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ABSTRACT

Drug delivery to inside of the tumor is the important problem. The dynamics of 

drug delivery is presented here. Previously and particularly for directed delivery, a stirred 

tank model has been used, which appears to have worked well when compared to 

experiments. However, the stirred tank models do not include all the mass transfer 

resistances and towards that end we have used a distributed system called Krogh cylinder. 

This study focuses on the Krogh cylinder model simulation, both on the fluid flow and 

the mass transfer. The capillary network is broken down into cylindrical cells, each 

containing a capillary and appropriate amount of extravascular tissue. An organ is built 

with several of these connected in parallel. These models use the experimental data and 

apply many formulations, such as dynamics, through the capillary membrane, through the 

porous media. The result emphasizes convective mass transfer, in major disagreement 

with Krogh cylinder models available so far. It predicts the flow more closely to obtain a 

higher amount of convection in keeping with non-quantitative discussions in physiology. 

The equations of motion, continuity and conservation of species to obtain pressure 

distribution and drug distribution.



v

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Parthasakha Neogi, for his 

invaluable guidance and help me through so many challenges during my graduate studies 

at Missouri University of Science and Technology. Along with him, all my committee 

members, Dr. Forciniti, Dr. Hou, Dr. Isaac, and Dr. Wang, helped me by providing 

helpful comments and by encouraging me constantly. I also would like to extend my 

appreciation to Dr. Dipak Barua and Dr. Joontaek Park, although they left my committee 

group.

I am grateful to my parents, Mr. Zuguo Qiu, Mrs. Xiaolan Luo, and my wife, Ms. 

Linrui Han, for all the unconditional support and encouragement. They provided to me to 

pursue my graduate work.

Finally, I would like to thank all the current and former faculty and staff in our 

chemical and biochemical engineering department for assisting, contributing to my 

research, and taking care of the administrative work during my graduate studies. I would 

say my experience at Missouri S&T was simply great.

I am very grateful again to have Dr. Neogi in my graduate studies and definitely 

believe he can help me grow to a stronger academic presence.



Vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION...................................................................iii

ABSTRACT....................................................................................................................... iv

ACKNOWLEDGMENTS.................................................................................................. v

LIST OF ILLUSTRATIONS............................................................................................. ix

LIST OF TABLES.............................................................................................................xi

NOMENCLATURE.........................................................................................................xii

SECTION

1. INTRODUCTION.................................................................................................... 1

1.1. SIGNIFICANCE OF THIS STUDY.................................................................. 1

1.2. MACRO AND MICRO-CIRCULATORY SYSTEM....................................... 2

1.2.1. Circulatory System...................................................................................2

1.2.2. Microenvironment in Tumor Vascular..................................................... 7

1.3. MODELS FOR DRUG DELIVERY.................................................................. 9

1.4. KROGH CYLINDER......................................................................................11

1.5. RHEOLOGY OF BLOOD............................................................................... 14

1.6. PREVIEW......................................................................................................... 14

PAPER

I. CONVECTION IN A KROGH CYLINDER: PUTTING BACK FLUID
FLOW IN THE EXTRAVASCULAR TISSUE...................................................... 15

ABSTRACT 15



1. INTRODUCTION.................................................................................................... 16

2. METHODS (MODELS)........................................................................................... 22

3. RESULTS AND DISCUSSION..............................................................................24

3.1. LIVER WITH NO NET LOSS......................................................................... 24

3.2. THE TRANSCAPILLARY PRESSURE DROP.............................................. 28

3.3. FLOW IN A TUMOR......................................................................................29

3.4. LIVER REVISITED......................................................................................... 29

3.5. RESIDENCE TIMES....................................................................................... 31

3.6. SUMMARY...................................................................................................... 32

4. CONCLUSION ....................................................................................................... 33

APPENDICES

A. GENERAL SOLUTION IN THE TISSUE........................................................ 34

B. COMPLETE SOLUTION................................................................................... 36

REFERENCES ............................................................................................................  40

II. EFFECT OF FLOW ON MASS TRANSFER IN A TUMOR IN TARGETED 
DRUG DELIVERY................................................................................................43

ABSTRACT ................................................................................................................  43

1. INTRODUCTION....................................................................................................44

2. TRACER TRANSPORT.......................................................................................... 51

3. REACTIVE SYSTEM............................................................................................. 55

4. RESULTS AND DISCUSSION.............................................................................. 59

vii

5. CONCLUSIONS 64



APPENDICES

A. REACTIVE SYSTEM........................................................................................ 66

B. LINEAR RESPONSE THEORY........................................................................ 69

REFERENCES............................................................................................................. 71

III. A CONVECTIVE TRANSPORT MODEL FOR TRANSFER OF SOLUTE
TO THE EXTRAVASCULAR TISSUE............................................................... 74

ABSTRACT.................................................................................................................74

1. INTRODUCTION.................................................................................................... 75

2. FLUID MECHANICS.............................................................................................. 78

3. MASS TRANSFER.................................................................................................. 82

4. RESULTS AND DISCUSSION.............................................................................. 85

5. CONCLUSIONS...................................................................................................... 92

REFERENCES ............................................................................................................ 92

SECTION

2. CONCLUSIONS AND RECOMMENDATIONS................................................. 94

2.1. CONCLUSIONS.............................................................................................. 94

2.2. RECOMMENDATIONS ................................................................................. 96

APPENDIX ...................................................................................................................... 97

BIBLIOGRAPHY............................................................................................................. 99

viii

VITA 104



ix

LIST OF ILLUSTRATIONS

SECTION Page

Figure 1.1. A schematic view of human circulation system and transport to organs........3

Figure 1.2. The mesenteric capillary bed schematic view ................................................4

Figure 1.3. Schematic view of the capillary membrane.....................................................5

Figure 1.4. The schematic view of fundamental pressures in intravascular and
extravascular space at every single point on the capillary............................... 6

Figure 1.5. The schematic view of the pharmacokinetics, the concentration versus
time in human body absorption and elimination profile................................10

Figure 1.6. The Organ Vascular and Extravascular Sub-Compartments (CSTR),
the capillary membrane separates the two compartments..............................11

Figure 1.7. Schematic view drawing by Krogh presented at his Nobel lecture
1920................................................................................................................ 12

Figure 1.8. Schematic view of capillary in organ in parallel............................................ 13

Figure 1.9. Schematic view of Krogh cylinder................................................................. 13

PAPER I

Figure 1. Schematic view of a Krogh cylinder................................................................. 17

Figure 2. The fluid mechanical quantities have been shown for normal liver where
ro has been set to zero as the actual value is very low..................................... 26

Figure 3. The fluid mechanical quantities, have been shown for tumor where ro
has been set to 0.1............................................................................................. 27

Figure 4. Only the tissue side has been shown..................................................................30

PAPER II

Figure 1. Schematic representation of the states of antibodies from Baxter et al............56

Figure 2. Hapten holdup in the liver tissue as a function of time (s)...............................59



x

Figure 3. Hapten holdup in the tumor tissue as a function of time (s)..................

Figure 4. Specifically bound BFA holdup in the tumor as a function of time t s.

n b
Figure 5. The concentration of a in tissue at time 60s after the mixture of free

* f

bifunctional antibody fragment °a and nonspecifically bound (B)
* B

fragment °a is injected into the capillary............................................

PAPER III

60

63

65

Figure 1. (a) Vr in the liver tissue, (b) Vz in the liver tissue, (c) pressure in the liver
tissue ................................................................................................................ 86

Figure 2. (a) Vr in the tumor tissue, (b) Vz in the tumor tissue, (c) pressure in the
tumor tissue...................................................................................................... 88

Figure 3. Hapten holdup in the liver tissue as a function of time (s)............................... 89

Figure 4. Hapten holdup in the tumor tissue as a function of time (s).............................90

Figure 5. Specifically bound BFA holdup in the tumor as a function of time t (s)..........91

Figure 6. The concentration of el in tissue at time 60s after the mixture of free 
bifunctional antibody fragment and nonspecifically bound (B)
fragment cBa is injected into the capillary.......................................................... 91



Xi

LIST OF TABLES

PAPER I Page

Table 1. Properties of the Krogh Cylinder for Liver and Tumor for a 70 kg adult........... 19

PAPER II

Table 1. Properties of the Liver and Tumor model for fluid flow for a 70 kg adult
human..................................................................................................................49

Table 2. Estimated parameters for a 70 kg adult human used to simulate hapten of
mol. wt. 600 as a tracer...................................................................................... 53

Table 3. Reaction rate constants taken mainly from Baxter et al (1995)......................... 54



xii

NOMENCLATURE

Symbol Description

Y As defined as in paper I Eq. (PAPER I APPENDIX B-11)

As defined as in paper I Eq. (PAPER I APPENDIX B-13) 

vz Axial velocity in the capillary

vz Axial velocity in the extravascular space

K Conductivity

an Constant of separation

c£ Constants of integration for solution in the capillary

cct Constants of integration for solution in the capillary

ct Constants of integration for solution in the extravascular space

at Constants of integration for solution in the extravascular space

Ly Flow to the lymphatic system

rn Fraction fluid lost

ri Inner radius of the capillary

r  is the mean tube radius

L Length of the capillary

Lp Membrane hydraulic coefficient

%i Non-dimensional r£, sr£

Non-dimensional r0, sr0 

A Non-dimensional L, sL

Non-dimensional r, sr



£ Non-dimensional z, sz

n  Osmotic pressure difference

ro Outer radius of the capillary

Cpi Plasma in the capillary

k Porous medium of permeability

s Porous medium of permeability in the value of the length scale 4k

Ap  Pressure difference

Ap Pressure drop

fid Pressure in the capillary

p  Pressure in the interstitial

Qi Quantity plasma input

vr Radial velocity in the capillary

vr Radial velocity in the extravascular space

R Radius of total tissue

a Ratio of resistance to flow in porous medium to resistance of flow through
the capillary wall

P Ratio of resistance to flow through the capillary to resistance of flow
through the capillary wall

a Reflection coefficient

ip Stream function of flow through the capillary

4  Stream function of flow through the extravascular space

Z Total Length of capillary and tissue

U Urinary excretion

fj. Viscosity of plasma

xiii



1. INTRODUCTION

1.1. SIGNIFICANCE OF THIS STUDY

Cancer has high death rate, shortens life expectancy and the process of cure is 

long and painful. There are many new methods that cure cancer, such as chemotherapy, 

surgery, immunotherapy, radiation therapy, nanomedicine, and targeted therapies. The 

treatment usually combines options in above. The chemotherapies are often used in 

cancer treatment and are effective in treating many types of tumors. In order to 

completely remove the cancer cells, the chemotherapy is considered to be an adjuvant 

therapy as well. The chemotherapy drug is powerful in striking down the fast-growing 

cells but carries danger for the healthy cell as well. Accordingly, the pharmaceutical 

treatment requires accurate dosing for each patient because the people have different 

body volumes, metabolism, and excretion. The over dosage destroys the healthy organs 

and cells and endangers the health of patient as well. However, the drug flow in the tumor 

has problems in permeability and retention (Jain 2010). The tumor microenvironment has 

the hypoxia and high interstitial fluid pressure (IFP) symptoms, and lead to peritumor 

edema, blood vessels grow spontaneously, and accelerate the tumor progression (Jain 

1989, 2007). In the microvascular environment, the fluid mechanics and transport 

problem have an impact. The object of this study is to analyze a mathematical model to 

simulate the microenvironment and provide the dosage strategies for the cancer.
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1.2. MACRO AND MICRO-CIRCULATORY SYSTEM

In order to completely explain the simulation model, the thesis introduction in this 

part involved the basic human blood circulation and short physiology discussion.

1.2.1. Circulatory System. The human blood fluid system is a circuit. It is 

called the circulatory system. It is assumed to start from the heart, receives the blood with 

adequate oxygen from the heart at left atrium, and then at the left ventricle pumps to the 

system as shown Figure 1.1. The total quantity flow is Qtotal, the normal adult 

approximately has 1.2-1.5 gallons of blood in their body, and approximately 10% of their 

weight. The blood enters the systemic circuit and carries the oxygen and nutrients to the 

brain and all body, and to capillaries are the main part of the blood and surrounding 

tissues for material exchange. The total area of human capillaries is very large. For an 

adult person, the total area of capillaries can reach 1000 square meters (Wolinsky, 1980). 

where no tissue is further than 30 pm from a capillary (Guyton and Hall, 2006). The 

capillaries have very thin walls and are very close to the surrounding cells. Capillaries 

are the smallest of the blood vessels in diameter, about 5-9 pm on average, and the most 

widely distributed. It connects arterioles and venules. The arterioles branch two to five 

times each and into the capillary network (Figure 1.2.). To ensure that all cells receive 

adequate nutrition, tissues are filled with many small blood vessels (capillaries). These 

capillaries deliver food to any cell within an adequate distance. The capillary tube has a 

thin permeable wall. Its function is to facilitate the exchange of substances between blood 

and tissues. The density of the capillary network in various organs and tissues vary 

greatly. Tissues and organs with strong metabolism such as skeletal muscle, myocardium, 

lung, kidney, and glands have a dense capillary network; otherwise, the capillary network



3

DOSE

Lung
Lung

O-Total
Heart

Bone
Bone

Q-Skin
Skin

Brain
Brain

O-Muscle
Muse e

Digestive system

QotherOther
Qi iLiver

Liver

Q.KiKidney
Kidney

Excretion Q

Figure 1.1. A schematic view of human circulation system and transport to organs

is sparse and for tissues with weak metabolism, such as bone, tendons, and ligaments. 

There are no capillaries in cartilage, cornea, hair epithelium and tooth enamel. The blood 

flow rate in the capillaries is slow, the elasticity is small, and the permeability is large. 

These characteristics are conducive to the full exchange of substances between blood and 

tissues.

The ability of a substance to penetrate the capillary wall is called capillary 

permeability. Studies on the relationship between capillary wall structure (as shown 

Figure 1.3.) and permeability have shown that the liquid can flow through the pores



between the endothelial cells and can carry some macromolecular solutes. The vesicles 

and vesicular channels can also allow movement of plasma and solutes. The capillary 

membrane can be penetrated by small molecules, but hinder the movement of substances 

such as proteins. Other substances, such as O2, CO2, and fat-soluble substances, can 

directly penetrate the endothelial cell membrane and cytoplasm (Guyton and Hall, 2000).

