sixth science run. Soni et al. (2021) show updated results of
a glitch-classification software Gravity Spy (Zevin et al., 2017) to the third observation
run (O3) data with the help of citizen scientists. Biswas ef al. (2013) show the comparison
of various machine-learning algorithms to predict the presence of glitches based on auxil-
iary channels (Biswas et al., 2013). (Mogushi et al., 2021) introduce a method to estimate
the data containing a CBC signal lost due to the presence of an overlapping glitch. These
successes motivate us to develop a new machine learning-based method to subtract glitches
using auxiliary channels with no dependency from any astrophysical-signal waveforms and
no precise prior knowledge of all the system configurations, allowing the method to be
easily adaptive to changes in the detector settings.

In this paper, we present a machine learning-based algorithm that subtracts glitches
in the detector’s output using auxiliary witness channels. Using two classes of glitches that
are adversely affecting unmodeled GW detection searches, we characterize the performance
of our subtraction technique. Adding simulated GW signals to the data before subtraction,
we validate the algorithm not to manipulate or introduce biases to the resultant estimates of

the astrophysical parameters.

2. GLITCH SUBTRACTION PIPELINE

We introduce the analysis pipeline applied to the ground-based GW data for glitch
subtraction. The pipeline processes the spectrograms magnitude of time series recorded
in the strain channel, A(¢), and a set of witness auxiliary channels for a class of glitches,
ai(t). Those witness auxiliary channels do not causally follow from the detector’s output
where astrophysical signals are present. Choosing such channels allows the pipeline to only

subtract glitches while preserving astrophysical signals. The algorithm uses a 2-dimensional
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Convolutional Neural Network (CNN) which uses a user-chosen set of witness channels
as the input and then outputs the predicted spectrogram magnitude of glitches in A(r).
The output of the CNN is then converted to time series using the Fast Griffin-Lim (FGL)
transformation (Griffin and Jae Lim, 1984; Perraudin er al., 2013) and conditioned before

being subtracted from A(r).

2.1. FORMALISM AND LOSS FUNCTION

The time series A(f) in the strain channel can be formulated as

s(t) = h(1) + g(1) + (1), (D

where h(r) is the astrophysical signal that may be present in the data, g(¢) is a user-targeted
glitch waveform that is coupled with witness channels, and n(f) represents the sum of
untargeted glitch waveforms and the noise that are not wanted to be subtracted. We design
the pipeline to produce an estimate of g(r) from a set of witness channels a;(¢) and subtract
it from s(¢).

Because the amplitude of a glitch waveform varies rapidly and differently in a given
frequency bin over its duration, it is more efficient to build the frequency-dependent features
before the data being fed into the neural network to learn the glitch-couplings. We create
the discrete short-time Fourier transform (STFT) from the time series. The STFT divides
the time series into small segments and calculates a discrete Fourier transform of each
of divided segments. The STFT comprises the real and imaginary parts, which can be
inverted to the corresponding time series. However, we find that the neural network more
efficiently learns the wanted output with the magnitude of STFT (mSTFT) than using both
real and imaginary parts together because the mSTFT has a simpler pattern than the real
and imaginary parts individually have. The limitation of using the mSTFT is that it is

not invertible. To compensate for this limitation, we use the FGL transformation (Griffin
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and Jae Lim, 1984; Perraudin et al., 2013) to invert the mSTFT to the corresponding time
series by estimating the phase evolution. Because the phase is not fully recovered in this
transformation, the phase of the estimated glitch waveform might slightly shift from the
phase of the true waveform and the estimated waveform might have the opposite sign of the
amplitude. Using the least square fitting method, we allow the amplitude of the estimated
glitch waveform to change up to a factor of £3 and allow the phase to shift up to £0.02
seconds. We find that correcting the amplitude of the estimated waveform produces a better
subtraction while preserving potential astrophysical signals. Also, changing the magnitude
of the estimated waveform helps us avoid unwanted data manipulation because the amplitude
correction factor tends to be zero when the estimated waveform mismatches the true glitch
waveform.

Because of the complexity in estimating g(r) directly, we design the neural network
to uses the witness channels and produce an estimate of the mSTFT G(z, f) of a glitch
waveform, where f denotes the frequency. The neural network can be represented as a
function F(A;i(t, f); 5) which maps the magnitude mSTFTs A;(f,¢) of the witness channels
to G(t, f) given a set of parameters g. The parameters are obtained by minimizing a loss
function J which denotes the difference between the real glitch mSTFT and the predicted

counterpart. The operation in the network can be formulated as
6 = argming J | G(t, ). F(Alt. /): )| . 2)

In the analysis, we choose the loss function to be the mean squared error (MSE)

across each pixel of mSTFT as
|
J == (Glk] - G[k; 6], 3
Nsz( (] - Glk:6)) 3)

where k denotes each pixel, N is the total number of pixels, and G[k; 5] = F (AL, f), 5)[k]

is an estimate of mSTFT obtained with the neural network.
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In practice, the dimension of mSTFT depends on the duration of g(r), its sampling
rate, and a user-chosen frequency resolution for mSTFT. Using an appropriate combination
of the neural internal window function called kernel and the mSTFT dimension, the neural

network can efficiently minimize the loss function.

2.2. DATA PRE-PROCESSING

The target class of glitches and its witness channels are chosen to create the data set
for the neural network. We select a target glitch class that is labeled by a machine-learning
classification tool called GraviTy Spy (Zevin et al., 2017) which classifies glitches based
on their time-frequency representation (TFR) morphology using the Q-transform (Robinet
et al., 2020). Gravity Spy might misclassify some glitches by assigning inappropriate
names. Also, some glitches are not loud enough to be worth to be subtracted. Because of
the above two reasons, we select a set of glitches in the class with a relatively high SNR
threshold (e.g., 10) and classification confidence level (e.g., 0.9) for the glitches.

To find the witness channels for these glitches, we use the software called PyChChoo
which allows us to analyze safe auxiliary channels in the coincident windows for the glitches
and discover witness channels statistically. Because of the computational efficiency for
training the neural network and the achievement of an efficient prediction made by the
network, using only witness channels without non-witness channels is sufficient. We use
the auxiliary channels having the probability that the glitch set is louder than the quiet set
greater than 0.9 as the witness channels. Because different noise couplings might produce
a similar TFR morphology, not all of the glitches in the class have a strong correlation with
excess power recorded in the witness channels. Therefore, we select the subset of glitches
in a class with their top-ranked witness channel has the probability of an excess-power
measure belonging to the glitch set, above 0.9 (Mogushi, 2021) to make sure that the subset
of glitches has a strong correlation with the witness channel. Around the time of glitches, we

use a set of time series of the strain and the witness channels with a duration of 36 seconds.
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Glitches are excess power transients that are distinctively different from long-term varying
noise sources. To filter out the long-term varying noise and magnify the characteristic of
glitches, we whiten the time series by calculating the convolution between the time series
and the time-domain finite-impulse-response filter created with the median value of ASDs,
where each ASD is the square root of PSD obtained by calculating the ratio of the square
of the FFT amplitude with the Hanning window (Essenwanger, 1986) of the divided time
series with a duration of 2 seconds, to a given frequency-bin width (see details in Macleod
et al. (2020)). The choice of 36-second duration for the time series is motivated such that
the median value of ASD appropriately captures the long-term varying noise characteristic.

To have the same dimension for the mSTFTs of the glitch waveform and a;(r)
and save the computational cost, we re-sample the whitened time series with the same
sampling rate. For the glitch class used in the results in Sec. 3, we choose the sampling
rate to be the lowest sampling rate of witness channels. This choice of sample rate has the
Nyquist frequency ~ 2 times higher than the highest frequency of the glitch so that all the
characteristics of glitches are captured. To subtracting a glitch waveform from s(z), this
choice also makes the resolution of the predicted glitch waveform small enough to apply a
small time shift (~ 0.02 seconds) for the phase correction.

To extract a glitch waveform g(¢), we consider two distinct time-frequency regions.
Glitches are expected to be present in one of the regions and not present in the other region.
For example, for one of the glitch classes called Scatrered light glitches in Sec. 3, we consider
the two frequency regions above or below the highest frequency of the glitch (e.g., 100 Hz).
We assume that the upper-frequency region represents the STFTs of n(f) in Equation (1)
and the lower-frequency region represents the STFT containing glitches (see Appendix F
for the verification of this assumption). We keep pixels in both real and imaginary parts in
the lower frequency region of the STFT with their magnitude values above 99 percentile
(see the study regarding this threshold choice in Appendix F) of the mSTFT value in the

upper-frequency region, otherwise, set the pixel values to be zero. Subsequently, we set the
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pixel values in the upper region to be zero as well. After extracting the STFT of a glitch
waveform, we invert the STFT to the time series to obtain the extracted glitch waveform. For
Scattered light glitches, we find that the median value of the overlap O (defined in Equation
(4)) between the predicted mSTFTs from the network and the mSTFTs of the extracted
glitch waveform with the cutoff frequency of 100 Hz is 1% greater than the overlap with
the cutoff frequency of 200 Hz. As Appendix F shows that the mSTFT does not contain
excess power above the Gaussian fluctuations in the frequency region above 100 Hz in the
data of Scattered light glitches, choosing the cutoff frequency of 200 Hz lets the data keep
a few pixels of Gaussian fluctuations above 200 Hz. Therefore, the overlap with the cutoft
frequency of 100 Hz is larger than that with the cutoft frequency of 200 Hz. We choose
a different choice in splitting the time-frequency region in STFTs for the other class of
glitches (see details in Sec. 3). To determine choices of splitting the time-frequency region
in STFTs, one can use the method shown in Appendix F and/or use the peak times and
peak frequencies of Omicron triggers (Robinet er al., 2020) to find if glitches are isolated
in the time domain (see details in Appendix F) or glitches have excess power in a particular
frequency region (see details in Sec. 1.3).

To help the network learn the excess-power couplings more efficiently, we then
divide each time series into smaller overlapping segments. Each training sample comprises
segments from multiple witness channels. Larger overlap durations increase the data-set
size so that the network can have more learnable resources and hence predict the output
efficiently at the cost of computational time and memory.

Some of the segments might contain no glitches or only glitches that are not coupled
with a set of chosen witness channels. Removing such segments from the data set helps
the network learn the couplings more robustly. Using constant Q-transform (CQT) in
NNAuDpio (Cheuk et al., 2020), we only select segments with the peak pixel in the CQT
of the strain channel being loud enough and being near the peak pixels of at least one of

the witness channels within a coincidence window (e.g., less than 1 second). During the
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above process, we further select the subset of segments with the peak frequency within an
expected frequency range. As a criterion of the loudness of the pixel, we consider the peak
pixel to be loud enough compared to be the Gaussian fluctuations when the peak pixel value
is louder than the 90 percentile of the pixel values by a factor of 3.

After selecting the subset of segments, we finally create the mSTFTs of training
sample segments and the corresponding mSTFT of a glitch waveform. To let the network
learn efficiently, we normalize the mSTFTs of the strain and witness channels with their
mean u and standard deviation o, then use these normalized mSTFTs as the input and the

true output in Equation (2) to build the network model parameters.

2.3. NEURAL NETWORK ARCHITECTURE

As mentioned in the earlier section, the pipeline uses a 2-dimensional CNN that uses
the witness channels and predicts the mSTFT of a glitch waveform in the detector’s output.
The input for the network is a multi-dimensional image with the width (height, depth)
corresponding to time-bins (frequency-bins, channels). The CNN typically consists of a
series of convolutional layers, where each layer uses discrete window functions, or kernel
with trainable weight. After taking the input image, the layer slides its kernel through the
input image and then computes the dot products between the kernels and the portion of
the image inside of the kernel. Typically, the kernel’s dimension is smaller than that of
the image so that the CNN learns local features in the image, making the network suitable
to process locally outstanding characteristics of excess-power transients in the image. The
output of each layer is passed to a non-linear activation function and becomes the input for
the subsequent layer. Because the output of each layer is down-sampled, the subsequent
layer represents the input image with a fewer number of features. This sequence of layers
is known as an encoder that can extract the glitch-coupled excess-power characteristics and
suppress the slowly-varying noise in the image (Bank ef al., 2021). After the convolutional

layer, the network consists of transposed convolutional layers known as a decoder (Baldi,
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2012; Masci et al., 2011; Rumelhart et al., 1988; Vincent et al., 2010). Each transposed
convolution layer inserts pixels of zero between the pixels in the input image and then slides
the kernel to computes the dot products of kernels and the modified input image within the
kernel. Asa consequence, transposed convolutional layers recast the encoded image to have
a higher number of pixels by up-sampling. Comprising the encoding and decoding layers
(so-called auroencoder) (Baldi, 2012; Masci et al., 2011; Rumelhart er al., 1988; Vincent
et al., 2010), the output of the network will have the same dimension as the glitch image
with extracted glitch-coupled features.

The above considerations motivate us to use the fully connected convolutional
autoencoder in our network that provides an estimate of the glitch image from the witness
channels’ counterpart. In addition to the autoencoder, we employ a convolutional layer
before the encoder to normalize the input images, and use a convolution layer after the
decoder to make the output-image dimension to be the same as that of the glitch image.
More specifically, the input images of the witness channels are first passed to the input
convolutional layer and then normalized with Batch Normalization (Iofte and Szegedy,
2015). To make the dimension of the input and output images for the network, the input
layer uses a stride of 1 and an appropriate zero padding arrangement. In the encoder, the
width and height of the image are reduced by a factor of 2 while the depth (or the number of
channels) is increased by a factor of 2. Instead of using pooling layers (e.g., Max Pooling
(Yamaguchi et al., 1990)), each layer makes use of a stride of 2 with an appropriate zero
padding arrangement. The output of the encoding layer is passed to the decoding layer. In
the decoding layer, the width and height of the image are increased by a factor of 2 while
the depth is reduced by a factor of 2 by using a stride of 2 with an appropriate zero padding
arrangement. The output of the decoding layer is fed into the output convolutional layer, in
which an appropriate kernel with a stride of 1 is chosen to make the final output image has
the same dimension as that of the glitch image. Except for the output layer, the output of

each layer is passed to an activation function before being fed into the subsequent layer.
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We adopt the symmetrical structure for the autoencoder similar to Ormiston et al.
(2020) because each convolutional layer is commonly known to learn a different level of
characteristics of the input images. An earlier (later) layer in the encoder tends to learn a
lower (higher) level of characteristics. Hence, the first (last) layer in the encoder extracts
a lower (higher) level of characteristics that are then recast by the last (first) layer in the
decoder. Likewise, the intermediate levels of characteristics are also extracted and recast
by a pair of layers in the encoder and decoder.

In our analysis, the network comprises four convolutional layers for both the encoder
and decoder. We choose different sizes (~ 10) of a kernel for different classes of glitches.
For the activation function, we the ReLU (Hahnloser et al., 2000; Nair and Hinton, 2010)
in the input and the autoencoder layers. We do not use any activation function after the
output layer. Each encoding layer increases the number of channels from the value in the
input image to 8, 16, 32, and 64, respectively. Each decoding layer decreases the number

of channels in inverse order.

2.4. TRAINING AND VALIDATION

The analysis of the network can be divided to be two parts; training and validation.
During training, the data set are divided into smaller chunks of data, or so-called mini-
batches to reduce the computational memory. Data in each mini-batch are fed into the
network and the loss function in Equation (3) is computed by averaging over each mini-
batch. The network parameters g are updated according to the gradient of the loss function
with respect to the parameters. For calculating the gradient, we use one of the first-order
stochastic gradient descent methods, ADAM (Kingma and Ba, 2014). We iteratively update
7l by repeating the above calculations over a number of cycles, or epochs. After each epoch,
the loss value and the coeflicient of determination are calculated using the validation set
to prevent over-fitting; the network parameters are tuned with the training set so that the

network tends to represent the glitch couplings contained in the training set instead of
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representing the couplings in a broader data set such as a validation set which is not used
to turn the network parameters. To avoid over-fitting, the validation set is chosen not to be
overlapping with any data in the training set. We stop the iteration if the network shows

over-fitting according to the coeflicient of determination of the validation set.

2.5. OUTPUT DATA POST-PROCESSING

The output of the network is conditioned before subtracting glitches in the detector’s
output data. Because the glitch mSTFT is normalized with the mean g and the standard
deviation o of the pixel values across the training set before being fed into the network, we
invert the normalization by multiplying the predicted mSTFT by o and add p. While the
true mSTFT has no negative values by definition of mSTFT, the predicted mSTFT could
have negative values due to the imperfection of the network prediction. We find that the
negative values of the predicted mSTFT are typically anti-correlated with the values of
the true mSTFT. The median values of the overlap O in 4 between negative pixels of the
predicted mSTFTs and the corresponding pixels in the true mSTFTs are approximately —0. 1
and —0.35 for Scattered light and Extremely loud glitches, respectively. Taking absolute
values of the predicted mSTFTs makes these negative pixels have a positive effect on the
overlap of all pixels though the effect is small because the average of the absolute values
of the negative pixels is only ~ 5% and ~ 9% of the average value of the positive pixels
for Scattered light and Extremely loud glitches, respectively. Using the FGL transformation
(Griffin and Jae Lim, 1984; Perraudin et al., 2013), we estimate the glitch waveform from
the absolute value of mSTFT predicted by the network.

Because the estimated waveform has a slightly larger or smaller amplitude compared
to the extracted glitch waveform and the phase of the estimated waveform is slightly shifted
due to the network-prediction imperfection and the phase-estimation uncertainty in the FGL
transformation, we let the estimated waveform change only its amplitude by a factor up to

+3 and change the phase up to +£0.04 seconds to subtract glitches efficiently and avoid
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introducing unintended effects on astrophysical signals potentially present. To determine
values of the amplitude and phase correction factors, we use the least square fitting method
within the time periods where the glitch is present. To determine the portion of the
glitch presence, we (1) calculate the absolute values of the estimated glitch waveform, (2)
then smooth the curve with the convolution with the rectangular function, and (3) finally
determine the time window where the absolute values are above a threshold.

Because the glitch waveforms (including both the estimate and extracted) are fluc-
tuated instead of that their values are smoothly increased towards the peak of amplitude,
taking the time window where the absolute values are above a threshold without smoothing
the curves makes the time windows to be divided and to cover only sub-portions of glitches
(corresponding to high thresholds) or the time window to cover wide portions including
the region with no glitches (corresponding to low thresholds). Therefore, we employ the
convolution with a rectangular function as one of the smoothing methods. We typically
set this threshold to be the ~ 90 percentile of the absolutes values of a set of the estimated
glitch waveforms (see details for each glitch class in Appendix F and Sec. 3). To subtract
glitches even more efficiently, we divide this time portion and apply the least square fitting
against the strain data within the divided portions (see details for each glitch class in Sec. 3).
Smaller lengths of the divided portions allow us to subtract glitches more efficiently but less
robustly preserve the waveform of astrophysical signals. To balance the above two factors,
we divide the time portion finer around the center time of the glitch waveform because
typically glitches have higher frequencies and larger amplitudes around the center time of
the waveform. In the least square fitting, we find that the subtraction is better by separating
the fitting with the bounds of the amplitude correction factor either in the range (0,3) or

(=3,0) and then choose the better fitting result based on its coefficient of determination R2.
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3. PIPELINE PERFORMANCE ON LIGO DATA

We apply our glitch subtraction pipeline to the data of the L1 detector from January
Ist, 2020 to February 3rd, 2020. We choose two district classes of glitches comprising
different types of noise couplings that are dominant events for creating background cWB
(Klimenko et al., 2008, 2016) triggers with high-ranking statistics to study and quantify the
performance of our pipeline.

To quantify the network-prediction accuracy, we use the overlap of the true mSTFT

and the predicted mSTFT of the glitch given as

_ i1 GGl
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where G[i] and G[i] are the true and estimated mSTFTs of the glitch, respectively, and
(i, ], k) run over pixel indices, and N is the total number of pixels. The overlap indicates
the direct measure of the network prediction accuracy, ranging from 0 (mismatched) to 1
(perfect matched).

SNR is the dominant factor for the detection of GW signal searches. Lowering
SNR of noise artifacts improves the detectability of GW signals. . We quantify the
performance of the glitch reduction with our pipeline by calculating the fraction of glitch

SNR reduction (FNR) after the subtraction as

SNR; — SNR,
FNR= ————
SNRj, ’ ®)

where SNRj and SNR,, are the matched-filter SNRs (Usman et al., 2016) obtained using
the extracted glitch waveform as a template and the data before and after the subtraction,
respectively (see how to obtain the extracted glitch waveform in Sec 2.2). Values of FNR
close to 1 indicate efficient glitch reductions while negative values of FNR imply the increase

of the glitch energy in the data.
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3.1. SCATTERED LIGHT GLITCHES

We first apply our subtraction technique to a class of glitches called Scattered light
glitches. Typically, winds and/or earthquakes shake the detector and move the test mass
mirrors in the detector arms. The displacements of the mirrors in the longitudinal or
rotational directions differ the relative arm lengths to produce arch-like glitches in the
mSTFT in 10 — 90 Hz, with a duration of ~ 2 seconds (Davis er al., 2021; Soni et al., 2020,
2021).

To identify the witness channels for this glitch class, we use PyChChoo (Mogushi,
2021) on the list of Scattered light glitches with SNR above 10 between January Ist,
2020 and February 3rd, 2020 in the L1 detector from the Graviry Spy catalog. We use
two witness channels with high confidence: L1:ASC-CSOFT_P_OUT_DQ and L1:ASC-
X_TR_B_NSUM_OUT_DQ which monitor the common length of the two arms and the
transmitted light from the mirror at the end of the x-arm, respectively.

