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ABSTRACT

Dysregulation of inflammatory pathways is strongly implicated in cancers and auto­

immune diseases. The most consequential of these pathways involves the nuclear translo­

cation of NF-kB, a transcription factor that induces the transcription of multiple proteins 

associated with cell survival, inflammation, proliferation and death. It is activated when 

the fibroblast growth factor-inducible 14 kDa protein (Fn14), a trimeric receptor recruits 

its ligand, TWEAK. Studies have shown that Fn14 is over-expressed in many tumors, the 

aggressiveness of which is often correlated with the degree of upregulation. Furthermore, 

TWEAK-Fn14 activation has been shown to result in persistent NF-kB activation. Using a 

mechanistic model of the signaling system, two specific features of the Fn14 pathway, (a) 

the ability of Fn14 constitutive signaling and (b) NF-kB induced de novo Fn14 expression 

were identified that give rise to positive feedback regulation and differentiate it from TNF-a 

receptor signaling. Further analysis revealed that stimulation of Fn14 by TWEAK may 

generate highly non-linear dynamics, including stable limit cycles and bistable responses. 

Another critical contributor to the Fn14 signaling dynamics was found to be TWEAK- 

dependent Fn14 trafficking dynamics. Rapid internalization allowed cells to show only 

transient NFkB activity while lack of internalization was a significant factor in maintaining 

the cell in a constitutively active state. Detailed study of Fn14 internalization, recycling and 

degradation allowed the creation of a more comprehensive signaling model which is capable 

of accounting for a wide range of Fn14 signaling behaviors observed in pathological tissues. 

The model was further used as a platform for in silico studies of the effects of potential 

targeted therapies on constitutively active cells such as those found in aggressive tumors. 

The model predicts that two conventional therapeutic approaches -  Fn14 antagonists and 

anti-Fn14 siRNA -  would provide unsatisfactory benefits while a novel approach involving 

targeted degradation of the receptor could be promising avenue for developing anti-Fn14 

therapeutics.
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1. INTRODUCTION

One of the hallmarks of all cancers is the ability of tumors to induce a persistent in­

flammatory environment [Hanahan and Weinberg, 2011]. Inflammation causes the immune 

system to supply neoplastic lesions with oncogenic bio-molecules such as survival factors 

that help evade apoptosis, growth factors that help sustain proliferation, pro-angiogenic fac­

tors which enhance blood supply to the tumor, and inductive signals that lead to activation 

of epithelial-mesenchymal transition [Grivennikov et al., 2010]. A crucial mechanism em­

ployed by tumor cells to accomplish this is the persistent activation of the NF-kB pathway 

[Xia et al., 2014]. The NF-kB transcription factor induces the expression of a number of 

pro-inflammatory cytokines which recruit the innate and adaptive immune-system to en­

able tumorigenesis. Among the large number of cytokine-receptor systems that can induce 

NF-kB activation is the receptor Fn14 and its ligand, TWEAK.

1.1. THE TWEAK CYTOKINE AND THE FN14 RECEPTOR

Tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK) is a 

pro-inflammatory cytokine excreted by various tissues especially in response to injury 

[Chicheportiche et al., 1997]. It binds with the fibroblast growth factor-inducible 14 (Fn14) 

receptor (Figure 1.1) which is a type I transmembrane protein of the tumor necrosis factor 

receptor (TNFR) superfamily [Bossen et al., 2006]. Although Fn14 is found at low levels 

throughout the body, it is particularly over-expressed in solid tumors and at the site of tissue 

injury [Perez et al., 2016]. In particular, Fn14 overexpression is seen in lung, breast and 

oesophagal cancer, melanoma and glioblastoma [Tran et al., 2003, 2006; Whitsett et al., 

2012; Zhou et al., 2014]. In fact, Fn14 levels are highest in the most aggressive cancers 

such as metastasized breast, lung and colorectal cancers [Whitsett et al., 2014; Yin et al., 

2014; Zhou et al., 2013], and these levels correlate strongly with poor prognosis for the 

patient [Perez et al., 2016; Pettersen et al., 2013; Tran et al., 2006; Watts et al., 2007].
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Figure 1.1. TWEAK-Fn14 interaction. The trimeric ligand TWEAK is recruited by 
Fn14 receptors on the cell surface, usually found as monomers. TWEAK then induces 
trimerization by recruiting nearby Fn14 monomers to the complex. The receptor trimer is 
the active signaling species.

Activation of Fn14 by TWEAK recruitment to the cell plasma membrane triggers 

multiple intracellular signaling pathways associated with cell growth, proliferation, migra­

tion, and apoptosis [Burkly et al., 2007; Donohue et al., 2003; Justo et al., 2006; Polek 

et al., 2003; Tran et al., 2003, 2005]. This is analogous to other members of the TNF 

ligand superfamily such as TNF-a and its receptor TNF-aR which is the most extensively 

studied member or this family. However, TWEAK-Fn14 signaling differs in crucial ways 

to TN F-a-TN F-aR signaling. The most salient distinction between the two pathways is 

that stimulation of Fn14 by TWEAK induces persistent NF-kB activation [Colleran et al., 

2011; Dogra et al., 2006; Gomez et al., 2016; Saitoh et al., 2003; Sanz et al., 2008; Tran 

et al., 2006]. This is in contrast to the more-well studied TNF-aR system where a number 

of studies show a transient NF-kB activation in response to sustained TNF-a stimulation 

[Lee et al., 2000, 2014; Maecker et al., 2005; Quivy et al., 2002; Rogers and Fuseler, 2007; 

Saitoh et al., 2003].
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Despite the many similarities in the downstream protein interactions of the Fn14 

and the TNFa pathways, there is experimental evidence for two uniqe interactions in the 

Fn14 pathway which could give rise to the significantly different behaviors. Firstly, Fn14 

can activate without requiring stimulation by TWEAK when it is overexpressed on the cell 

surface [Brown et al., 2013; Winkles, 2008]. Secondly, Fn14 induced nuclear localization 

of NF-kB can itself induce the expression of the Fn14 gene and de novo synthesis of the 

protein [Tran et al., 2006]. Thus, it can potentially give rise to positive feedback regulation 

in the system [Kwon et al., 2014; Tran et al., 2006]. We may hypothesize that a cell when 

stimulated with TWEAK activates the NF-kB pathway resulting in Fn14 expression. This 

may result in Fn14 overcrowing on the plasma membrane which may allow the signal to be 

sustained without requiring TWEAK stimulation.

1.2. MODELING THE NF-kB PATHWAY

The localization of the transcription factor NF-kB to the nucleus is a central step in 

most immune responses [Pahl, 1999]. This can be triggered by a diverse range of stimuli 

such as viral [Hiscott et al., 2006] or bacterial infections [Laflamme and Rivest, 2001], 

inflammatory cytokines, free radicals [Bubici et al., 2006] and DNA damage [Bender et al., 

1998]. NF-kB is ubiquitously present in an inactive form in the cytoplasm bound to its 

inhibitor IkB®. Activation of the pathway leads to destruction of IkB® thereby allowing 

NF-kB to rapidly translocate to the nucleus where it binds to specific sites on the genome 

and triggers transcription of various genes [Brasier, 2006].

Since the first mathematical model of the NF-kB pathway was published by Hoffman 

et al in 2002 [Hoffmann et al., 2002], significant advances have been made by incorporating 

more protein interactions in the model resulting in comprehensive models that can account 

for a wide range of experimental observations [Basak et al., 2007; Cheong et al., 2008; 

Hoffmann et al., 2006; Kearns et al., 2006; O’Dea et al., 2007]. With the inclusion of the 

inhibitors iKBa and A20, these models show oscillations in NF-kB levels which was seen in
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single cells in wet experiments [Hoffmann etal., 2006] but not at the population level. This 

was resolved by Paszek et al [Paszek et al., 2010] using a semi-stochastic method which 

accounts for cell to cell variation. They found that the heterogeneous oscillations at the 

single cell level can give the impression of non-oscillatory behavior at the cell population 

level [Williams et al., 2014]. Most recently, Basak et al. [Basak et al., 2007] and Shih et al. 

[Shih et al., 2012] have augmented the model with the inclusion of the p100/I^Bd protein 

which degrades to induce nuclear localization of non-canonical NF-kB.

1.3. MOTIVATION TO STUDY FN14 SIGNALING

The above mentioned models however deal exclusively with the TNF-aR system, 

with the implication being that since other members of the TNF superfamily behave simi­

larly, these models could act as satisfactory proxies for studying their signaling dynamics 

as well. However, with the discovery of certain unique aspects of TWEAK-Fn14 signaling 

such as ligand independent activation [Brown et al., 2013; Winkles, 2008], Fn14 de novo 

synthesis [Tran et al., 2006] as well as non-canonical pathway activation [Burkly, 2015], 

the Hoffman model may not be sufficient to explain the peculiar experimental behavior 

of TWEAK-Fn14. Given the implications of Fn14 signaling in very lethal pathologies, 

it has become necessary to develop a computational model which incorporates the most 

up-to-date evidence of Fn14 signaling behavior. This has been the primary motivation for 

the work presented in this dissertation.

1.4. RULE-BASED MODELING FOR SYSTEMS BIOLOGY

Rule-based modeling is a simple yet powerful approach to study dynamic biological 

systems. A typical approach involves specifying a network of rational reaction rules and 

species which follow these rules. This is known as the network topology. Sometimes, 

the rates of these governing reactions are known but often they are not. In the latter case, 

the numerical values of these rate constants are varied over a wide range and the general
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system behavior is observed. Deliberately varying these numbers reveals regions of sytem 

behavior which might mimick experimental observations such as oscillations, switch on or 

off behavior, noise filtering etc.

In the present study, the model was defined in BNGL [Faeder et al., 2009]. BNGL is 

a machine-readable language that can be executed using several rule-based modeling tools 

[Blinov et al., 2004; Colvin et al., 2010; Sneddon et al., 2011]. The language permits the 

creation of mechanistic models considering the site-specific details of the molecules and 

network species [Faeder et al., 2005]. In a BNGL-defined model, the protein molecules are 

specified with coarse-grained features, such as domains and motifs. Rules are specified to 

define the interaction and transformations of these features. We executed the model using 

the rule-based modeling software BioNetGen [Harris et al., 2016]. BioNetGen evaluates 

BNGL rules and calculates all possible species and reactions that can generate from the 

site-specific interactions and transformations of the molecules in a model. The software 

then generates a system of ordinary differential equations which govern the concentrations 

of the species according to the specified reaction rules.

1.5. WHY BUILD COMPUTATIONAL MODELS?

With the advent of data-rich biological research techniques, such as DNA sequenc­

ing, RNA sequencing and proteomics, computational models of biological processes are 

becoming invaluable to scientific progress. In this data-rich landscape, the ability to recog­

nize trends and patterns is an increasingly important means to generate hypotheses which 

can be tested empirically using traditional techniques. Biological models are by their nature 

incomplete, but so is human comprehension of the processes governing biological systems. 

Instead, the key intellectual objective of modeling is to develop a system of interacting 

essential components bound by rational rules which may account for the largest possible set 

of experimental observations. Such a model may also provide a framework for interpreting 

new biological data. Computational models may also allow the determination of the rel­
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ative importance of various system components. Often, seemingly small perturbations in 

a single component can have an enigmatically large effect on the system. For example, a 

mutation offering even a minute survival advantage can rapidly take over a tumor [Waclaw 

et al., 2015]. A simple set of interaction rules however is sufficient to explain the darwinian 

takeover of advantageous mutations. In this way, interventions to a system can be focused to 

target specific components which may give the most promising results. Conversely, models 

can also help 'weed-out' unpromising hypotheses. Multiple interventions to a system may 

be tested in silico and those which target the less significant components will likely produce 

the least effective results. In this way, computational models are powerful tools to inform 

potential experimental design. This is especially true for biological models of disease 

progression which can provide recommendations for potential therapeutic approaches.
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PAPER

I. ANALYSIS OF FN14-NF-kB SIGNALING RESPONSE DYNAMICS USING A
MECHANISTIC MODEL

J. Khetan, D. Barua
Department of Chemical & Biochemical Engineering 

Missouri University of Science and Technology 
Rolla, Missouri 65409 

Tel: 573-341-4854 
Email: baruad@mst.edu

a b s t r a c t

Fn14 is a transmembrane receptor protein belonging to the tumor necrosis factor 

receptor (TNFR) superfamily. Many experimental reports have shown that crosslinking of 

the receptor by its extracellular ligand TWEAK induces prolonged activation of transcription 

factor NF-kB. On the other hand it has been reported that the TNF-a  receptor, which is a 

more well-characterized member of the TNFR family, only transiently activates NF-kB in 

response to TNF-a  stimulation despite sharing many similar molecular interactions with 

Fn14. Here, we investigate molecular mechanisms that enable Fn14 to display such behavior. 

In particular, we focus on two specific features of the Fn14 pathway, which are absent in the 

TNFR system, that potentially give rise to a positive feedback regulation. By developing 

a mechanistic model, we analyze how these features may determine the dynamics of an 

Fn14-NF-KB response. Our analysis reveals that stimulation of Fn14 by TWEAK may 

generate highly non-linear dynamics, including stable limit cycles and bistable responses. 

The type of response depends both on the strength and duration of a TWEAK signal. Our 

predictions and analyses also show that the molecular interactions underlying the positive

mailto:baruad@mst.edu
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feedback explain the prolonged activation of NF-kB under certain parameter regimes. In 

light of the model predictions, we propose possible deregulations of Fn14 leading to its 

overexpression in solid tumors and tissue injuries.

Keywords: Computational Modeling, Bifurcation analysis, Computational Modeling, 

Rule-based modelling, Glioblastoma, TNFRSF12A, Cell signaling, Systems Biology

1. INTRODUCTION

The fibroblast growth factor-inducible 14 (Fn14) is a type I transmembrane protein 

of the tumor necrosis factor receptor (TNFR) superfamily and a prominent marker for several 

pathological conditions, including glioblastoma multiforme [Burkly et al., 2007; Feng et al., 

2000; Lu et al., 2011; van Kuijk et al., 2010; Winkles, 2008; Zheng and Burkly, 2008]. 

