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ABSTRACT

This research discusses stochastic models for a microgrid operating between stan­

dalone and grid-tied modes. The transitions between different modes are modeled as a 

continuous-time Markov chain (CTMC). In each operating mode, the system is modeled 

using conventional differential algebraic equations (DAEs), linearized around some equi­

librium point.

In Topic-I, a model is developed using the Stochastic Hybrid Systems (SHSs) formu­

lation. The microgrid is modeled as a Markov jump linear system (MJLS), which is a type 

of SHS in which the discrete events evolve according to a Continuous Time Markov Chain 

(CTMC). The model allows for the derivation of Ordinary Differential Equations that rep­

resent the evolution of the conditional moments of the stochastic system, and subsequently 

the derivation of a matrix representation of these ODEs. The validation of the model relies 

on comparing numerical results obtained from the simulation of the IEEE 37-bus microgrid 

system to the conventional averaged Monte Carlo simulation.

The jumps in Topic-I are impulsive and large overshoots can occur. In Topic- 

II, a jump-diffusion model is developed based on a stochastic differential equation with 

jumps. The Jump component is modeled as a compound Poisson process, and the resulting 

conditional moments converge with greater accuracy to the Monte Carlo simulation results. 

A key advantage of this method is that it is far less computationally expensive than the 

conventional averaged Monte Carlo simulation.

To analyze the stability of the jump-diffusion model, methods based on the mean 

square stability are used in Topic-III. The jump-diffusion model is converted into a martin­

gale to allow for the use of the Burkholder-Davis-Gundy (BDG) inequality. The method 

consists in computing the quadratic variation process and using the BDG inequality to 

derive bounds on the conditional moments of the system.
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1. INTRODUCTION

1.1. MOTIVATION AND OUTCOME OF THE RESEARCH

The control of microgrids to ensure operational stability is of high interest for 

power engineers. Conventional techniques associated with the control of the main grid 

face challenges when applied to microgrids because of the randomness and sometimes the 

abruptness of the dynamics of microgrids. To develop an appropriate control scheme, a 

robust model of the microgrid is necessary, as well as stability criteria that apply to the 

stastistics of the system. Models based on Markov Jump Linear System (MJLS) combine a 

conventional dynamic representation of a microgrid with some random behavior that could 

include variations of the Wiener type and a Markovian random switching behavior. These 

models are derived in this dissertation and the resulting statistics are used to analyze the 

stochastic stability of the system.

The MJLS is a class of stochastic hybrid systems that consists of multiple linear 

modes representing the evolution of the states {X*- = AiXi, i = 1 , . . . ,N }, for which the 

modes i are chosen stochastically following a continuous-time Markov chain (CTMC). 

For a microgrid, the system is considered to operate in some linear mode, with states 

experiencing linear variation of limited amplitudes around some equilibrium point. The 

switching mechanism corresponds, for instance, to random changes in the load or in power 

generation. In some cases and in the absence of adequate control, this non-linear and random 

behavior is susceptible to cause unit outages and transmission line faults. The model in 

Paper I borrows from the SHS's formulation and presents an MJLS with impulsive jumps 

in the dynamic states. Such model was used in [6] for a system subject to stochastic inputs, 

while the dynamic states were constrained to a linear behavior about a unique equilibrium 

point. In this study, the dynamics states evolve linearly around an equilibrium operating 

point but are also allowed to switch (or jump) between distinct operating points. When the
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jump sizes are not bounded, the resulting impulses could be detrimental to the dynamics 

of the system. Paper II introduces a mean of constraining the jump size, based on the 

assumption that the system spends most of its time in a finite number of stochastic modes 

and barely in the transition between any two of them.

The modeling of the jump size is critical to accurately represent the transition 

behavior of a switching system.

1.2. ELEM ENTS OF STOCHASTIC THEORY

The development of the microgrid stochastic models discussed in Papers I to III 

relies heavily on the terminology and concepts of the stochastic theory. These concepts 

may not be familiar to electrical and power system engineers. They are introduced here 

to provide a basic understanding of the conceptual framework used in Papers I to III. The 

definitions below are borrowed for the most part from [11, 28, 30, 29] and are presented 

here in a simplified way without all the complexity of the mathematical framework they 

were developed in.

1.2.1. Probability Space. All models developed in this study are based on the 

assumption that there exists an underlying probability space (Q, A , P) where: (i) Q denotes 

the sample space, that is the set of all possible outcomes of a random experiment; (ii) A  

represents a collection of events (a family of subsets of Q), also called a sigma-algebra; and 

(iii) P  is a function such that P(A ) represents the probability that an event A occurs, with 

0 < P(A ) < 1 and P (Q ) = 1. P  is also called a probability measure.

1.2.2. Stochastic Process. A stochastic process with respect to a state space is a 

collection of random variables X = {X (t), 0 < t} defined on the same probability space 

(Q, A , P ) . The state space is usually the set of real numbers R. A trajectory, also called 

a sample path of the process X (t) is the mapping t ^  Xt (m), for every fixed m e Q. This 

thesis is interested in real-valued, multi-dimensional stochastic processes, X (t) e Rd.
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1.2.3. Filtration. A filtration on a probability space (Q, A , P ) , is an increasing 

family A = {A t, 0 < t} of sub-sigma-algebras of A . The concept of sub-sigma-algebra 

means that for each t , A t is a sigma-algebra included in A  and if s' < t , then A s c  A t. A 

probability space endowed with a filtration A is termed a filtered probability space and is 

represented as (Q, A , A, P ).

1.2.4. M oments of a  Stochastic Process. The expectation of a random variable X, 

denoted by E (X), is defined as the integral of X with respect to the probability measure P

E  (X) = f  X d P  (1.1)
J  Q

where Q is the sample space of the probability space (Q, A , P )  the random variable X is 

defined on.

The pth moment of a stochastic process X (t) is defined by

p p = E  (X p) (1.2)

where p  > 1. The process X (t) is said to have a finite pth moment if E (|X |p) < to. When 

p  = 1, we obtain the mean or the expectation of X

p  (1)(t) = E (Xt) (1.3)

and when p  = 2, the pth moment corresponds to the moment of the second order

p  (2)(t) = E (X2) (1.4)

The variance of X is calculated from the first and second moments as

var (Xt) = E [(Xt -  p (1)(t))2] (1.5)
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For a random vector process X = (X \,...,X d ) defined on a probability space 

(Q, A , P ) , the pth moment of X is defined as

p (p)(t) = p (P1, - , Pd)(t) = E
r dnxr
L i= 1

(1.6)

where p i > 0 are integers such that £ d=1 p i = p. The mean or expectation of X is defined 

as the vector

E [ X  = E [ Xi] = p (1,0,...,0) ,..., E [Xd] = p (0,...,0,1) (1.7)

The covariance matrix of X is the (d, d)-matrix

c  = Cl} = E [(Xi -  E [ Xi ]) (Xy -  E [ Xy ])], i , j  = 1 ,.. . ,d  (1.8)

1.2.5. Conditional Expectation. The concept of conditional expectation is widely 

used in stochastic theory. Let X be a stochastic process defined on a probability space 

(Q, A , P ) , and let S  be a sub-sigma-algebra of A . The conditional expectation of X with 

respect to S , denoted by E (X |S) is defined as

I E (X |S ) M dPM  
J Q

I X (m)dP(m)
Q

VQ (1.9)

where m e Q, and Q is the sample space.

1.2.6. Maximal Process. For a stochastic process X, the corresponding maximal 

process is defined as

X  = sup | X, |
s<t

(1.10)
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The maximal process is an increasing process. It can be seen that if s < t then X* < X*. 

Figure 1.1 shows a plot of a random process and its maximal process.

Figure 1.1. Process X and its maximal process

1.2.7. Quadratic Variation Process. The quadratic variation process of a stochas­

tic process X , denoted by [X, X] or [X] = {[X]t , t  > 0}, is an increasing process defined 

as

[ X ] t = lim [ X] h,t (1.11)
h^0

where [X] h,t is the approximate quadratic variation defined as the sums of squared incre­

ments of the process X

it
[X] h,t = X  (Xtk _ Xtk_i )2 (1.12)

k =1



6

In 1.12, -qt is an integer such that

= max {k e N  : tk < t} (1.13)

and

{tk = kh : k e {0,1,...}} (1.14)

represents an equidistant time discretization.

1.2.8. Total Variation Process. The total variation process of a stochastic process 

X , is the limit in probability as h ^  0 defined as follows

A process is considered being of finite total variation if limh^ 0 J]k= |Xtk -  Xtk-11 < to.

Next, to illustrate the definitions above, examples of some of the most fundamental 

stochastic processes are presented and some of their properties described.

1.2.9. Wiener Process. The Wiener process is a continuous time stochastic process 

with stationary independent increments. The random increments of a Wiener process, 

Wtk -  Wtk-1, k e {1 ,...,n }  are independent for any sequence of times t0 < t1 < ... < 

tn+1, Vn e N . The stationary property implies that the increments Wtk -  Wtk-1 have the same 

distribution as Wh -  W0, Vh > 0 and t > 0. A formal definition for the Wiener Process 

from [28] is provided as follows: the Standard Wiener process W = {Wt, t > 0} is defined 

as an A-adapted process with Gaussian stationary independent increments and continuous

him V |X , , -  Xtk-11
h^0 k =1

(1.15)
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sample paths for which

W0 = 0, u (t) = E(W t) = 0, (t) = Var(Wt -  Ws) = t -  s, Vi > 0 and s e [0, t]

(1.16)

The Wiener process is very important in Stochastic theory. It is used to build more 

complex stochastic processes like martingales. It is used for instance to model noise in 

electronics or random variations (of limited magnitudes) in the dynamic states of a power 

system model.

The trajectories of 10 samples of a standard Wiener process are shown in Figure

1.2. To compute the mean and variance, 100 trajectories are used. According to 1.16, the 

standard Wiener process should have mean zero and variance t -  s and this is illustrated 

in Figure 1.2 . For a high number of trajectories (1000+), the variance is expected to be a 

straight line coinciding with the x -  axis as in the definition of a standard Wiener process.

The total variation and the quadratic variation processes are plotted in Figure 1.3 

based on a Matlab code described in [29]. It can be seen that the Wiener process has an 

unbounded total variation and a bounded quadratic variation.

1.2.10. Poisson Process. The standard Poisson process is the most elementary and 

useful jump process. It is a counting process and has jumps of size +1 only. A formal 

definition from [28] is as follows: a Poisson process N = {Nt, t > 0} with intensity A > 0 

is a piecewise constant process with stationary independent increments with initial value 

N0 = 0 such that Nt is Poisson distributed with intensity A, that is, with probability

P (N t -  N s = k ) =
e A(t s)(A(t -  s ))k 

k!
(1.17)

for k e {0,1,...}, t > 0} and s e [0, t].
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Figure 1.2. Sample trajectories of a Wiener process

Simulated QV 
Theoretical QV

Simulated QV 
Theoretical QV

0 2000 4000 6000 8000 10000
Number o f steps (Fixed time interval: Is)

0 2000 4000 6000 8000 10000
Number of steps (Fixed time interval: Is)

Figure 1.3. Wiener process total variation and quadratic variation processes
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As a counting process, the number of events occurring up to a time instant t is 

represented by

P (Nt = k ) = g -(( t)k (1.18)

The mean of a standard Poisson process N with intensity A

p  (t) = E (Nt) = At (1.19)

and the variance

° Nt (t) = Va r (N t) = E [(Nt -  p (t))2] = At (1.20)

The process Nt = Nt -  At is denoted as the compensated Poisson process and has a 

mean value of E (Nt) = 0.

On the other hand, a compound Poisson process is also a counting process but with 

random jump sizes. It can be constructed as Y = {Yt, t > 0}, with Y0 = 0 and

Nt
Yt ^  Zk (1.21)

k=1

where Nt is a counting Poisson process with intensity A, and Zk represents the jump size 

at the jump time r k. Figure 1.4 shows trajectories of a standard Poisson process and a 

compound Poisson process. According to the definition of the Poisson process, the number 

of jump events should be equal on average to the intensity, A. It can also be seen that 

the jump size of the standard Poisson process equals 1 and that of the compound Poisson 

process is random.
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Time (s)
(a) Sample trajectory for a standard Poisson process

Time (s)
(b) Sample trajectory for a compound Poisson process

Figure 1.4. Sample trajectories of a Poisson and a compound Poisson processes

1.3. CONTRIBUTION TO DATE

This work uses techniques and concepts that apply to the stochastic theory and the 

financial modeling to develop stochastic models for a microgrid operating in grid-tied and 

standalone modes and analyzes the conditions of its stability.

Paper I develops a model for a microgrid in the SHS framework. The resulting ODEs 

representing the conditional moments are put into matrix form, and analytical solutions of 

the statistics of the system are computed. The paper also describes an algorithm based 

on the Gillespie method to accurately generate mode sequences for the underlying Markov 

Process of the switching process. To validate the model, comparison is made with the 

averaged Monte Carlo simulation. The Monte Carlo method turns out to be computationally, 

prohibitively expensive compared to the MJLS method. A limitation of the model is the 

impulses observed in the states during switching events that would make it difficult to 

control system dynamics. These impulses were observed during the Monte Carlo and are 

not present in the analytical solutions of the conditional moments.
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In Paper II, the model in Paper I is improved with the addition of a Wiener process 

and an appropriate jump modeling to improve switching behavior. The procedure begins 

with a Stochastic differential equation with jumps where the jump term is represented by 

a compound Poisson process. Then, a method to derive a matrix representation of the 

systems of ODEs representing the evolution of the conditional moments is derived. The 

model yields improved system dynamics with higher convergence of the analytical solutions 

to the averaged Monte Carlo simulation . As in Paper I, the model is validated through the 

analysis of the modified IEEE 37-bus microgrid system.