To check that the top two witness channels are sufficient, we train the network with
various sets of channels with the confidence of being witnesses of this glitch class from
Pg = 0.93 up to p, = 0.71 (Mogushi, 2021). We consider 11 different channel sets, where
i set contains up to i™ ranked channels. We train the network with a learning rate of
1073 (1074/107>) for the 1-10 (11-30/31-60) epochs, where learning rates determine the
gradient to update the network parameters and smaller learning rates correspond to smaller
gradients. We terminate the training process if a value of R? in the validation set plateaus,
i.c., a value of R? in the current epoch does not differ from the value in the previous epoch
greater than £0.001%. Figure 1 shows losses in Equation (3) and overlaps in the validation
sets, the validation sample size, and the GPU memories used to train the network for various
channel sets. Overlaps at the termination for all channel sets range in ~ 0.7 ~ (.8, where the
GPU memory for the 11" channel set is greater than the memory for the 1% channel set by
a factor of 2.5. Using a higher number of witness channels with high confidence provides

a larger amount of glitch-coupling information to the network and let the performance
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better whereas adding low confident witness channels only provides non-glitch-coupling
information to the network and does not improve the performance because the network
seems not to use those low confident channels. Furthermore, using low confident channels
might add data samples that have chance coincident excess power between these channels
and the strain channels and/or subdominant glitch-coupling information (see details for the

1" channel set

coincident selection in Sec. 2.2), where the size of the validation set for the 1
is greater than the size for the 1% channel set by a factor of 1.5. Therefore, the termination
overlap tends to decrease with the use of redundant GPU memories by adding channels
above the 5 rank as shown in the top-right panel in Figure 1. Using the first two ranked
channels is sufficient because the termination overlap for the 2" channel set is only less than
3% smaller than the largest value of the termination overlap (obtained by the 4™ channel
set) and saves 18% GPU memory. In the following, we use the top-tow ranked channels for
Scattered light glitches.

We pre-process the data as described in the previous section with the time series of
the strain and the witness channels being re-sampled to a sampling rate of 512 Hz. During
the pre-processing, we consider the frequency range above 100 Hz to be the background-
noise region and use the 99 percentile pixel-value to extract the glitch waveform below 100
Hz. We also apply a high-pass filter to the strain channel at 10 Hz. We set the sample
dimensions of the (training/validation/testing) sets to be (9131/2233/678) with the segment
overlaps of (93.7/93.7/75)%, where the segment overlap is the fraction of the time-window
overlap between segments created by sliding a time window to divide a larger segment
into smaller segments (so-called data augmentation (Lemley et al., 2017; Perez and Wang,
2017; Shorten and Khoshgoftaar, 2019)). We set that there is no overlapping time between
the three sets and the testing set is later than the other sets. We create the mSTFT with a
duration of 8 seconds, a frequency range up to 256 Hz, and (time/frequency) resolutions of
0.0625 seconds and 2 Hz, respectively. We use a square kernel with a size of (8,8) in the

autoencoder in the network. During the post-processing, we consider the region where the
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Figure 1. Losses defined in Equation (3) (top-left) and overlaps (top-right) over epochs
in the validation sets using channel sets containing ith ranked channels for Scattered ||ght
glitches. The bottom panels show sizes of the validation sets, overlaps at the end of the

training, and used G PU memories.

glitches are presentto be the time when the absolute value of the estim ated glitch waveform
is above the 75 percentile of the corresponding values across the testing set. W e choose the
divided window length for the least square fitting to be as small as 0.1 seconds and expand
the window length from the center of the glitch by a factor of 1.1.

Figure 2 shows the distribution of the overlap of the m STFT and the FNR of the
testing set of Scattered Iightglitches. M ore similar m STFTs correspond to more similar

waveform s after the FG L transform ation, resulting in m ore efficient reductions of glitch



SN Rs.

percentiles

W e find

and n

data.

Figure

2. D

the

istribution

0o nega

0

overlap

ranging from

tive FN R, indica

Qo o o

O

f the overlap of

~0.6

ting n

(09)
verlap

the ex

89

-0.9 and the FN R ranging ~ 0.4 -

o additional glitch energy added to the strain

B g
Radiondfaurts

tracted and

estim ated m STFTs of Scattered

||ghtglilches in the testing set. The black solid and dashed lines denote the m edian and 1-a

percentiles.

Figures 3
high-passed at 10
used to sub

series

betw een

(0.65/0.21)

fractions

m entioned

of

6

a

the m STFT

and FNR

(4/5) shows the m STF
H z in the testing set, t
tract the glitches of th

top-leftpanel

seconds in the
of this glitch are
above. In this
non-Scattered light

0.84

(0.58/0.02).

in

subtracted due

case, the sm all

glitch at ~ 0.5

Figure

T of

he

cor

e opti

of the extracted glitch waveform

In th

5

is e

to our

value

seconds

a strain data down-sampled at 512 Hz and
responding estim ated m STFT, and the tim e
mal (median/least) case, where the overlap

and the estim ated m STFT is O =o0.92
e least case, a short-lived arch-like glitch at
stim ated by the netw ork. However, only the

selection criterion aboutthe glitch presence

of FN R 0.02 is also due to the presence

because this glitch contributes to SNRD



90

dom inantly. W e note that we build the netw ork for a particular class of glitches so that
the glitch at ~ 0.5 seconds in the least case is consistent w ith the performance of our built

netw ork.
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Figure 3. The m STFT ofthe strain data (top-left), the netw ork estim ated m STFT (top-right),
and the m STFT of the strain data after glitch subtraction (top-left) in the optim al testing
sam ple of Scattered Iightglitches. In the bottom -right panel, the gray (blue/green/red)
curves denote the original (estim ated/estim ated-m atched/subtracted) w hitened time series,
w here the estim ated-m atched tim e series is created afterthe am plitude and phase corrections
w ith the least square fitting w ithin divided segments shown as the gray bands. The overlap
between m STFT of the extracted glitch waveform and the estimated m STFT i50=0A92

and FNR = 0.84.
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Figure 4. The m STFT of a down-sampled strain data at 512 Hz with a high-pass fil-
ter at 10 Hz (top-left), the netw ork estim ated m STFT (top-right), and the m STFT of the
strain data after glitch subtraction (top-left) in the m edian testing sam ple of Scattered ||ght
glitches. In the bottom -right panel, the gray (blue/green/red) curves denote the origi-
nal (estim ated/estim ated-m atched/subtracted) w hitened time series, where the estim ated -
m atched tim e series is created after the am plitude and phase corrections w ith the leastsquare
fitting w ithin divided segments shown as the gray bands. The overlap between m STFT of

the extracted glitch waveform and the estimated m STFT s O —0.65 and FNR = 0.58.

3.2. EXTREMELY LOUD GLITCHES

Unlike Scattered“ghtglilcheswhere the waveform s in the strain can be analytically
m odeled with m onitored m irror m otions and the suspension systems (W as et al., 2021),
m any other glitches are so farnotm odeled because of an incom plete understanding of their
physical non-linear noise-coupling mechanisms. The non-linear activation function used in

the netw ork allows us to model non-linear noise couplings and subtract glitches. W e apply
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Figure 5. The m STFT of a down-sampled strain data at 512 H 2z with a high-pass fil-

ter at 10 Hz (top-left), the netw ork estim ated m STFT (top-right), and the m STFT of the
strain data after glitch subtraction (top-left) in the least testing sam ple of Scattered ||ght
glitches. In the bottom -right panel, the gray (blue/green/red) curves denote the origi-
nal (estim ated/estim ated-m atched/subtracted) w hitened time series, where the estim ated -
m atched tim e series is created after the am plitude and phase corrections w ith the leastsquare
fitting w ithin divided segments shown as the gray bands. The overlap between m STFT of

the extracted glitch waveform and the estimated m STFT s O = 0.21 and FNR = 0.02.

our method to a class of EXtremer IOUd glitches with SNR above 7.5 between January
1st, 2020 and February 3rd, 2020 in the L1 detector from the GraVIty Spy catalog. W e
use 4 witness channels with high confidence: L1:LSC-POP_A_LF_OUT_DQ, L1:LSC -

REFL_A_LF_OUT_DQ, L1:ASC-X_TR_A_NSUM _OUT_DRQ

., and L1:ASC-Y _TR _B
NSUM _OUT_DQ, identified by PyC hChoo (M ogushi, 2021). This glitch class is expected
to be produced by the laser intensity dips and have extremely high excess powerin 10- 4096

Hz, lasting ~ 0.2 seconds.
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To check that the choice of witness channels noted above is sufficient, we train
the network with various sets containing channels with p, = 0.99 up to p, = 0.55. We
consider 11 different channel sets, where i set contains up toi th ranked channels. Also, we
consider the 12" channel set containing the 1-3™ ranked channels and 5% ranked channels
because the 3™ ranked channel (L1:ASC-Y_TR_B_NSUM_OUT _DQ) with pe = 0.98
and the 4™ ranked channel (L1:ASC-Y_TR_A_NSUM_OUT_DQ) with pe = 0.97 both
record the transmitted light in yaw-direction in the alignment length control sub-system
and have almost the same glitch-coupling information. The 5 ranked channel (L1:LSC-
POP_A_LF_OUT_DQ) records the transmitted light in low frequencies from the power
recycling cavity. With the same procedure in Sec. 3.1, we compare losses, overlaps, GPU
memories, and size of the validation sets for all channel sets as shown in Figure 6. The
termination overlaps range from 0.77 obtained with the 10™ channel set to 0.84 obtained
with the 3" channel set. The overlap decreases by adding channels 4-11% ranked channels.
In particular, 6-11 channels have values of p, < 0.57, indicating no evidence of being
witnesses so that the network obtain no significant glitch-coupling information from these
low confidence channels with the use of redundant GPU memories up to 8.4 GB. In the
following, we choose the 12 channel set containing witness channels noted in the previous
paragraph because its termination overlap is only less than 2% compared to the largest value
obtained with the 3" channel set, and 0.5% increase of the data set.

During the data pre-processing, we re-sample the time series of the strain and the
witness channels to a sampling rate of 2048 Hz and apply a high-pass filter at 10 Hz. We
consider the time range outside of the 5-second window around the glitch time from the
GraviTy Spy catalog to be the background-noise region and use the 99 percentile pixel-
value to extract the glitch waveform within the 5-second window because these glitches are
isolated and not repeating, unlike Scattered light glitches. We set the sample dimensions
of the (training/validation/testing) sets to be (3879/940/1233) with the segment overlaps

of (96.8/96.8/87.5)%, where there is no overlapping time between the three sets and the
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Figure 6. Losses defined in Equation (3) (top-left) and overlaps (top-right) over epochs

in the validation sets using channel sets containing ith ranked channels for EXtremer IOUd
glitches. The bottom panels show sizes of the validation sets, overlaps at the end of the

training, and used G PU memories.

testing set is later than the other sets. W e create the m STFT with a duration of 2 seconds, a
frequency range up to 1024 Hz, and (tim e/frequency) resolutions of 0.0156 seconds and 8
Hz, respectively. W e use arectangular kernel w ith a size of (13,4) in the autoencoder in the
netw ork. D uring the post-processing, we consider the region ofthe glitch presence to be the
tim e w hen the absolute value of the estim ated glitch waveform is above the 90 percentile of
the corresponding values across the testing set. W e choose the divided window length for
the least square fitting to be as small as 0.02 seconds and expand the window length from

the center of the glitch by a factor of 1.1.



95

Figure 7 shows the distribution of the overlap of the m STFT and the FNR of the
testing setofEXtremely IOUd glitches. W e find the overlap ranging from ~0.7-0.9 and the
FNR ranging ~ 0.1 - 0.6 w ith \'<rpercentiles and no negative FN R indicating no additional

glitch added to the strain data.

8 8 B

W @ ® e 10
Overlap Fadindfaurs

Figure 7. D istribution of the overlap of the extracted and estim ated m STFTs ofEXtremely
IOUngilches in the testing set. The black solid and dashed lines denote the median and \'<r

percentiles.

Figures 8 (9/10) shows the m STFT of a strain data down-sampled at 2048 H z and
high-passed at 10 Hz in the testing set, the corresponding estim ated m STFT, and the tim e
series used to subtract the glitches of the optimal (m edian/least) case, where the overlap
betw een the m STFT ofthe extracted glitch waveform and the estim ated m STFT is O = 0.93
(0.86/0.17) and FNR = 0.84 (0.33/0). In the leastcase, our chosen four witness channels
seem notto witness no excess powercoincidentw ith the glitch so thatthe netw ork estim ates
no glitches.

Our method subtracts Scattered Iightglilches m ore efficiently than EXtremer IOUd

glitches because the netw ork finds it difficult to m odel short-lived (~ 0.2 seconds) non-

linear couplings for EXtremer IOUngitches. In values ofthe overlap binned from 0.5 to 1.0
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Figure 8. The m STFT of a down-sam pled strain data at 2048 Hz with a high-pass fil-
ter at 10 Hz (top-left), the netw ork estim ated m STFT (top-right), and the m STFT of the
strain data after glitch subtraction (top-left) in the optimal testing sample of EXtremer
IOUngilches. In the bottom -right panel, the gray (blue/green/red) curves denote the orig-
inal (estim ated/estim ated-m atched/subtracted) w hitened time series, where the estim ated -
m atched tim e series is created after the am plitude and phase corrections w ith the leastsquare
fitting w ithin divided segments shown as the gray bands. The overlap between m STFT of

the extracted glitch waveform and the estimated m STFT s O —0.93 and FNR = 0.87.

w ith a bin width of 0.1, the averaged value of FN R for Scattered Iightglitches are greater
than the corresponding values for EXtremer IOUd glitches by a factor ranging from 1.3 for

the bin O =0.9- 1.0 to 3.8 forthe bin O Zo.6 - 0.7.
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Figure 9. The m STFT of a down-sam pled strain data at 2048 Hz with a high-pass fil-
ter at 10 Hz (top-left), the netw ork estim ated m STFT (top-right), and the m STFT of the
strain data after glitch subtraction (top-left) in the m edian testing sample of EXtremer
IOUngilches. In the bottom -right panel, the gray (blue/green/red) curves denote the orig-
inal (estim ated/estim ated-m atched/subtracted) w hitened time series, where the estim ated -
m atched tim e series is created after the am plitude and phase corrections w ith the leastsquare
fitting w ithin divided segments shown as the gray bands. The overlap between m STFT of

the extracted glitch waveform and the estimated m STFT s O — 0.86 and FNR = 0.33.

3.3. INJECTION RECOVERY WITH COHERENT WAVEBURST

Subtracting glitches results in a new strain data w hich is expected to contain sm aller
energy due to the presence of glitches, leading to better detectability of astrophysical
signals. One way of exam ining the robustness of our glitch-subtraction m ethod is to add
softw are-sim ulated signals w ith known astrophysical param eters into the strain data before

subtraction and use G W detection pipelines to recover the injected signals. In this process,
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Figure 10. The m STFT of a down-sampled strain data at 2048 H z with a high-pass fil-
ter at 10 Hz (top-left), the netw ork estim ated m STFT (top-right), and the m STFT of the
strain data after glitch subtraction (top-left) in the least testing sample of EXtremer IOUd
glitches. In the bottom -right panel, the gray (blue/green/red) curves denote the origi-
nal (estim ated/estim ated-m atched/subtracted) w hitened time series, where the estim ated -
m atched tim e series is created after the am plitude and phase corrections w ith the leastsquare
fitting w ithin divided segments shown as the gray bands. The overlap between m STFT of

the extracted glitch waveform and the estimated m STFT s O = 0.17 and FNR = 0.

we can assess w hether the glitch subtraction technigue reduces only the targeted glitches
w ithout m anipulating the m easured astrophysical signals. W e use our glitch-subtraction
m ethod after injecting a signal in coincidence w ith a glitch.

The presence of glitches adversely affects the unm odeled G W signal searches that
do notrely on known waveforms in priori. In O 3a, the percentages of the single-detector
observing time rem oved by the data-quality vetoes for the unm odeled searches are greater

than the percentages form odeled searches by a factor of ~ 2.7 and ~ 7.9 forthe H1l-detector
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and L1-detector, respectively (Abbott e al., 2021). Therefore, it is more beneficial to apply
glitch-subtraction techniques for unmodeled searches. We use cWB to recover injections
before and after subtraction and compare these recovered signals as well as the recovered
signal injected in a simulated colored Gaussian noise with the PSD of the .1 data when the
glitch subtraction is applied.

To account for the performance of our glitch subtraction operated on only the L1
data, we create a simulated colored Gaussian noise for the H1 data with the same sensitivity
as the L1 data and inject signals both in the L1 and H1 detectors where the signal coincides
with a glitch in the L1 data. The ranking statistic p of cWB accounts for the correlation of a
signal injected on the two-detector data so that higher-ranking statistics for a given injection
imply that the recovered signal in the L1 data is more similar to the signal in the H1 data,
indicating successful glitch subtraction and a better detectability.

3.3.1. Gaussian-modulated Sinusoid Injections. Following studies of unmodeled
GW signal searches (Abadie er al., 2012a,b; Abbott er al., 2008, 2010; Adrian-Martinez
etal.,2013; Was et al., 2012), we inject a circularly polarized Gaussian-modulated sinusoid

signal:

hi(t)] A lcos{2nfc(t —19)} 27 fo(t — 1p)
ol =3l Joo|- 5] ©

I d [sin{2nfelt — t0)) 207
where f; is the central frequency, #g is the center time, d is the distance to the source, A is
an arbitrary amplitude scaling factor, Q determines the length of the signal.

Motivated by studies (Abadie er al., 2012a,b; Abbott et al., 2008, 2010; Adrian-
Martinez et al., 2013; Was et al., 2012) that use f. = 150 Hz, we also choose f. = 150 Hz.
To validate the glitch subtraction technique successfully subtract glitches in the presence of
signals with duration compatible glitches, we choose O = 30, where the injected signal lasts
~ 1.5 seconds which is compatible with the duration of Scattered light glitches. In addition
to the above motivation, we consider signals similar to the first detection of IMBBH (Abbott

et al., 2020a), where the detected signal has a peak frequency of ~ 50 Hz and ~ 3 wave
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cycles. The improvement in the IMBBH detection by subtracting glitches might be useful to
understand the mechanism of astrophysical populations (Abbott et al., 2020b). Therefore,
we choose f. = 50 Hz and = 5 for the second choice.

Using the two representative signal waveforms with different sets of parameters:
Je =50Hz,Q =5and f, = 150Hz, Q = 30, and choosing the injected SNRs to be uniformly
sampled from a set of SNRs, the source direction to be isotropically sampled in the sky,
the injected time to be uniformly sampled in a given time window, we examine the pipeline
performance on the testing samples with an optimal set of values of FNR = 0.84,0 = 0.92
(shown in Figure 3) and a median value of FNR = 0.58,0 = 0.65 (shown in Figure 4)
for Scattered light glitches as well as an optimal set of values of FNR = 0.87,0 = 0.93
(shown in Figure 8) and a median value of FNR = 0.33,0 = 0.86 (shown in Figure 9)
for Extremely loud glitches. To assess the effect of the injection time on the pipeline
performance, we consider two different injection-time windows: the subtracted portion in
the testing-sample data or the full length of the testing-sample data. Because we apply the
glitch subtraction in the partial data with excess power detected from the estimated glitch
waveform and keep the original data for the rest of the data portion, we inject signals in the
subtracted portion to study if our technique can subtract glitches that are overlapping with
signals. We also consider the full length of the testing-sample data as the injection-time
window because subtracting glitches may affect detections of signals near to glitches but
not overlapping with them. The injection times are uniformly sampled in the full window
of 0.4-7.6 and 0.1-1.8 seconds, and the partial window of 0.1-1.8 (3.5-5.4) and 1.65-1.75
(1.65-1.75) seconds for the optimal (median) case of the Scattered light and Extremely
loud glitches, respectively, with a time step of 5% of the window length. We use sets
of injected SNRs of {2,4,8,16,30,50,100} and {2,4,8, 16,30, 50, 100,200, 300,400, 500}
Scattered-light and Extremely-loud glitch sets, respectively, where larger injected SNRs are

chosen for Extremely-loud glitch set to assess the cWB detection performance for injections



101

overlapping with glitches with high excess power. We inject 500 (250) waveforms with
either high or low f. in the full (partial) injection-time window for each testing sample in
each glitch class such that we have 16 injection-test sets.

Figure 11 shows the enhancement of p after glitch subtraction for Gaussian-modulated
sinusoidal injections. With the typical setting in cWB, only a signal with a ranking statistic
greater than 6 is reported. We set the statistic for those missed signals to be 6 to quantify
the enhancement due to subtraction. The percentages of injections with values of p after
glitch subtraction greater or equal to the corresponding values before glitch subtraction
ranges from 67% (obtained from the set with high-frequency signals injected in the full
window of the optimal testing samples of Scattered light) to 100% (obtained from the set
with high-frequency signals injected in the partial window of the optimal testing sample of
Extremely loud glitches). Similarly, values the enhancement {p,/py), where p, and py are
p obtained from the data after and before the glitch subtraction, respectively, averaged over
injections range from 1.2 (obtained from the set with high-frequency signals injected in the
full window of the optimal testing samples of Scattered light) to 3.5 (obtained from the set
with high-frequency signals injected in the partial window of the optimal testing sample of
Extremely loud glitches).

Removing glitches with their characteristic frequencies close to that of signals
typically improves values of p effectively because cWB reconstructs signals more effectively.
Because Scattered light glitches have the largest power at a frequency of ~ 30 Hz, the p
enhancements for the low-frequency injection sets are larger than the enhancement for the
high-frequency injection sets by a factor of up to ~ 1.3. Similarly, Extremely loud glitches
have a peak frequency of ~ 110 Hz (see details in Sec. 1.3) so that values of the enhancement
for the high-frequency injection sets are greater than values for the low-frequency injection

sets by a factor of up to ~ 1.8.
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Higher values FNR indicate larger reductions of excess power due to glitches. Hence,
values of p obtained from the optimal testing samples are larger than values obtained from
the median samples. The p enhancements in optimal-sample sets are greater than the
median-sample sets by a factor ~ 1.15 ~ 1.23 (~ 1.5 ~ 1.7) and ~ 1.8 ~ 2.2 (~ 1.7 ~ 2.3)
for the full (partial) injected window for Scattered light and Extremely loud glitches. Because
Extremely loud glitches typically have extremely loud SNR ~ 1500 while Scattered glitch
glitches have SNR ~ 17 (see more details in Sec. 1.3), subtracting Extremely loud glitches
improves p more than subtracting Scattered light glitches. Also, the partial injection-
window sets, where signals are overlapping with glitches tend to correspond to larger p
enhancements than the full injection-window sets. Values of p are typically improved after
glitch subtraction for the majority of injections near to glitches but not overlapping with them
because the incoherent energy between detectors is reduced and the cWB obtains higher
correlations of signals between detectors. Table. 1 shows values of the p enhancement and
percentages of injection with non-reduced p after glitch subtraction for all sets.

