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ABSTRACT

The atomic force microscope (AFM) is a widely used instrument for imaging and 

direct manipulation of materials and particles at the nanoscale. The AFM uses a probe, 

which is a microcantilever with a sharp point at the end. Typically, the AFM is 

constructed with a single probe. The disadvantage of this construction is that it can only 

be used either for imaging or manipulation in one implementation. An AFM was 

constructed using two probes, permitting simultaneous imaging and manipulation. A 

dual-probe AFM (DP-AFM) provides a foundation for feedback controlled manipulation.

Paper I investigates probe-on-probe contact stability and examines the dynamics 

of probe-on-probe contact. Evaluation of these interactions leads to study the stability of 

state-dependent switched systems. Uniform ultimate boundedness theorem and sequence 

nonincreasing condition corollary were employed to show stability of proposed state 

dependent switched model with DP-AFM application.

Paper II is extending approach-retract curve to characterize probe-on-probe 

interaction. Universal sensitivity model for probe-on-probe interaction was found. During 

the retract phase, adhesion occurs between probes. Jump-off-contact deflection between 

probes was employed for adhesion force calculation.

Paper III represents implementation of Iterative Learning Control on Z-axis nano­

stage with stochastic and deterministic noise. The nano stage model was identified using 

frequency response of the stage. Deterministic and stochastic noise spectrum was 

identified experimentally. Optimal Q filter and learning filter (L-filter) were designed 

depending on the deterministic and stochastic noise spectrum. The error norm was 

experimentally found to be converging for all four ILC algorithms.
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1. INTRODUCTION

1.1. ATOMIC FORCE MICROSCOPY

The atomic force microscope (AFM) [1] uses a micro-cantilever with a sharp 

point at the end to manipulate and sense objects at nano scale. The probe deflection is 

measured by the optical lever technique [2], where a laser beam focused on the back of 

the probe is reflected back into a position-sensitive photodetector (PSD). Measuring the 

displacement of the laser spot on the PSD indicates the deflection measurement. This 

deflection measurement is regulated by the mean of feedback controller.

One of important capability of the AFM is that it can be used to image biological 

samples [3], conductors [4], and insulators [5] at different ambient conditions at air [6], 

liquid [7], and vacuum [8]. The AFM can work at different modes; the most important 

modes are contact and tapping. At the tapping mode, the probe oscillates at its resonant 

frequency and the tip softly taps the sample. At the contact mode, the probe will be 

directly in contact with the sample. The sample image is directly affected by the probe tip 

condition. For example, using a worn tip [10] will result in a bad image, while using a 

sharp tip will result in a good image. Using contact mode results in a good image of the 

sample topography, but it will damage the probe tip and the sample surface, while using 

tapping mode will result in a good image with minimum damage to the probe and the 

sample.

Depending on the AFM mode, tip deflection (contact mode) or the RMS of the 

deflection (tapping mode) is regulated by a mean of feedback control of the z-axis nano 

stage, and the control action generates the sample topography, as shown in Figure 1.1.



2

1.2. DUAL-PROBE ATOMIC FORCE MICROSCOPY

A typical AFM can only be used either for imaging or manipulation in one 

implementation, because the probe can only image or manipulate at any given time. For 

this reason, most of the nano manipulation was implemented in an open loop process due 

to the lack of the real-time monitoring of the process. This drawback of the AFM 

motivates the work toward dual-probe AFM (DP-AFM).

An AFM was constructed using two probes, permitting simultaneous imaging and 

manipulation. A DP-AFM [11] provides a foundation for real-time monitoring and 

control of a variety of direct manipulation tasks (plowing, pushing/pulling, printing, etc.). 

Also, it can be used for simultaneous imaging of a different sample’s properties, one 

probe imaging the sample topography and the other imaging another mechanical 

property. A DP-AFM can be used for picking and placing of nano objects where the
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probes work as a nano manipulator. A schematic of the DP-AFM and an actual 

experimental setup are shown in Figure 1.2.

Figure 1.2. (a) Schematic of DP-AFM. (b) Image of the actual DP-AFM setup.
(c) Zoomed in image showing the probe holders with dither piezos. (d) Camera view (top 
view) of the two top visual probes aligned tip-to-tip [11].

1.3. PROBE-ON-PROBE INTERACTION

In DP-AFM, where two probes work simultaneously close to each other, 

interaction may occur between the probes accidently due to thermal drift [12], or it may 

occur on purpose when locating one probe with another, or when the two probes are



4

working as a nano gripper. This interaction opens the question about the probe-on-probe 

stability. In this work, we will answer a question about probe-on-probe stability and 

examine the dynamics of probe-on-probe response to characterize stable and unstable 

probe-on-probe interaction.

When two objects are interacting at nano level, these objects are subject to inter­

atomic force. The inter-atomic force can be modeled by the Lennard Jones model. The 

Lennard Jones model represents a nonlinear model of inter-atomic attractive and 

repulsive forces. This model can be linearized to a piecewise continuous model [13] with 

linear attractive and repulsive regions. Evaluation of this interaction model leads to study 

the stability of switched systems. Stability of switched systems can be established by 

showing the convergence of the Lyapunov function. The analysis and theory of the DP- 

AFM interaction will be addressed in detail in Paper I.

On the other hand, the Lennard Jones model did not include the adhesion between 

atoms, which is a widely known phenomenon of nano objects. The adhesion occurs 

mainly due to surface tension between the interacting objects. At retract phase, probe tips 

adhere together until the probes’ spring force overcomes the adhesion force, where 

probes will jump-off-contact (JOC) and separate. Adhesion force can be calculated 

theoretically by JKR and DMT models. On the other hand, it can be found experimentally 

from JOC deflection. This will be addressed in Paper II.

1.4. ITERATIVE LEARNING CONTROL

Iterative learning control (ILC) [14]-[16] is a control process used to improve the 

performance of systems that execute the same operation again and again. A common
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example of such system is an industrial robot, that repeats the same task many times over 

a finite time. ILC requires that the system will be reset to the same initial condition when 

the iteration is done. ILC employs the tracking error from previous iterations to generate 

a control signal for the next iteration.

One of the advantages of ILC over other feedforward and feedback controllers is 

that ILC learns to reject noise and disturbance from propagating through iterations. For 

instance, feedback controllers react to input and disturbance that cause lag in the system 

transient response [16]. On the other hand, feedforward controllers can eliminate lag for 

known reference signals, but not for disturbance [16]. ILC can reject the repeating 

disturbance by learning from the previous iteration. Also, ILC does not require a 

reference signal or disturbance to be known; the only requirement is that it should be 

repeated.
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PAPER

I. UNIFORM ULTIMATE BOUNDEDNESS OF PROBE-ON-PROBE 
DYNAMICS IN DUAL-PROBE ATOMIC FORCE MICROSCOPY

Ayad Al-Ogaidi and Douglas A. Bristow 

ABSTRACT

Atomic force microscopy uses a probe with a sharp nano tip attached at the end to 

sense or manipulate nano objects. Dual probe atomic force microscopy (DP-AFM) uses 

two probes for simultaneous imaging and manipulation. With dual probes working close 

to each other, probe-on-probe interaction may occur accidentally (due to thermal drift) or 

on purpose (by picking and placing a nano object). This work investigates the stability of 

probe-on-probe interaction in DP-AFM for the case when the 1st probe is the imaging 

probe and the 2nd probe is the manipulation probe. Uniform ultimate boundedness (UUB) 

theorem and sequence nonincreasing condition corollary were employed to show the 

stability of the proposed state-dependent switched model with DP-AFM application.

1. INTRODUCTION

The atomic force microscope (AFM) [1] is a widely used instrument for imaging 

and direct manipulation of materials and particles at the nanoscale. An AFM uses a micro 

cantilever with a sharp tip at the end to manipulate or sense a nano object. Typically 

AFMs have a single probe and perform one task at a time. For instance, a single probe 

AFM can manipulate a nano object without any monitoring process, so when the
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manipulation process is done, AFM will be switched to a sensing mode (imaging mode) 

to monitor the manipulation process offline. This drawback of single-probe AFM 

motivates the work toward dual-probe (DP) AFM. In DP-AFM, two probes work 

simultaneously to perform a real-time manipulation and imaging process.

DP-AFM performs manipulation and sensing processes together, with two probes 

working close to each other, which can result in these probes interacting with each other 

accidentally, such as when thermal drift is involved [19], or the interaction may occur on 

purpose when locating one probe with another [19] or during a picking and placing of a 

nano object. This interaction opens a question about DP-AFM stability under interaction, 

this paper will investigate and answer this question.

In this preliminary work, the 1st probe is assumed to be a tapping mode (TM) 

probe used for the imaging process and the 2nd probe is assumed to be a contact mode 

(CM) probe used for manipulation. This work investigates probe-on-probe interaction and 

does not consider probe-sample interaction. Probe interaction is subject to inter-atomic 

force between the tips of these probes. Intermittent contact between the probes, as when a 

tapping probe “taps” against the contact probe, motivate a concept of stability of a 

switched system.

