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ABSTRACT

There is an increasing demand for renewable energy and consumers need more 

procurement options to meet their needs. Energy sharing provides a peer-to-peer (P2P) 

marketplace where prosumer electricity is redistributed to fellow energy-sharing 

community participants. This redistribution of prosumer electricity provides consumers 

with additional electricity suppliers, while also decreasing the load on the utility company. 

Though significant progress has been made regarding research and implementation of 

energy sharing, there is still room for growth when evaluating energy-sharing communities 

and defining appropriate community coordination based on end-user needs. The first 

contribution in this work identified nine characteristics of energy-sharing communities as 

a decentralized complex adaptive system of systems (DCASoS). Considering each 

characteristic before determining community coordination is vital to ensure ample 

participation within the energy-sharing community. The second contribution was the 

exploration of a two-stage stochastic programming model as an alternative to the classic 

energy distribution business model. The third contribution compares three behavioral 

theories to identify the best fitting model to predict interest in participating in an energy

sharing community. This research provides companies with foundational knowledge to 

develop an energy-sharing community that both fulfills end-user satisfaction and increases 

robustness of electricity distribution business models.
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1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

Companies are adapting decentralized business models to provide consumers with 

an alternative marketplace that is conducted in a peer-to-peer manner. A decentralized 

coordination in the energy sector gives end-users the ability to transfer electricity between 

energy-sharing participants, including the utility company. The traditional electricity 

distribution infrastructures use a hierarchical coordination, which practices a top-down 

distribution method. Decentralized coordination increases connectivity between energy

sharing participants. This increased connectivity provides energy-sharing participants with 

additional electricity suppliers. Expanding connectivity to include networks between end- 

users allows for higher autonomy and creates the opportunity for alternative coordination 

methods. A sharing economy depends on the exchange of goods and services between 

individuals and organizations being more efficient and effective than traditional business 

models . Through energy sharing, excess electricity will be redistributed within the energy

sharing community, which decreases direct expenses incurred by the utility company 

(Botsman & Rogers, 2011).

End-users that have chosen to invest in a distributed generation unit (DGU) are 

referred to as prosumers. Prosumers have the ability to both consume and produce 

electricity. The increase in prosumer population encourages utility companies to reevaluate 

the current electricity distribution processes and pricing models. Decentralized electricity 

distribution processes and pricing models account for the additional suppliers of electricity, 

which directly impact the amount of electricity purchased by utility companies from
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outside sources. Sharing energy provides an additional option for prosumers and utility 

companies to combat overgeneration in addition to storage, selling back to the grid, or 

curtailment (Fleischhacker, 2019; Wiser, 2005; Bird, 2014) . These additional transactions 

address the demand for renewable energy while providing prosumers with an additional 

source of income.

A transactive energy system yields a transactive energy management system, and 

the ability to redistribute excess DGU electricity within the sharing neighborhood or 

between connected neighborhoods. Transactive energy systems rely on DGU predictions 

to accurately estimate electricity quantity necessary to purchase from large-scale electricity 

providers. Transactive energy management systems predict prosumer production and do 

not accept excess DGU electricity that exceeds the predicted values (Brown, 2017). This 

limits the management systems’ abilities to adapt in the face of DGU production 

uncertainty. Utility companies can purchase electricity from large-scale electricity 

producers at either retail or wholesale price. Accurately predicting the amount of DGU 

electricity allows the utility company to purchase more of the necessary electricity supply 

at wholesale price.

Before selecting the large-scale electricity source to purchase, a list of community 

pre-approved suppliers were evaluated by a group of community representatives. The 

group of representatives consists of residents within the cooperative sharing community, 

and they must choose the large-scale electricity supplier that most closely follows the 

community’s values. For example, a cooperative community may value environmental 

friendliness, which would encourage the community representatives to choose the large- 

scale renewable energy generation as the electricity source. In this scenario, the utility
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company is an intermediary because utility infrastructure is used to distribute electricity 

to end-users.

The decision to incorporate a management system is made based on the unique 

needs of the energy-sharing community. However, many end-users within a decentralized 

system incorporate home energy management systems to regulate supply, demand, and, in 

certain cases, controllable and uncontrollable loads. Sharing would be available to all end- 

users that choose to participate in the energy-sharing community. Some end-users may not 

choose to participate in energy sharing because the benefits may not outweigh the cost.

1.2. RESEARCH OBJECTIVES AND CONTRIBUTION

This dissertation aimed to identify aspects of consideration from a systems 

engineering perspective to successfully implement energy sharing in the current energy 

distribution infrastructure. To successfully integrate energy sharing into the current energy 

infrastructure, characteristics, optimization, and behavioral theories were applied.

Publication 1: Nine characteristics of energy-sharing communities were identified 

and used to describe the community as a decentralized complex adaptive system of 

systems. The initial five characteristics, developed by Boardman and Sauser (2006), 

autonomy, belonging, connectivity, diversity, and emergence, provided the foundational 

knowledge of system of systems. This research provided the basic terms used to 

qualitatively analyze energy-sharing communities as system of systems.

Publication 2: Coordination of independent energy-sharing communities was 

decentralized. However, energy-sharing communities can be classified as either non

cooperative or cooperative. Using two-stage stochastic programming considering
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uncertainty, electricity distribution can be optimized. Cooperative energy-sharing 

communities consider additional variables because of the connectivity options between 

communities that help maintain consumer electricity demands. This approach is beneficial 

to future optimization of energy-sharing communities because of the acknowledgment of 

intermittence for renewable energy resources.

Publication 3: A literature and current existing project review was conducted by 

identifying subsections directly related to energy sharing. The conducted literature review 

defined five main categories: (1) decentralized coordination, (2) energy management 

systems, (3) energy management optimization, (4) energy storage systems, and (5) 

microgrid. To further understand and better explain the individual concepts of the 

subsections, each was further segmented into more detailed sections. The review of 

existing energy-sharing projects revealed that there are energy-sharing pilot projects world

wide. Though there is a wide geographic range of energy-sharing communities, every 

project was meant to decrease the energy burden on the residential users. This research 

provided foundational knowledge for better understanding necessary for the development 

of energy sharing.

Publication 4: Value-belief-norm, diffusion of innovation, and theory of planned 

behavior were compared as potential behavioral theories to predict consumer adoption of 

energy sharing. Understanding what factors are likely to influence consumer adoption can 

inform the design and marketing of energy-sharing communities to increase the robustness 

of electricity distribution business models. From a systems perspective, the behavior of the 

system is heavily influenced by consumer engagement and behavior, so it is valuable to
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characterize the key features of the human side of the system as well as the technical side 

of the system.

Using a system of systems approach, necessary agents and interfaces between 

agents are identified to ensure successful implementation of energy sharing. Characteristics 

used to understand qualitative aspects of energy-sharing communities are identified and 

used to explain energy-sharing community coordinations. A thorough literature review and 

existing energy sharing project review provides the foundational knowledge to understand 

how energy sharing has previously been studied and implemented. However, this analysis 

also revealed the research gap explaining consumer participation in energy sharing. By 

understanding consumer actions, an energy-sharing facilitator can market energy sharing 

to encourage participation in an energy-sharing community.
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PAPER

I. ENERGY SHARING COMMUNITY AS A DECENTRALIZED COMPLEX 
ADAPTIVE SYSTEM OF SYSTEMS

Julia Morgan, Madison M. Calvin, Zeyi Sun, and Ruwen Qin

Department of Engineering Management and Systems Engineering, Missouri University 
of Science and Technology, Rolla, MO 65409

ABSTRACT

Electricity generated from renewable energy sources (RESs) such as wind and solar 

is in growing demand as a result of promoting sustainability. Yet RESs are intermittent and 

volatile, raising new challenges to the cost-effective, reliable operation of widely installed 

renewable energy systems owned by various entities. These systems include distributed 

renewable generation units and storage devices, as well as centralized renewable energy 

plants and storage systems. Forming energy sharing communities locally and coordinating 

the participants in each community properly will improve their performance. This paper 

analyzes energy sharing communities from the perspective of systems engineering and 

identifies nine characteristics of them. Therefore, each community can be seen as a 

decentralized complex adaptive system of systems (DCASoS). The paper thus proposes 

two methods for coordinating individual communities. One is the hierarchical coordination 

requiring a top management at the community level to coordinate participants; the other is 

the peer coordination replying on the collaboration among participants. They both capture 

the DCASoS characteristics of energy sharing communities. The choice of one method
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over the other for a specific community needs to consider multiple aspects of it, such as 

the community size, the architecture and bandwidth of its communication network, and the 

reliability requirement.

1. INTRODUCTION

Sharing economy has impacted multiple industries such as transportation (e.g., 

Uber) and hospitality (e.g., Airbnb). Now it is spreading to the energy industry. Utility 

companies are no longer the only electricity service provider. Many consumers are actively 

choosing to consume electricity generated from renewable energy sources (RESs). As a 

result, distributed renewable generation units are widely installed. The energy industry has 

started establishing utility-scale renewable energy plants that have the sole purpose of 

producing electricity from RESs. Meanwhile, the development and maturity of energy 

storage technologies have promoted the rapid deployment of both distributed and 

centralized storage systems [1]. Yet RESs are intermittent and volatile. The rapid 

deployment of renewable energy generators and energy storage systems, which are in 

various sizes and owned by different entities, has been raising new challenges to 

the energy industry.

Forming energy sharing communities locally is a possible solution to the above- 

mentioned issue. An energy sharing community allows its participants to achieve a greater 

outcome than they would individually. Participants who generate excess electricity are able 

to share their generation with participants of their choosing. They are also able to take 

advantage of shared energy storage systems in the community to improve operational
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reliability and economy [1]. Participants who consume energy, similarly, can purchase 

electricity from generators of their choosing. This gives consumers a flexibility in 

managing their consumption.

Sharing economy in the energy industry has different features than that in other 

industries for many reasons. The complexity of power systems engineering and unique 

characteristics of RESs are predominant ones. Therefore, the knowledge of sharing 

economy gained from other industries cannot be directly transferred to the energy industry. 

An energy sharing community has many similarities with a microgrid (MG), a way of 

integrating distributed generation units, energy storage systems, and local loads to 

effectively utilize RESs [2]. Yet differences between them are present. The sustainable 

development of energy sharing communities requires a scientific understanding of them. 

Similar to MGs, an energy sharing community is an integration of many systems. 

Analyzing energy sharing communities from a perspective of systems engineering would 

provide insights into the development, operation, and management of them. This need 

motivates the study of the paper. The remainder of the paper is organized in the following 

way. Section 2 studies the system of systems (SoS) characteristics of energy sharing 

community, followed by an analysis of the complex adaptive system characteristics of it in 

Section 3. Accordingly, methods for coordinating individual communities are proposed. 

The paper summarizes the findings and future work at the end, in Section 4.
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2. ENERGY SHARING COMMUNITY: A SYSTEM OF SYSTEMS

An energy sharing community is a SoS that possesses the characteristics of 

autonomy, belonging, connectivity, diversity (i.e., heterogeneity), and emergence [3].

2.1. HETEROGENOUS AUTONOMOUS PARTICIPANTS

An energy sharing community has various participants, as Figure 1 shows.

Conventional 
Power Plant

Energy Storage 
Provider

Figure 1. An energy sharing community

A utility company serves electricity end-users. It owns a distribution system, and 

may own the generation and transmission systems. The utility seeks profit by providing 

economical, reliable electricity service to its customers. Nowadays the utility is no longer 

the only electricity provider to end-users [4]. Distributed generation units installed at 

residential and commercial sites, utility-scale renewable energy plants, and large-scale 

energy storage systems can also provide electricity to end-users. According to the net 

metering law widely implemented in the United States [5], the utility is required to allow
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customers to connect their renewable systems to the grid. The utility now purchases 

electricity from not only conventional power plants, but centralized renewable energy 

plants and distributed renewable generation units. These changes create both opportunities 

and challenges for the utility.

A consumer does not have a renewable energy system and purchases electricity 

from service providers such as a utility. A consumer, after installing or leasing a renewable 

energy system, becomes a prosumer. Prosumers both produce electricity with RESs and 

purchase electricity generated from non-renewable sources [4]. Prosumers facing the 

uncertainty in RESs aim to maximize returns on their investment in renewable energy 

systems, which include cost savings, carbon emission reduction, government subsidies, and 

so on.

Utility-scale renewable energy plants, which generate reliable, clean electricity 

from RESs, have started to be established by the energy industry [6]. Renewable energy 

plants usually are centralized large-scale systems. Due to the scale of economy and the 

professional capability of energy management, the cost and quality of renewable 

generation at renewable energy plants are more competitive than those of distributed 

generation units. Like conventional power plants, renewable energy plants mainly sell the 

electricity to utilities, not to end-users. But renewable energy plants face intermittent, 

volatile generation. Their owners want to maximize the expected return on the asset 

investment subject to the operation constraints and the uncertainty in RESs.

Large-scale energy storage systems have been built in the energy industry and they 

may be managed by independent providers [7]. Unlike distributed storage systems, these 

centralized storage systems serve renewable energy plants, utilities, and, sometimes, end-
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users. Owners of these systems also confront the uncertainty issue of RESs and would like 

to best utilize the systems to maximize the expected return on their investment.

The discussion above indicates that all the participants are autonomous systems. A 

participant of a sharing community, indexed by i (2 1, the index set of participants), has its 

own goal or purpose (Gi), functions (Ai), and management ability (F ) to seek the goal given 

its operating condition (X). The outcome (Oi) is the result of the system’s management 

compounded by some uncertainty element, ei; that is,

Ol =Fl(Al;Xl;G l)+e l: (1)

The achieved outcome of any system i overlaps with its goal in certain degree; that is, Oi 

c  Gi . The diversity (i.e., heterogeneity) of participants is also captured by at least one 

difference in their functions, management ability, operating conditions, or the underlying 

uncertainty elements.

2.2. THE COHESION FOUNDATION FOR SHARING: BELONGING

Each of the participants mentioned in Section 2.1 possesses some functions that is 

necessary for the proper functions of the sharing community (A); that is,

A i c A  c  uldA (2)

For example, prosumers can generate electricity from RESs to serve users of the sharing 

community. Meanwhile, the nature of sharing may create unique operating condition (X) 

and uncertainty element (e) for the community. For example, the energy storage provided 

by large-scale storage systems to all users (not only renewable energy plants and the utility, 

but end-users) help further mitigate the demand pressure the community put on the grid 

during peak hours and the risk of over generation from RESs. As a result, the electricity
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service for the community is more reliable and economical. The sharing community utilizes 

its management ability (F) to produce the outcome (O) in seeking its goal (G) given the 

obtained functions, operating condition, and uncertainty element:

O = F(A;X;G) + e (3)

The sharing community must possess opportunities for the participants to achieve greater 

outcome, resulting in a reduction of unachieved goal, 5  i fl Gi, for any participant i, and/or 

reductions in uncertainty measurements of Si. The opportunities are in the form of one, or 

a set, of the following representative changes the sharing community brings to its 

participants.

• Additional functions: For example, prosumers and renewable energy plants, who 

do not have their own energy storage devices, obtain the function of energy storage 

through participating in the energy sharing community. Specifically, this additional 

function is acquired either directly from the shared storage systems or equivalently 

from the shared demands. Denote Ai as the functions that participant i possesses 

after joining the sharing community, and Ai &Ai. Ai f  Ai represents the additional 

functions the participant i obtains through sharing.

• Better operating condition: (1) A flexible operating condition is better, such as 

one with multiple, diverse sources rather than a single source. For example, 

consumers are also able to consume renewable energy, an additional source of 

electricity generated from RESs, through participating in the sharing community. 

Through sharing, larges-scale energy storage systems serve not only contracted 

users (e.g., renewable energy plants and utilities), but non-contract users (e.g., 

prosumers). (2) Less constrained operating condition is also favorable. For
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example, prosumers and renewable energy plants that own or lease energy storage 

devices can expand their storage capacity, either directly or equivalently, in the 

sharing community. (3) Less uncertain operating condition or more predictable 

management ability is another case. For example, the utility faces a large number 

of uncertainties brought to the grid by prosumers. After a sharing community is 

established, these uncertainties are substantially lowered. Denote Hi as the 

operating condition for participant i in the sharing community, and ii as the 

uncertainty element. Then, Hi > Xi, ii > Ei , or both.

Provided additional functions or better operating conditions, energy infrastructure 

owners can achieve higher, and less uncertain, utilization of their assets, and so for the 

return on investments. Infrastructure users and energy consumers are more capable of 

harmoniously achieving operating reliability, cost savings, and sustainability.

2.3. A CONNECTED NETWORK

An energy sharing community must be a connected network, as Figure 1 illustrates. 

A line that allows unidirectional flow of power from one participant to another without 

passing through other participants is a directed linkage between the two participants. A 

binary variable ly, when taking the value of 1, indicates the existence of a directed linkage 

starting from i and ending at j .  l ,  = lj,i = 1 if an undirected linkage between participants i 

and j exists, allowing for bidirectional power flow. Denote L as the matrix of directed 

linkages for the sharing community, whose elements are l ,  ’s. Two participants are 

certainly connected if there is a linkage between them, regardless of it is a directed or 

undirected one. Two participants may be connected through other participants although
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there is no linkage directly connecting them (e.g., a consumer and a prosumer). In other 

words, a chain of linkages exists, which allow the power to flow from one participant to 

the other, or vice versa. A binary variable c, j , when taking the value of 1, indicates the 

existence of a directed connection starting at i and ending at j . Denote C as the connection 

matrix of the sharing community, whose elements are c , / s .  The connection matrix C is a 

function of the directed linkage matrix L. The utility in a sharing community plays a critical 

role if no additional infrastructure is specifically built for the community. The utility has a 

linkage (either directed or undirected) with each of the rest participants; that is,

{lutility; j}  U { j  utility }= {1}; Vj  c I, and j  fu ti l i ty  (4)

Therefore, the utility provides connections to participants who are not directly connected 

by linkages, making sharing possible.

2.4. EMERGENCE FOR SHARING

Emergence is the most important characteristic of any energy sharing community. 