Injections with reduced p after glitch subtraction are mainly due to 1) the least
square fitting process operated between estimated glitch waveforms and the data, or 2)
the cWB reconstruct process. The first reason is typically observed when the amplitude
of signals is significantly large so that the least-square fitting method dominantly reduces
the difference between a signal and an estimated glitch waveform in these cases. Hence,
the signal energy is reduced. for example, these cases are observed when signals with
high values of p obtained from the no-glitch data are injected at the center of glitches.
Figure 12 shows an example failure case due to this reason: when an injected signal has
larger or comparable to the amplitude of the overlapping glitch, the least square fitting
method dominantly minimizes the difference between the estimated glitch waveform and
the injection. The second reason is observed when the amplitude of the remaining glitches
after subtraction is comparable to the amplitude of the nearby non-overlapping injected

signals so that cWB reconstructs the sum of the remaining glitch and the true signal as a
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Figure 11. Enhancements of p after glitch subtraction for G aussian-modulated sinusoidal
injections. The panels show enhancements of p for high-frequency (1-2th columnns) and
low -frequency (3-4th columnns) G aussian-modulated sinusoidal waveform s injected in the
full (1,3th columnns) and partial (2,4th columns) windows of the optimal (1,3th rows) and
median (2,4th rows) testing sam ples ofscattered“ght(l-Zlh row s) and EXtremer IOUd(Z-Alh

rows) glitches, respectively.

signal and the correlation of signals betw een detectors becomes smaller. The second reason
can be seen in 0-1 seconds in the panels in the 3rd-1,3th columns in Figure 11, w here the
original data w ithout subtraction is used (see Figures 9 and 8 for the subtracted portions.)
Figure 13 shows an example of unsuccessful cW B reconstruction for an injection nearby
the rem aining glitch after subtraction. In this case, the original data w ith injections is used
around the injection time because no excess poweris detected atthe time ofinjections from
the estim ated glitch waveform . However, cW B reconstructs the injection differently before
and after glitch subtraction. Before glitch subtraction, the ¢cW B reconstruction process
does not use the time portion containing the glitch because the am plitude of the glitch is

not com patible with the signal am plitude. A fter glitch subtraction, the cW B used the data
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portion containing the rem aining glitch w hose am plitude is com patible w ith the am plitude
ofthe injection. As aresult, the cW B network correlation coefficientin Equation (1.128) is

reduced to 0.65 from 0.99 after glitch subtraction, leading to pa/pb = 0.36.

Figure 12. Successful glitch subtraction for a low -frequency (fC = 50 Hz and Q = 5)
G aussian modulated sinusoidal injection w ith SN R of 50 (left) and failure subtraction for

the same injection with SN R of 200 (right) in the optim al testing sam ple ofEXtremely IOUd

glitches.
Figure 13. Successful cW B reconstruction for a high-frequency (fC: 150 Hz and Q = 30)
G aussian modulated sinusoidal injection before glitch subtraction (left) and unsuccessful

cW B reconstruction after glitch subtraction due to the nearby rem aining glitch (right) in the
optim al testing sam ple of EXtremEIy loud glitches. The cW B correlation coefficients are
0.99 and 0.65 for the reconstructed signals before and after glitch subtraction, respectively.
The ratio of p after and before subtraction is pa/pb = 0.36. Note thatthe time scales in the
left and rightpanels are different due to the cW B autom ated reconstruction process, where

the glitch is outside of the reconstruction time window before glitch subtraction.
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More accurate signal reconstructions or higher values of the network correlation
coeflicient produce better estimates of the source direction. To assess the accuracy of
the cWB source-direction estimates, we calculate the overlap of sky maps obtained with
the no-glitch data and sky maps obtained with pre-subtracted data, where the sky map is
provided as the probability distribution over pixelized solid angles and the sky-map overlap
is calculated by taking the inner product between two sky maps similar to Equation (4).
Also, we calculate the overlap of sky maps obtained with the no-glitch data and sky maps
obtained with the post-subtracted data. For injection missed by cWB with no reported sky
maps, we set sky maps to be uniform probability distributions over solid angles according
to the maximum entropy principle (Ratnaparkhi, 1996; Reynar and Ratnaparkhi, 1997) for
the least amount of knowledge about the source direction. We count percentages Pgy of
injections with the sky-map overlap of the no-glitch-post-subtraction data greater or equal to
the sky-map overlap of the no-glitch-pre-subtracted data. Values of Py greater 50% imply
that estimates of the source direction become more accurate after glitch subtraction and
Pyy 50% indicates that source-direction estimates are compatible before and after glitch
subtraction.

Figure 14 shows ratios of sky-map overlaps between the no-glitch data and the
post-subtracted data to sky-map overlaps with the former and the post-subtracted data for
Gaussian modulated sinusoidal injections. Values of Pgy range from 60% (obtained with
the set with high-frequency injections in the full window of the optimal testing sample of
Scattered light glitches) to 94% (obtained with the set with high-frequency injections in the
partial window of the optimal testing sample of Extremely loud glitches). Because better
signal reconstructions correspond to more accurate source-direction estimates, Values of
Pyiy with optimal-testing-sample sets are greater than values with median-testing-sample
sets by a factor of ~ 0.86 ~ 1.2 (~ 1.01 ~ 1.1) for Scattered light and Extremely loud
glitches. The exceptional sets with high-frequency injections in the full window for Scattered

light glitches have Pgy = 60% for the optimal-testing-sample set and Pgy = 69% for the
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median-testing-sample set, respectively. However, they are compatible. 90% of injections
in the above two exceptional sets have the ratio of the sky-map overlap of the no-glitch-
post-subtracted data to the sky-map overlap of the no-glitch-pre-subtracted data in 0.93-
2.3 (0.94-1.2) for the optimal (median)-testing sample set because the central frequency
Jo = 150 Hz is distinctively different from the peak frequency (~ 30 Hz) of Scattered light
glitches. We find that the maximum value of the ratio of the sky-map overlaps to be 150
and 4.5 for the above optimal and median-testing-sample sets, respectively. Values of Pgy
obtained with the low (high)-frequency sets are greater than values obtained with high (low)-
frequency sets for Scattered light (Extremely loud) glitches by a factor of ~ 1.08 ~ 1.35
(~ 1.01 ~ 1.1) because removing glitches with their characteristic frequencies compatible
with central frequencies of injections improve the cWB reconstructions more effectively.
Table. 1 shows percentages of injection with the non-reduced ratio of sky-map overlaps
after glitch subtraction for all sets.

To assess the accuracy of the cWB estimated central frequency - across all injec-

tions, we calculate the normalized residual:

A

Je—Je
Je

Afe = ; (7

where f. is the injected central frequency. To quantify the similarity between two dis-
tributions, we calculate the two-sided KS statistic Spp, (Massey, 1951) between values of
Af. obtained with the no-glitch data and the data before glitch subtraction as well as the
KS statistic Sy, between values of Af. obtained with the former and the data after glitch
subtraction. KS statistics are bounded between O and 1 and smaller values indicate two
distributions are more similar. Values of the ratio RII}E := Snb/Sna greater 1 imply that the
cWB estimated values of 7. in the post-subtracted data are more similar to corresponding

values in the no-glitch data than the pre-subtracted data while smaller values indicate the
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Figure 14. R atio of sky-map overlaps for G aussian-modulated sinusoidal injections. The

panels show ratios ofthe sky-m ap overlap betw een the no-glitch data and the post-subtracted
data to the sky-map overlap with the former and the post-subtracted data, as a function of
the injection time for high-frequency (l-2th columns) and low -frequency (3-4th colum ns)
G aussian-m odulated sinusoidal waveform s injected in the full (1,3th columnns) and partial

(2,4th columns) windows ofthe optim al (1,3throws) and median (2,4throws) testing sam ples

of Scattered Iight(l-Zlh rows) and Eth’eme|y |Oud(z-4m rows) glitches, respectively.

cW B estim ates in the post-subtracted data are less accurate than the pre-subtracted data.
RJjh ~ 1 im plies that the glitch-subtraction technique does not produce unintended effects
on the data for the estim ates of the central frequency.

Figure 15 shows distributions ofAfCobtainedwith the no-glitch, the pre- and post-
subtracted data. V alues of RJjh range from 0.41 (obtained from the set w ith low -frequency
injections in the full window of the optimal testing sam ple of EXtremer |0Ud glitches)
to 4.47 (obtained from the set with high-frequency injections in the partial window of
the optimal testing sam ple of Scattered Iightglilches). W hen injections are overlapping
w ith the rem aining EXtI’eme|y loud glitch after subtraction or the c¢cW B reconstructs the

sum of the injection and near non-overlapping glitches as a signal, the estim ated central
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frequency f- deviates from the injected value f.. For example, the set with the lowest
R™ = (.41 has 9.6% of injections have values of Af, = 0.28-0.91 from the injected
value f. = 50 Hz (corresponding to f. = 64-95 Hz) for the post-subtracted data and no
injection above f. = 64 Hz for the pre-subtracted data. For the set with the highest value
R = 4,47, distribution of Af, in the post-subtracted data differ from the distribution in
the pre-subtracted data and compatible to the distribution in the no-glitch data (see the 1%
row-2" column in Figure 15). Values of R™ for the low (high)-frequency injection sets are
greater than values for the high (low)-frequency injection sets by a factor of ~ 1.04 ~ 1.68
(~ 0.95 ~ 2.4) because subtracting glitches with their characteristic frequency compatible
with signal frequency improves the cWB reconstruction accuracy. For high-frequency
injection sets, values of R™ obtained with optimal-testing-sample sets are greater than
values obtained with corresponding median-testing-sample set by a factor ~ 1.04 — 2.8
across the two glitch classes. For low-frequency injection sets, values of R obtained with
median-testing-sample sets are greater than values obtained with optimal-testing-sample
sets by a factor of ~ 1.05 ~ 2.43 because of the contribution of high-frequency nearby
remaining glitches to the cWB signal reconstruction, mentioned above for the set with the
lowest value R™® = (0.41. Table 2 shows percentages of found injections and values of R,

3.3.2. Binary Black Hole Injections. In addition to tests with Gaussian-modulated
sinusoid signals in Sec. 3.3.1, we also assess the performance of the cWB-signal recovery
by injecting non-spinning IMRpHENOMD BBH merger waveforms (Khan er al., 2016).
Following the choice of injection parameters used in Ormiston et al. (2020), we choose
the component masses to be uniformly distributed in [26, 64] M with a constraint of
the primary-mass m; to the secondary-mass mj ratio in [0.125,1], the source direction
and binary orientation to be isotropically distributed, and the coalescence phase and the

polarization angle to be uniformly distributed in [0,27] and [0, 7], respectively. We choose
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Residual central frequency

Figure 15. D istributions of the residual central frequency for G aussian-modulated sinu-
soidal injections. The panels show distributions of the residual central frequency Afoor
high-frequency (l-2thcolumns) and low -frequency (3-4thcolumnns) G aussian-modulated si-
nusoidal waveform s injected in the full (1,3th columnns) and partial (2,4thcolumns) windows
of the optimal (1,3th rows) and m edian (2,4th rows) testing sam ples ofscatteredlight(l-Zlh
rows) and EXtreme|y IOUd(Z-Alh rows) glitches, respectively.

the injected SNR sampled from a set of SN Rs used in Sec. 3.3.1 and the injection tim e
sam pled in the full length of the testing sam ple data. W e have 500 BB H injections for each
set so that we have 4 BB H sets.

Figure 16 shows the p enhancementfor BBH injections. Percentages Ppofinjeclions
w ith non-reduced p after glitch subtraction range from 76% (obtained w ith the median-
testing-sam ple ofScatteredlightglitches)to 91% > (obtained w ith the optim al-testing-sam ple
of Scattered Iightglitches). V alues of the enhancement (pa/pb) averaged over injections
range from 1.2 (obtained w ith the median testing sam ple of Scattered Iightglitches) to
2.7 (obtained w ith the optim al testing sam ple of Eth’eme|y |0Ud glitches). Subtracting

significant energy due to glitches improves the ¢cW B reconstruction so that values of the

enhancementin EXtreme|y-|OUd sets are greater than values in Scattered'llghtsets by a factor
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of 1.25 and 1.8 for the optimal and median testing sample, respectively. In Scattered-light
(Extremely-loud) sets, the value of the enhancement for the optimal test set is greater than
the value of the median testing set by a factor of 1.25 (1.8). Table. 1 shows values the p

enhancement and Pp for BBH injection sets.

I~

150

400
300

200

wg o

100

Figure 16. Enhancements of p after glitch subtraction as a function of the injection time
for BBH waveforms injected in the optimal (left) and median testing (right) samples of
Scattered light (top) and Extremely loud (bottom) glitches, respectively.

Similar to Psky for Gaussian modulated sinusoidal injections, we compute Psky for
BBH injection set. Figure 17 shows ratios of sky-map overlaps between the no-glitch data
and the post-subtracted data to sky-map overlaps with the former and the post-subtracted
data for BBH injections. Values of Psky range from 73% (obtained with the median testing

sample of Scattered light glitches) to 80% (obtained with the optimal testing sample of



EXtI’eme|y Ioudglitches). V alues of Psky in the optim al testing set are greater than values in
the median testing sam ple set for Scattered Iightand EXtremer'Ioudglitches by a factor of

1.06 and 1.14, respectively. Table. 1 shows values of Psiky for BB H injection sets.

(0]
2
Time [si
-2
Time [si
Figure 17. R atio of sky-map overlaps for BB H injections. The panels show ratios of the

sky-map overlap obtained w ith the no-glitch data and the pre-subtracted data to the sky-m ap
overlap obtained w ith the form er and the post-subtracted data as a function of the injection

time for BBH waveform s injected in the optim al (left) and m edian testing (right) sam ples
of Scattered Ilght(lop) and Eth’eme|y Ioudglitches, respectively. The first and second texts

in labels in the legend denote that injections in the pre-subtracted and post-subtracted data

are found or missed, respectively.

To assess the accuracy of the ¢cW B estimated chirp mass across all injections, we

calculate the norm alized residual:

AM (8
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where M and M = (mim2)¥5/(m1 + m)'/® are the c¢WB estimated and injected chirp
mass, respectively. Similar to the procedure in the previous section, we calculate the two-
sided KS statistic Sy, (Massey, 1951) between AM obtained with the no-glitch data and
the pre-subtracted data as well as the KS statistic Spa obtained with the former and the
post-subtracted data. We calculate values of the ratio Rﬁf := Snb/Sna-

Figure 18 shows distributions of AM obtained with the no-glitch, the pre- and
post-subtracted data in the optimal testing sample sets. The distributions in the optimal
testing sample sets are comparable with distributions in the median testing sample sets. As
shown in Table 2, values of R range from 0.96 (obtained from the median testing sample
of Extremely loud glitches) to 3.26 (obtained from the median testing sample of Scattered
light glitches) as shown in Table 2. Values of R are close to or greater than 1, indicating
the glitch subtraction technique produces no unintended effect on cWB estimates for the
chirp mass or improves the estimates. As shown in Figure 19, §,, and S, are compatible
for BBH sets so that the distribution of AM in the post and pre-subtracted data are similar.
Values of Spa and Spp for BBH sets are typically smaller than values for Gaussian modulated
sinusoidal sets because BBH waveforms distinctively differ from glitch waveforms and
cWB reconstructs BBH injections more effectively than the Gaussian modulated sinusoidal
injections.

3.3.3. False Alarm Rate. The confidence of a GW signal candidate is quantified
by the FAR, or the rate of terrestrial noise events with their ranking statistics (e.g., p in
c¢WB) equal or higher than the ranking statistic of an astrophysical candidate event. Lower
values of FAR indicate that GW signal candidates are astrophysical in their origin with
higher confidence. Similarly, higher values of the inverse FAR (iFAR) correspond to higher
confidence. The glitch subtraction technique might reduce values p of the noise events and

increase values of p for GW signal candidates when they near or overlap with glitches.
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Figure 18. Residual of chirp mass estim ated by c¢cW B in the optim al testing sample of

Scattered Iight(top) and EXtremer IOUd (bottom ) glitches. The dashed lines in the left
panels denote the same value ofresidual chirp mass before and after glitch subtraction. The

dashed lines in the right panels denote the injected values.

To assess the effect of the glitch subtraction technique on the FA R ofinjections used
in the previous section, we use isolated sam ples in the testing sets with sam ple sizes of 237
and 156 for Scattered Iightand EXtremer IOUd glitches from January 7th, 2020 3:00 UTGC
to February 2rd, 2020 03:55 UTC and January 15th, 2020 17:44 UTC to February 3rd, 2020
23:55 UTC, respectively. Because the testing sets used in the previous section have segment
overlaps to account for statistical errors w ith larger sam ple sizes, we use the isolated testing
sam ples from the sets to avoid double subtraction. W e use the data containing the above

testing sam ples during the detectors are observing, corresponding to the 20.4- and 20.5-day
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Table 1. Enhancements of the ¢cW B ranking statistic (pa/pb), i.e., ratios of the c¢cW B
ranking statistic pa after and pb before glitch subtraction averaged over injections, as w ell
as percentages Ppofinjections w ith non-reduced ranking statistics and percentages P sky of
non-reduced sky-map overlaps after glitch subtraction. The sky-map overlaps are calculated
betw een sky maps obtained w ith the sim ulated colored G aussian data and either of the data
before or after glitch subtraction. V alues of p are set to be 6 for injections missed. The

sky-localization estim ate is set to be uniform ly distributed in solid angles.

Testing Full window Partial window

G litch class Injection
sam ple
(palphb) Pp P sky (pal/pb) P p P sky

Scattered
light

Extremely
loud
data from the L1 and H1 detectors, respectively. The percentages of the total duration of

the isolated testing samples are 0.07 % and 0.026% of 20.4 days for Scattered Iightand
EXtremer IOUd glitches, respectively.

Using the L1 data before glitch subtraction w ith the original H1 data and applying
tim e shifts to the L1 data, we get the backgroundlrigger set, w here time shits are applied
to get triggers representing the noise events coincident between detectors by chance and
enlarge the analysis time. Similarly, we also use the L1 data after glitch subtraction w ith

the original H1 data to get another background trigger set. W ith time shift applied to the
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03

Figure 19. KS statistic obtained w ith the no-glitch data and the data before glitch subtraction
VS. KS statistic obtained w ith the form er and the data after glitch subtraction. The points
denote K S statistics for residual peak frequency or chirp mass estim ated by cW B in the
cases ofhigh-frequency (circle marker), low -frequency (cross marker) G aussian-modulated
sinusoidal waveforms and BBH waveforms (starmarker) injected in the full (slashed hatch)

and partial window (dotted hatch) in the optim al (cyan face color) and m edian (w hite face
color) testing sam ple of Scattered Iight(black edge color) and EXtremer IOUd (red edge

color) glitches, respectively.

L1 data, we obtain 21.2-year equivalent background triggers both before and after glitch-
subtracted data. B oth trigger sets have the maximum values of p = 53.8 and the lowest
FAR of 1.5 x 10-9 Hz (corresponding to iFAR of 21.2 years).

Figure 20 shows the FAR ofbackground triggers before and after glitch subtraction.
W e find thatthe FA R is typically reduced in the interval from p ~ 7 top ~ 12. The reduced
FAR in this intervalcan be explained by the reduction ofp in the subtracted partofthe data.

Figure 21 shows background triggers w ithin the interval of the subtracted data portions.

The distribution of these triggers is due to the quality ofthe L1 data. The average values of

p are reduced by 13.2% and 1.9% for Scattered“ghtand EXtremer IOUngitches. Because
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Table 2. Percentages (Pn/P b/Pa) of found injections in the (no-glitch data/data before
subtraction/data after subtraction), as well as ratios := Snb/Sna of the K S statistic Snb
obtained w ith the no-glitch data and the data before glitch subtraction to the statistic Sna
obtained w ith the form er and the data after glitch subtraction for residual peak frequency

and chirp mass.

Testing Full window Partial window
G litch class Injection
sam ple nb
(Pn/Pb/Pa) R b (Pn/Pb/Pa) R

Scattered
light

Extremely
loud

Scattered Iightglitches are typically subtracted w ith our technigue m ore effectively than
EXtremer IOUd glitches, the form er has higher percentages than the latter. The FAR is
increased in the interval from p ~ 12 to p ~ 23 in the glitch subtracted data because of
tw o triggers with p = 18.2 and p = 17.5. However, the L1 times of these tw o triggers are
not w ithin the subtracted data portions so that it seem s to be due to a realization of cW B
trigger-generation process.

Using these two background sets, we first evaluate injections that are not nearby

and overlap with glitches. Because we have created the no-glitch data sets in the previous

section w ith the colored G aussian noise using the PSD of the real L1 data at the time of
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injections, we can consider injections in the no-glitch data to be those not nearby and overlap
with glitches. As a lower limit, we set iFARs of injections with p greater than 53.8 to be
iFAR = 21.2 years, which is the maximum length of our background.

Across high- and low frequency, and BBH injections, we find that ~ 90% of
injections in the no-glitch data have non-reduced iFARs after glitch subtraction. The iFARs
after glitch subtraction is greater than the iFARs before glitch subtraction by a factor of
~ 1.02 on average over injections because of the reduction of p in the background.

As mentioned above, the glitch subtraction technique may increase the p of injections
near to or overlapping with glitches, causing higher iFARs. Figures 22 and 23 show
iFAR distributions before and after glitch subtraction using corresponding backgrounds
for Gaussian modulated sinusoidal and BBH injections, respectively. Percentages P;b of
injections with non-reduced iFAR after glitch subtraction range from 88% (obtained from
the set with the high-frequency injections in the full window of the median testing sample
of Scattered light glitches) to 100% (obtained from the set with high-frequency injections
in the partial window of the optimal testing sample of Extremely loud glitches). The sets
with the lowest and highest values of P;b respectively correspond to the sets with the lowest
and highest values P, because the increases in p for injections correspond to the increases
in iFAR.

The ratio (Rap) of iFAR values after glitch subtraction to iFAR values before glitch
subtraction averaged over injections range from 1.03 (obtained from the set with high-
frequency injections in the full window of the optimal testing sample of Scattered light
glitches) to 1400 (obtained with high-frequency injections in the partial window of the
optimal testing sample of Extremely loud glitches). Because high increases in p of injections
correspond to higher increases in iFAR, values of (R,,) for sets with the optimal testing
sample typically are greater than values for sets with the median testing sample by a factor
of ~ 0.7 ~ 150 and ~ 2.1 ~ 4.3 for Scattered light and Extremely loud glitches. The sets

with high-frequency injections in the full window for Scattered light glitches corresponding
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to the lowest factor of ~ 0.7 have comparable values of (Rap) = 1.3 and (Rap) = 1.9 for the
optimal- and median-testing-sample sets. Subtracting glitches with their peak frequencies
close to the characteristic frequencies of injections lets c(WB obtain higher values of p.
Therefore, values of (Rap) for sets with (low/high)-frequency injections are greater than
values of (R,p) for sets with (high/low) frequency injections by a factor of (~ 3.1 ~ 74
I~ 1.2 ~2.5) for (Scattered light/Extremely loud) glitches.

