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ABSTRACT

iii

Proper orthogonal decomposition (POD) projection errors and error bounds for POD 

reduced order models of partial differential equations have been studied by many. In this 

research we obtain new results regarding POD data approximation theory and present a new 

difference quotient (DQ) approach for computing the POD modes of the data.

First, we improve on earlier results concerning POD projection errors by extending to 

a more general framework that allows for non-orthogonal POD projections and seminorms. 

We obtain new exact error formulas and convergence results for POD data approximation 

errors, and also prove new pointwise convergence results and error bounds for POD projec­

tions. We consider both the discrete and continuous cases of POD within this generalized 

framework. We also apply our results to several example problems, and show how the new 

results improve on previous work.

Next, we consider the relationship between POD, difference quotients (DQs), and 

pointwise ROM error bounds. It is known that including DQs is necessary in order to prove 

optimal pointwise in time error bounds for POD reduced order models of the heat equation. 

We introduce a new approach to including DQs in the POD procedure to further investigate 

the role DQs play in POD numerical analysis. Instead of computing the POD modes using 

all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs 

and special POD weights. We show that this approach retains all of the numerical analysis 

benefits of the standard POD DQ approach, while using a POD data set that has half the 

number of snapshots as the standard POD DQ approach, i.e., the new approach is more 

computationally efficient. We illustrate our theoretical results with numerical experiments.
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1. INTRODUCTION

Proper orthogonal decomposition (POD) is a model order reduction technique for 

partial differential equations (PDEs) and other mathematical models. With this method, 

modes are computed from simulation or experimental data and a Galerkin projection is 

used with these modes to reduce the model. Because POD reduced order models often have 

very low dimension, they can be used to efficiently simulate computationally demanding 

problems. Therefore, POD has been used in many fields of study including fluid dynamics 

[2, 3, 4, 5, 6, 7, 8, 9, 10] and control theory [11, 12, 13]. For more information about POD 

and many known results, see, e.g., [14,15,16,17]. Because of the wide use of POD in many 

application areas, it is of great interest to study the approximation errors in POD model 

order reduction procedures. Numerical analysis results for POD reduced order models of 

PDEs were first obtained by Kunisch and Volkwein [18, 19], and then by many others; see, 

e.g., [1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] and the references therein.

In this work we obtain new results regarding POD data approximation theory and 

present a new difference quotient (DQ) approach for computing the POD modes of the data.

Understanding POD data approximation errors is typically important for these nu­

merical analysis works. To see this, let w be the solution of the mathematical model, let wr 

be the solution of the POD reduced order model, and let nr be a projection onto the span of 

the first r  POD modes. Split the error as

w -  wr = p r + 6r, p r = w -  nrw, 6r = nrw -  wr.

Energy estimates can often be used to bound Qr by quantities including various norms of 

p r , the POD data approximation error for that projection.
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In [1], exact error formulas and convergence results were proven for norms of p r 

involving two Hilbert spaces, where one space is a subset of the other. In that work, Singler 

considered the continuous POD setting and proved results for different combinations of 

POD spaces, projections, and norms. Shortly after [1], Iliescu and Wang [25] provided 

analogous error formulas for the discrete POD case, and many of the recent numerical 

analysis works mentioned above use results from [1, 25] or extensions of these results to 

other scenarios.

As POD is increasingly applied in a variety of situations, it becomes more useful 

to have error results that can be easily applied in a wide range of scenarios. Therefore, in 

Section 3 we extend POD data approximation results in [1, 25] to a generalized framework 

that allows us to treat non-orthogonal POD projections and seminorms. We prove new 

error formulas and convergence results for norms of quantities involving p r = w -  nrw with 

various POD projections nr . We also prove new pointwise convergence results for different 

POD projections. Non-orthogonal POD projections have been used in the numerical analysis 

for POD reduced order models [24, 27]; however, the exact POD data approximation error 

formulas and convergence results obtained here are new. Exact POD data approximation 

errors using various seminorms have been obtained in some cases (see, e.g., [35, Section 

3.3], [28, Lemma 3.1]); the general extension and convergence results in this work are new. 

Finally, some pointwise convergence results for POD projections were obtained in [1]; we 

obtain new error bounds and improved convergence results here.

The POD data approximation error formulas presented here are exact and do not 

require the use of POD inverse inequalities. We consider both the discrete and continuous 

cases for POD and generalize the setting in [1, 25] to allow a linear mapping between two 

Hilbert spaces to act on the data. We require minimal assumptions on the data, the linear 

operator, and the Hilbert spaces; the assumptions we do require are naturally satisfied in
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many applications and allow us to obtain convergence results even in the fully continuous 

case when the data has infinitely many positive POD eigenvalues. Note that most of the 

proof strategies in this work are new; some proofs do rely on techniques from [1, 36].

As mentioned above the widespread use of POD in applications has caused many 

researchers to study POD ROMs from a numerical analysis perspective. In order for POD to 

be beneficial for applications, researchers must understand how the various errors involved 

behave. To fully understand this for PDEs, three types of error must be considered: spatial 

discretization error, time discretization error, and ROM discretization error. The optimality 

of these errors is of particular concern. POD numerical analysis papers tend to focus on the 

time discretization error and the ROM discretization error since the spatial discretization 

error can typically be handled using existing techniques. For more information on these 

three types of error and the numerical analysis of POD, see the introduction of the recent 

work [37]. In this thesis, we focus only on the POD ROM errors which leads to an improved 

understanding of the numerical analysis of POD ROMs, particularly in regards to difference 

quotients and pointwise error bounds.

In Section 4 we focus on various approaches to creating POD modes from the data. 

Two of the most common existing methods are considered, and we introduce a new method. 

The first existing approach is a standard method to compute the POD modes and uses 

only the data, and the second existing approach utilizes both the data and the DQs of the 

data. Researchers originally started including DQs in the POD calculations to improve the 

numerical analysis results for POD reduced order models as in [18]. For other numerical 

analysis results for POD ROMs using difference quotients see [19, 38, 39, 40, 41]. Further, 

DQs have been used in many reduced order modeling applications including feedback 

control for PDEs [42], subdiffusion equations [41], modeling the dynamics of a spiking 

neuron [40], and partial-integro-differential equations in financial modeling [43]. For a 

variety of additional applications see [31, 44, 45, 46].
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Researchers have been curious about the role DQs play in the behavior of the ROM 

and whether or not they should be included in the POD computations. In general, results on 

this topic were inconclusive. However in 2014, substantial progress was made by Iliescu and 

Wang in [38] towards understanding this. In [38] a notion of optimality was introduced and 

their results strongly suggested that DQs are needed to achieve optimal pointwise-in-time 

convergence rates. Recently in [37], further progress was made. In this work it is shown that 

a critical assumption often made when using standard POD without DQs is automatically 

guaranteed to be satisfied when DQs are included with the data. The notion of optimality 

introduced in [38] is extended, and it is shown that including difference quotients results in 

optimal POD projection errors and ROM errors. The second primary goal of the thesis is 

to further investigate and understand pointwise error bounds in the POD-ROM setting.

To do this, in Section 4 we introduce a new approach to deriving POD modes from 

the data. When using all of the data with all of the DQs, the resulting data set is linearly 

dependent, i.e. the data set being used contains redundant information. This also leads to 

more costly POD basis computations compared to standard POD without DQs. In order to 

improve this situation, we consider the following question: Can we obtain all o f the same 

numerical analysis benefits o f using DQs with POD using a data set without redundancy? 

We show that the answer is yes, if we choose the data set and POD weights in a correct 

way. For our new approach we use only the first data snapshot and all of the difference 

quotients. This new approach to using DQs with POD uses a data set without redundancy in 

the following sense: if the original set of M snapshots is linearly independent, then the data 

set used in our new DQ approach has dimension M and is also linearly independent. Using 

this new collection of data and special POD weights, we are not only able to approximate 

the DQs and the one regular snapshot, but all of the other regular snapshot data as well. 

With this method we also prove that we retain the numerical analysis benefits that come 

with having the DQs in the POD data set.
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The material in this dissertation is mostly from the works [47] and [48]. Some small 

changes have been made to increase readability and unify information, notation, and results 

between the works.
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2. BACKGROUND

In this section, we recall some functional analysis background material, the basic 

theory for discrete POD and continuous POD as well as results on the optimality of POD. 

For details and proofs for the basic discrete and continuous POD theory, see, e.g., [14, 15, 

19, 49, 50, 51] and also Section 2.2.3.

2.1. FUNCTIONAL ANALYSIS BACKGROUND

Let V and W be Hilbert spaces with inner products1 (•, •)v and (•, )̂W and corre­

sponding norms || • ||V and || • ||W. Throughout this work, the scalar field K for all spaces is 

either K = R or K = C.

Linear Operators: Let T : V ^  W be a linear operator with domain D (T ) c  V, 

range R (T ) c  W, and null space ker(T) c  V. The rank of T is the dimension of R (T ). 

The operator T is bounded if ||Tv||W < M ||v ||V for all v e D (T ). Throughout this thesis, 

we only consider bounded operators T : V ^  W that are defined on the whole space, so 

D  (T) = V. For such a bounded operator T : V ^  W, the usual operator norm is given 

by ||T|| = sup{||Tv||W : v e V, ||v ||V = 1}. We also consider unbounded linear operators 

that are not defined everywhere, so that D (T ) ^  V. The operator T is closed if its graph, 

G (T) = {(v, w) : v e D (T ), w = Tv}, is closed in V x W. If T is bounded (and everywhere 

defined), then T is closed. If T is closed and invertible, then T-1 is closed.

Adjoint Operators: The Hilbert-adjoint operator T* : W ^  V satisfies (Tv,w )W = 

(v,T*w)V for all v e D (T ) and w e D (T *). If T is bounded, then T* exists, is unique, 

and is also bounded. If T is densely defined, then T* exists, is unique, and is closed; in 

addition, if T is closed, then T* is densely defined. If T : V ^  W is invertible, then we let

iIn this thesis, all inner products and sesquilinear forms are linear in the first argument and conjugate 
linear in the second argument.
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T- * : V ^  W denote the Hilbert adjoint operator of the inverse T-1 : W ^  V. We note for 

T* to exist we need T bounded or densely defined, and for T- * to exist we need T-1 bounded 

or densely defined. We note these assumptions when necessary.

The following basic result is important in this work.

Lem m a 2.1.1. Let V and W be Hilbert spaces. I f  T : V ^  W is a bounded linear operator, 

then ker(TT*) = ker(T*) and ker(T*T) = ker(T).

Proof. We only prove the first one. Let w e ker(TT*). Then,

TT * w = 0 ^  (TT * w, w)w = 0 ^  (T * w, T *w)v = 0 ^  ||T * w ||V = 0 ^  T *w = 0.

Next, let w e ker (T *). Then T *w = 0 ^  TT * w = 0. □

Projections: A bounded linear operator n  : V ^  V is a projection onto U = R (n ) 

if n 2 = n . Then we have nv  e U for all v e V and n u  = u for all u e U. Also, n  

is an orthogonal projection if u = n v  e U minimizes infueU || v -  u ||V for any v e V . A  

nontrivial orthogonal projection n  is automatically self-adjoint, i.e., n * = n , and satisfies 

||n || = 1. We consider non-orthogonal projections in this thesis, and therefore we do not 

assume a projection is orthogonal or self-adjoint unless explicitly specified. Sometimes, 

we assume a family of projections { n r} is uniformly bounded in operator norm, i.e., there 

exists a constant C such that | |n r || < C for all r .

The Singular Value Decomposition of a Compact Operator: If T : V ^  W is a 

compact linear operator, with separable Hilbert spaces V and W, then T has a singular value 

decomposition (SVD). The positive singular values of T are defined to be the square roots of 

the positive eigenvalues of the self-adjoint nonnegative compact operators TT * : W ^  W 

and T*T : V ^  V. Further, the nonzero eigenvalues of these operators are equal, and 

we consider zero a singular value of T if either operator has a zero eigenvalue. If the 

ordered singular values of T are given by Ju1 > ju2 > • • • > 0 (including repetitions), the 

orthonormal basis of eigenvectors of TT * is given by } c  W, and the orthonormal basis



8

of eigenvectors of T*T is given by {gk} c  V , then the singular value decomposition of T is 

the expansion given by

Tg = Vk (g, gk)v^k
k >1

for all g e V . I f  v k > 0, then

Tgk = Vk^k and T > k  = Vkgk.

Also, the rank r truncated SVD Tr : V ^  W of T is defined for g e V by

r
Trg := ^ j  Vk (g , gk)v^k.  

k =1

For more information, see, e.g., [52, Chapters VI-VIII], [53, Section V.2.3], [54, Chapter 

30], [55, Sections VI.5-VI.6].

Hilbert-Schmidt Operators: Let T : V ^  W be a linear operator, with separable 

Hilbert spaces V and W , and let {gk} be any orthonormal basis for V . Define the Hilbert- 

Schmidt norm of T as
/ \ 1/2

llT IIHS(V,W) = ^  \\Tgk II2 . (2.1)
k>1

If the sum converges we say the operator T is Hilbert-Schmidt. The Hilbert-Schmidt norm 

is independent of choice of orthonormal basis, every Hilbert-Schmidt operator is compact, 

||T|| < ||T ||HS(V,W), T is Hilbert-Schmidt if and only if T* is Hilbert-Schmidt, and T is 

Hilbert-Schmidt if and only if £ k>1 <r2 < rc>, where {<rk } are the singular values (including 

repetitions) of T . We also have

\ T \ Hs(V,W) = \ T \ Hs(W,V) = ^  a kk.
k>1

For more, see, e.g., [52, Chapter VIII], [53, Section V.2.4], [55, Section VI.6].
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Bochner Spaces: Let O be an open subset of Rd, for some d > 1. For p e [1, to), 

let Lp (O ; V) denote the Bochner space of (equivalence classes of) Lebesgue measurable 

functions v : O ^  V satisfying ^  \|v (t)\\V dt < to. For p  = 2, L2(O ; V) is a Hilbert space 

with inner product

(v , w )l2(O;V) = (v (t) ,W (t))Vdt .
J o

The following theorem, see, e.g., [56, Theorem III.6.20] and [57, Theorem 4.2.10], allows 

us to bring a closed linear operator inside an integral.

Theorem 2.1.2. Suppose T : D ( T) c  V ^  W is a closed linear operator. I f  v : O ^  

D ( T), v e L 1 (O ; V), and Tv e L 1 (O ; W), then

O
v(t) dt e D(T) and T v (t) dt = Tv (t) dt.

O O

2.2. PROPER ORTHOGONAL DECOMPOSITION

Now we introduce proper orthogonal decomposition for both the discrete and con­

tinuous time cases.

2.2.1. Discrete Case. Let X  be a separable Hilbert space. For the discrete case, let 

 ̂ be a positive integer and assume the POD data is given by {wi }S=1 c  X . Let K = R or 

K = C, and define S := Kp with the weighted inner product given by

S’
(u, v)s = v*Tu = ^  yjUj v f  

j=1

where u,v e S, F = diag(y1,y 2, ..., yS), and the values { y j}S=1 are positive weights. Note 

these weights commonly arise from integral approximations. Define the POD operator 

K : S ^  X  by

K f  = £  y j f ' W ,  f  = [f 1, . f2, . . . , n T.
j=1

(2.2)
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Since K has finite dimensional range, it is a compact operator and has a singular 

value decomposition. Let {<rk, f k, p k} c  R x S x  X be the singular values and orthonormal 

singular vectors ordered so that a 1 > <r2 > ••• > 0. Thus, the singular value decomposition 

is given by

K f  = £  T , ( f , f l )sp, .  (2.3)
j >1

When <rk > 0, we have

Kfk = &kPk, and K * pk = &kfk, 

where K * : X ^  S is the Hilbert adjoint operator given by

K *x = [(x, w1) x , (x, w2) x , . . . ,  (x, ws) x  ]T-

For a positive integer r , define Xr = span{pk}rk=1. Let n X : X ^  X be the 

orthogonal projection onto Xr, i.e., for x e X fixed, n Xx e Xr minimizes the approximation 

error ||x -  xr ||X over all choices of xr e Xr. Since {p k} is an orthonormal set in X , we have 

the exact representation
r

n Xx = £ ( x ,  pk)xPk- (2.4)
k =1

The singular vectors {pk} are called the POD modes of the data {wk} c  X . The 

POD modes provide the best low rank approximation to the data in the following sense: we 

have

£  7k II wk -  nXwk ||X = £  a\ ,  (2.5)
k=1 k>r

and no other choice of an orthonormal basis in (2.4) gives a smaller value for the approxi­

mation error.
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Definition 2.2.1. We call the singular values {ak} and singular vectors {y k} c  X o f K the 

POD singular values and POD modes for the data {wi }s=1, respectively. We also call the 

eigenvalues {Ak} o f the operator KK * : X ^  X the POD eigenvalues for the data {wJ}s=1. 

We let sX denote the number o f positive POD singular values (or positive POD eigenvalues) 

for the data {wJ }Sj=1, i.e., sX = rank(K).

From Section 2.1, we know Ak = whenever Ak > 0. Also, we have sX < s < to. It

is possible for data to have a zero POD singular value, but have all positive POD eigenvalues; 

this can happen if s > dim(X).

2.2.2. Continuous Case. Similarly to the discrete case we define the POD operator 

K : S ^  X  for the continuous case, where again X is a separable Hilbert space. Let d and 

m be positive integers and let O c  Rd be an open set. Then define S := L2(O ; Km), where 

K = R or K = C. We note that L2(O) is separable (see, e.g., [58, Theorem 2.5-4]), and 

therefore so is S. Assume the POD data is given by {w^}mm=1 c  L2(O ; X).