It is the appearance of new features of the community emerging from the interaction of its 

participants. Emergence has both good and bad effects. Therefore, coordinating 

participants, or defining a mechanism to let them collaborate properly, is necessary for 

enlarging the impact of good effects and reducing that of bad effects [8].

Participants of a well-coordinated sharing community are able to achieve more 

attractive performance than in the pre-emergent stage; that is,

Oi(Ai; X i ; e;  G ) n Gi > Oi(Ai;Xi;ei;Gi)nG i (5)

Meanwhile, the achievement of the sharing community is more attractive than the 

aggregate achievement of the participants in the pre-emergent stage; that is,
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O(A;X;s;G) n G 2 iel0 1(A1;X1;s1;G1)A G 1 (6)

Therefore, features of the energy sharing community cannot be fully predicted from 

thoroughly knowing the participants in the pre-emergent stage. Instead, they are understood 

and measured through analyzing the operations and management of the community.

3. COORDINATION FOR ATTAINING DESIRED EMERGENT FEATURES

An energy sharing community usually has a management provider who offers 

energy transfer technologies to the participants [4]. The technologies are composed of a 

coordination method, decision-making algorithms, and a communication network [9]. The 

management provider may be contracted by the utility or it is directly contracted by 

participants. It charges a service fee to some or all of its subscribers to make a profit. The 

management provider, when designing a coordination method for functionalizing an 

energy sharing community, must consider the full spectrum of its system characteristics, 

which are discussed below.

3.1. SYSTEM CHARACTERISTICS IMPACTING THE DESIGN OF A 
COORDINATION METHOD

The design of a coordination method for functionalizing a sharing community must 

take into account the SoS characteristics, as well as other system characteristics [10], to 

enlarge the impact of good features and reduce that of bad ones. The SoS characteristics of 

energy sharing community have been discussed in Section 2. Other system characteristics 

of it are the following:



16

• Complexity: The energy sharing community is a complex system, which can be 

seen from two perspectives. On one hand, individual participants have their own 

complex behavior. For example, end-users all respond to the time-varying pricing 

strategy of the utility. Consumers and prosumers are two groups of end-users. Both 

between-group and within-group variations in their consumption behavior are 

present, which are difficult to predict. One the other hand, simultaneous interactions 

among participants, and those between the management

provider and participants, result in complexity.

• Adaptability: Participants of an energy sharing community can adjust, or change, 

themselves to respond to environment changes. For example, renewable generators 

(both renewable energy plants and distributed generation units) can adjust the 

energy curtailment, the output power, and the injection of energy to storage, to 

maximize the overall reward. Another example is the switch of a consumer to 

prosumer. A consumer, when observing sustainable growth of renewable energy 

benefits, may decide to install or lease a renewable generation unit and, thus, 

become a prosumer.

• Self-organization: An energy sharing community has the ability to develop new 

system architectures by itself. For example, an energy storage system with excess 

capability provides the capacity to two users whose needs as a whole best utilize 

the excess capacity. If one of the two users substantially changes its operation, the 

energy storage system may find it is beneficial to stop serving one or both, and seek 

other users who need storage. The system architecture of the sharing community 

will be changed accordingly.
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• Feedback Loops: An energy sharing community has two types of feedback loops. 

Internal loops connect participants of the community because the decision and 

information that a participant shares with the management provider or other 

participants are inputs to their decisions. Internal loops are necessary for the 

community to derive an optimal solution of coordination during a time period and 

quickly converge to it. External loops are present because the sharing community 

responses and adapts to changes in the environment.

The complexity and autonomy characteristics of participants determine that 

centralized coordination of the sharing community is not realistic. Instead, decentralized 

coordination is more applicable. Different participants of a sharing community need their 

own decision models to capture the characteristics of belonging, heterogeneity, 

complexity, and adaptability. The interdependence between participants, and that between 

the management provider and participants, must be formulated in their decision models to 

capture the characteristics of connectivity, self-organization, and feedback loops. The 

decision model for coordinating the sharing community must explicitly capture the way in 

which participants contribute to the sharing community (e.g., increase in the social welfare) 

and value-added opportunities the sharing community provides to its participants.
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3.2. PROPOSED COORDINATION METHODS

We thus propose two coordination methods: hierarchical coordination and peer 

coordination, which are illustrated in Figure 2 and discussed in the following.

• Hierarchical Coordination: Participants independently govern their management 

and operations. But a top management (e.g., the management provider) is present 

at the community level, which coordinates the participants and determines an 

optimal way of sharing. Under the hierarchical coordination, participants do not 

directly communicate with each other. Instead, they interact with the top 

management of the community. A bi-level optimization model is suitable for this 

type of decentralized coordination. The model is composed of a master problem 

(for the management provider) and multiple slave problems (for participants), 

which are interdependent. All the decision problems explicitly consider the impact 

of their environment [11].

• Peer Coordination: A top management is not present at the community level. 

Instead, participants collaborate with each other, more or less voluntarily, to reach 

an optimal solution of sharing. Under the peer coordination, participants directly 

interact with each other. Peer coordination can be modeled as a game [8]. To assure 

that the participants effectively collaborate in their community to produce desired 

sharing results, the management provider needs to design an algorithm or an 

incentive mechanism to facilitate their collaboration.

The choice of one coordination method over another should be based on the 

community size, the autonomy degree of participants, the architecture and bandwidth of 

the communication network, the requirement on reliability, and so on.
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4. CONCLUSION

This paper analyzes energy sharing communities from a systems engineering 

perspective and identifies nine important characteristics of them: autonomy, belonging, 

connectivity, diversity, emergence, complexity, adaptability, self-organization, and 

feedback loops. Therefore, an energy sharing community can be seen as a decentralized 

complex adaptive system of systems (DCASoS). Based on the identified DCASoS 

characteristics, the paper proposes two methods for coordinating individual sharing 

communities. The choice of one coordination method over another for a sharing 

community requires evaluating the community from multiple aspects, which will be an 

immediate extension of this paper. Findings from the study of this paper have built a 

foundation for modeling the operational decisions of participants and developing solution 

algorithms for achieving desired outcomes from sharing.
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ABSTRACT

The renewable energy technology has recently advanced dramatically, accelerating 

the society’s pace of transitioning to a sustainable living environment. Distributed 

renewable energy generators and energy storage devices are widely installed, which are 

owned and operated by various entities. Facing intermittent and volatile renewable 

generations, they have recognized the need for collaborative energy management. As more 

and more distributed renewable generators are being connected to distribution networks, 

owners of the networks are under the pressure of changing their business model to adapt to 

the new trend. Forming sharing communities locally is a potential solution which allows 

the participants to share excess generations and unmet demands within their community. 

Forming energy sharing communities also benefits distributed networks from multiple 

aspects. This paper aims to develop a thorough understanding of this new business model 

and, meanwhile, explores an approach to the management of energy sharing communities. 

Through analyzing the participants of energy sharing communities, the paper first identifies 

nine characteristics of the communities. Accordingly, the paper justifies that cooperative 

sharing communities can form a decentralized complex adaptive system of systems 

(DCASoS). The paper further classifies the nine characteristics into two types: underlying
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characteristics and the derivative characteristics. The goal of managing energy sharing 

communities is to enhance the good effects and reduce the bad effects of the derivative 

characteristics given its underlying characteristics. Based on this fact, the paper develops 

a system of systems (SoS) approach to describing, modeling, and analyzing sharing 

communities, which builds a foundation for engineering the corresponding DCASoS.

1. INTRODUCTION

Sharing economy has had a positive impact on many industries including the energy 

industry. A sharing economy is an innovative solution to the influx of consumer demand 

while conventional forms of electricity supply are diminishing. Distributed renewable 

energy generators and storage devices are widely installed along with the decrease of the 

investment cost required for traditional consumers to evolve into prosumers who have 

capability to privately generate electricity (Kargarian et al., 2014). The distributed 

generation can be initially used to fulfill the owner’s demand while any excess electricity 

can be shared with their neighbors who need more. Sharing energy provides an additional 

option for prosumers to deal with overgeneration besides storage, selling back to the grid, 

or curtailment.

Current net metering laws require utility companies to financially compensate 

prosumers who put excess electricity back into the grid (Rossi, 2016). Utility companies 

are now presented with various challenges. They are not only facing additional stochastic 

electricity supplies (Stoutenborough & Beverlin, 2008) but financially compensating 

prosumers for their supply (Rossi, 2016). A potential solution to these issues is to cluster
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local end-users of utility into individual energy sharing communities and coordinate the 

energy shared within individual communities and between communities. The similar 

concept has been successfully applied to the management of multiple microgrids (Zhao et 

al., 2018). Allowing for locally generated supply to be maximally disbursed by local 

consumers would reduce the impact of stochastic supplies on the utility company (Liu et 

al., 2017). The utility is also able to minimize the cost by distributing prosumer generated 

electricity locally.

This paper aims to develop a thorough understanding of the new business model 

for utility companies while exploring an approach to the energy management of sharing 

communities. By taking into consideration current net metering laws, an appropriate energy 

sharing model is proposed. The effectiveness of energy share is analyzed using 

the proposed model and defined characteristics identified within decentralized complex 

adaptive system of systems (DCASoS). The end the paper summarizes findings of this 

study and future work. proposed. The paper summarizes the findings and future work at 

the end, in Section 4.

2. ENERGY SHARING COMMUNITIES

An energy sharing community is a SoS that possesses the characteristics of

autonomy, belonging, connectivity, diversity (i.e., heterogeneity), and emergence [3].
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2.1. A SHARING COMMUNITY

A sharing community includes both consumers and prosumers; both consumers and 

prosumers are end-users of electricity. Consumers only use electricity, whereas prosumers 

both consume and produce electricity using the distributed renewable energy generators 

(REGs) they own or lease. The demand of consumers, D, is nonnegative. We

Figure 1. Grid-connected cooperative communities

define the net demand of prosumers, m, as the difference between their demand and the 

supply produced from their REGs. m taking a positive value means that prosumers do not 

generate enough electricity from their REGs to meet their own demand, otherwise they 

generate excess electricity. Considering that renewable generations are intermittent and 

volatile, mis represented by a random variable in this modeling approach.

Within a sharing community, prosumers with extra generations can share their 

supply with consumers within the same community. The coordination of the community 

will try to meet the demand of the community using the renewable energy generation of
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the community as much as possible. If the supply is not equal to the demand within the 

community, the deviation will be adjusted by either purchasing electricity from, or selling 

to, the utility and/or other connected communities. The coordination within any individual 

community can be performed by either the utility or an independent management company, 

which must ensure the benefit of community participants.

2.2. COOPERATIVE COMMUNITIES

Connected Communities can share demand and generation between one another. 

As Exhibit 1 shows, community 1 can provide electricity to community 2 if the former 

generates excess electricity whereas the latter is still short of electricity after it internally 

balances the supply and demand, and vice versa. If a community, after sharing its electricity 

with other communities, still has extra electricity, it can sell the extra electricity back to 

the utility; otherwise, it can purchase electricity from the utility. Therefore, the utility needs 

to coordinate the energy sharing between communities.

2.3. THE UTILITY

The utility can supply electricity to communities to respond to their demand (Pu,1 

and Pu,2 in Exhibit 1). It will have to take electricity that the communities send to it (P1,u 

and P2,u in Exhibit 1). Due to the uncertainties in load and renewable generation, the 

realized net demand of sharing communities may deviate away from the electricity the 

utility purchases from the wholesale market, X. Therefore, the utility can address the 

deviation through buying electricity Pr,u  from, or selling Pu,r to, the retail market.
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3. DECENTRALIZED COMPLEX ADAPTIVE SYSTEM OF SYSTEMS

Cooperative energy sharing communities can be seen as a DCASoS. An individual 

energy sharing community is either a system of systems (SoS) (Morgan et al., 2018) or a 

system. In this paper, individual communities are systems, and a group of cooperative 

sharing communities coordinated by the utility is a SoS. They possess the characteristics 

of DCASoS, which should be taken into account by the coordination of participants. 

Characteristics of DCASoS can be divided into two types: underlying characteristics and 

derivative characteristics, which are briefly discussed below.

3.1. UNDERLYING CHARACTERISTICS

Forming a SoS requires multiple systems that have the following four underlying 

characteristics: autonomy, belonging, connectivity, and diversity (Morgan et al, 2018).

• Autonomy. A SoS is not a simple system. Its components, named constituent 

systems, are autonomous systems. The autonomy of individual communities is 

reflected by the fact that each constituent system has its own purpose of existence, 

functions, and independent management ability to seek the goal given its operating 

condition. The independence of each community is not temporary but can be 

maintained on the long run.

• Belonging. Belonging signifies that the constituent systems of a SoS bring 

positive aspects to the SoS and, meanwhile, the SoS also possesses opportunities 

for the constituent systems to achieve greater outcomes. The belonging 

characteristic of energy sharing communities is related to the following fact.
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Through energy sharing, some communities provide additional supply to satisfy the 

unmet demand of others or they contribute additional demand to absorb the excess 

demand.

• Connectivity. Connectivity describes the linkages, and directional flow of 

linkages, between constituent systems. Given that sharing communities are 

connected to the distribution network of the utility, the connectivity between any 

two sharing communities must exist at the physical layer. Connectivity at the 

information layer is also important, which needs to be built to accommodate the 

selected approach to the coordination of sharing communities. Connectivity is 

dynamic in that linkages between communities can be closed or opened, which is 

affected by the willingness of the communities to participate, as well as the 

operating condition of the networks (e.g., congestions, failures).

• Diversity. Diversity or heterogeneity states the fact that constituent systems of a 

SoS are widely distributed on one or multiple dimensions such as functions, 

resources, capacities, working environment, and so on. Diversity provides rich 

choices for SoS architecting and, thus, a better foundation for functionality 

expansion and performance improvement. Sharing communities are heterogenous. 

RESs and end-users in one community may differ than those in another. The 

diversity of sharing communities helps mitigate the impact of load and source 

uncertainties and improve the cost-effectiveness of energy system.
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3.2. DERIVATIVE CHARACTERISTICS

Systems with the above four underlying characteristics, after forming a SoS, may 

promote the generation of emergence and other derivative characteristics.

The emergence characteristic of sharing communities is the appearance of new 

features emerging from the interaction of the communities. When forming sharing 

communities and connecting them as a SoS, emergence can be deliberately and 

intentionally designed (Boardman & Sauser, 2006). A SoS with high emergence should 

have high functioning autonomous systems. Enabling constituent systems to have high 

autonomy allows for unknown positive benefits of an overall system to become visible.

3.3. DERIVATIVE & UNDERLYING CHARACTERISTICS

Some characteristics of DCASoS are both underlying and derivative characteristics 

because they are presented at both the level of constituent systems and the SoS level.

• Complexity. Each individual community is a complex system, which is seen from 

multiple aspects. Participants of each community have their own complex behavior, 

which cannot be fully predicted. Moreover, interactions among the participants 

produce a new level of complexity at the community level (i.e., system level). The 

interaction of the cooperative communities further creates the complexity at the 

SoS level.

• Adaptability. Participants within a community adjust or change themselves to 

adapt to the environmental changes. For example, consumers and prosumers within 

each community would adjust their consumption behavior to adapt to the change in
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renewable generation and price. Communities also adjust it management to adapt 

to any environmental changes.

• Self-organization. A community has the ability to adjust the existing architecture 

or develop new system architectures by itself. Cooperative communities also have 

this ability. Self-organization is realized either through the collaborative interaction 

of participants, or facilitated by the top management of cooperative participants.

• Feedback Loop. Internal loops are present, both within individual communities 

and between communities. With the internal loops, a participant (e.g., an end-user 

of a community, or a community) and the top management (if it exists) can receive 

decisions and information of other participants and use these as the inputs of its 

decision. External loops are those that participants receive information from the 

environment. Internal loops are the prerequisite for self-organization and external 

loops are for adaptability.

4. COORDINATION

SoS architecting and the coordination of constituent systems of the SoS are two 

important tasks. The former is focused on the optimal design, and the latter deals with the 

optimal operation, of the SoS. In this paper, we dedicate our discussion to the coordination 

of cooperative communities by the utility as in the example shown in Exhibit 1. Creating 

an objective function with stage one decision variables and stage two decision variables 

enables the uncertainties to be considered in a way that minimizes their negative impact.
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To highlight the emergence characteristics of SoS, we consider three cases of 

coordination:

• Coordination of all end-users: In this case no energy sharing communities 

are formed, and, therefore, energy share between end-users does not exist. 

This is equivalent to the conventional approach to managing multiple 

distribution networks (DNs).

• Coordination of uncooperative communities. In this case energy sharing 

communities are formed and, yet they do not collaborate with each other. 

That is, energy share occurs within communities, but not between 

communities.

• Coordination of cooperative communities. In this case energy sharing 

communities exist, and they operate cooperatively through sharing.

The utility purchases the amount of electricity, X, from the wholesale market ahead 

at the wholesale price,cw, to serve its end-users and charge them at the service price ps. 

Due to the uncertainties in RESs and loads, % =[D1, D2, m1, m2]T, the realized total 

demand D1 + D2 + m1 + m2 may deviate away from the available supply X. To fulfill the 

service commitment, the utility will either purchase the amount of electricity Pr,u  from 

the retail market at the price cr, or sell Pu,r at the price pr, to fill the gap between the 

supply and demand. Decision variables of coordinating the participants (communities or 

end-users) will be specified later in individual cases. It should be noticed that the cost and 

revenue coefficients have the following relationship: cw  < cr and cw  < ps. Considering 

that arbitrage opportunities do not exist between the two markets, we can assume that pr  

< cw. Service price, ps, is not dependent to either retail cost, cr, or wholesale cost, cw.



31

Instead, the cost incurred by the end-user is the sum of utility service cost and market cost 

paid by the utility company multiplied by the amount of units of electricity demanded by 

the end-user. Typically, utility companies pay prosumers wholesale cost for excess 

electricity. However, because this price point is not currently strictly regulated, utility 

companies have the ability to alter this value to mimic the daily

electricity cost fluctuation (Brown & Sappington, 2017). For simplification, ps  is used to 

represent the price for purchasing electricity from communities.