Stability analysis is conducted in Paper III, using the statistics of the system derived 

in the jump-diffusion model of Paper II. The SDE with jumps is transformed into a com­

pensated SDE to allow for the use of the martingale inequalities. The method allows for 

the computation of the quadratic variation process of the compensated Poisson stochastic 

integral. The mean-square stability criterion is applied to the quadratic variation process 

and bounds on the conditionals moments are derived using the Burkholder-Davis-Gundy 

inequality for martingales.
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ABSTRACT

The analysis of power system dynamics is usually conducted using traditional 

models based on the standard nonlinear differential algebraic equations (DAEs). In general, 

solutions to these equations can be obtained using numerical methods such as the Monte 

Carlo simulations. The use of methods based on the Stochastic Hybrid System (SHS) 

framework for power systems subject to stochastic behavior is relatively new. These methods 

have been successfully applied to power systems subjected to stochastic inputs. This study 

discusses a class of SHSs referred to as Markov Jump Linear Systems (MJLSs), in which 

the entire dynamic system is jumping between distinct operating points, with different 

local small-signal dynamics. The numerical application is based on the analysis of the 

IEEE 37-bus power system switching between grid-tied and standalone operating modes. 

The Ordinary Differential Equations (ODEs) representing the evolution of the conditional 

moments are derived and a matrix representation of the system is developed. Results are 

compared to the averaged Monte Carlo simulation. The MJLS approach was found to have 

a key advantage of being far less computational expensive.

mailto:gmhn7@umsystem.edu
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1. INTRODUCTION

The objective of this paper is to analyze a microgrid using advanced techniques 

that apply to Markov Jump Linear Systems. The system under study is a modified IEEE 

37-bus power system where seven inverters were added at selected buses [1] to represent 

Distributed Energy Resources (DERs). The application of stochastic methods to the analysis 

of microgrids has gained increased attention with a lot of research papers focused on the 

control and stability analysis of power systems subject to random disturbances [2, 3, 4]. 

However, previous works did not consider large signal disturbances such as those resulting 

from a microgrid switching between different operating equilibrium points.

In this paper, a microgrid is defined as a small-scale power grid that can operate 

independently or collaboratively with other small power grids [5]. This architecture based 

on the use of microgrids in a power system is also known as distributed, dispersed, de­

centralized, district or embedded power generation. Any small-scale and localized power 

system that includes localized generation resources and, but not always, storage capability, 

with well defined boundaries can be identified as a microgrid. In the case a microgrid 

is allowed to integrate with the main power grid, it is referred to as a grid-connected or 

hybrid microgrid. Typically, power production in microgrids is supported by generators 

or renewable energy systems such as wind and solar resources, and when integrated with 

the main grid they provide backup power or supplemental power during periods of heavy 

demand. This strategy provides redundancy for critical and essential services and makes 

the main grid more immune to temporary disasters [5].

In real-time operation, the control of distributed energy resources in a microgrid and 

the preservation of an adequate system inertia pose significant challenges to the stability 

of microgrids' operation. This is particularly true in the absence of a stiff grid, when a
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microgrid is operating in standalone or islanded mode. Because of the combination of 

factors such as low microgrid inertia, limited power storage capability and tight coupling 

among various elements in the system, fluctuations in the output power of distributed energy 

resources or changes in local load may lead to power quality or frequency/voltage stability 

concerns [6]. For example, if an important load is switched on and off, frequency and 

voltage may change dramatically, and could even result in a collapse of the entire system. 

Additionally, with an increasing penetration of microgrids, the main power grid could face a 

similar challenge when subject to active/reactive power injections resulting from a random 

coupling and decoupling of multiple DERs [2].

To characterize the randomness in system operation as described above, methods 

based on Stochastic Hybrid Systems were proposed [2, 7, 8]. These methods combine the 

conventional power system dynamic model and a stochastic representation. In this study, 

focus is on one particular class of SHSs referred to as Markov Jump Linear Systems. An 

MJLS is composed of two coupled sub-systems [9].

The first sub-system is based on a linearized power system dynamic model. Each 

mode of the stochastic model is mapped to a linear system with continuous state variables. 

These linear systems correspond to continuous-time small-signal models of the microgrid 

linearized around well defined operating points.

The second sub-system is a continuous-time Markov process, which has a defined 

number of discrete states, N , also described as stochastic modes of the Markov process. 

These discrete states correspond to the steady-state operating points of the microgrid. 

Hence, the system is described as “jumping” between different modes (i, j ) at a transition 

rate d iy.

The two coupled models are represented in Figure 1.

The general SHS model framework for a power system is discussed in [2], where 

a power system is subject to stochastic power injections resulting from the coupling and 

decoupling of microgrids. The power system is operating around an identified stable
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Figure 1. Markov Jump Linear System architecture, where each node on the left maps to a 
linear system as on the right.

operating point, only the control variables are randomly switching between a finite set 

of discrete values. The method results in a set of ODEs that describe the evolution of the 

conditional moments of the power system. The integration of these ODEs yield the statistics 

of the dynamic and algebraic states. This method is also used in [7] to predict the influence 

of random load behavior on the dynamics of dc microgrids and distribution systems.

Following a method described in [2], a set of ODEs representing the evolution of the 

conditional moments is derived to represent the dynamics of a microgrid system oscillating 

between distinct operating equilibrium points, with different local small-signal dynamics.

For the system under study, the IEEE 37-bus microgrid, the analysis begins with 

a description of the power system dynamics by standard nonlinear differential algebraic 

equations. Based on the derivation in [1, 10], a total of 225 dynamic states and a collection 

of non-linear equations are identified to represent the microgrid dynamics. These non-linear 

equations are then linearized around equilibrium points, and the result is a 225th order state 

space representation. The system is considered switching between three equilibrium points 

(one grid-tied mode and two standalone modes). Therefore, there are three state space 

representations of the 225th order corresponding to each operating mode. However, the 

linearized system is a two-time scale system that combines fast and slow dynamic states.
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By applying the singular perturbation method [1, 11], slow states can be separated from the 

fast states. The procedure results in a system order reduction to 56 dynamic states. The 

stochastic modelling consists in characterising the random switching of the system from 

one operating mode to another. This switching behavior is appropriately represented as 

a Continuous Time Markov Chain [2, 8, 9]. In practice, this corresponds to including a 

jump term in the state equations to represent jump events at Poisson distributed jump times 

[8]. To solve this combined system (linear dynamics and jumps), there are two possible 

methods: the numerical integration of the system of ODEs representing the dynamics of the 

conditional moments, or the averaged solution of repeated Monte Carlo simulations. The 

solutions obtained using either method represent the conditional moments of the stochastic 

system. This study computes these moments using the two methods mentioned above and 

demonstrates that the MJLS results converge to the averaged Monte Carlo simulations. The 

steps discussed above are represented in Figure 2.

This paper is structured as follows. Section 2 describes the system under study: the 

modified IEEE 37-bus power system. In Section 3, the power system model is cast as an 

MJLS and, using the equations developed in [2, 12], a matrix representation of the system 

is derived for the computation of the conditional moments. In Section 4, the solutions 

to the ODEs of the system dynamics are computed and discussed using the two methods 

described above (MJLS and averaged Monte Carlo simulations). Conclusion and avenues 

for future work are summarized in Section 5. In the appendix, the transition rate matrix of 

the stochastic process, the state vectors for the three stochastic modes of the MJLS, as well 

as the matrix representation of the dynamics of the second moments are presented.

2. SYSTEM UNDER CONSIDERATION

The method developed in this study is applied to the IEEE 37-bus power system. 

The standard IEEE 37-bus system was modified with the addition of seven inverters at 

selected nodes to represent inverter-based DERs. The one-line diagram is represented in
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Figure 2. Analysis steps of a microgrid using MJLS and Monte Carlo simulations

Figure 3, where the larger dots at designated bus locations represent the inverters. Static 

loads are spot loads at various nodes and represent consumers of constant power (PQ), 

constant current or constant impedance. Details of the modified system including the load 

and line parameters are given in [1, 11].

For the purpose of this study, the system is considered switching between the grid- 

tied and two distinct islanded operating modes. The connection to the main power grid is 

made at the point of common coupling (PCC). In the grid-tied mode, all the bus voltages 

and the system frequency are maintained by the stiff main grid. However, in the islanded 

mode, voltage and frequency are controlled by the DERs using the droop control strategy 

[13]. The numerical application considers one grid-tied operating mode, and two distinct
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Figure 3. One-line diagram of the IEEE-37 node distribution test feeder. Large circles 
represent inverters.

islanded (standalone) operating modes. The two standalone operating modes correspond to 

two distinct equilibrium points characterized by two distinct sets o f bus loads and inverter 

settings. A sample of numerical values for the dynamic states of the IEEE 37-bus microgrid 

operating in grid-tied and standalone modes are presented in Table 1. The definition of all 

parameters can be found in [1, 10, 11].

The small-signal model of the overall system was developed in [1, 11] using the 

dq reference frame and resulted in a 225th order system. The derivation of the linearized 

dynamic model is also presented in details in the same papers. Each inverter system contains 

15 states. Load and line models contain two states: the load currents (d, q) and the line
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T a b le  1. S a m p le  D y n a m ic  States E q u ilib r iu m  P o in ts

States Grid-tied Standalone 1 Standalone 2

P  4 ( W  ) 5 0 0 0 8 4 4 4 1 1 6 0 0

Q 4 ( V a r ) 10 0 0 5 2 3 9 7 2 0 1

V22D ( V o l t s ) -9 .9 5 4 -4 2 .6 4 -4 7 .2 9

V22q ( V o l t s ) 2 9 8 .6 2 9 1 .1 2 8 2 .7

S 4 ( r a d ) 0 .0 7 8 6 8 -0 .0 1 7 6 8 -0 .0 3 6 1 5

l 22 -3 5 D ( A ) -0 .3 0 7 -7 .8 6 9 - 1 1 .0 3

I 22 -35 q ( A ) -8 .8 1 6 - 1 7 .1 7 -2 4 .9 0

I l o a d 22D ( A ) 1 .2 6 1 0 .9 7 7 7 0 .8 9 4

I l o a d 22Q ( A ) 2 .2 6 2 .3 7 2 .3 4 4

c u rre n ts  (d ,  q ) .  T h e se  d y n a m ic  states are  p re se n te d  b e lo w  fo r th e g rid -tie d  o p e ra tin g  m o d e

Xinv = [S P

iod

Xload = Uloadj

Xline — O lined[ i li

Q  <fiP <PQ 7 d 7 q i ld i lq

i oq V od Voq (fiPLL Vod,f]

i loadq ] 

i lineq ]

(1)

(2)

(3)

F o r th e is la n d e d  syste m  [ 1 0 ,  1 1] ,  th e in v e rte r states ipP  an d  i pq  in  th e v o lta g e  

c o n tro lle r o f  th e g rid -tie d  syste m  are  re p la c e d  w ith  <pd  an d  <pq in  th e p o w e r c o n tro lle r, 

re sp e c tiv e ly . It  c a n  be sh o w n  th at in  th e tw o  ca se s (g rid -tie d  an d  is la n d e d ), th e system  

m a tric e s  a re  c o m p a tib le  an d  th e re fo re  a tra n s it io n  is la n d e d  m o d e  to g rid -tie d  m o d e (a n d  

v ic e  v e rs a ) c a n  be e n v isa g e d . In  th e sta n d a lo n e  m o d e, <pd  re p re se n ts th e in te g ra l o f  th e e rro r
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b e tw ee n  th e a n g u la r fre q u e n c y  m PLL g en e rated  b y  th e P L L  an d  th e re fe re n c e  fre q u e n c y  m*. 

S im ila rly , p q is  e q u iv a le n t to th e in te g ra l o f  th e e rro r b e tw ee n  th e re fe re n c e  v o lta g e  an d  the 

m e a su re d  q -a x is  v o lta g e  v oq. In  th e g rid -tie d  m o d e, p P  is  th e in te g ra l o f  th e e rro r b e tw ee n  

th e re fe re n c e  a c tiv e  p o w e r P *  an d  th e m e a su re d  a c tiv e  p o w e r P , in  th e p o w e r c o n tro lle r, an d 

P q  is  th e in te g ra l o f  th e e rro r b e tw ee n  th e re fe re n c e  re a c tiv e  p o w e r Q* an d  the m e a su re d  

re a c tiv e  p o w e r Q .

A n o th e r d iffe re n c e  b e tw ee n  th e tw o  o p e ra tin g  m o d es is  in  th e in p u ts  to th e system . 

In  th e g rid -tie d  m o d e, th e in p u ts  are  th e a c tiv e  an d  re a c tiv e  p o w e r re fe re n c e s (P * , Q*).  

H o w e v e r, in  th e is la n d e d  m o d e, th e in v e rte rs  are  d ro o p  c o n tro lle d  an d  th e in p u ts  c a n  be 

d e fin e d  as the b u s v o lta g e s. A s  e x p la in e d  in  [ 1 1 ] ,  to a c c u ra te ly  p re d ic t the e ffe cts o f  lo a d  

p e rtu rb a tio n s w h e n  b u s v o lta g e s are  u se d  as in p u ts, a m eth o d  b a se d  on a v irt u a l re s is to r is  

u se d . T h e  v irt u a l re s is to r w ith  h ig h  re s ista n c e  is  co n n e cte d  at the in v e rte r b u s an d  h as a 

n e g lig ib le  e ffe c t o n  th e system  d y n a m ic s. W ith  th is  m e th o d , the te rm s re la te d  to th e b u s 

vo lta g e s are  in c lu d e d  in  th e system  m a trix .

A n  a n a ly s is  o f  th e d y n a m ic  m o d e l re v e a ls  th e e x iste n c e  o f  a tw o -tim e -s c a le  b e h a v io r 

[ 1 4] ,  w h ic h  re q u ire s  s m a ll tim e  steps fo r th e fa st d y n a m ic s  an d  a lo n g  s im u la tio n  tim e  fo r 

th e s lo w  d y n a m ic s. U s in g  th e s in g u la r p e rtu rb a tio n  m eth o d  [1 , 1 1] ,  fa st tra n sie n ts c a n  be 

e lim in a te d  an d , as a re s u lt, th e syste m  o rd e r is  re d u c e d . In  th e ca se  o f  th e m o d ifie d  IE E E  

3 7 -b u s  m ic ro g rid , th e system  o rd e r is  re d u c e d  fro m  2 2 5  to 5 6  d y n a m ic  states [1 , 11] .