Rem ark 2.2.2. In POD applications the set O is frequently a time interval; however, 

researchers also take O to be a multidimensional parameter domain as well. Note that 

we could also consider multiple open sets, Oj c  RdJ, and data wJ' e L2 (Oj; X ) for 

j  = 1 , . . . ,m. In this case, we would define S := L2 (O i) x • • • x L2(Om). All results in this 

thesis hold for this case as well. The previous case is chosen to simplify notation.

Define the POD operator K : S ^  X by

K f
m

= § / o (' )
w (t) dt, f  e S. (2.6)

Since f  e S, note that f  = [f  1, f 2, . . . ,  f m]T, where each f i  e L2(O) . As in the discrete 

case, we know that K  is a compact operator and has a singular value decomposition. We 

let {a t , fk, } c  R x S x X denote the singular values and orthonormal singular vectors

ordered so that a 1 > a 2 > • • > 0. The SVD of K is given as in the discrete case (2.3).
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Thus, when a k > 0, we have

K fk = ak<fik, and K * tpk = akfk,

where K * : X ^  S is the Hilbert adjoint operator defined by

[K*x] (t) = [(x, w1 (t))x , (x, w2(t))x , . . . ,  (x, wm(t))x]r .

We define Xr := span{^k}k=1 and the orthogonal projection n X : X ^  X (2.4) as 

before. The data approximation error is given by

and the error goes to zero as r  ^  to. As in the discrete case, no other orthonormal basis in 

(2.4) gives a smaller value for the error.

We define the POD singular values, POD modes, POD eigenvalues, and sX = 

rank(K ) as in Definition 2.2.1 for the discrete case. Again, it is possible for data to have 

a zero POD singular value, but have all positive POD eigenvalues; an example where X 

is infinite dimensional can be found in [36, Section 3.1, Example 3]. Also, if X is finite 

dimensional, then the data always has a zero POD singular value.

Note that while the discrete time case of POD is considered throughout the thesis, 

the continuous time case is only considered here and in Chapter 3.

2.2.3. Optimality of POD. Below, we present the discrete and continuous versions 

of a result regarding Hilbert-Schmidt norms and POD. The continuous case result is known 

(see, e.e., [59, Section 3.5], [60, Theorem 12.6.1], [61, Lemma 4.4]), although perhaps not 

exactly in this precise form. We provide a proofs of both results to be complete, and also 

since the results are crucial to this work. These lemmas are used to prove the optimality of

(2.7)

POD below.
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Lem m a 2.2.3. For given data {yi }S=1 c  X in the discrete case, the Hilbert-Schmidt norm 

o f the POD operator K : S ^  X  is given by

S
1K ̂ h s(s,x  ) = Z  yj 1 yJ IIX.

j=1

Proof. Let {£k } k>1 be an orthonormal basis for X . We have

1K IIh S(S,X) = 1K 1 HS(X,S) = Z  1K £k1S = Z  Z  yj |(%k,y j )X\2
k >1 k >1 j=1

= Z  yj  Z  \ ( ^ , y j ) x \2 = Z  yj  II yj i X
j=1 k>1 j=1

by Parseval’s inequality. □

Lem m a 2.2.4. Let Z be a separable Hilbert space, and let S = L2 (O ; Km), where O is an 

open subset o f Rd. I f  K : S ^  Z is defined by

for  {z7'}rrm=1 c  L2 (O; Z ), then K is Hilbert-Schmidt and

m

1K 1 HS( S,Z) = Z  1 z  1L2 (O;Z). 
j=1

Proof. Let { x }i>1 c  L2 (O) and {£n}n>1 c  Z  be orthonormal bases. Therefore, {X }/>1 is 

also an orthonormal basis for L2(O ), and {xi^n}i,n>1 is an orthonormal basis for L2 (O; Z) 

(see, e.g., [60, Theorem 12.6.1]).

For £ e Z , let [K*£] J = (£, z7' (t))Z denote the j th component of K *£ e S. Working 

with the Hilbert adjoint operator K * and using Parseval’s equality gives

1K 1 HS(S,Z) = Z  1K £n 1S
n>1
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E H  II [K *^»]J II2 (O)
j =1 n> 1

E  E  [K ^n E  i 2 (o)
7=1 n,i> 1 
m „

E E  f 0 ^
v_i „ , \ 17=1 n,i>1

X  (1) ( Z7 (1) , tn ) zd t

n i  p

E  E  O  (Z
i=1 n,i> 1J = 
m

(ZJ (t) ,Xi(t)fn)Z dt

EEK Z , Xi^n)L2(O;Z) |
j=1 n,i> 1 
m

E  1Z IIL2(O;Z) • 
i=1

□

2

2

2

2

To be complete, we present a brief proof of the optimality of POD for low rank data 

approximation in both the discrete and continuous cases. Our problem statement and proof 

strongly rely on the ideas from [50] and [49].

POD optimality problem: Let X  be a separable Hilbert space, and let S = Kp in the 

discrete case or S = L2 (O; Km) in the continuous case, where K = R or K = C. Suppose we 

have given data { }s=1 c  X in the discrete case or { }rm=1 c  L2 (O; X) in the continuous 

case. The POD optimality problem is to find coefficients {ak} c  K and basis elements 

{sk} c  S and {^k} c  X so that the rth order approximations

r
wJr = E  aksJk^ k for j  = 1, • • •, s (discrete case),

k=1 
r

wi (t) = E aksJk(t )-qk for j  = 1,. • • ,m  (continuous case),
k=1

minimize the data approximation error

s
Er (Wr) = E  yj IWJ -  wr ||X

i=1
(discrete case),
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2 (continuous case).

Rem ark 2.2.5. In many papers on POD, the basis elements [pk} c  X are required to

span[pk }£=1. Therefore, the POD problem above allows more general approximations. The 

final result is the same.

Notation: For given data [ y i}s=1 c  X in the discrete case or [yi}J=1 c  L2 (O; X ) 

in the continuous case, we let K  (y) : S ^  X denote the POD operator for the data and we 

let K *(y) : X ^  S denote the Hilbert adjoint operator of K (y).

The proof of the next result follows directly from definitions and is omitted. 

Lem m a 2.2.6. I f  the data is given by

for each j  with [ak} c  K, [sk} c  S, and [pk} c  X, then the POD operator K (y) : S ^  X 

is given by

Now we prove the main optimality result. We rely on the fact that the rank r 

truncated SVD of K (y) is the optimal rank r  approximation to K (y) in the Hilbert-Schmidt 

norm; see, e.g., [62, Section III.7, Theorem 7.1].

Theorem 2.2.7. Let [w^}s=1 c  X in the discrete case or [w^}rJ=1 c  L2(O ; X) in the 

continuous case be given data, and let [a i, f , <pi} c  R x S x X be the ordered singular values 

o f K  (w) : S ^  X and the corresponding orthonormal bases o f singular vectors. A solution 

o f the POD problem is given by [w]r}s=1 c  X in the discrete case or [w]r }rJ=1 c  L2 (O; X) 

in the continuous case, where

be orthonormal, and w]r is also required to equal the orthogonal projection o f wJ' onto

(discrete case), y7'(t) = ^  a ksJk(t)pk, (continuous case)
k=1

K (y) f  = J ]  a t (f ,st)SPk,  f  e S.

(discrete case),
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wr (t) — a kf[  (t) ifik = E (w7' (t), ipk)x ipk (continuous case).
k—1 k—1

The minimum approximation error is given by

E min :— Er (wr) — ^  a l  < to,
k>r

and E r  ^  0 as r increases.

Proof. We first assume r  < sx so that a k > 0 for k — i , . . .  , r .

First, the equivalence of the two expressions for wi  comes from K *(w)ipk — a kf k, 

a k > 0 for k — i , . .. , r , and the formulas for K * (w). Also, for g e S, Lemma 2.2.6 implies

r
K (Wr)g — ^  ak (g,fk)sTk — Kr (w)g.

k—1

Therefore, K (wr) — Kr (w), where Kr (w) : S ^  X  is the rth order truncated SVD of the 

POD operator K(w) : S ^  X .

Next, by the Hilbert-Schmidt norm results Lemma 2.2.4 and Lemma 2.2.3 and since 

the POD operator is linear in the data we have

Er (wr ) — ||K ( w -  wr )|| Hs — \\K  ( w) -  K  ( wr )|| Hs — \\K  ( w) -  Kr (w )|| Hs — ^  a \ .
k>r

Also, since \\K(w )||HS — J)k>i a l  < to, we have £ k>r a l  ^  0 as r increases.

Now we show that this is the smallest value possible for the error. Let coefficients 

{ak} c  K and basis elements {sk} c  S and [pk} c  X  be given, and define the rth order 

approximation

r P
zl — ^  a k^kpk (discrete case), Zr (t) — ^  a ksJk(t)pk, (continuous case).

k—i k—i
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By Lemma 2.2.6, K (zr) has rank at most r . Therefore, we have

Er(zr) = ||K (w -  zr)NHs = IIK(w) -  K (zr)hHs ^  ^2.
k>r

Next, if sx < TO, then the result is true for r  = sx . Therefore, we have w7' = wJSx for 

all j , and this proves the result for r  > sx . □
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3. NEW POD APPROXIMATION THEORY

3.1. ASSUMPTIONS AND NOTATION

In this section, assume X and Y are separable Hilbert spaces, and L : D(L)  c  X  ^  

Y is a linear operator. We study POD error formulas and POD projections involving the 

data {Wj } and the data {Lwj  }.

3.1.1. Discrete Case. Recall from Section 2.2.1 we consider data {w  ̂}j=1 c  X 

and the corresponding POD operator K : S ^  X  defined by K f  = £ j =1 Yj f ^w^ , where 

S = Kp and K is either R or C. The singular value decomposition of K is given by 

K f  = k>1 a k (f , f k)stpk. The set Xr is the span of {tpk}rk=v  and n X : X ^  X is the 

orthogonal projection onto Xr.

To consider POD projections involving the data {Lwj'}, we make the following 

assumption:

Main assumption: For the discrete case, we assume throughout the paper that 

(i) {wj' }Sj=1 c  D(L) ,  and also (ii) <rr > 0 whenever we consider the projection

n Xr

Assumption (i) has two important consequences. First, since wj' e D(L)  for each j , we 

know the range of K is contained in D(L).  Second, assumption (i) allows us to consider 

the POD operator KY : S ^  Y for the data { Lwj' }Sj=1 c  Y defined by

S’
K Yf  = L K f  = ^  7 j f j Lwj , f  = [ f  1, f 2, .. . , f j ]T. (3.1)

j=1

Note that KY is the result of applying L to the POD operator K for the data {wj'}, i.e., 

K Y = L K . Since K Y has finite rank, it is compact and has a singular value decomposition. 

Define j Y = rank(KY) to be the number of positive singular values of KY. Note that 

assumption (i) is automatically satisfied if L is bounded.
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For assumption (ii), note that if a k > 0, then assumption (i) implies the correspond­

ing singular vector ipk is in D (  L ) since

Since a r > 0, this implies Xr c  D ( L ) and n f  maps into D(L).

To guarantee the boundedness of certain POD projections, in some cases of The­

orem 3.2.3 we need to assume the POD modes {cpk}k=1 c  D (L ) satisfy some additional 

regularity properties. These properties can be guaranteed by making additional regularity 

assumptions on the data.

First, the condition { $ k }rk=1 c  D ( L- *) is guaranteed to hold if we assume a r > 0 and 

wi e D (  L- *) for each j . With this assumption, we know as above that R(K) c  D (  L- *) and 

also $ k e D ( L - *) whenever a k > 0. Since a r > 0, we can guarantee {$ k}rk=1 c  D ( L - *).

Next, a similar argument using (3.2) shows the condition {Lipk}rk=1 c  D(L*)  is 

guaranteed to hold if we assume a r > 0 and LwJ' e D ( L *) for each j .

3.1.2. Continuous Case. The continuous case requires a few more assumptions 

than the discrete case. Recall K : S ^  X , where S := L2(O; ) and K is either R or C. In

order to define the POD operator KY and ensure {cpk}rk=1 c  D (L ), we make the following 

assumption:

Main assumption: For the continuous case, we assume throughout the paper

<Pk = a -1 K fk e D ( L ) . (3.2)

that (i) {Lwj }ni=1 c  L2 (O; Y), and for all f  e S we have K f  e D (L ) andj=1

and also (ii) a r > 0 whenever we consider the projection n f .
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As in the discrete case, assumption (i) gives R (K ) c  D (L ) and allows us to define 

the (compact) POD operator KY = LK  for the data {LwJ' }J=1 c  L2 (O ; Y). As before, we 

let sY = rank(KY) be the number of positive singular values of KY. Also as in the discrete 

case, assumptions (i) and (ii) imply {$ k}rk=1 c  D (L) and n f  maps into D (L ).

Remark 3.1.1. There are three common conditions that guarantee assumption (i) holds.

1. I f  L : X  ^  Y is bounded, the operator L can be pulled through the integral in the 

definition o f K and assumption (i) clearly holds.

2. I f  each e L2 (O ; X) takes the form

n
w  (t) = £  aJkfgJk (t)xej, 

e,k=i

where aJk{ are constants in K, gJk(t) e L2(O), andxej e D (L ), then it can be checked 

that assumption (i) holds. This condition is similar to the assumption made in the 

discrete case.

3. I f  L : D (L ) c  X ^  Y is closed, wJ' e D(L)  a.e., and Lwi e L2(O ; Y) then 

Theorem 2.1.2 implies assumption (i) holds.

Again, for certain cases of Theorem 3.2.3 we need to assume the POD modes 

{Tk}rk=i c  D(L)  satisfy some additional regularity properties. As in the discrete case, we 

can make additional assumptions on the data to satisfy these regularity properties.

We briefly mention conditions on the data similar to Remark 3.1.1, Item 3 that yield 

the needed regularity. First, if L- * exists, it is closed. Therefore, {ipk}rk=1 c  D ( L - *) holds 

if we assume a r > 0, wJ' e D ( L - *) a.e., and {L- *wi}rJ=1 e L2(O; Y). Second, if L* exists, 

then it is closed. Therefore, {Lipk}rk=1 c  D(L*)  holds if we assume <rr > 0, Lwi e D(L*)  

a.e., and {L*Lw^}"=1 e L2(O; X).

We also note that the condition in Remark 3.1.1, Item 2 can be modified similarly 

to the discrete case to yield the required regularity.
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3.2. POD PROPERTIES

Recall the standard POD orthogonal projection, n f  : X ^  X  given by (2.4), and 

the known POD data approximation error given by

scenarios involving the linear operator L : X  ^  Y and another sequence of projections, 

which need not be orthogonal.

Definition 3.2.1. For a positive integer r with <rr > 0, we define Yr := LXr = span{Lpk }rk=1 

and we let n ^  : Y ^  Y be a projection onto Yr.

Remark 3.2.2. The condition <rr > 0 implies Xr c  D ( L), so the definition makes sense. We 

assume throughout that <rr > 0 whenever we consider n ^ . It is important to note that unless 

stated otherwise we do not assume the projection n f  is orthogonal. To obtain convergence 

results as r increases, we sometimes need to require {n ^} are uniformly bounded in operator 

norm. I f  {n^} are the orthogonal projections onto Yr, then this condition is satisfied.

3.2.1. Non-orthogonal POD Projections. In Section 3.4, we consider pointwise 

convergence results for the linear operators L-1n^L  : X ^  X and Lnj^L-1 : Y ^  Y. 

Below, we give conditions that guarantee that these linear operators are bounded, or have 

bounded extensions, for r fixed. We note that when these operators are bounded we 

have L-1n ^L  : X ^  X is a projection onto Xr = span{p}r=1 and Lnj^L-1 : Y ^  Y is a 

projection onto Yr = span{Lip}rj=1. Even if n ^  is an orthogonal projection, these projections 

are typically non-orthogonal POD projection operators.

In the simplest case, if L and L-1 are bounded, then clearly L-1n^L  : X ^  X and 

LnXL-1 : Y ^  Y are both bounded for each r . In this case, { LnXL-1} is uniformly bounded 

in operator norm, and {L-1n ^ L } is also uniformly bounded when {n)(} is uniformly

(t) -  n X wJ (t) ||Xdt =
k>r

One of the goals of this dissertation is to find extensions of this error formula to other

bounded.
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Below, we consider the case when either L or L-1 is unbounded. For each fixed 

r , we show L-1n f L  : X ^  X  is bounded when L is bounded, and L n f L -1 : Y ^  Y is 

bounded when L-1 is bounded. In other cases, we need certain assumptions to be satisfied 

to construct bounded extensions of the operators for each r . We do not show that these 

non-orthogonal POD projection operators are uniformly bounded in operator norm.

In specific cases, we need certain adjoint operators to exist, so we need the operators 

to be densely defined or bounded. For example, for the operator L- * to exist we must 

assume that D ( L-1) is dense in Y, or L-1 is bounded. These type of assumptions must be 

added to the second and fourth parts of the following theorem, in addition to results later in 

this section.

Theorem 3.2.3. Assume L is invertible and r > 0 is fixed.

1. I f  L -1 is bounded, then Lnf tL -1 : Y ^  Y is bounded.

2. I f  D (L -1) is dense in Y and {y k}rk=1 c  D(L~*), the operator Lnf^L-1 : Y ^  Y can 

be extended to a bounded operator on Y.