We formulate the cases of coordination discussed above as three different two-stage 

stochastic programs (SPs), indexed by i. The first stage decision variable is X, which must 

be made before the uncertainty, ^, is disclosed. It is important to specify that X is a non

negative variable because the initial amount of electricity purchased by the utility company 

will always be positive. Any discrepancies between the forecasted X value and actual X is 

accounted for using Pr,u  or Pu,r. The second stage decisions are the adjustments, Y, the 

utility makes after % is disclosed.

The objective of the utility is to minimize the expected total cost, including the cost 

of purchasing electricity from the wholesale market in the first stage and the expected cost 

of adjustments in the second stage:

Min X>0 c wX  + E% [ Kemin Qi(X,%) psP1,u  + psP2,u  + crPr,u -  prPu,r] (1)

where Qi(X, %) is the feasible set for the second stage decision variables Y  in problem i, i 

= 1, 2, 3. Denoted by Qi(X), the expected minimal cost from the second stage at a given 

value of first stage decision X, then the two-stage SP in (1) becomes

min X>0 cwX + Qi(X) (2)

In the following we describe the three different feasible sets.
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4.1. NO SHARING COMMUNITIES

The SP for the direct coordination of end-users is named SP-1. The feasible set for

the second stage decisions Y  is

Q1(X, %) ={qPu, 1 -  P1,u/-q = m1 (3)

^Pu,2 -  P2,u/q = m2 (4)

X  + Pr,u -  Pu,r = D1/q + D2/q + Pu, 1 -  P1,u + Pu,2 -  P2,u (5)

Y  = [Pr,u, Pu,r, Pu,1, P1,u, P2,u, Pu,2]T > 0 (6)

P1,u and Pu,1 are the electricity the utility receives from, and provides to, the prosumers 

in zone 1, respectively. P2,u and P u,2 are similarly defined. ^  is the transmission 

efficiency of DNs. The second stage adjustments that the utility may make include the 

trading with the retail market and the power exchanges between the utility and prosumers, 

which must be nonnegative as (6) defines. The power exchanges between the utility and 

prosumers in different zones are defined in (3) and (4). Equation (5) is the demand and 

supply balance that the utility achieves through the purchase in the wholesale market and 

the adjustments.

4.2. MULTIPLE UNCOOPERATIVE COMMUNITIES

The SP for the coordination of uncooperative sharing communities is named SP-2.

The feasible set for the second stage decisions Y  is

Q2(X, O  ={qPu,1 -  P1,u/q = m1 + D1 (7)

^Pu,2 -  P2,u/q = m2 + D2 (8)

X  + Pr,u -  Pu,r = Pu,1 -  P1,u + Pu,2 -  P2,u (9)

Y  = [Pr,u, Pu,r, Pu,1, P1,u, P2,u, Pu,2]T > 0 (10)



33

P1,u and Pu, 1 in Q2(X, ( )  are the electricity the utility receives from, and provides to, 

community 1, respectively. P2,u and P u,2 are similarly defined. Therefore, The second 

stage adjustments that the utility may make consists of the trading with the retail market 

and the power exchanges between the utility and each of the two communities. In this 

study we assume the transmission loss within each community can be ignored.

4.3. MULTIPLE COOPERATIVE ENERGY SHARING COMMUNITIES (SoS)

The SP for the coordination of cooperative communities is named SP-3. The

feasible set for the second stage decisions^ is

Q3(X, 0  ={pP2,l -  P1,2/p + ^Pu,1 -  P1,u/p = ml + D1 (11)

pP l,2  -  pP2,1 + pPu,2 -  P2,u/p = m2 + D2 (12)

X  + Pr,u -  Pu,r = Pu,1 -  P1,u + Pu,2 -  P2,u (13)

Y  = [Pr,u, Pu,r, Pu,1, P1,u, P2,u, Pu,2, P1,2, P2,1]T > 0 (14)

P1,2 in Q3(X, O  is the electricity community 1 provides to community 2, and P2,1 is the 

reverse. p  is the transmission efficiency between communities. We assume p  > p; that is, 

the transmission loss between local communities is smaller than the loss between a local 

community and the utility.

4.4. EMERGENCE FROM SHARING

It can be easily justified that the feasible set Qi(X, f )  for i = 1, 2, 3 is nonempty 

given any feasible solution to the first stage. A rational second-stage strategy for 

coordinating energy sharing communities is found from the study of SP-3. If prosumers in 

a community generate more electricity than needed, the excess electricity will first be
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shared with the consumers within the same community. If a community has extra 

electricity, it should share with other communities whose own generations are not enough 

to meet all demands in the community. Following the same idea, a community that does 

not have enough generations will first receive electricity from those with extra. After these 

adjustments, any unsatisfied demands of communities will be fulfilled by purchasing 

electricity from the retail market, and any success generations will be sold to the retail 

market.

Both the theoretical analysis and Monte Carlo simulation show that Q3(X) < Q2(X) 

< Q1(X), indicating cooperative communities are more capable of lowering the expected 

cost of adjustments at any given value of first stage decision X. Essentially, the same two- 

stage stochastic programming approach is applied to the scenario of no sharing 

communities, multiple uncooperative sharing communities, and multiple cooperative 

sharing communities represented by Q1,Q2, and Q3, respectively. Monte Carlo simulation 

was applied to the uncertain values of supply and demand using upper and lower limits to 

represent extreme values. Values generated during Monte Carlo simulation and theoretical 

analysis justify the statement that multiple cooperative sharing communities lowers the 

expected cost of adjustments than multiple uncooperative sharing communities and no 

sharing communities. By appropriately choosing X, we can minimize the expected total 

cost for cooperative energy sharing communities. As a result of energy sharing, some 

communities may have no electricity exchange with the utility and others have more stable 

exchanges. This effectively eases the energy management of the utility. Reasoning for 

multiple cooperative sharing between communities being the most successful coordination 

stems from energy consumers having additional energy suppliers; additional supplies of
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energy allows the utility to alter the energy distribution patterns to optimize the objective 

function that is to be minimized. When locally generated energy is sold at retail price, not 

having a price difference between DN and utility energy provides no financial loss endured 

by the utility when prosumer energy is distributed between communities.

5. CONCLUSION

This paper discussed the DCASoS characteristics that cooperative energy sharing 

communities and accordingly modeled the coordination of the communities as SPs. The 

SPs are used to evaluate the emergence of cooperative sharing communities. The study 

showed that cooperative energy sharing communities, with coordination, can effectively 

lower the expected total cost, reduce the effective number of communities that the utility 

needs to coordinate, and improve the stability of power flows. The paper is also an initial 

exploration of the DCASoS approach to characterizing, modeling, understanding, and 

managing sharing communities. Maintaining stability and ensuring a minimized negative 

effect from uncertainty is a limitation considered throughout development and execution 

of the model. Results from the study have suggested important extensions, including a 

simulation-based approach to obtain a thorough understanding of derivative characteristics 

and the collaborative sharing approach based on stochastic games.
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ABSTRACT

Energy sharing is the implementation of a sharing economy in the energy sector 

and provides a solution to the increase of electricity demand and diminishing finite 

resources. Four benefits of energy sharing have been identified: (1) economic value added, 

(2) environmental sustainability, (3) resilience, and (4) social welfare. How each of these 

uniquely associates with a sharing community is analyzed. These four benefits can be used 

to describe existing energy-sharing projects. Along with existing projects, a review of 

current literature is performed. The literature review and existing projects are beneficial 

for identifying gaps in current research and how they apply to policymaking criteria.

1. INTRODUCTION

Sharing economy has been incorporated into many industries including hospitality 

and transportation (e.g. AirBnB, Uber) [1]. Recently, the sharing economy has been 

integrated into the energy industry through energy sharing, community energy, and 

transactive energy systems. The increase of distributed generation units among end-users
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has encouraged a re-evaluation of electricity distribution methodology. Utility companies 

are traditionally the supplier of electricity to all end-users. However, the growing 

distributed generation units powered by renewable generation resources, in conjunction 

with the growing demand, disrupts the traditional function of the utility. In recent decades, 

renewable energy sources (RESs) have become a more significant source for electricity 

[2]. Through energy sharing, transactive energy sharing, or cooperative sharing, sharing 

economy can be incorporated into the energy industry, as seen in Figure 1.

Figure 1. Coordinations of electricity participants that consider sharing economy; (a) 
transactive energy systems, (b) cooperative energy sharing, and (c) decentralized energy

sharing

A transactive energy system can be implemented in either a centralized or 

decentralized coordination [4]. A centralized representation of a transactive energy system 

is represented by (a) in Figure 1. The transactive energy system relies on a management 

system to maintain electricity supply and demand balance. In a transactive energy system 

prosumers lose a significant amount of autonomy, heavily relying on the management 

system. Therefore, prosumers lack accurate prediction of renewable energy source (RES)
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electricity [5]. A cooperative sharing community is represented by (b) in Figure 1. 

Cooperative sharing incentivizes end-user participation by offering a grid-connected 

management that increases electricity distribution flexibility [6]. However, cooperative 

sharing relies heavily on a third-party management to balance community demand, internal 

supply, and utility supply. The cooperative sharing community gets to choose what source 

to purchase electricity supply from. This decision, represented by the bold arrow, is made 

by the community and told to the third-party management. An energy-sharing community 

is represented by Figure 1 (c). This decentralized configuration allows end-users to directly 

interact with each other while also providing the opportunity for sharing communities to 

interact with other sharing communities. The shown decentralized energy sharing has two 

types of energy-sharing communities represented. The community on the left is a 

decentralized system of systems. This type of energy-sharing community does not rely on 

a central controller to manage electricity distribution and keep supply and demand 

balanced.

Energy sharing is a new energy distribution mode that is ecofriendly, fiscally 

conservative, and scalable. Yet reasons underlying the benefits are not systematically 

examined. It is noticed that the research literature on energy sharing, as well as pilot 

projects, are growing. To escalate the development and maturity of energy sharing in the 

era of distributed renewable generations, this paper performs a systematic analysis of this 

emerging topic to help build a deeper understanding of the state-of-the-art. By doing such, 

the study of this paper will be able to envision the future of energy sharing.

The remainder of this paper is organized as follows: Section 2 identifies the benefits 

of energy sharing, Section 3 is a literature review of energy sharing from its specified
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aspects, Section 4 is a summary of energy sharing projects already in existence, and Section 

5 is a concluding summary in conjunction with a discussion of future research in relation 

to energy sharing.

2. BENEFITS OF ENERGY SHARING

Sharing economy allows resources to be divided among more participants so that 

the people have access to more of what would otherwise be limited [7]. To encourage the 

participation in and the growth of energy-sharing communities, benefits of energy sharing 

are identified at both the participant level and the community level. Figure 2 uses a causal 

model to illustrate various changes due to the incorporation of energy sharing. This causal 

model uses an “input-throughput-output” format to display the changes in practice linked 

to the integration of energy sharing [8]. Using the causal modeling, this study can assess 

outcome variables based on “organizational strategies” [9].

Figure 2 illustrates that energy sharing acts as a moderator for achieving four 

benefits which are economic value added, environmental sustainability, resilience, and 

social welfare. Impacts of energy sharing are illustrated using a solid and a dashed line. 

The solid line indicates an increase of the defined aspect. For example, by implementing 

energy sharing, accessibility to DGUs reliant on RES increases which, consequently, 

increases the economic values. However, the implementation of energy sharing causes a
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decrease of infrastructure demand overload which, consequently, causes a decrease of 

economic values.

renewable resources

Accessibility to clean energy

Accessibility to DGUs Consumption of non
increase reliant on RES
Decrease

Economies of scale for
Environmentalinstalled energy costs
Sustainability

Demand overload

Line losses

Economic valuesConsumption of scarce
materia s

Fail-safe protection
Emission of toxic elements
from production of solar

Accessibility to power inpanels
extreme situations

Volatility of DGU power
4 supply available to the Resi hence

distribution network Accessibility to power in rural

Energy burden of lower 
income families Social welfare

Figure 2. Causal model illustrating the aspects of sharing communities that result in the
defined benefits of energy sharing

2.1. ECONOMIC VALUE ADDED

Additional economic value can be generated through energy sharing from multiple 

sources. The ownership of a distributed generation unit (DGU) generates value only when 

the generated electricity is accessible and utilized by users [10],[11]. The users can be 

consumers other than owners themselves. Energy sharing helps owners, particularly those 

using renewable resources, generate more value from their DGUs, due to increased 

accessibility to the DGUs by other users.

The financial compensation that DGU owners receive from selling their excessive 

generation back to the grid is limited by some restrictions. Certain states have indicated
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that credits for generating excess electricity do not rollover indefinitely or can expire [12]. 

Some utility companies have strict rules regarding the amount of electricity that a prosumer 

can sell back to the grid and the compensation they can receive. Energy sharing mitigates 

the impact of those restrictions and effectively helps owners of DGUs to leverage the return 

from their investment by selling excess electricity to neighbors as well. Feed-in-tariffs 

(FITs) are used as a subsidy system to encourage the installation of DGUs. [13] Using the 

feed-in-tariff system, those with DGU will be financially compensated for the amount of 

RES electricity generated and an additional amount depending on how much excess 

electricity is sent back to the grid. The FITs provide a compensation structure while DEGs 

are also used as a tax incentive. Incorporating FITs increases the drive for RES systems 

and are used to create and develop global renewable energy policy [14]. Energy sharing 

addresses the limitations of FITs by allowing multiple distribution outlets for a single DEG 

which increases the maximum amount of RES electricity sold by the prosumer.

Some energy infrastructures require a large initial investment but provide a higher 

rate of cost savings from the investment. That is, these infrastructures have a high operating 

leverage. The economic benefit of high operating leverage is usually justified by a large 

volume of demand, whereas a smaller volume of demand favors those with low operating 

leverage. Energy sharing can pool small local demands into a larger demand for an energy 

infrastructure in high operating leverage, helping it increase its total economic value [15].

Installation costs of wind energy exhibit economies of scales, particularly when 

moving from small- to medium-sized projects. In 2018, the sampled capacity-weighted 

average project cost for projects of 5 MW or less was over $4,000/kW, whereas the cost 

for projects in the range of 20-50 MW was less than $2,000/kW. Energy sharing is an
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approach to benefit from investing in medium-sized distributed renewable projects that 

exhibit evident economics of scale in installed costs [16].

The change from a centralized electricity supply chain to a decentralized electricity 

supply network also effectively reduces the line losses. In the United States, electricity loss 

during transmission and distribution is estimated to be about 5% of total electricity 

transmitted and distributed [17]. The reduced line loss greatly reduces the cost, particularly 

for the distribution network.

2.2. ENVIRONMENTAL SUSTAINABILITY

Environmental sustainability refers to a more efficient use of otherwise limited 

goods and reduced emission of harmful elements into the natural environment [18]. Energy 

sharing improves sustainability by increasing the utilization of the existing capacity of 

generation with renewable resources. The waste of electricity generated from renewable 

resources in the form of curtailment is reduced through energy sharing because the excess 

generation from some prosumers can be used to meet a portion, or all, of the electricity 

demand of nearby consumers [19]. Consequently, the utilization of the existing capacity of 

RES generation is increased or maximized.

The increased utilization of generation from renewable resources largely 

contributes to environmental sustainability. Given the same amount of demand, a 

proportion of electricity supply is shifted from the generation of nonrenewable resources 

to that from renewable resources. This effectively reduces the consumption of 

nonrenewable resources such as coal, petroleum, and natural gas, thereby reducing the 

harmful emissions (e.g., CO2) associated with their consumption.
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The maximized utilization of generating capacity from renewable resources would 

also help reduce the negative environmental impacts produced during the entire production 

life cycle of renewable-resourced generators. For example, the materials necessary to build 

these generators are limited, and some materials are scarce, such as In, Te, and Ga. 

Meanwhile, the production of solar panels also has toxic emissions such as Cd that are 

potentially harmful to the environment [20].

2.3. RESILIENCE

A resilient power-supply system is defined by its ability to maintain a minimum 

level of supply even under extreme conditions and the ability to quickly recover from a 

sudden loss of a significant portion of the power supply before irreversible damage occurs 

[21]. Traditional linear electricity supply chains have a centralized large-scale generation 

location far from demand centers, which relies on utilities to distribute the bulk power from 

the transmission system to end-users. Energy sharing effectively changes the vulnerable 

centralized linear supply chain to a more resilient supply network wherein each end-user 

has access to multiple local suppliers such as nearby prosumers. In extreme situations like 

electricity grid blackout, the proportion of end-users in an energy sharing community who 

have access to power supply is higher than that in a non-sharing community because 

prosumers can share their generations with consumers in the sharing community. 

Therefore, extreme situations have less impact on energy sharing communities as they are 

more capable of maintaining essential functions [22],[23]. Moreover, sharing allows the 

generation from distributed renewable resources to be absorbed locally, which effectively
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reduces the impact of a large amount of successive generation from renewable resources 

to the grid.

Additionally, energy sharing creates a more resilient utility-owned infrastructure 

that is less vulnerable to large-scale outages and decreases recovery time. Not only are 

there financial losses associated with energy surges and outages, but the majority of the 

associated costs are incurred by the consumers [24]. As a result of the increasing frequency 

of electrical grid interruptions, many government agencies and end-user participants have 

invested in meeting “infrastructure improvements and operational changes” in the United 

States [25]. Current energy distribution infrastructures lack an energy management system 

with the capability to mitigate damage caused by energy outages or surges. Energy 

management associated with energy sharing initially addresses infrastructure damage 

mitigation, which improves the overall system resilience.

2.4. SOCIAL WELFARE

Energy sharing improves social welfare as it facilitates the flow of affordable, clean 

energy to communities where the affordable, clean energy produces greater social welfare 

than in the origin communities. Energy sharing makes the electricity generated from 

distributed renewable resources accessible to consumers who otherwise would not have 

access to the clean energy.

Energy sharing creates a new way of giving and connectivity. Energy burden is 

defined as the amount of annual household income spent on the annual energy bill [26]. 

Sharing excessive generation of electricity with households in low-income communities at 

a reduced price or no cost will help decrease the amount of income they must devote to
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energy bills and increase the amount of household income available for other purposes 

such as food, education, healthcare, and transportation.

The overall quality of life of these communities can be improved from receiving 

electricity that other communities share with them. Energy sharing lowers the impact of 

outages and blackouts, thus reducing the damages or losses from these extreme conditions. 