Weak signals (so-called sub-threshold triggers) near or overlapping with glitches that
are missed by cWB or are not confident enough to be classified as astrophysical signals can
gain sufficient confidence after glitch subtraction. If we assume an iFAR threshold for weak
signals to be a month, percentages P, of injections with iFAR above a month after glitch
subtraction out of injections with iFAR below a month before glitch subtraction range from
1% (obtained from the set with high-frequency injections in the full window of the optimal
testing sample of Scattered light glitches) to 57% (obtained with the set with low-frequency
injections in the partial window of the optimal testing sample of Scattered light glitches). For
Scattered light glitches, sets with low-frequency injections have values of PL ~ 40 ~ 57%
and sets with high-frequency and BBH injections have values of Pi, ~ 1 ~ 4%, where
values for the optimal and median-testing-sample sets are compatible. For Extremely loud
glitches, sets with the optima-testing sample have values of PL, ~ 20 — 44% and sets with
the median-testing-sample have values of Pi, ~ 5 — 18%, where values for high-frequency
sets are greater than values for the low-frequency sets by a factor of ~ 0.7 ~ 1.8. Table 3

shows values of (P! /PL/PL) and ((Rup)/ (Ry)).

4. CONCLUSION

In this paper, we have presented a new machine learning-based algorithm to subtract
glitches using a set of auxiliary channels. Glitches are the product of short-live linear
and non-linear couplings due to interrelated sub-systems in the detector including the optic

alignment systems and mitigation systems of ground motions. Because of the character-
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L1 trigger time [day] since 2020-1-7 03:00 UTC

Figure 21. BaCkgrOUndtriggers w ithin the intervals of the subtracted data portions for the

data before (gray) and after (red) glitch subtraction for Scattered Iight(cross) and EXtremer
IOUd (circle) glitches, respectively. The dashed and solid lines denote the average values of

p for these triggers for Scattered Iightand EXtremer IOUd glitches, respectively.

istic of glitches, m odeling coupling mechanism s is typically challenging. W ithout prior
knowledge of the physical coupling mechanism s, our algorithm takes the data from the
sensors m onitoring the instrumental and environmental noise transients and then estim ates
the glitch waveform in the detector’s output, providing the glitch-subtracted data stream
Subtracting glitches im proves the quality of the data and w ill enhance the detectability of
astrophysical GW signals.

Using two classes of glitches w ith distinct noise couplings in the aLIG O data, we
find that our algorithm successfully reduces the SNR of the data due to the presence of
glitches by 10 - 70% . Subtracting glitches from the data enhances the cW B ranking statistic
by a factor of ~ 1.03 ~ 3.5 and ~ 1.2 ~ 2.7 averaged over G aussian modulated sinusoidal
injections and B B H injections, respectively. W e find that the source-direction, central
frequency and chirp mass estim ated by c¢cW B after glitch subtraction are com parable or
m ore accurate than thatbefore glitch subtraction. The iFAR ofinjections in the data portion

in the absence of glitches is increased by ~ 1.02 by subtracting glitches in ~ 0.1% of the
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Figure 22. D istributions of the iFAR for G aussian-modulated sinusoidal injections.

The panels show distributions of the iFAR for high-frequency (1-2th columnns) and low -
frequency (3-4th columnns) G aussian-modulated sinusoidal waveform s injected in the full
(1,3th colum ns) and partial (2,4th columns) windows ofthe optimal (1,3throws) and m edian
(2,4th rows) testing sam ples of Scattered Iight(l-zth rows) and EXtremer IOUd (2-4th rows)
glitches, respectively. The color scale denotes the ratio of the iFAR of injections in the no -
glitch data evaluated w ith the background p distribution obtained w ith the post-subtracted
data to that obtained w ith the pre-subtracted data. The shaded area denotes the iFAR less

than 1 m onth.

20.4-day data from the L1 detector. W e find that injections near to or overlapping with
glitches typically have significantenhancem ents w ith glitch subtraction. The iFAR ofthose
injections is increased by a factor ~ 1.3 ~ 1400.

In this paper, we focus on the two classes of glitches and apply the glitch subtraction
technigue to only ~ 0.1% of the L1 data so that we find no significant reduction of p in
the background. Creating the CN N network models for other glitch classes and subtract
a higher number of glitches both in the L1 and H1 could provide the statistically robust

measure of the effect of the glitch subtraction technique on the data.
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iFAR in the pre-subtracted data [year]

Figure 23. D istributions of iFA R for BB H injections. The panels show distributions of
iFAR of BBH injections in the full window of the optimal (1/3th columns) and m edian
(2/4th colum ns) testing sam ple of (Scattered I|ght/EXtreme|y IOUd) glitches, respectively.
The color scale denotes the ratio of the iFA R of injections in the no-glitch data evaluated
w ith the background p distribution obtained w ith the post-subtracted data to that obtained

w ith the pre-subtracted data. The shaded area denotes the iFA R less than 1 m onth.

Currently, the LI1G O -V irgo collaboration vetoes glitch classes focused on this paper
and other glitch classes w ith w itness channels. For example, over the course of the 20 .4-
day data from the L1 data, -~ 15000 glitches with SN R above 7.5 in the two classes are
present and have a total period of ~ 1.8% (so-called deadtimE), which would be vetoed.
By accounting for the deadtime and injections rem oved by the veto, the com parison of
the VOIUme'time integrals D avis et al. (2019) betw een the vetoing method and the glitch
subtraction technique allows us to find a better approach.

W e find that using the spectrograms of the data as the input for the netw ork is
more successful than using time series as the input. However, it might improve the glitch
subtraction efficiency by using the FG L transform ation as well as the am plitude and phase
corrections w ithin the loss function to train the netw ork. Im proved glitch subtraction
would allow us to detect astrophysical signals w ith higher confidence and brings us a better

understanding of the physics in the universe.
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SECTION

4. AN ARTIFICIAL NEURAL NETWORK-BASED DENOISING ENGINE FOR
GRAVITATIONAL-WAVE SIGNALS FROM COMPACT BINARY
COALESCENCE

In the previous chapter, we have discussed a machine learning-based method for
subtracting glitches that are witnessed with a set of auxiliary channels which are not coupled
with any astrophysical signals. Because only glitches that are coupled with excess power
witnessed by those channels can be subtracted, our method presented in the previous chapter
can be applied to glitches overlapping with astrophysical GW signals without introducing
unintended changes on the observed GW-signal waveform in principle. The above method
can be applied to both modeled and unmodeled GW signals. Subtracting glitches can
improve the detectability of GW signals as well as provide a better estimate of source
parameters. The trade-off of this method is that it is not able to subtract glitches with
no witness channels. For example, one class of short-lived glitches called blip glitches is
adversely affecting GW searches. To remove these glitches, we focus on modeled signals,
in particular, produced from CBCs in this chapter. CBC signals are well modeled with
theoretical waveforms. Mogushi ef al. (2021) employ a machine learning-based algorithm
to remove glitches coincident with a CBC signal and discuss the efficiency in reconstructing
time series and the effect on the sky localization error region of the sources. The content of
this chapter is closely based on Mogushi er al. (2021). The NNETFIX code can be found
in https://gitlab.com/RQJ/nnetfix) with the MIT license without restriction about

the rights to use, copy, modify, merge, publish and distribute it.
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4.1. BACKGROUND

As mentioned in the previous chapter, LIGO-Virgo detected about 50 confident
events of GW signals (Abbott ef al., 2019d, 2021b). Among these events, the first detection
of a GW signal from a BNS merger on August 17th, 2017, GW170817, broadened multi-
messenger astronomy by including GW observations Abbott et al. (2017¢). Approximately
1.7 seconds after the BNS signal ended, a short gamma-ray burst (GRB) was detected
(Abbott et al., 2017d). The sky maps of GW170817 and the GRB were used to verify their
association with high confidence (Abbott er al., 2017c.d). This association supports the
long-thought theory that at least a class of sources of short GRB is BNS mergers (Abbott
etal., 2017b).

As mentioned earlier, ground-based GW detectors must be extremely sensitive to
detect GW signals. As a trade-off, those detectors are exceedingly susceptible to glitches
(Abbott et al., 2019d). The presence of a glitch near a detected GW signal is likely to cause
an adverse effect on the analysis of the latter, such as an estimate of the source location in
the sky. The most remarkable instance of such an occurrence was GW170817. To mitigate
the effect of a glitch on the signal, a low-latency operation that removes the contaminated
portion of the data was applied (Abbott ez al., 2017c¢).

One of the easiest choices to remove the effect of the contaminating glitch on
the analysis is to use only the data from the non-glitch affected detector. However, this
approach tends to significantly increase the size of the sky localization error region for
the two-detector observation. When a glitch overlaps with a signal in the single detector
observation, non-glitch affected data is not available. Instead of discarding the entire data
from a detector, another technique in low-latency is so-called gating. One method of gating
is to set the data affected by the glitch to zero using a window function and smoothly joint
the gated portion and the surrounding part (Usman et al., 2016). In the case of GW170817,

gating was applied to provide a better estimate of the source sky location for EM follow-
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up observations (Pankow et al., 2018). On larger latencies, glitch m itigation techniques
including using BayeSWaVE(Cornish and Littenberg, 2015) to m odeland subtractthe glitch
can be applied (Chatziioannou etal.,ZOZI;COrnish,2021;Pankow etal.,ZO].B).

Figure 4.1 displays an example of the deleterious effect of gating data on the sky
localization errorregion obtained w ith a sim ulated BB H merger signal. The sky localization
ofthe gated data significantly alters from the sky localization ofthe full data. A fter applying
the gate, the 90% sky localization error region no longer includes the true sky position of

the injected signal.

Time from the geocentric merger time [s]

Figure 4.1. Left: W hitened tim e series ofa sim ulated BB H signalw ith two-detectornetw ork

SNR pN = 42.4 and comoponent masses (mi,m2) = (35,29) M 0 in aLIG O recolored
G aussian noise (gray curve). R ight: The 90% sky localization error regions. A 130
m illisecond-long gate is applied 30 ms before the geocentric merger time (red curve). The
vertical black-dashed line denotes the merger time in H1. The star denotes the true sky

position of the sim ulated signal.

In future observation runs, m ore sensitive detectors are expected to achieve higher

detection rates, possibly making higher chances of observing CBC signals being contam i-

nated by glitches. The inaccurate estim ate of the sky localization of CB C signals could lead
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to misidentification of potential EM counterparts. Hence, developing and implementing
accurate low-latency denoising methods could be highly advantageous to multi-messenger
astrophysics.

In the following sections, we present a machine learning-based pipeline to denoise
transient GW signals produced from CBC sources called NNETFIX (“A Neural NETwork
to ‘FIX’ GW signals coincident with short-duration glitches in detector data™) (Mogushi
et al., 2021). The output of NNETFIX can be fed into other algorithms including the
rapid sky localization pipeline BAyEsTAR (Singer and Price, 2016) and source-parameter
estimation pipelines called LALINFERENCE (LIGO Scientific Collaboration, 2018) or BiLpy
(Ashton et al., 2019). NNETFIX employs artificial neural networks (ANNSs) to interpolate
the portion of a signal that is lost due to the presence of an overlapping glitch. The ANN can
be trained using any types of CBC waveforms including those originated by BBH, BNS,
and neutron star and black hole (NSBH) signals. In the following sections, we focus on
BBH waveforms. To train the ANN, we use a template bank of simulated BBH waveforms
injected into the simulated noise data. To assess the accuracy of our algorithm, we compare
the recovered waveforms and the sky maps from the processed data to the corresponding

quantities obtained from the data before gating based on a set of statistical metrics.

4.2. ALGORITHM ARCHITECTURE AND TRAINING AND TESTING

As the implementation of the algorithm, we consider a situation where a CBC signal
is detected in at least two detectors in the GW detector network, and the part of the data in a
detector is gated to remove the presence of glitches overlapping the signal. We may rely on
external algorithms such as 1DQ (Essick ez al., 2020) and Omicron (Robinet et al., 2020)
to identify the presence of glitches.

Without loss of generality, we choose the scenario where a signal is detected with
the L1 and H1 detectors and setting the data in the H1 detector to be gated partially for our

analysis. We assume the merger time at the geometric center time of Earth is approximately
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known from the L1 data. We let s¢(¢), s4(¢), and s,(t) denote the full time series without
the glitch, the gated time series, and the NNETFIX reconstructed time series, respectively.
We define s,(¢) as the output of the NNETFIX-reconstruction function F which maps s,(¢)

to an estimate of s ¢(¢):

s:(t) = F [5,(D)] . (4.1)

The pipeline employs a type of ANN, Multi-Layered Perceptron (MLP) regressor
(Rosenblatt, 1961) in scikit-LEARN (Pedregosa et al., 2011) for the proof of concept. Other
types of machine learning algorithms such as CNN (Chatterjee et al., 2019; Ormiston
et al., 2020; Wei and Huerta, 2020) and long short-term memory recursive neural network
(Bengio et al., 1994; Hochreiter and Schmidhuber, 1997) can be used to possibly improve
results. In a MLP regressor, the array of the artificial neurons (mathematical functions) are
connected to every neuron in the preceding and/or subsequent layers. Each neuron computes
a weighted linear combination of the outputs from the preceding layer and passes through a
non-linear activation function. During the training, the weights are updated according to the
gradient of the difference (so-called /oss) between the ANN output and the corresponding
true values iteratively.

NNETFIX uses ANN of one hidden layer consisting of 200 neurons and the rectified
linear unit (ReLU) activation function (Hahnloser et al., 2000; Nair and Hinton, 2010). For
determining the weights in the ANN, we use the ADAM stochastic gradient-based optimizer
(Kingma and Ba, 2014) with a learning rate of 1073, Setting ten percent of the training data
samples aside, we validate the training process. To make the ANN map the input and the
output for the data not contained in the training data set, we terminate the training iteration
if the ANN performance plateaus with a tolerance level of 107+, The choice of the ANN
structure employed in NNETFIX is motivated by our study where we find one hidden layer
is more suitable than multiple hidden layers for our chosen objective function which the

ANN secks to optimize through training. As the function optimized by the ANN (so-called
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loss function)in this study, we choose MSE which is the average of the squared difference of
the input and output of the ANN. The number of neurons seems to not significantly affect
the values of the objective function.

As a training data set, we first create template banks of simulated non-spinning
IMRpaENOMD BBH merger waveforms (Khan er al., 2016) with varying intrinsic and
extrinsic parameters. To reduce the potential overfitting, each template bank also contains
a number of (pure) noise time series. We choose the direction of the injected signals to be
distributed isotropically in the sky. The waveform coalescence phase, polarization angle,
and cosine of the inclination angle are set to be uniformly distributed in the intervals [0,27],
[0, 7], and [—1, 1], respectively. We choose the network SNR pN (Usman et al., 2016) of
the simulated signals to be uniformly distributed in the range [11.3,42.4].

To assess the prediction accuracy of the trained ANNS for different signal lengths,
we consider three distinct template banks corresponding to low, medium, and high BBH
component masses. The BBH component masses are uniformly sampled in accordance
with a Jeffreys prior for the matched-filter detection statistic. As the mass of the BBH
merger reduces, the bank contains a larger number of waveforms to properly cover the mass
parameter space (Cokelaer, 2007; Harry et al., 2009; Manca and Vallisneri, 2010; Van
Den Broeck er al., 2009).

For each of the three distinct template banks, we create 12 training-testing sets.
First, we inject each waveform into 50 distinct realizations of recolored Gaussian noise for
Advanced LIGO (aLIGO) at design sensitivity (Abbott er al., 2020a). Second, we include
the (pure) noise time series in the data set. Third, we shuffle and split the set by 70%—30%
for training and testing, where we use 10% of the training set for the internal validation
set. Finally, we apply the 12 combinations of gate durations 77 = {50,75,130} ms and gate
end-times before the geocentric merger time 7, = {15,30,90,170} ms. The time series are
downsampled to 4096 Hz from 16384 Hz, whitened, and then high-passed by choosing a

conservative value of 25 Hz for the high-pass filter. As the gate, we choose a reversed Tukey
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window function with a taper of 0.1 s and being fixed to geocentric merger time. However,
we emphasize that the merger time observed in the H1 detector naturally shifts due to the
sky position and the polarization angle of the GW signal. For high (medium, low) mass
scenario, the primary mass m; ranges in 28-42 (15-25, 10-15) M, and the secondary mass
my ranges 23-35 (12-18, 8-12) M, the number of waveforms s is 61 (251, 348), the number
of pure noise series n, is 300 (1350, 1900), and the dimension of the set (n; X 50 + n,) is
3355, (13900, 19300) (see Table 1 in (Mogushi et al., 2021)).

After building the ANN models, we calculate the coefficient of determination R?
using the testing sets to quantify the effectiveness of the ANN prediction. For this calcula-
tion, we employ a SCIKIT-LEARN library (Pedregosa et al., 2011). The R? is defined using

the sum of squares of residuals (SSR) and the total sum of squares (TSS) as

2SR
R =1-c. (4.2)
where
n N
SSR = " [vit) = Hiw)’ , (4.32)
i=1 k=1
n N
TSS = > > Iviltr) = @), (4.3b)

i=1 k=1

where y;(tx) and $;(ty) are the gated portion of true time series and the predicted time
series at the k™ timestamp of the i sample in the testing set, ¥(f;) = 2y vi(te) is the
mean of y; over samples, and n and N denote the numbers of samples and the timestamps,
respectively. The R? ranges from —oo (inaccurate) to 1 (perfect prediction), with positive
values corresponding to some degree of accuracy. The ranges of the R? for the testing
sets are [0.773, 0.882], [0.750, 0.883], and [0.691, 0.879] for the low-mass, medium-mass,
and high-mass scenarios, respectively, and the mean values are 0.833, 0.827, and 0.814

(Mogushi et al., 2021).
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Because the R? is calculated using the time series in the gated region, we next
evaluate the effect of NNETFIX on quantities such as time-series match and sky localization
using the reconstructed time series constructed after concatenating the time series inside and
outside of the gated portion and being re-colored. The performance of NNETFIX changes
for different component masses, network SNR, and gate settings. Therefore, we construct
108 additional independent exploration sets with fixed network SNR pn = (11.3, 28.3,
42.4) and component masses of (12, 10), (20, 15), (35, 29) M, and identical combinations
of gate durations and end-times as the training+testing sets. Having each exploration set to
consist of 512 independent time series with the remaining parameters distributed as in the

training-testing sets, we account for the statistical variation as well.

4.3. PERFORMANCE IN THE TIME-DOMAIN

The effectiveness of the NNETFIX reconstruction can be evaluated using the SNRs
of the full, reconstructed, gated time series (see Mogushi ef al. (2021)).

Because the effectiveness of NNETFIX is characterized by both the amount of SNR
gained from the gated time series as well as the amount of residual SNR relative to that of
the full time series, we account for these factors. In the SNR calculation, the maximum-
likelihood method estimates a waveform by optimizing the phase, the merger time, and
the amplitude. Time series with different noise realizations result in different estimated
waveforms even for a signal with a fixed injected SNR. As a result, the calculated SNRs for
the same signal injected into different noise realizations distribute according to a standard
normal distribution because of the uncertainty of the maximum-likelihood method (Vitale
et al., 2020). When the NNETFIX reconstructed waveform has peak amplitude in the gated
portion, the merger time estimated through the maximum-likelihood method is farther away
from the true merger time, causing a too-large SNR gain even for a signal mismatched with
the true waveform. To account for these factors, we use a complementary metric called

fractional match gain (FMG) which indicates how well the NNETFIX reconstructed data
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matches the signal compared to the full and gated data (Mogushi er al., 2021):

M, — M,
FMG= ——, 4.4)
My — M,
where the match M; between a time series s; and the injected waveform A4 (Nitz et al., 2020)
is
(Silh)
VGil5i)(h| )

where the tilde indicates the Fourier transform, and (-|-) denotes the noise-weighted inner

M; = 4.5)

product defined in Equation (1.73) with a slight modification with the lower and higher
frequency cutoffs to be high-pass frequency and the Nyquist frequency, respectively.

In Eq. (4.4), we only consider the samples with My — M, > 0. M, becomes larger
than My in only rare instances (0.5% of all exploration set data samples) when values
of single interferometer peak SNR of the full time series are ~ 4.5. These instances are
observed when the gated portion of the data is noise-dominant and anti-correlated with the
injected waveform. Such low-SNR signals are not expected to be detected in the online
GW searches but they could be categorized as sub-threshold triggers in the offline searches
(Abbott et al., 2019d; Riles, 2013). Because we seck to use NNETFIX in low-latency
operations, in the following we remove these samples from the exploration sets.

Positive (negative) values of FMG indicate that the reconstructed time series is more
(Iess) matching with the injected waveform than the gated time series. Values of FMG larger
than 1 indicate that the reconstructed time series is more similar to the injected waveform
than the full time series. Hence, we consider the reconstructions with 0 < FMG < 1 to
be successful. Figures 4.2 and 4.3 show the distributions of FMG for two exploration sets
from the medium-mass scenario. Figure 4.4 shows the comparison of these distributions.