3. I f  L is bounded, then L -1n f L  : X ^  X is bounded.

4. Assume n f  : Y ^  Y is the orthogonal projection onto span{Lipk }rk=1. I f  L-1 is 

bounded, D (L ) is dense, and {Lipk}rk=1 c  D ( L *), then L -1n fL  : X ^  X can be 

extended to a bounded operator on X.

Rem ark 3.2.4. In the second and fourth items, we assume the POD modes satisfy the 

regularity properties {$ k}rk=1 c  D (L- *) and {Lipk}rk=1 c  D(L*), respectively. See 

Section 3.1.1 and Section 3.1.2 for conditions on the data in the discrete and continuous 

cases that guarantee these properties hold.

Proof. 1. Note
r

Lnf^L-1 y = L-1 y,ipk) XLifik.
k=1

(3.3)
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Since L 1 is a bounded operator and p k e D (L ) for all k , the sum in (3.3) is well 

defined for all y e Y. Also, it can be checked that

L n f L -1 y \\y < cIIy||y, (3.4)

1 /0
where the constant c := ||L-1 || ( £ £=1 IL p k||2) depends on r . This shows that the

operator L n f  L-1 is bounded when L-1 is bounded.

2. The linear operator L n f L-1 : Y ^  Y is defined by (3.3) for all y e D ( L -1). Using 

the assumptions, we can rewrite (3.3) for y e D ( L -1) as

r
L n f L -1 y = £ ( y, L- *pk)x L y k. (3.5)

k=1

It can be checked that (3.4) holds for all y e D (  L-1) with

c := X I 1L *P k \f  \ LPk\\y .
k= 1

Note that (3.5) is well-defined for all y e Y, and therefore yields a bounded linear 

extension of L n f  L-1 : Y ^  Y to all of Y.

3. Since n f  is a projection onto Yr = span{LipYj= v  we know for y e Y there exists 

constants {ay(y)} depending on y such that n fy  = £ f=1 ay (y)L p j . Then

Y j aJ(y) L PJ
j=1

= IInfy\\y < ||nYlllly\\y . (3.6)

Also,

X X ' (y) LPy
j =1

2

Y
J ]  a (y)(L Py,L Pk)Ya k(y) = a ( y)*Ara ( y), 

i ,k=1



24

where the star denotes complex conjugate, and

a (y) = [ori(y) , . . . ,ar(y)]T 6 Kr , [Ar]i,y = (L<fi,L<pj)Y.

Since L is invertible and {<pj }r.=i is a linearly independent set, we know {L^y }r.=i is 

a linearly independent set; therefore, Ar is symmetric positive definite, which implies 

there exists y8 > 0 such that a*Ara  > S || a ||K for all a 6 Kr . Note that y8 may depend 

on r . Together, the above implies that

S 1 a  (y )ll k  — Y j a i (y) Lv.
. =i

2
— linY II2II y 112.

So,

a (y)||E, — S -1/2 |nY  III y | |y . (3.7)

In this case, y = Lx and L is bounded and invertible; thus,

L in f  (Lx) = L 1 ^  aj  (Lx)Lip. = ^  ay (Lx)<pj 
j=i 7=1

where the constants ay now depend on Lx. Since {vy} c  X is orthonormal, we have

r 2
IL - i n yr Lx |  X = X °y (Lx) v

= 1 a (Lx)\\K

— yS-i |  nY | 21 Lx ||2

— yS-i II nY II2IILII2II x llX

Therefore, for all x 6 X we have

I L- i n fL x  IX — CI x IX, (3.8)
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where c := S  1/2||n f  ||||L ||.

4. We obtain a representation of L_1n f  L as follows. First, note that the sets {Lipk} and 

{L- * } are biorthogonal, i.e., (L p k, L - *ipj)Y = 5kj , where 5kj  is the Kronecker 

delta symbol. Recall from the proof of part 3 that n Yry = £ rk=1 a kLipk for some 

scalars a k that depend on y. We can calculate the values for a k by noting

r
( u Yry , L ~*<pj\ = Y  a k(L^ k, L ~*<Pj)y = aj.

k=1

This yields

r r
n  Yy = Y  (n  Yy, l - * )YL<pk = Y  (y, n  Yl - * )YL<pk, (3.9)

k=1 k=1

since nY is orthogonal and therefore (nY)* = nY.

By assumption, {Ltpj} c  D (L *) and so (3.9) implies nYy e D (L *) for all y e Y . 

This gives the following representation for any x e D ( L ) :

Y
L -1n YYLx = Y ( x ,  L*nYr L~* $k) x ipk. (3.10)

k =1

Also, for all x e D (L ) , the bound (3.8) holds with c := (Zk=1 IIL *nYL- *p k||2 ) 1/2. 

Equation (3.10) is well-defined for all x e X , and therefore defines a bounded linear 

extension of L -1n Yr L : X  ^  X  to all of X .

□

3.2.2. POD Singular Values and POD Eigenvalues. The number of nonzero sin­

gular values (or eigenvalues) of the POD operators plays an important role throughout the 

thesis. It is also important to note the difference between singular values and eigenval­

ues. For a POD operator K : S ^  Z , recall the POD eigenvalues are the eigenvalues of 

K K * : Z  ^  Z , the POD singular values are the singular values of K , and sZ = rank (K ),
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i.e., sz is the number of positive POD singular values of K (or positive POD eigenvalues of 

K K *). As discussed in Section 2.2, it is possible to have a zero POD singular value but to 

have all nonzero POD eigenvalues.

Below, we study various relationships between the POD eigenvalues and POD 

singular values for the data {wJ'} and the data {LwJ'}. Recall, K : S ^  X  is the POD 

operator for the data {wJ'}, and K Y = LK : S ^  Y is the POD operator for the data 

{Lw7'}. Therefore, sX = rank(K) is the number of nonzero POD singular values (or POD 

eigenvalues) for the data {wJ'}, and sY = rank(KY) is the number of nonzero POD singular 

values (or POD eigenvalues) for the data {LwJ'}

First, we give a relationship between the POD eigenvalues and the null space of 

the adjoint POD operator. Then we also give some additional information about sX and 

sY. There is also a relationship between the number of POD eigenvalues under the linear 

mapping L .

Lem m a 3.2.5. 1. All o f the POD eigenvalues for the data {wJ} are nonzero if and only

if ker(K *) = {0}. In this case, X  = R (K ). In addition, if sX < w, then X  = R (K ) 

and dim (X) = sX.

2. All o f the POD eigenvalues for the data { LwJ'} are nonzero if and only if ker ( (KY )*) = 

{0}. In this case, Y = R (K Y). In addition, if sY < w, then Y = R (K Y) and 

dim(Y) = sY.

3. The number o f nonzero POD eigenvalues for  {LwJ'} is less than or equal to the 

number o f nonzero POD eigenvalues for {w^ }. That is, sY < sX.

4. I f  L is invertible, then sX = sY.

Proof. The first two items are proven similarly. Here we show item 1.

1. Lemma 2.1.1 proves the first statement. To see the rest, note that X = ker(K*) © R (K ) 

and ker(K*) = {0} imply X = R (K ). Then if sX = rank(K) = dim (R(K )) is finite,

we have R (K ) = R (K ) and therefore X = R (K ) and dim (X) = sX.
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3. First, if sx = to, we are done. Assume sx < to. We know

sx

K f  = Y j (f ' f j
j=1

and therefore
Sx

K Yf  = L K f  = Y ,  a  (f ’fj)sL<fij. 
j=1

Thus, sY = rank(KY) < sx .

4. Because of item 3, we need only show sx < sY. First, if sY = to, we are done. 

Assume sY < to. Let the singular value decomposition of KY be given by

K Yf  = L K f  -  £  a j (.f . f j )sv*.
j=1

Note that v Y e D (  L-1) whenever aY > 0, since D (  L-1) = ^  (L) and

vY = (aY )-1 KYf ,Y = (o f  )-1 LK f f .

Then, since L is invertible,

sy
K.f -  L-1 L K / = L-1 K Yf  -  £  aY (A  .fT )sL-1

/ -1

and therefore sx = rank(K) < sY.

□

The following lemma gives further results about the connections between the two 

main sets of POD eigenvalues under consideration in this paper, i.e., the POD eigenvalues 

for the data {wi } and the data {LwJ'}. With extra assumptions, we can use the fact that all 

the POD eigenvalues are nonzero for one set of data to obtain the same conclusion for the 

other set of data.
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Lem m a 3.2.6. 1. I f  L is bounded, R (L ) is dense in Y, and the POD eigenvalues for

{wi } are all nonzero, then the POD eigenvalues for  {LwJ' } are all nonzero.

2. I f  L-1 is bounded, R ( L-1) is dense in X, and the POD eigenvalues for  {LwJ'} are all 

nonzero, then the POD eigenvalues for {w } are all nonzero.

Proof. The proofs of the two items are similar; we only prove the first item.

Since X = ker(K*) © R (K ) and ker(K *) = {0} (Lemma 3.2.5, Item 1), we have 

X = R (K ). Let s > 0 and let y e Y. Since R (L ) is dense in Y, there exists x e X 

such that \|y -  L x ||Y < s /2 . Since X = R (K ), for this x there exists f  e S such that 

||x -  K f  \ x < s / ( 2 \L \ ) . This gives

IIy -  LK f  IIy < IIy -  LxIIy + \\Lx -  LK f  \\y < 2  + 1|L \ 2 ^  < s ’

which shows R (K Y) = Y and ker((K Y)*) = {0}. Thus, the POD eigenvalues for {LwJ'} are 

all nonzero by Lemma 3.2.5, Item 2. □

3.3. ERROR FORMULAS

One goal of this thesis is to provide exact formulas for POD data approximation 

errors. The two main results of this section can be found in Theorem 3.3.2 and Theo­

rem 3.3.4. The section is split between the discrete case, where we can use a more direct 

proof approach, and the continuous case, which requires more care since the data can have 

infinitely many nonzero POD eigenvalues.

The next lemma gives three different Hilbert-Schmidt norm approximation results 

involving the POD operator K for the data {wJ'} and the POD operator KY = LK for the data 

{LwJ'}. The result will be of particular usefulness when discussing the continuous case in 

Section 3.3.2, but it applies to the discrete case as well. We also use this result throughout

Section 3.4.
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Lem m a 3.3.1. The Hilbert-Schmidt norm errors are given by

IILK -  L n ? K llHs(sj) = Z  o f  yL^k ||2, (3.11)
k>r

yLK -  n YrL K NHs(s,K) = Z  ^ 2 yLvk -  n fL ^ k  y2, (3.12)
k>r

and

y K -  L- 1 n r  LK y ̂ . x )  = Z  ° i  I Vk -  L -Xn r L ^ k y |.  (3.13)
k>r

In the case sx = to, the following convergence results hold. For (3.11): The error tends to 

zero as r ^  to. For (3.12): I f  | n f } is uniformly bounded in operator norm, then the error 

goes to zero as r ^  to. For (3.13): I f  L-1 is bounded and | n f } is uniformly bounded 

in operator norm, then the error tends to zero as r ^  to. For (3.13): I f  {L-1n r L } is 

uniformly bounded in operator norm, then the error converges to zero as r ^  to.

Proof. Let {f k} be an orthonormal basis of S of eigenvectors of K *K and let J = {k : f k £ 

ker(K*K)}. Note that K fk = 0 for all k £ J, since ker(K*K) = ker(K) by Lemma 2.1.1. 

Also, K fk = <rk(pk for all k e J. Then,

yLK -  L n X K y = Z IKl k  -  LnXK) f k y2
k >1

= Z  y( LK -  LnXK) fk y2
k eJ

= Z  yL^kVk  -  L n X^kVky2
keJ

= Z  ^ 2 y LVk y2>
k>r, keJ

where the last equality holds since n x ^ k = Vk for k < r  and n x ^ k = 0 for k > r . Also,

Z  a-2yLvky2 = Z  yL K f k y2 = Z  yK Yf k ii2,
k>r, keJ k>r, keJ k>r, keJ
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which converges to zero as r  ^  to since KY is Hilbert-Schmidt. Next,

II LK  -  n  YrLK  yHs(5,Y) = Z  I ( LK  -  ^  l k ) A  IlY
k >1

= Z  I L&kWk -  n YrLak(pkIf
k eJ

= Z  1 Lifik -  n f L^k yF,
k>r, keJ

where the last equality holds since nfL<^k = Lipk for k < r . For convergence, note 

||LK -  nfLK ||H s(S,y) = Z  ILKfk  -  n Yr L K f k ||2
k>r, keJ

= Z  yKY/k -  n f K Y/k
k>r, keJ

< Z  y/  -  nYy2 iî m i f .
k>r, keJ

Since ||/  -  n ^ || is uniformly bounded and KY is Hilbert-Schmidt, the error converges to 

zero as r  ^  to.

Since L-1nfL<^k = L-1 Lipk = $ k for k < r , for the last equality we have

y K -  L-1n f l k  y Hs( ̂  = Z  I w  -  L-1n 2 L W  III
k eJ

= Z  ^ 2y^k -  L -1n f L^k y| .
k>r, keJ

Assuming L-1 is bounded and { n f } is uniformly bounded, the convergence follows

from

yK -  L-1n^LKyHs(S)X) = Z  I l - 1 ( /  -  n r )LK/k y |
k>r, keJ

< Z  i l - 1 y2 y / - nYy2 yKY/ky2
k>r, keJ
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in a similar manner to the previous case. For the second convergence case, we assume 

{L -1 UYr L } is uniformly bounded in operator norm and we have

IIk - L~hn Yr L K ||HS(S)X) = £  W(i - L-1n fL )K fkwI
k>r, keJ

< £  WI -  L-1UYr L W2 WK Yfk WI,
k>r, keJ

which converges to zero as r  ^  to.

□

3.3.1. Discrete Case. First we introduce several representations that will be useful 

in the proof of Theorem 3.3.2 below. Recall, sx = rank(K) < to is the number of nonzero 

POD singular values (or POD eigenvalues) for the data {w i}. By the known POD error 

formula (2.5), we have

sx sx
wj = n *  wj = £  (wj , ifik)x  Pk and Lwj = £  (wj , pk)x  Lpk.

k=i k=i

Note that since the sums are finite, {p k} c  D ( L ) , and L is linear we can pull L through 

the sums in this section without any additional assumptions. This is one point where the 

discrete and continuous cases differ.

Next, from Section 2.2.1 we know for all j  < s and k < sx  we have

{w],Pk)x = (ppk,wJ) x  = (K * (fik) j = a k f l ,  

where f Jk denotes the j th component of the singular vector f k e Ks. This gives

sx __ sx __
wj = £  ak fk pk and Lwj = £  a  f Jk Lpk.

k=i k=i
(3.14)
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Also, recall {f i  } are orthonormal in S, which yields

£  Vj f t f e  = (f t , fk )s = St,k.
j =1

Theorem 3.3.2. The data approximation errors are given by

£  j j  y LWJ -  Ln;V  ill
sx
£  a k yL TkII2Y,

j=1 k=r+1

and
sx

£ j j  \ Lw] -  nYr LWJ\\Y = £  a l \ L <fik -  n r L Tk ||
j=1

Also, if L is invertible, then

k=r 1

(3.15)

(3.16)

sx
£ j j  || WJ -  L-lnYr LW] | | |  = £  a k \ Tk -  L-1nYr L Tk \
j =1 k=r+1

(3.17)

Proof. We only prove (3.16). The proofs of the other two results are similar. First, note we 

can apply n ^  to L wi given in (3.14) to get

sx __
Lwj -  n Yrwj = £  ak f'l (Lyk -  n Yr Ly k).

k=1

Then

SxS s sx   
£ j j  IILW  -  n Y L W \\Y = £  j j  £ a k f [ (LTk -  nYr L Tk), £  a e f t (LTe -  nYr L Te)
j =1 j =1 \k=1 e=1 j y

s sx __ /
= £  j j  J ]  a ka t f l f i  [L <fik -  nY L Tk,L Te -  nY L Tt

j =1 e,k=1

= £  akae
e,k=1
sx

i s
£  j j f k f e  I (L<pk -  nYLlPk, L Te -  nYLTi

\j=1 )

= £  a k [Lyk -  n iLifik, Lifik -  ^Lt f i k
k=1
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sx
= Yj a k 1L(fik -  nYr L^k\\Y.

k=1

Note that n f L ^ k = Lipk for k = 1, ...,r  since n f  is a projection onto Yr = span{Lipk}rk=1. 

Therefore,
s sx

'Y jJ j  \l LwJ -  nYLW] lly = ^  II L^k -  n f L^k ||y .
j=1 k=r+1

□

In Corollary 3.4.10, we focus on error bounds for approximating each individual 

data snapshot we with various POD projections. Also, another way to prove Theorem 3.3.2 

is to use the Hilbert Schmidt norm results in Lemma 3.3.1. The proof we give above requires 

less background. However, we do require Lemma 3.3.1 for the continuous case below.

3.3.2. Continuous Case. For the continuous case we must consider the possibility 

that the number of nonzero POD eigenvalues is infinite. We approach this case differently 

from the discrete case above. We show each of the data approximation errors we consider 

is equal to one of the Hilbert-Schmidt norm errors from Lemma 3.3.1. Then we use that 

result to prove the convergence of the errors to zero in the case of an infinite number of 

nonzero POD eigenvalues.

For one case, we need to make an additional assumption on L-1.

The L-1 assumption: We assume

1. sx < TO, or

2. L-1n Yr L K f  = fO f j (t)L-1n Yr Lwi( t )dt for all f  e S.

Rem ark 3.3.3. Note that if sx  < then the proof technique in Section 3.3.1 above can 

be used for the continuous cases, with some minor modifications to deal with the change in 

the space S. The second condition is similar to the main assumption made in Section 3.1.2. 