Currently, net metering laws require utilities to compensate prosumers for any excess 

electricity put back into the grid. Incorporating sharing creates a solution for utilities 

because locally generated electricity can be re-distributed locally to meet demand instead 

of purchasing electricity from the market at wholesale or retail price.

Rural areas, or areas with limited access to electricity, benefit from energy sharing 

because the costly infrastructure is less of a financial burden on the construction 

companies. Without access to electricity, quality of life is severely impacted. The World 

Bank Group estimates that 89% of the entire world population had access to electricity in 

2017 [27]; this statistic indicates that nearly one billion people in the world did not have 

access to electricity [28]. Access to electricity indicates an improved quality of life because 

of the ability to use necessities such as lighting, heating, and refrigeration.

Incorporating energy sharing specifically in low-income communities can 

significantly increase the quality of life of low-income residents by decreasing the 

household energy burden. Energy burden is the amount of annual income a household 

spends on annual energy bills [26]. Households with a lower annual household income 

spend a larger portion on utility bills [29]. Creating an electricity source by installing a 

DGU relieves some of the energy burden for end-users. Furthermore, energy sharing allows 

low-income residents to purchase DGU electricity from neighbors at reduced or not cost
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thus increasing the amount of annual household income usable for items other than

electricity bills.

3. RESEARCH LITERATURE REVIEW

Energy sharing has received attention by academic researchers as evidenced by the 

growing publications on energy sharing research. This paper summarizes the literature of 

energy sharing research. Identifying the state-of-the-art of energy sharing research is 

needed for shaping the future research to broaden the impact of energy sharing to the 

society.

Table 1. A list of references based on topic explanation

A p p ro a c h e s R efe re n ce s

D e c e n tra lize d  C o o rd in a tio n
In d iv id u a l E n d -U se rs 1 ,3 ,1 0 ,1 3 ,1 5 ,1 8 ,2 0 ,2 2 ,2 4 ,2 5 ,3 1 ,3 5 ,3 7 ,4 0 ,4 3 ,5 7 ,58 ,59 ,62 ,65 ,85 ,9 2 ,1 0 0

U n c o o p e ra t iv e  C o m m u n it ie s 2 ,4 ,6 ,1 5 ,1 8 ,2 9 ,3 0 ,3 2 ,3 4 ,3 9 ,4 2 ,4 3 ,5 2 ,5 3 ,5 4 ,6 6 ,8 2 ,8 4 ,8 8 ,9 9 ,1 14
C o o p e ra t iv e  C o m m u n it ie s 2 ,1 1 ,6 3 ,6 4 ,8 3 ,8 4 ,8 6 ,8 7 ,1 14

M icro grid  C la ss ific a t io n 3 ,3 7 ,3 8 ,4 1 ,4 4 ,4 8 ,4 9 ,5 1 ,5 2 ,5 3 ,5 6 ,5 8 ,6 0 ,6 1 ,6 2 ,6 3 ,6 4 ,6 5 , 6 9 ,7 6 ,8 1 ,8 2 ,8 3 ,8 4 ,85 ,86 ,88 ,90 ,91 ,9 4 ,9 5 ,9 6 ,9 7 ,9 8 ,1 0 0
En ergy  M a n a g e m e n t Syste m s

D em a n d  S id e  M a n ag e m e n t 3 0 ,3 3 ,3 4 ,3 8 ,4 4 ,4 5 ,46 ,47 ,48 ,57 ,58 ,5 9 ,6 1 ,6 2 ,7 2 ,7 5 ,7 6 ,8 1 ,9 7 ,9 9
Lo cal C o n tro lle r 32 ,6 3,8 4,9 8

C e n tra l C o n tro lle r 50 ,5 1,8 4,8 8
H o m e  E n ergy  M a n a g e m e n t System 1 ,5 ,3 1 ,3 2 ,3 6 ,4 5 ,4 6 ,4 7 ,5 7 ,5 9 ,6 1 ,6 9 ,9 4

E n e rg y  M a n a g e m e n t O p tim iza t io n
O p tim iza t io n  C o n s id e r in g  U n c e rta in ty 2 3 ,2 4 ,3 1 ,3 3 ,4 1 ,4 2 ,51 ,57 ,60 ,61 ,72 ,7 4 ,8 9 ,9 2

C o st  O p tim iza t io n 2 ,4 ,1 9 ,2 3 ,3 0 ,3 1 ,3 2 ,3 4 ,3 5 ,3 7 ,3 8 ,4 1 ,4 2 ,4 5 ,4 6 ,4 9 ,56 ,57 ,58 ,59 ,60 ,6 2 ,6 3 ,6 5 ,6 6 ,7 0 ,7 1 ,7 2 ,8 8 ,9 5 ,9 6 ,9 9
P ro fit O p tim iza t io n 6 ,3 3 ,3 5 ,3 7 ,3 8 ,4 3 ,4 4 ,7 5 ,8 8 ,1 00

E n e rg y  S to ra g e  Syste m s
B a tte ry  E n e rgy  S to ra g e  System 3 3 ,3 5 ,4 0 ,4 1 ,4 9 ,5 0 ,55 ,63 ,65 ,66 ,70 ,7 6 ,7 7 ,7 8 ,7 9 ,8 0 ,8 1 ,8 2 ,8 3 ,8 9 ,9 4 ,9 5 ,9 8 ,9 9

E le ctric  V e h ic le  S to rag e 36 ,6 8,7 1,9 7

An initial literature research indicates the energy sharing research is divided by five 

paths: decentralized coordination, energy management systems, optimization methods for 

energy sharing, and energy storage systems, and microgrid. Then, the study searched the 

literature on each research path by restricting those with “energy sharing” and the key word 

of that path either in the publication title or in the abstract. For example, ‘decentralized
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coordination’ and ‘energy sharing’ were searched and restricted to either publication title 

or abstract.

3.1. DECENTRALIZED COORDINATION

Traditional energy end-users are coordinated in a hierarchical manner. Peer-to-peer 

networks are an example that requires decentralized coordination. Decentralizing a 

community creates the ability for participants to act autonomously while increasing the 

connectivity between end-users. An energy sharing community has many autonomous end- 

users. The decentralized coordination of the community allows for individual participants 

to act in their own self-interest while benefiting the community as a whole. Decentralized 

coordination references have been classified into three classes of decentralized 

coordination: individual end-users, uncooperative communities, and cooperative 

communities. This further classification identifies the degree of coordination within the 

community and with other communities.

Purely decentralized coordination allows for individual end-users to make 

independent decisions, as described in [3] and [31], which introduces increased autonomy 

to the network [10], [15], [18], [20], [31], [35], and [40] explain that greater end-user 

independence allows energy-sharing participants to embrace economic, environmental, 

and social benefits. Decentralized coordination implemented in an energy-sharing 

community allows for emerging attributes to be thoroughly defined and elaborated on an 

individual energy-sharing participant basis. The lack of defined participant community, 

lack of common management system, and increase of peer-to-peer connectivity is used to 

describe a purely decentralized coordination of individual end-users. Individual end-users
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do not require a control system when the coordination of the sharing community is purely 

decentralized. When there is no control system, the system behavior is determined by 

autonomous end-users in the system.

An uncooperative energy-sharing community is a defined group of end-users with 

energy-sharing participants who do not share electricity with the outside of the community. 

By trading within a local community, P2P energy sharing with a coordination can generate 

a win-win outcome [32]. The win-win outcome is achieved because prosumers sell excess 

electricity to participants with demand. Coordination is accomplished through pricing, 

forecasting, scheduling, and tariffs. Consumers have the opportunity to purchase locally 

sourced electricity at a reduced rate in comparison to the retail price [2], [6], [15], [18], 

[29], and [114]. Through the day-ahead pricing, a reasonable solution to distribution 

management and flexible demand response is found by balancing the internal electricity 

supply with the internal end-user demand. Forecasting and scheduling are commonly used 

solutions to balancing local excess supply in conjunction with local electricity demand [3], 

[4], [15], [29], [42], and [82]. Scheduling takes into consideration consumer electricity 

needs and schedules these electricity demands to be fulfilled at a time that is convenient 

while maintaining minimal cost. In addition to scheduling, feed-in-tariffs can be imposed 

on end-users as an incentive for prosumers to make charging and discharging decisions 

that benefit the overall sharing community [35] and [36]. Feed-in-tariff is a policy designed 

to benefit prosumers by guaranteeing a higher price refunded for excess electricity 

generated and sent to the electricity distributor. By allowing the prosumer to make charging 

and discharging decisions, the prosumer will usually choose to maximize excess electricity 

to send to the electricity distributor because this logic entails the highest reward. [35]
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described how a time-of-use tariff in conjunction with P2P coordination is beneficial to 

residential and commercial consumers because power flow and storage utilization are 

optimized. Time-of-use tariff is meant to encourage energy consumption at off-peak hours. 

Implementing a time-of-use tariff is beneficial to the balancing of supply and demand 

during high usage hours because more participants choose to shift consumption to a time 

of day when rates are lower. This load shifting is also beneficial to the electricity providers 

and distributors because necessary grid maintenance is less often due to the more 

distributed consumption within the grid. Different tariff structures have been considered 

when assessing benefits of energy sharing [37]. Feed-in tariffs encourage local 

consumption and DEG. [38] described how energy sharing could be more advantageous to 

prosumers than the feed-in tariff approach while [39] encouraged a diverse range of 

incentives to offer in exchange for end-user participation in energy sharing. [40] developed 

a fair benefit allocation mechanism based on participant contributions. A comparison 

between tariffs and energy sharing has not yet been done. Additionally, the application of 

tariffs on residential consumers could be different than the application on business 

consumers; comparing and contrasting research of the effects of tariffs on end-users has 

not yet been done.

A cooperative community is a defined energy-sharing community that has a priority 

of locally supplying electricity demand while maintaining the ability to share excess 

electricity with another cooperative energy-sharing community. The necessities of a 

distribution line a decentralized system with multiple production and consumption points 

can be identified and defined using a figure [114]. Traditional electricity distribution is 

structured as a single distribution line which can be made more efficient by increasing
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connectivity between end-users [11], [63], [64], [83], [84], [86], [87]. This clustering of 

energy consumers also provides the defined community the ability to effectively implement 

any tariffs that could benefit energy-sharing participants. Cooperative communities allow 

for separate communities to coordinate as they wish while allowing the connectivity 

between communities to be increased. The decentralized coordination of collaborative 

communities allows for participating energy-sharing communities to operate 

autonomously. The collaborative coordination of cooperative communities mimics a large- 

scale version of the decentralized coordination of energy-sharing communities.

3.2. ENERGY MANAGEMENT SYSTEMS

A conventional energy management system is offered as a solution to maintain a 

balance between demands and supplies for consumers, prosumers, and the utility. Though 

an energy management system can be a third-party organization, the purpose is to maintain 

a sustainable system at the minimal cost. Energy management systems serve as a efficiency 

operator between energy suppliers and energy consumers. A prosumer agent can switch 

between consumer and producer based on electricity status. By integrating a local or central 

controller, the supply-demand balance of prosumer participants is managed [32], [50]. 

However, demand side management, supply management, and home energy management 

together create a more customized balance for individual end-users [1], [5], [30]. Demand 

side management values energy-sharing participants comfort over the distribution process 

created by the energy management system. Supply management values the efficiency, 

feasibility, and reliability of energy producers and distributors. Home energy management

values end-user standards in terms of comfort and financial standards.
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The demand side management for energy-sharing communities ensures 

participating residents maintain comfort while uncertainties and instabilities of an energy

sharing community are accounted for [38], [44], [45], [46], [47], [48]. Though demand side 

management can act as a mediator for supply and demand, demand side management does 

not serve the purpose of maintaining optimal system function [57], [58], [59]. Instead, 

demand side management takes a scheduling approach to ensure the end-users maintain 

personal comfort within their residence [30], [33], [34]. The scheduling approach is often 

also seen in home energy management systems. Supply management is closely related to 

both demand side management and HEMS; like demand side management, supply 

management is used to ensure the necessary supply to fulfill residential demand at minimal 

cost and maximum efficiency. Similar to HEMS, supply management takes into 

consideration excess DGU electricity. However, supply management is not a versatile 

approach to best encompass various needs of energy-sharing participants.

Home energy management systems (HEMSs) are a technology used to 

autonomously track and schedule electricity usage [45], [57], [59], [61]. For strictly 

consumers, HEMS use load shifting that takes into consideration controllable loads such 

as washing machines and dishwashers to minimize electricity cost. However, prosumers 

can use HEMS as a tool to both minimize electricity cost and maximize profit from excess 

electricity while taking into consideration consumer experience throughout the energy

sharing process. The collaboration of HEMS with the Internet of Things (IoT) creates a 

home energy and comfort management system that effectively reduces energy 

consumption [50]. Incorporating IoT with energy management allows to maximize energy 

efficiency using collected data [48], [49]. The further application of IoT includes increasing
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real-time information to improve the gathering and processing of pertinent data to better 

serve the energy-sharing participants. Three functions of incorporating IoT with HEMS 

include: (1) prediction of energy demand, (2) balance and applications of energy policies, 

and (3) allocation of RES depending on intermittence [57]. Advances of RES and DEG 

promote IoT which encourages technological and methodological evolvement within 

Internet-of-Energy (IoE), which benefits further research within the energy field.

Local control (LC) is used as a response system to local electricity demand while 

the home energy management system is unique to every end-user [32]. LC is used as a 

management system for a small community of energy-sharing agents. Central controller is 

used for a larger community composed of multiple small communities. In comparison to 

LCs, central controllers (CC) must account for many more points of common coupling 

[84], [88], [98]. Both LC and CC act as an intercessor between large-scale electricity 

distribution and residential end-users.

Blockchain technology applied to an energy-sharing community provides security 

as well as additional identified, field-proven, benefits [54]. Integrating the blockchain 

technology with either a LC or CC provides a secure process that contains encrypted 

energy-sharing exchange data [50], [53], [54]. By creating a cyber secure platform for 

energy sharing, blockchain technology incentivizes participation through cost-sharing. 

Additionally, because blockchain is so often used as an exchange system for 

cryptocurrency, efficiency and reliability aspects of the system have been refined. 

Incentivizing participation in energy sharing can be done using a cost-sharing mechanism, 

such as a blockchain, which increases both energy distribution efficiency and social 

efficiency. Though using blockchain technology presents a solution to ensuring energy
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sharing safety, energy sharing in conjunction with both blockchain technology and 

personalized sharing management systems, like phone applications and HEMS, is currently 

a research gap. Additionally, third-party management may be less secure and/or more 

expensive than the HEMS option. A thorough comparison of the management systems 

should be done.

Integration of energy sharing within a defined community that supplies local 

electricity demand with local supply or utility grid supply with the option of operating in 

island mode becomes a smart microgrid. Incorporating energy sharing within the defined 

community creates new connections between participants and establishes a peer-to-peer 

network that allows for direct interaction between participating residents. Resilience and 

reliability are two characteristics that are essential to energy-sharing communities when 

they are classified as a microgrid. However, the ability for the community to act as a 

separate entity apart from the main grid is what allows the energy-sharing community to 

be classified as a microgrid. Microgrids have the ability to maintain end-user consumption 

while islanded from the utility or any large-scale electricity supplier. A microgrid is an 

engineering system designed to be able to operate independently with distributed 

generators, storages, and users [83]. Although not common, incorporating energy sharing 

into a community creates the option for decentralized coordination because the 

participating entities are coordinated into a decentralized manner to decrease burden on the 

grid [84]. Because of the concentrated location of electricity loads being in a close vicinity 

to the local suppliers efficiency of the distribution system is increased [85].

Management of DGUs can become overwhelming for a single microgrid system; a 

re-grouping of consumers into smaller clusters allows the individual microgrids to
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collaborate [86], [87]. This collaboration between microgrids is intended to optimize use 

of DGU production. Some microgrids maintain the ability to switch between island mode 

and grid-connected mode. Other microgrids rely solely on the utility to exchange 

electricity and maintain stability, this is called peer-to-grid trading [88]. Maintaining 

microgrid function by using the island mode is said to increase resiliency of the distribution 

network [89]. By allowing the utility grid and microgrid to function in parallel, system 

reliability and reduction of redundancy is improved [90]. Though ESSs are not a 

requirement for an islanded microgrid to function, the reference supply is necessary to 

provide continuous supply to consumers [91].

A cost-benefit analysis can be performed on the electricity distribution within a 

microgrid to determine the financial benefits of using an energy-sharing framework [93, 

[95]. In order to justify the effectiveness of a hierarchical framework of a MG, an EMS 

and ESS are often coordinated [94]. Though uncommon, a MG structured with an EMS or 

optimization system that has bidding and pricing capabilities will create an efficient MG 

system [96]. By combining a mathematical optimization approach with Pareto optimality, 

consequences of participating in an energy-sharing community are analyzed to ensure no 

one type of participants is affected more than other participants [97]. Collaboration of a 

MG and an energy sharing provider (ESP) can provide framework to the overall business 

plan and optimize the system framework [98].

3.3. ENERGY MANAGEMENT OPTIMIZATION

Optimization can be used to formulate energy management as a mathematical 

model that explicitly states the management objective as a function of management
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decisions. Meanwhile, optimization uses solution algorithms to search the most favorable 

energy management solution within given constraints. The objective function of each 

participant is unique in optimization, which creates a breadth of research variety depending 

on the decision maker’s point-of-view. Therefore, there is no one-size-fits-all optimization 

model for energy-sharing communities because of the high autonomous level of energy

sharing participants. Energy management optimization can use a range of deterministic 

mathematical optimization approaches such as linear programming [55], [56], [76], integer 

linear programming [67], mixed integer linear programming, nonlinear programming, 

genetic algorithm [73], [74], and particle swarm optimization [30], [44]. Another 

optimization approach is optimization under uncertainty such as stochastic programming 

[2], [57], and robust optimization [71], [72, [92]].

Cost optimization of an energy management system takes into considering all 

necessary costs for a specified energy-sharing participant [23], [24]. Cost optimization can 

be performed from many perspectives such as the utility, a consumer, or an energy 

community. Because sharing energy may require additional infrastructure, the cost 

optimization function of any participant should take into consideration any increased cost 

the utility will offset through participation fees for end-users [30], [31], [34]. Cost 

optimization from a utility perspective should take into consideration energy purchases 

from large-scale electricity suppliers at both wholesale and retail prices, necessary 

infrastructure maintenance, and lost revenue due to DEGs by end-users themselves [32]. 