Activation of Fn14 in the cell plasma membrane triggers multiple intracellular signaling 

pathways associated with cell growth, proliferation, migration, and apoptosis [Burkly et al., 

2007; Donohue et al., 2003; Justo et al., 2006; Polek et al., 2003; Tran et al., 2003, 2005]. 

The receptor is activated by a soluble cytokine TWEAK, a member of the TNF ligand 

superfamily. Activated Fn14 then activates the canonical NF-kB pathway in a way similar 

to the TNF-a receptor (TNF-aR), which is an important and extensively studied receptor 

of the TNFR family.

Experimental studies spanning the past two decades highlighted a specific charac­

teristic of the Fn14 signaling pathway. It has been demonstrated that stimulation of Fn14 

by TWEAK generates prolonged signaling and NF-kB activation [Colleran et al., 2011; 

Dogra et al., 2006; Gomez et al., 2016; Saitoh et al., 2003; Sanz et al., 2008; Tran et al., 

2006]. Recent experimental reports indicate that the canonical NF-kB signaling cascade is 

involved in this prolonged and sustained activation process [Colleran et al., 2011; Dogra 

et al., 2006; Gomez et al., 2016; Maecker et al., 2005; Sanz et al., 2008; Tran et al., 2006] 

although an earlier work indicates the non-canonical NF-kB pathway could generate such 

response [Saitoh et al., 2003]. This reported behavior in Fn14-induced sustained NF-kB
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activation differs from the more-well studied TNF-aR system in that in the latter case, 

a number of studies show a transient NF-kB activation in response to sustained TNF-a 

stimulation [Lee et al., 2000, 2014; Maecker et al., 2005; Quivy et al., 2002; Rogers and 

Fuseler, 2007; Saitoh et al., 2003]. Both Fn14 and TNF-aR share many common and 

similar protein-protein interactions that lead to NF-kB activation. Therefore, the specific 

underlying mechanisms in the TWEAK-Fn14 and TNFa-TNFaR systems that account for 

this difference in experimental observation remain to be understood. This modeling study 

was particularly motivated to investigate this unresolved question about Fn14 signaling.

Although activation of Fn14 and TNF-aR is followed by many common molecular 

interactions, experimental reports indicate two key features that are unique to Fn14 sig­

naling. Unlike the TNF-aR, Fn14 can be activated in a ligand-independent manner when 

overexpressed in a cell [Brown et al., 2013; Winkles, 2008]. Furthermore, activation of 

Fn14 can induce the expression of its own gene and de novo synthesis of the protein [Tran 

et al., 2006]. Thus, it can potentially give rise to positive feedback regulation in the system 

[Kwon et al., 2014; Tran et al., 2006]. Although the key molecular interactions that give 

rise to these two distinct features are fairly well-established, their regulatory roles in Fn14 

signaling remain unclear. We were particularly interested in dissecting these roles and 

underlying molecular interactions in determining the Fn14 signaling response dynamics. In 

particular, we sought to answer whether these features, unique to Fn14 only, could explain 

the postulated positive feedback regulation and the prolonged NF-kB activation mentioned 

earlier.

To date, a number of modeling studies analyzed the response behavior of the TNF- 

aR  pathway [Lipniacki et al., 2007; Pkalski et al., 2013; Tay et al., 2010]. By contrast, 

to the best of our knowledge, there has been no theoretical or computational modeling 

study on the Fn14 receptor system. In this work, we developed a computational model on 

the Fn14-canonical NF-kB signaling pathway. The model incorporates the detailed site- 

specific binding of TWEAK and Fn14 in the cell plasma membrane. It also incorporates
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the signaling events associated with NF-kB activation, Fn14 transcription, and constitutive 

Fn14 assembly in the plasma membrane. We used the model to predict and analyze the 

system under normal conditions and several possible deregulations. Our analysis indicates 

that: (a) the above two features of the Fn14 pathway are tightly coupled and they together 

generate prolonged NF-kB activation as reported in [Colleran et al., 2011; Dogra et al., 

2006; Gomez et al., 2016; Saitoh et al., 2003; Sanz et al., 2008; Tran et al., 2006] and (b) 

it predicts such behavior can occur even in response to a transient TWEAK signal. These 

two features jointly synergize a positive feedback loop that may generate highly nonlinear 

dynamics, including sustained oscillation (stable limit cycles) and bistable responses. Based 

on the model predictions and analysis, we provide possible explanations of prolonged NF- 

kB response in tissue injuries [Burkly, 2014; Hotta et al., 2011; Jakubowski et al., 2005; 

Mittal et al., 2010a,b] and Fn14 overexpression in certain types of solid tumors [Michaelson 

and Burkly, 2009; Tran et al., 2003].

2. METHODS

2.1. MODEL SPECIFICATION

We formulated the Fn14-NF-KB signaling pathway model as an ordinary differential 

equation (ODE) model. The model describes biochemical interactions and transformations 

of a list of signaling protein molecules in the Fn14-NF-KB signaling pathway. Each of these 

interactions and transformations is detailed in the Supplemental Material (Appendix A). 

An overall description of the model is provided in the Results section.

The model was defined in BNGL [Faeder et al., 2009]. BNGL is a machine- 

readable language that can be executed using several rule-based modeling tools [Blinov 

et al., 2004; Colvin et al., 2010; Sneddon et al., 2011]. The language permits the creation 

of mechanistic models considering the site-specific details of the molecules and network 

species [Faeder etal., 2005]. In a BNGL-defined model, the protein molecules are specified
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with coarse-grained features, such as domains and motifs. Rules are specified to define the 

interaction and transformations of these features. Supplemental Material (Appendix A) 

details BNGL notation of these molecules and the rules describing their non-covalent 

binding and biochemical transformations. We executed the model using the rule-based 

modeling software BioNetGen [Harris et al., 2016]. BioNetGen evaluates BNGL rules 

and calculates all possible species and reactions that can generate from the site-specific 

interactions and transformations of the molecules in a model. The network of our model 

contains 45 distinct chemical species and 114 elementary reactions.

2.2. SIMULATION

Simulations were carried out using BioNetGen. The software generates ODEs 

describing the mass conservation of species in the network of a BNGL-defined model. It 

also performs simulation using the numerical ODE solver package CVODE [Cohen et al., 

1996].

3. RESULTS

3.1. THE NF-kB MODEL

As mentioned earlier, we were particularly interested in this pathway for its two 

distinctive features, which are not shared by the TNF-aR-NF-KB system. Figure 1 provides 

a simple illustration of these two features. Fn14 crosslinking and activation occur both in 

ligand (TWEAK)-dependent and independent manners. Moreover, Fn14 itself can induce 

its own gene expression via the NF-kB pathway. Figure 2 details the molecular interactions 

in the model showing how they give rise to these two features.

The model incorporates site-specific binding between TWEAK and Fn14 in the 

cell plasma membrane. Because TWEAK naturally exists as a trimeric complex in solu­

tion, we represent it by a single ligand molecule containing three identical Fn14 binding
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Figure 1. Receptor crosslinking and positive feedback in Fn14 signaling. Left: Ligand 
recruitment activates NF-kB pathway promoting receptor transcription. Right: Receptor 
overexpression leads to self-association and constitutive activity.

sites (Figure 2). These three sites sequentially bind three Fn14 molecules to form a 1:3 

ligand-receptor complex. However, the interaction also generates intermediate 1:1 and 1:2 

ligand-receptor complexes. Nevertheless, only the 1:3 complex represents the signaling- 

competent species [Winkles, 2008]. Besides this TWEAK-mediated crosslinking, we also 

consider constitutive Fn14 assembly that occurs in the absence of TWEAK (Figure 2). For 

each Fn14 molecule, we consider two identical binding surfaces via which it can assemble 

with other Fn14 molecules and generate receptor homodimers or homotrimers. The ho­

motrimers undergo a ring-closure reaction (Figure 1) to generate a relatively more stable 

complex. As in the case of ligand-mediated receptor crosslinking, only the homotrimers 

represent signaling competent species. We consider all ligand-dependent and -independent 

interactions reversible. Table A.2 provides a list of the forward and reverse rate constants 

associated with these interactions. For the ligand-independent association, we consider an 

affinity (equilibrium dissociation constant ) such that only 2% of the Fn14 molecules 

remain in the trimeric form under the nominal condition. This nominal condition represents 

the basal inactive state of the system.

The molecular events downstream of Fn14 trimerization belong to the classical 

NF-kB pathway (Figure 2). We incorporate most of these events based on the TN F-aR- 

NF-kB model of Tay et al. [Tay et al., 2010]. Briefly, Fn14 trimers activate a cytosolic 

protein called IkB kinase kinase (IKKK). The activated IKKK (denoted as IKKKa in
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Figure 2. Signaling protein interactions incorporated in the Fn14-NF-kB pathway model. 
Besides the ligand and receptor, there are 9 distinct intracellular molecules whose functional 
states and interactions are illustrated. A black arrow indicates a transformation, a grey 
arrow indicates a positive influence and a blunt arrow indicates inhibition. The BNGL rules 
defining these interactions are provided in Appendix A, Computational Model.

Figure 2) directly phosphorylates and activates its downstream protein IKK. Subsequently, 

the activated IKK protein (denoted as IKKa) phosphorylates another protein IkB« , which 

is an inhibitor of NF-kB. In its basal unphosphorylated form, IkB« remains in complex 

with NF-kB and inhibits its nuclear translocation. However, phosphorylation of IkBa  by 

IKK releases this protein from the complex, thus allowing NF-kB to translocate into the 

nucleus. After nuclear translocation, NF-kB induces transcription of A20, IKBa, and Fn14 

(Figure 2). A20 serves as an inhibitor of IKKK. Therefore, its transcription activates a 

negative feedback in the system. Similarly, transcription of I KBa, which prohibits nuclear 

translocation of NF-kB, also activates a negative feedback. Finally, transcription of Fn14 

activates a positive feedback, as explained before in Figure 1.
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3.2. FN14 ACTIVATES SUSTAINED NF-kB RESPONSE AGAINST A TRANSIENT 
EXPOSURE TO TWEAK

One of our primary interests was to study how Fn14 self-assembly and the positive 

feedback in Fn14 gene expression may define the dynamical behavior of the system. These 

two features are expected to distinguish the system from the TNF-a R-NF-KB pathway. 

While a number of studies have shown that sustained TNF-a  exposure may induce transient 

NF-kB activation [Lee et al., 2000, 2014; Maecker et al., 2005; Quivy et al., 2002; Rogers 

and Fuseler, 2007; Saitoh et al., 2003], it has been have reported that Fn14 stimulation by 

TWEAK yields prolonged NF-kB activation [Maecker et al., 2005; Saitoh et al., 2003]. 

We investigated whether the model could explain this experimental observation. We first 

predicted Fn14 and NF-kB responses under a pulse stimulation by TWEAK (Figure 3). Our 

simulation resembled a washout experiment, where cells were first stimulated with TWEAK 

for an hour and subsequently washed out by replacing the ligand-containing medium with a 

ligand-free fresh medium. The dotted curves in Figure 3A and B illustrate this pulse input.

Consistent with experimental reports, the model predicted prolonged Fn14 expres­

sion (Figure 3A) and NF-kB nuclear localization (Figure 3B). Despite the removal of ligand, 

the system did not return to its initial steady-state or basal condition. Instead, it reached 

a new state with significantly higher amounts of Fn14 and nuclear NF-kB. As mentioned 

previously, the basal condition in our model accounts for only 2% receptor trimerization 

via the constitutive receptor assembly. This small fraction of trimers maintains ~ 0 .2% 

of NF-kB in the nucleus in the absence of TWEAK. However, the model predicted an 

approximately 6-fold increase in Fn14 and a 14-fold increase in nuclear NF-kB after the 

stimulation (Figure 3A and B, respectively).

To further investigate the dynamics of the system, we systematically varied the 

dose and duration of the TWEAK pulse. The resulting responses revealed four distinct 

dynamical states for the system depending on the dose and duration (Figure 4). In response 

to a relatively weak or short pulse of TWEAK (10-3 ng/ml TWEAK for 1 min or 1 ng/ml
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Figure 3. Predicted Fn14 and NF-kB dynamics in response to a pulse stimulation. In 
the simulation, cells were subject to a fixed concentration of extracellular TWEAK for 1 
hour. The dotted grey curve in each panel represents this pulse input. The figure shows 
two different responses: (A) Fn14 expression and (B) NF-kB nuclear localization. Both 
responses are normalized by corresponding basal amounts.

TWEAK for 1 s), the system remained almost non-responsive. A moderate pulse (0.1 ng/ml 

for 1 min or 1 ng/ml for 5 s) activated a transient response after which the system returned to 

the initial basal state. A relatively strong pulse (1 ng/ml for 1-10 min) generated a sustained 

oscillation (stable limit cycles). Finally, a persistent stimulation (a step input of 1 ng/ml 

TWEAK) drove the system into a fully-activated steady-state condition.

Against a transient pulse of TWEAK signal, one would naturally expect to see a 

transient response. In contrast, our model predicts sustained responses against very short 

pulses of TWEAK (Figure 4).
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Figure 4. NF-kB dynamics under TWEAK pulses of different durations and strengths. 
The upper panels represent NF-kB dynamics under a short (1 minute) pulse of variable 
strengths. The lower panels represent NF-kB dynamics under a pulse of variable duration 
but fixed strength (1 ng/mL TWEAK).

3.3. CONSTITUTIVE ASSEMBLY OF FN14 AND ITS SELF-INDUCED GENE EX­
PRESSION ARE ESSENTIAL FOR THE SUSTAINED RESPONSE

Our predictions in Figure 4 provide an important insight into the molecular mech­

anism that could be responsible for the prolonged NF-kB activation. It is possible that 

the constitutive receptor assembly is the key to this behavior. Such assembly may prohibit 

the system from returning to the basal state after a transient stimulation. When a thresh­

old number of Fn14 populates in the plasma membrane in response to a stimulation, the 

constitutive Fn14 assembly may generate an appreciable amount of receptor trimers. The 

receptor trimers may then induce the expression of Fn14 gene further, thus leading to a 

positive feedback loop in the system. As a result, the two features may perpetually sustain 

signaling even though the ligand is washed away or depleted from the extracellular space.
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To investigate the speculations above, we used the model to predict how interven­

tions in the two features above could impact the behavior of the system. Blocking Fn14 

transcription by nuclear NF-kB should eliminate the positive feedback loop. On the hand, 

prohibiting constitutive Fn14 self-assembly should impair its potential role in prolonging 

responses discussed in the previous section. In the model, we implement the former inter­

vention by setting the rate constant associated with Fn14 mRNA translation to zero. We 

implement the latter intervention by setting the forward rate constant for constitutive Fn14 

assembly to zero.