The Lyapunov stability theory represents an essential tool to evaluate stability of a 

switched system. The stability of switched system can be proven by showing the 

existence of a common Lyapunov candidate for all subsystems [3]. Many works have 

investigated the construction of common Lyapunov function of switched system. In [22] 

[23], a common Lyapunov function is constructed by using Lie algebra. In [24], a 

common Lyapunov function is constructed for commuting Hurwitz system matrices by
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using an iterative procedure. In the absence of a common Lyapunov function, the stability 

of a switched system will be established with multiple Lyapunov functions. Despite the 

Lyapunov function showing stability of every subsystem when this subsystem is active, it 

may diverge when switching between subsystems. To establish the stability of a switched 

system with multiple Lyapunov functions, a sequence nonincreasing condition [8] will be 

employed. In [3], [8] and [10] the asymptotic stability of a switched systems is 

investigated with a sequence nonincreasing condition. For practical systems under driving 

force or external perturbation, it may be difficult to establish asymptotic stability, and for 

this reason uniform ultimate boundedness (UUB) will be more practical to demonstrate.

UUB stability of an arbitrary switched system has been investigated in many 

articles [4-7]. However, not much has been done for a state-dependent switched system. 

In [5], a switching signal with infinite number of switching is designed to preserve UUB 

of all subsystems were the switching signal is given as state feedback control signal. In 

[6], UUB of switched system with arbitrary switching law is guaranteed by using a 

common Lyapunov function with a sufficient linear inequality condition. While in [7], an 

algorithm for designing a continuous controller and switching strategy is established to 

ensure UUB of switched system. In this work, UUB stability of a state-dependent 

switched system will be investigated for a family of N switched systems. The main 

contribution of this work is the UUB stability of a family of N-state-dependent switched 

system with sequence nonincreasing condition and their application to DP-AFM.

This paper is organized as follows. Section 2 presents a theorem for UUB of 

switched system under the sequence nonincreasing condition. Section 3 presents a state- 

dependent switched system model for dual- probe interaction. Section 4 proves the UUB
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of the DP-AFM. Section 5 presents a simulation results and application of the developed 

theorems for probe-on-probe interaction. Section 6 presents the conclusions.

2. UUB AND SEQUENCE NONINCREASING CONDITION

One of the sufficient conditions to show stability of a switched system is by 

finding a common Lyapunov function for all subsystems [3]. However, finding a common 

Lyapunov function is not easy, yields using a multiple Lyapunov function for the switched 

system. To establish stability of a switched system with multiple Lyapunov functions, we 

need to put a restriction on the switching system. UUB stability of every subsystem has to 

be established and the switching has to be restricted such that for every pth subsystem, 

Lyapunov function has to be decreased when switching back to the pth subsystem. This is 

called sequence nonincreasing condition.

Let a system described by

* = f a it)(t, x) (1)

be a switched system with switching signal o(t) e P = {1,2,..., N }. Then the following 

definition and theorem will establish the UUB stability of the switched system.

2.1. DEFINITION [4]

The switched system with switching signal cr(t) is uniformly ultimately bounded 

(UUB) with ultimate bound b if there exist positive constants b and c such that for 

every 0 < a < c there is T = T(a, b) such that ||x(0)|| < a then, ||x(t)|| < b for Vt > T .



10

2.2. THEOREM 1

Let (1) be a switched system where x = f p  (t, x), p  e P , is a family of N 

uniformly ultimately bounded systems, and let Vp , p  e P , be a family of N continuously 

differentiable Lyapunov functions. Let t1 < t2 < t3 .... be switching times such that 

u(t) = p  for ti - t < +̂1’ i = 1,2,...> and c(ti) ^ c(ti+1) . If the sequence nonincreasing 

condition,

Vp  (tj  ’ x(tj )) -  Vp  (ti ’ x(ti ))» (2)

for any j  > i with cr(ti ) = c (tj ) is satisfied, then the switched system is uniformly

ultimately bounded. □

Proof of Theorem 1: See appendix.

In this theory, we apply sequence nonincreasing condition to preserve UUB of 

switched system with multiple Lyapunov function. Also, we propose a corollary to 

construct Lyapunov function of the subsystem Vp  such that it satisfies the sequence

nonincreasing condition. Vp  constructed such that for every pth subsystem Lyapunov

function is decreased when it switch back to the pth subsystem. Also notice that although 

Vp  is UUB during c( t ) = p , Vp  is not necessarily decreasing during c( t ) ^ p , in such

case, the sequence nonincreasing condition ensures stability, as shown in Figure 1.

2.3. COROLLARY 1

Let x = f p (x, t), and let there exist a family of N continuously differentiable 

functions {Vp  : p  e P = {1,2,..., N}} such that,
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Vp (t, x) <-W3 < 0, p  e P .

Also, at the switching surface, let

VM(t,x) = Vt (t,x) + pt

where B > 0 is a constant and t < t 2( N ,,, where t is the switch time and 

switch number. o (tm )  = a ( tm+2(N-1)) . Assume further that a  satisfies the

sequence a (tm ) = p , a (tm+1 ) = P + 1 , . ,a( t m+i ) = P + h a (tm+i+1) = P + 1 -1  —  

a(tm+2(i-1)) = P for all i < N . Then the switched system satisfies the 

nonincreasing condition,

Vp (tm+2(N-1), x(tm+2(N -1))) < Vp (tm , x(tm )) .

Proof of Corollary 1: See appendix.

a (t)=1 a (t)=2 CT (t)=N a (t)=2 a  (t)=1

(3)

(4)

m is the 

structural

sequence

(5)

Figure 1. Illustration of the switched Lyapunov function in Corollary 1.
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Assume a switching Lyapunov function shown in Figure 1. Although Vi is UUB 

during u(t) = i , Vi is not necessarily decreasing during u(t) ^ i , in such case, the

sequence nonincreasing condition ensures stability. This is proven by induction (see 

appendix).

3. A SWITCHED SYSTEM MODEL FOR DP-AFM

Probe dynamics are often modeled as a simple lumped mass-spring-damper 

system [12] with equivalent mass, spring stiffness, and damping ratio. Consider the DP- 

AFM shown in Figure 2 with 1st probe is a TM probe and 2nd probe is a CM probe. The 

DP-AFM can be modeled as the following:

. m1z 1(t) + C z1(t) + k1 z1(t) = f 1( z 1(t X tX (6)

m2 Z2 (t) + C2 Z 2 (t) + k2 Z 2 (t) = f 2 (Z2 (t)) , (7)

where m1, k1, c1 are the equivalent mass, spring stiffness, and damping ratio of 1st probe; 

m2 , k2, c2 are the equivalent mass, spring stiffness, and damping ratio of 2nd probe; z1 and 

Z2 represent the position of the tip of 1st probe and 2nd probe from the equilibrium 

position, respectively; and f  and f 2 are the forces acting on 1st probe and 2nd probe, 

respectively. Rewriting (6), (7) yields the following:

Z1(t)+ 7 7  Z1(t) + 7 2 Z1(t) = —  f 1(Z1(t Xt) (8)
Q1 m1

Z2 (t) +(Qr  Z 2 ( t) + 7 22 Z2(t) = f 2 (Z2 (t)) (9)
Q2 m2
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where mx = y jk j  m1 , a 2 = y/k2 /m2 are the natural frequency of 1st probe and 2nd probe, 

respectively, and Q1 = m1rn1/c1 and Q2 = m2®2/c2 are the quality factor of 1st probe and 

2nd probe, respectively.

2nd Probe

Figure 2. DP-AFM model.

Furthermore, (8) and (9) can be rewritten in terms of the normalized time r = a 1t , 

yielding,

Z1(t) + ̂  z1(t) + z1(r) = -T f (z1( t )  t)Q1 k
(10)

y  a
z2 (t) + 7T Z2 (t) + y2 Z2 (t) = V  f 2 (z1 ( t )  Z2 (t)) :

Q2 k
(11)

where a  = m2j  a>1 .

The 1st probe is affected by a driving force, f dr, from the base excitation and the

probe-on-probe interaction force, while the 2nd probe is affected by probe-on-probe 

interaction force. These force are given by,

f  (Z (t), Z2 (t), t) = f dr (t) -  f c (z  (t), Z2 (t) ) , (12)
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f 2 ( Z 1 (j), Z 2 (  j ) )  = fa ( Z 1 (j), Z 2 (  j ) )  = (13)

where f dr (j) = A0 sin(j) is the driving force from base excitation for the 1st probe, A0 is 

the amplitude, and f c(z1(j) ,z2(j)) is probe-on-probe interaction force. Typically,

interaction force at the nanoscale is modeled as a nonlinear Lennard-Jones interaction 

model [13]. This model, shown in Figure 3a, is a nonlinear model with long-range Van- 

der Waals attractive force originating from charge distribution between interaction atoms 

[13] and short-range Pauli repulsive force originating from electron cloud overlapping 

[17]. In the literature, a simplified Lennard-Jones Interaction linear model is used. For 

instance, [16-17] use a linear regime for attractive and repulsive force. In this work, the 

Lennard-Jones model will be linearized as a negative spring force at attractive regime and 

stiff spring force at repulsive regime as shown in Figure 3b, which yields

f c ( Z1 ( j X Z 2 ( j ) )  =  <

0 z, -  z2 -  z < b 1 2 s
- k a ( Z 1 -  Z 2 -  Z  -  b )  a > Z 1 -  Z 2 -  Z s ^  b ( 1 4 )

- k a ( Z 1 -  Z 2 -  Z  -  b )  +  ka ( Z 1 -  Z 2 -  Z s -  a) Z1 -  Z 2 -  Zs ^  a

where a represents probe inter-atomic distance, b represents the Jump-To-Contact (JTC) 

distance [21], zs is the gap between the probes, z1 -  z2 -  zs is the interaction penetration, 

k kka = —L- ^  is equivalent attractive stiffness, and kc approximates the repulsive stiffness.
k1 + k2

Modeling the linearized interaction force as piecewise continuous with three forcing 

regions, yields a DP-AFM model as a state-dependent switching system with three 

subsystems.
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Figure 3. Lennard-Jones interaction model (a) nonlinear model, (b) piecewise continuous
linearized model [16]-[17].