F o llo w in g  the p ro c e d u re  d e s c rib e d  a b o v e : n o n -lin e a r m o d e l id e n tific a tio n , l in ­

e a riz a tio n  a ro u n d  ste ad y-state  o p e ra tin g  p o in ts, system  o rd e r re d u c tio n , an d  w ith  h e lp  o f 

th e M a tla b  s y m b o lic  to o lb o x , th e s m a ll-s ig n a l m a th e m a tica l m o d e l o f  th e g rid -tie d  system  

is

%sys =  A x sys +  BU

y  =  C x SyS +  D u

(4)
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where the control vector u = [P* Q*]T. In the case of the islanded operating modes, the 

small-signal dynamic model is

xsys = Apxsys; P = 1  2

y = Cxsys
(5)

where, as indicated above and in [10,11], the input vector of bus voltages has been expressed 

in terms of the dynamic states.

3. IEEE 37-BUS POWER SYSTEM AS AN MJLS

In this section, the IEEE-37 bus power system is framed as an MJLS. The system 

is switching between three operating modes in a random manner. The conjoint modeling 

of the linear dynamic system and the stochastic system was developed in [2, 7, 8, 15]. 

The resulting system of ODEs that represent the evolution of the conditional moments were 

derived in [2]. The ODE for the mth order conditional moment with respect to the stochastic 

mode i is represented as

. (m) V I 'V i 0H'i ) (t) = £  mp £  aPrp>
1 p=i \r=i p 1

■' * +e-) (t) + d " ' ' ) ( t) VP

^  i j i  (t) !1 (m)( t ) ^ ;  Ait (t) ^<m)(t) , Vi e Q
jzQj t  eQ+

(6)

where /i(m) denotes the time derivative of the conditional moment of the mth order associated 

with mode i, mp is the p th element of the moment index vector m = (m1,..., m#), alpr are 

elements of the state matrix A i, vlp represents the elements of the control vector augmented 

with an affine term, Ay* is the transition rate from j  to i, Q-  is the set of incoming transitions, 

and Q+ is the set of outgoing transitions, ep, er are unity vectors with a 1 at the p th (rth, 

respectively) position and 0 elsewhere. The solutions to the MJLS model can be computed
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using two approaches. The first method is a discrete time approximation using the averaged 

Monte Carlo simulation, and the second method is based on a matrix representation of 

equation (6). The two approaches are explained below.

3.1. AVERAGED MONTE CARLO SIMULATION

The method consists in solving the dynamic equations in (4) or (5) numerically 

along the paths resulting from the CTMC. Therefore, the procedure begins with generating 

the CTMC integration paths based on a given transition rate matrix. The procedure to 

generate these integration paths is summarized in Algorithm 1, where j = max (j ) and 

the operation mode = k + 1 is defined such as 1 + 1 = 2, 2 + 1 = 3, and 3 + 1 = 1, for 

k = 1, 2 ,3, respectively. The method described in Algorithm 1 is an adaptation of the 

Gillepsie's Stochastic Simulation Algorithm (SSA) [16].

Algorithm 1: CTMC modes sequence generation 
Require: Ts, Tfinai, A
Initialize: t = 0, mode = initial_mode, lam = tr (A) 
while t <= Tfinai do 

r 1 = rand (1)
tsw = - in  (r1 )/A  (mode,mode) 
r2 = rand (1) 
if mode = k then

k-1 N k N
if ( J] Tj h j) /la m  < r2 and r2 < ( £  £  ^ij -  d kj )/lam  then

j
mode = k + 1; continue;

end
k N k N

if ( £  J] ^ij -  Akj ) / lam < r2 and r2 < ( £  X Mj) / lam  then

j  &
mode = k + 2; continue;

end
end

end
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The next step is to solve the dynamic states using the Euler method along each path 

generated by Algorithm 1. This procedure is repeated during successive runs, the number 

of which will determine the accuracy of the final result. The final solutions for the dynamic 

and algebraic states are calculated by averaging the results from all runs. This yields the 

statistics of the system: zeroth, first and second moments, which are usually sufficient to 

characterize a distribution. The procedure for the repetitive MC simulations is described in 

Algorithm 2 where Xi represents the state vector at equilibrium for mode i = 1,2,3.

Algorithm 2: Repetitive Monte Carlo simulations
Require: Ts, Tfinau Mode sequence fro m  Algorithm 1 
Initialize: max_iter, Xinit, x iter = 0 
for iter = 1 : max_iter do 

for k = 1 : length(t) do
x ( 1) = Xinit
if modes(k) = i then

x (k + 1) = x (k ) + Ts * Ai * (x (k ) -  Xi)
+ Ts * Bi * ui

end
end
xiter = xiter + x

end
xiter = xiter/max_iter

3.2. MATRIX REPRESENTATION OF THE MJLS

For small systems, with a very small number of dynamic states (for instance the 

SMIB system described in [2]), an analytical solution of the equation above is pretty 

straightforward. However, for larger systems with a higher number of dynamic states, an 

analytical solution becomes quickly very complex. It was discussed in [17, 18] that, for a 

larger system, the solutions are more conveniently computed when equation (6) is put in 

matrix form. This matrix representation is derived below, following the methods discussed 

in [18, 7]. Fortunately, the system of ODEs (6) representing the evolution of the conditional 

moments are finite-dimensional. Each term on the left hand side of (6) depends only on
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moments of equal order or lower on the right hand side. Therefore, moment-closure methods 

are not necessary. It can be seen from (6), that U(m) (t) depends only on m ep++r) (t), 

u (m ep) (t), „ (m) (t), and u  ;m) (t). It turns out the operation m -  ep + er results in only two 

possible outcomes m and m -  1, associated respectively with u (m) (t) and u (m-1) (t). On 

the other hand, the moments u (m) (t) and u (m) (t), associated with modes l and j  are of the 

same dimension m. Regrouping all terms associated with moments of the same order [7], 

the system of ODEs represented in (6) can now be expressed as follows

U(m) (t) = G (m) u  (m)(t) + H (m) u  (m-1)(t) (7)

This expression is equivalent to (6) and matrices G (m) and H (m) can be derived 

using the method detailed in [7]. They are essentially block diagonal combinations of 

sub-matrices related to each mode of the stochastic system. The general structure of G (m) 

and H (m) are provided in (8) and (9). G (m) is a sum of two terms. The first term is a block 

diagonal matrix which elements G (m) (l = 1...N) include the state matrices corresponding 

to the modes of the stochastic model. The second term contains elements of the transition 

rate matrix.

G (m) 0 . . .  0

0 G 2,m) . . .  0

G (m) + |A r  ® /  (A m^  (8)

0 0 . G (m)
N

In (8), I (N m) is the N m-dimensional identity matrix and Ar  is the transpose of the

full transition matrix, which includes the self-transition elements An.
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H (m) is 

of equation (4)

also a block-diagonal matrix which elements correspond to the input term 

augmented with an affine term: Bul + C = vl.

, (m)
1 0 . . . 0

0 H (m) . . . 0

H (m) =

0 0 . . .  H ^

(9)

The method to derive these matrices is described in length in [7, 18] and succinctly 

presented here for the lower order moments: zeroth, first and second.

The 0th order moments are the occupational probabilities of the stochastic model, 

i.e., they represent the probability for the system to be in a particular mode i. To obtain the 

0th order moments, we replace m = 0 in equations (6) and (7). It follows

G (0) = At (10)

H (0) = 0 (11)

It is worth noting that ^ (0-1) is not permitted as it would result in a negative order moment. 

The first order moments are the statistical means of the system. It can be shown that

Gi(1) = Ai (12)

Hi(1) = vl (13)

The second order moments are the uncentered second moments of the system.
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G2 and H 2 elements result from the Kronecker product of I  (N ) and Ai (respectively, 

vl), subsequently multiplied by Wm, which is a transformation matrix that describes the 

structure and ordering of the second moment [7]

g (2) = Wm (I (N )®  Ai) (14)

H (2) = Wm (I (N )®  vl) (15)

The next step in the calculation of the second moment is to eliminate the redundant second 

order moments. The procedure results in the reduction of the order and size of G (2) and 

H (2). After the redundant second order moments are eliminated, the equations (8) and (9) 

can now be rewritten as follows:

G(m) o . . o

o G2m) . . o

G (m) + (Ar  ® I  (Nu(N ))) (16)

o o . G (m)
N

(m)
1 o . . o

o H  (m) . o

H (m) = (17)

o o . . HNm)

G(2) = Wm (I  (Nu)® Al) (18)
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H(2) = Wm (I (Nu)® v*) (19)

In (16), Nu (N ) is the binomial coefficient,

/

Nu (N ) =

V

N + 1

2

\
N  (N + 1) 

2
(20)

Finally, the expressions for the low order moments are summarized as follows:

l (0)(t) = G (0)i (0) (t)

l (1)(t) = G (1) i  (1)(t) + H (1) i  (0)(t) (21)

i (2) (t) = G (2) i  (2)(t)+  H (2) i  (1)(t)

Distributions are usually described with means and variances. For a stochastic 

variable, X , the variance is derived from the uncentered second moment as follows

ofx] = l  (2)- ( l (1))2 (22)

Next, the derivation of the low order moments (0th, 1st, and 2nd) is illustrated with 

a simple example.

Example: The solutions for the case of a 2-state, 2-mode system were discussed in

[2]. The matrix representation for this small system is shown here.

For the 0th order moment (occupational probabilities), the matrix representation of 

the ODE (6) is

• (0) 
l1 - ^12 ^12

T
(0)

l 1
• (0) ^21 -^21 (0)

i 2 )
(23)
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The computation of equation (23) requires the knowledge of an initial condition. 

Let us assume that the system is in mode 2 at time t = 0, therefore the initial condition is 

[0 1]r . The solution to (23) yields a 2 x 1 vector

4 (0) = eAt [0 I f (24)

The evolution of the 1st order moments is represented in the matrix equation (25)

' 4 ™ '
/ a ! n a 112 0 0 '..

a 1 21 a 122 0 0 ...

(i21,0) 0 0 a211 a212 ...

. 4 ° ' ° . V 0 0 a221 a2 22

+

-X u 0 X21

0 - Xu 0

X12 0 -X 22

0 X12 0

0 '.. \
' 4 1  '0) '

X21 4 0J)
0 .. ' 0)

-X 22 / . 4 0'0 .

d  1 0

d 2 0

0 c21

0 c 22

(25)

The first order moment is a n x  1 vector that represents the statistic means of the

dynamic states, and is computed as
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^ (1) =
(1,01 (1,0)

^1 ) + ^2 ) 
(0,1) , ,,(0,1)+ ^2

(26)

The matrix equation of the 2nd order moments (uncentered second moments) is too 

large to be include here, and instead is given as (1) in the appendix. The second order 

moment is an n (n + 1)/2 x 1 vector whose elements are the uncentered second moments of 

the dynamic states, and is computed as

(2)

(2,0) (2,0)
^1 ) + ^2 )

(0,2) (0,2)
^1 ) + ^2 )

(1,1) (1,1)
^1 ) + ^2 )

(27)

The computation of the ODEs (25) and (1) requires the knowledge of the transition 

matrix, which contains the transition rates between different stochastic modes. These rates 

are either calculated or evaluated based on empirical observations of the system. In this 

study, the transition rates are considered given. For a 3-mode system, the incoming and 

outgoing transition rates are represented by a 3 x 3 matrix

0 A12 A13

Atrans = A21 0 A23 (28)

A31 A32 0

Notice that the diagonal elements are equal to zero. To obtain the full transition 

matrix, the self-transition elements An are added in such a way that the sum of row elements 

is equal to zero. This matrix A should not be confused with the Transition Probability 

Matrix (TPM) in a discrete-time Markov process where the sum of row elements is equal 

to 1. The full transition matrix is
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- ( A n  + A13) A\2 A\3

A21 - ( A 21 + A23 ) A23

A31 A32 -  (A31 + A32)

(29)

4. RESULTS AND DISCUSSION

This section examines the results of both the MJLS analysis and the Monte Carlo 

simulations. The system of ODEs representing the evolution of the system statistics are 

solved in the time domain. The solutions represent the conditional moments of the dynamic 

and algebraic states. These results are compared to those obtained by averaging the solutions 

of 20,000 Monte Carlo simulations.

The numerical values of the state vectors corresponding to the three modes of the 

stochastic model are presented in the appendix section. The transition rates matrix is also 

provided in the appendix. Its values are representative of a slow switching system, with 

the states spending most of the time at the equilibrium operating points of the different 

stochastic modes and barely any time in-between.

Figures 4, 5, 6, 7, and 8 represent the averaged results of 20,000 Monte Carlo 

simulations and the solutions to the ODEs representing the evolution of the conditional 

moments. The averaged Monte Carlo solutions (red) are superimposed to the MJLS results 

(black) for comparison purposes.

Figure 4 shows the results for the zeroth moments (occupational probabilities). The 

averaged Monte Carlo simulations converge with great accuracy to the solutions of the 

MJLS (24).

The solutions for the first moments of the dynamic and algebraic states are repre­

sented in Figures (5) and (6). The Monte Carlo results converge pretty well to the MJLS 

solutions. However, small spikes are noticeable, which will be greatly exacerbated in the 

second moments plots, as it can be seen in Figures (7) and (8). This phenomena is due to



31

the way stochasticjumps are characterized in the model (6). In the Monte Carlo simulation, 

this translates to unbounded transient overshoots during switching between two stochastic 

modes. The jump term in the model represented by (6) needs to be refined to accurately 

represent transient events when the power system switches from one equilibrium point to 

another one.

5. CONCLUSION AND FUTURE WORK

A method based on the MJLS was applied to a microgrid operating in grid-tied and 

standalone operating modes. The microgrid is represented by the modified IEEE-37 bus 

power system, that includes seven inverters at selected bus locations. The ODEs representing 

the time evolution of the conditional moments were solved to derive the statistics of the 

system (zeroth, first and second moments). These solutions were compared to the results 

of the averaged Monte Carlo simulations. The objective was to demonstrate that the model 

developed in previous works [2, 7] also applies to a switching system and that the results
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Figure 5. A sample of first moments of the dynamic states
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remain valid for a larger system (56 dynamic states). It was observed that the averaged 

Monte Carlo simulations of the lower order conditional moments converge pretty well 

to the solutions of the MJLS. Avenues for future works include improving the model to 

better characterize the jumps between distinct operating modes and by doing so, eliminate 

the spikes that occur during the Monte Carlo simulation. Another study will focus on 

the stability of the system when subject to stochastic switching between distinct operating 

equilibrium points.



APPENDIX A.