4
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Figure 1.2. The mesenteric capillary bed schematic view (Redrawn from Zweifach, 1950,
reproduced from Guyton and Hall, 2000)

Substances in the liquid inside and outside of the capillaries can diffuse through 

the tube wall as long as the molecular diameter is smaller than the pores in the capillary 

wall. The diffusion rate is proportional to the concentration difference of the substance on 

both sides of the capillary wall. The concentration of oxygen and glucose in the blood is 

higher in the capillary than in the tissue fluid, so oxygen and glucose diffuse from the 

capillary into the tissue fluid. The carbon dioxide concentration in the plasma is lower 

than the tissue fluid, and it diffuses from the tissue fluid into the plasma. The speed of
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diffusion is related to the concentration difference of the solute molecules on both sides, 

the diffusion distance, the area of the diffusion interface, temperature, and the size of the 

solute molecules. In animals, tissue fluid is a part of the fluid that penetrates from the 

arterial end of capillaries into the interstitial space. After material exchange with tissue, it 

flows back into the blood in the venous beginning of capillary, some of the fluid in the 

tissue goes into the lymphatic system.

Vesicular
channel??

Plasmalemmal
vesicles

Endothelial

Basement
membraneIntercellular

cleft

Figure 1.3. Schematic view of the capillary membrane (Redrawn from Zweifach, 1950,
reproduced from Guyton and Hall (2006).

Water molecules and solute molecules go through the small pores of the capillary 

membrane from the side with high pressure to the side with low pressure. When the 

capillary pressure is higher, the plasma fluid is filtered out through the capillary walls to 

the tissue fluid. The tissue fluid is reabsorbed back to the blood vessel form the interstitial

space into the capillary when the interstitial pressure is higher.
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Besides the hydrostatic pressure, there is also the osmotic pressure. It acts in the 

opposite direction to the hydrostatic pressure as shown in Figure 1.4. The osmotic 

pressure is the pressure equivalent of the chemical potential difference and have been 

calculated from the compositions of the plasma in Guyton and Hall (2006).

O Capillary Pressure © Blood Colloid 
Osmotic Pressure

e t  l o
© Interstitial Fluid 

Pressure

e t  l o
0  Interstitial Fluid Colloid 

Osmotic Pressure

Figure 1.4. The schematic view of fundamental pressures in intravascular and 
extravascular space at every single point on the capillary.

Human plasma colloid osmotic pressure is mainly due to albumin in plasma, 

generally about 3.33kPa (25mmHg). The blood pressure of capillary vessels is about 

4.0kPa (30mmHg) at the arterial end, 2.0kPa (15mmHg) at the venous end, the colloidal 

osmotic pressure of tissue fluid is about 2.0kPa (15mmHg), and the hydrostatic pressure 

of tissue fluid is about 1.33kPa (10mmHg). If these numbers are substituted into the 

above formula, the effective filtration pressure at the arterial end of the capillaries is 

1.33kPa (10mmHg), and the effective filtration pressure at the venous end is 1.07kPa (- 

8mmHg). Therefore, at the capillary arterial end, the fluid is filtered out of the capillaries, 

and the fluid is reabsorbed at the venous end. In the work below, a reference hydrostatic 

pressure of zero has been used at the entrance.



In general, most (about 90%) of the fluid filtered out at the arterial end of the 

capillaries can be reabsorbed back into the blood at the venous end, and a small amount 

of fluid enters the lymphatic capillaries to the lymph node (Guyton and Hall, 2006).

1.2.2. Microenvironment in Tumor Vascular. For this thesis study, the 

micro-environmental of the tumor vessel is the key to the understanding the physiological 

mechanism background and to build the simulation model. The tumor vessels are usually 

not as organized as normal blood vessels, and leak more easily than normal blood vessels 

(see Jain, 2013 in his Figure 2). All cells require continuous oxygen, glucose, and 

nutrients; the transport happens through the blood and across the capillary membrane. 

Nutrients and oxygen are transported through the circulatory system throughout the body. 

Nutrients cross the blood vessel wall and enter the space around the cells in the 

extravascular side. Even if cancer cells are abnormal, they still need oxygen and 

nutrients. The development of blood vessels is a necessary step in tumor growth. The 

oxygen and nutrient content decrease as the region increases in the number of cells in the 

tumor, they move further away from the capillaries and the supply of oxygen and 

nutrients fall. The outer part of the tumor also has higher leakage than normal and loses 

fluids much faster, the leakage is approximately 5 -  10% (Gullino, 1961). In the inner 

part of the tumor the drainage is lower, increasing the interstitial fluid pressure (IFP) in 

the absence of proper lymphatic function. The experiments of Boucher et al (1996) 

showed the tumor to grow up form avascular stage to the vascularized tumor (see their 

Figure 1), and their research result show the tumor IFP to increase at the onset of 

angiogenesis. Angiogenesis is another issue of increase the tumor size. Tumor cells 

produce or cause nearby cells to produce the growth factors and stimulate blood vessel to

7



release the vascular endothelial growth factor (VEGF) to form new blood vessel to 

supply the nutrient. VEGF or other angiogenic factors produced by tumor cells or nearby 

cells lead the angiogenesis, and then promote tumor growth again. VEGF is a normal 

signal for that forms blood vessels in animal, and they are just doing their own job. 

Tumors "cheat" the animal body to form new blood vessels spontaneously in local area or 

organ. The blood vessels produced in this way are not exactly the same as normal blood 

vessels.

The abnormal vascular structure changes the IFP, and the tumor solid pressure as 

well. The pressure gradients and tortuosity become complicated in the extracellular 

matrix region and generates a compression pressure to the capillary. As Boucher and Jain 

mentioned (Boucher et al, 1992), IFP in tumor tissue is as high as 20 to 50 mmHg. As a 

result the plasma avoids the high-pressure region and forces blood fluid flow to be 

limited in the pinched vessel. The blood with abundant oxygen becomes very limited for 

the surrounding tissue. The decreased oxygen level in the extravascular is called hypoxia, 

and the hypoxia triggers changes in the behavior of tumor cells. Jain has said that the 

hypoxia is a critical biomarker of treatment resistance (Martin and Jain, 2020). Hypoxia 

induces genetic instability, angiogenesis, immunosuppression, and inflammation, and 

also confers resistance to oxygen delivery, as oxygen is necessary during the various 

treatment methods (such as radiation, certain chemotherapy, photodynamic therapy, and 

even immunotherapy). Hypoxia gives rise to necrosis and the necrotic region has a very 

high density. This heterogeneity makes the transport in tumors difficult to study. 

Therefore, the study of using the empirical equation and experiment data to simulate the 

fluid model of tumor capillary arise.

8
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1.3. MODELS FOR DRUG DELIVERY

Pharmacokinetic model (PK) is a mathematical model which applies empirical 

equations and experimental data to predict the effect of drug in the human or animal 

body. It analyzes the absorption, distribution, metabolism, and excretion (ADME) of the 

drug and its concentration level. According to the principle of pharmacokinetics, 

numerical values of the concentrations can be used to describe the in vivo process of the 

drug and provide information of the drug plasma concentration. It helps to formulate a 

reasonable dosing plan and maintain the drug level in therapeutic range. It is necessary to 

adjust the dosing plan based on the body condition and avoid the maximum safe (toxic 

level) and the minimum effective concentration level (sub-therapeutic level). Only a 

standard mature human at 70 kgs is analyzed here.

The PK model is used to predict the bioavailability of the drug. The 

pharmaceutical solute we ingest is absorbed in the stomach or injected to the veins as 

input to a closed system, the concentration of drug increases initially, and decreases after 

the Cmax (the peak concentration) is reached. Concentration of the blood is the blood titer 

and the blood titer can be measured as a function of time from the time that the drug is 

introduced to its eventual elimination. This is shown schematically in Figure 1.5. The 

area under the curve (AUC) is taken to be the bioavailability.

The easier PK model to determine the dynamics of the solute in the blood and 

organs is the continuous stirrer tank reactor (CSTR). The simpler early models used 

(Welling, 1997) became more complicated to allow every organ to be a stirred tank 

(Cooney, 1976). Eventually, each stirred tank was subdivided into two compartments, 

the blood and the extravascular tissue separated by a capillary membrane. It is only
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Figure 1.5. The schematic view of the pharmacokinetics, the concentration versus time in 
human body absorption and elimination profile

across the capillary membrane that exchange of plasma and solute can take place. The 

sum of the volume of the extravascular tissue and the volume inside the capillaries make 

up the total volume of the organ in this model as shown in Figure 1.6. One important 

feature here is a slow leak from the organ to the lymphatic system as shown. This feature 

turns out to be very important in drug delivery. This form of CSTR model is used by 

Baxter et al (1995). They simulated the results of first injecting a bifunctional antibody 

(BFA) which anchored mainly in the tumor, and after a while injected a hapten. The 

concentration of hapten (which was radioactive) was monitored for a long time. It is 

important to note that an extended period after the drug delivery, was a period of 

washout. The hapten is anchored to the tumor by the BFA for a long time. The 

comparison with experimental data was very good.

The problem with the stirred tank model is that it is a lumped system, that is, there 

are no spatial variations. However, spatial changes are known and some of them have
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been measured. For instance, pressure drop across a standard capillary is known to be 20 

mm of mercury (Guyton and Hall, 2006). When we look at AUC, it does not tell us how 

much of the solute has gone into the extravascular tissue, which would tell us of the 

effectiveness of drug delivery.

Q i-L i V ascular S pace

t

Q.

U
1

Interstitial S pace £

t

C Pi

-p i

Figure 1.6. The Organ Vascular and Extravascular Sub-Compartments (CSTR), the 
capillary membrane separates the two compartments.

1.4. KROGH CYLINDER

Schack August Steenberg Krogh (Appendix A) made a remarkable contribution 

on the capillary circulation and gas exchange in the lungs, and was awarded the Noble 

Prize in 1912 for his work. He made further conntributed on the mechanism and 

regulation in skeletal muscle. The below Figure 1.7. shows substantially the skeletal 

muscle tissue and the blood vessel. Krogh chose the skeletal muscle because the 

distribution of the capillary distribution is irregular. The capillaries in the skeletal muscle 

are actively dilating and contracting, and as illustrated of figure some of capillaries fairly 

regulated when tissue is in rest (Krogh, 1919 a and b). The closed capillaries are shown



with small dots, and all capillaries are distributed in the model with regularity in his 

model.

12

(a) (b)

Figure 1.7. Schematic view drawing by Krogh presented at his Nobel lecture 1920. A 
small portion of muscle with arterial branches. Cross-section of muscle: o open and *

closed capillaries

A second feature was in decoupling a single capillary from a network shown in 

Figure 1.4. If the network is stretched, then the smallest distance is taken to be the length 

of the cylinder where a capillary is modeled as one. This length L was determined from 

capillaries in bat wings to be 0.23 mm (Wiedeman, 1963). Smaje et al (1970) obtained a 

value of about 0.0615 cm cremaster muscle in rats. Kubinova et al (2013) show rat brain 

is 0.167 to 0.7200 cm in 3D imaging methods which appear to be very high. The present 

model is essentially a cell model and has been used successfully by Happel (1958) to 

account for a pressure drop in a packed bed. It has also been extended to mass transfer 

by Pfeiffer (1964). Other cell models such as tessellations, including Wigner-Seitz cell
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abound in physics. Figure 1.8. is the idealized schematic view of vertical cross section cut 

of whole skeletal muscle (Figure 1.7. a).

As presented, the blood flow goes through the parallel capillaries. Thus, an organ 

is made of many Krogh cylinders in parallel. The Krogh cylinder model is shown in 

Figure 1.9. Krogh was able to show that in oxygen transport and consumption in the 

extravascular issue, all of the tissue was oxygenated.

Figure 1.8. Schematic view of capillary in organ in parallel

Figure 1.9. Schematic view of Krogh cylinder
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1.5. RHEOLOGY OF BLOOD

The blood comprises of high weight fraction of red blood cells (RBC). Whole 

blood shows a small threshold stress, which is due to fibrinogen in the blood and in its 

absence shows only a Newtonian behavior with a viscosity of 6 mPa.s (Reploge, 1967). 

The long diameter of RBC is approximately 8 (Fournier, 1999). In studies on flow of 

blood into small capillaries (Fournier, 1999), the viscosity of blood is seen to decrease 

with decreasing diameters of the capillary. The reason is that less RBC enter the 

capillary. The apparent viscosities reported were volume averaged values and along with 

the averaged velocities the RBC concentrations in the tube were also measured. This 

decrease goes down to a little below tube diameter of 10 ym  after which the viscosity 

increases sharply (Gaehtgen, 1980). At a microscopic scale, the RBC go in one by one 

(single file), they are bent and stay away from the walls. The walls have a thin film of 

plasma, which is Newtonian. Secomb et al (2006) has made a micromodel where the 

plasma exerts a force on the elastic membrane of the RBC to bend it, as well as a shear 

stress on the capillary walls. This shear stress was equated to that for Hagen-Poiseuille 

flow to calculate a viscosity. The values of the calculated viscosities agreed well with the 

experimentally measured values. In addition, the flow rate Q is proportional to Ap.

1.6. PREVIEW

In Paper I, is discussed the work in fluid flow; II is discussed present results in 

convective-diffusive mass transfer; and III is discussed the results when the action of the

lymphatic system is included.
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I. CONVECTION IN A KROGH CYLINDER: PUTTING BACK FLUID FLOW
IN THE EXTRAVASCULAR TISSUE

Xianjie Qiu, Nandini Sane, and Parthasakha Neogi

Department of Chemical and Biochemical Engineering, Missouri University of Science
and Technology, Rolla, MO 65409

ABSTRACT

Models for drug delivery are based on the use of stirred tanks to represent organs, 

that contain no mass transfer resistances. In the original Krogh cylinder model, a mass 

transfer resistance shows up but there is no convection in the tissue where convection 

should matter. In the present work, a two-dimensional flow field is used to show that 

when a liquid enters the capillary, some leave through the walls into the tissue at the 

arterial end and then doubles back into the capillary at the venous end. Some flow does 

not return which is taken to be the flow to the lymphatic system. We can get the 

measured transcapillary pressure drop of about 2666 Pa if in addition the compliance of 

the tube wall is taken into account. Very realistic flow fields have been shown for a

model liver and a tumor.
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1. INTRODUCTION

Study of pharmacokinetics or drug delivery uses two different models. In one 

model various organs are seen as stirred tanks. Each organ is divided into two 

compartments, a vascular space and an interstitial space with both stirred tanks separated 

by a semi-permeable membrane. The plasma comes into the vascular space and leaves 

from it. Most of it goes in and out of the interstitial space to return to the vascular space, 

but a small part is lost to the lymphatic system from the interstitial space (Baxter et al., 

1995). Baxter et al (1995) also provided a very detailed compilation of physicochemical 

constants and we will refer to those quite often. Because the tanks are well stirred, there 

is no mass transfer resistance in the system except in the membrane. In contrast, there is 

a distributed system called the Krogh cylinder (Fournier, 1999). Krogh’s model was 

originally used to quantify oxygen transport in the body (Krogh, 1999 a and b). However, 

the convective flow in the extravascular tissue is not considered. Now, the extravascular 

tissue is where the therapeutic drugs bind to drug-specific sites. Consequently, the 

convective-diffusive transport there is the key to the drug effectiveness. If it is assumed 

that diffusion is hindered in the tissue by both the interstitium and the cells, then Chauhan 

et al (2009) observe that the effective diffusivities can fall to 10"8 cm2/s. Consequently, 

even a small convection will compete with diffusion.