Values of FMG across the exploration sets generally increase with component
masses, and gate end-time, and network SNR. The set of component masses is the dominant

factor that aftfects values of FMG. Values of FMG increase with component masses. Median
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Figure 4.2. Scatterplot of Mr/vas. Mg/Mfforthe exploration set w ith pN = 42.4,
(mi,m2) = (35,29) M 0, = 130 ms and te:30 ms. The circles denote sam ples with
0 < FM G < 1, the x markers denote samples with FM G < 0 and the + markers denote
overfitted sam ples with FM G > 1. The gray area denotes the region of the param eter space

with 0 < FM G < 1, which contains 86% of the reconstructed tim e series.

values for the high-m ass sets are higher than the corresponding values for the low -m ass
sets by a factor ranging from -~ 1.3 (pN:28,3 with td = 50 ms and te = 90 ms) to ~ 3.3
(pN:11.3 w ith td:130msandte:90ms).ForsignaIswith higher com ponentmasses,
N NETFIX s reconstructed time series tends to be m ore sim ilar to the injected signals than
the full time series. The fraction of sam ples with FM G above 1 for the high-m ass sets is
larger than the corresponding value for the low -m ass sets by a factor of ~ 6 on average.
The second most im portant factor for values of FM G is the gate end-time. M edian
FM G values typically increase as values of the gate end-time become larger. A gate
farther away from the merger time removes the portion of a signal w ith sm aller energy,
corresponding to smaller M f - M g. Therefore, NNETFIX tends to efficiently recover the

energy of the signal lost due to the gate. The median values of FM G for the sets with
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Figure 4.3. Scatterplot of Mr/M f vs. Mg/Mf for the exploration set w ith pN = 11.3,
(mi,m2) = (35,29) MO, td = 130 ms and [€ = 30 ms. The circles denote samples w ith

0 < FM G < 1, the x markers denote samples with FM G < 0 and the + markers denote
overfitted sam ples with FM G > 1. The gray area denotes the region of the param eter space

with 0 < FM G < 1, which contains 44% of the reconstructed tim e series.

te = 170 ms are larger than the corresponding values for the sets with te = 15 m s by a factor
ranging from ~ 1.2 (the high-m ass scenario with pN = 42.4 and td = 130 ms) to ~ 2.9 (the
medium -m ass scenarios w ith pN:11.3 and td = 130 ms).

M edian FM G values typically increase with network SNR. NNETFIX efficiently

reconstructs tim e series containing signals with larger SN Rs. M edian values of FM G for the

sets w ith pN:42.4 are greater than the corresponding values for the sets w ith pN:11A3
by a factor ranging from ~ 1 (the low-m ass scenario with td = 75 ms and te = 30 ms) to
~ 1.3 (the medium -m ass scenario with td = 50 m s and te = 15 m s).

FM G values typically increase as values of the gate duration become smaller.

Sm aller gate durations correspond to sm aller signal losses so that NNETFIX efficiently

provides a larger recovery of signal energy for sm aller gate durations. M edian value of

FM G for the sets with td = 50 m s are larger than the corresponding values for the sets w ith
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Figure 4.4. D istribution of FM G for the exploration sets with com ponentm asses (ml,m 2) =

(35,29) Mq,gate duration td = 130 ms, gate end-time € =30 ms, and pN = 11.3 (gray-
filled) and pN:42.4 (red). The vertical dashed lines denote FM G = 0 and FM G = 1. The
efficiency of the set with pN = 11.3 is 44% . The efficiency of the set with pN = 42.3 is
86 %

td=130msbyafactur ranging from ~ 1.01 (the high-m ass scenario w ith pN=11.3 and
te = 15 ms) to ~ 1.9 (the medium -m ass scenario with p N = 28.3 and te = 30 ms). As rare
exceptional cases for the high-m ass sets w ith te = 90, median values of FM G for the sets
w ith td = 50 m s are sm aller than the corresponding values for the sets with td = 130 m s by
a factor ~ 1.3 ~ 1.2 across values opr used. These exceptional sets with td = 130 m s

tends to have a higher num ber of sam ples with FM G greater than 1 com pared w ith the sets
w ith td = 50 ms by a factor ~ 1.3 ~ 2.

To quantify NNETFIX 'sperform ance including the variation of FM G in each explo -
ration set, we define the efficiency to be the fraction of successfully reconstructed sam ples.
M ore specifically, the efficiency is the fraction of sam ples with 0 < FM G < 1. The fractions
of samples with FM G < 0, 0 < FM G < 1 and FM G > 1 for all exploration sets can be

found in Tables 2-3 of M ogushi etal. (2021).
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The efficiency across all exploration sets ranges from approximately 0.31 to over
0.95. The component masses mildly affect the efficiency. The median value of the efficiency
reduces from (.77 for the low-mass scenario to 0.61 for the high-mass scenario with the
network SNR, gate duration, and gate end-time held fixed. The worst case with 68% of
the samples being unsuccessfully reconstructed occurs in the medium-mass scenario with
pny =11.3,1, =170 ms, and t7 = 130 ms.

With a chosen mass scenario with fixed gate duration and gate end-time, the effi-
ciency typically increases by a factor ~ 1.5-2 as the network SNR becomes larger. For
higher SNRs, the algorithm can use a larger amount of signal energy before and after the
gated portion of the data as the input to reconstruct the time series. NNETFIX successfully
reconstructs over 66% of the data samples with pxy = 28.3 or larger for all low-mass and
medium-mass exploration sets while over 50% of the data samples are successfully recon-
structed for the high-mass sets except for two marginal cases with gate duration t; = 75 ms
and gate end-time ¢, = 90 ms. The exploration sets with py = 11.3 have lower efficiencies
in the range from 31% for the high-mass set with 7; = 75 ms and ¢, = 90 ms to 66% for the
low-mass set with f; = 130 ms and ¢, = 15 ms.

Figures 4.5 and 4.6 show the efficiency as a function of the single interferometer
peak SNR for the low-mass and high-mass exploration sets, respectively. The efficiency as
a function of the single interferometer peak SNR for the medium-mass exploration sets can
be found in Figure 7 of Mogushi er al. (2021). The percentage of successful reconstructions
varies from ~ 33%—-66% at low peak SNR to > 80% at high peak SNR. The lowest values
< 40% occur for the sets with r; > 75 ms and ¢, > 30 ms. More than 70% of the data
samples with peak SNR above ~ 20 have successful reconstructions irrespective of gate
duration and end-time.

The efficiency seems not to significantly change with varying gate durations at fixed
network SNR and gate end-time across all exploration sets. Similarly, the gate end-time

before merger time also has a marginal effect on the efficiency for fixed gate duration and
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Figure 4.5. Efficiency as a function of the single interferom eter peak SN R for the scenario

w ith com ponent m asses (ml,mZ) = (12,120) ™M 0. Each line corresponds to a different
gate duration and gate end-time combination. The top (middle, bottom ) panel shows the
efficiency fortd:50 (75, 130) ms. Green circle (blue cross, black square, red star) m arkers

denote gate end-tim es te = 15 (30, 90, 170) ms. The bin width is 5.

network SNR. However, NNETFIX typically produces better reconstructions for gate end -

tim es closer to the merger time in the cases of the low and medium mass scenarios w ith

longer gate durations.

Figure 4.7 shows the NNETFIX -reconstructed data for the time series of Figure 4.1.

A's shown in Figure 4.8, the signal energy in the gated portion in the reconstructed tim e

series is larger than the energy in the gated tim e series. In this case, FM G = 1.02.

As aconclusion in this section, we find that NNETFIX may successfully reconstruct

gated data ofdurations up to a few hundreds ofm illiseconds and up to a few tens ofm illisec-

onds before the merger time for a m ajority of the data sam ples w ith single interferom eter

peak SN R greater than 20.
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Figure 4.6. E fficiency as a function of the single interferom eter peak SN R for the scenario

w ith com ponent m asses (ml,m 2) = (35,29) M 0. Each line corresponds to a different
gate duration and gate end-time combination. The top (middle, bottom ) panel shows the
efficiency fortd:50(75, 130) ms. Green circle (blue cross, black square, red star) m arkers
denote gate end-tim es te = 15 (30, 90, 170) ms. The bin width is 5.

4.4. PERFORMANCE OF SKY MAPS

A fter NN ETFIX reconstructs the gated data, the output of NNETFIX can be used

as the input for external pipelines to infer the astrophysical properties of the CBC sources

such as the sky localization error region. Because N NETFIX typically recovers the signal

energy in the gated portion, the sky m aps obtained from the reconstructed tim e series are

expected to be better in estim ating the accurate sky localization error region than the sky

maps of the gated tim e series.

To evaluate this im provement, M ogushi etal. (2021) com pare the overlap betw een

the sky map obtained from the gated time series and the sky map obtained from the full

tim e series to the overlap betw een the sky m ap obtained from the reconstructed time series

and the latter. W e create the sky maps using a modified version of a pyCBC (N itz et al.,

2020) script, pbeC_make_Skymap,w here the data can be m anually gated.
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Figure 4.7. The whitened full time series (gray), the gated time series (red), and the
reconstructed tim e series (blue) for the sim ulated event of Figure 4.1. The vertical black-
dashed line denotes the merger time in H1. The value of FM G for this data

isFM G = 1.02.

The sky localization error region is provided as a probability density over pixelized

solid angles in the sky. U sing the sky localization error region, we define a com plementary

m etric, contour level enhancement (contour

level enhancement (CLE)) as

(4.6)

w here Crand Cgare the sums ofprobability densities ofpixels with theirvalues greater than

the value of the pixel containing the sky location

of the injected signal (so-called contour

IeVeI) in the sky map obtained from the reconstructed and gated time series, respectively.

The contour level ranges in [0,1). Smaller values of the contour level indicate that the

injected sky locations are located in a higher probable region of the sky, i.e., the sky

localization algorithm tends to estim ate the injected location m ore accurately. V alues of

CLE above (below) 1 im ply thatthe sky m ap obtained from the reconstructed tim e series is

better (worse) than the sky m ap obtained from the gated tim e series.
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Figure 4.8. Time-frequency representations of the full (left), gated (m iddle), and recon -
structed (right) time series for the simulated event of Figure 4.7 using the Q transform
(C hatterji etal., 2004). The vertical red-dashed line denotes the gate and the vertical

w hite-dotted line denotes the merger time in H 1.

Figures 4.9 and 4.10 show the distributions of the contour levels and CLE dis-

tributions for the exploration sets from the high-m ass scenario. Figure 4.11 shows the
comparison of these CLE distributions. Figure 4.12 shows the cumulative distribution of
the contour level obtained from the full, reconstructed, and the gated tim e series.

In Appendix B, median values of CLE forallexploration sets are given in Tables 1-3,

and the fraction of sam ples with CLE greater than 1 for all exploration sets are sum m arized

in Tables 4-6.

V alues of CLE across the exploration sets generally becom e higher forlargernetw ork

SNR, componentmasses, and gate duration.
A mong the four factors, the network SNR of the signal is the dom inant factor
affecting the value of CLE. Because N NETFIX effectively reconstructs the gated data

com prising signals with large SN R s corresponding to highernetw ork SN R s, the sky map of
the reconstructed time series estim ates the true injected sky location m ore accurately than
the sky map of the gated time series. W e find that m edian values of CLE are positive for
m ost exploration sets w ith pN> 28.3, irrespective of mass, gate duration, and end-tim e.
For these sets, m edian values for the high-SN R sets are larger than the corresponding values
for the low -SN R sets by a factor ranging from ~ 1.04 (the medium -m ass scenario with

td =50 ms and € = 170 ms) to ~ 187 (the high-m ass scenario with td — 130 m s and te = 3o
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Figure 4.9. Scatterplot of Cr and Cg for the 512 samples from the exploration set w ith
pN = 42.4, componentmasses (mi,m2) = (35,29) M 0, gate end-tim e te =30 ms and gate
duration td = 130 ms. The color denotes CLE. The diagonal dashed line denotes when
Cr = Cg. 80% of samples have Cr sm aller than Cg.
ms). The NNETFIX -reconstruction has a small im pact on the sky maps of the time series
containing signals with small SNRs. W e find that m edian values of CLE for the sets with
pN = 11.3 are typically around one, irrespective of the mass scenario, gate duration, and
gate end-tim e.
The second most dom inating factor affecting C L E is the set of com ponent masses.
V alues of CLE typically increase for larger values of the component masses. For the
exploration sets with pN = 28.3 (42.4), the high-m ass sets have greater median values of
CLE than the low -mass sets by a factor varying from ~ 1.05 (1.2) for td = 50 ms and
te = 170ms(td:50 ms and te = 170 ms) to ~ 3.7 (107) for td = 130 ms and te = 15 m s
(td:130msandte: 30 ms).
Values of CLE typically increase as the gate duration becomes larger. Because
the gate w ith longer durations loses a greater amount of the signal energy, N NETFIX s
reconstruction supplies larger SN R recovery, resulting in greater CLE values as the gate
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Figure 4.10. Scatterplot of Cr and Cg for the 512 samples from the exploration set w ith
pN — 11.4, componentmasses (mi,m2) = (35,29) M 0, gate end-tim e te:30 ms and gate
duration td = 130 ms. The color denotes CLE. The diagonal dashed line denotes when
Cr = Cg.AO% of samples have Cr sm aller than Cg.
duration becomes larger. For the high-SNR and medium -SN R exploration sets, median
values of CLE for the sets with td = 130 m s are larger than the corresponding values for the
setw ith td = 50 m s by a factorranging from ~ 1.01 (medium -m ass scenario w ith pN:28.3
and te = 170 ms) to ~ 44 (high-m ass scenario with pN = 42.4 and te = 30 ms).

The portion of a signal close to the merger time affects more the estim ate of the
source sky location than the portion of the signal in the early inspiral phase. Hence, the
medium -SNR and high-SNR exploration sets w ith te = 15 m s have typically higher median
values of CLE than the sets with te = 170 ms by a factor ranging from ~ 1.02 (low -m ass
scenario w ith pN:42A4 and td = 50 ms) to ~ 38 (high-m ass scenario w ith pN:42.4 and

td = 130 ms). Figure ?? shows the 90% probability sky localization error regions obtained

w ith the reconstructed time series shown in Figure 4.1.
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Figure 4.11. D istribution of CLE forthe exploration sets w ith com ponentm asses (ml,m 2) =

(35,29)Mq,gate duration td = 130 ms, gate end-time € =30 ms, and pN = 11.3 (gray-
filled) and pN:42.4 (red). The vertical dashed black (red) line denote the median value
of CLE for the set with pN = 11.3 (pN — 42.4). 40% (80% ) of samples in the set w ith
pN = 11.3 (pN = 42.4) have CLE above 1.

As a summary of this section, we find thatthe contour level atthe injection location
in the sky maps obtained from reconstructed time series with netw ork SN R pN> 28.3 are
greater w ith the corresponding quantity in the sky maps obtained from the gated series (in
some cases by a factor up to ~ 130) for a m ajority of the cases w ith gate durations up to a

few hundreds ofm illiseconds and as close as a few tens of m illiseconds to the merger time.

4.5. POSTFACE

In this chapter, we have presented a new m achine learning-based algorithm called
NNETFIX (Mogushietal.,ZOZI).NNETFIX is designed to interpolate the portion of data
containing a CBC signal that is lost due to the presence of glitches in coincidence w ith
the signal. The NNETFIX reconstructed data can be fed into external pipelines that infer

astrophysical properties of the sources including the source-param eter estim ation and sky



Figure 4.12. Cumulative distributions

ofthe contour
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levels atthe injection location obtained

from the full (black), reconstructed (blue), and gated (red) tim e series in the exploration sets
w ith com ponent masses (ml,mZ): (35,29) M 0, gate duration td:130 ms, gate end-tim e
te =30 ms, anda PN =42.3.

localization. To test the accuracy of the reconstruction, we have used different choices of

signal param eters and gate settings and evaluate the reconstruction perform ance based on
several m etrics.

W e find that NNETFIX may successfully reconstruct a m ajority of BB H signals
w ith peak single interferom eter SN R greater than 20 and gates w ith durations up to a few
hundreds of m illiseconds as close as a few tens of m illiseconds before their merger time.

Because the N NETFIX reconstructed tim e series m atches m ore w ith the injected
waveform than the gated tim e series, the contour level at the injection location in the sky
map derived from the reconstructed tim e series is m ore accurate than the sky map derived
from the gated time series. In the cases of the successful reconstructions, we have found
that the contour levels atthe injection location in the sky m aps from the reconstructed data

im prove compared w ith corresponding quantities

data by a factor up to 130.

in the sky maps obtained w ith the gated
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Figure 4.13. The 90% probability sky localization error regions obtained w ith the recon -

structed (dashed-blue), full (gray area) and gated (solid-red) time series for the case of
Figure 4.1. The star denotes the injection location. The value of CLE for this case is
CLE = 2 x 1011.

A fter the algorithm usedinMogushietal.(ZOZI)istrained,reconstructingthe gated
data takes ofthe order ofa few seconds forthe gate durations up to hundreds ofm illiseconds.
Hence, the method could be used in low -latency operations when the data is contam inated
by glitches.

O ther than signals from BBH mergers tested in our analysis, the method could
be applied to other CBC signals including BNS and N SBH mergers. Because of this
possible application and the low -latency ability, NN ETFIX is potentially beneficial to aid

in observing EM counterparts associated w ith G W signals.
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5. CONCLUSION

In 1916, the existence of GWs, small perturbations of spacetime produced by
accelerating massive objects was first predicted as solutions of Einstein’s Theory of General
Relativity (Einstein, 1916). A century after 1915, LIGO-Virgo collaboration detected the
first direct GW signal from the collision of a binary system of two black holes. We have seen
as GWs in the linearized theory that describes the spacetime with the weak gravitational
field. In the linearized theory, we have observed that the accelerating quadrupole moments
are the source of GWs. To show how GWs interact with masses, we have followed (Carroll,
2003; Poisson and Will, 2014; Saulson, 1994). We have seen that GWs stretch and squeeze
the space perpendicular to the direction of the propagation. We have observed that the
relative length of the two arms of the detector changes as GWs are passing by GW detectors,
allowing scientists to observe GWs. With GW detectors, scientists are looking for more
GW detections and/or new types of GW signals.

To detect GW signals, the detectors must be extremely sensitive, causing them to be
susceptible to instrumental and environmental noise artifacts. In particular, transient noise
artifacts, or glitches adversely affect the detector-data quality. Hence, removing glitches is
crucial to improve the confidence of astrophysical signals. LIGO detectors have numerous
sensors monitoring the various aspects of the detector controls including optic suspensions
and laser-alignment controls as well as the detector’s output readout. Some of these sensors
can be potential witnesses of glitches. In Chapter 2, We have presented a software package
called PyChChoo (Mogushi, 2021a) that statistically identifies witness sensors of glitches.
This work was first presented in Mogushi et al. (2021).

After identifying the witness sensors, we have presented a new machine learning-
based algorithm to subtract glitches by using the data from a set of witness channels. Without
knowing the physical coupling mechanisms inside and around the detector, our algorithm

learns glitch-couplings from the data and successfully estimates short-lived linear and non-
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linear features of glitches. Using two distinct classes of glitches observed in the LIGO
detector, we have found that the excess power due to the presence of glitch is reduced
by 20 — 70% and the ranking statistics of one of the unmodeled GW detection pipelines
called cWB improves after glitch subtraction by a factor of ~ 1.03 ~ 3.5and ~ 1.2 ~ 2.7 on
average for Gaussian modulated sinusoidal and BBH injections. We also have found that the
cWB estimated source-direction, central frequency, and chirp mass after glitch subtraction
are comparable or more accurate than that before glitch subtraction. In the current work
presented in this dissertation, we have found that the FAR distribution in the background is
not reduced significantly after glitch subtraction because we have focused only on the two
glitch classes and applied the glitch-subtraction technique to 10% of glitches that would
be subtracted. In the future, we shall try to create networks for different glitch classes and
subtract all possible glitches and compare the time-volume integrals between the subtracted
data and the vetoed data to see which method is preferable. While this algorithm can be
used for both modeled or unmodeled GW detection pipelines, glitches with no witnesses
can not be mitigated.

To mitigate glitches with no witnesses, we focused on modeled GWs, in particular,
signals from binary coalescences. We have presented a method called NNETFIX which
employs a machine-learning algorithm to estimate the data containing a CBC signal that is
partially removed due to the presence of an overlapping glitch. This work was published
in Mogushi er al. (2021). Using simulated BBH signals with a high SNR injected in the
simulated colored Gaussian data with LIGO’s design sensitivity, we have observed that the
overlap of the sky localization error region obtained with the NNETFIX reconstructed data
and the sky error region of the data in the absence of glitches is better than the overlap of
the latter with the sky error region of the partially removed data in the majority of cases.
This work employs a fully connected MLP for the proof of concept. To improve the re-
construction performance, different machine learning algorithms such as CNN autoencoder

and/or recurrent neural network can be used. Because CBC signals evolve their frequencies
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and amplitudes over time towards their merger times, parts of signals in near time are more
close to each other than parts in far time. Therefore, the CNN network might be more
suitable than a fully connected MLP for reconstructing signals. Longer signal waveforms
such as BNS signals have more chance to overlap with glitches. Improvements in the
sky localization error region for BNS signals might be more beneficial for identifying EM
counterparts. A computational challenge for BNS signals is the latency because of a larger
amount of data. Using GPU might be a possible way to overcome the above computational
challenge. In the current setting, NNETFIX trains a network using a gate with a fixed
position and a fixed duration. This setting might be a limitation to use NNETFIX in the
real data because the position and duration of an overlapping glitch are arbitrary. Therefore,
it is more useful to train a single network with various gates. Spins of CBCs are crucial
factors for the sky localization error region, where small differences in spins make the
sky localization error region differ significantly. In the future, BNS signals with non-zero
spins with various gates should be used to train a single network in NNETFIX. Another
limitation in the current NNETFIX is the loss function. We have observed that a higher
number of hidden layers lowers the reconstruction accuracy though it is expected to improve
the accuracy. This contradiction is due to the choice of the loss function, MSE. The noise
is a random variable so that the network with a higher number of hidden layers tends to find
smaller values MSE by reducing the noise in the reconstructed time series. Hence, using
MSE as a loss function prevents NNETFIX from improving the reconstruction accuracy.
To overcome this limitation, one can use different loss functions such as the entropy loss
calculated by Kullback-Leibler divergence (Joyce, 2011). If one of the ultimate goals in the
use of NNETFIX is to obtain better sky localization error regions, one can train the network
to directly predict the sky-localization probability distribution by choosing the entropy loss

between the true distribution and the predicted counterpart.
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The O3a vetoed times in the LIGO detectors in O3a are less than one percent of the
entire analyzable data (Abbott er al., 2021b). However, future detectors with even higher
sensitivities would observe a higher number of GW signal candidates, causing them to
overlap with glitches more often. Hence, removing glitches would be crucial in the future.
Also, subtracting glitches might help to detect GW signal candidates that are otherwise
classified as sub-threshold triggers (Abbott er al., 2019d; Riles, 2013). Improved data
quality would allow us to detect astrophysical signals with higher confidence and brings us

a better understanding of the physics in the universe.
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1. CONVENTIONS OF METRIC SIGNATURE, UNITS

We write the conventions commonly used in special and general relativity based on

Poisson and Will (2014).