To rewrite the previous equations in switched subsystem model, let S1 be 1st switched 

subsystem, when z1(f) -  z2 (f) -  zs < b , there is no contact between the probes and the 

TM probe is at free amplitude. The DP-AFM is modeled as

S>: <
Z 1 W) + Q  Z1(W + Z1(W = fdr ( W

Qi k 1

a
Z2 (W) + Q Z2 (Z) + a  Z2(r) = 0. Q2

(15)

When the separation between the probes falls between b and a , 

a > z1(r) -  z2(w) -  zs > b , the attractive force dominates while the repulsive force is

negligible, and the DP-AFM modeled as 2nd switched subsystem S2

S2 : <

1 1 k
Z1W  + Z1(w) + Z1(W> = k- fdr W) + T (z1(r) -  Z2 W) -  Z -  b),

Q1 k1 k1

a  2 2Z 2 W) + Q Z 2 W) + a  Z2 W) = -af  (z1 (w) -  Z2 (w) -  zs -  b).
Q2

(16)

when the separation between the probes falls below inter-atomic distance, 

z1(w) -  z2(w) -  zs > a , at this forcing region, the repulsive force experiences a large and
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sudden increase due to the overlap between the electron clouds, and the DP-AFM

rdmodeled as 3 switched subsystem S3

S3: i
z1(t ) + + z1(t ) = fd rT ) ' kZ1(t)

0 1

k c

Z2 (T) +
aZ2 (T)

0 2

k +  ~ f (Z1 T )  “  z2 (t) -  Zs -  b) -  ~k~ ( Z1 T )  “  Z2 (t) -  Zs -  a )
k1 k1 k1

a 2k
+  a " Z2 (t) =  - a " ( Z1 (t) -  Z2 (t) -  Zs -  b) + ( Z1 T )  -  Z2 (t) -  Zs -  a ) -

k2
(17)

Now, consider a signal ct(t) that describes the switching such that

1 t :  z1(t) - z2 ( t ) - Z s < b
ct(t) = \ 2, t : a > z1(t ) -  z2 (t) -  zs > b

3, t :  Z1( t )  -  Z2 ( t )  -  Zs > a
(18)

Rewrite the switched system in terms of state space by letting x1 (t) = z1 (t) ,

X 2 (t) = Z1(T) , X3 (t) = Z 2 (t) , X 4 (t) = Z 2 (t) , and x( t )  = [X1( t )  X 2 ( t )  X3 ( t )  X4 (T )f  •

Then, the DP-AFM switched system can be represented as

X  =  Aa(t) X  +  f a(t) +  Bdrfdr (19)

where

0 1
-1

0 0

-1
Q

0 0

0 0 0 1

0 0 - a 2
- a
q2
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A  =
-(1 -  y  )

ki
0

a 2 ka

0

k2

1

-1

q
0

0 -(

0 0
k 0
k1
0 1

a k̂a )
k2 }

- a
Q2

A3 =

0

a

k1
0

2 kc -  ka
k2

1

(1+ k- ^ )  - 1

Q
0

kc -  ka
k1
0

0  - ( a 2 + a 2 k — — )

k2

0

0

1

- a
q2.

Bdr = [ 0  1 1 K 0  0 f

f  = [ 0  0  0  0 ] T ,

f 2 =
- k a  k

0  — ^ (z, + b) 0  (Zs + b)
k 1 k2

f  = 0  K (Zs  + a) -  ka (ZS + b) 0 a \  (z + b) - — K c  (Z, + a)
k k k

2

0

T

T

Let the switching surface be defined by

* e *2> *12 = {X: X1 -X3 - z , = b}>

X e *23, *23 ={X : X1 -  X3 -  Z, = a} .

Note that S1 transition to S2 when x crosses *12 and S2 transition to S3 when x

crosses * 23 and it is not possible for S1 to transition to S3 without passing through S2.



18

4. UUB OF SWITCHED SYSTEM

Consider the following Lyapunov functions for DP-AFM:

V1( x) = xT L, x ,

where

l  =

(Q  + Q + Q )a  Q,

1

0

— + Q,a

0

0

k2 a
2 j ( a Q 2 +a  Q1 + 7 _̂) 

a  k1 Q2
k2

a  2 k1

k2 k2 (Q  + Q,)2
a  2 k1 a  2 k1 a

It can be shown that

where, from (20) and (21),

L, AT + A,L, = -  H,,

Vl =—  Xl2 + ~  X2 + Q1X12 + aQ2X3 + Q1X3 + Q,X4 +--------2̂ (J t TX3 + \l^2X4)2a  a a  k1 V Q2 a

+ ^ 1 +4 q,X2)

1 0 0

0 0

0

2

and

V  (x) < - 2 X,2 -  2_Q2_
aQ,

kX2“ -  2 — X32 -  2
k

M L
a 2k,

X Ao Ao /Q2+ 2 —  X, + 2 —  (—— + Q,) X,
k k, a

Hence,

V ( x )  <  0  v | | X I  >M,,

(20)

(21)

(22)

(23)

(24)

(25)

where,
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« = 4 ( r )2 (1 + 81) + + a Q xa Q

V Q2 1  Q'2 y

k 1 c*2 a  k 1 c*2+ — 82 +----- 151
k  Q k

and

a QW Q:
81 =■, 11 + Q -  ( — + Q 1)2

V Q 2 a

Thus, the 1st subsystem is UUB.

For the 2nd subsystem, recall a > (x1 -  x3 -  zs) > b . Let

V2( x) = V1( x ) .

and

V2 (x) < - 2x2 -  2 -% -x22 -  2^ x32 -  2 ^ 2 ^ x42 + 2^°X  + 2(2^ + Q1) ^ ° x2k 2 x2 2 k2Q 1 , ' *̂-3
aQ1 k1 a  k1

A x , o Q
k a

A
k1

k„ k Q
+2 k L ( x 1 -  x 3 -  Zs -  b)( x 1 -  x3 ) + 2 ~ r (—  + Q1)( x 1 -  x 3 -  Z  -  b)( x 2 -  x4 ).

k k1 a

Because a -  b > (x1 -  x3 -  zs -  b) > 0, (28) can be bounded by,

V2(x) < - 2x2 -  2 -Q^ x 22 -  2k2x32 -  2^ x42 + 2^ ° x1 + 2 ^ 1  + Q ^ x2
^  k  -■ Ka Q 1

k2Q1 x2 + 2  k  
a 2k  4 k a

k„ , k a Q 2+2 —  (x1 -  x3)(a -  b) + 2 —  (—  + Q1)(x2 -  x4)(a -  b).
k k1 a

k

yields,

where,

V2( x) < 0 v | |  X I  > u 2,

^2

A  + T  (a -  b) +  82
V k1 k1

V  (
+ a Q 1 ( A  , k Q2( X °  +  ^ l (a  -  b ) ) ( ^  +  Q1) + a Q 1

2

Q 2 k 1 k 1V 2 a Q

f
... +

k
-a- (a -  b) + ,

V k2

V  (  „.2
i  82

^ l k  y v
+

a 2 k Q2— (a -  b ) ( ^  +  Q1) +
Q1 k a  \ Q 1 k

a  t  5.

2
2 y

V

+

2
2 y

2

1
4

(26)

(27)

(28)

(29)
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and

s, =

1 ( A  , k (a b) , t , 1 a Q, ( , A  , k (a b)Y ( Q2—  + —  (a -  b) +
2  k k2 V b  K1 J

, (t 1  + V (a -  b) I ^  + Qi 1 +...
2 Q2 V k1 k1 a

... ,
1 k2

2 k1k2
(a -  b)2 + 1 a 2k  ( k

2 k2
Q2-t  (a -  b)( ̂  + Qi)

V k1 a
V

J

2

Thus, the 2nd subsystem is UUB.

Recall the 3rd subsystem, (x1 -  x3 -  zs) > a . Let,

k -  k Q
V3(X) = V2 (x) + 2 (Q  + Q1)(X1 -  X3 -  z, -  a)2 (30)

k1 a

Notice that, at the switching surface x e ^ 23, yields

V3 (t, x) V2 (t, X) , Vx e X23 . (31)

From (27) and (30),

Q2 X2 , Q2 X2 , Q x2 , aQ X2 , Q x 2 , Q X 2 + k2 ( a  X , lQ 2 X )2
4 a V V  Q2V3 X1 + X 2 + Q1X 1 + aQ 2X 3 + Q1X 3 + Q1X 4 + 2 / (\i /̂ > X 3 +\  X4 )a  a  a  k  \ Q2 V a

1 .— k -  k Q
+(“ T= X1 W Q1X2 )2 + 2 % a (—  + Q1)(X1 -  X3 -  Z -  a)

VQ1 k1 a

and because (X1 -  x3 -  zx -  a) > 0, (X1 -  X3) > zx + a and zx + a > 0, V zx > a , we have,

V3(x) < - 2 xf -  2 - ^ x22 -  2 ^ x 32 -  2 x42 + 2 ^ ° x 1 + 2 ( ^ -  + Q ^ — x2
^  ' a  k1 ' 'aQ1 a

k„ k Q+2— (x1 -  x3)(a -  b) + 2— (—  + Q1)(x2 -  x4)(a -  b)
k  a

(32)

k -  k- 2 —----- ( x1 -  x3 -  zs -  a)(x1 -  x3).