Any o f the three common conditions in Remark 3.1.1 that guarantee the main assumption 

holds also imply that the second condition in the L -1 assumption holds.
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Theorem 3.3.4. The data approximation errors are given by

m
Y  IILwJ -  L n V  f L2(O;Y) = Y  \ Lifik\Y (3.18)
j=1 k>r

and
m

Y  I LwJ -  UYrL WJ\I2l2 (O;Y) = Y  * 2 1 L^k -  n fL ^ k \\Y. (3.19)
j=1 k>r

Also if the L -1 assumption holds then

Y  IIwj -  L-1UYr Lwj ||Ly(O;X) = Y  a\ \ Tk -  L-1n YL(fik| | | . (3.20)
j=1 k>r

In the case sx = to, the following convergence results hold. For Equation (3.18): The 

error tends to zero as r ^  to. For Equation (3.19): I f  {nY} is uniformly bounded in 

operator norm, then the error goes to zero as r ^  to. For (3.20): I f  L-1 is bounded 

and { n Yr } is uniformly bounded in operator norm, then the error tends to zero as r ^  to. 

For Equation (3.20): I f  {L~1n Yr L } is uniformly bounded in operator norm, then the error 

converges to zero as r ^  to.

Rem ark 3.3.5. Note that the conditions for convergence for the case sx = to are exactly 

the conditions given in Lemma 3.3.1.

Proof. We prove (3.18), and the associated convergence result. The proofs of the other 

equalities and convergence results are similar. We first show that the data approximation 

error has an integral representation, and then we use the two Hilbert-Schmidt results for 

POD operators to conclude.

By definition, for f  e S we have

L n X K f  = Y ( K f , < p k ) xLifik
k =1
r i m  *

S I S / . "
f j ( t )wj (t)dt ,Tk\  Lifik

k=1 \j=1 x
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wj (t ),<pk) xL<fikdt

m »=uf j (t)LwJr (t)dt,

where wJr (t) = n  (t) = E  k=i (w  ̂(t) , f k) X(Pk • Because of the main assumption, we can

pull the operator L inside the integral to give

(LK -  L n f K )  f  =
m

L  5
f J (t) [LwJ (t) LwJr (t)] dt.

Since Lwi -  LwJr e L2 (O ; Y) for each j , by Lemma 2.2.4 we have

E  11 Lv”  -  L^ w 1 II2L2{0..Y) = IILK -  LnX K llHS(S.Y).
j=1

Lemma 3.3.1 proves both (3.18) and the convergence result in the case sx = rc>. 

Note for (3.20), for f  e S the L -1 assumption gives

L-1n Yr L K f =
m

L  5
f J (t)L-1n Yr LwJ (t)dt. (3.21)

and then we proceed similarly to establish the result. □

3.4. POINTW ISE CONVERGENCE OF POD PROJECTIONS

Recall that {ipk} is an orthonormal basis for X , and therefore H ^ v  -  v || x  ^  0 

for all v e X  . I n  this section, we prove various types of pointwise convergence results for 

the other POD projections; namely, n f  from Section 3.2, and Ln f L-1 and L-1n f  L from 

Section 3.2.1. The majority of this section is not split into the discrete and continuous cases 

because the proofs are similar for both, and many of the results hold regardless of case. 

We do focus on the discrete case at the end of this section and address some assumptions
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made in the literature about approximations of each individual data snapshot using POD 

projections. Pointwise convergence results for these POD projections are easiest to obtain 

when L and L-1 are both bounded. We primarily focus on the case when either L or L-1 is 

unbounded.

Range conditions are an important factor in this section. When an element to be 

approximated by a POD projection is in the range of K or K Y, we can often get better results. 

When certain conditions hold, we know these ranges exactly. Recall from Lemma 3.2.5, 

if all the POD eigenvalues for {wJ'} are nonzero and sX < TO, then we know X = R (K ) 

and dim(X) = sx . Note that in this case, the Hilbert space X must be finite dimensional. 

If all the POD eigenvalues for {wJ'} are nonzero and sx = to (i.e., X must be infinite 

dimensional), then Lemma 3.2.5 only gives X = R (K ). We do not always obtain the better 

convergence results in this case. Similar statements hold for the spaces Y and R (K Y). Also, 

as in Section 3.3, we sometimes need to consider different proof techniques in the case 

sX = TO.

We begin with a pointwise convergence result for n f  assuming L is bounded. For 

another pointwise convergence result for n f  with different assumptions, see Theorem 3.4.5 

below.

Theorem 3.4.1. Assume L is bounded and {n  Y} is uniformly bounded in operator norm. I f  

y e R ( L), then n fy  ^  y as r increases. In addition, if R ( L) is dense in Y, then n fy  ^  y 

for all y e Y.

Proof. Let y e R ( L), so that y = Lx for some x e X . Note that since Lnf^x e Yr = 

span{Lipk }rk=1 and n f  is a projection onto Yr , we have nfL nf^x = Lnf^x. Then

linfy -  y ||y < IInfLx -  n f L ^ x ||y + linfLnXx -  Lx||y 

= IIn fL x  -  n fL n X x ||y + IILnXx -  Lx||y 

< l n fL  | | x  -  nXx | y + l L HiinXx -  x | y,
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which converges to zero as r  increases since n f v  ^  x and | n f } is uniformly bounded in 

operator norm. The final result follows directly from the Banach-Steinhaus theorem (i.e., 

the principle of uniform boundedness). □

The next convergence result relies on the boundedness of either L or L-1 and certain 

range conditions involving L .

Theorem 3.4.2. 1. For any y e R (L ) = D (L -1), if L is bounded, then | |L n fL -1 y -

y\Iy ^  0 as r increases. In addition, i fR(  L) is dense in Y and {L n f L -1} is uniformly 

bounded, then L n f L -1 y ^  y for all y e Y.

2. For any x e D (L) = R (L -1), if L -1 is bounded and n^y  ^  y for all y e Y as r 

increases, then ||L-1n fL x  -  x ||X ^  0 as r increases. In addition, if D (L ) is dense 

in X  and {L-1n f  L} is uniformly bounded, then L-1n f  Lx ^  x for all x e X.

Rem ark 3.4.3. Note that Theorem 3.4.1 and Theorem 3.4.5 give two cases where the 

assumption n Yry ^  y for all y e Y holds. Also, the uniform boundedness o f {L ^ L -1} 

and {L-1n f  L} is not currently known, unless L and L -1 are both bounded. Note that when 

L and L-1 are both bounded, Theorem 3.4.1 gives n^y  ^  y for all y e Y whenever { n ^} 

is uniformly bounded; therefore, in this case Theorem 3.4.2 gives Ln XL-1 y ^  y for all 

y e Y and L-1n fL x  ^  x for all x e X.

Proof. We only prove the first result; the proof of the second is similar. Since y e R (L ) we 

have y = Lx for some x e X . Then

||LnXL-1 y -  y ||y = ||LnXx -  Lx||y 

< IILII IInXx -  xIIX,

which converges to zero as r  increases. The final convergence result again follows from the 

principle of uniform boundedness. □
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Next, we consider how range conditions involving K  and KY affect the convergence 

of POD projections. We are able to obtain convergence rates, and at most require either L 

or L-1 to be bounded. We begin with the POD projection n f  and then consider L n f L -1 

and L-1n Yr L . We use the following simple lemma multiple times below.

Lem m a 3.4.4. Assume y e R (K Y) so that y = KYg = LKg for some g e S. I f

yN = LKNg = L n ^ Kg , (3.22)

then yN ^  y as N  increases.

Proof. As N increases,

IIyN -  yIIy = \\LKg -  LKNgIIy < \\LK -  L n NK \ hs(s,y) \gIIs ^  0

by Lemma 3.3.1. □

Recall from Lemma 3.2.5 that sY is always less than or equal to sx . Thus if we 

assume sx < to, we know that sY < to. For the following proofs, we consider whether sx 

is finite or infinite.

Theorem 3.4.5. Assume { n f } is uniformly bounded in operator norm whenever sx  = to. 

I f  y = KYg for some g e S, then n fy  ^  y as r increases and the following error bound 

holds:

I n fy  -  y I\y < £  a* |( g , f k )s | \\nYr L<pk -  L y k ||y. (3.23)
k>r

Also, if the POD eigenvalues for the data {Lw^} are all nonzero, then n fy  ^  y for all 

y e Y.
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Proof. First consider the case sx < to, and fix r . Assume y = KYg = LKg for some g e S. 

Thus,

sx sx
n ry  = n r K Yg = n YrLKg  = ^  a k(g ,/k )sn ^ k ,  and y = ^  a k (g , f k)sL<pk.

k=1 k=l
(3.24)

Subtracting gives

sx sx
n ry  -  y = J ]  a k (g, fk ) s (n^L^k -  L^k) = ^  &k (g, fk )s ( n , L ^  -  L^k),

k=1 k=r+1

since n r L ^ k = Lipk for k = 1 ,. . . ,r . The error bound (3.23) follows directly from this 

representation and the triangle inequality. Furthermore, since sx < to, clearly n ry  ^  y as 

r  increases for each y e R (K Y).

Next, assume the POD eigenvalues for the data {LwJ'} are all nonzero. By Item 2 of 

Lemma 3.2.5, since sY < sx < to we have Y = R (K Y). This gives n ry  ^  y for all y e Y.

Now consider the case sx = to, and fix r . For y = KYg = LKg with g e S as above, 

recall the definition of yN = LnXKg given in (3.22). We have

IIn ry  -  yIIy < lln ry  -  n ryNIIy + lln ryN -  yN\\y + yyN -  yIIy 

< ( ynYy + ^  IIy -  yNIIy + II^ a n  -  yNIIy.

Note that for the second term, ||n ry N -  yN||Y, we can obtain representations for n r y N and 

yN similar to that in (3.24) above. Proceeding in the same way gives

N
II n ryN -  yN IIy < ^  <rt |(g ,/k  )s Ml n r L^ k -  L^k IIy.

k=r+1

Since r  is fixed and yN ^  y as N ^  to (Lemma 3.4.4), the two inequalities above give

TO
ynry  - y IIy < ^  ^ k |(g ,/k )s 1 l ln r ^ k -  L^ k IIy.

k=r+1
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For convergence, we have

\\n;y  -  y\\y <
1/2

X  \(S , f k)s |2
\k>r

1/2
J  o* \l n  Yr L<pk

\k>r
LiPk \|

Since {f k} is an orthonormal basis for S, we know £ k>r | ( g , f k)S |2 goes to zero as r  increases 

by Parseval’s equality. Furthermore, since { n ^} is uniformly bounded, Lemma 3.3.1 gives 

that £ k>r ^ 2 IInfL<^k -  Lipk goes to zero as r  increases. This gives n fy  ^  y for each 

y e R (K Y).

Finally, assume the POD eigenvalues for the data {LwJ'} are all nonzero. By Item 2 

of Lemma 3.2.5, we have R (K Y) is dense in Y. Since { n f } is uniformly bounded, the 

principle of uniform boundedness gives n fy  ^  y for all y e Y. □

For the next two results we need to assume L or L-1 is bounded whenever sX = to. 

Theorem 3.4.6. Assume sx < to, or either L or L-1 is bounded. I f  y = K Yg for some 

g e S, then

Iy -  LnXL-1 y ||y < J  o-k |(g, fk ) s | I L(fk||y (3.25)
k>r

and the error converges to zero as r increases. Now assume {L n XL-1} is uniformly 

bounded in operator norm whenever sx  = to. I f the POD eigenvalues for the data {LwJ'} 

are all nonzero, then L n XL-1 y ^  y for all y e Y.

Proof. Let y = LKg for some g e S, assume sx < to, and fix r . As in the proof of 

Theorem 3.4.5, it can be shown that

y -  LnXL-1 y = LKg -  LnXKg
sx r

= X  o k (g , fk)sL <fik -  ^  o k (g , fk)sL <fik
k=1 k=1

sx
= 'Yj  °k  (g , fk)sL <fik.

k=r+1
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The triangle inequality gives the error bound (3.25). The convergence results for the case 

sx < to follow just as in the proof of Theorem 3.4.5.

Now consider the case sx = to, assume y = LKg for some g e S, and fix r . Then 

for yN = LnXKg as in (3.22), with N > r , we have

||y -  LnXL-1 y \\Y < ||y -  yN\\Y + ||yN -  LU ^L -1 yN\\Y + ||LU ^L -1 yN -  LnXL-1 y \\Y.

Lemma 3.4.4 implies that the first term tends to zero as N ^  to. For the second term, 

proceed as above and use Ux UX = Ux (since N > r ) to show

N
IIyN -  l u Xl - 1 yNIIy < ^  &k\(g, f k )s \ yL Vk\\y .

k=r+1

For the third term, first assume L is bounded. In this case,

||LUXL-1 yN -  LUXL-1 y ||y < \\L||||UX||||L-1 yN -  L-1 y ||x  = \\L||||UX||||U£Kg -  K g||x,

which converges to zero as N ^  to, since r  is fixed. If instead L-1 is bounded, then 

L UXL-1 is bounded by Theorem 3.2.3 and so

||LUXL-1 yN -  LUXL-1 y ||y < ||LUXL-1 yyyN -  yIIy,

which converges to zero as N ^  to by Lemma 3.4.4, again since r  is fixed. Combining the 

above results gives

TO
yy -  l u Xl - 1 y ||y < ^  ^k \(g, /k )s \ yL^k yY.

k=r+1
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For convergence, we proceed as in the proof of Theorem 3.4.5. We have

II y L n f L -1 y \Iy <
1/2

Z  \(S , f k )S|2
\k>r

1/2

z\k>r
'II L?k I

We know £ k>r \ ( g , /k)S|2 goes to zero as r  increases by Parseval’s equality. Further­

more, Lemma 3.3.1 gives that £ k>r ^21L ^kIlY goes to zero as r  increases. This implies 

L n f L -1 y ^  y for each y e R (K Y). To show convergence for all y e Y, we again use 

Item 2 of Lemma 3.2.5 and the principle of uniform boundedness. □

We omit the proof of the next result, as it is similar to the proof of the previous 

result, Theorem 3.4.6. Note that in Theorem 3.4.6 the error converges to zero for a fixed 

y e R (K y) without any additional assumptions. In this next result, if sx = to we need 

to require additional conditions to guarantee that the error converges to zero for a fixed 

v e R (K ); these conditions come from Lemma 3.3.1.

Theorem 3.4.7. Assume sx < to or either L or L-1 is bounded. I f  x = Kg for some g e S, 

then

Ix -  L-1n YLxIx  < Z  ^k\(g, fk)s\ I^k -  L-1UYr L ^ k IX. (3.26)
k>r

I f  sx  < to, the error converges to zero as r increases. I f  sx  = to, then the error goes to 

zero as r increases when either (i) L-1 is bounded and {nY} is uniformly bounded or (ii) 

{L-1 n Yr L } is uniformly bounded. Now assume {L-1n ^  L } is uniformly bounded in operator 

norm whenever sx  = to. I f  the POD eigenvalues for the data {wi } are all nonzero, then 

L -1 n r  Lx ^  x for all x e x .

To be complete, we give an exact error formula and an error bound for approximations 

of elements in the range of K using the POD projection n x . This result gives an error bound 

for approximating each individual data snapshot in the discrete case.
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Theorem 3.4.8. I f  x = Kg for some g e S, then

I x -  n f x \\X
1/2

\(g, f k )s \2 | < CT+1 \ g \ s .
\k>r

(3.27)

Also, in the discrete case, for each I  = 1 , . . . ,  s we have

Iwe -  n fw e|x  < y-1/2^r+ i. (3.28)

Rem ark 3.4.9. The bound (3.28) was obtained in [40, Proposition 3.1] for X  = R” and 

ye = 1 for all t. Recall the constants [ye} are the positive weights in the definition o f the 

POD operator K in the discrete case; see Section 2.2.1.

Proof. Using the SVD of K gives

x -  n xx = ^  CT-k (g,fk)s<fik.
k>r

Since ||x -  n Xx\X = (x -  n Xx,x  -  n Xx)x and [<̂ k} is an orthonormal basis for X, we 

immediately obtain the exact error formula in (3.27). To obtain the error bound in (3.27), 

use CTk < CTr+1 for all k > r  and also Parseval’s equality.

Next, in the discrete case we have we = Kgt for each t  = 1 , . . . ,  s, where gt = y-1 et 

and et is the tth  standard unit vector for Ks, i.e., the tth  entry of et is one and all other 

entries are zero. The error bound (3.28) follows from ||ge||S = y - 1/2 and (3.27). □

In Theorem 3.4.8, note that the quantity y-1 appears in the error bound (3.28) for 

approximating the snapshot we. However, in applications it is typical that each weight yt 

tends to zero as the number s of snapshots increases. Next, we use the above results to 

prove various approximation error bounds for each individual snapshot we in the discrete 

case that do not depend on y-1 . Here, the bounds are only valid if r  is sufficiently large. 

We note that these type of error bounds have been assumed to hold in the literature; Iliescu
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and Wang made this type of assumption in [25, Assumption 3.2] (with yf = s-1 for all f) 

in their analysis of a POD reduced order model of the Navier-Stokes equations, and many 

others have followed their approach.