Cost optimization from an energy management perspective should have defined priorities. 

Though not necessary, energy management system may incorporate home energy
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management system to solve decision and scheduling problems because HEMS is a single

user EMS customized to the end-user [38], [41], [45], [46], [58].

Profit optimization is often used from a prosumer perspective in order to maximize 

the revenue from DGU investment [6], [33], [37], [38], [44]. The community size has a 

significant impact on implementation of profit optimization [61], [75], [100]. A more 

efficient approach to profit optimization is the incorporation of the profit optimization 

model with individual HEMS [57], [58]. The compilation of individual prosumer profit 

indicates the proficiency of re-distribution of locally generated electricity. By individually 

assessing the profit optimization using HEMS, prosumers have the potential to adjust this 

profit using price negotiation. Using HEMS, prosumers have the ability to sell DGU 

electricity at a price set by said prosumer. This set pricing adjusted by the prosumer allows 

for profit optimization to be calculated accurately using customized values.

Not all optimization methods require the consideration of uncertainties. 

Uncertainties in energy-sharing communities can consist of, but are not limited to, RES 

generation, energy storage system supply, excess electricity consumption, and necessary 

energy storage recharge [33], [35], [41], [51], [75], [84]. Considering uncertainties when 

optimizing energy-sharing management creates a more reliable system when it comes to 

end-users making buying and selling decisions [31], [34], [89]. In addition to buying and 

selling decisions, energy-sharing systems that consider uncertainty are able to provide 

more details necessary to better schedule end-user consumption and generation including 

energy storage systems [33], [41], [51]. Energy management optimization also considers 

variable constraints. Variable constraints can include maximum energy storage capacity, 

maximum DGU generation, and minimum end-user consumption. These variable
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constraints can be used as lower and upper bounds when using robust optimization [60]. 

Variable boundaries can also be helpful when performing profit optimization A benefit 

from considering uncertainties when optimizing energy management decisions includes 

less wasted locally generated RES electricity [23], [24]. However, solving optimization 

under uncertainty may be computationally complex, thus raising an issue for some energy 

management decisions that should be made in near real-time [57], [60], [61], [72], [74]. 

Therefore, optimization considering uncertainty should be carefully justified by evaluating 

the tradeoff between its advantages and limitations.

3.4. INCORPORATION OF ENERGY STORAGE SYSTEMS

Energy storage systems (ESSs) are not a necessity to energy-sharing; however, 

ESSs do increase the resilience and reliability of energy-sharing communities [77], [78]. 

ESS are important to incorporate because they are helpful to energy sharing communities 

but cannot substitute the function of sharing [79]. Battery energy storage system (BESS) 

and electric vehicle storage (EV) are the two types of ESS specified in energy-sharing 

research. BESS is a static ESS that can be owned by either a residential end-user or a large- 

scale energy distributor such as a utility company. However, an EV used as an ESS that 

can be transported as the owner needs. Energy storage systems are important to energy

sharing communities because the RES is not consistent enough to continuously fulfill all 

consumer demand., an ESS creates an additional source of electricity supply when power 

disturbances occur. An ESS can be seen as an electricity consumer or supplier. The power 

inflow to the ESS represents an electricity demand for the community, and the outflow 

from the ESS represents a power supply to the community. The ESS can be used by
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consumers in the sharing community to better control the electricity expenses. Consumers 

with an ESS can store extra electricity when the electricity price is low and consume or 

share the stored electricity when the price is high. Ahmad et al. illustrated three scenarios 

to show the integration of RES and ESS results in reducing the consumer electricity bill 

and peak-to-average ratio (PAR) [76].

State-of-charge (SOC) is important to consider when investigating system 

reliability because it is varying with time due to charging and discharging [80]. The optimal 

charge/discharge of an ESS is achieved through properly controlling the SOC of the ESS 

[80], [81]. ESS act as an additional energy provider with limited supply within an energy

sharing community. However, because ESS do not require the consideration of end-user 

comfort, once the power supply is depleted the ESS can be re-charged at an off-peak time 

to minimize system interruption and cost. SOC directly effects RES electricity supply 

available to disperse within a community. Discharging and charging of the SOC is a sort 

of maintenance that to the system that keeps the ESS functional. Coordination of load 

power using SOC ensures system stability [82].

4. ENERGY-SHARING PROJECTS

Few energy-sharing communities are currently functioning in the world. The 

projects currently in use are limited in size and do not have other functioning sharing 

communities nearby to perform inter-community energy sharing. Though the five 

identified existing energy sharing communities elaborated in Table 2 have similar 

technology uses, drivers and community size differ based on local need.
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Western Power, a Western Australian state government-owned utility company, is 

launching an energy-sharing community in Western Australia. In collaboration with Curtin 

University, consumers with excess solar generation receive compensation for sharing. 

Traditional models provide no financial compensations to DGUs that put excess electricity 

back into the grid. The integration of peer-to-peer coordination in conjunction with 

blockchain technology allows for end-users to provide electricity supply with other sharing 

participants while receiving monetary compensation for excess electricity generation. 

Because Australia does not traditionally monetize excess electricity generation, financial 

incentive is a significant driver for energy sharing in Western Australia. Additionally, 

Western Power explicitly states that that they as a company intend to stay relevant in the 

future by learning, adapting, and developing energy solutions for their community [101]. 

The energy-sharing community operated by Western Power is not the only energy-sharing 

community located in Australia. Power Ledger, a startup technology company, has 

partnered with other companies to create an energy-sharing community based on 

blockchain-enabled peer-to-peer technology in Western Australia [102].

Brooklyn Microgrid is a peer-to-peer energy sharing grid created and maintained 

by LO3 Energy and Siemens. Exergy, which is an innovation of LO3 Energy, has created 

a marketplace for energy-sharing participants to “transact energy autonomously in near

real time with consumers on the platform in their local marketplace” [103]. Sharing 

participants within Brooklyn Microgrid are connected using blockchain technology that 

allows prosumer agents to sell RES electricity to other sharing participants within the grid. 

Brooklyn is a large city in the state of New York, USA whose residents have a large range 

of annual income. By integrating energy sharing into the Brooklyn area, the local economy
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is supported because of the financial incentives and resiliency of the electricity distribution 

system is improved by technological advances. Though Brooklyn itself is a large city, the 

size of the existing sharing community is limited to 50 participants, but is a mixture of 

residents and businesses. However, Brooklyn Microgrid is set up with the potential to share 

with other nearby sharing communities once they are established.

Unlike Western Australia or the UK, the Philippines is classified as a developing 

country. Because of the difference in classification, drivers to integrate energy sharing are 

heavily motivated by social and economic welfare. Energo Labs is a China-based company 

that works to create decentralized energy distribution systems combined with blockchain 

technology for safety and privacy reasons. However, Energo Labs chooses to incorporate 

smart meters as opposed to a third-party management system. Smart meters are an efficient 

and effective option for the sharing community in the Philippines because the end-user 

population participating in sharing is small. Additionally, Energo Labs have created a 

phone app to help sharing participants easily manage electricity consumption and 

production sources [104].

Recently, Thailand has become classified as an upper-income country as opposed 

to a low-income country due to social and economic development [105]. Because of the 

improvement of social and economic status, drivers for implementation of energy sharing 

in Thailand are related to environmental impacts and maintaining positive economic 

impacts on Thai citizens. Power Leger, the previously mentioned Australian company, has 

partnered with BCPG to create peer-to-peer energy sharing in a small neighborhood within 

Bangkok. The existing sharing community is limited to a mall, a school, a dental hospital, 

and an apartment complex. Looking to the future, the Bangkok Metropolitan Electricity
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Authority expects energy sharing to become an extremely relevant form of power supply 

for businesses and residents. In conjunction with blockchain technology, energy sharing 

will be an efficient and safe form of energy distribution.

The California Community Choice Association advocates for end-users’ ability to 

choose electricity supplier. While California Community Choice Association (CalCCA) 

does not provide a sharing platform for end-users, it does support the legislative and 

regulatory development that benefits communities and the environment [106]. CalCCA 

creates the opportunity for communities to collectively choose their primary electricity 

supplier. Because prosumers do not generate enough electricity to fully supply the demand 

of a community, the primary electricity supplier is often a small-scale, local, RES 

electricity generator. Though not considered a classic energy sharing community, CalCCA 

was included in the analysis of current energy sharing projects to show an exhaustive list 

of energy-sharing practices. Piclo Flex, though not a traditional energy sharing community 

but rather an energy marketplace for sharing, was launched in June 2018. Located in the 

UK, Piclo has partnered with other companies to fund a peer-to-peer trading trial and will 

eventually launch the trading service. As a company, Piclo identifies as a leader in energy 

technology and smart energy systems. The energy-sharing system launched by Piclo was 

based on the importance of renewable energy in addition to maintaining a sustainable 

structure for efficiency and reliable electricity distribution [107]. Distribution Network 

Operators (DNOs) manage the local grid to support the “growth of renewables without 

impacting the reliability of the grid or increasing customer bills but also to accommodate 

a range of new devices and other fast-emerging technologies” [107]. Because Piclo uses 

DNOs to maintain system balance and security, blockchain technology is not incorporated
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Table 2. Description of energy-sharing projects

White Gum Valley Energy Sharing
Location: White Gum Valley, Western Australia 
Partnership/funding: Western Power, Curtin University, Power Ledger 
Purposes: a test of the Western Power network for sharing energy between 
households.
Participants: 80 dwellings including units and townhouses form an energy sharing 
community
Method of sharing: Peer to Peer (P2P) sharing of electricity among neighbors in the 
community
Technologies: (i) a grid-connected solar power (150kW) microgrid with battery 
storage (300kWh), (ii) the block-chain enabled P2P sharing is realized using the 
Power Ledger platform
Benefits: Residents can balance their energy uses between the local grid and the 
main network

Brooklyn Microgrid
Location: Brooklyn, United States
Partnership/funding: LO3Energy, Siemens, Brooklyn Microgrid 
Purposes: pilot a microgrid with P2P transaction
Participants: 50 local prosumers, consumers, and business owners form an energy 
sharing community
Methods of sharing: Peer to Peer (P2P) sharing of electricity among neighbors in 
the community
Technologies: (i) a microgrid of on-the-roof solar panels; (ii) block-chain enabled 
P2P sharing realized using the visual marketplace by LO3Energy, (iii) mobile app 
that participants can participate in the visual energy marketplace; (iv) smart meter 
system that gathers and records energy data for use within the community. 
Benefits: (i) consumers can choose sources of energy; (ii) prosumers can control 
where their excess solar energy to go; (iii) through energy sharing, the community 
better supports local economy and better controls the greenhouse emissions and 
air pollution; (iv) through sharing, the community is more resilient in conditions 
such as outrages.
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Table 2. Description of energy-sharing projects (cont.)

DLSU-D Microgrid Project
Location: De La Salle University -  Dasmarinas, Philippines 
Partnership/funding: Energo Foundation, Qtum Foundation, First Gen 
Purposes: demonstrative project allowing solar panel-equipped communities to 
locally produce and directly exchange clean energy 
Participants: buildings on campus
Methods of sharing: Peer to Peer (P2P) sharing of electricity among buildings 
Technologies: (i) microgrid of solar energy; (ii) the block-chain enabled P2P 
sharing; (iii) smart meters; (iv) mobile app
Benefits: (i) autonomy of sharing community; (ii) cost-efficiency; (iii) energy 
access particularly in local and non-grid-connected areas by providing consistent, 
local source of electricity

T77 Precinct
Location: T77 Precinct, Bangkok, Thailand
Partnership/Funding: BCPG, Power Ledger, Metropolitan Electricity Authority, 
Purposes: a trail of P2P energy sharing in a sharing community to demonstrate how 
best to optimize the use of distribution network to accelerate the change to 
decentralized clean energy system
Participants: a shopping center, a school, an apartment building, and a dental hospital. 
Solar panels installed on every building of the school. Cover 20% of the community’s 
overall needs.
Methods of sharing: Peer to Peer (P2P) sharing of electricity among buildings 
Technologies: (i) grid connected 635kW solar PVs and battery storage; (ii) the block- 
chain enabled P2P sharing; (iii) smart meters
Benefits: (i) monetize excess renewable energy generated by selling it to local peers to 
receive higher return than selling to the retailer for the feed-in tariff or not being able 
to selling; (ii) maximize the utilization of renewable energy (iii) real-time data 
empower consumer decision making
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The California Community Choice Association
Location: California, USA
Partnership/funding: Investor Owned Utility (IOU) and the California Public 
Utilities Commission (CPUC)
Purposes: allow end-user communities to choose the provider for electricity 
needs, decrease energy burden for consumers, invest in clean energy suppliers 
Participants: established local communities, electricity suppliers, investor owned 
utility
Method of sharing: existing infrastructure 
Technology: bidirectional metering
Benefits: support the local economy, investment in clean energy has a positive 
environmental impact, creation of local jobs, increased competition among 
electricity providers

Table 2. Description of energy-sharing projects (cont.)

Energy on Trial
Location: United Kingdom
Partnership/funding: Piclo and Department of Business, Energy, and Industrial 
Strategies (BEIS) Energy Entrepreneurs Fund (EEF)
Purposes: pilot a flexibility marketplace for upgrade the existing centralized 
energy system to decentralized, decarbonized system 
Participants: flexible buyers (six distribution network operators) and flexible 
providers (demand-response aggregators, electricity suppliers, generators, battery 
operators, industrial and commercial customers, local authorities, community 
groups and electric vehicle charging operators)
Method of sharing: a marketplace
Technology: open digit platform for trading flexibility with temporal, spatial, and 
technical requirements.
Benefits: It removes the obstacle for small-scale assets seeking to trade flexibility 
and thus expand the participation of the growing number of flexible providers. It 
provides a platform for procurement of flexibility nationwide easily, regardless of 
the size needed. It helps scale up the low-carbon technology at a lower cost to 
consumers.
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with the peer-to-peer energy trading system. However, the six DSO locations have allowed 

energy sharing to be more widely available to end-users throughout the UK.

4.1. COUNTRY DEVELOPMENT

When installing sharing communities in developed countries research tends to 

focus more on technological advances and policy impact on social and economic incentives 

[108]. Three collaborative consumption communities exist in developed countries. These 

projects are in White Gum Valley, Western Australia; Brooklyn, New York, United States; 

and Silicon Valley, California, United States. Increasing energy distribution efficiency and 

lowering existing electricity bills are large influencers for the adoption of energy sharing 

in these developed countries. Because many neighborhoods are already established and 

electricity distribution infrastructure is existent, the evolution of hierarchical utility-lead 

electricity distribution into a decentralized sharing economy approach is a more gradual 

process.

Underdeveloped countries have less urban infrastructure and housing. Due to the 

lack of structure, commercial business energy sharing has become a more viable project. 

Existing projects that are commercial business centered are seen more in the developing or 

underdeveloped countries. There is an energy sharing community in Dasmarinas, 

Philippines, and a sharing community in Bangkok, Thailand, that have been identified and 

researched for this article. In underdeveloped/developing countries, research motives are 

more centralized on everyday behaviors and factors that directly impact the action 

outcomes [108]. Though low-income citizens are not directly impacted by the positive
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aspects of energy sharing, the improvement in access to electricity has an indirect impact 

on lifestyle.

4.2. PARTICIPANT POPULATION

Because residential locations use less total electricity in comparison to businesses, 

the amount of electricity demand for a single end-user is more easily supplied by RES. 

Typically, residents are either in urban or rural locations. Urban locations allow end-users 

to have more readily available access to electricity. Urban end-users will either have solar 

panels on top of their home or shared apartment building. Rural end-users have the option 

to install DEG either on the roof of the building or on nearby land. The White Gum Valley 

Energy Sharing project in Australia is comprised of 80 dwellings, including units and 

townhouses. Wester power and Curtin University, the partners creating this project, are 

expecting 70% of the community energy demand to be supplied by RES [101]. Though 

more residential demand may be supplied by RES, energy storage systems may not always 

be available to residential users as a backup supply. Energy storage systems such as 

batteries require high investment cost and significant maintenance to ensure safety and 

efficiency. Because of the limited access to ESS, electricity demand not supplied by RES 

is more likely to be supplied by utility.

Three of the five energy-sharing projects specified in this paper include business 

consumers; Brooklyn Microgrid is a hybrid community of 50 residents and businesses, the 

DLSU-D MG project is restricted to a university campus, and the T77 Precinct includes 

businesses such as a shopping center, a school, an apartment building, and a dental hospital. 

The T77 Precinct has specified that about 20% of the electricity demand has been supplied
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by RES [102]. The motivations for businesses to incorporate RES electricity into their 

power supply are largely influenced by demonstrating the company commitment to 

sustainable practices and decreasing negative environmental impact.

4.3. TECHNOLOGIES SECURITY

Blockchain technology is widely used to ensure secure transactions. Four of the 

five energy-sharing projects discussed in this paper utilize blockchain technology. 

Blockchain is a data management system initially developed for Bitcoin cryptocurrency 

transactions [109]. Data management is traditionally a service provided by a third-party 

company. Blockchain technology provides an encrypted data management service that 

allows users to access records of previous transactions they made [80]. Because blockchain 

is a data encryption technology, contracting a third-party company is unnecessary and 

therefore a financial saving [110]. The cost efficiency and data security is important to all 

sharing economy systems, which explains the universal implementation of blockchain 

technology in a range of project scopes.

System amenities such as smart meters and mobile apps are not common in energy

sharing communities, but existent in some energy-sharing projects specified in this paper. 

The DLSU-D MG project utilizes both smart meters and mobile apps. Because the DLSU- 

D MG project is restricted to one university campus, the range of consumers with access 

to sharing data is limited. This decreases the variability in load placed on app utilization 

which, in the case of overloading, could cause a system crash. Smart meters are an efficient, 

yet costly, way to accurately measure bi-directional electricity values. The T77 Precinct
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Table 3. Summary of energy-sharing projects
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utilizes smart meters to measure electricity supply and demand. This project in Thailand is 

important to both business and residential consumers, which will have drastically different 

demand values. Ensuring ease of use and a high-quality interface encourages consumers to 

utilize and participate in the energy sharing community.