SECOND ORDER MOMENT ODEs
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The ODEs representing the evolution of the second order moments for a 2-state, 

2-mode system are represented below

• (2,0) 
1 1

/
2a1n 0 2a 112 0 0 0

■ (0,2) 
1 1 0 2a122 2a121 0 0 0

i r «121 «112 a1 n  + a122 0 0 0

1  22,0) 0 0 0 2a2n 0 2a212
• (0,2) 

i2  ) 0 0 0 0 2 a222 2a221

• (1,1)
. 1 2 ) . V 0 0 0 a221 a212 a2 n  + a222

+

+

-A n

0

0

A12

0

0

2c1i

0

0

-A11

0

0

A12

0

0

2 d 2

C12 e ll

0 0  

0 0  

0 0

0

0

- A11

0

0

A12

0

0

0

2C21

0

A21

0

0

- A22

0

0

0

0

0

0

2C22

0

A21

0

0

- A22

0

0

0

A21

0

0

- A22

11
(2,0)

(0,2)
11

(1,1)

i2 2,0)

i2 0,2)

4 U)

(1)

C22 C21

(1,0)
11

(0,1)
11

(1,0) 
i2  )

(0,1) 
i2  )
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NUMERICAL VALUES FOR THE SYSTEM UNDER STUDY



40

The transition rates matrix for the stochastic model is represented below

-0.04 0.02 0.02

A = 0.01 -0.05 0.04 (1)

0.01 0.02 -0 .03

The state vectors for the three modes of the stochastic system are as follows

X 1 sp = [0.054593; 0.1535; 101.2; -28.411; -0.28274;

3.3159;-1381.6; -9531.5;0.067361;0.083983; 102.41;

-12.402; -0.29516; 3.2348; 505.86; -4888.9; 0.076545;

0.026086; 105.42; 0.84976; -0.30503; 3.1674; 2595.3;

-1038.8; 0.066538; 0.046265; 106.07; -4.1122; -0.3021;
(2)

3.1459; 2070.1; -2448; 0.066959; 0.021063; 108.54;

1.623; -0.30833; 3.0967; 3222.5; -756.5; 0.061937;

0.061937; 0.0026639; 110.71;5.0832; -0.31835; 3.0575;

4159.9; 396.33; 0.062938; -0.0050023; 112.82; 7.4309;

-0.31733; 3.0143;4658.6;974.77]r
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X2sp = [0; -4.2281;0.57922; 0.73305; -0.297;3.0808;

8634.6; 7499.7; -0.0071639; -4.2289; 0.44488; 0.72922;

-0.31123; 3.0955; 8621.1;6041.3; -0.01641; -4.23;

0.30195; 0.72508; -0.32647; 3.1115; 8589.9; 4482.5;

-0.017274; -4.2299; 0.38662; 0.72879; -0 .31791;3 .1031;
(3)

8595.1; 5418.7; -0.025885; -4.2305;0.307; 0.72557;

-0.32627; 3.1114; 8585;4542.7; -0.046846; -4.2326;

0.10269; 0.72126; -0.34661; 3.1387; 8454.6; 2234.6;

-0.035132; -4.2311; 0.26683; 0.72391; -0.33086;

3.1156; 8581.8; 4110.7]r

X3sp = [0; -5.8204; 0.95561; 1.0018; -0.25278;

3.0486; 11932; 11591; -0.017088; -5.8224; 0.6683;

0.99312; -0.28371; 3.0821; 11866; 8532.7;

-0.037865; -5.8248; 0.37074; 0.98493; -0.31642;

3.1183; 11782; 5318.1; -0.035314; -5.8242; 0.56114;
(4)

0.99138; -0.296; 3.0962; 11820; 7392.1; -0.048431;

-5.8251; 0.46465; 0.98727; -0.30661; 3.1066;

11812; 6349.4; -0.085731; -5.829; 0.11172; 0.97846;

-0.34325; 3.1546; 11597; 2402.5; -0.073223; -5.8269;

0.28715; 0.98276; -0.32642; 3.129; 11747;4415.6]r
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ABSTRACT

This paper proposes a jump-diffusion model for the analysis of a microgrid operating 

in grid-tied and standalone modes. The model framework combines a linearized power 

system dynamic model with a continuous-time Markov chain (CTMC). The power system 

has a stochastic input modeled with a one-dimensional Wiener process and multiplicative 

diffusion coefficient. The CTMC gives rise to a compound Poisson process that represents 

jumps between different operating modes. Starting from the resulting stochastic differential 

equation (SDE), the proposed approach uses Ito calculus and Dynkin’s formula to derive a 

system of ordinary differential equations (ODEs) that describe the evolution of the moments 

of the system. The approach is validated with the IEEE 37-bus system modified to form a 

microgrid. The results match a Monte Carlo simulation but with far lower computational 

complexity. In addition, the ODEs are amenable to further analysis, such as stability analysis 

and determination of operational bounds.

Keywords: Jump-Diffusion, Markov Jump Linear Systems (MJLSs), Monte Carlo simu­

lations, Power System statistics, Stochastic Differential Equation (SDE), Stochastic Hybrid 

Systems (SHSs).
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1. INTRODUCTION

The stochastic jump-diffusion model is well suited to dynamic systems subject to 

random disturbances of a limited amplitude, as well as to random and abrupt perturbations 

of a relatively higher magnitude [1]. Disturbances of limited (small) amplitude correspond 

to the diffusion component of the model and are described using the Wiener process. 

Higher (large) magnitude disturbances apply to the jump component of the model and are 

represented by the Poisson process [1, 2, 3]. The objective of this study is to develop such 

jump-diffusion model for a microgrid that oscillates between standalone (islanded) and 

grid-tied operating modes. Preceding works focused on deterministic systems controlled by 

stochastic inputs of the jump type [4, 5] and, in other cases, on stochastic systems subject to 

switching behaviors of a pure-jump type [6, 7]. This work extends previous models: 1) the 

entire system is considered switching between distinct stochastic modes, 2) this switching 

behavior involves all dynamic and algebraic states, and not just the system inputs as in [4,5], 

3) the modeling of the stochastic process includes a Wiener process as well Poisson jump 

processes in the derivation of the ordinary differential equations that govern the evolution 

of the system statistics.

The jump-diffusion model finds many applications in finance to describe the dynam­

ics of market variables such as stock pricing, asset and commodity prices, credit ratings, 

exchange rates, etc [1]. The mathematical framework for stochastic models was first devel­

oped for the finance industry, and to this day, most publications remain in this area. The 

theory has also been successfully applied to biology and chemistry [3], and more generally 

to any areas that involves random quantities.

The application of stochastic models to the analysis of the dynamics of power systems 

is relatively new [4, 8]. This representation is particularly relevant for a class of stochastic 

processes called Stochastic Hybrid Systems (SHSs). In this framework, the linearized 

power system dynamic model is combined with discrete transitions of the system variables 

triggered by stochastic events [9, 10, 11, 4, 5, 7]. The linearized model is represented by a
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system of differential algebraic equations (DAEs) that includes the evolution of the dynamic 

states, and of the output variables expressed as a linear combination of the dynamic states 

and the control variables [4, 7, 5]. In a particular class of SHSs called Markov Jump Linear 

Systems (MJLSs), the stochastic discrete transitions of the system are explicitly modeled as 

continuous time Markov chains. The jump-diffusion model developed in this study is based 

on the Markovian property of the jumps, appropriately supplied by a Poisson process, while 

the diffusion component is supplied by a Wiener process.

For a microgrid, a jump in a dynamic state is defined as a variation of significant 

magnitude that cannot be represented by a linear drift or a noise perturbation. For instance, 

when an abrupt change occurs in the loading condition or in the characteristics of distributed 

power sources, and because of the finite and limited inertia of the system, the bus voltages 

and the system frequency can experience drastic variations that, in the absence of adequate 

control, could result in instabilities and even in the collapse of the entire system [12, 7]. In 

the context of this paper, discrete jumps result in the switching of the microgrid between 

one grid-tied operating mode and two distinct standalone (islanded) operating modes. The 

difference between the two standalone modes results from a difference in load conditions 

and corresponds to two distinct sets of dynamic states and output variables [7, 13].

Figure 1 shows bus voltages and load currents at an arbitrary bus (labeled 26) 

of the IEEE 37-bus microgrid. In Figure 2, inverter 2's active and reactive powers are 

represented. These plots were obtained from a Simulink®/PLECS® simulation of the IEEE 

37-bus microgrid and from results from an experimental testbed [14]. A one-line diagram 

of the IEEE 37-bus power system is presented in the appendix.

The derivation of a small-signal model of an inverter-based microgrid system was 

carried out in [14]. For the IEEE 37-bus microgrid, the resulting state space model is of 

the 225th order and represent a two-time scale system where states with slow dynamics are 

mixed with those with fast dynamics [15, 7]. A reduction method based on the singular 

perturbation technique was presented in [16, 15, 17]. In the case of the 225th order
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system (IEEE 37-bus system), the technique allowed to reduce the system to the 56th order 

by eliminating the fast states. Accuracy of this method was evaluated in [15], where the 

system’s dynamic response was evaluated in grid-tied and islanded modes, as well as during 

transitions between the two modes. Results obtained using the reduced model were found 

to match experimental results from a hardware testbed [15].

A SHS model for a power system was developed in [4] to represent the dynamic 

behavior of a system subject to stochastic inputs. The resulting ODEs representing the 

evolution of the conditional moments were derived using stochastic inputs and did not 

include random variations of the Wiener type. This model was used in [7] for a system
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switching between different equilibrium points. It was shown in [5, 18, 7] that a matrix 

representation of the system can be used along with analytical tools to compute the system 

statistics. In this study, the model is adapted for a slow-switching system, and includes a 

Wiener process component. The derivation of the model is carried out directly from the 

jump-diffusion stochastic differential equation (SDE), rather than from the SHS framework 

as in [4, 6, 7].

This paper is organized as follows. In section 2, the development of a jump-diffusion 

model of a power system is presented. In section 3, the Dynkin’s formula is applied to the 

Ito formula of the Stochastic Differential Equation to derive the ODEs that represent the 

evolution of the system statistics. In section 4, a numerical application of the jump-diffusion 

model to the IEEE-37 bus microgrid system is discussed. A conclusion and avenues for 

future work are presented in Section 5.

2. JUMP-DIFFUSION MODEL OF A POWER SYSTEM

Let X = {X( t ) , t > 0} be a one-dimensional continuous stochastic process. In the 

most general sense, a jump-diffusion process can be represented by a stochastic differential 

equation with jumps

dX(t ) = f ( t ,  X( t )) dt + g(t, X( t )) dW(t)

+ h (t,X  ( t - ) ) dN (t) (1)

for t > 0 with initial value X( 0) = X0. Here, W = {W(t),  t > 0} represents a standard 

Wiener process and N = {N (t), t > 0} a Poisson process with intensity A. The processes 

f , g, and h are called respectively drift, diffusion, and jump coefficient functions. These 

coefficient functions could be deterministic, time dependent and non linear, in general. In 

accordance with power system models, this study considers deterministic, state dependent 

and linear coefficient functions. Furthermore, the existence and uniqueness of the solution
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to the SDE (1) are guaranteed only if the drift, diffusion and jump coefficient functions 

satisfy the Lipschitz conditions, as well as the linear growth conditions, the definition of 

which can be found in [1, 19, 20].

When given in the differential form, the SDE (1) is considered an informal or short

The first integral is an ordinary Riemann integral. The second integral is an Ito 

integral with respect to the Wiener process W(t). The third term represents a compound 

Poisson process where, as noted above, {N (t), t > 0} is a Poisson process with intensity A.

In a Poisson process, jumps occur at discrete times r t  e { r i , r 2, .. . ,tn (t)} where 

r N(t) < t . These jump times are exponentially distributed with parameter1 A > 0 and 

density AeXr. The probability for a Poisson process N (t) to be equal to t  (in other words, 

the probability to obtain t  jumps between time 0 and time t) is given by

hand notation for its integral form. The integral form yields the solution to (1) and is called 

an Ito process with jumps or a jump-diffusion process

N(t)
+ ^  h ( r t , X (r t - ) ) (2)

P  (N  (t) = t ) =
(At)t 
- —— e-At (3)

It results from (3) that for a Poisson process N (t) with intensity A and for t > 0, the

mean [1]

U (t) = E [N  (t)] = At (4)

and the variance [1]

Var (N (t)) = E [(N (t) -  u ( t ))2] = At (5)

lAlso called jump intensity, transition intensity, or transition rate.
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In (2), {h (r k,Xrk_) , k > 0} is a family of independent and identically distributed 

(i.i.d) random variables (independent of N ) called jump sizes.

The notation XTk _ corresponds to the almost sure left-hand limit of X( t ) at time r k, 

and if a jump occurred at time r k, the jump size is defined as

AX(rk) = X (rk) _ X (rk_) (6)

The generalization of (1) and (2) to a multidimensional system is straightforward. 

The evolution of the stochastic vector X  = {X ( t ) e Rn, t > 0}, is described by an 

n-dimensional SDE with jumps [1]

dX( t ) = f  (t, X ( t ))dt + g(t, X ( t ))dW(t )
d

+ Z  h  (t, x  (t _)) d N  (t) (7)
£=1

for t e [0, T], with initial value X0 e Rn, an ^-dimensional Wiener process W = {W (t) = 

W 1 (t) , . . . ,Wq(t)}, t e [0 ,T] and d independent compound Poisson processes, N , with 

parameters Tk, £ = 1,..., d , and jump sizes h ( t ,  X ( t _)).

The integral form is derived from (7) as

X (t) = Xo + f  f  (5, X (s))ds + [  g (s, X (s) )dW(s)
J 0 J 0
d N  (t)

+ Z Z  h£ (rk, X (rk _)) (8)
£=1 k =1

To develop a jump-diffusion model for a microgrid system, the conventional dynamic 

model needs to be cast into the stochastic differential equation with jumps defined by (7). 

The deterministic dynamic model is represented by the differential algebraic equation (DAE) 

[5,4]



51

x = f  (x , y , u ) 

0  = g (x, y, u)
(9)

where x (t) e R” is referred to as the dynamic states; y (t) e Rv denotes the algebraic states 

or outputs of the system; and u (t) e Rw represents the inputs of the system.