Corollary 3.4.10. In the discrete case, if r is sufficiently large, then for each f  = 1 , . . . ,  s 

we have

II wf -  n f w f | 2
\x < r f +1, (3.29a)

|| Lwf -- n Yr Lwe\ 2
| Y < £ rf2IIL^k --  n  Yr Lpk Il2, (3.29b)

k>r

|| Lwf -- l  n f w f | 2
| Y < £ II L^k II2,Y, (3.29c)

k>r

il
S

3£ 1n Yr Lwe\ 2
\x < £ II^k - l - 1n  Yr Lfik ll |. (3.29d)

k>r

Proof. We only prove (3.29b); the proofs of the remaining inequalities are similar. As in 

the proof of Theorem 3.4.8, we know we = Kgf for each f  = 1 , . . . ,  s, where gf = y-1 ef . 

Using the error bound (3.23) in Theorem 3.4.5, the Cauchy-Schwarz inequality on the sum, 

and Parseval's inequality gives

IILwe -  UYr Lwf ||2 < ||gf -  n srg{ f s £  r f  ||L<pk -  n ^ k I l 2 ,
k>r

where n s : S ^  S is the orthogonal projection onto Sr := span{ f k}rk=v  Since {f k}k>1 is 

an orthonormal basis for S, we know n sgf ^  gf for f  = 1 , . . . ,  s. Since s is fixed, for all 

sufficiently large r  we have ||gf -  n sgf ||s < 1 for all f  = 1 , . . . ,  s, and this completes the 

proof. □
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3.5. EXAMPLES

In this section we present four examples illustrating these new results. Each example 

shows how to consider the problem in terms of our new framework. First, we consider a 

computational example in Section 3.5.1 to demonstrate the POD data approximation errors. 

Then we consider a few additional examples that relate to previous works.

For the examples in Section 3.5.2 and Section 3.5.3, we consider two separable 

Hilbert spaces, H  and V , where V is a proper subset of H , and V is both continuously 

embedded1 and dense in H . The linear operator L is a mapping between these two spaces. 

We assume we have the data { }rJ=1 c  L2 (O; H) n  L2 (O; V). We present the results for 

the continuous case only, but results for the discrete case can also be obtained using the 

theory in this work if desired.

3.5.1. Com putational Example. Next, we briefly present numerical results for an 

example to demonstrate our new results. POD model order reduction is considered for this 

example in [29]; here, we focus on the POD data approximation errors. The new results are 

discussed in greater detail for other examples in Section 3.5.

Consider a nerve impulse model, the FitzHugh-Nagumo system in one dimension. 

The initial conditions for this model are zero and is given by

du (t,x) 
dt

dv (t,x) 
dt

d2u (t,x) \ \ c
= 1 — j-2 --------- v (t,x) + -  f  (u) + ~ ,dx2 i  i  i

bu (t,x) -  yv (t,x) + c, 0 < x < 1,

0 < x < 1,

where

f  (u) = u (u -  0 .1)( 1 -  u),

1  = 0.015, b = 0.5, y  = 2, and c = 0.05. Further, the boundary conditions are given by 

ux (t, 0) = -50000t3 e-15t and ux (t, 1) = 0.

ii.e., there exists a constant C y  >  0 such that ||v||h  <  C y  y v y y  for all v  e  V
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For this example, we take the Hilbert spaces X = Y = L2 (0,1) x L2 (0,1) with the 

usual inner product, and define the operator L : X ^  Y by

■ ■ ■
u dxu

v dxv

Note that here L is unbounded and closed, but not invertible. Thus, this operator satisfies 

the main assumption made for the continuous case. We let n f  be the orthogonal projection 

onto Yr = span{L pk}rk=1, where {pk} c  X are the POD modes.

To approximate the solution of the PDE we used the interpolated coefficient finite 

element method with continuous piecewise linear basis functions from [29], and ode23s 

from MATLAB for the time stepping scheme. We approximated the solution using 100 

equally spaced finite element nodes on the time interval O = (0 ,10). Increasing the number 

of finite element nodes gave similar results below.

For the POD computations, the solution values were approximated at each time 

step, w (tk), where w = [u,v]T, and a piecewise constant function in time was formed. 

The constant on each interval is given by the average of the solution at the current step 

and the solution at the next step, i.e., 0 .5(w (tk+1) + w (tk)). Note that for this problem we 

can calculate the POD eigenvalues, POD modes, and the data approximation errors exactly. 

Thus, comparisons between the actual approximation errors and the error formulas can be 

made.

In Tables 3.1 and 3.2 we present the errors from the relevant projections considered 

in Chapter 3 for r  = 4 and r  = 12. Note that errors for projections involving the inverse 

mapping L-1 are not included since L is not invertible for this example. In the tables, the 

actual error is the integral error measure and the error formula is the sum involving the POD 

singular values. The first line in the tables represents computations for the known error 

result (2.7). The second and third lines of the tables are computations for the new results
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Table 3.1. Error Comparison with r  = 4

POD Error Equation Actual Error Error Formula Difference
Equation (2.7) 

Equation (3.18) 
Equation (3.19)

6.2755 x 10-5 
2.1584 x 10-1 
9.8536 x 10-3

6.2792 x 10-5 
2.1593 x 10-1 
9.8541 x 10-3

3.7584 x 10-8 
9.1863 x 10-5 
4.7712 x 10-7

Table 3.2. Error Comparison with r  = 12

POD Error Formula Actual Error Error Formula Difference
Equation (2.7) 

Equation (3.18) 
Equation (3.19)

4.1453 x 10-8 
2.2536 x 10-4 
1.2664 x 10-5

4.1487 x 10-8 
2.2541 x 10-4 
1.2668 x 10-5

3.3661 x 10-11 
5.2146 x 10-8 
3.5150 x 10-9

(3.18)-(3.19). The second line of each table gives the values for

actual error = ||Lw (t) -  Ln f w ( t )\\ydt, error formula
JO

while the third line of each table shows computational results for

X X W L<fik Wy ,
k>r

actual error = n Yr Lwj Wy dt, error formula = X  <j \ ||L ^k -  n ^ L ^ .
k>r

The differences in the computed values are likely due to round off errors. Note that as r 

increases the errors tend toward zero, as expected by the theory.

3.5.2. Examples From  [1]. The first two examples are from [1]. Due to the above 

assumption on the data, the POD operator K can be viewed as a mapping into H  or a 

mapping into V. One can obtain the SVD of K : S ^  H  or the SVD of K : S ^  V , i.e., one 

can choose X = H  or X = V . The different choices for X  give different POD singular values, 

POD singular vectors, POD modes, and POD projections. In [1], the author considered
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both choices for X and four different POD projections between these spaces and gave exact 

expressions for the POD data approximation errors in the two different Hilbert space norms. 

We relate the notation and results for both the error formulas and pointwise convergence 

from the present work to [1]. We obtain better pointwise convergence results in this work. 

Also, O was only an interval in [1], but now we have O is an open subset of Rd. For these 

first two examples, Yr = span{Lpk} and n f  : Y ^  Y is the orthogonal projection onto Yr. 

Note this implies { n f } is uniformly bounded in operator norm.

3.5.2.I. Example 1. For the first example, consider the case where X = H , Y = V , 

and L : H  ^  V is defined by Lv = v for all v e D (  L ) = V. The operator L is 

clearly invertible, and L-1 : V ^  H  is given by L-1 v = v for all v e V. Note that 

L-1 : V ^  H  is bounded due to the continuous embedding assumption. Also, the inverse 

of a bounded operator is closed, so L is closed. Furthermore, the assumption on the data 

gives {wi} c  L2 (O; X) and {LwJ'} c  L2 (O ; Y). Thus, we know that both the main 

assumption and the L-1 assumption hold.

Since X = H  and each set of singular vectors of the POD operator K : S ^  H  are 

an orthonormal basis, we know the POD modes {pk} are an orthonormal basis for H . Note 

that Xr = span{pk}rk=1 c  H , and Yr = span{Lpk}rk=1 = span{pk}rk=1 c  V . Furthermore, 

the POD modes {pk} may not be orthogonal in V. Also, the operator KY = LK is simply 

the POD operator K viewed as a mapping from S to V. We take n X : X ^  X to be the 

orthogonal projection onto Xr, and n f  : Y ^  Y to be the orthogonal projection onto Yr .

In order to discuss the POD projections we pay special attention to the spaces under 

consideration. Since V c  H , the projections can be considered as mappings from V to V or 

from H  to H . The projections considered in this work are related to the projections P H and 

in [1, Definition 3.2] as follows:

• n X : X ^  X is equal to the orthogonal projection P H : H  ^  H .

• n r  : Y ^  Y is equal to the orthogonal projection : V ^  V.
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• Ln f L  1 : Y ^  Y is equal to the operator : V ^  V.

• L -1n Yr L : X  ^  X  is equal to the operator : H ^  H.

Now that we have the relationships between the projections, we compare the results. 

The error formulas presented here in Theorem 3.3.4 are essentially the same as the results 

in [1]. Again, the primary difference here is that O is an open subset of Rd instead of an 

interval. The POD data approximation errors from Theorem 3.3.4 become the following:

-  o  )iiVd  = Y j ii Pk iiV ,
k>r

-  Pvr w} (Oil2 dt = Y j  1 Pk -  PVr Pk llV,
k>r

-  PVr W] (t ) |  Hdt = Y j ° h 1 Pk -  PVr Pk1H.
k>r

(3.30)

(3.31)

(3.32)

In this example, all three sums converge to zero as r  increases.

A larger improvement from [1] can be seen in the results concerning pointwise 

convergence of POD projections. To illustrate, we give the following result.

Proposition 3.5.1. We have

1. || P^y -  y ||V ^  0 for all y e R( K ), and for y = Kg we have

1 pVy -  y ||v &k\(g j k )s MlpV Pk -  Pk IIv.
k>r

2. I f  the POD eigenvalues for [w^ } c  L2 (O ; V) are all nonzero, then P]?y ^  y in both 

H and V for all y e V.

3. || PHy -  y || V ^  0 for all y e R ( K ), and for y = Kg we have

II y -  PHy| Iv < £  ^ k \ ( g , f k )s \ II Pk IIv.
k>r
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4. || P^x -  x || H ^  0 for all x e R (K ), and for x = Kg we have

||x -  Pvr x y h < ^  o-k \(g , f k)s \ 1 Wk -  PVr Wk1 h .
k>r

Note that since n f  is orthogonal, item 1 and item 2 follow from Theorem 3.4.5 and 

item 2 of Theorem 3.4.2. Items 3 and 4 can be obtained from Theorem 3.4.6, Theorem 3.4.7, 

and the fact that L -1 is bounded.

The pointwise convergence results above are more complete and more sharp than 

the results in [1, Proposition 5.5]. First, item 2 is shown in [1, Proposition 5.5] under 

the assumption that all the POD singular values for {wJ'} c  L2(O ; V) are nonzero; as 

discussed in Section 2.2.2 this is a more restrictive assumption than the POD eigenvalues 

all being nonzero, as is required above. Next, the convergence result in item 3 is shown in 

[1, Proposition 5.5]; however, the error bound in item 3 is new. Also, items 1 and 4 are 

completely new.

For item 3, we note that an error bound was given in the proof of [1, Proposition 

5.5]. However, that error bound does not converge to zero as fast as the error bound 

given in Theorem 3.4.6. Specifically, the error bound in [1] is a constant multiple of 

( £ k>r \ (g, f k)s |2) 1/2. However, the error bound in item 3 can be bounded above by

II>' -  Pf>'llv < | ( g , / k)s |2) / <7 IIWk 112
k>r k>r

and both terms in parentheses tend to zero as r  increases by Parseval’s equality and 

Lemma 3.3.1 (see the proof of Theorem 3.4.6). Therefore, the error bound in item 3 

is an improvement over the error bound in [1].

Finally, we consider boundedness of the non-orthogonal POD projections Pf1 : V ^  

V and P v : H  ^  H . For each fixed r , it is shown in [1, Lemma 3.3] that P^1 : V ^  V 

is bounded. Singler did not consider the boundedness of P)f : H  ^  H  in [1]. Below, we
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use Theorem 3.2.3 to show : V ^  V is bounded and also give a condition guaranteeing 

P^  : H ^  H  has a bounded extension. However, we still do not know if these non­

orthogonal POD projections are uniformly bounded in operator norm.

Define the linear operator A : D ( A ) c  H  ^  H  by

( A u, v)h = (u, v )v

for all u e D ( A) and v e V (see, e.g., [63, Section II.2]). We know A is closed. Now we 

apply this to our example. For all x e D (  L ) = V and y e D (  L *) we have

(x,L* y)H = (Lx,y)v = (x,y)v 

^  (L*y,x)h = (y ,x )v.

Thus, L * = A and D (  L*) = D ( A ) . For PDE solution data we often have {Awj } c  L2 (O; H) 

for each j ; see [63] for examples. In this case, since ^  = a -1 K f k we can use the Bochner 

integral result in Theorem 2.1.2 to show <̂k e D(A)  whenever a k > 0.

Therefore, since L-1 is bounded, item 1 and item 4 of Theorem 3.2.3 give the 

following result.

Proposition 3.5.2. Let r be fixed. The operator P’H : V ^  V is bounded, and if {Aw^ }rJ=1 c  

L2 (O; H), then the operator PV : H  ^  H can be extended to a bounded operator.

3.5.2.2. Example 2. Next, consider the case where X = V , Y = H , and L : V ^  H 

is defined by by Lv = v for all v e V . Then L -1 : H ^  V is given by L-1v = v for 

all v e D ( L -1) = V. Note that in this case L is bounded by the continuous embedding 

property. Again, the assumption on the data gives {w i } c  L2 (O; X ) and {L wi } c  

L2 (O; Y). Therefore, the main assumption and the L -1 assumption hold.
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Since X = V, in this example the POD modes {p k} are an orthonormal basis for

V. We have Xr = span{pk}rk=1 c  V, and Yr = span{L p k}rk=1 = span{p k}rk=1 c  H. The

POD modes {p k} may not be orthogonal in H. The operator KY = LK  is the POD operator 

K  : S ^  H . As in Example 1, n X : X ^  X is the orthogonal projection onto Xr , and 

n f  : Y ^  Y is the orthogonal projection onto Yr .

The projections in this work are related to the projections QH and Qvr from [1, 

Definition 3.2] as follows:

• n X : X ^  X is equal to the orthogonal projection QV : V ^  V.

• n f  : Y ^  Y is equal to the orthogonal projection Qff : H  ^  H .

• L n XL-1 : Y ^  Y is equal to the operator QV : H  ^  H .

• L-1n Yr L : X  ^  X  is equal to the operator QH : V ^  V.

As before, the main data approximation error results in Theorem 3.3.4 become

wj (o  -  QVr w] (t)\\Hdt = X  \i Pk iiH
k>r

wj ( t ) -  q Hwj ( t) \Hdt = X  y P k -  QHPk iiH>
k>r

wJ (t) -  q Hwj (t)yVdt = X  \ Pk -  QHPk \\V.
k>r

Here the first two sums converge to zero as r  increases. However, we cannot show conver­

gence of the last sum. This is because we do not know L-1 is bounded or {QH} is uniformly 

bounded as a family of operators mapping V to V . As before, the only improvement here 

compared to [1] is that O is not restricted to be an interval.

We also have the following pointwise convergence results.

Proposition 3.5.3. As r increases we have
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1. ne?,v -  3 iih ^  0 for all y e H, and for y = Kg we have

W ^ y  -  yyh < J  a k |(g ’/ k)s 1yQHWk -  Wk1 h .
k>r

2. \\Qvr y - y yh ^  0 for all y e V, and for y = Kg we have

IIQVr y - yIIh < J ^ k \(g , f k)s\ yWkyh .
k>r

3. For x = Kg we have

||qH ^ - x| |v < J  o k \ ( g , / k)s \yQHWk -  Wkllv.
k>r

I f  also sx < or L-1 is bounded, then the error goes to zero as r increases.

Since L is bounded, item 1 follows from item 1 of Theorem 3.4.1 and also Theo­

rem 3.4.5. Item 2 can be obtained from Theorem 3.4.6, using L is bounded. Theorem 3.4.7 

gives item 3; note that we cannot guarantee convergence of the error without the extra 

assumptions since we only know L is bounded.

Again, these results improve on the results in [1, Proposition 5.5]. All of the error 

bounds are new. The convergence result in item 2 was not stated in [1], but it follows directly 

from the continuous embedding and IIQ^y -  y ||v ^  0 for all y e V. The convergence 

result in item 1 was given in [1, Proposition 5.5], however that work made the assumption 

that all the POD singular values for {wJ'} c  L2 (O; V) are nonzero. Here, we proved the 

convergence result in item 1 without that assumption.
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Next, we use the technique from Section 3.5.2.1 to determine the boundedness of 

the non-orthogonal POD projections : V ^  V and : H  ^  H . For this example, we 

have A = L - * = (L-1)*. Therefore, if {A w i } c  L2(O; H ), then we have {ipt } c  D ( L - *), 

just as in Section 3.5.2.1. Since L is bounded, items 2 and 3 of Theorem 3.2.3 give the 

following result.

Proposition 3.5.4. Let r be fixed. The operator QH : V ^  V is bounded, and if {AwJ' }rJ=1 c  

L2 (O; H), then the operator Q^ : H  ^  H  can be extended to a bounded operator on H.

3.5.3. Non-orthogonal Projection Example. For the final example, we consider 

a case where n r  is not an orthogonal projection. In particular, we take n r  to be a Ritz 

projection, as considered in [24, 27]. All of our results for this case are new.