1.1. COORDINATES AND SPACETIME INTERVAL

Because space and time are interchangeable, it is convenient to use a unified space-
time coordinate to refer to an event which is labeled with the spatial coordinates (x, y, z) and
the time . Using the speed of light ¢ which is invariant, unified coordinates can be written
as x* = (ct, x, v, z) such that each element has a dimension of length. The index u runs over

2 =y, and x* = z. The spacetime interval

the values {0, 1,2,3}; we set WO =cr,xl=x x
ds? is defined as

ds® = —(cdr)? + dx* + dy* + dZ*. (A.1)
Using the flat-spacetime metric 17,, = diag(—1,1,1,1), or the Minkowski tensor, the space-
time interval is simplified as
3 3
ds* = Z Z N dx!dx” = n,dx"dx”, (A2)

p=0v=0

where a pair of the same lower and upper indices denotes summing over all the values

{0,1,2,3}.

1.2. RAISING AND LOWERING OPERATOR

As well as being used in the spacetime interval, the Minkowski metric 7, serves as
raising and lowering operators for vectors and tensors. A vector with a lower index (known

as a covariant vector) is defined as

Ay =AY (A.3)
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Similarly for a tensor, the Minkowski metric operates; By, = r]#anvﬁB“ﬁ . The raising
operator is the inverse Minkowski metric n*”, which satisfies n#n,, = o, A vector with

the upper index is obtained from its covariant vector as
At =gt A, . (A4)

Using vectors with upper and lower indices, Equation (A.2) can be rewritten as ds?> =
dx,dx". Because the index u runs over values in the entries {0, 1,2, 3}, the spacetime interval
can be interpreted as the inner product of the spacetime displacements with themselves.

The inner product is a scalar quantity. Any scalars such as A, B are invariant.

1.3. LORENTZ INVARIANCE

The flat-spacetime interval ds? is invariant under Lorentz transformations. Let us

define the Lorentz transformation x* — x'# as
dx'" = A, dx", (A.5)
where A, is the Lorentz-transformation operator. The spacetime interval ds”> becomes
ds” = 1 dxdx" = 7 AN pdx®dxP . (A.6)
Because UWA” o\ 5 = Tap: the previous equation becomes
ds” = Nuwdxtdx" = naﬁdx“dxﬁ. (A7)

Indeed, the spacetime interval is invariant under the Lorentz transformation. The interval

in curved spacetime is defined using the generalized metric g, instead of 17,
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1.4. LORENTZ-TRANSFORMATION OPERATORS

Lorentz transformations include boosts such that a new inertia frame is moving with
a velocity relative to an old inertia frame as well as spatial-coordinate rotations from an
old inertial frame to a new inertial frame. The matrix representation of a Lorentz boost
x’* = BY, x” in the case, where the new frame is moving with the velocity ¥ relative to the
old frame, is given as
Y —yvx/c —yvy/c —yve/e
—yvife 1+ (y=Dvi/v? (y =D, /v2 (y = Dyg/v?

—yvyfc (v =Dy /v T+ (y=1Dwipn? (v = Dy /v?
—yvzfc (¥ =Dvae/v: (¥ =Dy /v 1+ (y = v /v?

B() = (A.8)

where vy, vy, v, are the velocities in x—, y—, z—-axes, respectively, v = , /v)% + v% + vz2 is the
magnitude of the velocity, and y = 1/4/1 —v2/c? is the Lorentz factor. For example, if

V = v, &y, the Lorentz boost is represented as

Y —yvy/c 0 0
o _|=yvfe v 00
B@) = 7 o 1 ol (A9)
0 0 01
and
Y —yve/c O O\/-1 O O O y —yve/c 0 0
BB = —yvy/c v 0O O[O0 1 0 Off—yvy/c v 00
P a®p = 0 o o0o0llo o110l o 0 0 o0l
0 0 0 0/\0 001 0 0 00
—y2 + y2vi/c? 0 00
_ 0 Y2 —y32/c2 0 0
0 0 1 ol
0 0 0 1
100 0
0 100
10 01 0l (A.10)
0 00 1
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by invoking the Lorentz factor y = 1/ W Hence, Equation (A.6) is satisfied.
The successive Lorentz boosts B(w) = B(ii)B(V) from the un-primed frame to the double-
primed frame such that x”# = B(i)",x” and x’ = B(¥)", x”, are also included in Lorentz
transformations. A spatial ration and successive rations are Lorentz transformations. For

example, the rotation along z-axis is represented as

1 0 0 0
|10 cos¢ —sing O
Rig) = 0 sing cos¢ O (A1)
0 O 0 1
and
1 0 0 O\/-1 0 0 O0\/1 O 0 0
RERY = 0 cos¢ sing O[O0 1 O O[]0 cos¢ —sing O
T alts = 10 _sing cos¢ 0]l 0 0 1 0||0 sing cosg O]
0 0 0 1/\0 0 0 1J\0 O 0 1
-1 0 0 0
10 cos? ¢ + sin® ¢ —cos¢sing + cosgsing O
~ | 0 —cospsing + cos@sin ¢ cos? ¢ + sin® ¢ of’
0 0 0 1
-1 0 00
0 100
{0 010 (A.12)
0 0 01

Hence, Equation (A.6) is satisfied in this case as well.
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1. TABLES OF QUANTITIES WITH CONTOUR LEVELS IMPROVED BY
NNETFIX

Table 1. Median values of CLE for the exploration sets with component masses (my,mp) =
(12,10) M,,. Boldface entries denote sets with CLE above 1.

Network SNR 11.3 28.3 424

Gate duration [ms] 50 75 130 50 75 130 50 75 130

15 0.95 098 0.97 0997 0.996 1.07 1.05 1.12 1.22

tbm [ms] 30 0.98 096 099 1.003 1.02 1.05 105 11 1.26

90 0.98 098 099 1.01 1.01 1.07 1.04 1.05 1.14

170 1 0.99 0.99 096 1.01 1.002 1.03 1.03 1.04 1.08

Table 2. Median values of CLE for the exploration sets with component masses (my,mp) =
(20, 15) M,,. Boldface entries denote sets with CLE above 1.

Network SNR 11.3 28.3 42.4

Gate duration [ms] 50 75 130 50 75 130 50 75 130

15 091 090 094 105 110 124 117 149 26

tbm [ms] 30 093 093 094 103 113 141 122 139 226

90 099 097 0.85 1.02 1.000 113 1.08 1.16 1.48

170 1 0.99 0.99 094 1.003 1006 101 1.06 113 1.21
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Table 3. Median values of CLE for the exploration sets with component masses (mj,m;) =
(25,29) M,,. Boldface entries denote sets with CLE above 1.

Network SNR 11.3 28.3 42.4

Gate duration [ms] 50 75 130 50 75 130 50 75 130

15 0.86 0.82 035 1.63 268 397 376 1297 584

tbm [ms] 30 091 0.70 072 1.62 222 497 3.07 981 1349

90 099 093 076 115 144 191 132 240 7.62

170 1 0.99 0985 0.97 106 114 118 120 137 1.53

Table 4. Fraction of samples with CLE above 1 for the exploration sets with component
masses (my,my) = (12,10) M. Boldface entries denote sets where the fraction of samples
with CLE > 1 is larger than 50%.

Network SNR 11.3 28.3 424

Gate duration[ms] 50 75 130 50 75 130 50 75 130

15 0.40 0.44 0.43 0.50 049 0.60 056 0.60 0.65

tbm [ms] 30 0.44 043 0.46 051 054 056 055 0.58 0.67

90 0.43 042 047 051 052 058 056 0.56 0.60

170 1 0.43 0.46 0.38 0.53 0.51 0.54 0.57 055 057




164

Table 5. Fraction of samples with CLE above 1 for the exploration sets with component
masses (my,my) = (20, 15) M. Boldface entries denote sets where the fraction of samples
with CLE > 1 is larger than 50%.

Network SNR 11.3 28.3 42.4
Gate duration[ms] 50 75 130 50 75 130 50 75 130
15 0.36 0.37 0.41 053 056 0.60 0.61 0.67 0.72
tbm [ms] 30 0.42 0.39 0.42 052 059 067 061 0.66 0.72
90 0.44 042 035 053 050 057 059 0.62 0.62
170 ] 0.44 0.47 0.40 0.51 0.51 0.51 0.58 0.59 0.60

Table 6. Fraction of samples with CLE above 1 for the exploration sets with component
masses (my,my) = (35,29) M. Boldface entries denote sets where the fraction of samples
with CLE > 1 is larger than 50%.

Network SNR 11.3 28.3 42.4
Gate duration[ms] 50 75 130 50 75 130 50 75 130
15 0.42 041 033 062 067 062 071 0.78 0.71
tbm [ms] 30 0.44 0.37 0.40 0.60 0.64 0.69 073 0.72 0.80
90 0.47 043 0.41 059 061 062 065 0.67 0.72
170 || 0.48 0.48 0.45 0.56 0.57 0.59 0.61 0.64 0.65
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100% to work presented in Paper |
100% to work presented in Paper 11

50% (data creation, code implementation, data analysis, and writing the arti-

cle) to work presented in Section 2
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1. LIST OF AUTHORED PAPERS NOT INCLUDED IN THE DISSERTATION

The author of this dissertation became an LSC collaboration co-author since October
13th, 2017, and has been authored for 66 collaboration papers. Here, we briefly describe
the list of authored papers, Mogushi et al. (2019), Zheng et al. (2021), and Davis et al.
(2021) that are not included in this dissertation.

On August 17th, 2017, the LIGO-Virgo collaboration detected the first GW signal
produced by a BNS called GW 170817 in coincidence with the EM observation of the short
gamma-ray burst (sSGRB) called GRB 170817A. This detection verified the long-thought
hypothesis that at least some sGRBs are produced by BNS mergers (Abbott er al., 2017b,c;
Goldstein et al., 2017). The observed luminosity of GRB 170817A is lower than that of all
other sGRBs with known redshift by at least two orders of magnitude. This discrepancy
could be explained by GRB 170817A being viewed off-axis, i.e., at a large inclination
angle (Abbott et al., 2017b). Based on the Very Long Baseline Interferometric detection of
superluminal motion in GRB 170817A, Mooley et al. (2018) rule out the “uniform top-hat"
model where the SGRB is described by a conical jet with uniform, relativistic emission
(Rhoads, 1999) in favor of a “structured jet” model, where a narrower ultrarelativistic jet
is surrounded by a mildly relativistic sheath (Kumar and Granot, 2003; Rossi et al., 2002;
Zhang and Meszaros, 2002). Mogushi er al. (2019) estimate the detection rate of coincident
GW and sGRB observations by the network of GW detectors and constrain the physical
parameters of the sSGRB jet structure, using a catalog of sGRB observations by Neil Gehrels
Swift Observatory Burst Alert Telescope and the GW170817/GRB 170817A observational
data. The estimated rate of GW detections coincident with SGRB detections by the Fermi
Gamma-ray Burst Monitor is between ~ 0.1 and ~ 0.6 yr~! in the O3 of LIGO-Virgo. The
typical value of the half-opening angle in a structure jet profile (Pescalli e al., 2015) is
estimated between 7° and 22° with the power-law decay exponent varying between 5 and

30 at 1o confidence level.
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Zheng et al. (2021) present a review about a FAR as a detection criterion of GW
signals in the LIGO-Virgo collaboration by analogizing it with the forecast example. A fewer
number of sunny days that were predicted to be rainy corresponds to a higher confident
forecast for days predicted to be rain. Similarly, GW signal candidates with smaller FARs
are of astrophysical origin with higher confidence.

Davis et al. (2021) present a comprehensive overview of detector-characterization
methods and results of LIGO and Virgo in O2 and O3 with developments towards the
fourth observation run (O4). The overview begins with a summary of the data set including
the duty cycle factors and the sensitivity evolution in O2 and O3, and also covers major
software tools and infrastructures used in the LIGO and Virgo. This paper also summarizes
1) results about the mitigation of noise due to instrumental disturbances to improve the
performance of the LIGO detectors, 2) methods used for transient GW-signal searches and
procedures to validate signal candidates based on the data characterization aspects, and 3)
the data-quality studies employed for continuous GW searches. This paper concludes with
the future prospectus such as automation efforts designated for a higher number of signal

candidates due to even higher sensitivities of detectors.
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The noise-weighted inner product is defined (Brown, 2004; Finn, 1992) as

(@lb) = /_“’ dffl*(f)b(f) +a(f)b(f) ,

E.1
527D (E-D

where d@(f) and b(f) are the Fourier transforms of the time series a(f) and b(t), respectively,
the star denotes the complex conjugate, and Sy,(| f|) is the one-sided PSD of the noise. When

a(t) is real, i.e. a*(t) = a(t), its Fourier transform satisfies the following the relation:

a(f) = ( /_ Ooa(t)e—zﬂiffdt),

[oe]

/oo a(e =Dy

[oe]

a(-f). (E.2)

When a(t) and b(¢) are real, Equation (E.1) becomes

ah = [y TR [ g 30D

TS TS
[ [ arten

- [ [
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Also, d@(f)b*(f) is the complex conjugate of a*(f)b(f) so that

a(Hb(f) +a(N)b*(f) =2R [a(NHb(f)] - (E4)



Equation (E.1) can be written as

(aby = 2/0 dfd

L a D)
- 2»/0 V=5

(f)b(f)
Sa(f)

0 d*(f)E(f)]
+/ U=5.07D

Sa(f")
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1. COMPARISON BETWEEN SCATTERED LIGHT GLITCHES AND QUIET
TIMES

To show that the frequency region above 100 Hz in time periods containing Scattered
light glitches in the strain channel has no excess power and are compatible with the corre-
sponding frequency region of the Gaussian noise, we compare 693 spectrograms containing
Scattered light glitches with 306 spectrograms when the strain channel is quiet, statistically
evaluate them using the KS test (Massey, 1951).

To create the data set of Scattered light glitches, we whiten the time series of the
strain channel with a software called GWry (Macleod er al., 2020) and then apply a low-pass
filter at 512 Hz as used in Sec. 2. We have the Scatrered-light set with a sample size of 693
by selecting time periods with a duration of 8 seconds that contains Scattered light glitches.
To have a set of quiet data, we use the observing-mode strain channel data with a duration
of 4096 seconds beginning from April 2nd, 2019 at 5:04 UTC, without data quality issues
such as the corrupting data, the presence of glitches, and hardware injections of simulated
signals. We whiten and apply the high-pass filter to the quiet time series and then cut the
edge of the whitened time series to remove artifacts of the Fourier transform. By diving the
whitened time series into 8-second segments, we have the quiet-data set with a sample size
of 301. We create mSTFTs of the Scattered-light set and the quiet set. Figure 1 shows the
mSTFT of a Scattered light glitch and a quiet time.

Figure 2 shows distributions of the mSTFTs in the frequency region above or below
100 Hz in the Scattered-light set and the quiet set. The Scattered-light (quiet) set has 1.6%
and 9.5% (1.6% and 2.1%) of pixels with values above 10 for the frequency region above
and below 100 Hz across the set, respectively. To verify the upper-frequency region of the
Scattered light set has no excess power above Gaussian fluctuations, we calculate one-sided
KS-test statistics for randomly selected 500 pairs of a mSTFT from the Scattered-light set
and a mSTFT from the guier set by taking the mSTFT variations in both sets into account.

As the null hypothesis in the one-sided KS test, we consider mSTFT-pixel values of a
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Figure 1. M agnitude of STFTs ofscattered Iightglitch (left) and a quiet time (right).

Scattered'“ght'g“tch data is low er than that of the quietdala because we wantto verify if

the hypothesis thatthe upper-frequency region ofthe Scatteredllghtsethas no excess pow er
G aussian fluctuations can be rejected. Because the K S -test statistics calculated above

above

contain the variation of m STFT in both sets, we also calculate one-sided K S -test statistics
forrandom ly selected 500 pairs oftwo m STFTs from the qu|etsel. The rightpanel in Figure

3 shows distributions of K S -statistics of these pairs.
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Figure 2. D istributions ofm STFT-pixelvalues of 693 Scattered light glitches (left) and 306

quiet-time segm ents (right).
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W e then perform a one-sided KS testfor the above two distributions of KS statistics.
W e find that the p-value of the testto be 0.099, which is notconfidentenough to reject the
hypothesis that the upper-frequency region of the data containing Scattered Iightglitches
has no excess power.

As a supplementary study, we perform the same procedure for the frequency region
below 100 Hz. The left panel in Figure 3 shows distributions of K S statistics calculated
w ith m STFT pairs in the frequency region below 100 Hz. W e find the p-value of the test to

be 2.4 x 10-141 so thatScattered“ghtglitches have excess power below 100 H z.

Figure 3. D istributions of KS statistics calculated w ith 500 random pairs ofm STFTs in the
frequency region below (left) and above (right) 100 Hz. QQ and SQ denote pairs of two
m STFTs from the qu|etsetand pairs of am STFT from the Scattered'llghtsetandamSTFT

from the quietset, respectively.

To robustly verify that the null hypothesis that the m STFT of the data containing
Scattered“ghtglitches has no excess power in the frequency region above 100 Hz, can not
be rejected, we vary the num ber ofpairs and random pair-selection realizations forp-values.

Sim ilar to the process mentioned above, we random ly select N pairs of a m STFT
from the Scattered'“ghtsetandamSTFTfrom the quietsetaswellasN pairs oftwo m STFTs
from the quietset,subsequently calculate one-sided K S statistics for paired m STFTs in the
frequency region above x Hz for both Scattered'“ght'quietand quiet-quiet pair sets. Then,

we perform the one-sided K S test for the two K S-statistic distributions from two pair-sets.
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Figure 4. The variations of p-values (top) and one-sided K S statistics (bottom ) for the
m STFTs above a given cutoff frequency. The one-sided K S-statistics in this figure are the
statistics calculated using the two K S-statistic distributions from the Scattered'“ght'quiet
pair and the quiet'quietpair. N ote the y-axis in the figure differs from the x-axis in Figure
3. M arkers denote N number of pairs to perform the K S-test. D ifferent curves w ith the

same marker denote differentrealizations in the N -pair selection.

W e vary values of N between 100 and 2000 and x between 30 Hz and 210 Hz to show the
variation ofp-values due to selected num bers of pairs N and cutoff frequencies x. Also, to
see the effect of the pair-selection realizations on p-values, we repeat 10 times each test for

a given value of N and x. Figure 4 shows the variations ofp-values and the corresponding

K 'S statistics. The p-values with cutoff frequencies below 75 H =z significantly smaller,
indicating high confidence in rejecting the null hypothesis. For cutoff frequencies below
75 Hz, larger values of N corresponds to sm aller p-values because the sample errors are

sm aller for a set w ith larger sam ples even if statistics w ith larger N are slightly sm aller than

values w ith smaller N . The p-values w ith a cutoff frequency above 100 Hz are com parable,

meaning thatno excess poweris observed in the frequency region above 100 H z irrespective

of values of N and the pair-selection realizations.
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Figure 5. Peak tim e ofscattered Iight(left) and EXtremer IOUd(right) glitches in 36-second

tim e periods.

2. PEAK TIME OF GLITCHTES

To determ ine choices of splitting tim e-frequency regions in m STFTs of the data
containing glitches, one can use the peak time of glitches to identify if glitches are isolated
in the time dom ain.

Figure 5 shows peak times of Scattered Iightglilches and EXtremer IOUd glitches
in 36-seconds time periods. EXtremer IOUd glitches are isolated in the time domain and
their peak times are generally within £1 around the OMicRON-trigger(Robinetetal.,ZOZO)
tim es. Scattered Iightglitches are repeatedly present because this glitch class is generated
due to swinging m irror motions caused by seismic activities. Therefore, to estim ate the
m STFT ofthe G aussian noise, we use the frequency region above 100Hzforscattered|ight

glitches and the time region outside of 2.5 seconds around the trigger time for EXtremer

IOUd glitches.

3. PIXEL THRESHOLD TO EXTRACT GLITCH W AVEFORMS

A fter determ ining the tim e-frequency region of the data to estim ate the STFT of the
noise, we extract a glitch waveform from the STFT. Because glitches generally can notbe

modeled, we choose a threshold for pixel values of the STFT to extract glitch waveform s.
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Figure 6. Time series (left) of a hypothetical glitch injected into the sim ulated G aussian
noise and the histogram of m STFT-pixel values (right). The dashed vertical lines are 50,
90, 99, 100 percentiles of pixel values of the noise m STFT, and 100 percentile m ultiplied

by 2 and 3, from left to right in the right panel.

W e keep pixels of the STFT (hereafter called excess pixels) with their m agnitude values
above a threshold estim ated from the STFT representing the noise. The leftpanel of Figure
6 shows a hypothetical glitch injected into the sim ulated G aussian data. Its right panel
shows the histograms of m STFTs of the injected data, the noise only, and the glitch only.
Sm aller thresholds let excess pixels have a larger num ber of noise and glitch pixels w hile
larger thresholds let excess pixels have a smaller num ber of the noise pixels but smaller
glitch pixels.

To determ ine the best pixel threshold, we take m STFT pixels with their m agnitude
values below a threshold (hereafter called un-excess pixels) and then use the tw o-sided K S
test betw een the un-excess pixels and m STFT pixels of quiet times. If un-excess pixels are
sim ilar to quiet pixels, excess pixels tend to have the m ajority of glitch pixels and sm aller
num bers of noise pixels. To gquantitatively determ ine the best threshold, we randomly
select 200 pairs of un-excess-pixel m STFTs with quiet m STFTs and calculate tw o-sided
K 'S statistics for each pair. W e use the tw o-sided K S statistic because we want to see the
sim ilarity of two m STFT in a pair. Likewise, we random ly select 200 pairs of two quiet
m STFTs and calculate tw o-sided K S statistics. W e take the ratio ofthe K S statistic averaged

over the un-excess-quiet pairs to the K S statistic averaged over the quiet-quiet pairs.
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Figure 7. Histogram s of tw o-sided K S statistics of quiet-quiet, un-exess-quiet, excess-quiet

pairs with 50 percentile (left), 99 percentile (middle), and 100 percentile m ultiplied by 5

(right) as pixel thresholds for Scattered Iight(top) and EXtremer IOUd (bottom ) glitches.