Also notice that (x1 -  x3 -  zx -  a)(x1 -  x3) > 0 for V zx > a yields,

V3( x) < 0 VIXI > m3, (33)
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where,

U3 = ^ 2 -

Thus, the 3rd subsystem is UUB. Then, (25), (29), and (33) show that the subsystems are 

UUB. Also, from (27) and (31), V2 (t,x) = Vx(t,x) Vx e ^ 12 and V3 (t,x) = V2 (t,x)

Vx e x 2 3 . Thus, By Theorem (1) and Corollary (1), the switched system is UUB, ensuring

boundedness of probe-on-probe interaction.

While the above UUB results provide a rigorous result for establishing the 

existence of guaranteed bounds; however, the ultimate bound was very conservative (in 

order of tens of microns) and using the UUB bound will not distinguish between desired 

and undesired DP-AFM response.

5. SIMULATION RESULTS

To explore the types of behavior in DP interaction. Consider the following cases, 

set of parameters listed in Table 1 corresponds to tapping mode probe VIT-P/IR and those 

set of parameters corresponds to contact mode probe VIT_P_C-A also in table 1, and now 

look at the response when they interact together.

With slightly different parameters, the simulation results show two different 

responses: the first response is undesired where probes interaction is large erratic (chaos), 

and the second response is the desired interaction where both probes interact smoothly.

The first case is shown in Figures 4 and 5. Figure 4 shows the position of two 

probes and Figure 5 shows the switched system Lyapunov function. In this case, the 

simulation results show undesired large erratic DP interaction.
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The second case is shown in Figure 6 and Figure 7. Figure 6 shows the position 

of the two probes and Figure 7 shows the switched system Lyapunov function. In this 

case, the simulation shows that after the first several contacts between the probes, the 

contact enters into a regular cycle (as evidenced by the periodic switching cycle). This 

response represents a desired DP interaction where contact mode probe is bouncing 

smoothly on the tapping mode probe.

We are interested in exploring the critical functional relationships to determine 

when we are going to get a desired response and when we are going to get undesired 

erratic response. However, from UUB of switched system, the bound was found to be 

very conservative, 14 |im for 1st subsystem and 50 |im for 2nd and 3rd subsystems.

Now consider a parameterization relating stiffness and natural frequency of 1st 

probe with stiffness and natural frequency of 2nd probe. To distinguish between desired 

and undesired DP interaction, consider the following threshold, the DP interaction is 

desired when the following threshold is satisfied,

(IIx + x3| l ) <(||x + xJL) .VII 1 3112/final VII 1 3112/free amplitude

Table 1. Simulated probe parameters.

TM probe: VIT-P/IR CM probe: VIT_P_C-A

Min. Max Nominal Min. Max Nominal

Stiffness(nN/nm) 20 95 50 0.03 1 0.3

Natural frequency (kHz) 200 400 257.7 8 25 14
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time (sec)

Figure 4. Amplitude of tapping mode and contact mode probes for undesired interaction.

0 2000 4000  6000 8000  10000
time (sec)

Figure 5. Lyapunov function of switched system for undesired interaction.
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Figure 6. Amplitude of tapping mode and contact mode probes for desired interaction.
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0 2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  1 0 0 0 0
tim e  (se c )

Figure 7. Lyapunov function of switched system for desired interaction.

Using the threshold criteria, DP interaction simulated for different k2 and f 2 at 

TM dynamics kt =50 nN/nm, =257.7 kHz. Figure 8 shows the desired and undesired 

DP interaction regions. With respect to f 2 increasing k2 drives the DP interaction toward 

a desired region, as shown in Figure 8.

On the other hand, Figure 9 shows the desired and undesired DP interaction 

regions when the DP interaction simulated for different k1 and f 1, at 2nd probe

parameters k2 =0.9 nN/nm, and f 2 =14 kHz. Figure 9 shows that the 1st probe parameters’ 

effect is opposite to the 2nd probe effect on DP interaction. With respect to f  decreasing 

k1 drives the DP interaction toward a desired region, as shown in Figure 9. From these 

plots we can see that there seems to be a trade off with a critical value between 1st probe 

and 2nd probe dynamics.
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+♦♦♦;

Stable DP
Unstab e DP
Stable DP

2nd Probe Stiffness

Figure 8. Desired and undesired DP interaction region for different 2nd probe parameters 
at 1st probe parameters (k1 =50, f1 =257.7 kHz).

6. CONCLUSIONS

The dynamics of probe-on-probe interaction force of DP-AFM were linearized 

into three regions: no interaction, attraction region, and repulsion region. This linearized 

interaction force model led to a state-dependent switched system model of three 

subsystems. Stability of every subsystem was established using Lyapunov stability 

theorem and proven to be UUB. However, the ultimate bound was found to be 

conservative. Sequence nonincreasing condition proposed in Corollary (1) was employed 

to ensure the convergence of every subsystem at the switching surface, which satisfies the 

convergence of the switched system. The results show that a stable probe-on-probe 

interaction can be determined for a range of probe dynamics within the operation region.
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Figure 9. Desired and undesired DP interaction region for different 1st probe parameters at
2nd probe parameters (k2 =0.9, f 2 =14 kHz).

APPENDIX

Proof of Theorem 1: Let a t (||x||) and au (||x||) be class k  functions [14] bounds for 
Vp (x) such that,

a ,p ( llx b ^ Vp(t , x )  ^ a u, p ( llxW p  i  P .u, p ' (1)

Let a  ( |X\) = min {a, p (||x \\)}, and a 2 (||X|) = max {au p (||X|)} . Then,

a 1 (||X||) ^ Vp (t, x) ^ a 2(||X P i  P . (2)

Because f p (t, x) are UUB, there exists a Wp (x) positive definite function and /up such 

that,

V p  (x, t) ^ ~Wp (x), V ||X| >Pp > 0 . (3)
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Following the approach of [14], we create the following sets. Let y  = (x e M | x < r } , for 

some r > 0 and let Upt = ( x e y  | Vp(t,x) < u} for some u > 0. Furthermore, let 

Lpj = (x e y  | Vp (t, x) < l} and Rpt = (x e y  11 < Vp (t, x) < u} for some u > l > 0. Then 

Lpt ^ R pt = Upt . Finally, let q = min||x||>̂ (Wp(x)} . Figure A1 shows these sets.

Now, let x(t0) e Rpt. For t > tj > tt > t0, we have,

Vp(t, x) < -q  < ^  and Vp (t; , x(t; )) < Vp (ti, x(ti)),

and thus,

Vp(t, x(t)) < Vp (t; , x(t; )) < Vp (ti, x(ti))
< Vp (to, x(t0)) -  q(t -10) (4)
< u -  q(t - 10).

Therefore, we see that the Vp is decreasing in Rp t and any initial condition starting at 

Rpt will enter to Lpt within a finite time[14]. Also,

V p < -Wp (x) < - «3,p (||x||) < - «3,p («2-1(Vp )) = - «4,p (Vp )

where a 3p and a 4p are class k functions. Then [14] there is a class k function a  such 

that

Vp(t, x(t)) < a(Vp(t0, x(t0),(t -  t0)), Vt e [t0, t0 + T ] .

Defining P(r, 5) = a -  (a (a 2 (r), 5), then the ultimate bound is

||x(t 1̂ < A ||x(t0)\l t -  t0), Vt e [^  t0 + T ].

Now, for the case when the x(t0) e Lp t , from (2) we have,

M l ̂  \) < Vp (t, x) < M l  x||) < a2(Rp ) .
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r

p , t '

Now, select l = a 2(/up) and thus, Vp(t, x) < l . Also, a1( x ) <a2(p.p), so

||x|| < a p (a 2(^p)), Vt > t0 + T . This completes the proof.

Proof of Corollary 1: proof by induction.

First, the corollary has to be valid for N=2, (pair of subsystems), and can be proven as 

follows. Recall (3), we have, V1(t1,x) < Vj(t0,x) and thus from (4),

Furthermore,

x) = V (t2 , x) + P<  V1(t1, x) + P = V2 (t1, x) .