Figure 5 compares the responses of the compromised cells created through the 

above two interventions. Both wild-type and compromised cells activated rapid responses 

immediately after TWEAK exposure. However, unlike the wildtype cell, none of the two 

compromised cells was able to sustain signaling. The difference became apparent at about 

t > 10 h. The response of the wildtype cell eventually settled down to a constant-amplitude 

oscillation (stable limit cycles) (Figure 5A). In contrast, the responses of the compromised 

cells returned back to the basal inactive state within 10 h of stimulation (Figure 5B).

The result indicates that either intervention was adequate to abolish a cell's ability 

to generate a self-sustained response. In the model, blocking Fn14 transcription by NF-kB 

essentially keeps the amount of Fn14 in a cell fixed regardless of TWEAK stimulation. 

Because the positive feedback is not activated, the system returns to its basal state after 

generating a transient signal. On the other hand, when the constitutive receptor assembly 

is blocked, the induced Fn14 expression in response to TWEAK does not contribute to 

signaling after the ligand is washed away and the system returns to its basal state as well. 

From Figure 5B, this latter intervention appears to have a more pronounced effect on 

signaling.

The oscillations in Figure 5 could arise from a negative feedback in the NF-kB 

cascade. This negative feedback is associated with transcription of A20, which acts as a 

negative regulator of IKKK (Figure 2). The oscillations are relatively fast compared to the
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Figure 5. Comparison between wildtype and compromised (mutant) cell responses. All sim­
ulations represent stimulation by a 10 minute 1 ng/ml TWEAK pulse. (A) Post-stimulation 
nuclear NF-kB in a wildtype cell. (B) Post-stimulation nuclear NF-kB in compromised 
cells. The solid curve represents a cell where NF-KB-mediated transcription of Fn14 was 
blocked. The dotted curve represents a cell where Fn14 constitutive assembly was prohib­
ited. (C) Phase portrait of Fn14 mRNA vs. nuclear NF-kB for a wildtype cell. (D) Phase 
portrait of Fn14 mRNA vs. nuclear NF-kB for the two compromised cells (the solid and 
dotted lines correspond to the cells in Panel B). In the panels, concentrations are presented 
in terms of relative values with respect to the basal state of corresponding cells.

slow dynamics of Fn14 expression and NF-kB nuclear localization. In the wildtype cell, the 

oscillations gradually turn into stable limit cycles with mean response significantly above 

the basal condition. On the other hand, in the compromised cells, the oscillations decay 

gradually and the system completely returns to the basal condition.
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3.4. BIFURCATION ANALYSIS REVEALS BISTABILITY IN FN14-NF-kB SIG­
NALING

Biochemical network systems containing positive feedback regulations are often 

characterized by bistable responses. The rapid switch-like activation upon stimulation 

(Figure 5) motivated us to interrogate such a possibility in the system. We first considered 

K ’D as a bifurcation parameter in our analysis. This parameter, which is the equilibrium 

dissociation constant for constitutive Fn14 self-assembly, defines the stability of Fn14 

trimers formed in the absence of TWEAK. The value of K^ has not been quantified or 

reported in the literature. However, as mentioned earlier, we assigned it a nominal value 

such that a small fraction of receptors (< 2%) are incorporated in trimers in the absence of 

TWEAK.

Figure 6A and B show bifurcation analysis on the wildtype system in the absence 

of TWEAK. The system displayed only stable limit cycles at K^ < 4 uM. On the other 

hand, it remained non-responsive and maintained the basal steady-state at K^ > 7.5 uM. 

In between these values of K ^, it displayed a coexistence of oscillation and nearly basal 

steady-state condition. It should be noted that the nominal value for K^ used in the model 

is 6.1 uM, which falls within the intermediate range.

We then investigated a second bifurcation parameter 6 = r1 /r2, where r1 and r2 rep­

resent the rate of IKKK activation by the constitutively-formed and TWEAK-crosslinked 

Fn14 trimers, respectively (Table A.2, Appendix A). This parameter allows us to hypo­

thetically consider a scenario where the signaling strength of a constitutively-formed Fn14 

trimer is distinct from that of a TWEAK-crosslinked Fn14 trimer. Figure 6C and D 

show bifurcation plots for cellular Fn14 and nuclear NF-kB against 6. The plots indicate 

two distinct steady-state conditions in addition to the intermediate oscillatory regime. At 

0 < 6 < 3 x 10-4, the system remains in the non-responsive steady state. In contrast, at 

6 > 1.6 x 10-3, the system displays a new steady-state condition, which corresponds to its 

fully activated state. The coexistence of a steady state and stable limit cycles is seen in the
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Figure 6. Bifurcation analysis. Fn14 level and nuclear NF-kB are analyzed against two 
bifurcation parameters K ’D and 5. Parameter KD represents the equilibrium dissociation 
constant (binding affinity) for constitutive assembly of Fn14. Parameter 5 measures the 
signaling strength of a constitutively formed Fn14 trimer relative to a TWEAK-crosslinked 
Fn14 trimer. The four panels represent the following bifurcation curves: (A) Fn14 vs. KD . 
(B) nuclear NF-kB vs. K *D. (C) Fn14 vs. 5. (D) nuclear NF-kB vs 5.

intermediate range 3 x 10-4 -  1.2 x 10-3. A purely oscillatory response is seen between 

5 = 1.2 x 10-3 -  1.6 x 10-3. In summary, these bifurcation analyses indicate three distinct 

long-time behaviors of the system. It can return to the non-responsive basal state, display 

sustained oscillation, or reach a fully activated steady-state condition.
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3.5. MAPPING OF FN14-NF-kB SIGNALING DYNAMICS TO DISTINCT PARAM­
ETER REGIMES

The three qualitatively distinct states revealed by our bifurcation analysis strongly 

depended on 6 and K *D. Because the values of these two parameters are unknown, we 

wanted to characterize the regimes where the system might display the above three states. 

The mapping in Figure 7A shows how various combinations of these two parameters jointly 

determine these long-time behaviors for the wildtype system in the absence of TWEAK. 

Because the system should remain non-responsive without stimulation, these two parameters 

should not fall in the S  and a  regimes, where it generates stable limit cycles or fully activated 

steady-state response, respectively. However, it is possible that deregulation could change 

either of these parameters and drive the system into these regions even in the absence of 

stimulation. For example, a point mutation might lead to an increase in the affinity of 

receptor self-assembly, thus leading to a smaller KD. As shown in the figure, at KD < 1.2 

uM, the system could become auto-activated regardless of the value of 6. However, the 

above mappings change dramatically in the presence of TWEAK, as shown in Figure 7B and 

C. Both these panels correspond to a 1-hour pulse of TWEAK but the concentrations are 

1 ng/ml and 1 mg/ml, respectively. Considering the system becomes activated under such 

stimulations, it is unlikely that the two parameters fall in the non-responsive (y) region of 

these two panels. Therefore, part of the y  region in Figure 7A that falls in the S  or a  region 

of the latter two panels could represent the feasible regime for these two parameters. In 

summary, these bi-parametric mappings indicate the sensitivity of the model to the choice 

of different combinations of two parameters KD and 6.

However, to investigate the sensitivity of the system further to the choice of our model 

parameter values, we also investigated its responses against joint variations of the three 

parameters introduced in this study (k*D = k-c/k c, 6 and d f ). Rather than systematically 

varying these three parameters, we assigned distribution for each of them and randomly 

sampled their values from these distributions. Figure 8A shows the assigned distributions
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Figure 7. Two parameter mapping of long-time NF-kB dynamics. (A) Distinct types of 
NF-kB responses at t ~ to under various combinations of parameters 6 and in the 
absence of TWEAK. The regions indicated by y , p  and a  represent the basal steady-state, 
sustained oscillation (stable limit cycles), and activated steady state, respectively. (B) The 
same as Panel A when the system is stimulated for 1 hour with 1 ng/ml TWEAK. The 
dashed lines represent corresponding boundaries under zero TWEAK (Panel A). (C) The 
same as Panel B when the system is stimulated for 1 hour with 103 ng/ml TWEAK.

for these parameters. Each parameter was distributed log-normally with the mean taken as 

the base parameter value listed in the Supplemental Material (Appendix A). The log standard 

deviation was taken to be 0.3 for each parameter distribution. This standard deviation was 

chosen so that the parameters take values that differ by 2 to 3 orders of corresponding base 

values. Using the sampled parameters, we performed simulations considering a 10-minute 

transient TWEAK exposure. We sampled 1,000 distinct combinations of the three parameter 

values. Each sample essentially represents a distinct cell in a population whose parameter 

values take the above-specified distributions. Therefore, our simulations generated 1,000 

distinct time-series responses (trajectories) for 1,000 distinct cells.

The results from our simulations are plotted in Figure 8. For the entire population 

of 1,000 cells above, we identified three possible responses - auto-activation independent of 

TWEAK, TWEAK-induced sustained activation, and TWEAK-induced transient activation 

(Figure 8B and C). Despite the wide distribution of the parameter values, the cells displayed 

any of these three distinct response behaviors. Therefore, regardless of the parameter value
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we choose, the system is expected to generate any of these three qualitative behaviors. 

Figure 8C show that for each qualitative behaviors, the three parameters are clustered in 

the same region in the three-dimensional parameter space. These clusters are indicated by 

the three color codes (red, green and blue). In general, low values of K*D and df and high 

values of 5 (the red cluster in Figure 8C) create a system that is always activated regardless 

of the presence or absence of TWEAK due to Fn14 overexpression. At intermediate values 

of these parameters (the blue cluster), the system is not activated in the absence of TWEAK 

but exhibits sustained activation in response to a transient TWEAK stimulation. At large 

values of KD and d f and low values of 5 (green region), the system exhibits a transient 

response to a transient TWEAK stimulation. Panels D and E show corresponding results 

result in response to a step dose of TWEAK. As one might expect, cells do not return to the 

basal inactive state as long as the stimulation sustains.

4. DISCUSSION

In summary, we have provided a detailed analysis of how two unique regulatory 

features of the Fn14-NF-KB system define its dynamical responses. Our results indicate 

that Fn14’s ability to induce its own gene transcription [Kwon etal., 2014; Tran etal., 2006] 

coupled with its ligand-independent self-assembly in the plasma membrane may give rise 

to a positive feedback loop in the system. This positive feedback self-sustains signaling 

after initial transient stimulation. Furthermore, positive feedback gives rise to highly 

nonlinear dynamics, including stable limit cycles and bistable responses in the system. The 

experimental work of Tran et al. [Tran et al., 2006] first proposed that Fn14’s ability to 

induce its own gene could give rise to a positive feedback regulation in the system. Here, 

using the model, we show that the effectiveness of this feedback may largely depend on the 

second feature, i.e., ligand-independent assembly of Fn14. The model indicates that the 

two features function in a complementary fashion to regulate NF-kB dynamics and Fn14 

expression. Our analysis suggests that compromising either of the two features abolishes
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Figure 8. Sensitivity of the model predictions to its parameter values. The model was 
simulated using sampled values of K *D, 8, and d f . A total of 1,000 combinations of these 
three parameters were sampled. Each sample represents a distinct cell in a population. (A) 
The assigned lognormal distributions of K *D, 8, and d f . Vertical red bars represent the mean 
(nominal values in Supplemental Material (Appendix A). Each distribution corresponds 
to a log-scale standard deviation of 0.3. (B) Predicted responses considering 10-minute 
TWEAK stimulation. Colors represent three distinct qualitative behaviors revealed by the 
1,000 simulated cells: ligand independent auto-activation (red), ligand-induced prolonged 
activation (blue) and ligand-induced transient activation (green). (C) Three dimensional 
scatter plot of showing the three distinct behaviors of the 1,000 simulated cells. The 
coordinate of each dot represents a distinct cell.
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the positive feedback loop and the self-sustained response. In addition, mutations, which 

could potentially increase the affinity of Fn14 self-assembly, may lead to overexpression of 

Fn14 and trigger a self-sustained response even in the absence of TWEAK stimulation.

A key contribution of our work is that it mechanistically explains the TWEAK- 

induced prolonged activation of NF-kB, an observation reported in many experimental 

works [Colleran et al., 2011; Dogra et al., 2006; Gomez et al., 2016; Saitoh et al., 2003; 

Sanz et al., 2008; Tran et al., 2006]. Most of these studies have indicated the canonical 

NF-kB pathway involving in process. However, an earlier study by Saitoh et al. [Saitoh 

et al., 2003] provides suggests a distinct mechanism involving the non-canonical pathway. 

Our model includes the elements of the canonical pathway only and hence our proposed 

mechanism aligns with these majority and more recent experimental studies [Colleran et al., 

2011; Dogra et al., 2006; Gomez et al., 2016; Sanz et al., 2008; Tran et al., 2006].

Importantly, the prediction for sustained response is valid for a definite parameter 

regime, as shown in Figures 7 and 8, where we have explored a wide range of our key 

model parameter values. It should be noted that our model is devoid of any element of 

the non-canonical NF-kB pathway. It would be interesting to extend our model to include 

this alternative pathway of NF-kB activation and study the mechanism reported in Saitoh 

et al. [Saitoh et al., 2003]. However, the non-canonical NF-kB pathway is relatively less 

well-characterized in the context of Fn14 signaling. Therefore, we limited our model to the 

more well-established biological information associated with the Fn14-NF-KB signaling.

Our model indicates that positive feedback-induced bistability (Figure 6), essen­

tially allows the system to respond in a switch-like manner (Figure 4). Depending on the 

stimulation dose or duration, the model predicts four distinct response behaviors for the 

system (Figure 4: 1) a basal or inactive steady-state; 2) a single pulse response, 3) sustained 

oscillation or stable limit cycles, and 4) fully-activated steady-state condition. Below a 

threshold level of exposure time, TWEAK is unable to activate the system. A weak and 

short TWEAK pulse above this threshold may generate a single pulse response so that
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the returns to the basal inactive condition. A moderately strong stimulation or exposure 

time may give rise to sustained oscillation or stable limit cycles. Finally, a relatively long 

stimulation or step change in TWEAK drives the system into a fully-activated steady-state 

regime. Both the stable limit cycles and the fully-activated regime may self-sustain even 

if TWEAK is depleted or washed away after the temporal stimulation. This differs from 

the TNF-a autocrine positive feedback loop [Coward et al., 2002; Rushworth et al., 2011; 

Wu et al., 1993] which is entirely ligand-mediated and therefore is dependent on extracel­

lular factors such as extracellular ligand concentration, proximity of other active cells etc. 