Figure 7 shows histogram s of KS statistics of 200 quiet-quiet pairs, 200 un-excess-

quiet pairs, and 200 excess-quiet pairs with different pixel thresholds. The ratio is closed to

one when the un-excess pixels are sim ilar to the quiet pixels, i.e., excess pixels contain the
m ajority of glitch pixels and fewer noise-pixel. W hereas, larger values of the ratio im ply
that 1) only sm aller am plitude noise pixels are contained in un-excess pixels, i.e., excess

pixels contain a larger amount of noise pixels (corresponding sm aller pixel thresholds), or

2) un-excess pixels have a higher num ber of glitch pixels, i.e., excess pixels have only a few

glitch pixels (corresponding to larger pixel thresholds). W e vary the pixel threshold from

50, 90, 99, 99.9, 100 percentiles ofthe m STFT in the tim e-frequency region thatis expected

to contain no glitches (see the above sections). Also, we consider values of 100-percentile

m ultiplied by 2, 3 and, 5 as the threshold.

Therefore, m inim izing the ratio over pixel thresholds allows us to find the bestpixel

threshold. Figure 8 show s the ratio of the un-excess-quietpair KS statistic to the quiet-quiet

pair KS statistic. For Scattered“ghtglitches, the ratio reaches the lowestvalues ~ 2.1 ~ 2.2

w ith thresholds of 99, 99.9, and 100 percentiles. For EXtremer IOUd glitches, the ratio has
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Figure 8. The ratio of the un-excess-quiet pair K S statistic to the quiet-quiet pair K S
statistic. Pixels thresholds below 100 denote percentiles of m STFT in the time-frequency
region that is expected to contain no glitches. Pixel thresholds above 100 denote 100

percentile m ultiplied by 2, 3, or 5.

the minimum value of ~ 3.9 with 99 percentile. EXtremer IOUd glitches have extremely
high SN R so that the ratio is m ore sensitive to the pixel threshold. A ccording to the above

study, we set the best threshold to be 99 percentile for both classes of glitches.

4. GRIFFIN-LIM TRANSFORM AND FAST GRIFFIN-LIM TRANSFORM

4.1. OVERVIEW OF GRIFFIN-LIM TRANSFORM

W e presenta briefoverview ofthe G riffin-Lim (G L) transform ation (G riffin and Jae
Lim, 1984) and the FG L transform ation (Perraudin etal.,2013)whichisamodified version
of the G L transform ation to fasten the convergence.

The G L transform ation provides a real-value time series from a given m STFT

by estim ating the phase. W e first show the introduction of the m ethod (G riffin and Jae
Lim, 1984) to estim ate a time series whose STFT 1is close to an arbitrary STFT which
is not guaranteed to have an exact corresponding time series. Then, we show the G L

transform ation to estim ate a tim e series for an arbitrary m STFT.
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Let x(n) denote a time series with its time-stamp index n. Using a real non-zero
window function w(n) over 0 < n < L, where L represents the window length, the STFT
of x(n) is written as

X,,(mS, w) = Z X0 (mS, e~ | (F.1)

[=—0c0

where the windowed time series is
Xy(mS, 1) = wimS — Dx(l), (F.2)

where S is a positive integer, which represents the sampling period to calculate the FFT, m
runs over (..., -1,0, 1,...), w denote angular frequencies.
For a given STFT Y,,(mS, w), the corresponding windowed time series is expressed

with the inverse STET as

1 [7 ,
yw(mS,l):ﬂ / Yy (mS,w)e“ dw . (E.3)

An arbitrary Y,,(mS,w) is not guaranteed to have its corresponding time series y,,(mS,1).
The time series x(n) whose STFT X,,(mS, w) closest to Y,,(mS, w) is obtained by considering

the difference between X,,,(mS, w) and Y,,(mS, w) summed over time and frequency:

Lx(n),Y,,(m),w)] = Z % /ﬂ —7t| X, (mS, w) —Yw(mS,w)|2da). (F.4)

m=—oco

According to Parseval’s theorem (Hardy and Titchmarsh, 1931), Equation (F.4) can be

written as

LIx(), YumS,w)] = > > [og(mS,1) =y (mS. DI, (E5)

m=00 [=c0
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if there exists y,, (mS, ) which satisfies Equation (F.3). Because Equation (F.5) is a quadratic
from of x(n), a solution x(n) that minimizes Equation (F.5) is obtained by taking derivative

of Equation (F.5) with respect to x(n). Using Equation (F.2), the solution is

() = Yim=—oo W(MS — 1)y (mS, 1)
- Z;’(l):—oo WZ(mS - n) ’
Yo W(mS — n)% f_’; Y,o(mS, w)e' " dw

Z;’cl):—oo WZ(mS - n)

(F.6)

Modifying Equation (F.6), Griffin and Jae Lim (1984) presented the method to

estimate x(n) from the arbitrary mSTFT iteratively. Suppose x/ is the estimate at the j"

j+1

iteration, the (j + 1) estimate x/*! is given as
. > o w(msS — n)iﬂ ¢l (mS, w)e'“ dw
xj+1(n) _—m _ 2 /—rr w , (E.7)
Zm:—oo WZ(I’}’ZS - n)
where .
iy X;(mS,
X mS,0) = ¥y, ) 225 ) F3)
| X;,(mS, w)|

where )A(vjv(mS, w) is set to equal to |Y,,(mS,w)| with an arbitrary phase if |ijv(mS,a))| =0.
Equation (F.8) constrain the magnitude of the estimated STFT to always be the same as
|Y,,(mS,w)| and the inverse STFT in Equation (F.7) puts a hard constraint on the estimated
time series such that its STFT is )A(vf;(mS, w) so that the phase is implicitly estimated.
va;(mS, w) is obtained using Equation (F.1). Note that the GL transform converges to a

) and j™ iterations. However,

critical point, where the gradient of L is zero between (7 + 1
a critical point does not necessarily to be the global minimum as pointed in Griffin and Jae

Lim (1984).
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To fasten the convergence, Griffin and Jae Lim (1984) presented a modified version
called the FGL transformation. Let us rewrite the iteration rule in the GL transformation

by letting G denote the operator to get the STFT of the time series in Equation (F.1) as

X5 (mS,w) = GLx/ (m)] = )" wms = n)x/ ! (n)e~", (F.9)

[=—c0
and G~! denote the operator to get x/*! from X/ in Equation (F.7) as

Smeoo WmS =)z [ Ki(mS, ) des

Z;’cl):—oo WZ(mS - n)

) = GTUX (mS, w)] = (F.10)

The iteration rule for the estimated STFT in the GL transformation can be rewritten as

} , (F.11)

where X0 is chosen to be the STFT of the Gaussian noise. The FGL transformation adds

X! (mS. w)

1Y (mS, w)|—
" X2 (mS, w)|

XM mS,w) = G {G‘l

one extra step after Equation (F.11) per iteration as

: X/ (ms,
K mS.w) = G{G [KmS.) el 1L
| X;,(mS, w)|
X mS,w) = K (mS,w) + oK (mS, w) — KL (mS, w)]. (F.12)
where K0 = G[G‘l(lelé—Vz”')]. Equation (F.12) updates X, using the gradient between

the estimated STFT in the current and previous iterations by a factor of @ to fasten the
convergence. However, adding this extra step does not guarantee the theoretical convergence
as pointed in (Perraudin et al., 2013).

Figure 9 shows the FNR as a function of FGL iteration with & = 0.99 (recommended
value in Perraudin e al. (2013)). Values FNR are comparable after 20 iterations. We choose

32 iterations (default value in Cheuk ez al. (2020)) and @ = 0.99 in Paper 11
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Figure 9. Fraction of SN R reduction versus the number of FG L iterations for Scattered
Iight(lefl) and EXtremer IOUngitches. The solid curves denote the m edian values and the

shaded areas denote 1-”~ percentiles.

The data used in Paper Il does not guarantee the theoretical convergence inherited
from the algorithm of the FG L transform ation and the convergent point to be the global
minim um inherited from the G L transform ation. W e address the accuracy of the FG L

transform ation on the data used in Paper Il in the next section.

4.2. ACCURACY OF FAST GRIFFIN-LIM TRANSFORM

To quantify the accuracy of FG L transform , we calculate matCh M (defined in
Equation (4.5)) between extracted glitch waveforms and the FG L transformed time series
from the m STFT of the same extracted glitch waveform s. V alues of M range from -1
(fully anti-correlated) to 1 (perfect match). The FG L transformed time series has a phase
error. Also, we apply the phase correction before subtracting glitches from the data before
subtracting glitches. we also calculate the m atch m axim ized over phase and time, defined
as

[(a besztt)cumplex\
Mmax: argm ax f0 (F.13)

V («,a)(b,b)
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where the complex inner product (&, be>™f ) complex is defined as

a (f)b(f e
Sa(f) '

(51, Bezniﬂo)complex = 4/ df (F14)
0

We use extracted glitch waveforms in the testing set of Scattered light and Extremely
loud glitches with sample sizes of 678 and 1233, respectively. Figure 10 shows distributions
of the match and maximized match.

Samples with values of M ~ £1 and Mpax ~ 1 indicate that the FGL transformed
time series are similar to the original extracted-glitch waveforms with some degree of phase
shifts. Samples with values of M ~ 0 and My,x ~ 1 indicate that the FGL transformed
time series have phase shifts such that they mismatch with the extracted glitch waveforms.
Samples with values of M ~ 0 and M, ~ 0 indicate that the FGL transformed time series
mismatch with the original extracted-glitch waveforms with both phases and amplitudes.
The median and 90 percentile of absolute values of the time shift ¢y which maximizes the
match are ~ 0.02 (~ 0.003) and ~ 0.06 (~ 0.0034) seconds for Scattered light (Extremely
loud) glitches, respectively.

Figure 11 shows the optimal and least accurate FGL transformed time series. The
optimal and least values of Mpyax are ~ 0.27 (~ 0.27) and ~ 0.99 (~ 0.97) for Scattered
light (Extremely loud) glitches, respectively. The FGL transform seems to produce no
significant deviations on the amplitude in the portion where the extracted glitch waveforms
have amplitudes close to zero. Therefore, the amount of the mismatch seems to be due to the
amplitude difference in the portion where extracted glitch waveforms have large amplitudes.

To understand the meaning of values of M« between the FGL transformed time
series and the extracted glitch waveforms in terms of amplitude uncertainty of the FGL
transform, we calculate M,x between the extracted waveform and themselves injected
into the Gaussian noise with zero mean and a given standard deviation. Assuming the

FGL transformation provides the amplitude error following a Gaussian distribution with
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Figure 10. D istributions of the m atch M and maximized match M max betw een extracted
waveforms and FG L transformed waveforms for Scattered ||ght(left) and EXtremer IOUd
(right) glitches. Black lines denote the median values and dashed lines denote 1-a per-

centiles.

zero mean throughout time series, we can find the standard deviation of the G aussian
noise corresponding to the amplitude uncertainty of the FG L transform . W e find that
Scattered Iightand EXtremer IOUd glitches have the am plitude uncertainties equivalent to
the -~ 0.4a and -~ 8a noise, respectively, as shown in Figure 12. As discussed above,
the FG L transform ation produces no significant am plitude errors in the portion w here the
extracted glitch waveform s have am plitudes close to zero. Therefore, the above estim ates
using the noise w ith a given a has a bias for waveform s with larger am plitudes in lim ited
tim e portions such as EXtremer IOUd glitches. One of the possible approaches to correct
the phase and am plitudes of the FG L transform ed tim e series is to splitthe tim e series into

small segments and change the phase and am plitude in each segment (see details in Sec.

2.5).
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Figure 11. O ptimally (top) and least (bottom ) accurate FG L transformed time series (red)
and extracted glitch waveforms (gray) of Scattered Iight(lefl) and EXtremer IOUd (right)
glitches. The optimal and least values of M max are ~ 0.27 (~ 0.27) and ~ 0.99 (~ 0.97) for

Scattered light (Extremely loud) gritches, respectively.

4.3. TIM E W INDOW TO SUBTRACT G LITCHES

A pplying the FG L transform to the estim ated m STFT from the trained netw ork, we
obtain the estim ated glitch waveforms. U sing the estim ated glitch waveform s, we subtract
glitches from the data. In the glitch-subtraction process, we determ ine portions of the data
containing g glitches based on the estim ated glitch waveforms. W e only subtractthe data in
portions containing glitches and use the original data in the restportions w ithout the glitch
subtraction. To determ ine the data portions, we use the estim ated glitch waveforms in the

testing setw ith sam ple sizes of 678 and 1233 for Scattered“ghtand EXtremerIOUdglitches.

W e first calculate the absolute values of the estim ated glitch waveforms and then sm ooth
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Figure 12. M edian of m axim ized m atches (gray solid) betw een the extracted glitch wave-
forms and them selves injected into the G aussian distributed noise with zero mean and a
given standard deviation as well as the m edian ofm axim ized m atches (red dashed) betw een
the FG L transform ed tim e series and the extracted glitch waveforms forscattered“ght(leﬂ)

EXtremer IOUd(right) glitches. The shaded areas denote 1-~ percentiles.

the curve. W e consider data portions to be the regions where the sm oothed curves are above
thresholds. Sm allerthresholds m ake the data portions to be larger so thatlarger data are used
in the subtraction process, w here larger fractions of the data portions have no glitches and
no need to be subtracted. Largerthresholds m ake the data portions to be sm aller so thatonly
small fractions of glitches are subtracted. W e consider various percentiles of the absolute
value of the estim ated glitch waveforms as thresholds. Figure 13 shows the variation of
FNRs due to the choices of percentiles. W e find thatthe peak of median FNRs are obtained
w ith and 60 and 55 percentiles for Scattered Iightand EXtremer IOUd, respectively. Below
the peak values, values of FN R s are com patible w ithin the 1-2~ uncertainty because the
regions w ith the absence of glitches are not sim ilar to the corresponding portions of the
estim ated glitch waveform other than the G aussian fluctuations, causing no glitches to be
subtracted subtraction in thatregions. Larger percentiles corresponding to larger thresholds
let only sm all fractions of glitches be subtracted, causing sm aller values of FN R . Threshold
values used in Sec. 3.1 and Sec. 3.2 are 70 percentile and 90 percentile for Scattered“ght
and EXtremer IOUd, respectively, whose values of FN R are sm aller than the peak median

values by only ~ 3%
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Figure 13. Fraction of SN R reduction as a function of percentile as thresholds for the glitch
present portions for Scattered ||ght (left) and EXtremer IOUd (right) glitches. The solid

curves denote the median values and the shaded areas denote 1-~ percentiles.

4.4. COMPARISON OF ACCURACY BETW EEN M ODELED AND UNMODTELED

SEARCHES PIPELINES

Unmodeled GW search pipelines are typically less sensitive than m odeled pipelines.
The sky localization error regions obtained w ith the unm odeled search pipelines are also
less accurate than those obtained w ith m odeled pipelines. To compare their accuracy, we
make 9 sets ofinjected sim ulated B BH signals with the netw ork SN R of42.4,28.3,11.3 w ith
the component masses of (m1,m2) = (35,29),(20,15),(12,10) M 0 into simulated colored
G aussian noise with the LIG O design sensitivity in the two-detector netw ork. W e choose
the waveform coalescence phase, polarization angle, and cosine of the inclination angle
to be uniformly distributed in the intervals [0,2n], [0,n], and [-1,1]. W e use a modified
version of a pyCBC (N itz etal., 2020) script, pbeC_make_Skymap,and cW B (K limenko
etal., 2008, 2016) as m odeled and unm odeled sky-map generators, respectively.

Figure 14 shows the comparison of the contour levels at the injection directions.
63-82% of injections have their contour levels below 0.9 for in sky maps obtained by the
m odeled search irrespective of all used network SNRs. No more than 50% of injections
have their contour levels less than 0.9 for the sky m aps obtained by ¢cW B. For cW B, larger

componentmasses correspond to more accurate estim ates of the source directions because
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higher signal energy is concentrated on smaller time periods and the signal reconstructions
are more accurate. Sets with the network SNR of 11.3 have less than 53% of injections
found by ¢cWB because the ranking statistic p = 6 is chosen as a typical criterion to report
the reconstruction. The network SNR of 11.6 corresponds to p ~ 5.8, which is lower than

this criterion so that the majority of injections are not found for the network SNR of 11.6.
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Contour level at the injection direction

Figure 14. Com parisons of the contour level obtained by B ayestar (solid-black) and cW B
(dashed-red) for 512 sim ulated BB H signals with the network SNR of 42.4 (1strow), 28.3
(2nd row ), and 11.3 (3rd row) w ith the com ponent masses of (mi,m2) = (35,29) M 0 (1st
column), (m1,m2) = (20,15) M 0 (2nd colummnn), and (m1l,m2) = (12,10) M 0 (3rd colum n)
injected into the sim ulated colored G aussian data w ith LIG O 's design sensitivity. T he first
and second quoted values are the percents of injections w ith their contour levels below 0.9
in the sky maps obtained by Bayestar and c¢cW B, respectively. The last guoted values are

percents of injections found by cW B .



193

REFERENCES

Aasi, J. et al., *Advanced LIGO,” Class. Quant. Grav., 2015, 32, p. 074001, doi: 10.1088/
0264-9381/32/7/074001.

Abadie, J. et al., ‘A Gravitational wave observatory operating beyond the quantum shot-
noise limit: Squeezed light in application,” Nature Phys., 2011, 7, pp. 962-965, doi:
10.1038/nphys2083.

Abbott, B. et al., ‘Search for gravitational waves from galactic and extra-galactic binary
neutron stars,” Phys. Rev. D, 2005, 72, p. 082001, doi: 10.1103/PhysRevD.72.
082001.

Abbott, B. eral., ‘GW150914: Implications for the stochastic gravitational wave background
from binary black holes,” Phys. Rev. Lett., 2016a, 116(13), p. 131102, doi: 10.1103/
PhysRevLett.116.131102.

Abbott, B. er al., ‘All-sky search for continuous gravitational waves from isolated neutron
stars using Advanced LIGO O2 data,” Phys. Rev. D, 2019a, 100(2), p. 024004, doi:
10.1103/PhysRevD.100.024004.

Abbott, B. et al., ‘All-sky search for long-duration gravitational-wave transients in the
second Advanced LIGO observing run,” Phys. Rev. D, 2019b, 99(10), p. 104033,
doi: 10.1103/PhysRevD.99.104033.

Abbott, B. P. et al., ‘A First Targeted Search for Gravitational-Wave Bursts from Core-
Collapse Supernovae in Data of First-Generation Laser Interferometer Detectors,’
Phys. Rev. D, 2016b, 94(10), p. 102001, doi: 10.1103/PhysRevD.94.102001.

Abbott, B. P. eral., * All-sky search for long-duration gravitational wave transients with initial
LIGO,” Phys. Rev. D, 2016¢, 93(4), p. 042005, doi: 10.1103/PhysRevD.93.042005.

Abbott, B. P. er al., ‘GW150914: First results from the search for binary black hole
coalescence with Advanced LIGO,” Phys. Rev. D, 2016d, 93(12), p. 122003, doi:
10.1103/PhysRevD.93.122003.

Abbott, B. P. er al., ‘Observation of Gravitational Waves from a Binary Black Hole Merger,’
Phys. Rev. Lett., 2016e, 116(6), p. 061102, doi: 10.1103/PhysRevLett.116.061102.

Abbott, B. P. er al., ‘Exploring the Sensitivity of Next Generation Gravitational Wave
Detectors,” Class. Quant. Grav., 2017a, 34(4), p. 044001, doi: 10.1088/1361-6382/
aa5S1f4.

Abbott, B. P. et al., ‘Gravitational Waves and Gamma-Rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A, Astrophys. J., 2017b, 848(2), p. L13, doi:
10.3847/2041-8213/aa920c.



194

Abbott, B. P. er al., ‘Gwl170817: Observation of gravitational waves from a bi-
nary neutron star inspiral, Phys. Rev. Lett., Oct 2017c, 119, p. 161101, doi:
10.1103/PhysRevLett.119.161101.

Abbott, B. P. er al., ‘Multi-messenger Observations of a Binary Neutron Star Merger,’
Astrophys. J., 2017d, 848(2), p. L 12, doi: 10.3847/2041-8213/aa91¢9.

Abbott, B. P. eral., “The basic physics of the binary black hole merger GW150914,” Annalen
Phys., 2017e, 529(1-2), p. 1600209, doi: 10.1002/andp.201600209.

Abbott, B. P. et al., ‘All-sky search for long-duration gravitational wave transients in the
first Advanced LIGO observing run,” Class. Quant. Grav., 2018, 35(6), p. 065009,
doi: 10.1088/1361-6382/aaab76.

Abbott, B. P. er al., ‘All-Sky Search for Short Gravitational-Wave Bursts in the Second
Advanced LIGO and Advanced Virgo Run,” Phys. Rev. D, 2019c¢, 100(2), p. 024017,
doi: 10.1103/PhysRevD.100.024017.

Abbott, B. P. er al., ‘Gwtc-1: A gravitational-wave transient catalog of compact binary

mergers observed by ligo and virgo during the first and second observing runs,’
Phys. Rev. X, Sep 2019d, 9, p. 031040, doi: 10.1103/PhysRevX.9.031040.

Abbott, B. P. er al., ‘Search for gravitational-wave signals associated with gamma-ray
bursts during the second observing run of Advanced LIGO and Advanced Virgo,’
Astrophys. J., 2019, 886, p. 75, doi: 10.3847/1538-4357/ab4b48.

Abbott, B. P. er al., ‘Prospects for observing and localizing gravitational-wave transients
with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Rel., 2020a,
23(1), p. 3, doi: 10.1007/s41114-020-00026-9.

Abbott, B. P. er al., *A Gravitational-wave Measurement of the Hubble Constant Following
the Second Observing Run of Advanced LIGO and Virgo,” Astrophys. J., 2021a,
909(2), p. 218, doi: 10.3847/1538-4357/abdcb7.

Abbott, R. er al., ‘Search for Gravitational Waves Associated with Gamma-Ray Bursts
Detected by Fermi and Swift During the LIGO-Virgo Run O3a,” 10 2020b.

Abbott, R. er al., ‘GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo
During the First Half of the Third Observing Run,” Phys. Rev. X, 2021b, 11, p.
021053, doi: 10.1103/PhysRevX.11.021053.

Abbott, R. et al., ‘Tests of general relativity with binary black holes from the second
LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D, 2021c¢, 103(12), p.
122002, doi: 10.1103/PhysRevD.103.122002.