V1 (t3, x) = V2(t3, x) ~P<  V2 (t2 , x) ~ P  = V1 (t2 , x)

because V2 (t3, x) < V2 (t2, x ). Therefore,

(5)

(6)

x) < x) (7)

and

2̂ (t3 , x) < V2 (t1, x ) . (8)

Second, the corollary has to be valid for N subsystems, and this could be proved as 

follow. For N subsystems, from (3), and (4), yields
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V1(t2(N-l)+l) — V2(t2(N-1)) P1 — V3(t2(N-1)-1 ) -P l - P 2 — •••

— VN-1 (t (N+1)) + PN-1

— VN-1 (t( N-1)) + PN-1

N-1 N-1
X P j  — VN On ) - X P ,
j = 1 j=1

(9)

N-1
X P jj=1

— ••• — V3(t3) - P - P 2 — V2(t2) - P  — V(t,)

N-1 N-1 N-1 N-1
V2(t2( N-1)+ 2 ) — V1 (t2( N-1)+1 ) + X Pj - X P  — V2 (t2( N-1) ) — V3 (t2( N-1)-1 ) + X  Pj -  X  P

j=1 j=2
N-1

j=3 j=2
N-1 N-1

— ••• — VK-l(l(Kt„) + X  Pn-1 - X P ,  — VnOn ) - X P j  (10)
j=N-1 j=2 j=2

N-1 N-1 N-1 N-1
— Vn-,0 (n-») + X  Pn- , - X P ,  —••• — V3O3 ) + X P , - X P ,  — V,(t,)

j=N-1 j=2 j=3 j=2

N-1 N-1 N-1 N-1
V3(t2(N-1)+3 ) — V2(t2(N-1)+ 2 ) + X P - X P ,  — V0,(n-n +1) + X P , - X P ,

j=2 j=3 j=1 j=3
N -1 N -1 N -1 N -1

— V2 (t2(N-1^ + X Pj -  X Pj —........ — VN-1 (t(N+1̂  + X  Pj -  X  Pjj=2 j=3 j=N-1 j=3
N-1 N-1 N-1

— Vn(<n) - X P ,  — Vn-,(<(n-1)) + X  P j - X P ,  — -J=N-l J=3
N-1 N-1

••• — Vt (l4) + X P .4- X P — V,(l,)
j=4 j=3

(11)

VN (t2(N-1)+N ) — Vn-i ( 2

N-l N-l
l2( N-1)+N 0 ~ r N-lV^ N-1)+N-0 + X  Pj — VN-2(t2( N-1)+N-2) + X  Pj — "

j=N-1 j=N-2
N -1 N -1 N -1

• • • — V2(t2( N-1)+2 ) + X P ,  — V,(h n-1 + 1) + X P j  — V1o 1(N-„)+XPj —••• ( 1 2 )
j=2 j=1 j=2

N -1 N -1
•• • — Vn -2 (t2(N-1)+N+2 ) + X  Pj — VN-lO(N+n) + X  Pj — VNOn)

j=N-2 j=N-1

F r o m  (3) a n d  (9), ( 1 0 ) ,  ( 1 1 ) ,  a n d  (12), y i e l d s ,

V1(t2( N-1)+l) — Vl(tl) and Vl(tl) — VM

V2 (t2(N-1)+2 )  <  V2 (t2 ) a n d  V2 (t2 ) < V2 (ti)
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V 3 ( t 2(N-1)+3 )  — V3(t3) a n d  V3(t3) — V 3 ( t 2 )

V  ( t 2 (N -1 )+i )  — Vi (ti ) a n d  Vi (ti ) — Vi (ti-1)

Now, assume

V 1 ( t m+1 )  — V 1 (tm-2( N-1)+1 )

V 2 ( t m + 2)  — V2(tm-2( N-1 )+ 2 )

V 3 ( t m +3)  — V 3 ( t m -2 ( N-1 )+ 3 )

(13)

(14)

(15)

VN ( t m+N )  — V N  ( t m -2 (N -1 )+  N  )

Then, using a similar argument as in (13) to (16),

V  ( t m+2(N-1)+1 )  — V 1 ( t m+1 )  

V2(tm+2( N-1)+2 )  — V 2 ( t m + 2)  

V 3 ( t m +2(N-1)+3 )  — V 3 ( t m+3 )

(16)

(17)

(18) 

(19)

VN ( t m +2(N -1)+N  )  — V N  (tm+N )

Thus, by induction, the sequence nonincreasing condition is satisfied.

(20)

□
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II. STATICS OF PROBE-ON-PROBE INTERACTION IN DUAL-PROBE
ATOMIC FORCE MICROSCOPY

Ayad Al-Ogaidi and Douglas A Bristow

ABSTRACT

This work characterizes probe-on-probe interactions, where the 1st probe is a soft 

probe (typically used for manipulation) and the 2nd probe is stiff probe (typically used for 

imaging). An approach-retract curve, a common method to characterize probe-sample 

interaction, is extended to characterize probe-on-probe interaction. An approach-retract 

curve could be divided into different zones based on interaction. At the approach phase, 

these zones are no-contact, transient, and deflection zone, while at the retract phase these 

zones are deflection, adhesion, transient, and no-contact zone. At the adhesion zone, 

where the probes adhere together, the adhesion force is calculated from jump of contact 

(JOC) deflection between probes. A universal sensitivity model for probe-on-probe 

interaction was found to relate probe-sample sensitivity with probe-on-probe sensitivity. 

Experimental validation demonstrated a model error at less than 4%. The 2nd probe 

natural frequency was modeled and experimentally measured before and during adhesion. 

The results showed that 2nd probe natural frequency was reduced due to the increase of 

the mass due to adhesion. The error between the modeled and experimental natural 

frequency at adhesion was found to be 2%.
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1. INTRODUCTION

The atomic force microscope (AFM) [1] is a widely used instrument for imaging 

and direct manipulation of materials and particles at the nanoscale. An AFM use a micro 

cantilever with a sharp tip at the end to manipulate or sense a nano object. A typical AFM 

with a single probe perform one task at a time. For instance, a single probe AFM 

manipulates a nano object without any monitoring process, so when the manipulation 

process is done, the AFM will be switched to a sensing mode (imaging mode) to monitor 

the manipulation process offline. This drawback of a single probe AFM motivates the 

work toward dual-probe (DP) AFM. In DP-AFM, two probes work simultaneously to 

perform a real-time manipulation and imaging process.

DP-AFM with two probes working close to each other led to the fact that these 

probes may interact to each other accidentally, for example when thermal drift was 

involved [2], the contact may also occur on purpose, for example, picking and placing a 

nano object in nano manipulation.

This paper is organized as follows. Section 2 presents probe-sample interaction 

and experimental measurements of probe sensitivity from probe-sample approach-retract 

curve. Section 3 presents probe-on-probe interaction where a universal sensitivity model 

validated with the probe-on-probe experimental measurements from a probe-on-probe 

approach-retract curve. Section 4 presents experimental measurements of the probe-on- 

probe adhesion force from the jump of contact (JOC) deflection between probes. Section 

5 presents probe stiffness calculated by a frequency scaling method where probe natural 

frequency experimentally measured by frequency sweeping method. Section 6 presents 

the conclusions of the probe-on-probe interaction.
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2. PROBE-SAMPLE APPROACH-RETRACT CURVE

An approach-retract curve [3] is a common method to characterize probe-sample 

interaction. A probe starts far away from the sample, moves toward a sample until 

interaction occurs for a certain distance, then the probe retracts back to the original 

position.

An approach-retract curve could be divided into different zones based on 

interactions as shown in Figure 1a. At the approach phase, these zones are no-contact (a­

b), transient (b-c), and deflection zone (c-d), while at the retract phase these zones are 

deflection (d-e), adhesion (e-f), transient (f-g), and no-contact zone (f-g).

At region (a-b), there is no contact between the probe and sample. When the probe 

comes closer to the sample, the probe is affected by the inter-atomic attraction force. 

When this force exceeds probe stiffness, the probe jumps-to-contact (JTC) with the 

sample at the transient region (b-c). At region (c-d), the probe deflects due to approaching 

the sample. When the probe reaches (d) it will retract back. During retraction, the probe is 

still at the deflection zone (d-e) where point (e) represents zero deflection point. After this 

point, the probe is at the adhesion zone (e-f) where the probe adheres to the sample until 

the probe stiffness overcomes the adhesion force. Then, the probe will jump-off-contact 

(JOC) at the transient region (f-g).

In DP-AFM [4] [5], the probe-sample approach retract curve is implemented for 

both probe separately to characterize 1st probe-sample sensitivity and 2nd probe-sample 

sensitivity. The 1st probe-sample approach retract curve was implemented by moving the 

1st probe into a silicon sample. In the same way, 2nd probe-sample approach retract



36

curve was implemented by moving the 2nd probe into the same silicon sample. Probe 

sensitivity could be found by

Vc — axSc 

- V
yields> a  —- ^ ~  (1)

SSc

a2

yields, a
-V T

- S T
(2)

where Vc is 1st photo detector voltage (mV), Sc is the 1st probe deflection in (nm), a1 is 

the 1st probe sensitivity, VT is the 2nd photo detector voltage (mV), ST is 2nd probe

deflection in (nm), and a 2 is the 2nd probe sensitivity. Figure 1b shows experimental

result of probe-sample approach-retract curve of 1st probe, where a silicon contact mode 

probe (VIT-P/IR) interacted with silicon calibration sample (HS-20MG).

Figure 1. (a) Schematic of probe-sample approach-retract curve. (b) Experimental of 
probe-sample approach-retract curve of 1st probe.
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3. PROBE-ON-PROBE APPROACH-RETRACT CURVE

The approach-retract curve is extended toward the probe-on-probe interaction. In 

this preliminary work, consider only probe-on-probe interaction and do not consider the 

sample interaction with either probe. Consider the probe-on-probe interaction schematic 

shown in Figure 2a and 2b , where the 1st probe interacts with the 2nd probe instead of 

interacting with the sample.

In the probe-on-probe approach-retract curve, the 1st probe and 2nd probe 

approach-retract shows opposite deflection directions as shown in Figure 2a and 2b. 