We analyze here fluid flow in a model Krogh cylinder. The geometry of Krogh 

cylinder is shown in Figure 1. It consists of a capillary surrounded by extravascular 

tissue. The dimensions are given in Table 1 using references listed. In the table, we have 

named the source used. In addition, values of parameters vary with the organ, and we
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Figure 1. Schematic view of a Krogh cylinder.

have picked liver and Tumor. The vascular volumes and the tissue volumes are known 

for different organs and for an organ the ratio is ^ 4  ■ from which the outer radius of
(R2-r; JL

Krogh cylinder R has determined for the organ. Capillaries form networks between the 

arterial and venule ends. Most of the network has walls that are permeable to plasma and 

solutes. Although the length between neighboring two nodes (where the capillary 

bifurcates or merge) is very small, the length traced by blood from arteriole to venule 

ends is taken to be the length L suitable for use in a Krogh cylinder. It is often called the 

length of the capillary. We have used one (Table 1) and have seen somewhat longer 

dimension used. Fournier (1999) discusses how the capillaries/Krogh cylinders can be 

joined in parallel to represent a whole organ. Cell models are important in engineering, 

and Happel’s cell model provides a good account of pressure drops in packed beds and 

has also been extended to mass transfer in packed beds. Some have gone further with the 

idea that the transport can be averaged over the network using a random or geometric 

arrangement (Shipley et al., 2010; Penta et al., 2015; Penta et al., 2015; Mascheroni et al,
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2017; Cattaneo et al, 2014; Kojic et al, 2017 and 2018). Other models that pursue Krogh 

cylinders have not offered much improvement as they use one-dimensional velocity in 

the capillary (Goldman, 2008; Bassingthwaighte et al, 1992) or side-step convection 

altogether (Secomb, 2014), or supplement some of the response using experimental data 

(Baxter et al., 1992). Whereas such approximations hold in some regime, we either do 

not know what the conditions are or what happens where they do not hold.

Before going into the details of the Krogh cylinder model, we note that it has been 

known that the pressure drop in a capillary, from the arteriole end to the venule end, is 

about 2666 Pa (20 mm Hg). Such a prediction cannot be made with stirred tanks where 

this pressure drop would be zero. Hence, one important object of the present model is to 

see if it is possible to predict the above pressure drop. Further, in a model similar to 

Krogh cylinder, Netti et al (1996) have also tried to predict this pressure drop. Their 

model decouples flow in the tissue from that in the capillary by setting the pressure in the 

tissue to a known constant. To get better results, they assumed that the capillary walls 

were elastic, that is, deformable. Expansion of the walls under pressure can lead to an 

increased and required pressure drop as shown by them. Along with showing that the 

pressure is 2666 Pa, it is also necessary to show that it occurs when the linear velocity of 

flow through the capillary to be ~ 0.02-0.17 cm/s (Fenster, 2015). Finally, some 

comparisons with the stirred tank are required, notably the residence times of fluid in 

stirred tank versus that in the Krogh cylinder. The flow through a membrane is given by

2 k t  .Lp (AP -  o A n ) in cm3/(s. cm length) where r  is the mean tube radius, AP is the

difference in pressure between inside and outside and A n  is the osmotic pressure 

difference, which is generally fixed at 2666 Pa. Lp is the hydraulic coefficient and
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Table 1. Properties of the Krogh Cylinder for Liver and Tumor for a 70 kg adult

L Length of the capillary 0.02 cm Healthy tissue (Netti 
et al., 1996)

To Outer radius of the capillary 0.00055 cm Healthy tissue (Netti 
et al., 1996)

Lp Membrane hydraulic 
coefficient

2.700 x10-1° 
m/(Pa.s)

Liver (Baxter et al., 
1989)

Lp Membrane hydraulic 
coefficient

21.003x10-1°
m/(Pa.s)

Tumor (Baxter et al., 
1989)

Ti Inner radius of the capillary 0.0005 cm Healthy tissue (Netti 
et al., 1996)

R Outer radius of Krogh 
cylinder

0.000866 cm Liver (Baxter et al., 
1995)

R Outer radius of Krogh 
cylinder

0.001482 cm Tumor (Baxter et al., 
1995)

j Viscosity of plasma 1 mPa.s Similar to water

Viscosity of blood 6 mPa.s Similar to water 
(Fournier, 1999)

Ap Pressure drop 2666.4 Pa Healthy tissue 
(Guyton et al., 2006)

Ap Pressure drop Tumor

K= k/j Conductivity 6.398x10-13
m2/(Pa.s)

Liver (Swabb et al., 
1974)

K= k/j Conductivity 2.250x10-11
m2/(Pa.s)

Tumor (Boucher et 
al., 1988)

rn Fraction fluid lost 5-10% Tumor (Gullino et al., 
1961)

rn Fraction fluid lost 0.01% Liver space (Baxter et 
al., 1995)

represents the resistance to flow. Further, a is the reflection coefficient which varies 

from 0 to 1, generally close to 1. This flux through the membrane is a local one and its 

value can vary on the surface. The osmotic pressure difference is due to the fact that large



molecules such as serum albumin are available in the capillary but cannot cross the 

membrane into the extravascular tissue. When liquid enters the capillary, plasma flows 

out through the permeable wall near the arterial end but 90% of it returns near the venous 

end of the capillary because the pressure there is now low. As a result, a circulation in 

the tissue is expected. Most of the discussion in this section along with some 

quantification can be found in Guyton and Hall (2006).

The viscosity of blood has received a lot of attention. It has a small threshold 

stress after which the increased shear rates, the slope in stress versus shear rate curve 

reaches 6 mPa.s (centipoise). So that it is a reasonable approximation to take whole blood 

to be Newtonian at 6 cp. Nature of flow of blood in a narrow capillary has more 

complications. As the tube diameter decreases below 100 ^m, the red blood cells cannot 

all enter the capillary. There is a difference in the cell concentrations in connected tubes 

with large and tubes with small diameters which is the Fahraeus effect. In addition, a film 

of clear plasma is seen next to the wall and red blood cells collect in the central region. If 

we calculate the effective viscosity, then it is seen to decrease with the decreasing tube 

diameter reaching a minimum at 10 ^m. Below that tube diameter, the effective viscosity 

rises and this is the Fahraeus-Lindqvist effect. At still lower diameters the red blood cells 

distort and flow along the centerline in a single file. Secomb et al (2006), have modeled 

the cells as covered with an elastic material that deforms and obtained the fluid flow 

resistance around the cells and the wall. This fluid is the plasma which is Newtonian and 

results in apparent viscosity which fits the apparent viscosity curve of Fahraeus-Lindqvist 

who assumed blood to be Newtonian a priori. When the apparent viscosity rises with 

decreasing diameter of the capillary, they do not show the viscosity to recover its original

20
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value of 6 mPa.s although the trend suggests so. For simplicity the fluid has been 

assumed here to be Newtonian and a viscosity 6 mPa.s has been used here, although this 

value could be lower. The information in this section has been discussed by Fournier 

(1999). Since then, there have been many theoretical calculations made to obtain 

effective viscosities (Secomb et al., 2006).

Schmidt-Schobein (1999) has shown that inside the capillaries, the Reynolds 

numbers are very small. As a result, the continuity and momentum equations become

V.v = 0

0 = -  V p + f  V  2 v

(1)

(2)

where vectors have been shown in bold and quantities inside the capillary with carats, 

thus v and p  are the velocity and pressure in the capillary. The flow in the extravascular 

tissue is governed by the continuity and by Brinkman equation (1947).

V.v=0 (3)

f  2 (4)0 = -  — v — Vp + f V  v 
k

If the viscous term, that is, the last term in Eq. (4) is ignored, then we get Darcy’s law. 

Here, k is the permeability and quantities without the carats are those outside the 

capillary. Note that the velocity v in the extravascular tissue is the superficial velocity.

/v
If < Vzo > is the average inlet velocity into the capillary, then the flow rate out of

the capillary is (1 — <®) < vzo > where a  is the fraction lost to the lymphatic system

and is the ratio between the flow rate to the lymphatic system from the organ and the 

flow rate into the organ.
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2. METHODS (MODELS)

The flow in two dimensions inside the capillary is given by the radial velocity

~ 1 d/r . 1 d/r
vr = -------and the axial velocity vz = ------------where /  is the stream function, and the

r dz r dr

continuity Eq. (1), is automatically satisfied and the equation of motion, Eq. (2), becomes

oII■̂r (5)

2 d 2 1 d d2
where E 4 = E 2 E 2 and E

= d r2
+ - + ~ 2 (Haberman et al., 1958). 

r  dr dz
Eq. (5) is

broken up into

E  /  = / (6)

E  2/  = 0 (7)

This is now solved using separation of variables and they report the complete solution.

Once /  has been determined, Vz and Vr are obtained and substituted into Eq. (1) to

1 d /
calculate p . Stream function is defined inside the tissue as v = -------and

r dz

1 d /
vz = ---------and Eq. (4) becomes

r dr

E 4 E  /E  /  = — —
k

which is broken down to

E  2/ 1 = k

(8)

(9)

and
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E  >  = k  " V i  (10)

The value of the length scale y[k is very small ~ 7 nm. In comparison, all other 

length scales in Table 1 are of the order of 1-10 |im. The two very disparate length scales 

make the differential equations stiff and exceedingly difficult to solve numerically. 

However, the equations are linear, and exact solutions are possible. We assume that 

s = k -1/2 and use dimensionless % = sr and g = sz in both Eqs. (9) and (10) and Eqs. 

(6) and (7). The solutions to Eqs. (9) and (10) are given in Appendix A.

The two solutions for flow in the vascular space and tissue have to satisfy

boundary conditions. These are that at the entrance of the vascular space v =0 and

V. = 2 <izo >[1 - ( | ) 2] a t f  = 0

and at the exit Vr =0 and

(11)

% (12 
v. = 2 < izo >(1 -®)[1 - (%)2]a tg  = A V

%

where rn is the fraction lost to the lymphatic system and A = sL . Eq. (11) represents 

Hagen-Poiseuille flow, a fully developed laminar flow of a Newtonian liquid at an 

average velocity of (£zo). Other conditions are of finiteness at the centerline = 0 and 

that the tangential velocity vz at the wall ^ ^  is zero.

For the tissue, we take that no fluid enters or leaves the system at g = 0 nor A , 

that is, vz = 0. Like inside the capillary, the tangential velocity vz = 0 on the outer 

surface of the capillary ^ . Further, we make the overall balance that all the fluid
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that leaves the Krogh cylinder (integral of 2 f tR v r at r = R over z from 0 to L) is given by 

2 *ftr ®< vzo >, which is the loss to the lymphatic system.

Notice that we do not require that Vr = 0 at £, = Z, that is, fluid can leave the

Krogh cylinder, which is what we take to be the fluid that leaves for the lymphatic 

system. We do insist that the net loss be specified as noted earlier.

One very important boundary condition is mentioned earlier.

2nrt v l = 2nrL (p\ -  p\ -a A U ) = 2xrov \  (13)1 f |r=r P ^ lr=r *- lr= ro o r Ir=ro

The results are given in Appendix B.

3. RESULTS AND DISCUSSION

3.1. LIVER WITH NO NET LOSS

/v
The fluid mechanical quantities were evaluated by taking < vzo > = 1 cm/s.

Matlab was used to calculate and plot, which we found gave overflow errors for k = 6.398 

x 10-14 cm2 which has a large s = 2.529 x 107 cm-1. The value of s was lowered to 106 cm-1 

about the largest value for which there is no numerical overflow. It appears in Appendix 

B, that the term oAn only affects the pressure in the tissue, that is, does not have a direct 

bearing on the fluid flow. As a results all equations are linear and we eventually 

calculate

P k = 0 -  P k = A Ap  =  2 S ̂  — X  a n [ C2C510 ( a » ^ ) ] [ 1 -  2 ( -  1 )”

— 8<vzo)A ri i 2LpAP —
+ \ 2 r1 - ®] + t̂ — + . ) sr( 2 —ra +^i )

(14)
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where Ap *is the Hagen-Poiseuille pressure drop or

Ap* Sju < Vz, > L d 5)
r2-

where we have averaged the first and last terms on the right-hand side of Eq. (14) over 

the cross-section. All notations are explained in Appendix A. The first term in Eq. (14) is

/v
negligible. a  is set to zero here. The choice of < Vzo > = 1 cm/s is convenient, and if it is

changed then all other fluid mechanical quantities can be changed by the same proportion 

in this linear problem with the exception of p  as it contains the osmotic pressure term. 

Sixteen plots are shown below, eight for a  = 0 for liver (actual value of a  for liver is 10" 

4) in Figure 2 and eight for a  = 0.1 for tumor in Figure 3. Most of the implications of the 

figures are given in the captions, however, it is worth emphasizing some. The reason for 

setting a  to 0.0 here is not just because a  is low but also because it would show the 

maximum amount of circulation in the tissue. This circulation is seen but it is weak. All 

parameters were taken from Table 1 except for a  which was set to zero and k that was 

increased by two orders of magnitude. Hence approximately, the flow would drop by two 

orders of magnitude if the value of k is restored to that in Table 1. Netti et al (1996) have 

suggested the use of the ratio between the resistance to the axial flow in the capillary to 

the resistance to the flow through the membrane as ft = 16^2r//LpL2 / A2 where the inside

2
cross-sectional area is A . P is used to determine the leakiness of the membrane.

We calculateP for the values used here from Table 2.1 as f t  = 6.5 x 10 11 which makes

the membrane practically impermeable. Another ratio is the resistance of the flow



Figure 2. The fluid mechanical quantities have been shown for normal liver where ro has been set to zero as the actual value is very 
low. (a) The axial flow in the capillary is seen to be parabolic, and ~ 1 cm/s, that is, very high compared to (b) the radial flow. It is 
seen here that the flow exits radially at the arterial end and reenters at the venous end. The velocities in the tissue are shown in (c) 
and (d) where the axial velocity in the tissue (c) shows the circulation that takes place in the tissue and (d) shows that fluid enters 
the tissue at the arterial end and exits at the venous end. Pressure drop is linear inside in (e) as expected of flows with parabolic 

profile, and in the tissue (f) the pressures actually have negative values as measurements indicate in Guyton et al. (2006). Note that
except for flow in the capillary in the axial directions, all velocities are very small.
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Figure 3. The fluid mechanical quantities, have been shown for tumor where ro has been set to 0.1. The sequence follows Fig. 2 but 
the tissue appears awash with plasma. (a) The axial flow in the capillary shows some distortion from the parabolic velocity profile 

and (b) the radial flow in the capillary shows a significant flux out of the capillary. (c) The axial velocity in the extravascular tumor 
tissue shows circulation and (d) shows radial velocity in the extravascular tumor tissue which demonstrates that a significant amount 

of plasma is exiting. (e) and (f) show the pressures inside and outside. Pressure drop is linear inside in (e) and shows negative 
pressures outside in (f). Note that due to lymphatic flow, the velocities in the radial direction are much larger. Other than axial flow

in the capillary all other velocities remain very small.
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in the tissue to that across the membrane in form of #  = Lps f=  1.06 x 10-6 which

explains why so little fluid enters the tissue.