Consider the situation from Example 1 in Section 3.5.2.1: we have X = H , Y = V , 

and L : X ^  Y is defined by Lv = v for all v e D (L ) = Y. Assume we have a continuous 

elliptic sesquilinear form2 a : V x  V ^  K. Define the projection : V ^  V onto 

Vr := Yr = span{L ^ t} = s p a n { } c  V as follows: let := ur e Vr be the unique 

solution of

a(ur,vr) = a(u,vr) for all vr e Vr .

The existence and uniqueness of such a solution is guaranteed by the Lax-Milgram Theorem. 

We take n r  = PVr .

Note that the main difference between this example and Example 1 is that the 

projection P)f is not the same. However, for this example it can be checked that the family 

of projections, { n r }, is uniformly bounded. Therefore, the same pointwise convergence 

results and error formulas from Section 3.5.2.1 hold for this example with P)f : V ^  V 

defined as above. We note that these pointwise convergence results and error formulas are 

all new. Bounds on the POD data approximation errors can be found in Lemma 3.4 in [24]

2i.e., there exists constants C a , c  a >  0 such that |a (u, v)| < C a \\u || y || v ||y and c a \ \u\ \y <  Re a (u,  u) for 
all u , v  e  V
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and Lemma 2.9 in [27] in the discrete case; however, we have the exact formulas (3.30)- 

(3.32) for the POD data approximation errors in the continuous case. Again, analogous 

error formulas can be derived for the discrete case using our results.
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4. A NEW APPROACH TO POD W ITH DIFFERENCE QUOTIENTS

4.1. REVIEW  OF EXISTING METHODS

Before presenting the new approach to proper orthogonal decomposition with dif­

ference quotients, we present current approaches to POD: the standard POD approach and 

standard POD with difference quotients approach. We compare our new method to known 

results about these established methods throughout the section. For details on the basics of 

POD see, e.g., [14, 15, 16, 19, 49, 50, 51].

First we establish some general notation. Let M and N be a positive integers and 

recall that X and Y are Hilbert spaces where the space X  is called the POD space. In this 

chapter it is possible for Y = X . In the examples in this chapter for these Hilbert spaces 

we use the standard function spaces L2 (Q) and H0 (Q ), where Q is the spatial domain. In 

order to consider variable weights that often arise with numerical integration, we recall the 

definition from Section 2.2.1 of S := KM with the weighted inner product given by

M __
(g, h)s = h T g  = ^  r jgJhj 

j=1

where g, h e S, r  = diag(y 1, y 2, . . . ,  yM), and the values {y j }M=1 are positive weights. In 

some instances it is beneficial to take the the positive weights to be certain specific values 

in order to approximate various time integrals.

For the POD reduced order modeling in this chapter, we consider data sets consisting 

of approximate solution data for a time dependent partial differential equation. Throughout, 

we consider the time interval [0, T] with T > 0 a fixed positive constant. The approximate 

solution data will be given at times tn = (n -  1)At, for n = 1 , . . . ,  N , where the time step is 

given by At = Nrp. Note that while T is fixed, N can vary.
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4.1.1. S tandard  POD. First we recall the standard POD approach as presented in 

Section 2.2.1. We present it here again with slightly different notation in order to use it for 

the remainder of the work.

Let W = {wi } c  X be the POD data for some integer M > 0. We have the same 

POD operator as in Equation (2.2) which is

M
K f  = J  y j f j wJ, f  = [f \ f 2, . . . ,  f Mf .  (4.1)

j=1

We call this operator the standard POD operator. Further recall that the POD modes 

provide the best low rank approximation to the data. Thus we have the following formula 

as in Equation (2.5):
M sx

Er = J  7j ||wj -  nXw> yX = J  (4.2)
j=1 k=r+1

where {Tk} are the POD eigenvalues and sX is the number of positive POD singular values.

For certain choices of weights { j i} the error given in Equation (2.5) approximates 

a time integral, or a constant multiple of a time integral, as more and more time steps are 

used. Using various quadrature rules to determine the appropriate POD weights will lead to 

different time integral approximations. Allowing the weights to vary for the standard POD 

problem will also allow us to apply known results for this approach to new approaches.

The following lemma provides exact formulas for POD data approximation errors 

using other norms and other projections. We use this result later to provide POD data 

approximation results for other POD approaches. The proof of Lemma 4.1.1 is very similar 

to the proof of Theorem 3.3.2 above so we omit it here. For another similar result and proof 

see [37, Lemma 2.2].
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Lem m a 4.1.1. Let Xr = span[pk }rk=1 and n f  : X ^  X  be the orthogonal projection onto 

Xr. Let sX be the number o f positive POD singular values for K defined in Equation (2.2). 

I f  Y is a Hilbert space with W c  Y then

M sx
^  Yj yw J—n r wJ Hf = A  y p  Hf • (4.3)
j =1 i=r +1

In addition if nr : Y ^  Y is a bounded linear projection onto Xr then,

M sx
Y ^ Y j  y wj -  XrWj yY = ^  A y (pi -  XrPi ||y • (4.4)
j =1 i=r+1

The standard POD approach does not have general bounds for pointwise errors, as 

shown in [37, Section 3].

4.1.2. POD with Difference Quotients. Another common approach to POD in­

volves the use of difference quotients. Throughout this chapter, we refer to this method as 

the standard DQ approach. This approach has been studied by many including [18, 37, 38, 

40, 64, 65]. We consider backward Euler for the time stepping scheme and the difference 

quotients.

Let U = [U }N=1 c  X  be a given data set. Then the problem is to find an orthonormal 

basis minimizing the error

N N-1
e ? q = J ^  A tyu  -  n X u  yX + ^  Atyduj -  nXdu j yX (4.5)

7=1 7=1

where At is the time step and the difference quotients are given by

jJ + 1
At

duJ = (4.6)
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These difference quotients approximate the time derivative of the data in continuous time. 

The operator that provides the minimizing basis for the error in Equation (4.5) is KDq : 

S ^  X  defined by
N N-1

Kdqf  = E A t fJ'uJ' + ^  At f N+ iduf (4.7)
j=l 7=1

This approach uses a total of M = 2N  -  1 data snapshots which is nearly twice as 

many as the standard POD approach. Note for this operator we have KDq/  = K f  where 

wl = ul and j  = At for i = 1 ,.. .  N , and also wN+l = dul and yN+i = At for i = 1 ,.. .  , N -  1. 

The resulting POD data set is {w i}MM=1, where M = 2N -  1. Taking |d ^ Q^ N ”1 to be the 

POD eigenvalues and keeping the same notation {ipj} for the POD basis functions, we get 

similar results to those for the standard POD operator. When using this new set {wi } as the 

POD data set, we not only have a set that is nearly twice as large as the original but it can 

also be checked that the new set is linearly dependent. This redundancy is something we 

avoid with our new approach introduced in Section 4.2.

Rem ark 4.1.2. While the weights can be taken to be any set o f positive constants, for 

simplicity we take them to be the constant At. The results in this chapter can be extended 

to variable weights or other choices o f constant weights. One popular choice of constant 

weight in the literature is M -1 as in [37, 38] where M represents the total number o f data 

snapshots for the standard difference quotient approach to POD. Similarly to the standard 

POD case, with certain choices o f weights, one can approximate time integrals with various 

quadrature rules.

The following result is also similar to Lemma 2.4 in [37]. We provide it here for 

completeness.
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Lem m a 4.1.3. Let Xr = span{ipk }rk=1 and n f  : X ^  X  be the orthogonal projection onto 

Xr. Let sX be the number o f positive POD singular values for KDq defined in Equation (4.7). 

We have the following error formula:

N N-1 sx
J^A t\\u j -  n ? u j \\2X + ^  At || duj -  nXduj \\2X = A?q . (4.8)
j=1 J =1 i=r+1

I f  Y is a Hilbert space with U c  Y then

N N-1 sx
J ^ A t \\uj -  n ^ u j \\Y + ^  At\\duj -  nr^duj \\Y = 2  AÎ Q || tpi\\Y. (4.9)
j=1 J= 1 i=r+1

In addition, if nr : Y ^  Y is a bounded linear projection onto Xr then

N N-1 sx
^  A t||uj -  nrW ||Y + ^  At\\duj -  nrduj ||Y = ^  XÎ Q||tpi -  ||Y. (4.10)
j=1 j=1 i=r+1

Proof. This result follows from Equation (2.5) and Lemma 4.1.1 by taking {A®Q}s=  as the 

POD eigenvalues for the POD operator in Equation (4.7). □

We have the following result about the pointwise error bounds for this POD case. A 

similar result with a different set of constant weights can be found in [37, Theorem 3.7]. The 

proof of the result below is similar so we omit it here. That theorem was key to obtaining the 

optimal pointwise POD ROM error bounds which were a main contribution of that work. 

Theorem 4.1.4. Let Xr = span{ ipk }rk=1 and n X : X ^  X  be the orthogonal projection onto 

Xr. Let sX be the number o f positive POD singular values for Kdq . We have

max y u  -  nr^u7'||X < 
1< j < n " r X

(4.11)
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I f  Y is a Hilbert space with U c  Y then

max \\uJ' -  n f u J'||2 < C 
1< j <N r Y

I f  nr : Y ^  Y is a bounded linear projection onto Xr then

Sx

x

I IIV, III

max llu-7' -  nru^||2 
i< j < N Y

< C J ]  Q \ V, -  KrVi
\i=r+1

m2
nY

(4.12)

(4.13)

where C = 2m ax{T 1,T }.

In Section 4.2.2 we obtain a similar pointwise POD projection error result for the 

new POD approach described below in Section 4.2.

4.2. A NEW APPROACH

Next, we return to the question posed in the introduction: “Can we obtain all of 

the same numerical analysis benefits of using DQs with POD using a data set without 

redundancy?" We obtain a positive answer to this question by introducing a new POD 

problem and operator. Instead of including all of the POD data snapshots and all of the 

difference quotients as in Section 4.1.2, we include the first data snapshot and all of the 

difference quotients. Thus for the data U = {U }N=1 c  X , the new POD problem is to 

minimize the error given by

N -1
£ f G1 = Hu1 -  nX u1 \X + Y j A tN°u j -  n Xduj \X (4.14)

j=1

where the difference quotients are defined by Equation (4.6). Note that the POD error 

function in Equation (4.14) does not include the weighted sum of the errors of the regular 

snapshots; this contrasts with the POD approaches in Section 4.1, which both include such 

error terms, see Equation (2.5) and Equation (4.5). Furthermore, in the POD approaches
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in Section 4.1, we have exact error formulas for these error terms; see Lemma 4.1.1 and 

Lemma 4.1.3. In Section 4.2.2, we consider the weighted sum of the errors of the regular 

snapshots for this new approach and obtain an approximation error result in Corollary 4.2.5.

Note that with this approach we have a total of N -  1 difference quotients. Together 

with the single snapshot, we have a total of N data snapshots for this POD problem. This is 

an improvement from the standard DQ approach to POD which has 2N -  1 data snapshots. 

The minimum error can be found using the POD operator:

N -1
Ki f  = f  1u1 + £  A t f J+1 du] (4.15)

j=i

We have K1 f  = K f  where w1 = u1, y 1 = 1, yl+1 = At, and wl+1 = dul for i = 1 , . . . ,  N -  1. 

We choose to use the constant time step, At, as the weight for simplicity throughout. The 

results can be extended to include variable weights as well. Recall that for certain choices 

of weights one can approximate a time integral and the difference quotients approximate a 

time derivative.

Note that in contrast to the data set created for the standard POD approach with 

DQs, the data set for this new approach is linearly independent if the original data set is 

linearly independent as shown in Lemma 4.2.1.

Lem m a 4.2.1. I f  {ul }N=1 is linearly independent then {wl }N=1 given by w1 = u 1 and wl+1 = 

dul for l = 1 , . . . ,  N -  1 is linearly independent.

Proof. We show that if

C1 w 1 + C2W2 +---- + Cn WN = 0

then a  = 0 for all l = 1 , . . . ,  N . We have

1 / u2 -  u 1 \
C1u + C2 I  At  + • • •+  Cl

ul -  ul-1 

At
+ • • • + cn

'uN -  uN-1' 
. At

0
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then

c 1 C2 \ 1 — M1 + At I
C2
At

C3
At

M2 + • • • + C" -1 
At

a " -1 + Cc-uN = 0 .
At At

Since {ui} is linearly independent we know each of these coefficients must equal 0. Solving 

that system of equations leads to the conclusion that c« = 0  for all i = 1 , . . . , N . □

If we let {d^G1} N=1 be the POD eigenvalues for this new POD approach, and let 

{<£k }rk=1 be the POD modes for this data, we get the following error formulas given in 

Lemma 4.2.2.

Lem m a 4.2.2. Let Xr = span{^k }k=1 and n f  : X ^  X  be the orthogonal projection onto 

Xr. Let sX be the number o f positive POD singular values for K 1 defined in Equation (4.15). 

We have the following formula for the data approximation error:

1
N -1

-  n ^ u 1 ii x + ^  At ii dM -  n w  hx

j=1 i=r+1

I f  Y is a Hilbert space with U c  Y then

(4.16)

N -1 sx
Hu1 -  n f u 1 h2 + Y j A tHdM -  n XdM ||2 = J ]  d f G1 Hwh2. (4.17)

j =1 i=r +1

I f in addition nr : Y ^  Y is a bounded linear projection onto Xr then,

N -1 sx
Hu1 -  nru1 H2 + ^  At H du7' -  nrdui H2 = ^  d f G1 H Wi -  Xi-fi H2. (4.18)

j =1 i=r+1

Proof. This result follows from Equation (2.5) and Lemma 4.1.1 by taking {d^G1 as

the POD eigenvalues for the POD operator in Equation (4.15). □

Preliminary computational results and pointwise error estimates for this new POD 

approach are discussed in Section 4.2.1 and Section 4.2.2 respectively.
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4.2.1. Prelim inary Computations. Before moving to our main results we perform 

some preliminary computations to test the new POD approach with difference quotients. 

For all computations in this chapter we consider the following test problem.

Test Problem: Consider the one dimensional heat equation

ut -  vuxx = 0, in Q x  [0, T]

u (x, 0 ) = ex sin(nx)

with v = 1, Q = [0,1], T = 1, and zero Dirichlet boundary conditions.

For the data {U }, we compute the solution using the finite element method with 

linear elements, equally spaced nodes, and backward Euler with a constant time step for 

the time stepping. The initial condition is taken to be the linear interpolation of the 

initial condition with respect to the finite element nodes. For this data and with the POD 

space X = L2 (Q), we can calculate the POD modes, POD singular values, and the data 

approximation errors exactly which allows for comparison between the errors in the formulas 

from Lemma 4.2.2 and the actual approximation errors. In order to compute the singular 

value decomposition (SVD) of the POD operator, we use the technique described in [6 6 , 

Section 2.2] with a minor modification to account for the POD weights. This procedure 

works well and is highly accurate for smaller data sets; for larger data sets one could use an 

incremental SVD approach or another related algorithm instead, see e.g. [66,67,68,69,70] 

and the references therein.

First we plot the singular values for both the standard POD and our new POD 

approach that includes one data snapshot and all of the difference quotients. For the 

standard POD computations we use the data set consisting of only the regular snapshots 

{wi } N= 1 = {uJ'} N=1 and we choose constant weights j j  = At for j  = 1 , . . . ,  N . The singular 

value plots allow for a quick comparison between the two approaches to POD and are given 

in Figure 4.1. For each plot, we show the first 20 POD singular values for 20, 50,100, and
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(a) Standard POD (b) New DQ POD

Figure 4.1. Plot of singular values of POD operators using different numbers of finite 
element nodes

150 finite element nodes when using 100 equally spaced time steps. The POD singular 

values decay at a similar rate which indicates that the POD basis for each case has a similar 

ability to approximate the data.

Next, we consider the data approximation error results given in Lemma 4.2.2 nu­

merically. For these computations we take 200 equally spaced time steps and 100 equally 

spaced finite element nodes and compute the actual errors and the error formulas. Recall 

that X = L2 (Q) is the POD space and note that here we take either Y = H0 (Q) or Y = L2 (Q ). 

Also note the projection nr is taken to be the Ritz projection, which we discuss in more 

detail in Section 4.3. The results are shown for all formulas of Lemma 4.2.2 in Table 4.1 

for r  = 4, r  = 6 , and r  = 8 . For example, the second row for each r  value in the table gives 

the values for

and

actual error -  nXw1 II HiH0
1

N -1

error formula = i f G1 1|pk
i=r +1
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Table 4.1. Actual Error vs. Error Formulas from Lemma 4.2.2 for New DQ POD

r value Projection Norm Actual Error Error Formula
4 n XA1r L2 (O) 9.761e-06 9.761e-06

n XAAr H0 (O) 6.200e-03 6.200e-03

nr L2 (O) 1.736e-05 1.736e-05

nr H0 (O) 3.100e-03 3.100e-03
6 n Xr L2 (O) 5.482e-09 5.482e-09

n Xr H0 (O) 1.036e-05 1.036e-05

nr L2 (O) 1.133e-08 1.133e-08

nr H0 (O) 5.159e-06 5.159e-06
8 n Xr L2 (O) 1.557e-12 1.557e-12

n Xr H0 (O) 4.772e-09 4.772e-09

nr L2 (O) 3.481e-12 3.481e-12

nr H0 (O) 1.659e-09 1.659e-09

with the respective values for r . Round-off errors in the POD computations can cause very 

small imaginary parts to occur in the error formulas. Thus we report the absolute value 

of the computed error formulas. Note that the difference between the actual errors and the 

error formulas is unnoticeable to the given significant digits. These computational results 

verify what we show analytically. Similar results are achieved when using X = H0 (O).