Our TWEAK-Fn14 model predicts that activation could be sustained even after complete 

washout of ligand which is generally not the case with transient TNF-a stimulation [Chat- 

terjee et al., 2019; Hoffmann et al., 2002; Poppers et al., 2000; Turner et al., 2010; Werner 

et al., 2008].

The distinct types of responses predicted by the model underscore a potential filtering 

mechanism for cells. In normal physiological tissue, the positive feedback may distinguish 

signaling cues from noise [Hornung and Barkai, 2008]. It may keep a cell non-responsive 

under the stochastic noise of extracellular TWEAK that is not intended to activate signaling. 

However, in a tissue injury, it may recognize a stronger or longer TWEAK signal and trigger 

long-lasting responses. As shown in Figure 5, a few minutes of TWEAK exposure can lead 

to self-sustained NF-kB activation and Fn14 expression (Figure 5). These results highlight 

potential regulatory mechanisms whereby cellular expression of Fn14 could be controlled 

in a normal condition or tissue injuries. In a tissue injury, a prolonged NF-kB activation 

and Fn14 overexpression could be necessary for the healing process.

It should be noted that in most experimental settings, cells are exposed to a solution 

containing a fixed amount of TWEAK for a certain period of time. The duration of such 

exposure is typically longer than a minute. Our model indicates that stimulation for a small 

duration could lead to self-sustained NF-kB activation. We propose that such experiments 

should be done under short pulses of TWEAK stimulation. A systematic variation in
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the pulse duration and its impact on specific readouts, such as NF-kB activation or Fn14 

expression, could provide new insights and validate the predicted molecular mechanisms 

generating prolonged responses.

To date, it remains unclear what causes Fn14 overexpression in certain types of solid 

tumors. It is possible that a tumor is subject to high fluxes of TWEAK signals. However, 

besides TWEAK exposure, there could be other mechanisms behind such deregulation. Our 

model indicates that the affinity of constitutive Fn14 assembly is critical for the positive 

feedback loop (Figure 7). An increase in the affinity could make the system sensitive to 

the low level of TWEAK. One can surmise a naturally occurring point mutation in Fn14 

altering the affinity. Such a mutation may induce constitutive Fn14 trimerization beyond 

a threshold and activate the system in the absence of TWEAK (Figure 7). An interesting 

study will be to investigate if such mutations indeed occur in glioblastoma and other solid 

tumor tissues, where Fn14 is routinely found overexpressed.

We propose two interventions in the pathway to investigate the mechanisms deter­

mining its dynamics. Our predictions in Figure 6 and Figure 7 indicate how the system 

response could be controlled by modulating the parameters 6 and K*D. Between these 

two, K*d represents a more easily manipulable parameter. In the simulations, by altering the 

value of K *d , we modulated the effectiveness of the positive feedback loop. An experimental 

analog will be to introduce a mutation in the Fn14 molecule to alter KD and compromise its 

ligand-independent assembly. Signaling responses resulting from such mutations may pro­

vide valuable insights into Fn14 deregulation and overexpression in solid tumors and other 

pathological conditions. Another intervention we propose is to block NF-KB-mediated ex­

pression of the Fn14 gene. This should also abolish the positive feedback and the possibility 

of auto-activation in the absence of TWEAK.

Our model, to our knowledge, is the first model developed for this system and it may 

serve as an initial base-case model at this point. The model can be refined and extended as 

new information becomes available. The ligand-receptor interactions of this model can be
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adapted to create models for other pathways that operate downstream of Fn14. Examples 

include Fn14-mediated regulation of the non-classical NF-kB signaling pathway [Roos 

et al., 2010] and the mitogen-activated protein kinase (MAPK) cascade.

Here, we formulated the model using the rule-based approach. The primary mo­

tivation was to incorporate the site-specific TWEAK-Fn14 interaction and assembly in 

the plasma membrane. However, we treated the rest of the protein molecules as feature­

less chemical species following an earlier model of TNF-a receptor-NF-KB signaling [Tay 

etal., 2010]. An extension considering the site-specific details of these downstream protein 

molecules will provide a more predictive power and enable interrogation of the effects 

of targeted mutations at binding domains or motifs of the molecules [Barua et al., 2007; 

Barua and Hlavacek, 2013]. Nevertheless, such comprehensive models are computationally 

challenging due to the large state-space dimension, as highlighted in [Faeder et al., 2005]. 

Recently, we and others have developed a model reduction technique to avoid such com­

plexity in rule-based models [Erickson et al., 2019]. Alternatively, a tool implementing 

network-free stochastic simulation, such as NFsim, could also be employed to incorporate 

such details in the model [Sneddon et al., 2011].

5. CONCLUSION

This modeling study unravels a possible molecular mechanism that enables the Fn14 

receptor to generate prolonged NF-kB responses after a transient stimulation. Although 

many experimental works reported this behavior, the underlying molecular mechanisms 

remained poorly understood. The study finds that Fn14’s ability to self-assemble in the 

absence of its ligand TWEAK is a critical feature in determining the sustained NF-kB 

response. The model predicts that Fn14 self-assembly along with de novo Fn14 synthesis 

in response to Fn14 stimulation synergistically activates a positive feedback loop, which 

contributes to the long-lasting signaling. The analyses reveal highly non-linear dynamics, 

including stable limit cycles and bistable responses that could be activated by the positive
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feedback loop depending on the strength and duration of the extracellular TWEAK signal. 

The study sheds lights into the mechanisms whereby de novo Fn14 synthesis can lead to 

prolonged overexpression of the receptor in solid tumors and tissue injuries.
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ABSTRACT

TWEAK is a pro-inflammatory cytokine belonging to the TNF-superfamily and is 

known to induce apoptosis, survival, proliferation and migration. It does so by interacting 

with its only known receptor, Fn14. TWEAK-Fn14 interaction is known to induce activa­

tion of the NF-kB pathway which results in the transcription of various pro-inflammatory 

proteins. Studies have shown that TWEAK-Fn14 interaction promotes multiple hallmarks 

of cancer such as invasion and migration, epithelial-mesenchymal transition and angio­

genesis. Unlike the better studied TNFa-NF-KB pathway, Fn14 activation often results in 

persistent NF-kB activation, This may be due to unique features like constitutive signaling 

and self-induced Fn14 up-regulation, but no comprehensive computational models have 

been published which might illuminate these mechanisms. Here we propose a detailed 

TWEAK-Fn14-NF-KB model which takes into account its unique signaling behavior, rapid 

receptor trafficking as well as the relative contributions of the canonical and non-canonical 

NF-kB activation. We find that TWEAK does not cause significant Fn14 degradation 

which allows prolonged NF-kB activation via the canonical pathway. Furthermore, single­

cell data reveals that the non-canonical NF-kB is only a small contributor to overall nuclear 

NF-kB levels. Our computational model faithfully describes the different behaviors of 

Fn14-inactive and constitutively active cells found in tumors. We further perform in silico
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tests of three targeted pathway attenuating therapies. We find that conventional therapies 

such as receptor antagonists and siRNA treatment give modest results while a novel treat­

ment involving targeted lysosomal degradation provides rapid and long-lasting pathway 

attenuation.

Keywords: Computational Modeling, Rule-based modelling, Glioblastoma, TNFRSF12A, 

Cell signaling, Systems Biology

1. INTRODUCTION

TWEAK is a pro-inflammatory cytokine excreted by various tissues especially in 

response to injury [Chicheportiche et al., 1997]. It activates the inflammatory NF-kB 

pathway by binding to its only known receptor, Fn14[Bossen et al., 2006]. Fn14 is known 

to be significantly overexpressed in lung, cervical and oesophagal cancer, melanoma and 

glioblastoma [Tran et al., 2003, 2006; Whitsett et al., 2012; Zhou et al., 2014]. High levels 

of Fn14 are correlated with cancer aggressiveness such as in metastasized cervical, lung and 

colorectal cancers [Whitsett et al., 2014; Yin et al., 2014; Zhou et al., 2013] as well as with 

poor prognosis for the patient [Perez et al., 2016; Pettersen et al., 2013; Tran et al., 2006; 

Watts etal., 2007]. Activation of Fn14 by TWEAK recruitment to the cell plasma membrane 

triggers multiple intracellular signaling pathways associated with cell growth, proliferation, 

migration, and apoptosis [Burkly et al., 2007; Donohue et al., 2003; Justo et al., 2006; 

Polek et al., 2003; Tran et al., 2003, 2005]. This is analogous to other members of the TNF 

ligand superfamily such as TNF-a and its receptor TNF-aR which is the most extensively 

studied member or this family. However, TWEAK-Fn14 signaling differs in crucial ways 

to TN F-a-TN F-aR signaling. The most salient distinction between the two pathways is 

that stimulation of Fn14 by TWEAK induces persistent NF-kB activation [Colleran et al., 

2011; Dogra et al., 2006; Gomez et al., 2016; Saitoh et al., 2003; Sanz et al., 2008; Tran 

et al., 2006]. This is in contrast to the more-well studied TNF-aR system where a number
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of studies show a transient NF-kB activation in response to sustained TNF-a stimulation 

[Lee et al., 2000, 2014; Maecker et al., 2005; Quivy et al., 2002; Rogers and Fuseler, 2007; 

Saitoh et al., 2003].

In our previous work [Khetan and Barua, 2019] we unidentified two uniqe interac­

tions in the Fn14 pathway which could give rise chronic Fn14 overexpression. Firstly, Fn14 

can activate without requiring stimulation by TWEAK when it is overexpressed on the cell 

surface [Brown et al., 2013; Winkles, 2008]. Secondly, Fn14 induced nuclear localization 

of NF-kB can itself induce the expression of the Fn14 gene and de novo synthesis of the 

protein [Tran et al., 2006]. Thus, it can potentially give rise to positive feedback regulation 

in the system [Kwon et al., 2014; Tran et al., 2006]. We may hypothesize that a cell when 

stimulated with TWEAK activates the NF-kB pathway resulting in Fn14 expression. This 

may result in Fn14 overcrowing on the plasma membrane which may allow the signal to be 

sustained without requiring TWEAK stimulation.

The NF-kB pathway is most extensively studied by activation of the TNFaR receptor 

by TNFa. Upon activation of the pathway by TNFa, kinases act upon the cytoplasmic 

complex of NF-kB and its inhibitor IkB®. The IkBa  is then degraded thereby allowing NF- 

kB to rapidly translocate to the nucleus where it binds to specific sites on the genome and 

triggers transcription of various genes [Brasier, 2006]. Over the past two decades a number 

of detailed mathematical models for this pathway have been developed [Basak et al., 2007; 

Cheong et al., 2008; Hoffmann et al., 2002, 2006; Kearns et al., 2006; O’Dea et al., 2007]. 

The most recent model resulting from the culmination of the previously mentioned work is 

by Paszek et al [Paszek et al., 2010] which uses a semi-stochastic method and incorporates 

cell to cell variation. These models however deal exclusively with the TNF-aR system, with 

the implication being that since other members of the TNF superfamily behave similarly, 

these models could act as satisfactory proxies for studying their signaling dynamics as 

well. However, with the discovery of certain unique aspects of TWEAK-Fn14 signaling 

such as ligand independent activation [Brown et al., 2013; Winkles, 2008], Fn14 de novo
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synthesis [Tran et al., 2006] and strong non-canonical pathway activation [Burkly, 2015], 

the Paszek model may not be sufficient to explain the peculiar experimental behavior of 

TWEAK-Fn14. Given the implications of Fn14 signaling in very lethal pathologies, it has 

become necessary to develop a computational model which incorporates the most up-to- 

date evidence of Fn14 signaling behavior. Here we present a comprehensive TWEAK-Fn14 

signaling model which accounts for the above mentioned aspects of the system and provides 

a platform for future in-silico experiments.

2. METHODS

2.1. CELL CULTURE

MDAMB-231 cells were grown in RPMI 1640 medium (Corning Life Sciences) 

supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin/streptomycin (Gibco). 

Approximately 100,000 cells were grown in each well of a 24 well plate. Cells were treated 

with 100 ng/mL of recombinant human TWEAK (Peprotech cat. no. 310-06) for various 

durations upto 12 hours before further analysis.

2.2. FLUORESCENCE MICROSCOPY

Whole cell staining of cellular proteins was performed by culturing cells as de­

scribed before fixing and permeabilizing using the Image-iT Fix/Perm kit (Invitrogen) 

using the manufacturer's protocol. Cells were then blocked with 3% Bovine serum albumin 

in phosphate buffered saline. Fn14 proteins were stained with mouse IgG Item-4 antibody 

(eBioscience) followed by anti-mouse FITC conjugates secondary antibody. NF-kB sub­

units were stained using either anti-p65 or anti-p50 primary antibody followed by FITC or 

PE conjugated secondary antibody. After sufficient washing, cells were analyzed under a 

fluorescence microscope. Staining of only membrane bound Fn14 was accomplished with 

the same procedure but without permeabilization.
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2.3. FLOW-CYTOMETRY

For surface Fn14 quantification, cells were grown as above, detached with trypsin 

and immediately cooled on melting ice to arrest biological processes. This was followed 

by fixation and staining with antibodies as described above. Cell membrane integrity was 

determined by co-staining with propidium iodide (eBioscience). Cells were then analysed 

using a flow cytometer (BD Accuri C6 Plus).