Further decrease in the values of all velocities will take place by a factor of 10, if

< Vzo > is set to be 0.1 cm/s and not 1 cm/s used here. Hence, the actual flow in the 

tissue will now fall by 3 to 4 orders of magnitude total of Figure 2.

3.2. THE TRANSCAPILLARY PRESSURE DROP

For fi equal to 1, 6 and 10 mPa.s we get Ap in Eq. (14) to be equal to 640, 3840 

and 6400 Pa, whereas from Table 1 it should be 2666 Pa (20 mm Hg). If we take (vzo) to 

be 0.1 cm/s (instead of 1 cm/s), which falls in the 0.02-0.17 cm/s domain24, then for the 

viscosity of blood at 6 cp, Ap  is 384 Pa (2.9 mm Hg). Note that Ap  is almost identical to 

that for Hagen-Poiseuille flow Ap* given in Eq. (15). In Eq. (14), both first and last 

terms are negligible, and the middle term is identical to Eq. (15). Netti et al (1996) have 

argued that the compliance of the capillary walls can play a role. Smaller the elastic 

modulus, the enlargement of the inlet end of tube will be higher and will give rise to 

higher pressure drops. However, their model is not suitable here, so we put together a 

model in words that Ap is the sum of a part which is a constant and equal to 384 Pa and a 

part that is inversely proportional to the modulus of elasticity. Thus, if the modulus of 

elasticity is infinite, the value of the pressure drop of 384 Pa is returned which is the 

pressure drop for a tube that is rigid. Netti et al (1996) show that much larger and more 

appropriate values of pressure drop can be reached using a finite modulus, and they used 

a modulus of 8.66*103 Pa. Compared to material properties (1973) the value of
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compliance used by Netti et al (1996) is similar the modulus of elasticity of a glassy 

polymer which is rigid when it should correspond with that for a rubbery polymer, which 

is about 100 times less. Lower compliance will raise the deformation but lower pressure 

drop. Thus, it is possible to come up with a pressure drop of 2666 Pa (20 mm Hg) if the 

capillary tube is considered to be compliant.

3.3. FLOW IN A TUMOR

We look next at a tumor. In Figure 3, (vzo)= 0.1 cm/s and rn = 0.1, and k and Lp 

have been taken from Table 1. Everything appear to be similar except in Figure 3. (b) 

where the radial velocity of the fluid out of the capillary is large as well as in Figure 3.

(d) where the radial velocity out of the Krogh cylinder is seen to be large. The circulation 

in the tissue is drowned out in face of relatively large amount of fluid that flows out 

radially. The radial velocity in the tissue is sufficiently large that it will compete with 

diffusion there.

3.4. LIVER REVISITED

With this knowledge of dynamics from Figure 3, we return to Figure 2, where we 

set rn = 10-4 from Table 1. All values of the parameters are from Table 1 with the 

exception of k. We have to use s = 106 cm-1 to prevent overflow. We also take (vzo) to be 

0.1 cm/s. The results are shown in Figure 4.

The flow through the capillary is very high, comparatively speaking. Thus even if 

10-4 of it flows out to the tissue, it will make a large contribution. Keeping in mind that
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(b)

Figure 4. Only the tissue side has been shown. Both velocities in the tissue are up by two orders of magnitude in (a) and (b) in this 
case where rn = 10-4 as opposed to Fig. 2 where rn = 0. The absolute value of radial velocity in (b) is also larger due to the lymphatic

flow. In (c) the pressures are seen to be smaller in magnitude.

oe
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on using the correct value of permeability k, the values of velocities in Figure 4 will drop 

be one to two orders of magnitude, the convective transport can still be comparable to 

diffusion. Now, the flow behavior in Figure 4 inside the capillaries remain unchanged 

from Figure 2, and as a result the calculated Ap = 384 Pa (2.88 mm Hg), same as for 

Figure 4. Consequently, we will need to consider compliance to get the transcapillary 

pressure up to 2666 Pa (20 mm Hg) here as well.

3.5. RESIDENCE TIMES

One important conclusion is that lymphatic flow is very important to drug 

delivery as mass transfer in the tissue will be convective-diffusive and lymphatic flow 

leads to significant convection even at small rn. This importance of lymphatic flow 

cannot be concluded from the stirred tank model. One other feature is the residence times 

which gives us the time scale of how long the fluid resides in that part of the organ. The 

higher this value, the better will be the absorption of a drug in that region. The residence 

time in a capillary is L / < vzo > = 0.2 5. For a stirred tank it is (volume of vascular

space)/(volumetric flow rate out of the vascular space) = 13.6 s for liver and 148.9 5 for

R - r 0
the tumor. The residence times in the tissue in Krogh cylinder a re------ , which are of

the order of 3.16X104 s for liver and 9.32X104 s for tumor. In contrast, the residence 

times in stirred tanks (volume of the tissue)/(flow rate to the lymphatic system) are 

2.50X105 s for the liver and 2.18X104 s for the tumor. Thus, except for the fact that the 

fluid clears the vascular space remarkably fast in Krogh cylinder, all the remaining 

residence times are similar in the two models. In the conventional model of a Krogh



cylinder with no convection in the tissue (1999) the residence time there can be 

considered to be infinite.
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3.6. SUMMARY

Convection in the tissue has been shown to be significant in the present model of 

the Krogh cylinder. Much of the flow there is due to the flow that leaves for the 

lymphatic system. There is a great difference between the residence times of the fluid in 

the capillary in the Krogh cylinder model and a similar residence time in the stirred tank 

model. This is probably because the vascular space defined for an organ will contain a 

large domain where no transport can take place through the walls, that is, vessel space 

before arterioles and after venules. Further, we were interested in being able to predict 

the transcapillary pressure of 2666 Pa but the calculated pressures for a rigid capillary 

was short, and to reach 2666 Pa, the walls have to be compliant.

Using the above, we can make a simple model for the flow in the system. We 

r 2
take v = 2 < v > [1 — -] to be the inlet velocity in the capillary and

r

r 2vz = (1 -  03)2 < vzo > [1---- ] to be the outlet velocity in the capillary as taken in all
z zo r2i

calculations. We also take the flow to decrease linearly from the entrance to the exit. In 

addition, in the capillary we can take vr «0. In the tissue vz «0 and

2xroL vr I = = onr i2 < vzo >. Further, the continuity equation, Eq. (3) shows in this

case that vr x 1 / r , making complete a very reasonable view of the flow. This

approximation is almost the same as that used by Netti et al (1996). However, if we
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phrase the results in terms of asymptotics, then some errors emerge. The velocities vz

/v
and vr are correct to the order a. However, vz and vr have errors of the order of a,

which should be their leading order. How good the different tiers of approximations are 

can eventually determine through mass transfer calculations which we have started. In 

this connection it should be noted that the detailed calculations here, were carried out 

using measurements over large scale, to fit observations on large scale, averages, etc. For 

instance, the flow through a capillary does not satisfy pointwise velocity profile given by 

Hagen-Poiseuille flow, but will satisfy a measured apparent viscosity. It is not clear if this 

will affect mass transfer because most of the effects of mass transfer lie outside in tissue.

4. CONCLUSION

It is possible to use values of physical parameters of the system that are known 

and apply to the Krogh cylinder model. As a result, some of the predicted quantities can 

be calculated to be close some of the measured quantities. That is, Krogh cylinder model 

can mimic a real system. Details of the flow can be determined and in addition, the fact 

that flow to the lymph is important to drug delivery is seen here for the first time.



APPENDIX A.

GENERAL SOLUTION IN THE TISSUE
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Q = (c3f/i(yO  + ĉ K ^ yO + CsfhQO + c6^K1(b^) )(c1cos(b^) 
+ c2sin(bO)

+ f ^ / ^ O  + a ^ K ^ O  + «5 y  + «ej OiC + a 2)
(A-1)

vz = —s 2[c3y Iq(yO -  c4y Kq(yO + c5bIQ(bO -  cebK0(b ()][c1bcos(b() 
+ c2 sin(bO] -  s 2 [a3I0(O -  a4K0(O + as] [a-^ + a2]

vr = s 2][c3I1(y^) + c4K1(y^) + c5I1(b^) + c6K1(b^)][c2bcos(b^)

c4b sin(b^)] + at E tffi"
a3I4(0  + aAKt (0  + a5 2 + Y

(A-2)

(A-3)

P
s 3̂ .

[c5IQ(bO -  c6KQ(bO ][C! sin(bO -  c2cos(b^)] 

+ a5 a-t— + a7c -
( 2

a5 —  + a6lnf + a7

(A-4)

where c,- , i = 1, 6, a,-, i = 1, 7 are constants. I  and K  are modified Bessel functions of 

first and second kind and order i 28.



APPENDIX B.

COMPLETE SOLUTION



37

<£zo>
P si'n.(ttn '̂) \p2n^4nYn^-0(Yn^) ^2n^5n^n^0 (^nO

m=1
+ ^2n^6n^n^0 (^nO\

Vr
<%o> P ^® (̂^nC)[^2n^4n^'l(yn^) + ^2n^5n^l(^nO

m=l

+ ^2n^6n^l (^nO\ +
^ j l  
2 A (

P ^  Si
Ap* ^  cos(an£) [ c2nc5nI0(anO + C2n^6n^o(^nO\ + i^p^A2 ln?

m = l

<£Z0K;
2 P Sin(an( ) 2 [̂ 2n^4n^l(Yn̂ ') + ^2n^5n^l(^nO

m=1

+ ^2n^6n^l (^nO\ + 2^  ^

V7
<%o> = P X -S in (a^  [^  ̂ 3n^n^0(^nO + ^2n^5n^n^l (^nO

m=1

+ 2^2n^5n^0 (^nO\ + 2 ^ 1  ̂2

PZ (Z 1Ia

1 - W A

+ ( j - l )
(2^r a + Q  \A /

12r
<£Z0>

P QnCOS(Qn^)[C2nC3n/ i (0,n^) + C2n^5n^0 (^nO\
m=1

+ A ^ l1 2 2̂J + ^ (2^r a + ^;)V2 A>
U 2 f  /1  <

3 (b 3

P
A r = 2a I  COS((Xn '̂) (Xn ̂ 2n^5n^0 (^n^)

^ (2 (2 -  ^2) 
4A2

m = l

£
A

2(pr + 1)a +
2 pra +

^il Lvo An 
8p(vzo >As

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)



38

s 2xp
<̂ zo)

P si'n.(ttn '̂) [^2n^3n^^l(^nO + ^2n^5n^ ^0(^nO]
m=1

+ £ ^ 2
2(^  + 2^ra) H H i i - S H S

(B-8)

where n = 2m-1

^ — Lpsfi (B-9)

p Lvb.p

P — <̂ Z0)
(B-10)

Kn V^n + 1 (B-11)

nn
(B-12)

M —- (B-13)

R> r R> II 1 o (B-14)

,  ,  1 <*L>
“ 5“ 7 — 2 f , V

(B-15)

1"(Vzo)
a6a 7 — 9 r 2 ^  2 ^ s 2A

(B-16)

^  ^  ^  . ^ (Vzo>a2a4 + a 8A — ^ (B-17)

Lvo&na7 — 2 as2
(B-18)

LpAp*
8 2s2(2pr a + ^)A (B-19)

where the Fourier series (Mangulis, 1965)
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ABSTRACT

The targeted delivery of a drug to a tumor is generally considered using a stirred 

tank model, which does not include all the mass transfer resistances. A distributed 

system called Krogh cylinder has been used here. The complex capillary network is 

broken down into cylindrical cells, each containing a capillary and appropriate amount of 

extravascular tissue. The flow in the cylinder model has two-dimensional velocities, 

which are in the axial direction and the radial direction. Whereas the area under the curve 

(A.U.C.) describes the bioavailability, it does not describe how much or how fast the drug 

is being absorbed in the extravascular tissue where therapeutic effects are expected to 

take place. For a given bioavailability, the uptakes of reactive and nonreactive solutes 

have been obtained. The diffusion in the tissue appears to be low. Most of the drug 

uptake happens through convection, which is actually slowed down in the presence of a 

reaction. For the case where a reaction takes place, a modeling effort based on local 

equilibrium is made, which both cuts down the computation times and provides good 

results for the case of reactive solutes. The full results of a distributed system have been 

obtained for the first time, and the mechanics of how A.U.C. can be used to calculate the



actual solute uptake has also been determined. The results emphasize the need for a 

higher rate of perfusion in the tumor because of the importance of convection.
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1. INTRODUCTION

A pharmaceutical solute is introduced into the body plasma, and it travels to the 

heart and then to other organs. In chemotherapy, the drug damages all organs and not 

just the tumor that it was meant for. To handle this problem investigator have focused on 

targeted drug delivery, and a particular prescription is followed by Baxter et al (1995).

The procedure uses a bifunctional antibody (BFA) that reacts selectively with the tumor. 

Hapten is introduced next which contains radioactive iodine. It attaches to the other arm 

of the BFA. Thus, it is a form of radiation therapy for the tumor. It is noteworthy that 

both BFA and hapten go to all parts of the body but are eventually washed out by the 

plasma that goes into the lymphatic system. However, the BFA-hapten unit is more 

strongly tied to the tumor and takes more time to dissociate and get washed out. Thus the 

tumor continues to be irradiated long after all the material is washed out from the other 

parts. In general, the predictions of their model for drug distribution show good 

comparison with experimental results obtained from radiation dossiometry. Their model 

also shows that the heart receives a smaller dosage as a result. It is noteworthy that this is 

a special case of the geral area of drug delivery (Welling, 1997, Cooney, 1976).