5. SUMMARY AND FUTURE RESEARCH

5.1. SUMMARY

As the total demand of electricity is increasing, the reliance on non-renewable 

energy can be offset by the creation of electricity from RESs. Because the accessibility to 

DGUs, many end-users will choose to invest in installation of RES reliant DGU. An 

effective, ecofriendly solution to the disruption of the classic distribution process is the 

incorporation of energy-sharing capabilities within a defined community [114]. There are 

many benefits to energy sharing including environmental sustainability, economic values, 

resilience, and social welfare, as defined in section 2. Based on the academic literature 

review and energy-sharing projects review, energy sharing is an efficient way to 

technologically upgrade the electricity distribution system for the utility to remain relevant 

as a necessary business. The research necessary in the future includes a quantitative 

approach to optimizing the energy sharing abilities of a defined community.

By continuing research of energy-sharing communities, further understanding of 

the strengths, weaknesses, and opportunities of incorporating energy sharing technology 

can be used to the benefit of community participants. Specifically, researching optimized 

business structures has the potential to benefit several participant point-of-views.
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Additional simulation research allows for a quantitative perspective of energy-sharing 

communities to be analyzed. After implementation of energy sharing within a community, 

emergent features can be identified and elaborated on as is often done in the mature stages 

of concept development. Creating a safe and secure platform for energy sharing will be a 

constant consideration and may be developed throughout the research and implementation 

process of energy-sharing communities.

5.2. FUTURE RESEARCH

In order to continue developing understanding of energy sharing and the unintended 

impacts, further research should be performed. A range of research is beneficial to 

thoroughly understand quantitative and qualitative aspects of energy sharing. The future of 

energy sharing relies on providing RES electricity to end-users in an efficient, cost- 

effective manner. Though some energy-sharing communities may be newly constructed, it 

is possible for energy-sharing communities to be constructed using existing electricity 

distribution infrastructure. Using this paper as a reference, the future of energy sharing 

would involve autonomous smart-participants that consider both individual and collective 

system objectives. Systems should interact on a secure network that has the capacity to 

store necessary data without security concern. Installation of energy-sharing systems 

should be available to a large range of end-user demographic because of the significant 

improvement of reliability as well as potential consequential improvement of quality of 

life.

5.2.1. Utility Involvement. Energy sharing is changing the role of utilities. Current 

utility business models acknowledge end-user and company ownership of DGUs. The
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incorporation of energy sharing causes the need for utilities to evolve into less of a middle

man between end-users and large-scale generators and more of a distribution platform 

provider for all community end-users. This platform will acknowledge the versatility of 

prosumer end-users to be identified as both small-scale energy providers or consumers. 

Therefore, utilities need to change its business model to adapt to this change and capture 

new opportunities of revenue. Price re-evaluation is a potential solution to the loss of sales 

caused by the increase of DGU.

There is a research gap between energy sharing research and energy sharing 

implementation by utility companies [111]. Current research indicates that a central 

controller that optimizes utility electricity transactions is beneficial to the energy-sharing 

community as a whole. However, a significant amount of DGU installation is being done 

on an individual end-user basis. Creating a simulation that acts autonomously for 

independent end-users will provide a more realistic research foundation. A simulation 

model can be created to predict DGU investment by considering factors such as neighbor 

decision to invest in DGU, household income, and amount of people in the household. This 

simulation will provide a visual representation of end-user conversion from consumer to 

prosumer and potentially provide a general timeline as to how quickly community 

technologies should be upgraded.

5.2.2. Optimization. Energy sharing optimization requires the recognition of 

several participating entities and uncertainty in order to provide an accurate and reliable 

result. Using tools such as Monte Carlo simulation or multi-objective robust optimization 

takes into consideration the uncertainty associated with RES and human behavior while 

quantifying aspects such as profit or energy sharing incorporation. Quantified aspects can
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range significantly using optimization techniques. Using Monte Carlo simulation rate of 

consumers evolving into prosumers can be understood and used by the utility company to 

plan future investment opportunities to keep their business relevant [112,113].

Robust optimization that considers uncertainty provides end-users a more realistic 

insight when using HEMS. Using multi-objective robust optimization not only can the 

utility company use this tool to minimize cost, but variations of the optimization function 

could allow prosumer agents to maximize profits. Prosumer maximization of profits has a 

domino effect with regards to end-user lifestyles.

5.2.3. Emergent Aspects. State-of-the-art energy-sharing technologies are more 

available to higher income end-users because of the high investment cost. By identifying 

the fundamental necessities that energy sharing provides an improvement to, justification 

for implementing energy sharing throughout a diverse range of consumer demographics. 

Using a systems engineering approach, the qualitative impacts of communities engaging 

in energy sharing can be reviewed. Because qualitative impacts are sometimes emergent 

features, certain aspects may not be identified until after energy sharing has been integrated 

into communities.

Another benefit to qualitative research is specifying the impact on specific 

demographics. The causal model presented in this paper, Figure 2, represents the general 

impacts of incorporating energy sharing within a community. Future research of each of 

the defined aspects and their relation to the beneficial outcome can be done in either a 

quantitative or qualitative manner. Figure 2 provides the general conceptual framework 

linking energy sharing with the defined benefits. However, further research will provide a 

depth of information across the breadth of causal model linkages.
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5.2.4. Security. Security of an energy-sharing community should be efficient, 

effective, and reliable. The purpose of a security system being incorporated with energy 

sharing is to minimize threats from outside entities. Recently, the adoption of blockchain 

in the energy industry has become an effective tool to not only create a safe sharing 

platform, but also keep data stored securely.

Also, there are concerns about systems with blockchain technology requiring as 

much energy as the energy-sharing DGUs produce. This large energy sink causes a lack of 

DGU produced electricity to supply to the energy-sharing community participants. From a 

systems engineering approach the optimal system architecture can be found and 

customized to the specific needs of the defined community.
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ABSTRACT

Consumer investment in distributed energy resources (DERs) is increasing the 

amount of usable renewable energy sourced electricity. Some DERs produce more 

electricity than necessary, and this excess electricity is traditionally sold back to the utility 

(e.g., net metering). Implementing energy sharing allows an electricity distribution 

facilitator to redistribute DGU electricity to fellow community members. However, little 

is known about consumer interest in participating in this type of arrangement. Research on 

solar adoption suggests that innovative consumers with high novelty seeking and moral 

obligation to environmental sustainability express the most interest in residential 

photovoltaics (RPV) [18]. This study compares three behavioral theories, Value-Belief- 

Norm, Diffusion of Innovations, and Theory of Planned Behavior to predict consumer 

interest in participating in energy sharing. Using structural equation modeling, we evaluate 

survey data from 200 participants to determine which theory better fits the data. The results 

suggest that value-belief-norm is the better fit. This study has implications for effectively

mailto:Jmw8q@mst.edu
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marketing new products and services, such as energy sharing, to increase participation of 

end-users.

1. INTRODUCTION

As prices have decreased, interest in renewable energy has increased [1]. However, 

many consumers still face barriers to renewable procurement. One emerging strategy is 

energy sharing. End-users that invest in distributed energy resources (DERs), such as solar, 

are classified as prosumers because they have the ability to both consume and produce 

electricity [2]. Energy sharing provides a platform for electricity exchange between grid- 

connected participants in a specific region, such as a neighborhood [3]. However, energy 

sharing is limited to the community participants that subscribe to the service. To date, little 

is known about what factors influence interest in participating in energy sharing.

Energy-sharing management systems facilitate interactions between energy

sharing participants to maintain grid stability. Energy-sharing management systems can be 

incorporated into energy distribution systems as a way to decentralize the traditional 

hierarchical system [4]. A decentralized energy distribution system requires more 

connectivity between participants, but also minimizes transmission line loss. Additionally, 

energy-sharing participants rely on the energy-sharing management system to coordinate 

transactions between participants while maintaining system balance [5]. Consumers are 

encouraged to participate in energy-sharing communities because prosumers are able to set 

their own price to sell excess electricity. This allows consumers to purchase electricity at a 

reduced cost [6 ]. By redistributing excess prosumer electricity, prosumers are optimizing



86

their investment by minimizing energy curtailment while also improving utility resource 

allocation [7, 8 ]. Energy curtailment occurs when there is more generation (or supply) than 

demand for electricity, particularly when renewable generation is limited due to concerns 

about grid stability [9]. Energy curtailment is considered an inefficiency because electricity 

production is restricted and not all produced electricity is used [10]. Therefore, minimizing 

electricity curtailment increases the efficiency of the energy system.

In this study, consumer interest in participating in energy sharing is predicted using 

two behavioral theories, (1) value-belief-norm (VBN), (2) diffusion of innovations (DOI), 

and Theory of Planned Behavior (TPB). We use structural equation modeling to determine 

which behavioral theory has the best fit with the data. Structural equation modeling is a 

statistical technique to measure relationships between observed and latent variables [1 1 ].

1.1. PREDICTING ENERGY SHARING PARTICIPATION

Energy-sharing facilitators are interested in predicting end-user interest to 

participate in energy-sharing communities. Predictions provide the facilitator with 

information to maximize energy-sharing system connectivity while minimizing loss and 

electricity curtailment [12]. Participation and community engagement have been examined 

using business models [13], optimization [14, 15], and demand side experience [16]. 

However, each of these approaches emphasizes the characteristics of the service provided 

to the end-user without consideration of end-user decision-making strategies, which tend 

to not be purely rational processes. To date, little research has investigated the correlations 

between consumer attitudes, values, and perceptions with interest to participate in an 

energy-sharing service. Conradie et al. (2021) found that attitudes toward renewable energy
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is a significant factor when determining consumer intent to participate in a renewable 

energy community. This is consistent with Wolske et al.’s (2017) finding that favorable 

attitudes about the technology provide a good representation of interest, because attitude 

takes into consideration both intrinsic and extrinsic motivations. Better understanding 

consumer preferences can benefit a potential energy-sharing facilitator by opening up 

opportunities to customize the service to best suit a community’s needs.

To date, most research on energy sharing has focused on technology development. 

A few studies have used optimization as an approach for predicting interactions between 

communities, rather than participation in energy sharing. Liu & Guo (2017) predict 

interactions of integrated direct current-linked microgrids. Using smart systems in the 

Internet of Things (IoT), an optimization model developed for the energy management 

system is used to increase the usage of renewable energy [2 0 ]. In order to encourage 

autonomous activity, Islam et al. (2020) developed an optimization-based algorithm to 

improve grid resilience. However, these studies fail to accurately represent the dynamics 

of consumer adoption and potential implications for the energy sharing system.

Behavioral theories have been applied to sharing economy topics, such as 

acceptance of electric vehicle sharing [2 1 ], adoption of solar technologies [18], and energy 

conservation behavior [22, 23]. Using behavioral theories, outcomes of interest can be 

explained using latent and observable variables [24]. Wolske (2017) develops an integrated 

behavioral model that consists of influential aspects from two theories: (1) VBN and (2) 

DOI. Due to the novelty of the technology and business model, little work has focused on 

energy sharing directly.
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2. BEHAVIORAL THEORIES

2.1. VALUE-BELIEF-NORM

VBN uses three factors, values, beliefs, and norms, to explain consumer behaviors 

[25]. VBN combines value theory, which identifies the importance of attributes, with the 

norm-activation model, which explains altruistic and environmentally friendly behaviors 

[26, 27]. VBN was initially created to explain peoples’ actions based on personal obligation 

and self-expectations [28].

In previous studies, VBN is useful for predicting pro-environmental behavior [29], 

willingness to pay for the reduction of noise pollution [30], and environmental activism 

[31]. Stern et al. (1999) use VBN to explain support for social movements and finds that 

an individual will support a movement when their values are threatened, and the individual 

believes their actions can assist in the restoration of threatened values. Andersson et al. 

(2013) use VBN to investigate students’ attitudes of sustainable development through 

Education for Sustainable Development.

In the context of energy sharing, VBN can be used to predict consumer interest in 

participating in sustainable systems. VBN uses environmental values, in conjunction with 

awareness of consequences to explain the outcome of interest. Environmental values are 

addressed by providing access to additional renewable energy sourced electricity. 

Consumer feeling of obligation to act in a way consistent to their morals and values is 

referred to as internal obligation. Internal obligation is related to constructs used to defined 

values within the VBN model. If VBN is the best fitting theory, this suggests that values 

are most important for predicting interest in energy sharing.
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2.2. DIFFUSION OF INNOVATION

DOI uses the dissemination of new technologies or ideas to explain consumer 

reactions [33]. DOI takes into consideration dissemination, implementation, sustainability, 

improvement activity, and scale-up [34]. These features allow for successful diffusion of 

designs and inventions. Both perceived innovativeness and the effectiveness of 

communication channels predict perceptions of the innovation [35].

Previous research has used DOI to predict acceptance of new technologies related 

to the education system , health care innovation [36], and sustainable systems [37]. Al 

Othman & Sohaib (2016) use DOI to enhance innovation and sustainability of Saudi firms. 

By understanding the interactions and interrelationships between organizational innovation 

and socio-technical factors, the Saudi Arabian government is provided the knowledge to 

develop a plan for integrated a knowledge-based economy. Encouraging communities to 

participate in local business models like energy sharing can be emphasized through 

diffusion of innovation [39]. Previous studies apply DOI to the energy sector, however no 

studies have used DOI to predict consumer participation in energy-sharing communities.

In the context of energy sharing, DOI can explain consumer interest in participating 

in a novel approach to energy distribution. Though decentralized systems are a well-known 

approach, like blockchain or restaurant chains, energy sharing has yet to become a highly 

commercialized system. Using this research, if  DOI is identified as the best-fitting model, 

companies will be able to justify their implementing energy sharing in a more 

technologically savvy geographic area because of the positive reception to new

innovations.
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2.3. THEORY OF PLANNED BEHAVIOR

The Theory of Reasoned Action (TRA) laid a foundation for the TPB to use 

conditional variables to better predict behavioral intention [40]. Three different TPB 

models were developed and compared using structural equation modeling. Various fit 

indices of these structural models were analyzed and used to determine that traditional 

TRA and TRB models provide consistent results with previous studies [41]. TPB predicts 

behavior intentions with significant accuracy. However, there is a lack of defined 

independent relationship correlation between attitude, subjective norm, and perceived 

behavioral control and intention [42].

Using the financial market as the research field, Shih & Fang (2004) use the TPB 

to predict customers' intention to adopt internet banking in Taiwan. The results of the TPB 

model are then compared to the TRA and structural equation modeling is used as an 

analysis method. Ambrosio-Albala et al. (2020) use TPB to evaluate the acceptance of 

decentralized energy storage technologies, specifically batteries, at both household and 

community (neighborhood) levels. There is low familiarity with the topic of storing energy. 

However, the perceived overall benefits tend to improve consumer opinions. Participants 

overall had a positive perspective towards energy storage.

In the context of energy sharing, TPB evaluates consumer intention based on 

attributes unique to each consumer. The three categories used to define TPB (attitude, 

subjective norm, and perceived behavioral control) provide the researcher with diverse 

attributes of each individual. This accounts for a diverse range of qualities that could be 

unique to each energy-sharing participant. This is especially important to energy sharing 

because it is a decentralized system that relies on the five system characteristics as
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described by Boardman and Sauser (2006): (1) autonomy, (2) belonging, (3) connectivity, 

(4) diversity, and (5) emergence.

Table 1. Similarities and differences between the three theories

Attitude External
Influences

Internal
Influences

Moral
Considerations

Change 
over Time

Value-Belief-
Norm

X X X X

Diffusion of 
Innovations

X X

Theory of
Planned
Behavior

X X X X

Across all theories, VBN, DOI, and TPB, all attempt to understand consumer 

behavior influenced by decision making characteristics. Table 1 shows similarities and 

differences between the two theories. Attitude refers to acknowledging consumer 

emotions, beliefs, and behaviors that will influence the decision making [18]. External 

influences include communication channel factors while internal influences are factors 

related to culture and values. Moral considerations refer to the sense of obligation to benefit 

others because one has already received a benefit [18]. Change over time refers to 

acknowledging the adoption rate of a product or service over a certain period of time [33].

3. METHODS

3.1. PARTICIPANTS

We recruited 200 participants on Prolific for a study on “energy sharing 

technology” in February 2021. Prolific is an online platform used to recruit participants
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that meet researchers’ expectations for scientific studies [46]. Amazon Mechanical Turk 

(MTurk) offers similar services to Prolific. However, Prolific provides more diverse 

participants [47] that better represent the demographics of national samples [48]. This 

sample size is consistent with the recommended minimum sample size to ensure adequate 

power [49, 50]. Eligible participants were current residents of the United States and at least 

18 years old. All participants were paid $3 for a 15-20 minute survey.

3.2. MEASURES

This survey applies two the same behavioral theories and approach identified in 

Wolske, Stern & Dietz (2017), for residential solar adoption, to residential energy sharing 

participation. In general, most scales were measured on a 5-point Likert scale [51], where 

1 = strongly disagree and 5 = strongly agree. We also included an “I don’t know” option 

to avoid over-estimation at the neutral point of the scale [52]. This was particularly 

important, given that energy sharing is a new technology that participants might be 

unfamiliar with. Responses of “I don’t know” were treated as missing values. For each 

scale, we conducted a confirmatory factor analysis. For convenience, the scales are 

described in the text and summarized in Tables 3 and 4.

Ultimately, the outcome variable is interest in energy sharing. This is estimated by 

the mean of four questions that measure interest, “I would be happy to participate in energy 

sharing even if I have to pay for the total cost”, “I would switch to energy sharing if I was 

considering changing my electricity supplier”, “I would support having energy sharing in 

my area”, and “I have a positive overall evaluation of energy sharing” (Cronbach’s
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a=0.81). Since participants would have few opportunities to participate in energy sharing 

in the real world, we did not include a measure of behavior due to concerns about validity.