The linearization of (9) around a given stable equilibrium point results in a linear 

affine model [5, 4]

x = Ax + Bu + C 

y = Dx + Eu + F
(10)

Following [7,14,15], the equilibrium points correspond to the steady-state operating 

points of a microgrid operating in grid-tied mode (X i) or in two distinct standalone modes 

(X2, X 3). The difference between the two standalone modes is based on different load 

conditions on the system. The affine term, C , is defined in such a way that small variations 

are modelled around the equilibrium points X 1,X2, X3

C = -AiXi,  i = 1,2,3 (11)

In the output equation, F  is set to zero: the outputs depend on the dynamic states 

and input vector.

The first step in developing a stochastic model for a power system is to convert the 

deterministic variables in equation (1 0 ) into stochastic variables

dX( t ) = (A (t)X (t) + B (t)U (t) + C(t )) dt 

Y (t) = D (t) X (t) + E (t )U (t)
(12)

To establish a correspondence between (7) and (12), the state equation of the dynamic

model is cast as the drift term of the SDE with jumps, i.e.,
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f  (X (t), t) = A (t) X (t) + B (t )U (t) + C (t) (13)

The diffusion term is modeled as a multiplicative diffusion component, with a noise gener­

ated ripple proportional to the dynamic state. The diffusion coefficient is adequately chosen 

to limit the ripple to about 10% of the steady-state value of the dynamic state,

g (X  (t) , t ) = yS X (t) (14)

where S  = 0.1.

For the jump term of a slow switching system, the states spend most of the time 

at the stable operating points of the different modes and barely any time in-between. The 

system jumps from one operating mode to another with tjump ^  0, and the jump size

h (t, X (t- ) )  = X (t) -  X (t- )  (15)

where X (t) is set to the steady-state operating point corresponding to the destination mode 

(i.e. mode the system has jumped to), and X (t- )  is the value of the dynamic state just prior 

to the jump event

With all the terms of the SDE (7) defined, the jump-diffusion model of a power 

system based on the deterministic model (10) can now be represented by the SDE with 

jumps

dX(t)  = [Ai(t) (X (t) -  X /(t)) + BiUi (t)] dt + SX(t )dW(t)
d

+ J ] ( X (Tk) -  X (Tk-))  dN{ (t) (16)
e=i

where W(t ) is a one-dimensional Wiener process2 and N e, £ = 1,..., d , represents the £th 

Poisson process with intensity A£, and i e {1,2,3} represents the system operating mode.

2A  o n e -d im e n s io n a l W ie n e r  p ro c e s s  is  u se d  h e re  to  s im p lify  th e  e q u a tio n s , w ith o u t lo ss  o f  g en e ra lity .
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3. DERIVATION OF THE CONDITIONAL MOMENTS

The procedure to derive the conditional moments include the following steps:

• Derivation of the Ito formula for the SDE with jumps

• Application of the Dynkin’s formula to the Ito formula

• Derivation of the conditional moments dynamics

• Derivation of a matrix representation

3.1. ITO FORMULA FOR THE SDE WITH JUMPS

The aim of this sub-section is to derive the expression of the stochastic differential 

equation for a process that is function of the solution of equation (7). In a more formal way, 

the problem can be stated as follows:

Given a stochastic differential equation with jumps of the type (7), and a process 

(t) which is a function of X (t)

<A = (t, X (t)) (17)

where the function ^ ( t , X (t)) is continuously differentiable in t and twice continuously 

differentiable in X , determine the stochastic differential equation for the process ^ ( t )

(t, X (t)) = f ( t ,  X (t))dt + g (t, X (t))dW(t )

+ h(t, X ( t - ) ) d N ( t ) (18)

Equation (18) is called the Ito formula (or Ito rule) and the definitions of the 

coefficient functions f  , g, h are based on the rules of the stochastic calculus. The Ito 

formula is the equivalent to the chain rule in classical calculus and it can be interpreted as a 

stochastic generalization of the fundamental theorem of calculus. It is used to quantify the 

changes in ^ (t , X ( t) ) that are caused by changes in X (t).
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To derive the Ito formula, equation (18) is first considered without the jump term. 

The process begins with a one-dimensional stochastic variable X( t ), which will be gener­

alised afterwards to the multi-dimensional case. The Taylor expansion of f t ( t ,X (t)) is as 

follows

df t ( t ,X( t )) = ft(t + dt, X( t ) + dX(t )) -  ft(t, X (t))

df t ( t ,X  (t)) 1 d2f t ( t ,X (t)) 2
= ------ ~------- dt + —--------- t------ dt

dt 2  dt2
d ^ ( t ,X (t) ) 1 d2^ ( t,X ( t) ) ,v 2

+ d t  dX + 2 d v  dX

+ h.o.t. (19)

Inserting the expression of the one-dimensional dX (t) (equation (1) without the 

jump term) yields

d , ( t  Y(tW = d^ ( t ,X ( t ^  d t . 1 d2^ ( t ,X ( t^  dt2
dft (t, X  (t)) dt dt + 2  dt 2 dt

+ d t { t , x (t)) / ^ ( t ,X( t ))dt + g ( t ,X( t ))d w ( t ))
dx

1 d 2f t ( t ,X (t))
2 dx2

f  (t, X( t ))dt + g(t, X( t ))dW(t)

h.o.t. (20)

2

After neglecting higher order terms and with the help of stochastic calculus rules 

(dW2 (t) = dt, dt2 = 0, dtdW = 0), it results the Ito formula for an SDE (one-dimensional), 

without the jump term

dft ( t ,X (t))
‘m , x (, ) ) + m . x « » f  ( t x  (t )}

dt
1 d2f t ( t ,X( t )) 2
2 dx2

dx

g2 ( t ,X (t ))) dt

+ df t { t ,X(t)) g ̂ t ,X (t)) d w  (t)
(21)
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The addition of the jump term results in

d f  ( ( ,x  0 )) = 1 + M E  f  M  «))
dt

+ -

+

1 d2f  (t,X (t))
2 dx2 
d f  (t,X  ( t )

dx

g2 ( t ,X (t))) dt

dx
g (t, X (t)) dW (t)

+ £  f  (t, X (t)) -  f  (t- ,  X (t- ) )  d N ( t )
r=i

The generalization of (22) to the multidimensional case yields

d f  (t, X(t)) =
(df{ t ,  X ( t ))

dt
+ ;  f , ((, x ( ,) )

E
,= 1 dx

+

+

1 E  d'2 f {t, X  ( t)) 
2 dx'x-i

[g(t, X (t))gr (t, X (t))] ^  dt
U = 1

n d f  (t, X ( t )) ,
dx, g, t, X (t) d W (t )

z
,= 1

+ £  L  (t, x (t)) -  f  (t- ,  x (t - ) ) )  dN( t )
e=1

where X (t) is a n-dimensional continuous stochastic vector process

X (t) = {X1 (t),X 2 (t) , . . . ,x „ ( t ), t > 0}

and f  and g are n-dimensional drift and diffusion coefficient functions, respectively

f  (t, X ( t )) = {f 1 (t, X (t)), . . . , / ” (t, X (t)), t > 0} 

g (t, X (t)) = {g1 (t, X (t)) ,..., gn (t, X  (t)), t > 0}

(22)

(23)

(24)

(25)

(26)
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As mentioned above, W(t) is a one-dimensional Wiener process, and N £(t) is the

Equations (18) and (23) are equivalent. As a result, the coefficient functions of 

equation (18) are defined as follows

3.2. APPLICATION OF DYNKIN’S FORMULA

In stochastic analysis, Dynkin’s formula is a theorem that relates the expectation 

of a function of a jump-diffusion process and a functional of the backward jump-diffusion 

operator [3]. For a jump-diffusion SDE of the type (7), the Dynkin’s formula consists in 

taking the expectation of (23)

£th component of a ^-dimensional Poisson process, with £ = 1 , .. .,d.

(27)

(28)

h(t, x ( t )) = (t, x ( t )) -  (t- ,  x ( t - ) ) (29)

d E [<A(t, x ( t ))] =

E  ^ (t, X (t)) -  ^ ( t - ,  X (t- ))  A(dt (30)
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Notice the term with dW (t) has disappeared from (30). In fact, the expected value 

of the Wiener process E  [dW(t )] = 0. In addition, the differential term d N (t)  has been 

replaced by its expected value A(dt where At represents the parameter of a Poisson process 

N  (t).

3.3. DERIVATION OF THE CONDITIONAL MOMENTS DYNAMICS

The Dynkin’s formula, combined with the law of total expectation allows for a 

derivation of the ODEs that describe the evolution of the conditional moments.

The law of total expectation can simply be defined as follows: given a set of 

stochastic events A i, i = 1, ...N , the expectation of a random variable X equals the sum of 

the expectations of X given A i

N
E  (X) = £  E  (X |A i) Pr (A i) (31)

i=1

where Pr (Ai ) denotes the probability of event A i .

The conditional moment of a process function 0 (t) given a stochastic event A i  is 

expressed as

Ui (t) = E  [0  (t, X (t )) |A i ] P r  (A i) (32)

It follows from (31) that the total expectation of 0  (t, X (t)) equals the sum of all 

conditional moments given the events A i

N
U(t) = E  [0 (t,X (t))] = Y j  Ui(t)

i=1
(33)

and the evolution of a conditional moment:

Ui (t) = ^r E  [0  (t,X  (t )) |A i ] Pr  (A i) 
dt

(34)
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The right hand side of equation (34) represents the Dynkin’s formula (30), expressed 

here with respect to a stochastic mode i, where i = 1 , . . . ,N

fn (t) 

E a * {l’ x  (t) )+  £  a ^ x  «  »  / i (t, x  (t) (

i= 1
1 “

+ & ii ,J = 1 *
d

+ £  E
e=i

at

n a 2*{t, x ( t) )
dxlxJ

[g (t, X ( t ))gT(t, X ( t ))] l,j

*  (t, X (t)) -  *  (t-,  X (t- ) ) At (35)

For a power system jump-diffusion model (16), jump sizes correspond to jumps in 

dynamic and algebraic states when the system switches between one equilibrium point to 

another one. They can subsequently be represented as follows

* ( t ,X( t )) -  * (t- , X ( t - ) )  = * j ( t , X ( t ) ) -  * ( t ,X( t )) (36)

where ”i” represents the origin mode and ”j ” the destination mode. Therefore, these 

poissonian jumps between different modes of the stochastic system can be characterised by 

a set of jump parameters (or transition rates) Aij, i , j  = 1, . . . ,N. The full transition rate 

matrix for a stochastic system with N  stochastic modes is defined as

A = [Aij, i , j  = 1 ,..., N } (37)

where, in accordance with the Markov chain theory, the self-transitions3

N
Aii = - £ Aij, Vi = 1 ,...,N  (38)

j =1 
j *i

N
3To n o t c o n fu s e  w ith  d ia g o n a l e le m e n ts  o f  a  tr a n s it io n  p ro b a b ili ty  m a tr ix  o f  a  M a rk o v  ch a in , An = 2  Aij

7=1j*i
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The jump term in (35) can now be written as

N

£  *
i , j = 1

N

£  *
j = 1 
j  *i

&j{t ,X(t)) -  f r ( t , X (t)) Aij =

&j{t,x  (t)) Aij * ^i(t, X (t)) d-ii (39)

The function process ^  (t, X (t)) of a stochastic variable X (t) has not been defined 

yet. It can be expressed in many different ways. For instance, for ^  (t, X (t)) = (X (t))0, 

equation (35) corresponds to the 0th order moment dynamics and will be denoted by /i(0) (t). 

For (t, X  (t)) = (X (t) )1, equation (35) represents the evolution of the conditional moment 

of the first order (mean) and will be denoted by /i(1) (t), and for ^ ( t ,  X( t )) = (X (t))2, 

equation (35) represents the evolution of the conditional moment of the second order (also 

called uncentered second moment) and will be denoted by //( ) ( t) .

In general, conditional moments of order m will be denoted by Jui(m) and for an 

n-dimensional vector X (t), m = (m ^ m2, . . . ,mn), and

^ (m)(t) = ^ ;m1,m2,- ,m« )(t) (40)

It results, for the 0th order moment

^ 0)(t) = ^ ( t )

= E [X0X0...X0] (41)

For the kth element of X (t), Xk, the first moment is defined as

= E [ X0 ...Xk ...X„° ] (42)
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The uncentered second moment can be defined with respect to one element (kth) of

X (t) or two elements, (kth) and (Ith)

d 2,(t) = d 0- ' 2....> )

= E [ X? ...X2 ...X» ] (43)

) = ^ (0' . J ....1....0,(t)

= E [X?...Xk ...X,1 ...X? ] (44)

It follows from (41), (42), (43), (44) and from the jump-diffusion model of a power 

system in (16)

4 (m)(t)

E
r " d^,(m)(t, X ( t) ) ,

X  * d%r--------- (A  (t) X (t) + Bi (t )Ui (t) + Ci (t))
l r=1 

1
+ 2  ?  E

N
+ y  e

Z a ̂  (t) > X2 (t)
L r,x=1 5xrr s

z
j =1 
j **

X (t)) ^0  E ^i(t, X (t)) dii (45)

A more detailed derivation of the conditional moments of a stochastic hybrid system 

is described in [4]. However, the resulting model in [4] is different from the one developed in 

this paper, for the reason that the power system in [4] is subjected to stochastic inputs whereas 

in this study, the entire system is switching stochastically between distinct equilibrium 

points.

In (45), (t, X (t) is set to the equilibrium operating point of the destination mode

(slow switching system) after a jump event has occurred. In addition, the second term of 

the right hand side of (45) is equal to zero for m < 2.
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The resulting system of ODEs that describes the evolution of the conditional moment 

of the jump-diffusion model of a power system is

u(m)(t) = Y  mp[ Y  alpr^i
p=1 ' r=1

n i n
o2

m-ep +er , , m—e
(t) + U p (t)vp

1 n / n \ N

+ Y  mp (mp —! ) + Y  mpmr W m)(t)+ Y  x ijx(m)u (°) ( t ) —x n ^ r )(t) (46)
p=1 ' r=l ' /=1r ̂  p J =

j  *l

Vi = 1, ...,N , where vp represents the p th element of the vector BUi + Q  and ep , er are 

two unit vectors with a 1 at the p th, r th entry, respectively.