Baxter et al (1995) use a stirred tank model with no adjustable parameters to 

predict the efficacy of the process. However, stirred tank models are lumped systems that 

do not include spatial variations. We use below a distributed system called Krogh
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cylinder (1919), which does include model spatial variations. One shortcoming in stirred 

tanks is that mass transfer resistance exists only in the membranes. If the drug 

concentration in the blood (blood titer) is measured as a function of time, then the area 

under the curve (A.U.C.) is taken to represent the bioavailability of the solute. A.U.C. 

does not tell us how much of the drug has entered the extravascular tissue, where usually 

the receptors or target sites for the drug lie. It only provides a potential for such a move, 

where the plasma and the solute can go from the capillary to the extravascular tissue only 

through the walls of the capillary. It is a complex process and one main purpose here has 

been to relate A.U.C. to the actual delivery of the drug to the receptor which is a very 

lengthy problem to solve. If there is no such transport, A.U.C. will be large, but the 

effectiveness of the drug will be zero as one extreme. In contrast, the Krogh cylinder 

model (Krogh, 1919), is a distributed system that can include the resistances due to 

convective and diffusive transport, but so far have not been used in an inclusive way. The 

presence of reaction will affect concentration distribution in the extravascular tissue and 

hence the transport. Eventually, there is no new solute that is brought in, and plasma 

continues into the tissue and washes out the solute there. There is also another feature in 

the model of interest, namely the residence times of a solute in the capillaries, which tell 

us how much time is allowed for the reactions as well as the ease of transport. As will be 

discussed later, they are quite different in the two models because the fluid mechanical 

resistances to the flow of plasma are different.

Many parameters are needed to quantify the process, most of which have been 

amassed by Jain and coworkers as described later. However, a few more are needed here 

as discussed below. Blood flows through the inner cylinder of Krogh cylinder. The



capillary diameter is smaller than the size of red blood cells (RBC), and hence the RBC 

bend to enter into the capillary. Based on volume averaged shear rates and shear stresses, 

Gaehtgens (1980) found experimentally that the apparent viscosity of the whole blood 

was a steeply increasing function of decreasing tube diameter in the range of interest, 

reaching 3 mPa.s. The concentration of RBC here is much higher than normal, but they 

keep away from the walls and flow along the centerline in single file. Secomb et al 

(2006) modeled the flow of plasma as a Newtonian fluid. The RBC were considered to 

be covered by an elastic membrane which makes them deform due to stresses from the 

plasma. In the resulting flow, the shear stress at the wall is calculated and equated to that 

under Newtonian flow to obtain an apparent viscosity. The results fit the measured 

values in both magnitude and trend with decreasing tube diameters. Consequently, in the 

earlier work for blood flow, Qiu et al (2019) took the viscosity of blood to be Newtonian 

at 6 mPa.s which is its bulk viscosity. Such a value of viscosity is in line with the trend.

The capillary is enclosed in a membrane that is lined with endothelial cells. In 

between neighboring cells is the endothelial cleft, which forms the pore through which 

plasma and solute flow. Actual pores also exist, and large ones are seen in the liver, one 

organ that is considered below. One significant contribution is by Rippe and Haraldsson 

(1987) who showed that the pores were mainly bimodal at diameters of 22.5 and 4.5 nm. 

Baxter et al (1994) showed that the use of a bimodal pore model gave superior results 

when compared to experiments.

The extravascular tissue contains cells that are not permeable to the plasma that 

flows out of the capillary. In between the cells is a gelatinous material reinforced by 

proteoglycan filaments and some collagen fibers (Guyton and Hall, 2006). It is assumed
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that the fluid and the solute that come out of the capillary do not flow into the cells and 

that the small molecules of plasma exhibit a water-like viscosity in the gel. The solute 

concentration c is based on the void volume of the tissue. The flow in the extravascular 

tissue is usually found in the form of superficial velocity as in Darcy’s law (Qiu et al, 

2019; Netti et al, 1996) and needs to be converted to interstitial velocity to be used in the 

conservation of species equation involving solute concentration c. Diffusivities in the gel 

are usually measured in vitro using 5% agarose gel (Iwata et al, 1996), and some 

researchers have also measured values in the tissue (Chauhan et al, 2009).

The main arteries enter an organ and breakdown into small blood vessels and 

eventually to an arteriole that generates a network of capillaries which again merge to 

join a venule. Smaje et al (1970) used the shortest distance traveled by blood between an 

arteriole and a venule to define a length for the capillaries. The results vary but a 

standard value of 0.02 cm is used (Netti et al, 1996) for a Krogh cylinder and an organ 

can be represented by Krogh cylinders in parallel (Smaje et al, 1970, Fournier et al, 1999) 

a feature that we use to calculate the drug availability time, that is, the micro-dosing time, 

t* given below. Some researchers have assumed in their models random or geometric 

structures (Shipley and Chapman, 2010; Penta et al, 2015; Penta and Ambrosi, 2015; 

Mascheroni and Penta, 2017; Cattaneo and Zunio, 2014; Kojic et al, 2017; Kojic et al, 

2018) for the capillary networks with the idea of eventually averaging the results. 

Averaging is done in packed beds to get Darcy’s law where the details of the arrangement 

of the packing in the bed, do not appear. The alternate method has been to use a cell 

model for individual packing and Happel’s cell model (Happel, 1958) works quite well.

It is a fluid mechanical model that has been extended to mass transfer by Pfeffer (1964).
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The latter is what a Krogh’s cylinder represents, a cell, and a distributed system that 

provides more information.

We have chosen the system of Baxter et al (1994) both because of the complexity 

of the process and very many parameters in the system that are all known. In fact, it is 

probably the only case known to us all the information are available. There are two 

stages to the delivery, in the first it has to reach the tumor and then it has to penetrate the 

tumor. It is the latter that is being considered here.

Previously Qiu et al (2019) solved continuity and momentum balance equations in 

such systems and a simplified flow profile obtained there is given below
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(2)
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where a carat denotes quantities inside the capillary and quantities without a carat are in 

the extravascular tissue. (£zo) is the average velocity of blood entering a capillary. Z=

— and £ = — represent the dimensionless distances in the axial and radial directions, wis

Vr

the leak, that is, the fraction of fluid that is lost. A is the dimensionless length of the 

capillary L/ri. vr is a superficial velocity. There is a loss of plasma through the walls of

the capillary which eventually leaves the Krogh cylinder. This loss is small and 

constitutes the fluid that is taken up by the lymphatic system (Jain, 2013, see his Figure 

2). We can take the flow rate to drop linearly in the axial direction as shown in Eq. (1) 

because the loss in above occurs at almost a constant rate in the axial direction. Eq. (2)



results from the use of the continuity equation. Eq. (3) also results from the use of 

continuity between the fluxes in the tissue and the capillary at the membrane. It is 

assumed that the target for a drug lies in the tissue and hence this convection will play an 

important role in the efficacy of drug delivery. We have chosen the liver and tumor, and 

the values of parameters and sources are shown in Table 1. As is apparent from Table 1, 

values of many parameters are needed but may not be available. It is often assumed that 

some physiological properties do not change among mammals, some properties scale 

with the standard bodyweight and others with the molecular weight of the species or both.
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Table 1. Properties of the Liver and Tumor model for fluid flow for a 70 kg adult human
Liver Tumor Ref.

L Length of the 
capillary

0.02 cm 0.02 cm Netti et al. (1996)

r, Inner radius of the 
capillary

0.0005 cm 0.0005 cm Netti et al. (1996)

To Outer radius of the 
capillary

0.00055 cm 0.00055 cm Netti et al. (1996)

Ra Outer radius of 
Krogh cylinder

0.000866 cm 0.001482 cm Baxter et al. (1995)

rnb Fraction of fluid lost 0.01% 5-10% Baxter et al. (1995), 
Gullino and 

Grantham (1961)
< v >zo Blood inlet velocity 0.02-0.17

cm/s
Secomb et al. 

(2014)
Lp Membrane 

hydraulic coefficient
2.700x10"10

m/(Pa.s)
21.003x10"10

m/(Pa.s)
Netti et al. (1996)

a. calculated from (volume of the tissue)/(volume of the vascular space) =
jt{R2 -  ro2)L / xr02L . This value should be larger because not all that is considered to
be the volume of the vascular space have permeable walls.

b. calculated from (volumetric flow rate of the blood out to the lymphatic system from 
the organ)/(volumetric flow rate of blood into the organ) = rn
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Often properties are normalized by the mass of the organ; then this value is considered to 

be independent of the organ. References in Table 1 contain references which discuss the 

details of how these numbers were arrived at. The total number of parameters for a single 

organ are many. Some organs have one or more of these parameters that are very much 

out of the range of standard values and hence much of the overall parameter space is 

empty. For these reasons and for directed drug delivery, the simulations are best done for 

specific organs, here the liver and tumor have been chosen. The tumor chosen is 20g but 

the data for the tumor is based on studies in mice for a small tumor of 0.7g. At this size, 

the tumor can be treated as homogeneous and when scaled up to 20 g in humans is also 

treated as homogeneous (Baxter et al, 1995).

Mass transfer calculations for the Krogh cylinder, which is a distributed system 

are given below. Two systems are considered. In the first, the solute is an inert tracer that 

is described as hapten (MW ~ 600) by Baxter et al (1995) and, second a bifunctional 

antibody fragment F(ab')2 (MW ~ 100, 000) that binds both specifically and 

nonspecifically. It should be mentioned that there have been efforts to solve the Krogh 

cylinder problem for a distributed system (Gullino and Grantham, 1961; Goldman, 2008; 

Bassingthwaighte et al, 1992; Secomb, 2014; Baxter et al, 1992). However, some 

simplifications were made, notably a lack of convection in the tissue, that we avoid 

below.

Consider now the main artery to the liver. It brings in the solute at concentration 

Co over a time T. Then A.U.C. = coT  and the total solute is M  = co Q T  where Q is the

flow rate of blood into the liver. If this blood vessel breaks down into many (N) 

capillaries, then follow of solute into each capillary isM  / N = co .(Q / N ).t * , or the
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microscopic dosing time is t* = T = -----. It is also necessary to account for the fact that
coQ

the solute is distributed to all organs, which is straightforward, and we have ignored this 

feature. As noted earlier, other than the capillaries, none of the blood vessels allow 

plasma or solute out through the walls.

2. TRACER TRANSPORT

The dimensionless conservation of species equation is

a  a  y v . y v . y y y v .

d6  D dd £  D dd  d e  1 dd d e
d r  v ’ d £  d£  d £ 2 £ d£  dC

(4)

v r
where 6 = c / co, r = Dt / rt and Peclet number Pe -  D  i . Further, £ = r/rt, Z = z/rt, A

L/ri where L is the length of the capillary, f  (£,£) = 2(1 - £ 2)
f c1 - a — \ andv a J

CO £
g (£) = a  [£ ——]. As before, the carats indicate quantities in the capillary and the 

functions f  and g  are from Eqs. (1) and (2). The conservation equation in the tissue is

d 6  Pe d 
—  + — .h.— 6  = d  
d r  s  d£

d2 6 1 d 6  d2 6
d £ z £ d£ d c

(5)

where £ is the volume fraction not occupied by the cells, h = — from Eq. (3), the
A 2£

concentration is 6 = c / co and co is a reference concentration used throughout. In

addition, the diffusivity ratio is d = D / DD . The boundary conditions are straightforward 

with the exception of the condition at the membrane
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( < M  e c D / rg =1 ° 0 ^  '  ' i

j -  = (0 h .P  -  d — )
s d £

(6)

 ̂= r0/ri

where the quantities to the left and to the right in Eq. (6) are the convective-diffusive 

transport from the capillary and the tissue, normal to the membrane. Now jv-i is the flux 

of the solute through the membrane from the vascular space to the interstitial space which 

is described below. For large solute molecules, Rippe and Harraldsson (1987) note that 

the model predicts that transport through the membrane is mainly due to convection. The 

flow of solute across the membrane in moles per unit time is given by

Jv-i = J L  (1 - ^  ) c|̂  + P S L
c  l*=1 - k =r / r

R
PeT

ePeL - -  +  J s  (1 - ^s )C|̂ 1
(7)

+PSS c  s=1 -
k = r , / r
R

Pes
Pes ie s -1

where the subscripts L and S refer to large and small pores respectively. PS is the 

permeability times the membrane surface area. The rejection coefficient is R taken to be 

1.0 here, and o is the reflection coefficient. The effective porosity e is taken to be 0.3. 

The fluxes through the pores are

J  L =  J  iso +  a  L L  y

J  S  =  J  i s o  +  a  S L y

(8)

(9)

where Ly is the lymphatic flow. Note that Jiso cancels between the two pore types. Also, 

aL +as = 1.0. The values of the parameters are given in Tables 2 and 3. The membrane

Peclet numbers are given by PeL = JL(1 — oL)/PSL and Pes = ]s ( 1 — as)/PSs . The

term Jiso needs some explanation. Rippe and Harraldsson (1987) found some circulation
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Table 2. Estimated parameters for a 70 kg adult human used to simulate hapten of mol.
wt. 600 as a tracer

Liver Tumor Ref
Jiso Recirculation 

flow rate
ml/min 0.1214 2.14x10-4 Baxter et al. (1995)

Ly Lymphatic flow ml/min 8.7x10-2 3x10-2 Baxter et al. (1995)
rna Ratio between the 

lymphatic flow 
and entering flow

1.014x10-4 0.05 Baxter et al. (1995)

ol6 Reflection
coefficient

0.1 0.1 Rippe and 
Harraldsson (1987)

Csb Reflection
coefficient

0.1 0.1 Rippe and 
Harraldsson (1987)

aLL Fraction Ly from 
large pores

0.056 0.056 Rippe and 
Harraldsson (1987)

a f Fraction Ly from 
small pores

0.944 0.944 Rippe and 
Harraldsson (1987)

PSLd Permeability 
times surface area 
of large pores

ml/min 0.0199 0.00561 Baxter et al. (1995)

PSsd Permeability 
times surface area 
of small pores

ml/min 0.00561 6 .2 x10 -5 Baxter et al. (1995)

Se Surface area of 
the capillaries

cm2 126630 98 Renkin (1997)

D f Diffusivity in the 
capillary

cm2/s 5.78x10-6 5.78x10-6 Renkin (1977)

Dg Diffusivity in the 
tissue

cm2/s 2 .2 x10 -6 4.3x10-6 Iwata et al. (1996) 
Baxter et al. (1992)

a Ly/Qi both values from Baxter et al (1995) and not from Table 1.
b available only for serum albumin for dog paw 
c available only for dog paw
d both liver and tumor are considered to be hyperpermeable with permeabilities/gram 

ten times the other organs 
e interpolated from Renkin (1977)
f  interpolated from Renkin (1977)
g interpolated from Iwata et al (1996) for normal tissue and from Baxter et al (1995) 

for the tumor
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Table 3. Reaction rate constants taken mainly from Baxter et al (1995)

Liver Tumor
Forward nonspecific 
binding rate

kf •“ 2 .0x10 -3 min-1a 0

Backward nonspecific rate kr■ 7.0x10-4 min-1a 0

Forward specific binding 
rate

k ."  0 0.16x109 min-1M-1

Reverse specific rate k - 0 0.0085 min-1

Saturation in specific 
binding

Bmax none 1.18x10-8 M

Diffusivity of (Fab')2 in 
water/plasmaa

7.854x10-7 cm2/s 7.854x10-7 cm2/s

Diffusivity of (Fab')2 in 
tissue6

1.58x10-9 cm2/s 5x10-8 cm2/s

a. extrapolated from Renkin (1977). When serum albumin (MW 66,500) is added, 
diffusivity falls to 2 .8x 10 -8 cm2/s.

b. from Nugent and Jain (1984). When serum albumin is added, diffusivity falls to 
3.5x10-10 in liver and 9.348x10-8 cm2/s in tumor.

across the membrane, which they attributed to the osmotic pressure difference. As their system 

is a lumped system, Jso is independent of location. There is a larger circulation arch 

across the tissue in Krogh cylinder where the flow depends on location (Guyton and Hall, 

2006). However, Qiu et al (2019) have found this circulation to be very small in their 

calculated results, and it has been ignored in Eqs. (1) -  (3). Finally, j v_ =  J v_ /  S .