However, the approach-retract curve could be divided into no-contact (a-b), transient (b- 

c), and deflection zone (c-d) in the approach phase, while at the retract phase these zones 

are deflection (d-e), adhesion (e-f), transient (f-g), and no-contact zone (f-g).

In the probe-on-probe adhesion zone, probe sensitivity relative to each other will 

be modeled within universal sensitivity model for probe-on probe interaction. 

Furthermore, probe natural frequency will be changed due to adhesion.

From the transient zone (f-g), adhesion force could be measured experimentally 

by measuring jump-off-contact (JOC) deflection. This adhesion force plays a big role in 

nano-manipulation processes.

3.1. EXPERIMENTAL RESULTS: PROBE-ON-PROBE APPROACH-RETRACT 
CURVE

Figure 3a shows the experimental probe-on-probe approach retract for the 1st 

probe, while Figure 3b shows the experimental probe-on-probe approach retract of the 2nd 

probes when the 1st probe base moves for 800 nm at 40 nm/sec.
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Figure 2. (a) Schematic of probe-on-probe approach-retract curve of 1st probe. (b)
Schematic of probe-on-probe approach-retract curve of 2nd probe.

4. PROBE-ON-PROBE SENSITIVITY MODEL

In the probe-on-probe adhesion zone, the probes deflect relative to each other. 

This changes the probe sensitivity from probe-sample sensitivity. The probe-on-probe 

sensitivity will be modeled within the universal sensitivity model.

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 
xCb (CM probe base disp lacem ent (nm))

(a) (b)

Figure 3. (a) Experimental 1st probe-on-probe approach-retract curve. (b) Experimental
2nd probe-on-probe approach-retract curve.
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At the adhesion zone, shown in Figure 4, the DP-AFM could be represented as 

two springs in a series, as shown in Figure 5, with moving the 1st probe base modeled by,

k C (XCb — XP ) = kTXP (3)

where k C represents 1st probe stiffness, kT represents 2nd probe stiffness, x Cb represents 

moving 1st probe base position, and xp represents probe-on-probe position at adhesion. 

From (3),

kc
xP =

kc + kT Cb

Also from the probe sensitivity equation,

V1= a1( xcb -  XP )

Substituting (4) in (6) yields

V = a2 Xp

V2 = a2 k C
kc + kT

x

(4)

(5)

(6)

(7)

Figure 4. (a) 1st probe-on-probe adhesion zone. (b) 2nd probe-on-probe adhesion zone.
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Figure 5. (a) Schematic of two probes at adhesion. (b) At adhesion, probe-on-probe as
two springs in series.

Taking a derivate of V2 with respect to xCb yields

dV2 kC
— ~ = a2----C—dxcb kc + kj (8)

Also, substitutig (4) in (5) yields

V  =  a i
_ kc ^

V kC + kT J
xCb ■ (9)

Taking a derivate of V1 with respect to xCb yields

dV f  kC \
dx,

=  a i

Cb
1 —

V kC + kT J
(10)

1  i V L  =  1 . kC
a1 dxCb kC + kT (11)

Substituting (8) in (11) yields

1 d V  , 1 dV2— = 1 _ —
a1 ^XCb a2 ^XCb

(12)

Rewriting (12) yields

1 d V  1 dV2 ,-  + -  = 1.
a1 ^XCb a2 ^XCb

(13)
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Substituting (1) and (2) in (13), and rewriting (13) yields

d$cL dVL + d S ^ d V ^  = 1 
dxa  dVc dxa  d VT '

The probe-on-probe sensitivity model (13) was experimentally validated. Table 1 

shows the validation results for three probe-on-probe tests where the average of these 

results shows < 1% of error between the experiments and 13.

5. ADHESION FORCE

At adhesion, exactly at the instance before the probes’ separation from each other, 

the adhesion force between the probes could be found experimentally from jump-off- 

contact (JOC) deflection, as shown in Figure 6. On the other hand, the pull-off force 

could be calculated from Johnson, Kendall, and Roberts (JKR) model [6], also from 

Derjaguin, Muller, and Toporov (DMT) model [7].

Table 1. Validation of probe-on-probe sensitivity equation for three tests.

Test dV
$xcb

ax dV2
^xcb

a2 Validation error

1 -0.81 -0.78 0.0246 -1.57 1.023 +2%

2 -0.81 -0.779 0.026 -1.456 1.022 +2%

3 -0.79 -0.81 0.025 -1.46 0.958 -4%

Avg. -0.8 -0.79 0.0252 -1.462 0.9954 <1%
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Figure 6. (a) Probe-on-probe adhesion force of 1st probe. (b) Probe-on-probe adhesion
force of 2nd probe.

The adhesion force models F ^ 1 and represent the range over which the 

experimental adhesion force may vary for elastic and non-elastic models [3],

F T  = -2^R®,# (15)

F T  = -  2  xR®«k (16)

T(NIIS' (17)

where <nikj is the work of adhesion between the two surfaces i and j  in a medium k, y  is 

a surface energy, and R is tip radius in nm.

5.1. ADHESION FORCE VALIDATION

The adhesion force was experimentally measured from probe-on-probe interaction 

where the 1st and 2nd probes were silicon probes with a stiffness of kC =0.3675 and

xcb (1st probe base displacement)

(b)
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kT =27.1 nN/nm respectively. For a silicon probe, the surface energy was y = 1240 

mj / m2, and the adhesion force was calculated from (15) and (16):

FaDJfT = 2nRalk] = 68.2 nN,

3
FJKR = 2  * R ^  = 63.5 nN.

Comparing these results with the experimental work shows that the experimental 

adhesion force is within the range of the calculated force. Table 2 summarizes the probe- 

on-probe adhesion force for the two experiments.

Table 2. Summarized probe-on-probe adhesion force results for two experiments.

1st probe 2nd probe kc  =0.3675

Test V mV a1 V mV a2 kC l kT kT Adh. force (nN)

1 89.4 -0.512 3 -1.19 0.014 26.1 63.9

2 95.8 -0.512 3.8 -1.19 0.017 21.5 68.4

6. NATURAL FREQUENCY AT ADHESION

At the adhesion region, when the probes adhere together, the mass and stiffness 

changed due to adhesion. This change shifts the natural frequency of the probe. For 

instance, the 2nd probe natural frequency at adhesion is

a  =
kc + kT
mc + mT (18)
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From the 1st probe and 2nd probe factory nominal parameters, by using m = pv where p  

is density and v is probe volume, found that,

mC = 0.6mT . (19)

Taking into account that kC = 0.367 , which is very small compared with kT = 27.2, and 

substituting in (15) yields

con =
>/L6

-
= 0.79

mT 1
- T

m.T

®n = 019®m . (20)

Applying (20) to the experimental results show that the error is 2% as shown in Figure (7)
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Figure 7. (a) Natural frequency before adhesion. (b) Natural frequency at adhesion.

7. STIFFNESS CALIBRATION USING FREQUENCY SCALING

A spring constant of a rectangular cross section cantilever beam could be found by

[4] [5]
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k Et3 w 
4l3 (21)

where l is beam length, w is the beam width, t is beam thickness, and E is Young’s 

modulus of elasticity. For a cantilever beam with a stiffness k and density p  the

effective mass meff can be calculated from beam geometry [8] [9]:

mf  = 0.24m

where m = plwt is the beam mass from geometry.

Assuming, a cantilever beam has a natural frequency f 0, then

a
fo = ^  =

1 ( E
,1/2

2n 4nl 0.24p) 2nl
i ( e Y 2

y P )  '

We could rewrite (21) using (23) and yields

k « 2^3l3 f 03w p E

(22)

(23)

(24)

Eqnuation (24) shows that the cantilever stiffness is proportional to natural frequency. 

This provides a simple method to calibrate AFM probe stiffness based on natural 

frequency.

For a silicon probe, Young’s modulus of elasticity is E = 186.5 GPa and density is 

p  = 2330 kg/m3. For the 1st probe, the natural frequency was experimentally measured 

by means of frequency sweeping and was found to be f 0 = 17.205 kHz. The probe 

dimension was length l = 450 |im, and width the w = 50 |im. The 2nd probe stiffness kC 

was found from (24):

kC = 0.367 N/m.
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For 2nd probe, natural frequency f 0 = 231.96 kHz, length l = 140 gm, and width w = 50 

gm. 2nd probe stiffness kT found from (24)

kT = 27.1 N/m.

k
stiffness ratio is —  = 0.0136, also, stiffness ratio validated with probe-on-probe

kT

interaction as shown in table (2).

8. CONCLUSIONS

DP-AFM Probe-on-probe interaction investigated using probe-on-probe approach 

retract curve. Probe-on-probe universal sensitivity model were found and validated with 

experimental work, the error found to be < 4 %. Probe-on-probe adhesion force found 

from Jump of contact distance. The adhesion force found to be fall between JKR and 

DMT model for adhesion force, the reason for that is these models represent the adhesion 

force for soft and hard material respectively. Also, at adhesion, the natural frequency 

reduced due to the increase of mass at adhesion, 2nd probe natural frequency modeled and 

experimentally measured before and during adhesion, the results show that 2nd probe 

natural frequency reduced due to the increase of the mass due to adhesion, the error 

between the modeled and experimental natural frequency at adhesion found to be 2%.
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I I .  I T E R A T IV E  L E A R N IN G  C O N T R O L  O F  Z - A X IS  N A N O  S T A G E  W I T H
S T O C H A S T IC  N O IS E

Ayad Al-Ogaidi and Douglas A. Bristow 

A B S T R A C T

In this paper, Iterative Learning Control (ILC) for nano positioning stage is 

examined with four ILC algorithms. The nano stage model was identified using frequency 

response of the stage. Deterministic and stochastic noise spectrum was identified 

experimentally. Optimal Q filter and learning filter (L -filter) designed depending on the 

deterministic and stochastic noise spectrum. The error norm experimentally found to be 

converging for all four ILC algorithms.