3.4. MATRIX REPRESENTATION

The derivation of the matrix representation of equation (46) follows the procedure 

described in [5,7,18]. However, the resulting matrices for the power system jump-diffusion 

model presented here are different from the matrices developed in [5, 7, 18], excepted for 

the ° th order as indicated below:

1) The ° th moments represent the occupational probabilities, which are the proba­

bilities for the system to be in a particular operating mode. The matrix representation of 

the ODEs (46) is described in equation (47). This corresponds to the expression that was 

obtained in [5, 7, 18]

fl(°} = ATp  (0) (47)

where At is the transpose of the full transition rate matrix (37). Equation (47) corresponds 

to the well-known Chapman-Kolmogorov equation.

2) The 1st conditional moments are the statistical means of the stochastic distribution. 

The general form of the 1st moment ODEs derived in [5, 7] was as follows

p (1) = G (1) p  (1)(t) + H (1) p  (0)(t) (48)
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where the evolution of the first moments is function of the moments of the 1st and 0th orders. 

Using Matlab notation, the coefficient functions G (1) and H (1) in [5, 7] were defined as

G 1 = blkdiag (A U ... ,AN) + (AT 8  /  (N )) (49)

H 1 = blkdiag( - A iX i , ..., - A n Xn ) (50)

Because of the way the jump term is defined in the jump-diffusion model developed 

here, the matrices G (1) and H (1) are modified as follows

G 1 =  b l k d i a g (A 1 , . . . , A n ) + d i a g ( A T  8  I (N ) )  (51)

H 1 =  b l k d i a g  ( - A 1X 1 , . . . ,  - A n  X  n  )

+ [X 1; X 2; X3] o ( A Ttrans 8  ^ 1) (52)

where o represents the Hadamard product (element-wise multiplication, Matlab ‘.*’), 

Atrans = A -  diag (A) , and 1 nx1 is an n X 1 matrix of all ones (Matlab ones (n, 1)).

3) The 2nd conditional moments represent the uncentered second moments. From

[5,7]

/i(2) = G (2) n  (2)(t) + H (2) n  (1)(t) (53)

where the evolution of the second moment is function of the moments of the 2 nd and 1st 

orders. The structure of the coefficient functions G (2) and H (2) is pretty complex and was 

described in length in [5]. However, for the jump-diffusion model, because of the way the 

jump term is defined and of the inclusion of the Wiener term, the equation of the ODEs 

representing the evolution of the second moment is as follows

/i(2) = G (2) n  (2)(t) + H (2) n  (1)(t) + J (2) n  (0)(t) (54)
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Matrix G (2) contains the contributions from the state matrices Ai, i = 1,2,3, from 

the diagonal elements of the transition rate matrix (dii, self-transitions), and from the square 

of the Wiener coefficient ^fS2 . Each block entry of G (2) is defined as

g (2) = (Tx + Ty) ( /  (n)® Ai) Tx' + diag (A'® /  (n + nz)) + y82 /  (n (n + 1)/2) (55)

where nz is the binomial coefficient of n and 2, Tx, Ty (and Tz below) are reordering matrices. 

These matrices are not unique, they ensure the elements of G (2) are ordered in a desired 

fashion.

Matrix H (2) is constructed with the affine term in the drift component of the SDE 

(16), -  Ai Xi + BiUi, i = 1, 2, 3. Each bloc entry is

H (2) = (Tx + Ty) (I (n) ® ( - AiXi + BiUi)) (56)

Matrix J (2) is a Kronecker product of the transition rates (non-diagonal elements of 

A) with the steady-state vectors. The block elements of J (2) are of the form

J(2) = - 2-T, (X j  ® X j ) (57)

where i, j  = 1 , 2 ,3 and i ^  j .

4. NUMERICAL APPLICATION

In this section, a numerical application of the jump-diffusion model to the IEEE 37- 

bus microgrid is presented and discussed. The ODEs representing the conditional moments 

are solved using the matrix representation of the jump-diffusion model. Computation of the 

conditional moments is limited to the lower order moments (zeroth, first and second orders). 

These lower order moments correspond respectively to the occupational probabilities, the 

statistic means and the uncentered second moments (from which the variances are derived
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according to equation (5)), and are in general sufficient to characterise a probability density 

function of a distribution. Conceivably, moments of higher order can be calculated, but the 

analytical expression of the system of ODEs becomes too complex and the solutions too 

computational expensive, they are not addressed in this paper.

The jump-diffusion results are superimposed to the averaged results of 20,000 Monte 

Carlo simulations of the DAE model of the IEEE 37-bus microgrid, augmented with 

a multiplicative diffusion term and subject to random switching between three distinct 

equilibrium points. The occupational probabilities (zeroth moments) are simulated using 

the Gillespie algorithm ([21,7]). The mode sequences generated by each run of the Gillespie 

algorithm are used as integration paths to compute the first and second order moments during 

each run. To obtain a good accuracy for the first and second order moments, a large number 

of Monte-Carlo runs is necessary (in excess of 100,000 for the IEEE 37-bus microgrid). The 

results presented in this study were limited to 20,000 runs and the computer execution time 

was 55 hr 20 min 23 s, on a PC with a 3.2 GHz Intel® Core™ i7-800 CPU processor with 

32GB memory in the MATLAB's environment. The computer execution time increases 

significantly as the number of runs is increased. In this regard, the jump-diffusion method 

developed here is vastly superior to the averaged Monte Carlo method. The execution time 

to compute the zeroth, first and second order conditional moments was 2 hr 18 min 54 s, a 

reduction of 95.8% relative to the Monte Carlo approach.

4.1. ZEROTH MOMENT RESULTS

For the zeroth moments, the jump-diffusion model corresponds to the Chapman- 

Kolmogorov equations, the differential expression of which is provided in (3). The exact 

solution of these equations is easy to obtain in the jump-diffusion model. On the other 

hand, the Monte Carlo simulation requires a large number of iterations for greater accuracy. 

The solutions for the zeroth order moments are identical to those obtained in [7], they are 

represented here again, in Figure 3, for completeness.
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4.2. FIRST MOMENT RESULTS

The solutions for the first moments are obtained by solving the system of ODEs 

represented by the matrix equation (48), where the moment order m = 1. In (48), matrix 

G (1) is 168 x 168 and matrix H (1) is 168 x 3. To obtain the means for the 56 dynamic states, 

the solutions corresponding to the three stochastic modes and embedded in the column 

vector u (1) are summed up, in accordance with the law of total expectation

U [56x1] = [ I  (56) I  (56) I  (56)] u (1) (58)

The first moments represented in Figure (4) correspond to the dynamic states associ­

ated with Inverter 2 of the modified IEEE 37-bus power system [22,18,14,15]. The plots in 

red represent the averaged Monte Carlo simulations. They closely match the jump-diffusion 

plots in dashed-black. The error observed in Figure 4 (b) and (h) can be considerably 

reduced by increasing the number of Monte Carlo runs, but at the expense of the execution
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time. In Figure (5), results for the algebraic states (or outputs) are represented, as linear 

algebraic combinations of the moments of the dynamic states. A comparison between the 

results from the Jump-Diffusion model developed in this paper and from the Markov Jump 

Linear System model in [7] is represented in Figure 8 and 9. It can be seen, from Figure 8 

(a) that the steady-state is reached more quickly for the Jump-diffusion model, whereas the 

MJLS result reaches steady-state at about 200s (not shown on the plot). On the other hand, 

the spikes observed in the Monte Carlo simulation of the MJLS model [7] have disappeared 

from the Jump-Diffusion's Monte Carlo results (Figure 9), and this is indicative of a better 

modeling of the jumps.

4.3. SECOND MOMENT RESULTS

To obtain the solutions for the uncentered second moments, the moment order is set 

as m = 2 in matrix ODEs (54). It results from (54), G i s  4788 x 4788, H i s  4788 x 168, 

and J (2) is a 4788 x 3. Following the argument developed for the first order moments, the 

uncentered second moments for the dynamic states is a 1596 x 1, and the second moments for 

the algebraic states is a 1540 x 1 vector. The results are shown in Figure (6) for the dynamic 

states (inverter 2), and in Figure (7) for the algebraic states (inverter 2 outputs, bus and 

load currents). An examination of Figure (6) and Figure (7) indicates the averaged Monte 

Carlo simulation results converge to the jump-diffusion results. The comments related to 

the comparison between the first moments obtained from the Jump-Diffusion model and 

form the MJLS model from [7] are also valid for the second moments and the variances, 

Figure (8) and Figure (9).
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Figure 5. First Moments of the algebraic states
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5. CONCLUSION AND FUTURE WORK

This study presented a jump-diffusion model to analyze the dynamics of a microgrid 

operating in grid-tied and standalone modes. For a system subject to stochastic behavior 

affecting dynamic and algebraic states, a statistical approach based on the computation 

of the conditional moments is suitable for the analysis of the system dynamics. The 

SDE representing the system included the Wiener process as well as Poisson processes to 

represent the stochastic jumps between different operating modes of the power system. The 

solution of the jump-diffusion SDE led to a system of ODEs that represent the evolution of 

the conditional moments of the system. A matrix representation of the system of ODEs, 

and the numerical solutions were shown to converge to the results of the averaged Monte 

Carlo simulation. Future work will include using the Jump-Diffusion model developed in 

this study to analyse the stability of a microgrid system subjected to random and abrupt 

transitions between different operating modes.
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The dynamic and algebraic states of the IEEE 37-bus microgrid represented in 

figures 4, 5, 6, 7 above are defined in Table A1.

Table A1. Power System Dynamic and Algebraic States

Variable Definition

d2 Inverter 2 phase angle

$pll 2 Integral of Inverter 2 q-axis voltage

0 P2 Integral of Inverter 2 Active Power error

$ 02 Integral of Inverter 2 Reactive Power error

7d2 Integral of error in filter inductor current, d-axis

7qi Integral of error in filter inductor current, q-axis

Pi Inverter 2 Active Power

0 2 Inverter 2 Reactive Power

vod2 Inverter 2 output voltage, d-axis

Voq2 Inverter 2 output voltage, q-axis

lod2 Inverter 2 output current, d-axis

loq2 Inverter 2 output current, q-axis

lld(,\9 Line 619 current, d-axis

llq6\9 Line 619 current, q-axis

lloadD26 Bus 26 load current, d-axis

lload0  26 Bus 26 load current, q-axis
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Figure B.1. A one-line diagram of the modified IEEE-37 microgrid. Larger circles indicate 
locations of inverters.
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ABSTRACT

This paper discusses the stability of a Jump-Diffusion model of a microgrid op­

erating in grid-tied and standalone modes. The system is modeled as a Markov Jump 

Linear System represented by a Jump-Diffusion Stochastic Differential Equation (SDE). 

The multi-dimensional compound Poisson process in the jump term was modified to in­

clude a compensator to allow for the application of the Burkholder-Davis-Gundy (BDG) 

inequality for martingales. The analysis proceeds with the derivation of bounds on the con­

ditional moments of the compensated Jump-Diffusion model and the mean-square stability 

criterion is used to characterize the asymptotic stability of the system. An illustration of the 

method is described for the IEEE 37-bus microgrid system.

Keywords: Jump-Diffusion, Markov Jump Linear Systems (MJLSs), Mean-square stability, 

Monte Carlo simulations, Power System statistics, Stochastic Differential Equation (SDE), 

Stochastic Hybrid Systems (SHSs).

1. INTRODUCTION

One of the most difficult challenges facing microgrids is implementing a control 

system in the face of uncertainty and randomness in their operating conditions. For a 

microgrid operating in grid-tied mode, the control of the frequency and bus voltages

mailto:gmhn7@umsystem.edu
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can rely on the mains power system’s ability to set these parameters for the entire grid. 

However, in standalone mode, the microgrid is more susceptible to variations in loads and 

local sources and if not adequately controlled it could experience operating instabilities. 

To develop an efficient and resilient control strategy, accurate models for the microgrid’s 

operation are needed, not only during standalone operation but during switching between 

different operating equilibrium points.

The Jump-diffusion process [1] provides an excellent mathematical framework to 

analyze the dynamics of a microgrid operating between different equilibrium points. The 

system can equivalently be represented in the Stochastic Hybrid System (SHS) framework, 

and particularly, as a Markov Jump Linear System, with potentially impulsive jumps in 

the dynamic and algebraic states. The SHS formulation was used to derive a model for a 

power system with stochastic inputs in [2, 3], and an MJLS model of a system with random 

switching between multiple equilibrium points was discussed in [4]. In [1], a Jump-diffusion 

model for a microgrid was developed, where a multi-dimensional compound Poisson process 

is used to represent the random and abrupt jumps between different operating modes.

The modeling process in both cases is theoretically founded and empirically vali­

dated. The resulting Ordinary Differential Equations (ODEs) provide an accurate statistical 

representation of the evolution of the dynamic and algebraic states. They also provide a 

basis for the analysis of the stochastic stability of the system. The stability analysis of SHSs 

encompasses a wide range of methods and stability criteria. There are methods that focus 

on the stability of the numerical methods used to solve the SDEs. Other methods establish 

criteria on the parameters of the stochastic model such as the dwell time (defined as the 

amount of time that passes between two consecutive switching instants). There are also 

methods that evaluate the bounds on the conditional moments of the stochastic system using 

appropriate inequalities.
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Various types of SHSs are surveyed in [5]. These methods are essentially based on 

global stability. The global asymptotic stability method, for instance, includes Lyapunov 

stability, Lagrange stability, and global attractivity. The Lyapunov stability method is 

used in [6, 7] where the Lyapunov function is equated to the Ito formula for a stochastic 

differential equation with jumps. The stability analysis is performed through the evaluation 

of bounds on the expected value of the extended generator. The method is applied to the 

trivial solution of the SHS, based on the fact that the origin is an equilibrium state for the 

asymptotic stability.

In [8,9], the objective is to assess the transient stability of a power system subject to 

uncertainties such as load levels and system faults. For that purpose, the deterministic DAEs 

of the power system are converted into SDEs with the addition of stochastic components. 

The solutions to the SDEs are computed using numerical integration methods such as the 

Euler method and the Milstein method. Although not explicitly stated in these papers, the 

stability of the discrete-time approximation methods is evaluated using the asymptotically 

p-stable criterion [10]. The study demonstrates convergence of the numerical methods to 

the exact solution, hence the stability of the method as applied to the system under study.