2.4. COMPUTATIONAL MODEL

We developed a Fn14-NF-KB signaling pathway model based on our previous work 

[Khetan and Barua, 2019]. The model describes biochemical interactions and transforma­

tions of a list of signaling protein molecules in the Fn14-NF-KB signaling pathway. In 

addition to the various novel protein interactions introduced in our previous work, such 

as Fn14 trimerization, Fn14 transcription etc. [Khetan and Barua, 2019], we now include 

Fn14 receptor trafficing to the early endosome (with and without ligand recruitment), Fn14 

recycling to the surface and activation of the non-canonical NF-kB pathway based on reac­

tion rules published by Basak et al [Basak et al., 2007] and Shih et al [Shih et al., 2009]. The 

model was defined in BNGL [Blinov et al., 2004; Faeder et al., 2009]. BNGL allows one to 

define course-grained features of proteins such as binding sites and motifs. The interactions 

between these proteins are governed by simple reaction rules with specified rate constants. 

Based on these species and reaction rules, a list of potential species is generated each with as 

associated ordinary differential equation governing its concentration [Faeder et al., 2005]. 

The model was executed using the software BioNetGen [Harris et al., 2016]. BioNetGen 

evaluates BNGL rules and calculates all possible species and reactions that can generate 

from the site-specific interactions and transformations of the molecules in a model.
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2.5. SIMULATION

Simulations were carried out using BioNetGen. The software generates ODEs 

describing the mass conservation of species in the network of a BNGL-defined model. It 

also performs simulation using the numerical ODE solver package CVODE [Cohen et al., 

1996].

3. RESULTS AND DISCUSSION

3.1. TWEAK INDUCES RAPID FN14 INTERNALIZATION

Previous studies suggest that only a fraction of Fn14 is usually available on the 

cell surface [Meighan-Mantha et al., 1999]. This could be in part due to the necessity to 

keep Fn14 surface concentrations low in order to prevent self-trimerization and maintain 

the cell in a non-active basal state. Fluorescence microscopy of unstimulated MDAMB- 

231 cells with immunostained Fn14 reveals that indeed most of the Fn14 is internalized 

into cytoplasmic components. (Figure 1 A). This preliminary finding was significant as it 

suggested that intracellular trafficking of the Fn14 receptor may be a significant contribu­

tor to TWEAK-Fn14 signaling dynamics and therefore cannot be overlooked. On further 

investigation, we found that not only is most Fn14 not found on the surface, but that Fn14 

is rapidly internalized upon TWEAK stimulation (Figure 1 B&C). We incubated cells with 

an anti-human Fn14 primary antibody and then stimulated the cells with TWEAK. The 

internalized Fn14 -  being labeled with the primary antibody recruited at the surface -  was 

then stained with a FITC labeled secondary antibody following fixation and permeabiliza- 

tion. Figure 1 C shows that following TWEAK stimulation for 30 minutes, Fn14 is clearly 

trafficked to intracellular compartments, significantly reducing the Fn14 available at the 

surface for TWEAK recruitment. Such receptor trafficking behavior could significantly 

affect the TWEAK-dependent pathway activation dynamics.
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Figure 1. Fn14 distribution in unstimulated and TWEAK treated cells. A, MDAMB- 
231 cells were fixed, permeabilized and immunostained with anti-Fn14-FITC. Most Fn14 
protein is localized to cytoplasmic vesicles (red) as opposed to on the cell surface (yellow). 
B & C, Live cells were incubated for 15 mins with anti-Fn14 primary antibody, washed, then 
treated with 100 ng/mL of TWEAK for 30 mins. Cells were then fixed and stained with anti- 
Fn14-FITC secondary antibody and DiO plasma membrane dye without permeabilization. 
B and C show cells with or without TWEAK treatment.

We then investigated the rate of Fn14 internalization in response to TWEAK stim­

ulus. In order to quantify the TWEAK induced internalization rate, cells were treated with 

increasing durations of TWEAK, followed by detachment, cell-surface immunostaining for 

Fn14 and flow-cytometry analysis. Since the cells were not permeabilized, only mem­

brane bound Fn14 was stained while internalized Fn14 remained unstained. Exclusion of 

membrane permeable cells was further insured by propidium iodide (PI) counter staining 

and then gating the PI-positive cells out of the analysed data. Figure 2 shows the results 

from flow-cytometry analysis. The left panel shows representative violin plots of plasma 

membrane-bound Fn14 fluorescence in cells treated with TWEAK for 0, 5, 10, 20, 30, 45 

and 60 mintes. Even 5 minutes of TWEAK stimulation is sufficient to induce a significant 

reduction in FITC fluorescence indicating a rapid internalization of membrane-Fn14. How­

ever, TWEAK, being an inducer of apoptosis, causes significant in vitro cytotoxicity beyond 

45 minutes of stimulation (Supplementary Figure B.1.D, Appendix B). This led us to restrict 

model fitting to 45 minutes, when most cells were still healthy. The right panel of Figure 2 

shows the average fluorescence of 3 experiments of cells treated with TWEAK 100 ng/mL
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for 0, 5, 10, 20, 30 and 45 minutes. The sharp decline in surface fluorescence indicates 

rapid internalization to a stable minimum of membrane-Fn14 in just 10 minutes. Since this 

behavior is not seen in TNFa and other superfamily members [Algeciras-Schimnich et al., 

2002], we identified ligand induced rapid internalization as another unique feature of the 

TWEAK-Fn14 system.

Figure 2. Flow-cytometry analysis of Fn14 internalization. MDAMB-231 cells were treated 
with 100 ng/mL of TWEAK for the indicated times. Cells were then detached and stained 
with anti-Fn14 and FITC labeled antibodies without permeabilization and analyzed via 
flow-cytometry. Permeabilized cells were excluded via PI staining. Left panel shows FITC 
fluorescence histograms as violin plots for 0 to 60 minutes of TWEAK treatment. Box 
plots delineate the 0.25 and 0.75 quantiles. Right panel shows averages fluorescence of 3 
experiments with >50,000 cells each. Model fit of receptor internalization is shown with a 
dashed line.
*The increase in fluorescence at 60 minutes coincides with a substantial increase in TWEAK 
induced cytotoxicity (Supplementary Figure B.l.D), making the plotted data a representation 
of only living cells which do not represent the entire cell population. We therefore decided 
to perform model fitting only up till the time when cytotoxicity is negligible, that is till 45 
minutes. This model limitation is further discussed in the Conclusion.
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3.2. TWEAK INDUCED FN14 INTERNALIZATION IS NOT ASSOCIATED WITH 
DEGRADATION

The rapid internalization of Fn14 receptors due to TWEAK stimulation naturally 

leads to the question of the receptors’ ultimate fate once inside the cell. In previous studies 

of other TNFa super-family members, ligand induced internalization is often followed 

by lysosomal degradation [Higuchi and Aggarwal, 1994; Tsujimoto and Vilcek, 1987] or 

receptor recycling to the plasma membrane. To see if the same can be observed for Fn14, 

we analyzed the location of internalized Fn14 by fluorescence microscopy. Cells were 

incubated with anti-human Fn14 primary antibody for 15 minutes followed by washing and 

further incubation with Lysotracker Deep Red and TWEAK for 45 minutes. Cells were 

then fixed, permeabilized and immunostained with anti-FITC secondary antibody (Figure 3, 

left). The Lysotracker dye is a pH responsive dye designed to stain acidified late-endosomal 

and lysosomal compartments. Trafficking of proteins to these vesicles results in enzymatic 

protein degradation. Contrary to expectations, we see that even after 45 minutes of TWEAK 

stimulation, the green (Fn14) and red stained regions (lysosomes) are not co-located.

Figure 3. Intracellular fate of Fn14. Cells were treated together with 100 ng/mL of TWEAK 
and Lysotracker dye for 45 mins and then fixed, permeabilized and immunostained with 
anti-Fn14-FITC (green). The right panels show western-blot analysis to total Fn14 levels 
after TWEAK stimulation 0, 15, 30, 45, and 60 minutes. The western blot quantification is 
shown in the bar chart. Fn14 expression was normalized against y^-actin. Each bar shows 
and average of 3 experiments with 105 cells each.
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This indicates that although Fn14 is strongly internalized, the vesicles containing 

the internalized Fn14 do not progress to late endosomes or lysosomes. This provides 

evidence that following ligand mediated endocytosis, Fn14 is stored in the early endosome 

for eventual recycling to the plasma membrane. Furthermore, we quantified total Fn14 

concentration in cells treated with TWEAK for upto 60 minutes via western-blot analysis. 

Figure 3B shows that the total Fn14 protein content is not significant altered in response 

to TWEAK stimulation of two different doses. We take these two findings -  the lack of 

lysosomal trafficking of Fn14 and constant total Fn14 levels -  as evidence that TWEAK does 

not induce any significant expression or degradation of cellular Fn14 levels in MDAMB-231 

cells. In other words, we infer that any signaling behavior dependent on Fn14 availability 

my be attributed to the trafficking of Fn14 to and from the plasma membrane alone.

3.3. TWEAK MAINTAINS LONG-TERM CANONICAL NF-kB SIGNALING

We now turned our focus to the downstream effects of TWEAK-Fn14 signaling, 

namely the activation of the NF-kB pathway. Localization of the NF-kB family of dimers 

into the nucleus is mediated by two distinct but somewhat interrelated pathways: the 

canonical and non-canonical pathways. The canonical pathway results in the nuclear 

localization of the p65 unit of the NF-kB dimer whereas the non-canonical pathway results 

in nuclear localization of the p50 unit. Figure 4 shows the nuclear localization of the 

p65 subunit of NF-kB. MDAMB-231 cells were stimulated with 100 ng/mL of TWEAK 

followed by fixation, permeabilization and immunostaining with anti-human p65 labeled 

with FITC. The top panel of Figure 4 shows p65 primarily localized in the cytoplasm 

when not stimulated with TWEAK. The bottom panel shows that a significant fraction 

of cytoplasmic p65 has been transported to the nucleus following TWEAK stimulation. 

This nuclear localization of NF-kB proteins is a measure of pathway activation and was 

quantified by the correlation of green and blue pixel intensities (Figure 4, right) as explained 

below..
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DAPI NFkB(p65) - FITC Merge

Figure 4. Nuclear trafficking of NF-kB subunit p65. Cells were treated with 100 ng/mL 
of TWEAK for 30 mins and fixed, permeabilized, and immunostained with anti-p65-FITC 
and DAPI. Top and bottom panels show representative cells with or without TWEAK 
stimulation. The right panels show scatter plots of green vs. blue pixel intensities and the 
respective blue-green correlation coefficients. A low correlation coefficient (top) indicates 
low nuclear localization of p65.

Image analysis of NF-kB trafficking was performed using a three step process. The 

three steps are represented by panels A, B and C in Figure 5. Step A: First, cells were 

treated with varying durations of TWEAK upto 6 hours. Then cells were immunostained 

for p65-FITC (green) as well as p50-PE (red). Images were taken of large regions containing 

approximately 1,000 cells each (Figure 5A). Step B: The green (or red in the case of the 

non-canonical NF-kB subunit, p50) value of each pixel was plotted against its blue value 

(DAPI, nuclear stain) on a scatter plot. The degree of correlation between green and blue 

regions was used as a measure of NF-kB nuclear localization. This was quantified by 

calculating the correlation coefficient of the green-blue values of each pixel (Figure 4 & 

Figure 5B). Step C: The correlation coefficient for the green-blue values of each pixel was 

then plotted for each TWEAK duration. The correlation coefficients were normalized such 

that the maximum nuclear localization was quantified as 1 (Figure 5C). The same steps 

were performed for the p50 NF-kB labeled with PE (red). Our data shows that the canonical 

NF-kB pathway (quantified by p65 nuclear localization) is rapidly activated in response
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to TWEAK stimulus and remains active for upto 6 hours. In contrast, the non-canonical 

pathway (quantified by p50 nuclear localization) is activated slowly and is not a significant 

contributor to overall nuclear NF-kB levels even after 6 hours of TWEAK stimulation. This 

seems to confirm our earlier finding that long-term NF-kB activation does not necessarily 

require the activation of the non-canonical pathway and can be explained by canonical 

pathway activation alone [Khetan and Barua, 2019].

3.4. EVALUATION OF POTENTIAL THERAPIES USING AN UPDATED TWEAK- 
FN14-NF-kB MODEL

An ordinary differential equation based computational model for the TWEAK-Fn14 

signaling system was first published by our group for the first time in 2019 [Khetan and 

Barua, 2019]. This model was based on the TNF»-NF-kB model published by Tay et al. 

[Tay et al., 2010] with the addition of reaction rules governing the unique trimerization 

and constitutive activation behavior of Fn14. Using experimental data gathered in the 

present study for ligand independent Fn14 receptor distribution, ligand mediated Fn14 

receptor trafficking and the nuclear localization of the canonical and non-canonical NF- 

kB subunits, we updated our model with the addition of relevant reaction rules governing 

these new findings. A complete list reaction rules, parameters and species can be found 

in Appendix A of this dissertation. The updates to the model can be briefly summarized 

as follows. We first chose Fn14 internalization (kint) and recycling rates (krec) such that 

an unstimulated cell at steady state has approximately 10% of its receptors on the plasma 

membrane while the remaining 90% is maintained in the early endosomal compartment 

(surface to internalized Fn14 ratio based on fluorescence data from Figure 1A). A small 

fraction of the latter is degraded (reaction rate d f ) while a small amount of cytoplasmic 

Fn14 is synthesized (reaction rate c4,f ) in order to maintain Fn14 homeostasis. The ligand 

dependent internalization (kint,t) is kept much higher than ligand-independent internalization 

(kint) such that the membrane bound Fn14 levels to fit the data in Figure 2. Reaction rates
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Figure 5. Quantification of nuclear localization of NF-kB though image processing. A, 
Fluorescence microscopy images of cells with and without TWEAK treatment. Cells were 
fixed, permeabilized and stained for p65(green) and p50 (red). The right most panels show 
merged channels along with DAPI nuclear stain (not shown separately). B, Green and 
blue intensity values are plotted for each pixel. The degree of linearity of the data is a 
measure of the nuclear localization of p65 proteins. Panel B shows representative data from 
untreated (control) and 6 hour TWEAK stimulated MDAMB-231 cells. C, Normalized 
NF-kB nuclear correlation values are plotted for TWEAK stimulation upto 6 hours.

of non-canonical NF-kB signal transduction steps have been described by Shih et al. [Shih 

et al., 2012]. Briefly, their model involves signal transduction based on the p100/IKBd- 

NF-kB cytoplasmic complex. Upon stimulation, the IkB£ protein is phosphorylated and 

then degraded leaving the cytoplasmic NF-kB dimers to translocate to the nucleus. These
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reactions rule were incorporated into our model without much modification except for the 

change in IkB5 phosphorylation rate by fitting the model to the data in Figure 5C (orange 

curve). The degradation rate of phosphorylated IkB5  and the nuclear transport rate of p50 

were assumed to be the same as the corresponding reactions in the canonical pathway owing 

to similar size and structure of the proteins involved.