The solution is obtained numerically using finite differences, forward time and 

central space, and explicit scheme (Roache, 1998). Values of Pe = 15, D = 5.78x10-6 

cm2/s and D = 2.2 x 10 -6 cm2/s in the liver and 4.3 x10-6 cm2/s in the tumor were used. It 

gives us a value of of (vzo) = 0.0867 cm/s. At zero-time 0 and 0 were set to zeros 

everywhere. At the entrance to the capillary P was set to 1.0 starting from zero time. The 

result is expressed as an average concentration of hapten in the tissue
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F
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which should go up with time to 1 .0 .

(10)

3. REACTIVE SYSTEM

One of the systems studied by Baxter et al (1995) has an antibody as a solute.

Two different parts with differing affinities are joined back, and the main stem is missing. 

That is, it is a bifunctional antibody (BFA) fragment F(ab')2. We have shortened the full 

computations and look only at the process that follows when the BFA has been 

introduced and not followed by hapten. Instead of a pulse as in the earlier case, we have 

a step up in the concentration of BFA.

Conservation equations for two species in the capillary and three in the tissue are

f
considered. The species are free f  bifunctional antibody fragment (a) cJa and 

nonspecifically bound (B) fragment cB in the capillary. In the tissue, we havec^a, cBaand 

specifically bound cba fragments in the tissue. F(ab')2 and a are the same. They are 

shown schematically in Figure 1 following Baxter et al (1995). The nonselective binding 

happens, as an example, with human serum albumin (HSA). The binding is reversible, 

and some researchers have proposed using this form of binding to provide a focused 

delivery (Larsen et al, 2016, Tao et al, 2019). A 1:1 binding has been assumed below.
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cBu a
Free bifunctional 
antibody (BFA)

Nonspecifically bound 
BFA.

Specifically bound BFA.

Figure 1. Schematic representation of the states of antibodies from Baxter et al (1995). 
The second arm is specific to hapten and in absence of hapten remains free.

The governing equations are quite lengthy, and in view of the large computation 

time taken for the previous case, some steps are taken to simplify the problem. In the 

capillary, we take c and cBa to be constants, orc0 = c{a + cBa. Taking into account the 

forward and the backward rate constants of binding lead to

1 (11)
1 + K a

K a (12)
1 + K a

f
where the equilibrium constant KA = k !a/ k ra. These are the concentrations with which 

the two species enter the capillary. Since the two species are pre-equilibrated, as a first 

approximation we can assume them to be at equilibrium everywhere. The unsteady state 

conservation equations in the extracellular extravascular space are lengthy and given in 

the Appendix A, where dimensionless groups are explained, and their values have been
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defined using data in Tables 2 and 3. The reaction rate constants are given in Table 3.

The value of cois 2.0*10-8 M and the total specific binding site density is Bmax = 1.18*10-

8 M both from Baxter et al (1995, 1994).

The following relevant numbers are reported. Pe has been retained in the 

calculations as 15, and using the diffusivity of a free BFA, a value of {vzo) =

0.0236 cm/s is obtained. A value of {vzo) = 0.1 cm/s is used. The Damkohler number

fĉ r-2 5Da = is 1.061*10, a very small number. KA = - j  the reaction constant = 2.86.
D  k a

Further, d  is the ratio of the diffusion coefficient of BFA bound to HSA to D is equal to

, c r .2
0.0020. The Damkohler number for the specific reaction is Da = a ° 1 = 1.019, which 

is small and changes very little if Bmax is used as the reference instead of c0. Its

, fcf c
equilibrium constant is KA = ~^r=  376. This is the only large number in above. The

ka

diffusion ratios are d1 the ratio between the diffusivity of BFA in the tissue and in the 

capillary, and is 0.0020 for the liver and 0.064 for the tumor; d2 is the ratio of the 

diffusivity between BFA bound to HSA in the tissue and the diffusivity D, and is 0.00045 

for the liver and 0.119 for the tumor. These are all small numbers.

Because the nonspecific binding has been equilibrated and then introduced into 

the capillary, that reaction is considered to be in equilibrium in the conservation 

equations. Consequently, terms in the conservation equations involving this reaction 

have been ignored as well as in the conservation equation for the nonspecifically bound 

BFA. The latter has been replaced by the equilibrium relation as the specific binding has



a very high equilibrium constant. The governing equations for inside the capillaries are 

given below,
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8 0 f  - 8 0 f  8 0 f  1 8 8 0 f  8 20 f  
0  + f  C ,4 )  Pe 0  + P e .g (4) 0  = [ i  ̂ 4 0  + S f f -] 
S t V ’ dC 8 4  4 8 4  8 4

f Ba = k a 0

(13)

(14)

and in the tissue

80 f 80

8 t
+ P  e.h ( 4 ) — — = d 1[------- 4

84

1 8 „ 8 0 f  + 8 20 fa

4 84 84  8 C

0 1  = K  A 0 f

0 b  =  b  max 0 a f  /[1 + 0  f  ]

(15)

(16) 

(17)

]

Also, g(4) and h(8)  are given after Eq. (4). Eq. (16) shows that it does not matter where 

the active sites are located, outside the cells, inside on the cells or on the surface of the 

cells for this approximation, provided that the equilibrium constant does not change by a 

large amount in these locations.

To understand the results, we look at the extent by which the specific sites have

A R
reacted. This is given by the concentration 0 b or J J 0b 2n4d4d4  where the saturation

0 4o

value is k (R 2 -  4 2)b A . The dimensionless form isa “ o ' max

F 9

A  R

J K 2x4d4dc
0 4o______________________

*( R 2 -4 2 )bm ax A
(18)
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4. RESULTS AND DISCUSSION

Figure 2 shows the holdup of hapten in the liver in the extravascular tissue as a 

function of time. The plot becomes fairly linear at large times showing that convection 

dominates except for a very short initial transient. The convection out of the tissue is 

outward in the radial direction and does not vary with the axial position. It follows that 

convection is the main transport mechanism in the tissue. The dosing time t* = 0.001042 

s which is well within the time showing the initial transients.

Figure 2. Hapten holdup in the liver tissue as a function of time (s). Dosing time is
0.001042 s.

Figure 3 shows the holdup of hapten in the tumor in the extravascular tissue as a 

function of time. The plot becomes fairly linear showing that convection dominates and 

the holdup increases at a faster rate than for the liver because of the higher flow rate in
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the tumor. The dosing time t* = 0.3251 s. The importance of the plots is clear. 

Specifically, we can use the linear response theory (Appendix B) to show that F  for a

dFpulse lasting for a short t*, is t* —.

In cases where convection dominates, the penetration is described as a moving 

boundary problem where the boundary does not vary in the axial direction. The jump 

balance at the interface becomes for hapten

[-
r r=r dr *

R  = 0
(19)

s  dt

where r = r* describes the moving boundary in the tissue, diffusion is neglected and Vr 

can be obtained from Eq. (3). Integrating, we have

(20)
r *2 -  r 2 = <  -V >o zo

r

sL
mt

Figure 3. Hapten holdup in the tumor tissue as a function of time (s). Dosing time is
0.3251 s.
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The process finishes when r* = R , the outer radius of the Krogh cylinder. An 

assumption has been made in Eq. (19). Since the flow through the capillary is very rapid, 

the concentration Co is attained at r  at a short time. As the membrane has a rejection 

coefficient of 1, the concentration at the outer radius of the capillary ro is taken to be Co 

which is also attained in a very short time. Thus, the amount in the tissue as a fraction is

f  = < v >J  z o

e(R  -  r ,2)L
-at (2 1 )

2r

The slope of F  versus t in Figure 2 in the linear region of 5.55*10-7 s-1, is far lower than 

the slope predicted by Eq. (21) of 9.31*10-4 s-1 f  versus t If a concentration profile exists 

in the tissue due to diffusion initially, then the convected amount will be less than the 

saturation amount assumed in Eq. (19). As a result, relacing the average concentration 

with a saturation concentration in Eq. (18) with lower the rate of penetration. These 

reamrks aso apply to the non-reactive systems discussed earlier (Figures 2 and 3) where 

the fronts appear to move slower than the convection-only model.

In Figure 4, the uptake of BFA in the tumor has been shown as a function of time. 

At 60 s the initial transients are gone and the system settles to convective mass transfer. 

However, the initial transients are significant. In Figure 5, it is seen that the initial band 

of concentration gradients in the tumor that is established in the first 60 s, continues, at 

least upto 60 s as shown.

To model the reactive system, an additional assumption is needed, since the 

reaction is available in terms of per unit volume. It is assumed that the reaction occurs at 

the surface of cells of radius ac which is 1-10 |im, and surrounded by void with an overall
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radius ao, then the volume per unit cell surface area is a c
3(1 - e )

. The jump balance

becomes for hapten

e
dr * Co
d t  1 +  K ,

= kf
c ao c

1 + Ka 3(1 - e )
vr

(
r = r (2 2 )

which integrates to

*

t = —r -  r0
b

a . a -  br— ln--------
b a -  br0

(23)

where a = < Vzo > r  ̂  and b = k f  ,sBmax----c—  . Eq. (22) when compared to Eq. (19)
2Ae 3(1 - e )

dr *shows th a t----  decreases in presence of reaction. For small values of b Eq. (23) gives us
dt

f  in Eq. (20) that is linear in t just as shown in Figure 4 at large times. That is at large 

times, the convection dominates. When the reaction rate given by b is high, Eq. (23) is 

not valid. It is also known there that the front is characterized by zero reactant 

concentration. It now follows that large concentration gradients will arise and diffusion 

will remain important. The conclusion here is that the convection only model shows a 

much higher rate of penetration, which means that overall at even at later times, the 

diffusion is never really shaken off and results in a lower rate of penetration. Thus to 

increase the rate of solute penetration into the tumor, it is necessary to increase perfusion 

into the tumor. The rate of perfusion in the tumor is already lowered because many 

lymphatic ducts are damaged, blocking some of the flow out. Jain (2013) has pointed 

this out and provided some solutions to mitigate this problem.



The main thrust in the modeling by Baxter et al (1995) has been to look at what 

happens to the solute after the dosing time when only the plasma enters the extravascular 

tissue. Under the convection dominant model, for hapten, one would see a band that 

moving radially outwards with the local radial velocities, as given in Eq. (9). For the 

BFA, the reverse reaction rate constant is very low, so the lower edge of the band will 

move outwards at a very low speed, and the upper edge at the same speed as given in Eq. 

(23), at least to the first approximation.
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t s

Figure 4. Specifically bound BFA holdup in the tumor as a function of time t s. The 
dashed line shows a linearity that is observed after an initial transient. The dosing t* is

3.9 s.

We have confirmed that convection in the tissue is important to drug delivery 

even though the convection we have to work with is small. This conclusion could not be 

arrived at using stirred tanks. The results are also in contrast to Krogh’s (1919) original
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model which used only diffusion in the tissue. A key accomplishment is that of the use of 

local equilibrium, which not just gives us good results, but also brings down the 

computation time which still remain large but within limits. It is possible to calculate the 

residence times for the liver in the Krogh cylinder model for the capillary as

(R2 -  ro2).L
t = L / < v > = 0.2 s and of the extravascular tissue t  = — 2— ;---- =3790 s. For the

ort < V; >

stirred tank model from Baxter et al (1995), where tc = vascuUarvo°ume = 13.56  s and
plasma flowrate

total volume -  vascular volume 1 _6 , . .r„ =------------------------------------- = 1.122* 106 s. They do not agree except in that the
lymphatic flowrate

e in either model is very large.

5. CONCLUSIONS

Convective transport is the most important factor in the mass transfer of a reactive 

solute in the tissue. The solution of the transport equations in the extravascular tissue 

demonstrates the above, and shows diffusion to be important at short times and reaction 

slows down the uptake. We have provided a link between A.U.C. and the actual uptake

for the first time.
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n b
Figure 5. The concentration of a in tissue at time 60s after the mixture of free/v f  c B

bifunctional antibody fragment °a and nonspecifically bound (B) fragment ca is injected 
into the capillary. Here i and j represent the steps in the radial and axial directions. The 

steps in the radial direction have been made to start from the outer surface of the 
membrane. Note that the concentration is based on the void volume, though plotted

uniformly. The time is 60 s.



APPENDIX A.

REACTIVE SYSTEM
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In the capillary

5 0 f  W C e \  b d®fa b r ^ d$ fa r 1 5 5 ' f— — + f  (c ,%)P + p e .g ( ^ ) - r f -  = [ ~ — ^ ~ r r  + - ^ 7 T ] dr  5£ 5 t  t  5 t  5 t  5C

-  D a r t  -  e !  ]K .

(A.1)

80[
5r

50B 1 5 „ 5 0 B 520 B 1
+13 e.g (t) = d . [ - — t  + D a[6f  — — 0 B ]

5 t  t  5 t  5 t  5C a K A a

(A.2)

In the tissue

5fif 5 fif 1 5 5Qf 5  2fif 1
^  + p e h (t ) ̂  = d1[1 -  Da[df  -  —  0B ] 
5r ^  ' 5 t  t  5 t  5 t  5C a K A a

-  D a

5 t  1Lt  5 t  5 t  5 C2

(b - e b ) e f - — e b\ m ax a f  a - r ^ ' aK A

(A.3)

801
5r

50 1 5 „50B 520 B 1
+ P e.h(t)— ^  = d2[ - — £ - ? -  + — H  + Da[0 f  - — 0 Ba ]

5 t t  5% 5 t  5C K„

(A4)

50:
5r

= Da (b - e b) e f  — 1y max a j  a k -0 b

(A.5)

where Pe has been retained as 15, and using the diffusivity of a free BFA < V „ >= 0.0236

kfr.2cm/s. g(£) and h(^) are given below Eq. (4). The Damkohler number Da = where D 

is the diffusivity of BFA. in the capillary and is the ratio between reaction and diffusion =

k f
__a

k
1.061*10-5, a very small number. KA = —  is the reaction constant = 2.86. Further, d  is

B

the ratio of the diffusion coefficient of BFA bound to HSA to D and equal to 0.0020. 