Computational comparisons between all three of the methods can be found in 

Section 4.4.1 where we consider the errors in the reduced order models.

4.2.2. Pointwise E rro r Bounds. Using the technique from [37, Lemma 3.6] we 

establish the following lemma which allows us to directly prove the POD pointwise projec­

tion error bounds for the new DQ POD approach and an approximation error result for the 

weighted sum of the errors of the regular snapshots. These results are necessary to prove 

the reduced order model error bounds and show their optimality in Section 4.3.
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Lem m a 4.2.3. Let T > 0, Z be a normed space, {z7'}N=1 c  Z, and At = T / ( N -  1). Then

max Nz7'\Z 
1< j <N Z

< C + Z  AtIIdz‘ \Z
t=1

(4.19)

where dze = z  +At Z for t  = 1 ,.. .  ,N  -  1, and C = 2max{T, 1}. 

Proof. Note using z7' = z1 + Z t= 1 A t(dz{), we have

j -1 j -1 \ 1/2 N-1 \ 1/2

< Nz111 + Z A t \ Bzc\I < \z 1 \ +  Z A t  Z  At \ dze \ 2 '
t= 1 \ t =1 / \ t =1

Then

|zy \ 2 < 2 \z 1 \ 2 + 2

IN -1 N -1
Y j A t  \ dze II2 < 2 \ z1 \ 2 + 2t J ^  At II dze\ 2

t=1U=1

since T = ZN-  At = (N -  1) At. Take the maximum over all j  and the result follows. □

Next, we obtain a pointwise POD projection error result for the new POD DQ 

approach that is very similar to Theorem 4.1.4 for the standard POD DQ case.

Theorem 4.2.4. Let Xr = span{ ipk }rk=1 and n f  : X ^  X  be the orthogonal projection onto 

Xr. Let sX be the number o f positive POD eigenvalues for U = {ui } N=1. Then

max N u7' -  n f U  N X <
1< j <n N r N X

(4.20)

I f Y is a Hilbert space with U c  Y then

max I\uJ' 
1< j < N

n ;V ' < C
Ax

Z
\i=r +1

i f e1 II w
2
Iy (4.21)
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and in addition if nr : Y ^  Y is a bounded linear projection onto Xr then

max IIu  -  nru i ||Y < C
1< j <N

1 SX

Yj ^  11 ̂  -
\i=r+1

r<Pi lly (4.22)

where C = 2m ax{T, 1}.

Proof. To prove this theorem take z7' = U  -  n XuJ' or z7' = U  -  nrU  with Z = X  or Z = Y 

in Lemma 4.2.3. For example, if we let z7' = uJ' -  n XuJ' and Z = X, then

max hu7' -  n ^ u 7' ||X < C
1< j < N r IIX

Applying Lemma 4.2.2 for each of the three cases gives the result. □

u 1 -  n ; V  |X + ^  A t |due -  n Xdue||XI (4.23)

Next, we use the above pointwise error bounds to obtain error bounds for the 

weighted sum of the errors of the regular snapshots.

Corollary 4.2.5. Let Xr = span{$k}rk=1 and n X : X ^  X be the orthogonal projection 

onto Xr. Let sX be the number o f positive POD eigenvalues for U then

N
J^A tH uj -  n Xuj |X < 
' =1

*X
Z  *DQ1

\i=r +1
(4.24)

I f  Y is a Hilbert space with U c  Y then

N

Y At  IIuJ
j=1

n Xu7'I 2 < C
*X

I  *
i=r+1

DQ1
1 Vi (4.25)

I f  in addition nr : Y ^  Y is a bounded linear projection onto Xr then

N

Y At  IIuJ
' =1

nruJ ||Y' 2 C
X̂

Y  *DQ1 1 & -  nr¥i\
i=r+1

(4.26)

where C = 4 max{T2, T}.
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Proof. Since

NAt = [(N  -  1)At] = [N / ( N  -  1)]T < 2T,

we have

N
^ A t \\uj -  n f u \ \ 2X
j =1

< 2T max \\U -  n f U  \|X
1< j < N " r "X

Theorem 4.2.4 gives Equation (4.24). The proofs of Equations (4.25) and (4.26) follow in 

the same way. □

These results are similar to those for the standard DQ approach while keeping 

redundancy out of the data set.

4.3. REDUCED ORDER MODELING

In this section we establish theory to compare the reduced order model solution to 

the backward Euler finite element solution for the heat equation using our new POD with 

DQs approach. In this section all POD computations are done using the new approach and 

all function spaces are assumed to be real. Our analysis and proof techniques strongly rely 

on the approach in [37, Section 4]. We provide proofs to make the work self-contained.

Let Q c  Rd with d > 1 be an open bounded domain with Lipschitz continuous 

boundary, and define V = H0 (Q). The space V is a Hilbert space with inner product 

(g ,h )Hi = (Vg, Vh)L2. We consider the weak formulation of the heat equation with 

homogeneous Dirichlet boundary conditions:

(dtu, v)l2 + v(Vu, Vv)l2 = (f ,  v)l2 Vv e V (4.27)
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where u (•, 0 ) = u 1 is the initial condition, v is a positive constant, and f  is a given forcing 

function. We project Equation (4.27) onto a standard conforming finite element space 

Vh c  V and apply backward Euler to obtain

V +1 -  un
At

v + v(Vun+1, Vv)L2 = (f n+l,v )L2
/ l2

Vv e Vh. (4.28)

We use the data set {un}n=1 c  Vh to compute the POD modes {py}r.=1 c  Vh using 

the new DQ approach with respect to the Hilbert space X . Below we take X  to be either 

X = L2 (Q) or X = #0 (Q). Let Vrh = span{py }r=1. Next, we develop the POD reduced 

order model of the heat equation by substituting ur for the unknown u, using the Galerkin 

method, and projecting Equation (4.28) onto the space Vrh c  Vh. Thus we arrive at the 

following BE-POD-ROM:

lunr+1 — <
At

, vr + v(Vun+1, Vvr)l2 = (f n+ \vr)l2 VVr e Vjh. 
l2

(4.29)

We split the error, in the standard way, with

en+1 = un+1 n+1 /„n+1 _ „n+1\ 2„n+1 _ „n+1\= (u — nru ) — (ur — nru ) = ^,n+1 n+1 
r

,n+1\ „n+1 w 1

where nr is a projection onto Vrh, ^ n+1 = un+1 — nrun+1 is the POD projection error, 

and 0n+1 = un+1 — nrun+1 is the discretization error. We subtract Equation (4.29) from 

Equation (4.28) and make the error substitution given above to get

0 n+1 — 0

At
+ v (V0n+1 

l2
Vvr )L2

n+1

At vr + v(V^n+1, Vvr)L2 Vvr e Vrh. 
l2

(4.30)

Rem ark 4.3.1. The approach taken here is different than the one taken in [37]. In that 

work the authors compare the ROM solution un to the exact solution of the PDE u (tn). We 

can bound the error between the ROM solution and the exact solution using the triangle
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inequality

\\unr -  U (tn)\\Y < \\unr -  Un\\Y + \\un -  U (tn)\\Y

where Y is a Hilbert space. The current work focuses on bounding the ROM error term 

| |<  -  un||Y with Y = L2(Q) or Y = H0(Q) and leaves the second term to be studied using 

well-known finite element theory.

For analysis and computations the initial condition is taken to be the POD projection 

of the given initial condition, i.e, uj. = n f u 1. Other initial conditions are possible and 

have been considered in other works for the standard POD and DQ POD approaches. For 

example, in [37], the Ritz projection was used for the initial condition. We now consider 

each POD space, L2 (Q) and H0 (Q ), separately.

4.3.1. POD Space: L 2 (H ). In this section, we take X  to be the space L2 (Q ). The 

orthogonal projection onto V, , n X : L2 (Q) ^  L2 (Q), is given by

r
nX u = ^  (u ,p i) L2 (Pi (4.31)

/=1

and the set of POD modes { p i} are orthogonal in L2 (Q). Define nr to be the Ritz projection 

Rr which satisfies

(V(w -  Rrw), Vvr)L2 = 0 (4.32)

for all vr e Vj}. Thus, for all w e Vh we have

w -  Rrw ||Hi = inf ||w -  vr L /i .r IIH1l i n

Let vRij = un+1 -  Rrun+l. Then Equation (4.30) becomes

> n +1 -  €
At ,Vr) + V (V € + \ Vvr )L2

L2

l r>n+1 — r)n ' Ritz r Ritz
At ’

^Vr e Vh (4.33)
L2
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Using this ROM error equation, we obtain the error bounds given below. Note, 

the constant C can change from step to step, but it does not depend on any discretization 

parameter. In Section 4.4.3 we investigate the final value of C computationally.

Theorem 4.3.2. The pointwise L 2 solution error when the L2 (Q) POD basis is used for the 

BE-POD-ROM is bounded by

max
k

k 2 
' H L2 C 14

\i=r+1

DQ1
II Ti RrTi II l2 + II fr\ 2L2

Proof. Taking vr = 0J1+1 in Equation (4.33) yields

'<Pnr+1 -  €  ^ 1
At

\■ € + ')  + v ||v rn +1 ||2L2
L2

lnn+1 — nn ''Ritz ‘Ritz ,n+1
", r rAt L2

(4.34)

(4.35)

Now, apply Cauchy-Schwartz followed by Young’s inequality with a constant 5 to get

r r 1 -  r
At rn+M + v| I v rn+ ‘ ||2L2 < 1-11 anR * IIL2 + 5| 1 rn 1 2 n 1

L2 45'
2L2. (4.36)

Finally apply a polarization identity, use the fact that C \\ ffi*11L2 < 11Vrn+1II2l2 , and rearrange 

to obtain
1

2At 11 rn*1
2

I L2 2At 11 rn 11L2
1

< 4 5 IIann
Ritz

2
I L2 . (4.37)

Taking 5 = C and multiplying by 2At we get

llrn*1 ll2.2 - l l r n  ll2.2 < C A IIan
n 2 .
Ritz H l2 ' (4.38)

Summing from n = 1 to n = k -  1, using ||en | | . 2 < 2 ( |n nH. 2 + H<KH. 2), and rearranging 

once again gives

|ekIIL2 < C
/ k-1

At ^  H anRitzH. 2 + HnRitzH L2 + H r rH . 2
n=1

(4.39)
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Then apply Lemma 4.2.2 and Theorem 4.2.4 with Y = L2 (Q) and nr = Rr to get

l sx
k ‘- II2L2 < c Y  ^ f 211 V, -  RrV. IIL2 + 11 L2 (4.40)

\i=r +1

Take the maximum over all k to get the result. □

Theorem 4.3.3. The pointwise H0 solution error when the L2 (Q) POD basis is used for 

the BE-POD-ROM is bounded by

max \\Vek ||L2 < C
1 sx . . \
Y  *?Q1 (ll Vi -  RrV i 12L2 + l|V( Vi -  RrV, )!& ) + I f  II Hj . (4.41)

\i=r +1

Proof. Taking vr = d<p; in Equation (4.33) gives

vr1 - rrAt , d t f )  2 + v (v f r+ 1, v d f L2
i rtn+1 — nnr Ritz r Ritz

At , d f nr
L2

(4.42)

Rearranging and using the definition of d f ;  yields

(v f r+ 1, v d f
r r +1 r r
r Ritz r Ritz

L2 At d fr  | -  \\d f  
L2

r 2
r 1L2. (4.43)

Then applying first the Cauchy-Schwartz inequality followed by Young’s inequality with 

the constant 5 we obtain

( v - C 1. v d f f  2 < (udr%„I l2 IIdfr+11 tf )  -  IId f r 2r I L2

< 45 IId rnRltz ll2L2 + 5 IId f r f t )  - I I d € IIL2

■h II drnRltz IIL2 + (5 -  1)11 d €  ||2L2.
r 2

■5

Taking the constant 5 = 1 yields

(v - ;* 1. v b - ) l 2  < 1 11 d r ‘m n  11L2 (4.44)
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Also,

At (V0 «+1, V d f nr ) i2 2  ( ||V0 ”+1 II ̂ 2 + ||V0 «+1 -  Vfn ii2L2 -  HV0 - f t ) (4.45)

Combining Equation (4.44) and Equation (4.45), summing over n = 1 ,.. .  ,k  -  1, and using 

\V ek122 < 2 ( | | V f t  + N V 0kft) gives

k-1
NVek n2,2 < c  At £  ndv%Kn̂  + H n C if ;  + N f  I1H1 1.

n=1 0 0
(4.46)

Then apply Lemma 4.2.2 and Theorem 4.2.4 with Y = H0 (Q) and nr = Rr to get

sx
NVekN22 < CL2

sx
Y  a? Q1 Nv  -  RrViNL2 + ^  f t Q1 NVi -  RrVtNH1 + N f  N H J. (4.47)

\i=r +1 0 0i=r +1

Rearrange and take the maximum over all k to get the result. □

Theorem 4.3.4. The pointwise solution norm error when the L2 (Q) POD basis is used for 

the BE-POD-ROM is bounded by

N -1
|eN N2l2 + ^A tE

sx
en+1 2 
e N H1 c 2 > DQ1 (n Vi

i=r+1

r\
Rr Vi N L2 + N Vi -  Rr Vi 2 1) + N f t '2H L2

(4.48)

Proof. Taking $n+l in Equation (4.33), yields

>n+1
At

+ v N V f
L2

n+11 
r

2L2
/„n+1

iRitz nRitz .n+1
At L2

(4.49)

Now, apply the Cauchy-Schwartz inequality, Young’s inequality, and a polarization identity

to get

1
2At

n+1ii2 || /nil2 \
\  II l2 -N  f .- N Li) + v I IV ff 1 NL2 < N9t,R„zN2L2 + sN€ " \ 2

L2. (4.50)
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Now multiply by 2, apply the Poincare inequality to the last term, and combine the resulting 

like terms:

A  (ll € * '  II La -  II €  Ilia) + 2 (v -  s c ) yv 0 ;+l f L,_ < A  y ^ . (4 .5 1 )

Take S = aC and multiply by At:

C At
II ¥ r"  Ilia -  IIK  Ilia + vAt IIV^;*1 II i  < ----- II drfnt. Ilia. (4.52)

Sum from n = l to k -  l, rearrange, and take a maximum amoung the constants to obtain

k-l I k-l
|| Ilia + v A t £  HV^n*11 ia < C A t £  I W ztn  Ilia +11 d  Iia

n=l \ n=l
(4.53)

Using Ien\I2l2 < a (| | rn + ||<pnII£2) and rearranging gives.-nil 2 , 11 j.n\\ 2

k-1
,kii 2

£2 + VAtX  IIen+l IIH°
n=1

/ k-l k-l
At ^  Ĥ r RitzH£a + Hr RitzH£a + At ^  Hr mtzHH  + H H £a ) •

n=l n=l °
C (4.54)

Finally, using Lemma 4.2.2, Theorem 4.2.4, and Corollary 4.2.5 with nr = Rr and both 

Y = L 2 (Q) and Y = H° (Q) yield

ku2
k-l sx

La + v A t ^  H en+l HHl < C Y j A° Ql (H Vi -  Rr^i H£a + H Vi -  RrVi lH l) + H dll
n=l ° \i=r+l °

Taking k = N yields the result.

V
(4.55)

□
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4.3.2. POD Space: H * (H ). Alternatively, we can take the POD space X to be 

H0 (Q). The orthogonal projection onto Vrh, n X : H0 (Q) ^  H0 (Q), is given by

j
n *u = ^  (u, Vi)Hi (fii (4.56)

i=1

and the set of POD modes {Vi} are orthogonal in H0 (Q). Note that

j
nX Vk = Y_i( & )H0 Vi = 0

i= 1

for k > r  since {v k} are orthogonal in H0 (Q ). Further, since n X is orthogonal we have

(W -  nXw, Vr)X = 0 VVr 6 Vrh

(w -  n Xw, vr)Hi = 0 Vvr 6 Vrh 

= ^  (V(W -  nXw), VVr) L2 = 0 VVr 6 V?.

Similarly to before we take nr to be the Ritz projection, but in this case the Ritz projection 

is the orthogonal projection n X, and Equation (4.30) becomes

0”+1 -  0
At ' l2

+ v ( v r ; 1, Vvr )l2 =
I rin+1 — nn Ritz ''Ritz

At ’
Vr Vh (4.57)

' l2

where nR+/z = un+1 -  Rrun+1 = un+1 -  nrXun+1. As before we can show error bounds for the 

L2 and H0 norm errors and the solution norm error.

Theorem 4.3.5. The ROM solution errors when the H0 (Q) POD basis is used for the 

BE-POD-ROM are bounded as follows:

max
k

A ll 20 ' 11L2 < C
/

z\i=r+1
A fe1 II Vi IL2 + 1 L2 (4.58)
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and

max WVek
k

i2
Il2 < c

sx

z\i=r+1
1 (II <£i \l I 2 + 1) + II ̂ l lff0

(4.59)2

|eN112 + vAt z  \Ve
n=1

t sx
n+112

Il2 < c ^ DQl ( 1 + \l \fi W2L2 ) + \l <Pl\\2L2 (4.60)
\i=r+1

Proof. Proceed as in the proofs of Theorem 4.3.2, Theorem 4.3.3, and Theorem 4.3.4 

respectively, but now use ^Ritz = u - n fu  and the appropriate choices for Y in Theorem 4.2.4, 

Corollary 4.2.5, and Lemma 4.2.2. □

4.3.3. Optimality. In this section we investigate the optimality of this new approach 

to POD with difference quotients. To do so we follow the approach given in [37] but modify 

the optimality definitions given there to include the ROM error for the initial condition.