1. IN T R O D U C T IO N

Iterative learning control (ILC) [6]-[8] is a control process used for systems with 

repetitive operation. It also used to improve the performance of the system and tracking 

error from iteration to iteration to generate a control signal for the next iterations.

The ILC considered for the system which repeat the same operation again and 

again under the same initial conditions. For this kind of system, the error contains good 

information about system behavior from one iteration to another. The ILC incorporates 

this information to generate the feedforward input signal for the next iteration.

One of the advantages of the ILC over the feedback and feedforward controller is 

the way to response for noise and disturbance. Feedback controller response to the 

reference input and disturbance which causing lag in the response. Feedforward controller
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compensate for disturbance with known reference signal. However this not the case for 

the ILC, the ILC use the information from the previous iteration to compensate for 

repeating disturbance.

Despite the input signal is always corrupted with noise, most of the ILC work 

assumes it is noise free. However, this is not the case in practical implementation. To 

better compensate for the noise and disturbances, knowledge of the noise and disturbance 

spectrum could be used for the generation of the ILC input.

The rest of this paper is organized as follow, Section 2 represent the procedure 

and calculation required for the ILC implementation. Section 3 represent the different ILC 

algorithms. Section 4 represents the experimental and simulation work. Section 5 

contains the conclusion and future work.

2. I L C  C A L C U L A T IO N S

Consider the following error model for a motion system as,

(k) = -P ( z )uj (k) + d  (k) + w} (k) (1)

where d(k) is a deterministic disturbance, and wj (k) is a stochastic disturbance of j  at 

the is the discrete time sample k , and P( z) is a stable close loop plant. Consider the ILC 

control input law u is,

Uj+1(k) = Q(z)(Uj (k) + L( z )e j (k)) (2)

where ej (t) is a noise corrupted error measurement modeled as

ej (k) = ej (k) + V (k) (3)

and vj (t) is stationary random noise. The ILC block diagram is shown at Figure 1.
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Figure 1. ILC block diagram.

3. S Y S T E M  I D E N T IF IC A T IO N  A N D  N O IS E  M O D E L IN G

3.1. N A N O  S T A G E  M O D E L

Nano stages are an integral part of nanotechnology instruments. They offer sub­

nanometer precision over several microns range. They are often used in atomic force 

microscopy (AFM) [1], where sub-nanometer positioning and accuracy are critical. Figure 

2 shows a piezo-based nano stage (PI P-620.ZCL) on which the proposed ILC scheme 

was applied. The stage has a travel range of 50 gm and 0.1 nm resolution.

A linear model for the nano stage was identified using the frequency response of 

the stage shown in Figure 3.

The transfer function of the fitted model is given in (4),

G(s) = -----------2 kz (S + 2^ 22S +f z)----------- -  (4)
(s + 0 j)(s + 2£2a2 s + ®2)(s + 2£3a3 s + ®3)

where kz = 2.5028*1010, ^= 1 0 0 0 , ®2=5282, ®3=6978 (rad/sec), £  = 0.025, £2 = 0.3,
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and = 0.1. Further, for implementation the system model G(s) is discretized with 

sampling rate of 12500 samples/sec as in (5),

) = 0.00189(z + 3.29)(z + 0.25)(z2 -  1.81z + 0.98) 
(Z) = (z -  0.92)(z2 -1.62z + 0.78)(z2 -1.6z + 0.89)

(5)

Figure 2. PI-Hera Nano stage (P-620.ZCL) with travel range of 50 ^m.
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Figure 3. Experimental frequency response and the fitted model of the nano stage.

0

3.2. D E T E R M IN IS T IC  A N D  S T O C H A S T IC  N O IS E  S P E C T R U M

The nano stage is controlled with a discrete PI controller C(z) with proportional

gain kp = 0.06, and integral gain kt = 45 as in (6).
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C  ( z )  =  k p  +
ktdt 
z -1 (6)

where 1/dt is the sampling rate. For implementation the controller is discretized as C(z) 

with sampling rate 12500 samples/sec.

To obtain the stochastic and deterministic noise model, a number of zero input 

signals were applied to (1), and the error signals were measured. Hence (3) becomes,

e  (k) = d (k) + wj (k) + vj (k) (7)

Since the nano stage is installed on a vibration isolation table to prevent it from 

ground vibrations and disturbances, it can be safely assumed that the disturbance wj = 0

for all j. This in turn implies that the stochastic disturbance spectrum, <j)w(a) = 0. Then 

(7) becomes,

h  ( k ) = d ( k) + V j (k ) (8)

and when a number of zero input signals are applied,

N  N  N

I h j  (k) = J d  (k) + YVj (k). (9)
j= i j= i j= i

N

As N  ^<x>, J v ] (k) = 0, and
j =1

N

(k) = Nd (k)
j= 1

1 NSo, d(k) -  -  (k). (10)
N j =1

So the measurements noise can be obtained as,

V (k) = e j (k ) -  d  (k ) (11)
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using the definition of Fourier transform, the stochastic noise spectrum can be written as,

1 N  I |2
k ( ® )  =  N S  F F T I v , ( k ) ]  .

N  j =1

Similarly the deterministic spectrum can be represented as,

(12)

i i2
k  (a) = \FFT[d(k)] . (13)

An experiment was carried out by applying zero input signal for N=400 iterations, 

and the measured error signal was used to calculate the experimental deterministic and 

stochastic noise spectrum using (12) and (13). Figure 4 shows the stochastic noise 

spectrum kv, and implementing (13) result in experimental deterministic spectrum. 

Mathematically the deterministic signal can be written as,

d (k) 1
1 + C (z )G( z) r (k) (14)

where r(k) is the reference signal (1nm smooth square wave), shown in Figure 5. The 

experimental and theoretical deterministic spectrum is shown in Figure 6. As seen in the 

Figure 6 the experimental and mathematical deterministic spectrum are matching at low 

frequencies (<100 Hz), while the experimental deterministic spectrum corrupted with 

noise at high frequencies (>100) due to measurements noise. However, this noise level 

decrease as the number repetitions, N  increases, which in turn makes the experimental 

converge the theoretical. So, for the calculation of optimal Q and L filter (14) will be

used.
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Figure 4. Experimental stochastic measurement noise spectrum.
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The deterministic-to- stochastic ratio (DSR) is defined as,

DSR(O) 4>d (o )O ) + A  O ) (15)

The DSR plays a role in learning for stochastic type ILC. At low frequencies the DSR is 

large and the stochastic noise is very small, thus the learning could be fast. At high 

frequencies where the DSR is small, the deterministic error is very small such that there is 

little benefit in learning those frequencies. and the deterministic error will be learned very 

slowly [2-3].

3.3. Z E R O  P H A S E  T R A C K E R

The zero phase tracker [5] method is used to realize a stable learning filter when 

the plant is non-minimum phase. If the plant is minimum phase, then the learning filter is 

designed by inverting plant transfer function as,

L( z ) = HP-l( z ) (16)

where H  is the learning gain. When the plant is nonminimum phase, then inverting the 

plant it will yield an unstable learning filter. To overcome this issue the learning filter is 

obtained as follows.

Let P be the closed loop plant, so

P( z )
G (z)

1 + G (z )C (z) (17)

Rewrite (17) as,

P ( z)
B (z)B +(z)

A - (z)
(18)
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where B (z) and B+ (z) represent the stable and unstable zeros respectively, and A (z) 

represents the stable poles.

Let b > I\B+ (z)|| . As per zero phase tracker method, a stable learning filter can be
II llro

designed as,

_ H A- (z)B + (z-1) 
b B ~ (z)

(19)

where H  is a learning gain.

For the nano stage G(z), P is given by,

P( z)
0.0019(z - 1)(z + 0.24)(z2 -  1.8z + 0.98)(z + 3.29)

(z -  0.99)(z -  0.9)(z2 -1.6z + 0.77)(z2 -1.6z + 0.9)
(20)

Applying the zero phase tracker method to find a stable learning filter,

Tt . 94.27(z -  0.99)(z -  0.9)(z + 0.3)(z2L( z) — H 2
z( z + 0.25)( z - 1)( z2

1.6 z + 0.8)( z2 
1.8z + 0.98)

1.61z + 0.9)

L( z) has to have at least zero relative degree (causal) to implement it in real time. To

make L(z) with zero relative degree, let Lnew(z) — z mL(z) where m is the relative 

degree. Then,

) _ 94.27(z -  0.99)(z -  0.9)(z + 0.3)(z2 -1.6z + 0.8)(z2 -1.6z + 0.9)
new(z) _ z3(z + 0.25)(z - 1)(z2 -1.8z + 0.98) ( )

The effect of making L(z) with zero relative degree has to be compensated by

advancing the error by m samples as,

L(z)e] (k) — z-mL(z)e] (k)zm — Lnew (z)e] (k)zm — Lnew (z)e] (k + m)



which can be accomplished because the entire error history, ej (k), k = 0,...,N  -1  is

known during the learning calculation. To avoid shortage of error data, n+m error 

samples have to be collected instead of n samples.
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4. I L C  A L G O R IT H M S

4.1. H E U R IS T IC  IT E R A T IO N  I N V A R IA N T  I L C  (H II)

The heuristic iteration invariant ILC represented by[4],

Qj (z) = ^

L( z) = HP- '(z),

H  = kr,

uj +1 = Qs (z)Q(z)(uj  + L(z)ej  ) ,

where kr is learning gain, 0 < kr < 1. Qs(z) is a stabilizing filter.