Acernese, F. eral., ‘Advanced Virgo: a second-generation interferometric gravitational wave
detector,” Class. Quant. Grav., 2015, 32(2), p. 024001, doi: 10.1088/0264-9381/32/
2/024001.



195

Akutsu, T. eral., ‘Overview of KAGRA: Detector design and construction history,” Progress
of Theoretical and Experimental Physics, 08 2020, 2021(5), ISSN 2050-3911, doi:
10.1093/ptep/ptaal 25, 05A101.

Allen, B., * y“ time-frequency discriminator for gravitational wave detection,” Phys. Rev. D,
Mar 2005, 71, p. 062001, doi: 10.1103/PhysRevD.71.062001.

Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., and Creighton, J. D. E., ‘FIND-
CHIRP: An Algorithm for detection of gravitational waves from inspiraling compact
binaries,” Phys. Rev. D, 2012, 85, p. 122006, doi: 10.1103/PhysRevD.85.122006.

Ashton, G., Hiibner, M., Lasky, P. D., Talbot, C., Ackley, K., Biscoveanu, S., Chu, Q.,
Divakarla, A., Easter, P. J., Goncharov, B., Vivanco, F. H., Harms, J., Lower, M. E.,
Meadors, G. D., Melchor, D., Payne, E., Pitkin, M. D., Powell, J., Sarin, N., Smith,
R. J. E., and Thrane, E., ‘Bilby: A user-friendly bayesian inference library for
gravitational-wave astronomy,” The Astrophysical Journal Supplement Series, apr
2019, 241(2), p. 27, doi: 10.3847/1538-4365/ab06fc.

Bengio, Y., Simard, P., and Frasconi, P., ‘Learning long-term dependencies with gradient
descent is difficult,” IEEE Transactions on Neural Networks, 1994, 5(2), pp. 157-
166, doi: 10.1109/72.279181.

Biswas, R. et al., ‘Application of machine learning algorithms to the study of noise artifacts
in gravitational-wave data,” Phys. Rev. D, 2013, 88(6), p. 062003, doi: 10.1103/
PhysRevD.88.062003.

Bond, C., Brown, D., Freise, A., and Strain, K., ‘Interferometer techniques for gravitational-
wave detection,” LIVING REVIEWS IN RELATIVITY, December 2016, 19, pp.
1-221, ISSN 1433-8351, doi: 10.1007/s41114-016-0002-8.

Brown, D. A., Searching for gravitational radiation from binary black hole MACHOs in the
galactic halo, Other thesis, 12 2004.

Burrows, A., Hayes, J., and Fryxell, B. A., ‘On the nature of core collapse supernova
explosions,” Astrophys. J., 1995, 450, p. 830, doi: 10.1086/176188.

Cannon, K. C., ‘Efficient algorithm for computing the time-resolved full-sky cross power
in an interferometer with omnidirectional elements,” Phys. Rev. D, Jun 2007, 75, p.
123003, doi: 10.1103/PhysRevD.75.123003.

Carroll, S., Spacetime and Geometry: An Introduction to General Relativity, Benjamin
Cummings, 2003, ISBN 0805387323.

Chatterjee, C., Wen, L., Vinsen, K., Kovalam, M., and Datta, A., ‘Using Deep Learning to
Localize Gravitational Wave Sources,” Phys. Rev. D, 2019, 100(10), p. 103025, doi:
10.1103/PhysRevD.100.103025.



196

Chatterji, S., Blackburn, L., Martin, G., and Katsavounidis, E., ‘Multiresolution techniques
for the detection of gravitational-wave bursts,” Class. Quant. Grav., 2004, 21, pp.
S1809-S1818, doi: 10.1088/0264-9381/21/20/024.

Chatziioannou, K., Cornish, N., Wijngaarden, M., and Littenberg, T. B., ‘Modeling compact
binary signals and instrumental glitches in gravitational wave data,” Phys. Rev. D,
2021, 103(4), p. 044013, doi: 10.1103/PhysRevD.103.044013.

Cheuk, K. W., Anderson, H., Agres, K., and Herremans, D., ‘nnaudio: An on-the-fly gpu
audio to spectrogram conversion toolbox using 1d convolutional neural networks,’
IEEE Access, 2020, 8, pp. 161981-162003, doi: 10.1109/ACCESS.2020.3019084.

Cokelaer, T., ‘Gravitational waves from inspiralling compact binaries: Hexagonal template
placement and its efficiency in detecting physical signals,” Phys. Rev. D, 2007, 76,
p. 102004, doi: 10.1103/PhysRevD.76.102004.

Cornish, N. J., ‘Rapid and Robust Parameter Inference for Binary Mergers,” Phys. Rev. D,
2021, 103(10), p. 104057, doi: 10.1103/PhysRevD.103.104057.

Cornish, N. J. and Littenberg, T. B., ‘Bayeswave: Bayesian inference for gravitational wave
bursts and instrument glitches,” Classical and Quantum Gravity, Jun 2015, 32, p.
135012, doi: 10.1088/0264-9381/32/13/135012.

Couch, S. M. and Ott, C. D., ‘The Role of Turbulence in Neutrino-Driven Core-Collapse
Supernova Explosions,” Astrophys. J., 2015, 799(1), p. 5, doi: 10.1088/0004-637X/
799/1/5.

Davis, D., Massinger, T. J., Lundgren, A. P., Driggers, J. C., Urban, A. L., and Nuttall,
L. K., ‘Improving the Sensitivity of Advanced LIGO Using Noise Subtraction,’
Class. Quant. Grav., 2019, 36(5), p. 055011, doi: 10.1088/1361-6382/ab01c5.

Davis, D. et al., ‘LIGO Detector Characterization in the Second and Third Observing Runs,’
Class. Quant. Grav., 2021, 38(13), p. 135014, doi: 10.1088/1361-6382/abfd85.

Drago, M., Search for transient gravitational wave signals with a known waveform in the
LIGO Virgo network of interferometric detectors using a fully coherent algorithm,
Ph.D. thesis, Padua U., 2010.

Einstein, A., ‘Zur elektrodynamik bewegter korper,” Annalen der Physik, 1905, 322(10),
pp. 891-921, doi: https://doi.org/10.1002/andp.19053221004.

Einstein, A., ‘The Field Equations of Gravitation,” Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys. ), 1915, 1915, pp. 844-847.

Einstein, A., ‘Nédherungsweise Integration der Feldgleichungen der Gravitation,” Sitzungs-
berichte der Koniglich Preulischen Akademie der Wissenschaften (Berlin, January
1916, pp. 688-696.


https://doi.org/10.1002/andp.19053221004

197

Essick, R., Godwin, P., Hanna, C., Blackburn, L., and Katsavounidis, E., ‘iDQ: Statistical
inference of non-gaussian noise with auxiliary degrees of freedom in gravitational-
wave detectors,” Machine Learning: Science and Technology, dec 2020, 2(1), p.
015004, doi: 10.1088/2632-2153/abab5f.

Finn, L. S., ‘Detection, measurement, and gravitational radiation,” Phys. Rev. D, Dec 1992,
46, pp. 5236-5249, doi: 10.1103/PhysRevD.46.5236.

Goldstein, A. eral., ‘An Ordinary Short Gamma-Ray Burst with Extraordinary Implications:
Fermi-GBM Detection of GRB 170817A," Astrophys. J. Lett., 2017, 848(2), p. L14,
doi: 10.3847/2041-8213/aa8f41.

Griffin, D. and Jae Lim, ‘Signal estimation from modified short-time fourier transform,’
IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(2), pp.
236243, doi: 10.1109/TASSP.1984.1164317.

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S.,
‘Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit,” Nature, 07 2000, 405, pp. 947-51, doi: 10.1038/35016072.

Hardy, G. H. and Titchmarsh, E., ‘A Note on Parseval’s Theorem for Fourier Transforms,’
Journal of the London Mathematical Society, 01 1931, s1-6(1), pp. 44-48, ISSN
0024-6107, doi: 10.1112/jlms/s1-6.1.44.

Harry, I. W., Allen, B., and Sathyaprakash, B., ‘A Stochastic template placement algorithm
for gravitational wave data analysis,” Phys. Rev. D, 2009, 80, p. 104014, doi: 10.
1103/PhysRevD.80.104014.

Herant, M., ‘The convective engine paradigm for the supernova explosion mechanism and
its consequences,” Physics Reports, 1995, 256(1), pp. 117-133, ISSN 0370-1573,
doi: https://doi.org/10.1016/0370-1573(94)00105-C, the Physics of Supernovae.

Hochreiter, S. and Schmidhuber, J., ‘Long Short-Term Memory,” Neural Computation, 11
1997, 9(8), pp. 1735-1780, ISSN 0899-7667, doi: 10.1162/neco0.1997.9.8.1735.

Hulse, R. and Taylor, J., ‘Discovery of a pulsar in a binary system,  Astrophys. J. Lett.,
1975, 195, pp. L51-L53, doi: 10.1086/181708.

Iyer, B. et al., ‘LIGO-India, Proposal of the Consortium for Indian Initiative in Gravitational-
wave Observations (IndIGO),” 2011.

Joyce, J. M., Kullback-Leibler Divergence, pp. 720-722, Springer Berlin Heidelberg, Berlin,
Heidelberg, ISBN 978-3-642-04898-2, 2011, doi: 10.1007/978-3-642-04898-2_
327.

Khan, S., Husa, S., Hannam, M., Ohme, F., Pirrer, M., Forteza, X. J., and Bohé, A.,
‘Frequency-domain gravitational waves from nonprecessing black-hole binaries. ii.
a phenomenological model for the advanced detector era,” Phys. Rev. D, Feb 2016,
93, p. 044007, doi: 10.1103/PhysRevD.93.044007.


https://doi.org/10.1016/0370-1573(94)00105-C

198

Kingma, D. and Ba, J., ‘Adam: A method for stochastic optimization,” International Con-
ference on Learning Representations, 12 2014.

Kittel, C., Elementary Statistical Physics, Dover Books on Physics Series, Dover Publica-
tions, 2004, ISBN 9780486435145.

Klimenko, S., Mohanty, S., Rakhmanov, M., and Mitselmakher, G., ‘Constraint likelihood
analysis for a network of gravitational wave detectors,” Phys. Rev. D, 2005, 72, p.
122002, doi: 10.1103/PhysRevD.72.122002.

Klimenko, S., Mohanty, S., Rakhmanov, M., and Mitselmakher, G., ‘Constraint likelihood
method: generalization for colored noise.” Journal of Physics: Conference Series,
mar 2006, 32, pp. 12-17, doi: 10.1088/1742-6596/32/1/003.

Klimenko, S., Yakushin, 1., Mercer, A., and Mitselmakher, G., ‘Coherent method for
detection of gravitational wave bursts,” Class. Quant. Grav., 2008, 25, p. 114029,
doi: 10.1088/0264-9381/25/11/114029.

Klimenko, S. et al., ‘Method for detection and reconstruction of gravitational wave transients
with networks of advanced detectors,” Phys. Rev. D, 2016, 93(4), p. 042004, doi:
10.1103/PhysRevD.93.042004.

Kumar, P. and Granot, J., ‘The Evolution of a structured relativistic jet and GRB afterglow
light- curves,” Astrophys. J., 2003, 591, pp. 1075-1085, doi: 10.1086/375186.

LIGO Scientific Collaboration, ‘LIGO Algorithm Library - LALSuite,” free software (GPL),
2018, doi: 10.7935/GT1W-FZ16.

Luck, H. et al., “The upgrade of GEO600,” J. Phys. Conf. Ser., 2010, 228, p. 012012, doi:
10.1088/1742-6596/228/1/012012.

Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., and Robinet, F., ‘Information-theoretic
approach to the gravitational-wave burst detection problem,” Phys. Rev. D, 2017,
95(10), p. 104046, doi: 10.1103/PhysRevD.95.104046.

Macleod, D., Urban, A. L., Coughlin, S., Massinger, T., Pitkin, M., rngeorge, paulaltin,
Areeda, J., Singer, L., Quintero, E., Leinweber, K., and Badger, T. G., ‘gwpy/gwpy:
2.0.2, December 2020, doi: 10.5281/zenodo.4301851.

Manca, G. M. and Vallisneri, M., ‘Cover art: Issues in the metric-guided and metric-less
placement of random and stochastic template banks,” Phys. Rev. D, 2010, 81, p.
(024004, doi: 10.1103/PhysRevD.81.024004.

Massey, F. J., ‘The Kolmogorov-Smirnov test for goodness of fit,” Journal of the American
Statistical Association, 1951, 46(253), pp. 68-78.

Meers, B. J., ‘Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev.
D, Oct 1988, 38, pp. 2317-2326, doi: 10.1103/PhysRevD.38.2317.



199

Michelson, A. A. and Morley, E. W., ‘On the Relative Motion of the Earth and the Luminif-
erous Ether,” Am. J. Sci., 1887, 34, pp. 333-345, doi: 10.2475/ajs.s3-34.203.333.

Misner, C. W., Thorne, K. S., and Wheeler, J. A., Gravitation, W. H. Freeman, San
Francisco, 1973, ISBN 978-0-7167-0344-0, 978-0-691-17779-3.

Modjaz, M., ‘Stellar Forensics with the Supernova-GRB Connection,” Astron. J., 2011,
332, p. 434, doi: 10.1002/asna.201111562.

Mogushi, K., ‘Application of a new transient-noise analysis tool for an unmodeled
gravitational-wave search pipeline,” Classical and Quantum Gravity, 2021a.

Mogushi, K., ‘Reduction of transient noise artifacts in gravitational-wave data using deep
learning,” 5 2021b.

Mogushi, K., Cavaglia, M., and Siellez, K., ‘Jet geometry and rate estimate of coincident
gamma-ray burst and gravitational-wave observations,” The Astrophysical Journal,
jul 2019, 880(1), p. 55, doi: 10.3847/1538-4357/ab1176.

Mogushi, K., Quitzow-James, R., Cavaglia, M., Kulkarni, S., and Hayes, F., ‘Nnetfix:
An artificial neural network-based denoising engine for gravitational-wave signals,’
Machine Learning: Science and Technology, 2021.

Mooley, K. P., Deller, A. T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., Frail, D. A.,
Horesh, A., Corsi, A., and Hotokezaka, K., ‘Superluminal motion of a relativistic
jet in the neutron-star merger GW 170817, Nature, 2018, 561(7723), pp. 355-359,
doi: 10.1038/s41586-018-0486-3.

Nair, V. and Hinton, G. E., ‘Rectified linear units improve restricted boltzmann ma-
chines,” in ‘Proceedings of the 27th International Conference on International Con-
ference on Machine Learning,” ICML 10, Omnipress, Madison, WI, USA, ISBN
9781605589077, 2010 p. 807-814.

Necula, V., Klimenko, S., and Mitselmakher, G., ‘Transient analysis with fast Wilson-
Daubechies time-frequency transform,” J. Phys. Conf. Ser., 2012, 363, p. 012032,
doi: 10.1088/1742-6596/363/1/012032.

Neyman, J. and Pearson, E. S., ‘On the Problem of the Most Efficient Tests of Statistical
Hypotheses,” Phil. Trans. Roy. Soc. Lond. A, 1933, 231(694-706), pp. 289-337, doi:
10.1098/rsta.1933.0009.

Nitz, A., Harry, 1., Brown, D., Biwer, C. M., Willis, J., Canton, T. D., Capano, C., Pekowsky,
L., Dent, T., Williamson, A. R., Davies, G. S., De, S., Cabero, M., Machenschalk,
B.., Kumar, P., Reyes, S., Macleod, D., Pannarale, F., dfinstad, Massinger, T., Tdpai,
M., Singer, L., Khan, S., Fairhurst, S., Kumar, S., Nielsen, A., shasvath, Dorrington,
L, Lenon, A., and Gabbard, H., ‘gwastro/pycbc: Pycbc release 1.16.4,” Jun 2020,
doi: 10.5281/zenodo.3904502.



200

Ormiston, R., Nguyen, T., Coughlin, M., Adhikari, R. X., and Katsavounidis, E., ‘Noise
Reduction in Gravitational-wave Data via Deep Learning,” Phys. Rev. Res., 2020,
2(3), p. 033066, doi: 10.1103/PhysRevResearch.2.033066.

Ott, C., ‘The Gravitational Wave Signature of Core-Collapse Supernovae,” Class. Quant.
Grav., 2009, 26, p. 063001, doi: 10.1088/0264-9381/26/6/063001.

Pankow, C. et al., ‘Mitigation of the instrumental noise transient in gravitational-wave data
surrounding gw170817, Phys. Rev. D, Oct 2018, 98, p. 084016, doi: 10.1103/
PhysRevD.98.084016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E., ‘Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, 2011, 12, pp. 2825-2830.

Perraudin, N., Balazs, P., and Sgndergaard, P. L., ‘A fast griffin-lim algorithm,” in ‘2013
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,’
2013 pp. 1-4, doi: 10.1109/WASPAA.2013.6701851.

Pescalli, A., Ghirlanda, G., Salafia, O. S., Ghisellini, G., Nappo, F., and Salvaterra, R.,
‘Luminosity function and jet structure of Gamma-Ray Burst,” Mon. Not. Roy. Astron.
Soc., 2015, 447(2), pp. 1911-1921, doi: 10.1093/mnras/stu2482.

Poisson, E. and Will, C. M., Gravity: Newtonian, Post-Newtonian, Relativistic, Cambridge
University Press, 2014, doi: 10.1017/CBO9781139507486.

Rhoads, J. E., ‘The dynamics and light curves of beamed gamma-ray burst afterglows,’
Astrophys. J., 1999, 525, pp. 737-749, doi: 10.1086/307907.

Riles, K., ‘Gravitational Waves: Sources, Detectors and Searches,” Prog. Part. Nucl. Phys.,
2013, 68, pp. 1-54, doi: 10.1016/j.ppnp.2012.08.001.

Robinet, F., Arnaud, N., Leroy, N., Lundgren, A., Macleod, D., and Mclver, J., ‘Omi-
cron: A tool to characterize transient noise in gravitational-wave detectors,” Soft-
wareX, 2020, p. 100620, ISSN 2352-7110, doi: https://doi.org/10.1016/j.softx.
2020.100620.

Rosenblatt, F., ‘Principles of neurodynamics. perceptrons and the theory of brain mecha-
nisms,” Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

Rossi, E., Lazzati, D., and Rees, M. J., ‘Afterglow lightcurves, viewing angle and the jet
structure of gamma-ray bursts,” Mon. Not. Roy. Astron. Soc., 2002, 332, p. 945, doi:
10.1046/j.1365-8711.2002.05363 x.

Saulson, P., Fundamentals of Interferometric Gravitational Wave Detectors, World Scien-
tific, 1994, ISBN 9789810218201.


https://doi.org/10.1016/j.softx

201

Schnabel, R., Mavalvala, N., Mcclelland, D. E., and Lam, P. K., ‘Quantum metrology for
gravitational wave astronomy,” Nature Commun., 2010, 1(8), p. 121, doi: 10.1038/
ncomms1122.

Singer, L. P. and Price, L. R., ‘Rapid bayesian position reconstruction for gravitational-
wave transients,” Phys. Rev. D, Jan 2016, 93, p. 024013, doi: 10.1103/PhysRevD.
93.024013.

Sutton, P. J. et al., ‘X-Pipeline: An Analysis package for autonomous gravitational-wave
burst searches,” New J. Phys., 2010, 12, p. 053034, doi: 10.1088/1367-2630/12/5/
053034,

Tse, M. et al., ‘Quantum-enhanced advanced ligo detectors in the era of gravitational-wave
astronomy,” Phys. Rev. Lett., Dec 2019, 123, p. 231107, doi: 10.1103/PhysRevLett.
123.231107.

Usman, S. A. et al., ‘The pycbc search for gravitational waves from compact binary coales-
cence,” Class. Quant. Grav., 2016, 33(21), p. 215004, doi: 10.1088/0264-9381/33/
21/215004.

Van Den Broeck, C., Brown, D. A., Cokelaer, T., Harry, 1., Jones, G., Sathyaprakash, B.,
Tagoshi, H., and Takahashi, H., “Template banks to search for compact binaries with

spinning components in gravitational wave data,” Phys. Rev. D, 2009, 80, p. 024009,
doi: 10.1103/PhysRevD.80.0240009.

Vitale, S., Gerosa, D., Farr, W. M., and Taylor, S. R., ‘Inferring the properties of a population
of compact binaries in presence of selection effects,” 7 2020.

Wei, W. and Huerta, E. A., ‘Gravitational Wave Denoising of Binary Black Hole Mergers
with Deep Learning,” Phys. Lett. B, 2020, 800, p. 135081, doi: 10.1016/j.physletb.
2019.135081.

Yu, H. et al., ‘Quantum correlations between light and the kilogram-mass mirrors of LIGO,’
Nature, 2020, 583(7814), pp. 43—47, doi: 10.1038/s41586-020-2420-8.

Zevin, M. et al., ‘Gravity Spy: Integrating Advanced LIGO Detector Characterization, Ma-
chine Learning, and Citizen Science,” Class. Quant. Grav., 2017, 34(6), p. 064003,
doi: 10.1088/1361-6382/aaScea.

Zhang, B. and Meszaros, P., ‘Gamma-ray burst beaming: a universal configuration with a
standard energy reservoir?’ Astrophys. J., 2002, 571, pp. 876-879, doi: 10.1086/
339981.

Zheng, Y., Cavaglia, M., Quitzow-James, R., and Mogushi, K., ‘A needle in (many)
haystacks: Using the false alarm rate to sift gravitational waves from noise,” Signif-
icance, 02 2021, 18, pp. 26-31, doi: 10.1111/1740-9713.01488.



202

VITA

Kentaro Mogushi was born in BangKog, Thailand. He received his bachelor of
science in the physics department at the Saitama University in 2015 with the award of
an excellent student. He moved to the University of Mississippi and received a master’s
degree in the Physics department in May 2019. In June 2019, he began studying at the
Missouri University of Science and Technology and was awarded first prize at the 26th
annual Schearer Prize Competition in the physics department. In July 2021, he received his
Ph.D. degree in the Physics from Missouri University of Science and Technology, Rolla,
MO. His research interests included probability theories, data analysis techniques such as
machine learning algorithms, and astrophysics along with general relativity. He published

his studies related to the above interests.



	Improving the data quality in gravitation-wave detectors by mitigating transient noise artifacts
	Recommended Citation

	tmp.1631111403.pdf.YrrQp