The analysis in [11, 12] uses essentially the Lyapunov functions method to derive 

the minimum dwell time that guarantees system stability when subjected to stochastic 

switching. In [13], the exponential stability method is discussed with respect to the dwell 

times. The analysis shows that the expected value of the euclidean norm of the dynamic 

states is exponentially bounded.

The almost sure exponential stability method is used in [14], for a Markov Jump 

Linear System subject to deterministic switching dynamics. The conditions of stability are 

established under either hard or average constraints on the dwell times between switching 

instants. The method consists in determining the minimum dwell time that guarantees the 

stability of the system.
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In [15], the stability of a power system is analyzed from an MJLS perspective, 

where every transition may be impulsive and the exponentially distributed dwell times may 

be arbitrarily small. The representation of the microgrid in the MJLS framework allows for 

a derivation of bounds on the expected values of the dynamic states based on a combination 

of the Markov process parameters (transition rates), the dynamics of each linear system, 

and the magnitude of the impulses. The study makes the assumption that each mode of 

the MJLS is stable, and the impulsive transitions between stochastic modes of the power 

system are also bounded. The bounds on the expected values of the dynamic states, defined 

in terms of the transition matrices and the impulses are in general very conservative and 

could be arbitrarily large.

In [16], moment bounds for the solutions to the stochastic differential equation with 

jumps are derived using the martingale framework and the Burkholder-Davis-Gundy (BDG) 

inequality. The method results in the p-moment stability equivalent to the one described in 

[6, 7]. The paper includes cases where p  e [1,2] and a generalization to p > 2.

The BDG inequality method is used in this paper to derive bounds on the conditional 

moments of the Jump-Diffusion model for a microgrid developed in [1]. The BDG inequality 

is applied to the solutions of the SDE with jump representing the dynamics of the system. 

It will be shown that these solutions can be described as semimartingales and hence they 

satisfy the applicability condition of the BDG inequality.

The paper is subdivided as follows:

In Section 2, a compensated Jump-Diffusion model is presented based on a method 

described in [10], and a matrix representation of the conditional moments is derived. In 

Section 3, standard inequalities [10] related to martingales as well as the BDG inequality 

[16, 17] are presented. In Section 4, a stability method based on the mean-square stability 

criterion and the application of the BDG inequality to the compensated Poisson stochastic
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integral process is described. Section 5 discusses the application of the stability criterion 

to a modified IEEE 37-bus microgrid system. Section 6 concludes this study and avenues 

for future work are presented.

2. COMPENSATED JUMP-DIFFUSION MODEL OF A MICROGRID

A Jump-Diffusion model based on a compound Poisson process for the jump com­

ponent was derived in [1]. To be able to use martingale inequalities (see section III) to 

derive bounds on the conditional moments, a compensator must be added to the compound 

Poisson term [10, 18].

The derivation of the conditional moments and of their matrix representation is 

presented briefly here. A more detailed description of this procedure was discussed in [1]. 

The resulting matrix representations of the conditional moments for both the compensated 

and the non-compensated models are equivalent.

2.1. SDE WITH JUMPS

The Jump-Diffusion model presented in [1] describes a microgrid operating be­

tween a grid-tied and two distinct standalone modes. This model is represented by an 

n-dimensional SDE with jumps of the form

d X (t) = {Ai (t) (X (t) -  Xi (t)) + BiUi}dt
d

+ 3 X(t)dW (t) + ^  (X (t) -  X (t- ) )  dN£(t) , (1)
£=1

for t e [0,T], with initial value Xo = X (0). X = {X (t) , t > 0} is a vector stochastic process 

representing the microgrid dynamic states, W = {W(t), t > 0} is a one-dimensional Wiener 

process with the volatility constantyS,and N e, £ = 1,..., d, represents the £th Poisson process
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with intensity Ae. The other parameters in (1) are the state matrix Ai, the state vector at 

equilibrium, Xi, the input matrix, 5 i, the control vector, ui, all associated with the stochastic 

operating mode i.

The last term in (1) represents a multidimensional compound Poisson process where 

X (t) -  X (t- )  is the jump size at time t . To enable the use of the martingale inequalities to 

the solution of (1), a compensator needs to be inserted into the compound Poisson process 

term. The definition and characteristics of a martingale process are described in section 3.

2.2. COMPENSATED SDE WITH JUMPS

A method from [10, 19] to transform (1) into a martingale is presented here. A 

generic compound Poisson process Y = {Y (t), t > 0} is described as

N (t)
Y(t) = £  £k (2)

k=1

where £k = X (r k) -  X (r k- )  represents the kth jump size, and N = {N (t), t > 0} represents 

a Poisson counting process with intensity A. Since the jump sizes are independent identically 

distributed (i.i.d) random variables independent of N , the expected value of Y(t) is

E [Y (t)] = At£ (3)

where £ = E [£k] is the mean of all jumps of Y that arise until time t [10], and £ < to.

The combination of £ and the mean of a counting Poisson process, At, results 

in a quantity A£t called the compensator of the compound Poisson process. Hence, the 

compensated compound Poisson process is

Y = {Y(t) = Y(t) -  A£t, t > 0} (4)
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The SDE with jumps (1) can be rewritten as

d X (t) = [Ai (t) (X (t) -  X, (t)) + BiUi + Z Ae f  ] dt

+ J3 X  (t) dW (t)

+ 2  (X ( t ) -  X (t- ) ) dN e(t) (5)
e=\ L

where dNe(t) = dNe(t) -  Ae d t.

2.3. ITO FORMULA

The Ito formula is used in stochastic calculus to find the differential of a time- 

dependent function of a stochastic process. It is needed to calculate differentials of functions 

of the stochastic process X (t) such as E [X ], E [X 2] , etc.

For a process (t) = (t, X ( t)) continuously differentiable in t and twice continu­

ously differentiable in X , the Ito formula with respect to the process X (t) in (5) is expressed 

as

dty(t, X ( t)) =

(6)

where the mean jump size for the process ty(t) is

ty(i )  = E ty (t, X ( t)) -  ty (t, X ( t- ) ) (7)
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and the last term on the right-hand side of (6)

X  ( t ,X ( ) )  -  *  ( t ,X ( - )  )) d N  ( )  (8)
e=\ ' '

is a d-dimensional compensated compound Poisson process with the compensator

d d / \
X  M  (D dt = X  (t,X (t)) -  (t,X (t- )  ) dt (9)
r=t r=t ' >

Following [2, 4, 1], we consider ^  (t) to be a polynomial function of the elements 

of the state vector, X , and not explicitly dependent on time

# (m)(t) := Xm Xm ... X™" (10)

where m = m1 + m2 + ... + mn. The parameter m is used as the moment order to describe 

the conditional moments of the stochastic system.

The Ito formula (6) can be rewritten to explicitly represent the direction of the jumps 

from one stochastic mode, i, to another, j

d ^ m)(t, X ( t)) =

/ r ( ) i d^ m) 1 2 dv ; m)rA (t) (X (t) -  X i(t)) + BiUi 1 - - -  + 2 fi2- ^ T

N
+ 2 *j. e  k r (t, x  (t) )i

j=1 
j *
N

-A (m)
Y j A^ E  M m) (t, X ( t) )1 )dt + P - - ^ d W ( t )
k =1 k *i
N

+ Y  (t, X (t)) -  <Ai(m) (t, X (t)) dN‘J (t)
j=1 
j *

(11)
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2.4. DYNKIN’S FORMULA

In stochastic analysis, the Dynkin’s formula is a theorem that gives the expectation 

of a function of a stochastic process. By using it on the Ito formula, it results in the first 

derivative of the conditional moment.

The application of Dynkin’s formula consists in taking the expectation of (11)

d ^ i t ) = E [d ^ m\ t ,  X (t))] 

E [ , , ] 1 2 5 2 *<m) 
[Ai(t)(X (t) -  X ,(t)) + BiUi] —^—  + - f i 2 i

dx 2  dx2
N N

+ ^  Xji E [^ .m) (t, X (t))] -  £  AlkE [ ^ (m) (t, X (t))]
j=1 
j *l

k=1 
k ±i

dt

E

E

d ^ (m)
dW (t) 

dx
r N /

Y j k m) ( t ,x  (t)) -  ^ (m) ( t ,x  (t) ) d^vi7 (t)
l j=1

j *i

(12)

In (12), the expectation of the Wiener process E [dW (t)] = 0 and the expectation 

of a compensated Poisson process E [d N (t)] = 0. Equation (12) reduces to the following 

system of ODEs representing the evolution of the conditional moments of the stochastic 

system

/ii(m)(t) = [A ,(t)(X (t) -  X i(t)) + BiUi]
d ^ (m) 1 2 d2^ \(m)

dx + ~ $ dx2
N N

+ Y  E [<A(m) (t, X (t))] -  £  AkE  [<Ai(m) (t, X (t))] (13)
j=1 
j *i

k=1 k+i

Note that the resulting equation (13) is equivalent to the system of ODEs derived in [1] 

from a non-compensated compound Poisson process.
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2.5. MATRIX FORMULATION

Following a procedure described in length in [1], the system of ODEs (13) can be 

put into matrix form for each order m of the conditional moments. The representation 

described below is limited to lower order moments [1] up to m = 2.

For m = 0, the matrix equation is equivalent to the occupational probabilities

i (0) = G0 i  (0)(t) (14)

For m = 1, the matrix equation corresponds to the means of the stochastic system

i (1) = G 11  (1)( t)+  H 11  (0)(t) (15)

For m = 2, the matrix equation corresponds to the uncentered second moments of the 

stochastic system

i (2) = G21 (2) (t) + H 21 (1) (t) + J 21 (0) (t) (16)

The definitions of matrices G 1,H  1,G 2,H 2, J 2 were presented in [1] and are not 

included here.

2.5.1. Example 1. Consider a switching system composed of two dynamic states 

switching between two stochastic modes {1,2}. The example is inspired by the Markov 

reward model in [20], augmented with a scalar input. The state matrices corresponding to 

the two modes are

A 1
-1  -2 1 0

, A2 =
1 -3 0 -4

(17)
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The equilibrium state vectors are X1 = [10, - 3 ] T and X2 = [-10, 8]T. The transition 

rates between the two modes are A12 = 4s-1 and A21 = 6 s-1. The input matrices are 

B 1 = [7, -2 ]T and B2 = [0 ,0]r  and the scalar input u = 2.

Using the model in (13), the evolution of the conditional moments are obtained, for

m = 1 and m = 2

G 1

-5 -2 0 0

1 -7 0 0

0 0 -5 0

0 0 0 -1 0

■
18 60

■

H 1
-23  -18  

-4 0  10

32 32

(18)

(19)

G2

-5 .99 0 -4 0 0 0

0 -9 .99 2 0 0 0

1 -2 -7 .99 0 0 0

0 0 0 -3 .99 0 0

0 0 0 0 -13.99 0

0 0 0 0 0 -8 .99

_ _
36 0 0 0

0 -4 6 0 0

-23 18 0 0

0 0 20 0

0 0 0 64

0 0 32 10

(20)

(21)
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0 600

0 54

0 -180

400 0

256 0

-320 0

(22)

Results for first and second moment dynamics are shown in figures (1) and (2).

Solutions to (15) and (16) are compared to the average of 10,000 Monte Carlo simulations.

Figure 2. Conditional Second Moments of the dynamic states
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3. THE BURKHOLDER-DAVIS-GUNDY INEQUALITY FOR MARTINGALES

To derive bounds on the moments of a stochastic system, one relies on powerful 

inequalities that apply to martingales. Many concepts of the stochastic theory were de­

veloped for applications in finance. For instance, the concept of martingale is extremely 

important in modeling asset price behaviors. It is briefly described here without all the 

theoretical framework more appropriate for stock prices and hedge ratios than for power 

system dynamics. The BDG inequality, and some other inequalities that are precursors to 

it, are presented here without proof, and the reader is encouraged to check the abundant 

literature on this topic such as [16, 17, 10].

3.1. THE MARTINGALE CONCEPT

Martingales are defined with respect to a filtered probability space. A probability 

space (Q, A , P) consists of a sample space Q, a ^-algebra or collection of events A , and a 

probability measure P  [10, 21]. On this probability space, a filtration is defined as a family 

of increasing ^-algebras

A = { A t : t > 0; A s C A t, 0 < s < t < ™} (23)

and the extended space (Q, A , P , A) is called a filtered probability space. A t denotes the 

known information of the system at time t > 0, and a continuous time stochastic process 

X = X (t) , t  > 0 is said to be A t-adapted to the filtration A if X (t) is A t-measurable 

(X (t) e A t) for each t .

Given a filtered probability space (Q, A , P , A ), an A t-adapted stochastic process 

X = X (t) , t > 0 is called a martingale if it satisfies the equation

X (s) = E (X  (t ) |A s) (24)
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for all  ̂ e [0, t] provided X (t) is absolutely integrable

E (|X (t) |)  < ~  (25)

for t > 0.

Two examples of martingales on a filtered probability space (Q, A , P , A) are a 

Wiener process W = {W(t), t > 0} , and a compensated Poisson process N (t) = N (t) -  At, 

where N (t) is a standard Poisson process with intensity A.

Another concept relevant to this study is that of semimartingale. A process X = 

{X (t), t > 0} is called a semimartingale if X (t) can be expressed as a sum of the form

X (t) = X (0 )+  A (t)+  M (t) (26)

for t > 0. In (26), M (t) is a martingale, and A (t) is a process of finite total variation. While 

in general, A (t) could be any stochastic process, in this application it represents an ordinary 

Riemann-Stieltjes integral of the drift term of an Ito process.

3.2. MARTINGALE INEQUALITIES

The inequalities provided below are precursors to the BDG inequality and provide 

a basis for the derivation of bounds on the p th moments of a stochastic process X (t). They 

are covered in depth in many stochastic theory books [22, 21, 19, 10].

The maximum martingale inequality is defined for a continuous martingale X = 

{ X(t) , t > 0} with finite p th moment as

p ( sup |X (s)l > a )  < —pE (|X (t) |p) (27)
Ue[0,f] / aP

where a > 0 and p  > 1.
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Doob’s inequality provides the expectation of the maximum of the p th moment

e ( sup |X (s)\p) < ( - P ^ f  E ( |X (t) |p) (28)
W[0,t] / \P  -  1/

where p  > 1. In particular, when p  = 2, we obtain the expectation of the maximum of the 

square of the estimate

E sup \X(s)\2 < 4 E (\X (t)\2) (29)
\se[0,t] !