We now created two kinds of ’cells’, differentiated solely in their plasma membrane 

Fn14 expression. The type 1 cell has low Fn14 expression on the plasma membrane (only 

10%, as explained above) and represents normal, disease-free cells in our body. The type 

2 cell has a high fraction of Fn14 on the plasma membrane, 30% (quantified from cervical 

carcinoma HeLa cells [Gurunathan et al., 2014], Supplementary Figure B.2, Appendix B) 

and represents Fn14 overexpressing tumor cells such as those of glioblastoma, melanoma, 

metastatic cervical and lung carcinomas etc. The latter type of cell also shows persistent 

NF-kB activation. Our previous study [Khetan and Barua, 2019] suggested that, owing 

to the Fn14 constitutive activation positive feedback loop, these two types of cells may 

be descriptions of two stable states within the same cell; a stable inactive state and an 

oscillatory activated state. The cell may be able to switch ’on’ or ’off’ depending on various 

stimuli. Consequently, it may also be possible to target the pathway using a variety of signal 

attenuating therapies which may ’switch-off’ a pathologically activated cell. We test three 

such potential therapies on our comprehensive model. Two of these therapies are familiar 

to medical research: Fn14 trimer antagonist (Enavatuzumab, [Chao etal., 2013; Lam etal., 

2018; Ye et al., 2017]) and anti-Fn14 siRNA [Peng et al., 2018; Watts et al., 2007], while a 

third therapy, targeted lysosomal degradation [Banik et al., 2020], is novel. Each ’therapy’ 

is simulated by targeting a particular reaction step and multiplying the reaction rate constant 

by a constant A. Thus, if A = 10, it implies that the particular reaction rate constant has 

been increased ten-fold.
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Figure 6. Single cell response dynamics to targeted treatments. A single Fn14-upregulated 
cell was subjected to three kinds of pathway-attenuating treatments of varying intensity. In 
each case, a particular protein reaction rate was increased or decreased by a factor of A. The 
duration of treatment is indicated by the green shaded region. Cellular response is shown 
by plotting nuclear NF-kB levels. A, Fn14 antagonist treatment is simulated by a reduction 
in Fn14 trimerization rate, kc • A, for 24 hours followed by return to original conditions. B 
siRNA treatment is simulated by increase in mRNA degradation rate, c4, fn14 • A, for 24 hours 
followed by return to original conditions. C, LYTAC treatment is simulated by an increase 
in Fn14 internalization rate, kint • A, for 6 hours followed by return to original conditions.

3.4.1. Therapy A: Antagonist Mediated Prevention of Fn14 Trimerization. As

discussed previously, TWEAK-dependent and TWEAK-independent trimerization of Fn14 

is the critical first step in pathway activation. Bifurcation analysis conducted by Khetan et al. 

[Khetan and Barua, 2019] suggests that a drop in Fn14 trimerization may be able to ’switch 

off’ a constitutively activated cell. To investigate this, we subjected a type 2 (constitutively 

active) cell to anti-trimerization treatment by reducing the Fn14 trimerization rate, kc by 

A (Reaction rules 3 & 4). The new rate constant was kc • A where A = 10-1, 10-2 and 

10-3 (Figure 6A). A = 10-3 results in the sharpest decline in Fn14 trimerization and hence 

represents the most intense antagonist effect. The ’treatment’ lasted for 24 hours followed 

by a return to the basal trimerization rate. Figure 6A shows that treatment results in a 

gradual oscillatory decline in nuclear NF-kB levels to the basal inactive state. Furthermore, 

the cell does not return to the previous constitutively active state upon cessation of therapy.
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3.4.2. Therapy B: Anti-Fn14 siRNA. Another crucial contributor of the Fn14 

positive feedback loop has been identified as the NF-kB induced expression of Fn14. Thus 

it seemed intuitive to test a potential siRNA based therapy to attenuate the feedback loop. 

SiRNA’s mediate the RNA interference pathway by binding to mRNA’s with complementary 

sequences and causing their degradation prior to translation into proteins. Here we simulate 

anti-Fn14 siRNA treatment by increasing the Fn14 mRNA degradation rate, c3,f n 14 by a 

factor of X, where X = 10, 103 or 105. Figure 6B shows that siRNA treatment is capable of 

lowering the nuclear NF-kB levels to a lower oscillatory state but this effect is transient and 

the levels return to the previous levels after cessation of siRNA treatment. It is interesting 

to note that even when the siRNA based attenuation is most intense, i.e. when the mRNA 

degradation rate is increased by an order of 5, the nuclear NF-kB levels return to their 

activated state after siRNA treatment subsides. This is primarily due to the fact that siRNA 

prevents the expression of new Fn14 proteins but has no significant impact on Fn14 levels 

already present in the cell. Since, we know that cellular Fn14 levels are largely stable over 

time (Figure 3), the amount of Fn14 remaining in the cells could be sufficient to maintain 

signal activation in therapeutically relevant timescales.

3.4.3. Therapy C: Targeted Lysosomal Trafficking of Membrane-Fn14. A ma­

jor finding of the present study has been the rapid internalization of Fn14 in response to 

TWEAK stimulus in cells that are not constitutively active. This behavior is a significant 

contributor to the cell’s ability to return to the basal inactive state by reducing the number 

of surface Fn14 receptors capable of partaking in signal activation. In fact we were able to 

create a constitutively active cell (type 2 cell) simply by reducing the internalization rate to 

keep approximately 30% of the Fn14 on the surface. We see in tumors such as glioblastoma 

that overexpress surface Fn14 [Tran et al., 2006, 2005], that TWEAK does not trigger 

any significant internalization. We therefore hypothesized that targeted internalization and 

lysosomal degradation of the surface Fn14 could be potential therapeutic approach. Such 

an approach would accomplish two tasks: (a) reduce surface Fn14 which initiates signaling
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and (b) reduce the overall amount of Fn14 already present in the cell, something that is not 

possible with siRNA therapy. This can be accomplished by employing a newly developed 

technology named lysosome-targeting chimaeras (LYTAC) by Banik et al. [Banik et al., 

2020]. Here, a protein targeting antibody is fused with lysosomal trafficking glycopeptides 

to form a ’chimera’. When cells are treated with these chimeras, the target surface protein 

is rapidly internalized and then trafficked to the lysosome for degradation. We simulated 

such a treatment by simply increasing Fn14 trimer internalization rate, by a factor X, 

where X = 2, 5 or 10. Figure 6C shows that even with 6 hours of LYTAC treatment, the 

nuclear NF-kB levels drop rapidly to the inactive basal state level. Even a modest two-fold 

increase in the internalization rate results in long lasting NF-kB suppression after treatment 

has subsided. This suggests a new and potentially significant method of ’switching-off’ 

Fn14-overactive cells.

4. CONCLUSION

TWEAK-dependent and TWEAK-independent Fn14 trafficking to and from the 

plasma membrane was studied by fluorescence microscopy. We found that TWEAK me­

diated Fn14 internalization is a critical self limiting mechanism employed by the cell to 

maintain low NF-kB levels and prevent the cell from ’switching’ to the constitutively active 

state. We also studied the cross-talk between canonical and non-canonical NF-kB activation 

quantifying the nuclear localization of the p64 and p50 subunits of NF-kB. We found that 

non-canonical NF-kB is only a small contributor the overall nuclear NF-kB levels and that 

the canonical pathway is sufficient to account for long-term NF-kB activation in response 

to TWEAK stimulus. For the first time, receptor internalization, receptor recycling and 

non-canonical NF-kB activation was included in a comprehensive TWEAK-Fn14-NF-KB 

pathway computational model using reaction rules written with BioNetGen. A significant 

shortcoming of the present model however is that it does not account for ligand induced 

cell death and its effect on the population level. TWEAK, being an inducer of apoptosis
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via multiple pathways, was seen to induce significant toxicity beyond 45 minutes of in vitro 

stimulation (Supplementary Figure B.1.D). In this case, removal of a large number of cells 

due to cell death may shift the population average protein levels (such as surface Fn14, 

Figure 2A, 60 minutes) in ways that cannot yet be accounted for by the model. For instance, 

if a hypothetical subpopulation of cells were insensitive to TWEAK induced apoptosis, 

the present model could not explain the surface Fn14 levels in those cells. In the absence 

of apoptotic pathways in the model, we decided to fit the model up till the point where 

toxicity is still minimal. On the other hand, a more comprehensive model that includes 

TWEAK induced apoptotic pathways may be developed to simulate that only a high surface 

Fn14 expressing subpopulation remains after most cells have been killed by 60 minutes of 

TWEAK. Ou future work on TWEAK-Fn14 modeling should include TWEAK induced 

apoptosis and cell-to-cell variation, which are lacking in the current model.

Finally, this updated model was used to create two types of cells: (a) low-Fn14, 

low NF-kB activity and (b) high-Fn14 and constitutively active NF-kB cells by simply 

altering the steady-state surface Fn14 levels. Type 2 cells were used as a model for Fn14 

overexpressing tumor cells such as those of glioblastoma etc., and three potential therapeutic 

approaches were tested in silico. We found that intuitive approaches such as Fn14 antagonist 

therapy or Fn14 siRNA therapy provided at best a modest ability to ’switch off’ constitutive 

activity in the cell. However, a novel therapy involving targeted lysosomal degradation 

of surface Fn14 showed a drastic and long-lasting reduction in NF-kB activity after a 

relatively short treatment. This study for the first time provides a computational model 

which is capable of accounting for a wide range of unique experimental observations of the 

TWEAK-Fn14 signaling system and provides a useful platform for in silico experiments of 

various protein targets in the pathway.
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SECTION

2. CONCLUSIONS

2.1. SUMMARY

2.1.1. Unique Fn14 Behavior Results in Positive Feedback Loop. Our model 

predicts that the combination of two unique features of Fn14: (a) ligand independent 

trimerization and (b) NF-kB induced Fn14 expression are necessary and sufficient to create 

a positive feedback loop where activation of the pathway results in Fn14 expression which 

in turn causes crowding of Fn14 receptors on the plasma membrane which may then 

cause constitutive trimerization and ligand-independent activation. Such behavior has been 

hypothesized but not studied thoroughly via a mechanistic model prior to this study.

2.1.2. System Bistability Leads to Switching Behavior. The induction of the 

positive feedback loop results in highly non-linear system dynamics including a wide 

bistable region over a range of two crucial parameters. The system is bistable between a 

constitutively active oscillatory state and a stable inactive state. This allows us to predict 

that cells may employ such dynamics to switch ’on’ or ’off’ pathway activation in response 

to the intensity and duration of pro-NF-KB stimuli. This also suggests that it may be possible 

to ’switch off’ a pathologically active cell by targeting key proteins in the pathway.

2.1.3. Persistent NF-kB Requires Certain Key Features. Our findings suggest 

that, contrary to previous assumptions, the non-canonical NF-kB pathway may not be nec­

essary to explain long term activation of NF-kB in response to TWEAK. We find that a pos­

itive feedback loop in the canonical pathway alone is both necessary and sufficient to result 

in persistent nuclear localization of NF-kB. Furthermore, fluorescence microscopy analysis 

of non-canonical NF-kB distribution reveals only a minuscule amount of non-canonical 

NF-kB p50 protein localization in the nucleus after long lasting TWEAK stimulation.
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2.1.4. Receptor Trafficking is Key Contributor to System Dynamics. Fn14 dis­

tribution in unstimulated and TWEAK-stimulated cells shows that rapid internalization of 

Fn14 is a crucial feature of this signaling pathway. Internalization prevents further signal 

transduction and prevents a cell from accidentally 'switching' to the pathologically active 

state in response to insignificant stimulus.

2.1.5. An Evaluation of Potential Anti-Fn14 Therapies. In silico tests of three 

potential anti-Fn14 therapies reveals that familiar and intuitive interventions such as Fn14 

antagonists and anti-Fn14 siRNA provide modest or short-lived benefits. However, a novel 

targeted Fn14 degradation therapy provides rapid and long lasting attenuation of pathway 

activation.

2.2. RECOMMENDATIONS FOR FUTURE WORK

TWEAK being a potent inducer of apoptosis in cancerous and non-cancerous cells 

Chicheportiche etal. [1997], was seen to cause cytotoxicity during long in vitro incubation. 

This has the potential to artificially skew protein quantification data towards only those 

cells that survive TWEAK induced apoptosis. In the absence of apoptotic pathways in 

the model, it became necessary to fit the model up till the point where toxicity is still 

minimal. This points to strong need for a comprehensive model that includes TWEAK 

induced apoptotic pathways which may simulate the behavior of cells over a whole range 

of their susceptibility to TWEAK induced apoptosis. Our future work on TWEAK-Fn14 

modeling should include TWEAK induced apoptosis and cell-to-cell variation, which are 

lacking in the current model.

The question of Fn14 mediated activation of the non-canonical NF-kB and crosstalk 

between canonical and non-canonical pathways remains largely unanswered. It is recom­

mended to perform detailed single-cell level study of downstream proteins of each pathway 

using methods employed in Paper II of this dissertation; namely intracellular distribution 

via microscopy and cell-to-cell variation via flow-cytometry. In particular, since TWEAK
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is a known inducer of apoptosis, This will allow the model to be refined and eliminate a 

significant number of unknown reaction rate parameters. Furthermore, it is yet to be deter­

mined whether the human Fn14 gene promoter region has non-canonical NF-kB binding 

sites (binding sites have already been discovered for the canonical NF-kB by Tran et al. 

[Tran et al., 2006]). If indeed such sites exist, it implies that non-canonical NF-kB too is 

capable of inducing Fn14 transcription, potentially giving rise to another positive feedback 

loop in the signaling pathway.

Of the various anti-Fn14 therapies which have been described in literature, most 

have not been investigated in terms of their underlying molecular effects. For example, the 

mechanisms by which Enavatuzumab, a humanized Fn14 antagonist, attenuates Fn14-NF- 

kB activity are largely not understood. It is recommended that such therapies be evaluated 

in the context of the present computational model in order to provide a more rational path 

to safe and effective anti-Fn14 therapies.