For this portion of the thesis we focus on both of the POD ROM discretization errors and

assume the time and spatial discretization errors are optimal. Thus, we ignore the latter 

errors in the equation given below. In this section we consider only the new approach as 

the standard difference quotient approach is discussed in [37]. The optimality of each error 

depends on both the POD space X and the error norm space Y. To give a precise definition 

of pointwise ROM error optimality, assume there exists a constant C > 0 that is independent 

of the discretization parameters such that the ROM errors ek = uk -  uk for k = 1, . . .  ,N  

satisfy

max WekW2 < C (Ar + A1) (4.61)
1<k<N Y V )

where

• Ar is the ROM discretization error, and depends only on r , the POD eigenvalues, and 

the POD modes;

• Ar1 is the ROM discretization error for the initial condition, and depends only on r, 

the POD eigenvalues, and the POD modes.
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Let Xr c  X  be the span of the first r  POD modes, and assume Xr c  Y . Let n f  : X ^  

X  be the orthogonal projection onto Xr and n ^  : Y ^  Y be the Y-orthogonal projection 

onto Xr. Further let sX be the number of positive POD eigenvalues. In Definition 4.3.6 

we extend the definitions of optimality provided in [37] to include the ROM discretization 

error for the initial condition.

Definition 4.3.6. We say the total ROM discretization error, Ar + A}, is 

• optimal-I if there exists a constant C such that

sx
Ar + A} < C £  XiIIifiIl2, (4.62)

i=r+1

• optimal-II if there exists a constant C such that

sx
Ar + A r < c £  Xi I ifi -  n Yr f t . (4.63)

i=r +1

The constant C can depend on the solution data and the problem data, but does not depend 

on any discretization parameter.

Rem ark 4.3.7. For a detailed discussion on the optimality types see [37]. Note that, as 

shown in [37, Proposition 4.8], optimal-II is stronger than optimal-I, and the two are 

equivalent if X  = Y.

First we consider the ROM error from the choice of initial condition by noting 

A} = I ||2 in Lemma 4.3.8 below.

Lem m a 4.3.8. Let the initial condition be the POD projection o f the given initial condition, 

i.e. u} = nj^u1 so that = u} -  Rru r = n  j^u1 -  Rrul. I f  X  = L2 (Q) then

sx sx
I I L 2 < 2 ^  Xi + 2 £  XiIIf i  -  R r f iII2L2 (4.64)

i=r +1 i=r +1

and
sx sx

II <P} II2Hr < 2 j ]  Xi I f i  t Hr + 2 ^  Xi I f i  -  R 2
rf i y h 1

i=r 1 i=r 1
(4.65)
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I f  X  = H0 (O), then

f l  = 0 (4.66)

for either choice o f space Y.

Proof. First consider the case X = L2 (O). We have

| | \ \ Y  = ||u} -  Rru}\\Y 

= IInXu1 -  Rrul IlY 

< 2 \ \ -  u1 \\Y + 2\\u1 -  Rru} |L2.

Using Lemma 4.2.2 with Y = X = L2 (O) and nr = Rr gives Equation (4.64) and with 

Y = H0 (O) and nr = Rr gives Equation (4.65). Finally if X = H0 (O), then n X = Rr and 

Equation (4.66) follows by definition of nr. □

This lemma allows us to investigate the total ROM discretization error in the fol­

lowing two theorems with the POD space taken to be L2 and H01 respectively.

Theorem 4.3.9. I f  the L2 POD basis is used, i.e. X  = L2 (O), then the following hold:

• The pointwise ROM error in Equation (4.34) with the error norm Y = L2 is optimal-I 

if there exists a constant C such that

I ^  -  Rr<PiI l2 < C (4.67)

for r + 1 < i < sX. Note that in this case optimal-I is equivalent to optimal-II.

• The pointwise ROM error in Equation (4.41) with error norm Y = H0 is optimal-I.

Rem ark 4.3.10. In[37, Theorem 4.10 (iv)], when usingthe L2 PODbasiswith Y = H} (O) 

but not considering the initial condition error the ROM error was optimal-II. When including 

the initial condition as the POD projection of the given initial condition, we obtain the
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weaker result that the error is optimal-I. Other choices o f initial condition will yield different 

results. Further, the assumption Equation (4.67) is discussed in greater detail in [37, Section 

4.2].

Proof. For the first item

Sx
Ar + a J = Z  Ai||<pi -  Rr<fii f L2 + ||<p\\ 2

Il2
i=r+1

Sx sx sx
— ^   ̂ Ai1 Pi RrPi1 l2 + 2 ^   ̂ Ai + ^   ̂ Ai1 Pi RrPi\

i=r+1 i=r+1 i=r+1
Sx

— C Z  A

L2

i=r+1
Sx

= C Z  Ai || Pi I2L2
i=r 1

using Lemma 4.3.8, the assumption in Equation (4.67), Theorem 4.2.4, and the L2 orthonor­

mality of the POD basis.

For the second item use the Poincare inequality to get,

Ar + Al = Z  Ai1 Pi -  RrPi IIL2 + Z  Ai llV( Pi -  RrPi L2 + 1 0  IlHj
i=r+1 i=r+1

Sx
— C Z  Ai II Pi -  RrPi H2hi + || 0  H2hi .

i=r+1

Lemma 4.3.8 and the orthogonality of the Ritz projection Rr : H0 ^  H0 then yields

Sx Sx Sx
Ar + Al — C Z  Ai I Pi -  RrPi |  Hi + c Y j Ai I Pi I Hi — C Z  Ai I Pi IlHj.

i=r 1i=r 1 i=r 1

Thus the error given in Equation (4.41) is optimal-I. □

Theorem 4.3.11. I f the H0 POD basis is used, i.e. X  = H 1, then the following results hold.

The pointwise ROM error in Equation (4.58) with the error norm Y = L2 is optimal-I.
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• Thepointwise ROM error in Equation (4.58) with error norm Y = L2 is also optimal-II 

when

IITiIIy < C ||(fii -  n ||y for r + 1 < i < sx .

• The pointwise ROM error in Equation (4.59) with the error norm Y = H0 is optimal-I. 

Note that in this case optimal-I is equivalent to optimal-II.

The proof of this result is similar to that of [37, Theorem 4.10] since from 

Lemma 4.3.8 we know <p\ = 0 for both Y = L2 and Y = H0. We omit the details. 

We note that the optimality results for the new POD DQ approach in Theorem 4.3.9 and 

Theorem 4.3.11 are very similar to [37, Theorem 4.10] for the standard POD DQ ap­

proach. In fact, the only fundamental difference in the results here was caused by our 

choice of the initial condition and including this in the optimality definition, as discussed 

in Remark 4.3.10.

4.4. NUMERICAL RESULTS

We now turn our attention to computational results. In this section we use the same 

test problem as in Section 4.2.1 to compute ROM solution errors in order to compare the 

new POD approach to the existing standard approaches. We also compute the scaling factors 

present in the bounds of the theoretical results from Theorem 4.2.4 and Section 4.3.

4.4.1. ROM Comparisons for the Three POD Approaches. First we find the 

ROM errors for the new POD DQ approach at the final time, i.e., the errors at T = 1. 

We compute both the L2 norm error and the H0 (O) norm error. For this computation we 

use 100 finite element nodes, 100 time steps and 3 different values for r . Note that in 

all tables below we report the square of the norms for consistency with previous results. 

For comparison we also show the final time errors for the standard POD approach and the 

standard DQ POD approach. First we consider the case where the POD space is taken to be 

X = L2 (O). The results for the L2 and H0 errors can be found in Table 4.2 and Table 4.3
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Table 4.2. ROM errors for the L2 Norm at the final time

POD Space r  value Standard POD Standard DQ POD New DQ POD
L 2 4 1.639e-08 1.206e-07 1.141e-07

6 1.257e-10 1.148e-09 1.090e-09
8 9.486e-13 9.144e-12 8.722e-12

H i 4 1.851e-08 1.350e-07 1.276e-07
6 1.324e-10 1.218e-09 1.156e-09
8 9.999e-13 9.778e-12 9.323e-12

Table 4.3. ROM errors for the H0 Norm at the final time

POD Space r  value Standard POD Standard DQ POD New DQ POD
L 2 4 1.936e-07 1.340e-06 1.269e-06

6 2.615e-09 2.364e-08 2.245e-08
8 2.264e-11 2.123e-10 2.024e-10

H i 4 2.171e-07 1.494e-06 1.413e-06
6 2.755e-09 2.506e-08 2.379e-08
8 2.396e-11 2.263e-10 2.157e-10

respectively. In Table 4.4, we compute the solution norm squared errors for this reduced 

order model using the same computation parameters. This solution norm error at the final 

time is given by Equation (4.68):

N -1
IIeN\\2L2 + ||VeB+1 f L2. (4.68)

n=1

We also wish to compare the different POD approaches when we take the POD space 

to be H0 (O ), i.e., X = H0 (O ). All other parameters of the computation stay the same and 

the results can also be found in Table 4.2, Table 4.3, and Table 4.4. For both cases of the 

chosen POD space the errors behave similarly in all three approaches but are particularly 

close in the two approaches that utilize the difference quotients.
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Table 4.4. ROM solution norm error Equation (4.68)

POD Space r  value Standard POD Standard DQ POD New DQ POD
L 2 4 1.172e-07 2.441e-06 2.008e-06

6 1.472e-11 4.373e-10 3.576e-10
8 7.032e-16 2.227e-14 1.810e-14

H i 4 1.135e-07 3.049e-06 2.525e-06
6 1.467e-11 4.861e-10 3.996e-10
8 6.984e-16 2.479e-14 2.032e-14

4.4.2. Pointwise E rro r Bounds. We want to compute the ratios generated by the 

theoretical results in Section 4.2.2. For these results we vary the number of time steps, 

while keeping everything else constant. This allows us to verify that the scaling factors are 

not dependent on the time step chosen. We performed similar experiments by varying other 

parameters and obtained similar results. We use 100 finite element nodes and an r  value 

of 4. Both X = L2 (O) and X = H0 (O) are considered in this section. We use the data 

generated by the finite element method as described in Section 4.2.1 and compute the POD 

modes and POD singular values.

First, we consider the pointwise error bounds as in Theorem 4.2.4. The tables show 

the projection and the norm space Y that is used for each of the computations. Note that for 

these we have nr = Rr and either Y = L2 (O) or Y = H0 (O ). For example, for the second 

result in Theorem 4.2.4 with X = L2 (O) and Y = H0 (O) we have

scaling factor = max \\U n  Xuj \\Y adq1
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Table 4.5. Scaling factors for Theorem 4.2.4 as At changes with X = L 2 (Q)

Projection Y 1/40 1/50 1 /1 0 0 1 /2 0 0 1/300
n XA1r L2 (Q) 6 .0e-02 5.4e-02 4.0e-02 3.2e-02 2.9e-02
n XA1r H0 (Q) 5.6e-02 4.9e-02 3.3e-02 2.3e-02 1 .8e-02

Rr L2 (Q) 5.8e-02 5.2e-02 3.7e-02 2.9e-02 2.5e-02
Rr h 0 (Q) 5.5e-02 4.9e-02 3.2e-02 2 .1e-02 1 .6e-02

Table 4.6. Scaling factors for Theorem 4.2.4 as At changes with X = H0 (Q)

Projection Y 1/40 1/50 1 /1 0 0 1 /2 0 0 1/300
n Xr L2 (Q) 6.5e-02 5.8e-02 4.2e-02 3.1e-02 2 .6e-02

n Xr H0 (Q) 6 .8e-02 6 .2e-02 4.8e-02 4.0e-02 3.6e-02

Rr L2 (Q) 6.5e-02 5.9e-02 4.3e-02 3.3e-02 2 .8e-02

Rr H0 (Q) 7.0e-02 6.4e-02 5.1e-02 4.4e-02 4.1e-02

The results for X = L2 (Q) and X = H0 (Q) are given in Table 4.5 and Table 4.6 respectively. 

We present the results with fixed values of r  = 4 and 100 finite element nodes and varying 

values of At. Theoretically, we showed that the scaling factor should always be less that or 

equal to 2 (since T = 1 here). The computational results show that the scaling factor can be 

much less than that value.

4.4.3. ROM E rro r Bounds. Next we consider the reduced order model error 

bounds from Section 4.3. Again we use 100 finite element nodes and r  = 4 with varying 

values of At. First define the following values:

erri = max
k

2
II l2 ,

and

k 2err2 = max || e | |„ i ,
k H0

N -1
errs = ||eN 1 ^  + At £  ||Ve”+11 ^ .

n=1
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Table 4.7. Scaling factors as At changes for ROM errors

At i/4 0 i/5 0 i / i0 0 i/200 i/300

Ci 5.8e-02 5.1e-02 3.7e-02 2.8e-02 2.5e-02

C2 1.0e-05 1.4e-05 2.9e-05 4.0e-05 4.3e-05

C3 1.9e-06 2.4e-06 4.1e-05 5.2e-06 5.3e-06

C4 6.7e-02 6.1-e02 4.7e-02 4.0e-02 3.6e-02

C5 6.5e-02 5.8e-02 4.1e-02 3.0e-02 2.6e-02

C6 1.1e-02 9.3e-03 5.7e-03 3.8e-03 3.1e-03

For the first set of scaling factors defined in Equation (4.69), Equation (4.70), and Equa­

tion (4.71) below we have X = L2 (O ). We also compute the scaling factors for the results 

that use X = H0 (O) as the POD space. These scaling factors for the X = H0 (O) case are 

given by Equations (4.72) to (4.74). For these computations we once again vary the time 

steps and keep all other parameters constant. The results for both cases of POD basis space 

can be found in Table 4.7.

/ sx
Ci = e rri/ X  ^ f Gi II Vi -  RrVi\\2L2 + || ̂  \\2L2

\i=r+1
(4.69)

l sx
C2 = err2/ £  A fa ' ( ||Vi -  R,-ViIlLi + l|V(Vi -  RrVi)II2L2) + I I l H i

i=r+1
(4.70)

l sx
C3 = err3 / £  ^ DC1 (I Vi -  RrVi IL2 + |V(Vi -  RrVi)!& ) + I ^1

i=r+1
2L2 (4.71)

l sx
C4 = err1 / E ^ f 21 I Vi 12L2 + 11 4  II2L2

i=r+1
(4.72)
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l SX
C5 = e m / £  ab b ' (ii v, 11 l  + i ) + i i  *n

\i=r +1 Ho
2 (4.73)

t SX
C6 = err3/ Z a? B1 ( 1 +11 Vi 111  ) + i  *r\

\i=r+1
I2L2 (4.74)

Note that changing the number of finite element nodes and keeping the number 

of time steps constant yields similar results. Theoretically we showed the scaling factors 

should remain bounded, and these computational results support that. For the computations 

in Section 4.4.2 and Section 4.4.3, we note that for larger values of r  some of the projection 

errors, ROM errors, and error formulas become extremely small. In such cases some of the 

computed scaling factors are very large, but we believe this is caused by round off errors.
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5. CONCLUSIONS

In this dissertation, we first prove new generalized error formulas for POD data 

approximation errors for both the discrete and continuous cases. We also show convergence 

of these errors under certain conditions and obtain new pointwise convergence results 

for POD projections. We demonstrate the application of our results to several example 

problems. We leave the application of these results to the numerical analysis of POD model 

order reduction methods for PDEs to be considered elsewhere.

Some open questions remain. When L-1 is unbounded, we have to assume uniform 

boundedness of the POD projections {L-1n f L } to show that the error formula in (3.20) 

converges to zero as r  increases. We do not know if there is a simpler condition that yields 

convergence of the approximation error. If L or L-1 is unbounded, we also do not know 

if the POD projections {L n f L -1} and {L-1n r L } are uniformly bounded. Both of these 

issues have been discussed in the context of Example 2 in Section 3.5.2.2 in [1, 21]. The 

second issue has also been discussed in the context of Example 1 in Section 3.5.2.1 in 

[30, 39]; in these works, the H 1 stability of the L2 POD projection is of interest.

Then, we introduce a new approach to POD using the difference quotients of the 

snapshot data. Specifically, we derive the POD modes from a data set that includes only 

the first snapshot and the regular difference quotients. This data set has approximately 

half the number of snapshots as the standard POD with DQ approach; also, this data set 

does not include redundant data when the snapshots are linearly independent. For this new 

approach to POD with DQs, we prove an approximation result for the weighted sum of 

the POD projection errors of the regular snapshots, and we also prove that we retain all 

of the numerical analysis benefits of using DQs that were shown in [37] for the standard 

POD with DQ approach. Our numerical experiments for a heat equation test problem show 

that this new approach produces similar reduced order model errors to other known POD 

approaches.
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The latter part of this work focuses on numerical analysis results concerning point- 

wise POD projection errors and the optimality of pointwise in time ROM errors for our 

new approach to POD with DQs. Further investigation is needed to determine how this new 

approach compares to other standard POD methods in practical computations. The size of 

the ROM errors is not considered here and more research is needed to compare the size of 

the ROM error in this case with those of standard POD and standard DQ POD.

Also, we consider only one PDE and one choice of difference quotient. We focus 

on the heat equation and leave the Navier-Stokes equations and other more complicated 

PDEs to be considered elsewhere. Additionally, in this work we consider the difference 

quotients obtained when using backward Euler for time stepping. Other difference quotients 

are possible and have been used for snapshot collection in [31,41, 46]. It is possible that 

results in this thesis can be extended to these other difference quotients, but we leave that 

to be considered elsewhere.
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