Jensen’s inequality is defined for a random variable X (t) with finite first moment, 

and a convex function g : R R

g |E (X)J < E ^g (X)J (30)

Lyapunov’s inequality is defined as

(E(\X\r) )1/r < (E(\X\s))1/r (31)

where 0 < r  < s < to.

Finally, Holder’s inequality for 1 < p  < to,

( t  « ) p < «p- '  t  «p (32)
' 2=1 ' 2=1

3.3. BURKHOLDER-DAVIS-GUNDY INEQUALITY

The Burkholder-Davis-Gundy (BDG) inequality relates the maximum of a semi­

martingale to its quadratic variation.



95

For a semimartingale X = {X (t), t > 0} with decomposition (26) and for any 

p  > 1, the BDG inequality is expressed as

sup | X (s)|p
,se[0,t]

< CpE [ X (t ) ,X  (t) ]
p/2

where the coefficient Cp depends on the value of p

(33)

Cp =

a/ 10p 1 < p  < 2

2 p  = 2

p V f  p  > 2

(34)

In (33), [X (t) ,X (t)] (also written [X (t)]) denotes the scalar quadratic variation 

process of X (t).

The quadratic variation process [X] = {[X]t , t > 0} of a process X (t) is

[X]t = lim [X (t)] h,t
h—> 0

(35)

Its numeric approximation is given by the sum

nt
[X] h,t = £  (x tk -  Xtk_i)2 (36)

k =1

where h = tk -  tk-1 is the time step, and nt = max{k e N : tk < t}.

Similarly, the total variation process |X| = {|X |t, t > 0} is described by its approxi­

mation

X 1 Xtk -  Xtk_11
k =1

(37)
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4. STABILITY ANALYSIS OF OF THE JUMP-DIFFUSION MODEL

This section discusses the application of the mean-square stability criterion to the 

jump diffusion model (5) of a microgrid.

4.1. STABILITY CRITERION

The p-stability criterion for a stochastic process X = {Xt, t > 0} states that for a 

bounded (in the p th mean) initial value, |X01p, the integral solution to the SDE (5) remains 

bounded.

4.1.1. Definition 1. A stochastic process X = {Xt, t > 0} is said to be p -stab le  if 

for | X01p < 5 there exists e > 0 such that

E (|X (t) |p ) < e (38)

for t > t0.

The limit case is called asymptotic p-stability  and requires that a stochastic process 

be p -stab le  and that its p th-moment vanishes in the long run.

4.1.2. Definition 2. A stochastic process X (t) is said to be asymptotically p -stab le 

if it is p -stab le  and for |X01p < 5

lim E ( |X (t) |p ) = 0t V ' (39)

for t > t0.

This study is concerned with the case of p  = 2, called mean-square stability, which 

is one of the most popular stability concepts for stochastic processes.
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4.2. P-STABILITY AND THE BDG INEQUALITY

The analysis of the ^-stability  (38) is equivalent to determining bounds on the 

solution to the SDE with jumps (5)

A (t) = X (0)

+ ^  | a ,- (5) (X (5) -  Xi (s)) + BiUi + g  A t f j  ds 

+ [  p X (s)dW (s)
J 0

+ [  t g (  X  (n ) -  X  (n -))  dN* (s)
Jo t l

(40)

The last integral in (40) is merely a sum overjump times. Using the inequality (32), 

the expectation of the maximal process of X (t) applied on both sides of (40) yields

sup |X (s)|p
Lse[0,T]

T
+ E sup

Lse[0,T ]

+ t  J-ti W
t=i

E

< 4p-1j |X (0)|p 

f o ' ( ^ i ( t ) (X ( t ) - X i ( t ) )

/
+ BiUi

|p
+E sup ||

se[0,T ]

sup
Lse[0,T ] h  t

p  X  (t) dW (t)

X (t) -  X (t- )  dA {(t) (41)

Each component of the second member of (41) is evaluated using the BDG inequality 

(33) and the quadratic variation of the semimartingale solution to the compensated Poisson 

stochastic integrale. The quadratic variation of a jump-diffusion stochastic integral is 

discussed next.
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4.3. QUADRATIC VARIATION OF A JUMP-DIFFUSION MODEL

The components of a semimartingale X = {X (t), t > 0} (26) can further be 

decomposed into a continuous and a discontinuous components

X (t) = X (0) + A (t) + M cont (t) + M disc (t) (42)

. The correspondence with the solution process (40) to the jump-diffusion model (5) shows

that the process M cont (t) is equivalent to the stochastic integral with respect to the Wiener 

process W (t), and the discontinuous process M dlsc (t) is equivalent to the stochastic integral 

with respect to the Compensated Poisson process N (t). Acont (t) represents a process with 

finite total variation and corresponds to the Riemann-Stieltjes integral part of an Ito process. 

Combining (40) and (42) yields

A (t) = ^  |A i(5) (X (5) -  X i(t)) + BiUi + g

M cont(t) = [  (3X(s)dW (s)
J 0

M dlsc(t) = g  | x (s) -  X (s - ) ) dNe(s)

Aed ds

(43)

The quadratic variation of the initial value is [X ,X ] 0 = | A012 and the quadratic 

variation of a process with finite total variation [A, A] t = 0. Therefore the quadratic 

variation of a semimartingale of the type (42) is due to contributions from the initial value 

and from the continuous, M cont (t), and discontinuous, Md (t), martingale processes.

[X, X] t = |X012 + [M cont, M cont] t + [M disc, M dlsc]t (44)

The continuous part is due to the diffusion term
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[Mcom, M Cont]t = g 2 f  X 2 
J 0

(s) ds (45)

The discontinuous part is due to the jump component

[Mdisc Mdisc]
r t d

= [ SJ 0 e=1
X (s) -  X (s - )  dN 1 (s) (46)

With the assumption that these quadratic variation components are integrable, their 

expectation (with respect to a mode, i) can be expressed as

E ([X,X]t) =|Xo|2 + E (X2(s))d.
0

e  (

t d ( \ 2
+ E  X (s) -  X (s - )  Xe ds (47)

It follows from (47) and the definition of the conditional moments in (13), (14), 

(15), (16)

and

= l  s
r t d

= l  s

g 2 (  E (X2 (s)) ds = g 2 /* ju(2)(s)ds
0 0

^ X (s) -  X (s - ^  Ae ds

(48)

^ X 2 (s) -  2X (s)X (s - )  + X 2(s - ) j Ae ds 

d r
E (X2 (s )) -  2E (X (s)) E (X (s - ) )

2

+ E (X2 (s - ) ) A( ds

i 0 S  ^ ( u(2) (s) -  2X (s - )u (1)(s) + x 2 ( s - ) d 0)) ds

2

(49)



100

To have dimension consistency between various terms of (48) and (49) requires a 

transformation matrix Tx, defined in [1, 3],

X (s - ) ^  Tx (X (s -)®  I (n))

X 2 (s - ) ^  Tx (X (s -)®  X (s - ) ) (50)

where ® denotes the Kronecker product, n represents the system order (dimension of the 

process state vector X (s)), and I (n) is the identity matrix of the nth order.

The second conditional moment transformation matrices were derived in [3]. A 

brief description of these matrices is presented in Table 1.

Table 1. Second conditional moment transformation matrices

Matrice Denomination in [3] Definition Description

Tx Wx R (Wc + I  (N 2)) -

Ty Wy RWs -

Tz - R (Ws + Wc + I  (N 2)) -

describes the structure of the

- Wm (Ws + Wc + I  (N 2)) second conditional moments and 
represents how second order mo­
ments relate to each other

describes an additional self de-
Tdiag Ws pendence for moments of the 

form E [Xi(t)Xi(t) |Q (t) = q

T1 cross Wc - describes dependence on an 
equivalent moment

- R -
eliminates all redundant mo-

(2)ments for ) (t)
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By using the law of total expectation, the quadratic variation [X , X ] t corresponds to 

the sum of contributions from all stochastic modes. The general expression for an n-state, 

N-mode stochastic system is

[X , X ]t = |X 012 +

+

Y  p l  \  p (2) ds
i=\ Jo

Y [  ̂ U 2)- 2Tx ( x - ® 1 (” )) p (1)
ip=t 'o  \

+ Tx (X,- ® X,-) p fM  ds

i,j
i* j

(51)

4.3.1. Example 2. For the two-mode, two-state system from Example  1, and using 

the law of total expectation, the quadratic variation process of X (t) is

[X , X]t = |Xo|2 + P2 J  p(2)ds + p 2 J  p f  ds 

+ £  d i^ p ( 2 )-  2Tx (X2 ® I (2))p (1)

+ Tx (X2 ® X2)p (0)J ds 

+ ^ ^ p 22)-  2Tx(Xi ® I (2))p21)

+ Tx (Xi ® X i) p20)l ds

where p  = 0.1 and Tx

1 0  0 0 

0 0 0 1 

0 1 1 0

On the other hand, the maximal process of X is

sup | X  (s)|p
se[0,1]

sup 1 P (2)( s)|
se[0,1]

(52)

(53)
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Figure 3 shows comparisons of Monte Carlo results for the quadratic variations of the 

dynamic states (red) to the jump-diffusion model results (black).

Figure 3. Quadratic variation of the dynamic states. Comparison averaged Monte Carlo vs. 
jump-diffusion model.

Time (s)

Figure 4. Log plot of the quadratic variation of the dynamic state x 1 (52) compared to the 
maximal process of xi, (53)

The quadratic variation derived in (52) and illustrated in Figure 4 provides an upper 

bound to the maximal process of the second moment of X (t), solution to (16).

5. NUMERICAL APPLICATION

In this section, the case of the IEEE 37-bus microgrid is discussed. The mean 

square stability criterion is applied to the jump-diffusion model to derive bounds on the 

statistics of the system. Examples 1 and 2 above have shown that the mean square stability
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can be accurately applied to a small microgrid’s jump-diffusion model. Averaged Monte 

Carlo results were shown to converge to the jump-diffusion model results. Per the BDG 

inequality, the quadratic variation processes of the dynamic states provide upper limits to 

the maximal processes of the second moments, hence to the second moments themselves. 

Consequently, the conditions of the mean square stability criterion are met and the model 

is deemed stable in mean square for small microgrid systems.

The method is now applied to a larger microgrid system. The modified IEEE 37- 

bus microgrid was described in [4, 1, 23, 24]. With 56 dynamic states and 3 stochastic 

modes, the switching behavior is more complex. The jump-diffusion model is used to 

derive the conditional moments which have already been validated through convergence to 

Monte Carlo results [1]. The quadratic variations processes are then computed for selected 

dynamic states, associated with inverter #2.

Figures 5 and 6 shows the second conditional moments for the dynamic states (black) 

and their respective upper bounds (dashed red). The interpretation to make of Figures 5 

and 6 is that for a microgrid where system dynamics are driven mostly by random jumps of 

large magnitude (greater than variations due to drift and diffusion processes), the variations 

in the dynamic states are bounded in square mean. In other words, the square of the jumps 

have an upper limit on average. These bounds provide an important information for the 

stochastic control of a microgrid, here represented by a jump-diffusion model. 6

6. CONCLUSION

This paper presented a method to analyze the stability of a microgrid operating in 

grid-tied and standalone modes. The system is modeled as a compensated jump-diffusion 

process to allow for the use of martingale inequalities. The mean square stability is utilized 

to derive bounds on the statistics of the system. The Burkholder-Davis-Gundy inequality
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was used on the second moments of the dynamic an it was demonstrated that the moment 

solutions to the jump-diffusion process are bounded by their respective quadratic variation 

processes.
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SECTION

2. CONCLUSION

The objective of this dissertation is to develop stochastic models for a microgrid 

operating in grid-tied and islanded modes. In the first paper, the model of a microgrid is 

developed in the SHS framework and corresponds to a MJLS for a system switching between 

different operating modes. The transitions between different operating modes is modeled 

as CTMC, according to an algorithm developed for the generation of different paths of the 

underlying Markov process. The method results in a set of ODEs representing the evolution 

of the conditional moments of the dynamic and algebraic states of the stochastic system. The 

analytical solutions to these ODEs are more easily computed when they are put into a matrix 

form and the method is illustrated for the first and second order moments. It is demonstrated 

that these solutions converge to the averaged Monte Carlo simulation. However, the Monte 

Carlo simulation shows impulses during the transitions from one stochastic mode to the 

other. An improvement of these transitions is described and modeled in the second paper.

A stochastic model of a microgrid is presented in the second paper, starting with 

a stochastic differential equation with jumps. The solution to the SDE corresponds to a 

jump-diffusion process that involves a drift term, a diffusion term, and a jump component. 

The drift term represents the traditional power system model in the state space. The 

diffusion term correspond to a Wiener process with linear coefficient. The jump component 

is described by a compound Poisson process with the jump sizes modeled appropriately 

to represent a more realistic switching behavior. The procedure includes the derivation of 

the conditional moments and their matrix representation, and the analytical solutions are 

shown to converge to the averaged Monte Carlo simulation with great accuracy.
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The third paper discusses the stability of the jump-diffusion model of a microgrid 

developed in the second paper. The analysis is based on the mean-square stability criterion. 

First, the jump-diffusion model is converted into a compensated Poisson stochastic integral 

process. Then, martingales inequalities are applied to the solutions to the jump-diffusion 

model to derive bounds on the conditional moments of the stochastic system. In particular, 

the Burkholder-Davis-Gundy inequality relates the maximal process of a stochastic process 

to its quadratic variation. It is used here to evaluate the mean-square stability criterion on 

the second order moments of the jump-diffusion model. The methods results in realistic 

bounds that can be used in a microgrid control system.

The numerical application of all the models described above are based on the mod­

ified IEEE 37-bus microgrid. The original system has 225 dynamic states and, in previous 

studies, was reduced to a 56fA order system using the singular perturbation technique. The 

system is considering between two distinct standalone and one grid-tied operating modes. 

In all cases, the stochastic model is validated through comparison with the averaged Monte 

Carlo simulation. An important advantage of the stochastic method is that it is far less 

computational expensive than the Monte Carlo method.
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