This allows us to ignore the reaction term in Eq. (A-1) and replace (A-2) with reaction 

equilibrium.
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The Eqs. (A.3) - (A.5) apply to the extravascular tissue. The Damkohler number

k f 'c r 2for the specific reaction is Da' = ——°-J—=1.019 and also low. Its equilibrium constant
D

, k'f  c
Ka = a ,-  = 376. This is the only large number in the system. The diffusion ratios are

ka

d1 the ratio between the diffusivity of BFA. in the tissue and in the capillary and is equal 

to 0.0020 for liver and 0.064 for the tumor; d2 is the ratio between BFA bound to HSA in 

the tissue and diffusivity D equal to 0.00045 for the liver and 0.119 for the tumor. These 

are all small numbers with the exception of the last one. Consequently, we can ignore the 

reaction terms in Eq. (A.3) and assume reaction equilibria instead of Eqs. (A-4) and (A- 

5).



LINEAR RESPONSE THEORY

APPENDIX B.
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If Rs is the response to a Dirac delta function S (t), then the response to 

any input ^(t) is given by
t

R  = J  R g(t - 1' )  - ^ ( t ' )  d t '

0

(B-1)

under the linear response theory. So the response to a Heaviside step function 

H(t) where

H (t) = 0 for t < 0 (B-2)

H (t) = 1 for t > 0 (B-3)

Taking Laplace transforms of Eq. (A-1)

R  =  R s 4  <B"4)

where overbars indicate transformed quantities. The Laplace transform of H  = 1/s that 

results in the present case of

-  -  1 (B-5)
R h  = R s  - -  

s
In the case of finite dosing, the input is H(t) -  H(t-t*), and under Laplace transform, it

gives us

R * = Rs.(1/ s - e- **/ s) (B-6)

where t*is the dosing time. Eliminating Rs between the two A-5 and A-6  we have

R = Rh - 1 -  e- (B-7)t s

For small values of t* will be

which on inversion gives us

R = t * sRH

R * = t “ — R 
dt

(B-8)

(B-9)
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ABSTRACT

Delivery of a solute to different parts of the body is studied using a stirred tank 

model, a lumped systems model that cannot differentiate spatially distributed features. 

The distributed model in the Krogh cylinder model focuses on a capillary which is the 

only blood vessel that permits the transfer of solute and plasma through the walls. 

Previously, we could not show the appropriate transcapillary pressure drop and some of 

the circulations that is seen around the cylinder. The fluid flow in the short distance of 

capillary and peripheral space has been corrected here. The new velocity profiles inside 

the capillary and the extravascular tissue have been used to obtain a solute penetration 

into the extravascular tissue for both binding and non-binding solutes. In the model, all 

parameters that are known have been used, and there are no unknown parameters. The 

rate of penetration is low and is determined chiefly by convection. A conclusion is 

reached that we observe that increased convection is what is required for improved drug 

delivery.
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1. INTRODUCTION

A therapeutic drug is inserted into plasma, from where it travels to all organs. As 

the chemotherapy drugs damage all organs and not just the tumor that it was meant for, 

and a targeted drug delivery route is preferred. In one of the procedures, a bifunctional 

antibody (BFA) is first introduced and it eventually attaches itself to the tumor by a 

specific reaction. In the second stage, is introduced the hapten which attaches 

specifically to the other arm of the BFA. The hapten molecule considered below contains 

a radioactive iodine, and the procedure constitutes a case of radiation therapy. A simple 

model for the study of the dynamics is that of Baxter et al (1995) who considered all 

organs to be stirred tanks separated in the middle by a membrane, the capillary wall, 

which separates the capillaries from the extravascular tissue. The plasma and solutes can 

cross from the blood vessels to the extravascular tissue only through the capillary at the 

capillary walls. In the last stage there is only perfusion, which drives out the BFA and 

hapten from other organs. In the tumor, the specific binding takes a longer time to 

dissociate and the radioactivity stays there for a longer time. Using this model Baxter et 

al (1995) were able to match their results to the experimental data obtained using x-ray 

dosimetry. However, the model is a lumped system model that cannot account for how 

the pressures are distributed in space and discounts the large mass transfer resistance in 

the tissue. Quantification of the process needs many parameters that Jain and coworkers 

have provided, and perhaps this is the only system where there are no adjustable

parameters.



The present work focuses on another model called the Krogh cylinder (1999) 

which is a distributed model, and as a result spatially resolved quantities such as pressure 

drops and penetration of the solute into the extravascular tissue can be determined. One 

consequence of applying this model is to include a two-dimensional velocity field and a 

two-dimensional concentration field (Qiu et al., 2019). It was found for the first time that 

the solute transport in the extravascular tissue is dominated by convection, where the 

flow occurs mainly in form of a small loss of plasma to the lymphatic system. The work 

here emphasizes convection, which so far falls a little short of observations. A circulatory 

flow leaves the capillary at the arteriole end and most of it returns at the venule end 

(Guyton and Hall, 2006). The solution to equation of motion and continuity does show 

such a flow (Qiu et al., 2019) but barely visible as it is very low. Consequently, Qiu and 

Neogi (2021) ignored it in their calculations. The main flow is in the form of escape into 

the lymphatic system. However, as their results showed, the flow in general is very 

important to the drug delivery, hence a more informed attempt has been made here to 

account for all of the flow. It is noteworthy that a possible direct contribution of the 

lymphatic system, which acts as a sump, may exist in a way that affects the flow in the 

extravascular tissue.

The walls of capillaries are considered to be the only place where the plasma and 

solute are exchanged with the extravascular tissue. The capillaries form a network that 

are partially random but also follow some simple rules. Instead of looking at the 

network, Krogh looked at a single capillary with a defined amount of extravascular tissue 

around it. The organ is made up of these Krogh cylinders in parallel. This is a cell model 

that avoids looking at the full complex structure and has worked well in many disciplines.

76



The length of capillary is taken to be 200 p.m after many measurements were used to 

round off to that value. Values of other properties have been listed in Qiu et al (Qiu et 

al., 2019).

The flow of plasma in the extravascular tissue is taken to be that given by flow 

through a porous medium, that is a local volume average is used. Similar volume 

average is used in the capillary. The flow of blood inside the capillary is taken to be 6 

mPa.s, same as that of whole blood. It is Newtonian even though the volume fraction of 

red blood cells in the capillary exceed 50%. The red blood cells deform inside the 

capillary as they flow, but stay away from the walls. Thus, there is a lubricating layer of 

plasma near the wall and the net result is that blood acts like a Newtonian fluid, same as 

the plasma.

The permeation through the capillary membrane is split into two parts as the 

results appear to be better if the pores diameters are considered to be bimodal (Baxter et 

al., 1995) following Rippe and Haraldsson (1987). Each group has its own permeability 

and surface area associated with it. It is the penetration of the solute into the 

extravascular tissue that is very slow. As Qiu and Neogi (2021) showed, it is determined 

mostly by the convection. The diffusion of BFA is accompanied by binding, some are 

nonspecific, with an equilibrium constant of about 1 , and some are specific with a large 

equilibrium constant. The specific reaction is applicable only when the solute is BFA and 

the organ is the tumor. The nonspecific reactions have to be specified in a distributed 

system as to whether the bound entity is fully mobile (Qiu et al., 2019) or fully immobile 

(Chauhan et al., 2009). In addition, Chauhan et al (2009) show that presence of 

impermeable cells in the tissue decreases the diffusivity, which implies that the diffusion
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in a tissue should actually be referred to as dispersion. Qiu and Neogi (2021) were able to 

show that the reactions further slow the progress of BFA into the extravascular tissue. 

Hence, any increase of convection in the tissue will be of great benefit.

Below, the fluid mechanics and mass transfer formulated previously, their 

shortcomings and the remedy posed here are discussed below. In that, the project is a 

complex transport phenomena problem, and it addresses the main issue in 

pharmacokinetics of effective drug delivery. Because of their lengths, all mathematical 

details that have appeared elsewhere (Qiu et al., 2019 and 2021) have been omitted. All 

values of constants used for work below have been tabulated on Qiu and Neogi (2021) 

and have not been reproduced here.

2. FLUID MECHANICS

Previously, Qiu et al (2019) assumed low Reynolds number flow of a Newtonian 

fluid inside the capillaries. The problem was expressed in terms of the biharmonic 

equation in stream function

E4/  = 0 ( 1 )

Henceforth, all quantities inside the capillary will be shown with carats. The general 

solution for a cylindrical system is known (Rippe and Haraldsson, 1987). The 

extravascular tissue is modeled as flow through a porous media, using Brinkman

equation. Brinkman equation can be converted to an equation for the stream function

E4/  = k-lE  /  (2 )



79

2 d2 d d2
where k is the permeability and E 2 = — 2 H------ 1-----2 . Here, r and z are the coordinates

dr rdr dz

1 d 1 din the radial and axial directions. The velocities are v = -----w, v = ------w and
r r dz r r dz

1 d 1 dvz = -------w, vz = -------- w . The general solution to Eq. (2) for a cylindrical system has
r dr r dr

been given by Sane (2002). It is noteworthy that yfk / L is a very small number that 

makes the above problem stiff and difficult to solve numerically. Here L is the length of 

the cylinder. The equations are still linear and hence an exact solution is possible. 

Further, the velocities in the extravascular tissue are the superficial velocities.

Besides the tissue and capillary, the volumetric flux of plasma through the 

membrane satisfies

v = LP ( p r -  P\o ~ aAU) (3)

Here r  and r0 are the inner and outer radii of the capillary, Figure 1. Lp is the hydraulic 

permeability, o is the reflection coefficient and An is the difference between the inner 

and outer osmotic pressures taken to be 20 mm of mercury (Guyton and Hall, 2006).

Two measured values were specified. The first is the average velocity of flow 

into the capillary in the Krogh cylinder at 0.1 cm/s. Now, fluid enters the Krogh cylinder, 

but exits at a lower flow rate. The fraction representing the loss is rn. The loss happens 

because the membrane is leaky, and some of the leak finally leaves the Krogh cylinder 

for the lymphatic system. For the liver rn = 10-4 and 0.1 for the tumor. At first one 

feature that was stressed was that the flow need to be contained in the cell but it led to 

some absurdities even though in the main the flow looked reasonable (Sane, 2002). The 

more relaxed conditions did not specify a transcapillary pressure or limits on circulation.



However, instead of a transcapillary pressure drop of 20 mm of mercury only 3.8 mm 

was found which is solely the Hagen-Poiseuille pressure drop in a capillary with 

impermeable walls. The circulation in the extravascular tissue was observed but was 

negligible in magnitude (Qiu et al., 2019). It was suggested that the compliance of the 

capillary walls increased the pressure drop to 20 mm of mercury. That is, practically no 

liquid went past the capillary membrane and thus there was no effect on pressure drop. It 

was suggested that the compliance of the capillary walls increased the pressure drop to 20 

mm of mercury. As mentioned earlier, it is necessary to incorporate the effect of the 

lymphatic system. It can be done in form of forcing the pressure p  on the outer surface of 

the Krogh cylinder to be a low value, but there is some uncertainty as to where this 

pressure is to be located because of the architecture (physiology). The alternative is used 

here is to force the transcapillary pressure drop to 20 mm of mercury and let the pressure 

of the outer surface develop accordingly. In that case one of the earlier boundary 

conditions has to be removed. This is the condition that the tangential velocity is zero at 

the porous medium-capillary membrane interface. There are some indications that flow 

there may not be zero (Beavers and Joseph, 1967). The cross-sectional averaged pressure 

in the capillary < p > at the entrance was set to zero and at the exit to - 20 mm of 

mercury. In addition, only the first coefficient of a series was given a value and higher 

coefficients were set to zeros. It is possible to do a more detailed matching using 

collocation, but the problem was already very large. More details are given below. The
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Z _ Ap  ̂ Ap M _ _
2 an [c2nc5n/0(a^)]cos(aO sdp + ~4^ T ^  + 2 <T)

n

2 a^Ap*

(4)

(2« -  0
+ s 3pp0

and the average is

< P >=  ^ 4  anc2 c5
i i (aO

K
, 7, 3 AP*( , AP*" r2 , AP * "(2cos(a< > dp -----—  + + '

(5)

A 8A2 2A2

2 a^Ap*
(2 a - ^ i) + s 3pp0

where

Po
1 . Ap*w r2 Ap*w 2aAp*A

(6)
-An + Ap* + ■

2 s 3pL r  4A2  ̂ 2 ( 2 a - & ) J

c2nc5n are constants of integration where c2nc5n are all zeros for n greater than 1 and 

c2 1c51 = 7.546 X 10-6. po is a constant term and the value is -8.56 mmHg. Here, the 

axial position is Q = sz and the radial position is % = sr where s = 1 h jk  . ^  represents to 

the dimensionless of inner capillary diameter. k is the permeability of the porous

extravascular tissue. Ap* is from Hagen-Poiseuille equation Ap* = 8 < Vzo 2> ^ L

resistance to flow in the porous medium
a = ------------------------------------------------------ = L„sp

resistance to flow across the capillary wall F (7)

r

where Lp is the hydraulic coefficient of the capillary wall. We have considered the flow 

in the model of liver and tumor. The properties of tumor were determined from a 0.7 g 

tumor grafted in mice, but scaled up to 20 g in humans (70 kg) and considered to be 

homogeneous as have Baxter et al (1995).
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3. MASS TRANSFER

The sequential procedure for drug delivery considered by Baxter et al (1995) is 

simplified because to analyze the mass transfer, it is necessary to solve partial differential 

equations. At first, only the introduction of hapten is considered. It is taken to be inert 

and presents the base case of how fast the penetration is into the extravascular tissue.