Lastly, therapeutic approaches suggested in this study have not been experimentally 

verified. It is recommended that antagonist therapy, siRNA therapy and LYTAC therapy 

be performed on pathologically active tumor cells. In addition to their overall pathway 

attenuating abilities, it is necessary to determine the molecular effects on the various 

downstream proteins in response to each therapy.



APPENDIX A.

COMPUTATIONAL MODEL



63

1. BIONETGEN RULES

Below we provide BNGL rules describing the protein-protein interactions and bio­

chemical transformations in the model. These rules can be broadly divided into the following 

steps: 1) Fn14 trimerization in the plasma membrane, 2) activation of the NF-kB pathway 

and other downstream events. In our model, most of the molecular interactions and reactions 

associated with Step 2 are taken from Tay et al. [Tay et al., 2010].

1.1. FN14 TRIMERIZATION IN THE PLASMA MEMBRANE

This step occurring in the cell plasma membrane deserves a more detailed expla­

nation because it is still not very well-characterized experimentally. We make certain 

assumptions based on the available knowledge. We consider both TWEAK-induced and 

constitutive Fn14 trimerization, as illustrated in Figure A.1 and Figure A.2.

TWEAK naturally remains as trimers in a solution. In the model, we represent such 

trimers by a single ligand molecule with three identical binding sites for Fn14 (Figure A.2). 

The ligand can first be recruited from solution to form a 1:1 ligand-receptor complex. 

Subsequently, the remaining two unoccupied sites of the ligand can sequentially engage 

more Fn14 to form 1:2 and 1:3 complexes (Figure A.2).

Figure A.1. TWEAK-mediated Fn14 trimerization. The trimeric form of TWEAK (three 
black circles) can sequentially engage up to three Fn14 molecules in a complex.
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The constitutive trimerization requires each receptor molecule to have at least two 

binding sites (Figure A.2). This allows the protein to form homodimers as an intermediate 

complex. Moreover, because of the two sites, we consider the possibility of a ring structure, 

as shown (Figure A.2). Once a linear trimer is formed, it undergoes a fast ring-closure step 

to create the ring structure. In the model, we restrict maximum three receptors per complex, 

thus prohibiting tetramer or larger complex formation via this constitutive interaction.

Receptors with vacant receptor 
binding sites self associate

Figure A.2. Fn14 trimerization via constitutive self-assembly. Each Fn14 contains two 
lateral ’arms’ to self-assemble with other Fn14 molecules. The reaction can generate 
various chain and ring structures containing up to three receptor molecules in a complex.

In BNGL, we define the trimeric form of TWEAK as TW EA K (r,r,r), where each r  

represents one receptor binding site. We define Fn14 as F n 1 4 ( l , r , r ) , where l  represents 

its sole TWEAK binding site and r  represents two identical sites for constitutive self­

association.

Rule 1: This BNGL rule describes reversible recruitment of a TWEAK molecule 

from solution and formation of a 1:1 TWEAK-Fn14 complex. The forward and reverse rate 

constants associated with the reactions defined by this rule are kon and ko ff, respectively.

TW EAK(r,r,r) + F n 1 4 (l)  <-> T W E A K (r!1 ,r,r) .F n 1 4 (l!1 ) k _ o n ,k _ o ff  (1)
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Rule 2: This rule describes a reversible intracomplex binding between TWEAK 

and Fn14. A TWEAK can be recruited by a receptor which is already in a complex with 

another receptor via the constitutive assembly. In such case, the recruited TWEAK may 

use one of its unoccupied sites to rapidly engage the other (unoccupied) receptor in the 

complex. The forward rate constant for this interaction is ko\ . The reverse rate constant 

kof f  is the same as in Rule 1.

TW EAK(r).Fn14(l) <-> TW EA K (r!1).Fn14(l!1) k _ o 1 ,k _ o ff  (2)

Rule 3: This rule describes binding (crosslinking) between a Fn14-bound TWEAK 

molecule and a free Fn14 molecule. It is distinct from Rule 2, which requires the two 

receptors to be already in a complex. Associated forward rate constant is kc. The reverse 

rate constant kof f  is the same as in Rule 1.

T W E A K (r!1 ,r).F n14(l!1 ) + F n 1 4 (l) <->

T W E A K (r!1 ,r!2 ) .F n 1 4 (l!1 ).F n 1 4 (l!2 ) k c ,k _ o f f  (3)

Rule 4: This rule defines self-association between Fn14 molecules via their constitu­

tive binding sites. Associated forward and reverse rate constant are kc and k-c , respectively. 

The forward rate constant is the same as that in Rule 3.

F n14(r) + F n14(r) <-> F n 1 4 (r !1 ) .F n 1 4 (r !1 )  k c ,k _ c  (4)

Rule 5: This rule defines an intracomplex binding between two receptors. It allows 

the terminal Fn14 receptors of a linear trimer to bind and form a ring structure (see the last 

two steps of Figure A.2). This fast intracomplex binding is associated with forward rate 

constant ko2 and reverse rate constant k-c . The reverse rate constant is the same as that in
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Rule 4.

F n 1 4 ( l , r , r l 1 ) . F n 1 4 ( l , r ! 1 , r l 2 ) . F n 1 4 ( l , r ! 2 , r )  <->

F n 1 4 ( l , r ! 3 , r ! 1 ) .F n 1 4 ( l , r ! 1 , r ! 2 ) .F n 1 4 ( l , r ! 2 , r ! 3 )  k_o2,k_c (5)

1.2. ACTIVATION OF NF-kB AND OTHER EVENTS DOWNSTREAM OF FN14

We model most of these interactions, which follow Fn14 trimerization in the cell 

plasma membrane, based on [Tay et al., 2010]. Fn14 receptor trimers, formed either via 

constitutive assembly or TWEAK-mediated crosslinking, activate a protein called IKK 

kinase (IKKK). The activated IKKK activates another protein called IKK. Activated IKK 

phosphorylats a protein called IKBa. In its unphosphorylated form, IKBa remains in 

complex with NFkB in the cell cytoplasm and inhibits nuclear translocation (activation) 

of NFkB. Phosphorylation of IKBa by IKK dissociates this protein from NF-kB. The 

phosphorylated and free IKBa then degrades rapidly while the free NFkB translocates to 

the nucleus. Upon nuclear entry, NF-kB mediates transcription of A20, IKBa and Fn14 

genes and synthesizes respective mRNAs. The mRNAs are then translated to respective 

proteins. The newly synthesized Fn14 proteins are added to the existing pool in the cell 

plasma membrane.

Rule 6: This rule defines activation of IKKK by a TWEAK-crosslinked Fn14 trimer 

in the plasma membrane (see Figure 2 in main text of Paper I). We denote the inactive and 

active form of this protein as IKKKn and IKKKa, respectively. The rate of activation is 

defined by the following function: kiKKKactivation = kA 0 + A 20 [Tay et al., 2010]. In this rate 

expression, A20 represents cellular concentration of the A20 protein and kA20 represents 

a Hill function constant. This rate expression accounts for the inhibitory effect of A20 on
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IKKK activation (see Figure 2 in main text).

IKKK_n + T W E A K (r!+ ,r!+ ,r!+ ) .F n 1 4 (l!+ ) .F n 1 4 (l!+ ) .F n 1 4 (l!+ )  ->

IKKK_a + T W E A K (r!+ ,r!+ ,r!+ ) .F n 1 4 (l!+ ) .F n 1 4 (l!+ ) .F n 1 4 (l!+ )

k_ IK K K activationO  (6)

Rule 7: This rule describes activation of IKKK by a constitutively-assembled Fn14 

trimer, which is devoid of TWEAK. We consider only the stable trimers, which have a 

ring structure, mediate this activation. The rate of activation is defined by the following 

function: 8 x  kiKKKactivation = 8 x kA o+ A20, where 0 < 8 < 1. This factor 8 incorporates a 

possibility that the constitutively-formed Fn14 trimers are less effective in activating IKKK 

compared to the TWEAK-crosslinked Fn14 trimers.

IKKK_n + F n 1 4 ( l , r ! + , r ! + ) .F n 1 4 ( l , r ! + , r ! + ) .F n 1 4 ( l , r ! + , r ! + )  ->

IKKK_a + F n 1 4 ( l , r ! + , r ! + ) .F n 1 4 ( l , r ! + , r ! + ) .F n 1 4 ( l , r ! + , r ! + )

k _ IK K K a c tiv a tio n ()* d e lta  (7)

Rule 8: This rule describes IKKK inactivation in a first-order process. Associated 

rate constant is defined as ki.

IKKK_a -> IKKK_n k _ i (8)

Rule 9: This rule describes activation of IKK by its kinase IKKK. We denote 

inactive and active IKK as IKKn and IKKa, respectively. The rate of activation is defined by 

the following function: kiKKactivation = ki • IKKK^.

IKK_n -> IKK_a k_IK K activation() (9)
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Rule 10: This rule defines deactivation of IKK by A20. The rate is described by 

the following function: kiKKintermetiation = f j (k2 + A20). In this expression, A20 is the 

concentration of A20, and k2 and k3 are two constants.

IKK_a -> IKK_i k _ IK K in te rm e tia tio n ()  (10)

Rules 11 and 12: These rules describe transition of IKK in between three different 

states IKK, IKKjj-, and IKKn. The same rate constant k4 is associated with these transitions.

IKK_i -> IKK_ii k_4 (11)

IKK_ii -> IKK_n k_4 (12)

Rules 13, 14 and 15: These rules describe interaction of nuclear NF-kB with 

the gene promoters of three different proteins. These proteins are A20, IuBa and Fn14. 

Nuclear NF-kB is denoted as N F kB (loc~ n ,b in ). Here, b in  denotes that NF-kB is not 

bound to IkB® whereas b in !1  denotes NF-kB -IkBa  binding as can be seen in the binding 

reactions, Rule 28 and 29. The genes corresponding to the three proteins in their free states 

are denoted as GA2®(st~®), GIkBa(st~® ) and GFn14(st~®), respectively. The NF-kB- 

bound state of these genes are denoted as GA2®(st~1), G IkB a(st~ 1) and G Fn14(st~1), 

respectively. All these rules are associated with the same rate constant q i .

N F kB (loc~n ,b in) + GA2®(st~®) -> N F kB (loc~ n ,b in ) + GA2®(st~1) q_1

(13)

N F kB (loc~ n ,b in ) + GIkBa(st~® ) -> N F kB (loc~ n ,b in ) + G IkB a(st~ 1) q_1

(14)

N F kB (loc~ n ,b in ) + GFn14(st~®) -> N F kB (loc~ n ,b in ) + G Fn14(st~1) q_1f

(15)
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Rules 16, 17 and 18: These rules describe deactivation of the above three genes 

by unphosphorylated nuclear IkB® with rate constant q2. Nuclear IkB® is denoted as 

Ik B a (lo c~ n ,p h o ~ ® ,b in ), where lo c~ n  designates its location in nucleus, and pho~® 

designates its unphosphorylated state.

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + GA2®(st~1) ->

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + GA2®(st~®) q_2 (16)

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + G IkB a(st~ 1) ->

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + GIkBa(st~® ) q_2 (17)

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + G Fn14(st~1) ->

Ik B a(lo c~ n ,p h o ~ ® ,b in ) + GFn14(st~®) q_2 (18)

Rules 19, 20 and 21: These three rules define transcription of the above three 

genes into corresponding mRNAs. The mRNA molecules are denoted as A2®_mRNA(), 

IkBa_mRNA(), and Fn14_mRNA(), respectively. Because transcription is mediated by 

NF-kB in all three cases, we consider the same rate constant c\.

GA2®(st~1) -> GA2®(st~1) + A2®_mRNA() c_1 (19)

G IkB a(st~ 1) -> G IkB a(st~ 1) + IkBa_mRNA() c_1 (20)

G Fn14(st~1) -> G Fn14(st~1) + Fn14_mRNA() c_1 (21)
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Rules 22, 23 and 24: These rules define degradation of the above three mRNA 

molecules. We consider the same rate constant c3 for these rules.

A2®_mRNA() -> ® c_3 (22)

IkBa_mRNA() -> ® c_3 (23)

Fn14_mRNA() -> ® c_3 (24)

Rules 25, 26 and 27: These rules describe translation of above three mRNA 

molecules into corresponding proteins. We consider the same rate constant c4 associated 

with these rules.

A2®_mRNA() -> A2®_mRNA() + A2®() c_4 (25)

IkBa_mRNA() -> IkBa_mRNA() + Ik B a (lo c~ c ,p h o ~ ® ,b in ) c_4 (26)

Fn14_mRNA() -> Fn14_mRNA() + F n 1 4 ( l , r , r )  c _ 4 f (27)

Note that each of the above rule lumps together two different events: translation of 

a protein and then its transport from the nucleus to their respective compartments. Thus, 

the newly synthesized A20 and IkBa  are assumed located in the cytoplasm and Fn14 is 

assumed located in the plasma membrane.

Rule 28: This rule defines interaction between cytoplasmic NF-kB and IkB®. 

These two molecules form a cytoplasmic NF-kB -IkBa  complex. The binding is denoted 

by b in !1 . The associated rate constant is a\.

N F kB (loc~ c ,b in ) + Ik B a (lo c~ c ,p h o ~ ® ,b in ) ->

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ ® ,b in !1 )  a_1 (28)
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Rule 29: This rule defines interaction between nuclear NF-kB and IkB®. These 

two molecules form a nuclear NF-kB -IkB® complex. The reaction described by this rule 

is similar to that in Rule 28. However, the rate constant is scaled through multiplying 

a\ by the cytoplasmic to nuclear volume ratio kv. Thus, the associated rate constant is

kNF k BI k B = a1. kv.

N F kB (loc~ n ,b in ) + Ik B a(lo c~ n ,p h o ~ ® ,b in ) ->

N F k B (lo c ~ n ,b in !1 ) .Ik B a (lo c~ n ,p h o ~ ® ,b in !1 ) k_NFkBIkB (29)

Rule 30: This rule describes IKK-mediated phosphorylation of cytoplasmic free 

IkB® with rate constant a2.