As a precursor to interest in energy sharing, we measured social curiosity. This is 

measured by three items to estimate interest in learning about costs and benefits if  a friend, 

family member, or neighbor participated in energy sharing “I would be interested in 

learning about the cost and benefits of energy sharing if a [friend/family member/neighbor] 

participated in energy sharing” (Cronbach’s a=0.87). Social curiosity is a weaker version 

of interest that relies on perceptions of the social environment [53].

3.2.1. Value-Belief-Norm. VBN includes estimates of values, which predict 

beliefs, which predict norms, which predicts social curiosity and interest (see Figure 1a). 

Values include altruism, self-interest, traditional values, and openness to change. All 

measures were consistent with the standard items from the literature [54]. Biospheric and 

social altruism is measured by four items evaluated on a 5-point Likert scale where 1 = not 

important and 5 = extremely important with an additional “opposed to my values” option 

(coded as - 1 ). Participants report how closely each statement resembles guiding principles 

in their life. The statements include “Respecting the Earth, harmony with other species”, 

“Protecting the environment, preserving nature”, “A world at peace, free of war and 

conflict”, and “Unity with nature, fitting into nature” (Cronbach’s a=0.90). Similarly, self

interest is measured by three statements including “Wealth, material possessions, money”, 

“Authority, the right to lead or command”, and “Influential, having an impact on people 

and events” (Cronbach’s a=0.73). Traditional values include three statements, “Honoring 

parents and elders, showing respect”, “Family security, safety for loved ones”, and “Self

discipline, self-restraint, resistance to temptation” (Cronbach’s a=0.74). Openness to
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change is measured by three statements including “Curious, interested in everything, 

exploring”, “A varied life, filled with challenge, novelty, and change”, and “An exciting 

life, stimulating experiences” (Cronbach’s a=0.85).

To measure beliefs, awareness o f  consequences is estimated by a single item, 

“Climate change is a serious problem for society.” Wolske, Stern, and Dietz (2017) found 

that a single item was sufficient due to the existence of strong, polarized views on climate 

change. Their analysis suggests that using a single item here does not affect the estimation 

of relationships between other variables. To measure norms, personal norm is estimated 

by 3 items, “I feel a personal obligation to do my part to move the country to a renewable 

energy future”, “I feel a personal obligation to do my part to prevent climate change”, and 

“I feel guilty when I waste energy” (Cronbach’s a=0.90).

3.2.2 Diffusion of Innovation. DOI presumes that consumer innovativeness and 

communication channels influence the perceived characteristics of the innovation, which 

predict social curiosity and interest (see Figure 1b). Consumer innovativeness is comprised 

of consumer novelty seeking [55] and consumer independent judgement [56]. Consumer 

novelty seeking is measured by three items that include “I continuously look for new 

experiences from new products”, “I continuously look for new products and brands”, and 

“I like to visit places where I'm exposed to information about new products and brands” 

(Cronbach’s a=0.87). Consumer independent judgment is measured by three items that 

include “Before I buy a new product or service, I often ask acquaintances about their 

experiences with that product or service”, “Before buying a new brand, I usually ask 

someone who has experience with the brand for advice”, “When considering a new
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product/service, I usually trust the opinions of friends who have used the product/service” 

(Cronbach’s a=0.65).

The perceived characteristics of the innovation include relative advantage, 

trialability, riskiness, complexity, and observability. Relative advantage is measured by six 

items, “Participating in energy sharing would save me money”, “Participating in energy 

sharing provides a great return on a prosumer's investment”, “Participating in energy 

sharing will help protect my family from rising electricity prices in the future”, 

“Participating in energy sharing would help meet my family's needs”, “Participating in 

energy sharing could protect my family from electricity blackouts”, and “Participating in 

energy sharing would increase my property value” (Cronbach’s a=0.78). Riskiness is 

measured by six items [57], “I would worry about participating in energy sharing because 

it would be an unfamiliar experience”, “Participating in energy sharing is a risky thing for 

a household to do”, “Participating in energy sharing could damage my home”, “I think 

energy sharing for residential use is not yet a mature technology”, “I don't like the idea of 

being connected to a server and sharing my energy usage data”, “Energy sharing, as 

described, entails many risks” (Cronbach’s a=0.78). Complexity is measured by 3 items, 

“Participating in energy sharing is a hassle”, “There is a lot of paperwork involved in 

participating in energy sharing”, “Participating in energy sharing takes a lot of time” 

(Cronbach’s a=0.73). Trialability is measured by five items, “Before contacting an energy

sharing facilitator, I would like to see the participation process up close”, “Before 

considering energy sharing, I would like to talk to someone who uses energy sharing”, “I f  

an energy-sharing facilitator tells me how much I would save on my electricity bills by 

installing solar, I would want a second opinion”, and “I would be more interested in energy
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sharing if there were some way for me to try it out before signing a contract” (Cronbach’s 

a=0.81). Observability is measured by two items, “I can tell if  a community has energy 

sharing” and “In a community with energy sharing, I can tell who is and is not 

participating” (Cronbach’s a=0.90). We anticipate that observability will be a weak 

predictor.

Communication channels include measures of real-world experience with energy 

sharing, marketing exposure, institutional trust, and trust in social network. Real-world 

experience with energy sharing is measured via four items, “A friend or neighbor has 

recently participated in energy sharing”, “I know more than one person that participates in 

energy sharing”, “Several people in my neighborhood participate in energy sharing”, “I 

have talked about energy sharing with someone who has already installed the energy

sharing technology in their house” (Cronbach’s a=0.94). Exposure to energy-sharing 

marketing is measured by two items, “In the last six months, I have seen or heard 

advertisements from companies that facilitate energy sharing” and “My family has recently 

received advertising or a call from a company that facilitates energy sharing” (Cronbach’s 

a=0.66). All six of these items are measured as a Yes or No answer. We anticipated that 

few participants would have real-world experience or exposure to marketing for energy 

sharing. Industry trust is measured by three items [58], “I would support having energy 

sharing in my area regardless of the facilitator”, “I would trust any energy-sharing 

facilitator to make good decisions about energy-sharing technologies”, and “I trust any 

energy-sharing facilitator to keep my best interest in mind” (Cronbach’s a=0.85). Trust in 

social network is measured by three items, “I trust my friends”, “I trust my family”, and “I 

trust my neighbors” (Cronbach’s a=0.60).
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3.2.3 Theory of Planned Behavior. In TPB, attitudes, subjective norms, and 

perceived behavioral control predict social curiosity and interest. Attitudes are predicted 

by personal and environmental benefits, perceived risks, expense concerns, and waiting for 

improvements. Personal benefits are the same as Relative Advantage in the DOI model. 

The six items used to measure personal benefits are , “Participating in energy sharing 

would save me money”, “Participating in energy sharing provides a great return on a 

prosumer's investment”, “Participating in energy sharing will help protect my family from 

rising electricity prices in the future”, “Participating in energy sharing would help meet my 

family's needs”, “Participating in energy sharing could protect my family from electricity 

blackouts”, and “Participating in energy sharing would increase my property value” 

(Cronbach’s a=0.756). Environmental benefits are measured by six items [44], “Energy 

sharing helps slow down climate change”, “If more households participate in energy 

sharing, environmental quality will improve”, “Participating in energy sharing would be a 

good way to reduce my environmental impact”, “I think of myself as someone who is very 

concerned with environmental issues”, “I think of myself as an environmentally-friendly 

consumer”, and “I would be embarrassed to be seen as having an environmentally-friendly 

lifestyle” (Cronbach’s a=0.663). Perceived risks is the same as riskiness in DOI which is 

measured by six items [44], “I would worry about participating in energy sharing because 

it would be an unfamiliar experience”, “Participating in energy sharing is a risky thing for 

a household to do”, “Participating in energy sharing could damage my home”, “I think 

energy sharing for residential use is not yet a mature technology”, “I don't like the idea of 

being connected to a server and sharing my energy usage data”, “Energy sharing, as 

described, entails many risks” (Cronbach’s a=0.749). Expense concerns are measured by
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three items, “I can't afford to participate in energy sharing on my family budget”, “For 

prosumers, solar is still very expensive, even with government subsidies”, and “For 

prosumers, maintaining solar is expensive” (Cronbach’s a=0.506). Waiting fo r  

improvements is measured by two items, “For prosumers, the price of solar keeps going 

down, so it is wise to wait before deciding whether to install it” and “The technologies that 

facilitate an energy-sharing marketplace will only get better, so it doesn't make sense to 

sign-up now” (Cronbach’s a=0.507).

Subjective norms are predicted by normative beliefs. Normative beliefs are 

measured by one item [43], “Most people who are important to me would support me if I 

decided to participate in energy sharing”.

Perceived behavioral control is predicted by perceived unsuitability, expectations 

to move and self-efficacy. Perceived unsuitability is measured by five items [44], “It's not 

sunny enough in my area for prosumers to invest in solar”, “It's too cloudy where I live for 

prosumers to invest in solar”, “At my home, I can’t be a prosumer because there's no place 

to put solar”, “I am not convinced of the need for energy sharing where I live”, and “I think 

the area where I live is not suitable for energy sharing” (Cronbach’s a=0.786). 

Expectations to move is measured by a single item, “I may not be in my home long enough 

to see the benefits of participating in energy sharing as a prosumer”. Self-efficacy is 

measured by three items [43], “It is important to me to feel comfortable participating in 

energy sharing”, “I would feel comfortable participating in energy sharing”, and “I have 

the knowledge to participate in energy sharing” (Cronbach’s a=0.332).
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3.3. PROCEDURE

Because this was an observational study, there were no experimental conditions. A 

fictional energy-sharing facilitator was described to the survey participants, where they 

could participate as a prosumer or consumer. This fictional facilitator, E-topia, had a 

defined mission to encourage the generation and consumption of solar energy throughout 

the neighborhood. We described necessary energy-sharing technologies for participation, 

which included wi-fi enabled smart meters and a mobile app to set a budget or price 

depending on the participation type. Participants were asked to answer the survey questions 

given this E-topia platform information.

The survey questions were split into three categories, (1) attribute, (2) area, and (3) 

overall. This structure is an approach to minimize order effects suggested by Schreier et al. 

(2018). Each category consists of questions that are randomized. At the end of the survey, 

participants were asked about their perception of three types of energy-sharing facilitators, 

a third-party non-profit, local utility, and a third-party for-profit. Lastly, participants were 

asked demographic questions including gender, age, education level, race, employment 

status, annual income, and electricity supplier.

3.4. ANALYSIS

To estimate and evaluate the fit of each behavioral theory, we used structural 

equation modeling (SEM). To ensure robustness, we estimated the relationships using the 

lavaan package in R [60, 61]. The lavaan package explains latent variables using observed 

variables through a variety of models including confirmatory factor analysis, structural 

equation modeling, and latent growth curve models. SEM is a modeling technique that uses
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a combination of complex path models with latent variables [62, 63]. SEM is the preferred 

approach because complex structures can be understood based on interactions of latent 

variables [64]. This analysis was preregistered on the Open Science Framework website 

(https://osf.io/k78vn/). Based on pilot survey results, we modified the wording of the 

comprehension checks after preregistration.

There are six primary steps in SEM, model (1) specification, (2) identification, (3) 

data preparation, (4) estimation, (5) evaluation, and (6 ) modification [65]. Model 

specification involves identifying predicted relationships between variables (see Figure 1). 

Once the data are collected, we examine Pearson correlations to understand the 

relationships between variables. In model identification, we perform a confirmatory factor 

analysis to ensure all model parameters are identified. The confirmatory factor analysis 

measures the loading of each indicator variable (or question) on latent variables as 

described in italics above [6 6 ]. In model estimation, we perform SEM.

In model evaluation, we examine the estimated parameters, variances, and fit 

indices including comparative fit index (CFI), Cronbach’s alpha, standard loadings, and 

correlation. CFI values are always between 0 and 1, where a value closer to 1 indicates a 

better fit. Cronbach’s alpha indicates model consistency. A Cronbach’s alpha value greater 

than 0.7 is considered good. When analyzing standard loadings, a value of 0.7 indicates 

sufficient variance is explained [67]. Lastly, in model modification, we can conduct post- 

hoc changes to improve model fit [6 8 ].

https://osf.io/k78vn/
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4. RESULTS AND DISCUSSION

4.1. SAMPLE

A total of 200 participants consented to participate in this research and completed 

the survey. O f those, 5 participants were removed because of data quality issues. They 

either reported that we should not use their data because they did not take the survey 

seriously or provided the same response to all of the Likert questions (N = 195). In the 

sample, 100 participants identified as male (51%), 91 identified as female (47%), and 3 

chose other options. Participants ranged from 18 to 78 years old (M = 33, M ed  = 35, SD = 

12). The majority of the participants were employed full time (120, 62%) while 26 were 

employed part time (13%), 25 were students (13%), and 35 chose other options (18%). 

There were a wide range of annual salaries, with most participants earning less than 

$60,000/year (112, 57%) and 79 participants earning more than $60,000/year (41%). As 

expected, most participants (131, 67%) had not heard of energy sharing before this study.

4.2. MODEL SPECIFICATION AND IDENTIFICATION

The proposed models for both behavioral theories are summarized in Figure 1. 

Overall, participants were open to participating in energy sharing as either a consumer or 

prosumer (see Table 1). Based on the similar pattern of responses for consumer and 

prosumer participation, it does not appear that participants clearly distinguished between 

these two modes of participation (e.g., expressing less interest in participation as a 

prosumer due to barriers associated with installing solar on their home). Confirmatory 

factor analysis (CFA) is used to evaluate how well measured variables represent defined
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Using CFA, we ensure that the latent variables are measured by their associated 

questions. Across all of the variables, real world experience had the lowest standardized 

loading values. This may be explained by the novelty of energy sharing, thus few 

participants had experience with it. The correlations for each model are summarized in 

Tables 4-6.

latent constructs. For this research, measured variables are the questions presented to the

survey participants.

Table 2. Participant responses when asked if they would be willing to participate in 
energy sharing in the future as either a consumer or prosumer

Neither
Strongly
Disagree

Somewhat
Disagree

Agree Nor 
Disagree

Somewhat
Agree

Strongly
Agree Don't Know

Consumer 9 (4.61%) 
Prosumer 5 (2.56%)

18 (9.23%) 
16 (8 .2 0 %)

24 (12.3%)
25 (12.8%)

6 8  (34.9%) 
64 (32.8%)

6 8  (34.9%) 
73 (37.4%)

8  (4.10%) 
12 (6.15%)

4.3. MODEL ESTIMATION

4.3.1. Value-Belief-Norm Model. The model fit for VBN is unacceptable (CFI = 

0.87) and below the desired threshold of 0.9 (see Table 4) [69]. Also, the other fit metrics 

do not meet the desired thresholds, TLI = 0.85 < 0.9 and SRMR = 0.15 > 0.08. As expected, 

social curiosity, personal norms, and awareness of consequences all positively predicted 

interest in energy sharing in the path model (see Figure 2). Self-interest has the weakest 

significance, likely due to weak loading of the first question increasing observed variance 

(see Table 4). While altruism and self-interest were positively related to awareness of 

consequences, traditional values were negatively related. Openness to change was not a
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(a) Value-Belief-Norm

(b) Diffusion of Innovation

c) Theory of Planned Behavior

Figure 1. Proposed path models for (a) Value-Belief-Norm, (b) Diffusion of Innovation,
and (c) Theory of Planned Behavior
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(a) V alue-B elief-N orm

(b) D iffusion o f  Innovation

Figure 2. Significant SEM pathways. Significant and 
by a solid line, while negative relationships are

positive relationships are indicated 
indicated with a dashed line
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Table 3. Summary of standardized factor loadings in combined confirmatory factor
analysis for outcome variables interest in energy sharing and social curiosity

Outcome Variables N
Mean (SD) 

Std Ldg
Interest in Energy Sharing (Cronbach’s a=0.81)

I would be happy to participate in energy sharing even if I have to pay for the total 180
3.88 (0.83) 

0.47
cost

I would switch to energy sharing if I was considering changing my electricity 183 0.75
supplier

I would support having energy sharing in my area 192 0 .8 6

I have a positive overall evaluation of energy sharing 192 0.87
Social Curiosity (Cronbach’s a=0.87)

I would be interested in learning about the cost and benefits of energy sharing if a 194
4.26 (0.81) 

0.91
friend participated in energy sharing

I would be interested in learning about the cost and benefits of energy sharing if a 194 0 .8 6

family member participated in energy sharing 
I would be interested in learning about the cost and benefits of energy sharing if a 194 0.76

neighbor participated in energy sharing

Table 4. Summary of standardized factor loadings in combined factor analysis for VBN

Value-Belief-Norm (CFI = 0.903) N
Mean (SD) 

Std Ldg
Altruism (Cronbach’s a=0.90) 

Respecting the Earth, harmony with other species 194
5.06 (0.96) 

0.93
Protecting the environment, preserving nature 195 0.92
A world at peace, free of war and conflict 193 0.64
Unity with nature, fitting into nature 194 0.84

Self-Interest (Cronbach’s a=0.73) 
Wealth, material possessions, money 194

3.35 (1.14) 
0.45

Authority, the right to lead or command 193 0.81
Influential, having an impact on people and events 193 0.83

Traditional Values (Cronbach’s a=0.74) 
Honoring parents and elders, showing respect 195

4.75 (0.92) 
0.85

Family security, safety for loved ones 194 0.58
Self-discipline, self-restraint, resistance to temptation 194 0 .6 6

Openness to Change (Cronbach’s a=0.85) 
Curious, interested in everything, exploring 194

4.68 (1.03) 
0.69

A varied life, filled with challenge, novelty, and change 195 0.83
An exciting life, stimulating experiences 195 0.93

Awareness o f  Consequences 
Climate change is a serious problem for society 193

4.51 (1.01) 
1 .0 0

Personal Norm (Cronbach’s a=0.90)
I feel a personal obligation to do my part to move the country to a renewable 192

4.02 (1.03) 
0.92

energy future
I feel a personal obligation to do my part to prevent climate change 192 0.96
I feel guilty when I waste energy 193 0.73
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Table 5. Summary of standardized factor loadings in combined factor analysis for DOI

Mean (SD)
_____________________________ Diffusion of Innovation (CFI = 0.73)_________________________________ N______Std Ldg