The governing equation is

dG 
—  + 
d r

v_
P  e

< Vzo > dC
+ e M

< Vo > ^

/V /V /\

a 2e  1 a e  a 2e
----2  +----------+------2a $ 2 $ a$ a C

(8)

in the capillary and
a e  
— + 
a r

Vz P e a
— 1------------- e  +
< Vzo > £ aC

vr P  e a

< Vzo > £ a$
e  = d

a2e  i a e  a 2e
----2  +---------- 1------2a $ 2 $ a$ a C

(9)

in the extravascular tissue where the axial and radial positions now are C = z / ri

and $ = r / r , as opposed to those in Eq. (4). Further, 6  = c / co, r =Dt / r2 , Peclet

v r
number Pe -  D  * , s is the volume fraction not occupied by the cells, the concentration

is e = c / co and co is a reference concentration used throughout. In addition, the

diffusivity ratio is d = D / D . The connection of the intravascular and extravascular fluid 

exchange and the conditions at the membranes are

~ V
(Q.- r

< -v >zo
-P  e - * L )

a$ $=1 0
= ( e . - L . ̂  -  d G

c0D / r < Vzo > £ a$
(10)

$ = r0/ri
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j v_ is the flux that the solute crosses the membrane from the inside of the capillary to the 

outside of the capillary interstitial space, and j v_ = Jv_i / S . The equation below is the 

J v _i is the flow of solute across the membrane in moles per unit time, which is from 

Rippe and Haraldsson (1987) who have presented a lumped system model.

( 1 1 )f

+PSS clf=i '

■l ) cl f=1 + PSl

.1 A
V = r „  / r Pes
R y

Pe se s _

c A
C| __!t lP lL

1̂=1 R
v y

Per
ePeL _ -  +  J S (1 _ * s  ) c|f=1

c

where R is the rejection coefficient equal to 1.0 here, a is the reflection coefficient and 

JL = J iso + aLLy and JS = _ J iso + aSLy , Ly is the lymphatic flow, J o  is recirculation flow

rate in the membrane and aL + aS = 1.0. The membrane has two different Peclet numbers 

in large pores and small pores, PeL = J L (1 _ a L) / PSL and PeS = J S (1 _ <j s ) / PSS .

The hapten is introduced as a step change from 9 = 0 at time t = 0 to 1.0 at the 

entrance. Eventually the hapten penetrates the extravascular tissue and the holdup is 

given by

F  = -
2

(Z2 _ £ 2)A
JJ

4=4i ,z&̂=0,a
( 1 2 )

which is a function of time t. Here, Z = R / r  for the boundary of tissue. The present

formulation is same as our past one except for the fact that the velocities are two 

dimensional in the extravascular tissue and all velocities are those that have been 

calculated in the previous. The solution is obtained by finite difference, forward time and 

central space. Only the liver and tumor are considered here, as before.
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We separately analyze the case where BFA is introduced into a fresh Krogh 

cylinder. There are two species in the capillary, BFA free and BFA non-specifically 

bound. This non-specific binding has been considered fully mobile, 1: 1 and the molecule 

that binds has all the properties of human serum albumin (HSA) if not the HSA itself. 

Now these come a long way before entering the liver or the tumor. As a result we 

assume that equilibrium binding has been reached and continues that status even 

afterwards. In the capillary, we assume that the total concentration of BFA is injected 

co = cf  + cB . cb will only be present on the tissue side, represents the BFA binding it with

specific sites in the tumor, Cf and CB are the BFA solute in the plasma flow. The 

resultant balance equation and boundary conditions are

10/ =
1 + K„

0B = ■ K a

(13)

(14)
1 + K a

at the entrance Z = 0. In the above equations, KA = k f  / kr is the equilibrium constant.

As noted earlier, the values of parameters used and their sources have been tabulated 

earlier (Qiu and Neogi, 2021). The governing equations for inside of capillaries,

5 0  o P e 5 0J
+ P e 50o r 1 5 „507 5207

= [TT7 Z +
5t < vzo > 5£ < vzo > 5Z Z 5Z 5Z 5£ -]

O  = k aO

(15)

(16)

and in the tissue

50J- + -
5t < v >

P e
5Z

1 5 „50f  5 0
=4 I - — Z - + -

Z5Z 5Z 5C
(17)

z r
2

v
]r
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o b  =  k a O

o ‘  = K "  K  e f  /[1+ K  6 >  ]

In order to understand the speed with which the specific sites have reacted,

A R

j f O  2^d{dC
F  =1 BFA

0 &

*( R2 - £ > m ax A

is calculated.

(18)

(19)

(20)

4. RESULTS AND DISCUSSION

First we look at the fluid mechanics, and look at the changes brought about by 

forcing a transcapillary pressure drop of 20 mm of mercury. In Figures 1(a) and 1(b) are 

illustrated the radial velocity vr and the axial velocity vz of the fluid flow in the liver in 

the extravascular space. The first has not changed much but vz has increased by two 

orders of magnitude over our earlier work (Qiu and Neogi, 2021) upon forcing a 

transcapillary pressure drop of 20 mm of mercury. Note that Vz, does not affect Vr which 

flows outward with no apparent variation with the axial direction. The pressure in Figure 

1 (c) is high on the entrance side of the extravascular tissue, as a lot of plasma rush out, 

but only a small amount is allowed to leak into the lymphatic system, that is leave the 

Krogh cylinder. The convection fluid loss after the reabsorption through the vessel wall, 

is the loss to the lymphatic system, which is rn in here (Guyton and Hall,



(a) (b)

Figure 1. (a) Vr in the liver tissue, (b) Vz in the liver tissue, (c) pressure in the liver tissue
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2006; Dewhirst and Secomb, 2017). As a result, there arises a stagnation pressure, which 

is the conversion of kinetic energy into pressure energy as most of the plasma that tries to 

get out is stopped. The pressures here are very large. It is probable that both the 

transcapillary pressure drop and rn are smaller in a real 20g tumor. This is not an artifact 

of the model. If we have two capillaries in parallel and this outward flow which result in 

a head on collision in the midspace, and stagnation will arise.

Inside the capillary, the axial velocity profile is nearly parabolic as in Hagen- 

Poiseuille flow, the radial velocity increases by one order of magnitude over our previous 

result (Qiu and Neogi, 2021). These figures are not been shown as they do not present 

significantly new result.

In Figures 2(a) -  (c) are shown the flow features in the extravascular tissue in the 

tumor. The flow out to the lymphatic system here is higher by three orders of magnitude 

over the liver. As a result the radial flow out in the Figure 2 (a) is higher by three orders 

of magnitude. The axial velocity in Figure 2 (b) increases by two orders of magnitude 

over our previous work, however, is capable of showing negative values. There are two 

vortices here. The first one is the anticipated one where the plasma leaves the capillary at 

the arteriole end and returns at the venule end. Here we see an additional circulation 

where fluid enters from outside from the venule end and leaves at arteriole end, all that 

the far end of the tissue. This flow is a lot weaker. Further, the pressure build up in 

Figure 2(c) is very high probably because of higher flow in the tumor. In an 

inhomogeneous tumor, the large pressures are actually observed and attributed to the 

damage in the lymph ducts which also cause stagnation (Netti et al., 1996). Some 

capillaries in the tumor are collapsed under the elevated of solid stress, and the blood
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Figure 2. (a) Vr in the tumor tissue, (b) Vz in the tumor tissue, (c) pressure in the tumor tissue
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flow is limited (Chauhan et al, 2013). The pressures here are very large. It probable that 

both the transcapillary pressure drop and ro are smaller in a real 20 g tumor.

Shown in Figures 3 and 4 in the liver and tumor respectively, are the holdup of 

the hapten which is taken to be an inert. The rates of increase due to improved 

convection in the extravascular tissue is an order of magnitude larger in the liver and 

more than two orders of magnitude larger in the tumor due to higher convection over our 

previous work. As before, the constant rate of increase with time, show the importance 

of flow in the radial direction in the tissue, Vr, as the main source of mass transfer in the 

tissue.

Figure 3. Hapten holdup in the liver tissue as a function of time (s).
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The uptake of BFA which reacts, is shown in Figure 5. It is seen that a constant 
rate of increase is observed at a longer time, but is still faster than in our earlier results 
due to increased convection. In addition, if non-specific binding to immobile molecules

Figure 4. Hapten holdup in the tumor tissue as a function of time (s).

or tissue is considered, that the time in Figure 5 need to be increased by a factor of 
(1+K*) where K* is proportional to the equilibrium constant of the non-specific reaction. 
To be sure, all the solute molecules are large and heavy and have very low diffusivity. At 
the other end Krogh (1919) worked with diffusion of oxygen with consumption into the 

tissue and found that the entire tissue could receive oxygen. Here the diffusivity is very 

high and no consideration of convection is probably justified. The matter may also 

change when we look at inhomogeneous tumors (Pluen et al, 2001). The details at the 
concentrations are shown in Figure 6 and shows more penetration than before.
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Figure 5. Specifically bound BFA holdup in the tumor as a function of time t (s).

Figure 6. The concentration of in tissue at time 60s after the mixture of free 
bifunctional antibody fragment cf and nonspecifically bound (B) fragment cBa is injected
into the capillary. Here i and j  represent the steps in the radial and axial directions. The 

steps in the radial direction have been made to start from the outer surface of the 
membrane. Note that the concentration is based on the void volume, though plotted

uniformly. The time is 60 s.
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5. CONCLUSIONS

The Krogh cylinder model used here contains all the suitable variables and 

physicochemical parameters. The mass transfer algorithm has involved the convection 

flow with the solution perfusion and retention in the Krogh cylinder model extravascular 

space. They show that the penetration rate of a solute depends mainly on the flow and is 

very low. Some additional measures need to be taken to increase the rate of perfusion. 

The result indicates the convection has an essential role in drug delivery.
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SECTION

2. CONCLUSIONS AND RECOMMENDATIONS 

2.1. CONCLUSIONS

This dissertation has provided the comprehensive theoretical studies and 

presented the simulation of fluid and mass transfer in Krogh cylinder. We have indicated 

the convention of fluid dynamics in the extravascular space. The combination of Krogh 

model and plug flow reactor (PFR) is applied for the pharmacokinetic model. The dosing 

time in single capillary model showed in mathematical. The result of the theoretical 
model is capable to estimate the relationship the fluid exchange in microvascular.

To draw a conclusion, we based on the continuity and momentum equations to 

simulate the blood fluid flow in the intravascular space, and the continuity equation and 

Brinkman equation govern the interstitial fluid flow in the extravascular space is the first 
step. The fluid flow in the interstitial space leak to the periphery of the outer cylindrical 
model owing to the lymphatic system is applied, and the convection in the extravascular 
space can present. The fluid flow for the microvascular space has mimicked a realistic a 
single capillary microvessel system.

The study of the pharmacokinetic model in particular organ used to use the stirred 

tank model, which calculate the concentration in the blood stream. The second step of 
research is discovery a plug flow reactor in single capillary from the stirred tank model in 

Jain’s experiment (Baxter et al, 1995). The mass transfer of pharmaceutical solute in a 
microvessel applies in fluid exchange model. The result shows the solute penetrate from



the intervascular space and cross the capillary membrane to the tissue side. The 

convection appears in the extravascular space even it is small. The macromolecular of 
bifunction antibody has smaller penetration rate than the micromolecular of hapten.

We two major missions in final step, the first is edit the capillary pressure and re­
defined the fluid mechanics, and the second mission is that combine the above two 

simulation model. The sub-compartment model in pharmacokinetics used to approach the 
summarized of pharmaceutical solute concentration versus time. The dynamics of drug 
deliver has considered here. These studies are based on the organ of the intervascular and 

extravascular compartment model (CM) and convert to a single capillary the plug flow 

reactor in the Krogh cylinder model. We interpolate the experimental data and apply it to 

the empirical formula to estimate drug distribution concentration with time. The CM does 
not include the mass transfer resistance, and the Krogh model lacks the pressure drop 

information. Our model simulation has presented fluid flow in the short distance of 
capillary and peripheral space, which analyzes the axial and radial direction in the Krogh 

cylinder model. The fluid model in the capillary accord with the physiology behavior has 
redefined some conditions in previous studies (Qiu et al., 2019) and applied with the 20- 
mmHg capillary pressure to the intravascular space has been mimic simulated and 

examined the extravascular space pressure dynamic in the liver extravascular space. 
However, the result of pressure in the tumor extravascular space is too high. Perhaps the 
0.7 g tumor in the mouse is heterogeneous. The reality tumor has a complicated 

circumstance, and the tumor tissue may have different vascular shunts, necrosis, and high 

interstitial fluid pressure. Our model could find out the different observations to maintain 

the 0.1 cm/s velocity and 20 mm Hg in capillary cause the high IFP in extravascular
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space. The above result of the fluid mechanism was added to the mass transfer study.
This study has also considered two solute travel cases in the intervascular and 

extravascular space: non-reactive system with hapten and reactive system with 

bifunctional antibody (BFA). The mass transfer algorithm results have involved the 
convection flow with the solution perfusion and retention in the Krogh cylinder model 

extravascular space and indicate the convection has an essential role in drug delivery.

2.2. RECOMMENDATIONS

The dissertation has provided a base fluid exchange theoretical simulation method 

and model in single vessel and its surrounding tissue. The effect of capillary pressure and 

extravascular space pressure is largely unknown. In order to support and verify the 
simulation model of intervascular and extravascular space in the tumor tissue, the 

detailed experimental data are required. It is important step to discover the fluid dynamics 
in microenvironmental. The result could develop to allometric scaling or multi parallel 
capillaries structural to an organ, such as the profile of partial pressure in the organ. It 
also makes it important in the future to study the flow more closely to obtain higher 
amounts of convection in keeping with discussions in physiology.
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APPENDIX

THE SHORT BIOGRAPHICAL OF SCHACK AUGUST STEENBERG KROGH

August Krogh was from Denmark, where he was born in November 1874, and 

received the Nobel Prize for Physiology or Medicine in 1920. His scientific life is 

devoted almost fully to the study of capillary.

In his youth, he made an important discovery that the relationship that played the 

key role of regulation of CO2 in atmosphere was the ocean, which assisted in studying the 

mass transfer process between oxygen and the CO2 in the physiological systems.

Krogh has a significant contribution that studied the mechanism of above gas 

exchange. The capillaries are connected between the arteries and veins. The walls of the 

capillaries are very thin, made with only a layer of flat endothelial cells. The capillary 

diameter is small, the blood flow is very slow, and the permeability is large, which is 

beneficial to transfer of oxygen and nutrients in the blood, cells, and tissues. The 

metabolites are exchanged between the extravascular tissue and the capillary.

Krogh created a new direction in capillary research and in that he studied all 

aspects including neurotransmission and muscular control. He presented his studies in 

seven lectures at Yale University which is available in form of a book: The Anatomy and 

Physiology o f Capillaries, Yale University Press, New Haven, 1922.

Krogh has another important contribution in insulin. His wife, Marie Krogh, had 

diabetes. Krogh learned the extraction of insulin from Banting (Banting, F.G., 1891­

1941) a Canadian surgeon, and returned to Copenhagen with production permit and
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healed his wife's illness. The insulin produced in Denmark was used to treat patients in 

March 1923. This was the beginning of Novo Nordisk's business. He was helped in this 
venture all through by his wife.
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