Ik B a (lo c~ c ,p h o ~ ® ,b in ) + IKK_a -> Ik B a (lo c ~ c ,p h o ~ p ,b in )  + IKK_a a_2

(30)

Rule 31: This rule describes IKK mediated phosphorylation of IkB® within the 

cytoplasmic NF-kB -IkB® complex. Associated rate constant is a3.

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ ® ,b in !1 )  + IKK_a ->

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ p ,b in !1 )  + IKK_a a_3 (31)

Rule 32: This rule describes degradation of A20 with rate constant c5.

A2®() -> ® c_5 (32)
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Rules 33 and 34: These two rules describe degradation of cytoplasmic phospho- 

rylated and unphosphorylated IkB®, respectively. Associated rate constants are tp and c5a 

respectively.

Ik B a (lo c ~ c ,p h o ~ p ,b in )  -> ® t_ p  (33)

Ik B a (lo c~ c ,p h o ~ ® ,b in ) -> ® c_5a (34)

Rules 35 and 36: These two rules respectively describe ubiquitination (degradation) 

of phosphorylated and unphosphorylated IkB® within the NF-kB -IkB® complex. These 

reactions happen in a single step freeing NF-kB into the cytoplasm. The rate constants 

associated are tp and c6a, respectively.

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ p ,b in !1 )  -> N F kB (loc~ c ,b in ) t_p

(35)

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ 0 ,b in !1 )  -> N F kB (loc~ c ,b in ) c_6a

(36)

Rules 37: This rule describes degradation of membrane Fn14. Corresponding rate 

constant is d f .

Fn14() -> 0 d _ f (37)

Rules 38 and 39: These two rules respectively describe the transport of free cyto­

plasmic NF-kB and unphosphorylated IkB® from the cytoplasm to the nucleus. Associated 

rate constants are i1 and z'ia, respectively.

N F kB (loc~ c ,b in ) -> N F kB (loc~ n ,b in ) i_1  (38)

Ik B a (lo c ~ c ,p h o ~ 0 ,b in )  -> Ik B a (lo c ~ n ,p h o ~ 0 ,b in )  i_ 1 a (39)
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Rules 40 and 41: These rules respectively describe the export of free and NF-kB- 

complexed IkB® from the nucleus to cytoplasm. Associated rate constants are e1a and e2a, 

respectively.

Ik B a(lo c~ n ,p h o ~ ® ,b in ) -> Ik B a(lo c~ c ,p h o ~ ® ,b in ) e_1a (40)

N F k B (lo c ~ n ,b in !1 ) .Ik B a (lo c~ n ,p h o ~ ® ,b in !1 ) ->

N F k B (lo c ~ c ,b in !1 ) .Ik B a (lo c ~ c ,p h o ~ ® ,b in !1 )  e_2a (41)

2. MOLECULES AND COPY NUMBERS

Table A.1 provides the list of basic protein molecules and their nominal copy 

numbers in the basal steady-state condition.

Table A.1. Molecules and their nominal copy numbers in cells.

Molecule Copy number #/cell Ref.

Fn14 nfn14 1.3 x 104 Fick etal. [2012]

NF-kB nnfkb 105 Tay et al. [2010]

IKK niKK 105 Tay et al. [2010]

IKKK nIKKK 2 x 105 Tay et al. [2010]

IKBa gene nikba 2 Tay et al. [2010]

A20 gene na20g 2 Tay et al. [2010]

Fn14 gene nfn 14g 2 Tay et al. [2010]
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3. MODEL PARAMETERS

Table A.2 provides the list of parameters and their nominal values used in the model.

Table A.2. Model Parameters.

Description Parameter Value Ref.

Rule 1: TWEAK (solution)-Fn14 

(membrane) binding1

kon 1.095 x 10-9 

molecule- 1.s-1

Fick et al. 

[2012]

Rule 1: TWEAK-Fn14 dissociation koff 0.58 x 10-3 s-1 Fick et al. 

[2012]

Rule 2: Fn14 homotrimer 

ring-closure

ko1 7.3 x 103 s-1 Khetan 

and Barua 

[2019]

Rule 3: Constitutive Fn14 

association

kc 1.095 x 10-7 

molecule- 1.s-1

Khetan 

and Barua 

[2019]

Rule 4: Constitutive Fn14 

dissociation

k-c 1.6 s-1 Khetan 

and Barua 

[2019]

Rule 5: TWEAK-Fn14 trimer 

ring-closure

ko2 6.85 x 104 s-1 Khetan 

and Barua 

[2019]

Continued on next page

Tick et al. report kon in molar units to be 3.3 x 106 M-1-s-1 [Fick et al., 2012]. To be consistent 
with the number units used in BioNetGen, kon is converted to units of molecule- 1-s-1 using the equation 
kon = konmolar/(NA ■ V), where NA is the Avogadro constant and V is the solution volume per cell. Cells 
were cultured at a density of 2 x 105 cells/mL making V = 5 x 10-9 L/cell. = ^  kon = 3.3 x 106/(6.022 x 
1023 x 5 x 10-9) = 1.095 x 10-9 molecule-1.s-1.
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Table A.2. Model Parameters. (cont.)

Description Parameter Value Ref.

Rule 6 : IKKK activation by a 

TWEAK-crosslinked Fn14 trimer

ka .kA20 
k A20+ A20 Tay et al. 

[2010]

ka 10-5 s-1 Tay et al. 

[2010]

kA20 105 Tay et al. 

[2010]

Rule 7: IKKK activation by a 

constitutively assembled Fn14 

trimer

O ka .kA20
0 kA 20+A20 Khetan 

and Barua 

[2019]

£ 2 x 10-4 -  10-2 Khetan 

and Barua 

[2019]

Rule 8 : IKKK inactivation ki 10-2 s-1 Tay et al. 

[2010]

Rule 9: IKK activation ki • IK K K l Tay et al. 

[2010]

ki 6 x 10-10 s-1 Tay et al. 

[2010]

Rule 10: IKK inactivation (k2 + A20) • | Tay et al. 

[2010]

k2 104 Tay et al. 

[2010]

Continued on next page
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Table A.2. Model Parameters. (cont.)

Description Parameter Value Ref.

&3 2 x 104 s- 1 Tay et al. 

[2010]

Rule 11, 12: IK K ,^IK K ,, and 

IK K  ̂ IK K n

&4 10- 3 s- 1 Tay et al. 

[2010]

Rule 13, 14: NF-kB binding to 

A20 and IuBa gene promoters

qi 4 x 10- 7 s- 1 Tay et al. 

[2010]

Rule 15: NF-kB binding to Fn14 

gene promoter

qi f 1.2 x 10- 6 s- 1 Khetan 

and Barua 

[2019]

Rule 16, 17, 18: IkB® induced 

NF-kB release from gene 

promoters

q2 10- 6 s- 1 Tay et al. 

[2010]

Rule 19, 20, 21: A20, IkBa, or 

Fn14 mRNA synthesis

ci 10- 1 s- 1 Tay et al. 

[2010]

Rule 22, 23, 24: A20, LrBa, or 

Fn14 mRNA degradation

C3 7.5 x 10- 4 s- 1 Tay et al. 

[2010]

Rule 25, 26: A20 or IkB® mRNA 

translation

c4 0.5 s- 1 Tay et al. 

[2010]

Rule 27: Fn14 mRNA translation c4f 0.167 s- 1 Khetan 

and Barua 

[2019]

Continued on next page
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Table A.2. Model Parameters. (cont.)

Description Parameter Value Ref.

Rule 28, 29: NF-kB and LrBa 

association

a\ 5 x 10-7 s-1 Tay et al. 

[2010]

Rule 30: Free iKBa 

phosphorylation

a2 10-7 s-1 Tay et al. 

[2010]

Rule 31: IuBa phosphorylation in 

NF-kB -IkB® complex

a3 5 x 10-7 s-1 Tay et al. 

[2010]

Rule 32: A20 protein degradation C5 5 x 10-4 s-1 Tay et al. 

[2010]

Rule 33, 35:

Phosphorylation-induced 

degradation of IkBa

tp 10-2 s-1 Tay et al. 

[2010]

Rule 34: Spontaneous degradation 

of free IKBa

c5a 10- 4 s-1 Tay et al. 

[2010]

Rule 36: Spontaneous degradation 

of iKBa in NF-kB -IkBa  complex

c6 a 2 x 10-5 s-1 Tay et al. 

[2010]

Rule 37: Fn14 degradation df 2.2 x 10-4 s-1 Khetan 

and Barua 

[2019]

Rule 38: NF-kB nuclear import ii 10-2 s-1 Tay et al. 

[2010]

Continued on next page
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Table A.2. Model Parameters. (cont.)

Description Parameter Value Ref.

Rule 39: IuBa nuclear import i\a 2 x 10-3 s-1 Tay et al.

[2010]

Rule 40: IuBa nuclear export e1 a 5 x 10-3 s-1 Tay et al.

[2010]

Rule 41: NF-kB nuclear export ^2 a 5 x 10-2 s-1 Tay et al.

[2010]

Ratio of cytoplasmic to nuclear kV 5 Tay et al.

volumes [2010]
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FSC-A FSC-A

Figure B.1. Flow-cytometry sequential gating and cell counting. MDAMB-231 cells were 
grown on 24 well plates at a density of approximately 200,000 cells per well and treated 
with TWEAK 100 ng/mL for up tp 60 minutes. Cells were detached and re-suspended in 1 
mL of PBS for flow-cytometry. Flow-cytometry data was sequentially gated in 3 steps as 
shown in panels A, B and C. (A) Removal of debris, (B) Removal of doublets, (C) Removal 
of dead cells stained with propidium iodide. (D) The remaining number of ’live cells’ were 
counted using the manufacturer’s cell counting protocol. The plot shows 5 replicates of 
>50,000 cells each (red) and the average live cell count at each time point (black).
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Figure B.2. Quantification of surface and cytoplasmic Fn14. Fn14 overexpressing cervical 
carcinoma HeLa cells were seeded at 37°C and surface proteins were biotinylated. Cells 
were then detached either immediately after biotinylation (0 min) or after 15 and 30 minutes 
of culturing. Whole cell lysates were prepared and either directly (Lysate) or after biotin 
pulldown using NeutrAvidin beads analyzed by Western blotting for the indicated proteins 
[Gurunathan et al., 2014] (the western blots can be found on Figure 2F o f the publication). 
The bar chart shows Fn14 blots quantified using ImageJ gel blot analyzer, normalized 
against EGFR levels and further normalized against whole cell lysate Fn14 level. The 0 min 
’surface biotinylated’ blot represents the surface Fn14 level while 0 min ’whole cell lysate’ 
blot represents the total cell Fn14 level.
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A NOTE ON SPATIAL EFFECTS IN SIGNALING PATHWAYS

Spatial distribution of molecules can be of critical importance to cellular pathways. 

Signaling events initiated within the two dimensional plane of the membrane move through 

the three dimensional volume of the cytosol and propagate through multiple intracellular 

compartments. The simplest signaling model ignores transport limitations and defines each 

reaction step simply in terms of mass-action kinetics. This removes all partial differential 

equations and results in a purely ODE based model. On the other hand, the most complex 

model accounts for the diffusivity of each protein throughout the various sub-cellular 

compartments resulting in a large number of PDE's and ODE's. The model presented 

in this dissertation takes an intermediate approach where each cell is divided into three 

'compartments' and protein transport rate is only considered when the protein moves 

from one compartment to the other (Figure N1). Protein-protein interactions within a 

compartment are assumed to be free of transport limitations.

Diffusion rates defined

Membrane Compartment

Cytoplasmic Compartment

Diffusion rates defined

Nuclear Compartment

Figure C.1. A simplified pathway schematic is shown on the left. The cell is divided 
into three compartments: membrane, cytoplasm and nucleus. Signaling steps for which 
diffusion rates are defined are shown with red arrows. However, within each compartment, 
transport limitations are ignored.
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The justification for this approach lies in the fact that transport of a protein across 

the plasma membrane or the nuclear envelope is in general one to two orders of magnitude 

slower than diffusion within a compartment [Cowan et al., 2012; Timney et al., 2016]. To 

demonstrate this, we may compare the approximate flux of the NFkB protein across the 

nuclear membrane with the flux of NFkB from the edge of the nucleus to the center of the 

nucleus. The flux across the nuclear membrane [Timney et al., 2016] can be approximated 

as follows:

Fm — Dm(Ccytoplasm Cnucleus) (1)

Where, Dm is the diffusion coefficient for the movement of NFkB across the nuclear 

membrane and C represents the concentration of NFkB. Dm was calculated by Timney et 

al. [Timney et al., 2016] for 50kDa proteins (like NFkB) to be 1.86 x 10- 8m/s. Assuming 

a cytoplasmic concentration of 50 uM (0.05 mol/m3) and a nuclear concentration of 0 uM 

(fastest diffusion scenario), the flux is approximated to be:

Fm — 1.86 x 10-8(0.05 -  0) — 9.3 x 10-10m ol/m (2)

Similarly, the flux of NFkB from the inside edge of the nucleus to the center of the 

nucleus is approximated as follows:

dCnucleus „  ACnucleus „  Cnucleus C0Fn — Dn---- :------  « Dn-----:------  — Dn-----------------dx A x (3)r

Where, Dn is the diffusivity of NFkB in the nucleoplasm, C0 is the concentration of NFkB 

in the center of the nucleus and r is the radius of the nucleus. Dn for nuclear proteins was 

approximated [Kuhn et al., 2011] to be 1.72x 10- 11 m2/s and the typical radius of mammalian 

nuclei can be assumed to be 3 um. The flux of NFkB in the nucleus is therefore:

Fn — 1.72 x 10- i i °-005 -  0 — 3 x 10-8mol/m2 (4)
3 x 10- 6 ' v '
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The flux of NFkB across the radius of the nucleus is therefore about 2 orders of 

magnitude higher than the flux across the nuclear membrane. Furthermore, the result as­

sumes NFkB must move across the entire radius of the nucleus to reach the chromosomal 

matter; for transport over a comparable distance as the thickness of the nuclear membrane, 

the flux is over 5 orders of magnitude higher than the flux across the membrane. This calcu­

lation supports the assumption that transport effects on protein-protein interactions within 

a cellular compartment are significantly lower than the much higher transport limitations 

placed by membranes separating the various compartments.
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