(22)

(23)

(24)

(25)

4.2. S T O C H A S T IC  IT E R A T IO N  I N V A R IA N T  I L C  (SII)

For the stochastic Iteration invariant ILC, the learning filter and Q filter are [2],

(1+ r ) $ d ( a ) + r (1 -  r ) (<Pw ( a ) +4>v ( a ))
Q opt ( a ) (1+ r)4>d ( a ) + (1 -  r )(^ (®) + & ( a ))

Lopt (a) = H  (a) P-'(a),

H  (a) = (1 - r 2)0d (a)
(1+ r)4>d( a )+ r (1 - r)(4>w( a ) +4>v (a)) ’

(26)

(27)

(28)

u , + 1 ( a )  =  Q s ( e > a ) Q opt ( a ) ( u , ( a )  +  L opt ( a ) e j ( a ) ) (29)

where r  is the convergence rate.
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4.3. H E U R IS T IC  IT E R A T IO N  V A R Y IN G  I L C  (H IV )

The heuristic iteration Varying ILC is [4],

Qj  (z) = 1. (30)

Lj  (z) = H j P - '(z), (31)

Hj = - 1- , (32)
1 + j

Qs (Z)Qj  (ZXUj  + L j (Z)ej  ) , (33)

4.4. S T O C H A S T IC  IT E R A T IO N  V A R Y IN G  IL C  (SIV )

The stochastic iteration varying ILC is [3],

Qj ( O  = 1,

Lj ( O  = Hj (®) P~1(eja),

Hj (®) = i (®)
(1+j  ) i (®)+ 1

M ® )  = Qs (z)Q, (e^)(u, (®) + L j e  j (©)),„S\

(34)

(35)

(36)

(37)

5. E X P E R IM E N T A L  R E S U L T S

The stochastic ILC control scheme was implemented to control the position of a 

PI-Hera Nano stage (P-620.ZCL). An NI Real time controller (Nl-PXIe 8135) was used 

for control implementation at a sampling rate of 12500 samples/sec. The base line 

controller was set to PI controller.



59

Due to the large noise in the system ||v;.|| = 126 nm, an accurate instrument have

to be used to find the actual error ej . Instead, an average method will be used to obtain

the actual measurement. All experiments have been implemented with 20 learning 

iteration, and for iteration j  = 0,1,...,10 and j  = 20 each iteration averaged for 4000 

repetitions to find the actual measurement. As N  increases the averaged measurement 

noise vj will decrease. So as N  , and the averaged error measurement will converge

to the actual error measurement as from (3). The actual error ej for the j th iteration was 

calculated as,

1 N

-  ZA T  ^ej = —z e
i=11 N ^  j,i

(38)

The ILC input implemented with stabilizing filter Qs (z) where Qs(z) is a zero 

phase 10th order chebyshev II low pass filter with bandwidth of 1.4 kHz. Qs (z) is used to 

filter unstable frequencies such that the ILC achieve perfect tracking for frequencies were 

the magnitude of Qs(z)=1, and the ILC is off when the magnitude of the Qs(z)=0. The 

ILC input update becomes,

U 1+1 =  Q s ( z ) Q ( z ) ( u j  +  L ( z ) e  1 )

For the Stochastic Iteration Invariant (SII) and Stochastic Iteration Varying (SIV) 

ILC, the optimal Q filter and L filter were designed based on the deterministic and 

stochastic noise models. The convergence rate for SII was selected as y = 0.5. For 

heuristic Iteration Invariant (HII) the learning gain was selected as H = 0.5 . The learning 

was applied each iteration for 20 iterations, where 20 assumed to be large enough to
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ensure asymptotic convergence of the error. The tracking error norm || ej || for different 

ILC schemes is shown in Figure (7). For SIV ILC, the || e}. || is converging very fast for

the first iteration, then it start converging slowly after that. The SIV ILC achieves the 

smallest || e}. || among the HII, HIV, and SII ILC with || ê  ||= 2.6 nm as shown in Figure

(7). For comparison between stochastic and heuristic, the stochastic ILC reduces the error 

about 10 times less than the heuristic ILC as shown in figure (7).

6. C O N C L U S IO N S

We have experimentally implemented a frequency domain based ILC (SII,SIV) 

for systems with deterministic and stochastic noise. This ILC scheme guarantees better 

tracking error convergence irrespective of noise. The optimal Q and L filter designed 

based on the stochastic and deterministic noise spectrum. Experimentally, the scheme 

was applied for position control of a nano stage and its performance was compared to 

heuristic type ILC (HII, HIV). The stochastic ILC reduced the tracking error norm || e}. ||

by an order of magnitude compared to heuristic type ILC.



61

A C K N O W L E D G E M E N T S

This work is supported by the National Science Foundation, CMMI-1229701.

R E F E R E N C E S

[1] Binnig, G., Quate, C., and Gerber C., “Atomic Force Microscope,” Physical Review 
Letters, Vol. 56(9), pp. 930-933, 1986.

[2] Bristow, D., “Frequency Domain Analysis and Design of Iterative Learning Control 
for Systems with Stochastic Disturbances.” American Control Conference, 
Washington, USA, 2008.

[3] Bristow, D., “Optimal Iteration-Varying Iterative Learning Control for Systems with 
Stochastic Disturbances.” American Control Conference, Baltimore, MD, 2010.

[4] Butcher, M., Karimi, A., and Longchamp, R., "A Statistical Analysis of Certain 
Iterative Learning Control Algorithms," International Journal of Control, vol. 81, 
no. 1, pp. 156-66, 2008.

[5] Tomizuka, M., “Zero Phase Error Tracking Algorithm for Discrete Control”, ASME 
Journal of Dynamic Systems, Measurement and Control. Vol 109 (1), pp. 65-68. 
1987.

[6] Moore, K.L., “Iterative Learning Control for Deterministic Systems,” Springer- 
Verlag, 1993.

[7] Bien, Z. and J.-X. Xu, “Iterative Learning Control: Analysis, Design, Integration 
and Applications,” Kluwer Academic Publishers, 1998.

[8] Bristow, D.A., M. Tharayil, and A.G. Alleyne, "A Survey of Iterative Learning 
Control," IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, 2006.

[9] Saab, S.S., "A Discrete-Time Stochastic Learning Control Algorithm," IEEE Trans. 
on Automatic Control, vol. 46, no. 6, pp. 877-887, 2001.

[10] Saab, S.S., "On a Discrete-Time Stochastic Learning Control Algorithm," IEEE 
Trans. on Automatic Control, vol. 46, no. 8, pp. 1333-1336, 2001.

[11] Saab, S.S., "Stochastic P-Type/D-Type Iterative Learning Control Algorithms," 
International J. of Control, vol. 76, no. 2, pp. 139-148, 2003.



62

[12] Saab, S.S., "Optimal Selection of the Forgetting Matrix into an Iterative Learning 
Control Algorithm," IEEE Trans. on Automatic Control, vol. 50, no. 12, pp. 2039­
43, 2005.



63

SECTION 

2. CONCLUSIONS

In Paper I, dynamics of probe-on-probe interaction force of DP-AFM were 

linearized into three regions: no interaction, attraction region, and repulsion region. This 

linearized interaction force model led to a state-dependent switching system model of 

three subsystems. Stability of every subsystem was established using Lyapunov stability 

theorem and proven to be UUB. However, the ultimate bound was found to be 

conservative, and this will be addressed in future work. Sequence nonincreasing 

condition proposed in Corollary (1) was employed to ensure the convergence of every 

subsystem at the switching surface, which satisfies the convergence of the switched 

system. The results show that a stable probe-on-probe interaction can be determined for a 

range of probe dynamics within the operation region.

In Paper II, statics of probe-on-probe interaction was investigated using the probe- 

on-probe approach-retract curve. A probe-on-probe universal sensitivity model were 

found and validated with experimental work. The error was found to be < 4%. Also, at 

adhesion, the natural frequency was reduced due to the increase of mass at adhesion. 

Probe-on-probe adhesion force was found from jump-off-contact distance. The adhesion 

force was found to be fall between JKR and DMT model for adhesion force. The reason 

for that is these models represent the adhesion force for soft and hard material, 

respectively.

In Paper III, a frequency-domain based ILC (SII,SIV) has been developed for 

systems with deterministic and stochastic noise. This ILC scheme guarantees better 

tracking error convergence irrespective of noise. The optimal Q and L filter was designed
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based on the stochastic and deterministic noise spectrum. Experimentally, the scheme 

was applied for position control of a nano stage and its performance was compared to a 

heuristic-type ILC (HII, HIV). The stochastic ILC reduced the tracking error norm || ej || 

by an order of magnitude compared to heuristic-type ILC.
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