Novelty Seeking (Cronbach's a=0.87) 3.65 (1.02)
I continuously look for new experiences from new products 194 0.84
I continuously look for new products and brands 194 0.94
I like to visit places where I’m exposed to information and new products and brands________________194____ 0.74

Independent Judgement (Cronbach's a=0.65) 4.12 (0.71)
Before I buy a new product or service, I often ask acquaintances about their experiences with that product 195 0.84

or service
Before buying a new brand, I usually ask someone who has experience with the brand for advice 195 0.72
When considering a new product/service, I usually trust the opinions of friends who have used the 194 0.37

product/ service________________________________________________________________
Relative Advantage (Cronbach's a=0.78) 4.20 (0.61)

Participating in energy sharing would save me money 185 0.57
Participating in energy sharing provides a great return on a family’s investment 185 0.68
Participating in energy sharing will help protect my family from rising electricity prices in the future 186 0.85
Participating in energy sharing would help meet my family’s needs 190 0.77
Participating in energy sharing could protect my family from electricity blackouts 171 0.38
Participating in energy sharing would increase my sense of community_______________________ 172____ 0.53

Riskiness (Cronbach's a=0.78) 2.69 (0.89)
I would worry about participating in energy sharing because it would be an unfamiliar experience 191 0.64
Participating in energy sharing is a risky thing for a household to do 185 0.76
Participating in energy sharing could damage my home 177 0.70
I think energy sharing for residential use is not yet a mature system 176 0.38
I don’t like the idea of being connected to a server and sharing my energy usage data 183 0.61
Energy sharing, as described, entails many risks_____________________________________193____ 0.68

Complexity (Cronbach's a=0.73) 2.80 (0.96)
Participating in energy sharing is a hassle 185 0.72
There is a lot of paperwork involved in participating in energy sharing 154 0.68
Participating in energy sharing takes a lot of time____________________________________ 175____ 0.67

Trialability (Cronbach's a=0.81) 4.21 (0.69)
Before contacting an energy sharing facilitator, I would like to see the technology up close in someone else’s 195 0.76

house
Before considering energy sharing, I would like to talk to someone who has energy sharing in their home 195 0.88
If an energy sharing facilitator tells me how much I would save on my electricity bills by installing solar, I 193 0.42

would want a second opinion
I would be more interested in energy sharing if there were some way for me to try it out before installing it 194____ 0.82

Observability (Cronbach's a=0.90) 1.84 (0.94)
I can tell if a community has energy sharing 178 0.96
In a community with energy sharing, I can tell who is participating and who is not_________________177____ 0.86

Real World Experience (Cronbach's a=0.94) 1.72 (1.01)
A friend or neighbor has recently participated in energy sharing 150 0.91
I know more than one person that participates in energy sharing 178 0.94
Several people in my neighborhood participate in energy sharing 148 0.90
I have talked about energy sharing with someone who has already installed an energy sharing system in 192 0.83

their home__________________________________________________________________
Marketing Exposure (Cronbach's a=0.66) 1.94 (0.21)

In the last six months, I have seen or heard advertisements from companies that facilitate energy sharing 195 0.93
My family has recently received advertising or a call from a company that facilitates energy sharing______ 195____ 0.60

Industry Trust (Cronbach's a=0.85) 3.13 (1.18)
Companies that provide or facilitate energy sharing 186 0.84
Energy sharing industry trade organizations_______________________________________ 189____ 0.88

Social Trust (Cronbach's a=0.60) 4.17 (0.63)
I trust my friends 193 0.57
I trust my family 193 0.95
I trust my neighbors_____________________________________________________194____ 0.33
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Table 6. Summary of standardized factor loadings in combined factor analysis for TPB

Theory of Planned Behavior (CFI = 0.773) N

Mean 
(SD) 

Std Ldg
Relative Advantage (see DOI)

Environmental Benefits (Cronbach’s a=0.84)

Energy sharing helps slow down climate change
If more households participate in energy sharing, environmental quality will improve 
Participating in energy sharing would be a good way to reduce my environmental 

impact
I think of myself as someone who is very concerned with environmental issues 
I think of myself as an environmentally-friendly consumer 
I would be embarrassed to be seen as having an environmentally-friendly lifestyle

___________________________Riskiness (see DOI)___________________________

3.68
(0.61)

182 0.76
181 0.83
187 0.83

194 0.68
193 0.56
194 0.48

Expense Concerns (Cronbach’s a=0.59)

I can't afford to participate in energy sharing on my family budget
For prosumers, solar is still very expensive, even with government subsidies

174
166

3.17
(0.98)
0.75
0.55

Improvements (Cronbach’s a=0.72)

The prices of investing in distributed energy resources keep going down, so it is wise 166 
to wait before deciding whether to install it

Distributed energy resource technology will only get better, so it doesn't make sense to 179 
get them now_______________________________________________________

Normative

Most people who are important to me would support me if I decided to participate in 184 
energy sharing______________________________________________________

Unsuitability (Cronbach’s a=0.79)

It's not sunny enough in my area for energy sharing to work well 
It's too cloudy where I live for energy sharing to be effective 
At my home, there's no place to put an energy sharing system 
I am not convinced of the need for energy sharing where I live 
I think the area where I live is not suitable for energy sharing

Expect to Move

I may not be in my home long enough to the benefits of participating in energy sharing 188

3.05
(1.00)
0.88

0.64

4.09
(0.91)

1 .0 0

0.619
(0.18)

179 0.54
188 0.37
185 0.41
185 0.92
185 0.93

2.42
(0.96)

1 .0 0

Self-Efficacy Cronbach’s a=0.45) 2.93
(1.38)

It is important to me to feel comfortable participating in energy sharing 190 0.14
I would feel comfortable participating in energy sharing 188 0 . 8 8

I have the knowledge to participate in energy sharing 187 0.53



Table 7. Correlation table of scales and constructs for VBN where *p<0.05, ** p<0.01, ***p<0.001

1 2 3 4 5 6  7
1. Interest
2. Social Curiosity
3. Altruism
4. Self-Interest
5. Traditional Values
6 . Openness to Change
7. Awareness of Consequences
8 . Personal Norm

0.69***
0.41*** 0.36***
0.15* 0.17* 0 . 1 2

0 . 1 0 0.05 0.36***
0.30*** 0.29*** 0.28***
0.40*** 0.37*** 0.36***
0.55*** 0.44*** 0.61***

0.35***
0 .2 1 ** 0.18**
0.07 -0.14 0.05
0.12 0.09 0.19** 0.69***
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Table 8. Correlation table of scales and constructs for DOI where *p<0.05, ** p<0.01, ***p<0.001

1 2 3 4 5 6 7 8 9 1 0 11 1 2

1. Interest
2. Social 0  69***
Curiosity 
3. Novelty 0.38*** 0.31***
Seeking 
4. Independent 
Judgment

0.27*** 0.36*** 0.34***

5. Relative 0.57*** 0.33*** 0.38*** 0 .2 1 **
Advantage 
6 . Riskiness -0.53*** - 0  3 2 *** -0.28*** -0 .1 1 -0.40***
7. Complexity -0.36*** -0.24*** -0.15* -0 .1 1 -0.26*** 0.71***
8 . Trialability -0.08 0 .1 0 0.04 0.27*** 0.03 0 .2 1 ** 0 .1 1

9. Observability 0.03 -0 .0 1 0.16* -0.06 0.03 0.17* 0.27*** -0.14*
10. Real World 
Experience

0 .1 0 0.03 0 .2 1 ** -0 .0 2 0.08 0.15* 0.24** -0 .2 2 ** 0.91***

11. Marketing -0.09 -0 .1 2 -0.06 0.07 -0.08 0.03 -0.03 0 .0 0 - -
Exposure 0.35*** 0.34***
12. Industry 
Trust

0.45*** 0.27*** 0.33*** 0 .2 1 ** 0.42*** -0.35*** -0.24*** -0 .1 1 0.29*** 0.33*** -0.18*

13. Social Trust 0.07 0 .2 1 ** 0.17* 0.28*** 0.08 -0.05 -0.08 0.07 -0.06 -0.03 -0.13 0 .2 2 **

o
VO



Table 9. Correlation table of scales and constructs for TPB where *p<0.05, ** p<0.01, ***p<0.001

1 2 3 4 5 6 7 8

1. Interest
2. Social Curiosity 0  69***
3. Environmental 
Benefits

0.56*** 0 4 8 ***

4. Expense Concerns -0.40*** -0.31*** -0.31***
5. Improvements -0.22** -0.14 -0 4 2 *** 0.34***
6 . Normative 0.48*** 0.40*** 0 4 1 *** -0.26*** -0 .2 2 **
7. Unsuitability -0 4 8 *** - 0  3 4 *** -0.45*** 0.36*** 0.38*** -0.34***
8 . Expect to Move -0.13 0 . 0 1 -0 2 7 *** 0.35*** 0.23** -0.06 0.40***
9. Self-Efficacy 0.45*** 0.36*** 0.44*** -0.33*** -0.29*** 0  2 4 *** -0.31*** -0.17*

o
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Table 10. SEM path coefficients and model fit metrics for VBN where *p<0.05, **
p < 0 .0 1 , ***p<0 . 0 0 1

Path P SE p-value
Interest ~ Social Curiosity 0.78 0 .1 1 < 0 .0 0 1  ***
Social Curiosity ~ Personal Norms 0.49 0.06 < 0 .0 0 1  ***
Personal Norms ~ Awareness of Consequences 0.74 0.06 < 0 .0 0 1  ***
Awareness of Consequences ~ Altruism 0.63 0.08 < 0 .0 0 1  ***
Awareness of Consequences ~ Self-Interest 0.34 0 . 2 0 0.004 **
Awareness of Consequences ~ Traditional Values -0.58 0 .1 1 < 0 .0 0 1  ***
Awareness of Consequences ~ Openness to Change -0.15 0 . 1 0 0.05

CFI 0.87
TLI 0.85
AIC 9,702

SRMR 0.147

significant predictor of awareness of consequences. This is largely consistent with the 

model of solar adoption measured by Wolske et al. (2017). However, in this model, self

interest is a positive predictor of awareness of consequences. In the confirmatory factor 

analysis, self-interest is largely explained by values related to authority and influence, but 

not wealth. It is possible that energy sharing aligns with values related to control because 

the participants are able to set thresholds for how to buy and sell renewable electricity.

4.3.2. Diffusion of Innovation Model. Despite including more variables, the 

model fit (CFI = 0.71) was lower and below the desired threshold (< 0.9) for the DOI 

model. As expected, social curiosity positively predicted interest in participating in energy 

sharing. Although trialability and riskiness predicted social curiosity, relative advantage 

was not a significant predictor. Trialability was predicted by independent judgement. 

Riskiness was predicted by observability, novelty seeking, and industry trust. Relative 

advantage was predicted by industry trust.

Our findings deviated from Wolske et al. (2017) in two key ways. First, in our study 

social curiosity was positively predicted by trialability and negatively predicted by
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riskiness. This suggests that participants who perceived more opportunities to try out 

energy sharing before making a commitment and energy sharing as less risky were more 

likely to be interested. In Wolske et al. (2017), interest in solar adoption is positively 

predicted by relative advantage and trialability. This suggests that trialability may be an 

important feature across energy technologies. More novel technologies, like energy 

sharing, may be better predicted by riskiness than relative advantage.

Table 11. SEM path coefficients and model fit metrics for DOI where *p<0.05, **
p < 0 .0 1 , ***p<0 . 0 0 1

Path P SE p-value
Interest ~ Social Curiosity 0.78 0.17 <0 .0 0 1 ***
Social Curiosity ~ Relative Advantage 0.18 0.19 0.16
Social Curiosity ~ Trialability 0.14 0 . 1 0 0.25
Social Curiosity ~ Riskiness -0.27 0 .1 1 0.04*
Riskiness ~ Novelty Seeking -0.34 0.13 0 .0 2 *
Riskiness ~ Independent Judgment 0 .1 1 0.15 0.43
Riskiness ~ Observability 0.57 0 .1 1 < 0 .0 0 1 ***
Riskiness ~ Marketing Exposure 0 . 0 0 0.45 0.99
Riskiness ~ Industry Trust -0.45 0.13 0.003**
Riskiness ~ Social Trust 0.03 0.26 0.78
Trialability ~ Novelty Seeking -0.15 0 . 1 2 0.30
Trialability ~ Independent Judgment 0.77 0 . 2 0 <0 .0 0 1 ***
Trialability ~ Observability -0.16 0.09 0 .2 2

Trialability ~ Marketing Exposure -0.43 0.54 0 .0 2 *
Trialability ~ Industry Trust -0.51 0 . 1 2 0 .0 0 1 **
Trialability ~ Social Trust -0.25 0.28 0.06
Relative Advantage ~ Novelty Seeking 0 .2 1 0.07 0.16
Relative Advantage ~ Independent Judgment 0 . 1 0 0.09 0.96
Relative Advantage ~ Observability -0 . 1 0 0.05 0.49
Relative Advantage ~ Marketing Exposure -0.08 0.27 0.58
Relative Advantage ~ Industry Trust 0.34 0.07 0.03*
Relative Advantage ~ Social Trust 0.04 0.15 0.77

CFI
TLI
AIC

SRMR

0.71
0.67
8,894
0 . 1 2

Second, the precursors to relative advantage, trialability, and riskiness differed in 

our study. In Wolske et al. (2017), relative advantage was positively predicted by novelty
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seeking, observability, trust in industry, and trust in social network. In contrast, we only 

found a positive relationship with novelty seeking, independent judgment, trust in industry, 

and trust in social network. This suggests that relative advantage generally explained less 

variance for energy sharing than solar adoption. This may be because participants have to 

purchase electricity anyway, so they perceive a weak advantage to doing so through energy 

sharing versus the traditional channels. In Wolske et al. (2017), trialability was positively 

predicted by novelty seeking and trust in social networks as well as negatively predicted 

by independent judgement and trust in industry. In our study, trialability was positively 

predicted by independent judgement alone. This suggests that participants recognized that 

most people do not participate in energy sharing, so it would be difficult to try out in 

advance. Lastly, in Wolske et al. (2017), riskiness was negatively predicted by 

observability and trust in industry. In our study, riskiness was negatively predicted by 

novelty seeking and trust in industry. It is unclear why observability is in the opposite 

direction. This suggests that participants who perceived energy sharing as more observable 

also perceived it as riskier. Ultimately, riskiness was a negative predictor for interest. It is 

possible that observability was perceived as unappealing.

4.3.3. Theory of Planned Behavior Model. Although TPB has a higher amount of 

initial observable variables, the model fit (CFI = 0.73) was lower and below the desired 

threshold (< 0.9) for the TPB model. As expected, social curiosity positively predicted 

interest in participating in energy sharing. However, normative beliefs negatively impacted 

social curiosity. Normative beliefs may have a negative impact on social curiosity because 

the overall participants in the survey viewed the people in their lives that are important to 

them as potentially having a negative perception of energy sharing.
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Wolske et al. (2017) found that social curiosity was predicted by relative advantage, 

environmental benefits, riskiness, and normative beliefs, which is similar to our findings. 

However, we also found that improvements and expect to move have a statistical 

significance when predicting social curiosity. In Wolske et al. (2017), interest in solar 

adoption is positively predicted by social curiosity, relative advantage, normative beliefs, 

and unsuitability. Expense concerns negatively predicts interest in solar adoption in 

Wolske et al. (2017). This suggests social curiosity is not a necessary intermediate for TPB 

to predict the outcome of consumer interest.

Table 12. SEM path coefficients and model fit metrics for TPB where *p<0.05, **
p < 0 .0 1 , ***p<0 . 0 0 1

Path P SE P
Interest ~ Social Curiosity 0.98 0.34 <0 .0 0 1 ***
Social Curiosity ~ Relative Advantage 0.24 0.13 0.06
Social Curiosity ~ Environmental Benefit 0.49 0.08 0.003**
Social Curiosity ~ Riskiness -0.43 0.16 0.23
Social Curiosity ~ Expense Concerns -0.16 0.24 0.64
Social Curiosity ~ Improvements 0.31 0.08 0.09
Social Curiosity ~ Normative -0 . 0 2 0.04 0.85
Social Curiosity ~ Unsuitability 0.04 0.07 0.74
Social Curiosity ~ Expect to Move 0 . 2 1 0.03 0.03*
Social Curiosity ~ Self-Efficacy 0.13 0.63 0.44

CFI 0.73
TLI 0.70
AIC 9,484

SRMR 0 . 1 0

5. CONCLUSION

This study estimates and compares the model fit of the three behavioral theories, 

(1) VBN, (2) DOI, and (3) TPB, to determine which is most appropriate for modeling
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interest in participating in an energy sharing community. Each theory frames participation 

in energy sharing in a slightly different way, as a way to achieve internal values, as a novel 

technology, and as a way to achieve concrete benefits.

Based on the results, this study has two primary findings. First, we found that VBN 

had the best model fit (out of 3) for predicting consumer interest in participating in energy 

sharing. This suggests that marketing efforts that appeal to consumer values may be most 

effective. Specifically, participants who were more altruistic, self-interested (in terms of 

valuing control), and less inclined toward traditional values tended to be more interested 

in participating in energy sharing. Surprisingly, openness to change was not a significant 

predictor, despite the fact that energy sharing is a novel technology. From a systems 

perspective, this suggests that prosumers may be willing to sell electricity for lower prices 

to align with altruism values and appreciate that they can control the price [12]. Similarly, 

consumers may be willing to buy electricity via the energy sharing platform even if it is 

more expensive to align with altruism values and appreciate that they can control price 

thresholds for when to buy renewable versus grid electricity [12].

Second, the DOI model suggests that independent judgement, novelty seeking, 

industry trust, and observability may be important factors for driving participation in 

energy sharing. We observed weak social effects, but this may be primarily related to the 

lack of awareness and experience with energy sharing (e.g., compared to solar 

technologies). Instead, independent judgement and novelty seeking emerged as significant 

predictors. Participants with higher independent judgement perceived energy sharing as 

more triable, while participant that were seeking novelty perceived energy sharing as less 

risky. For industry trust, the results suggest that organizations may be more effective
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energy sharing facilitators if  they are perceived as more trustworthy. More trustworthy 

organizations made energy sharing seem less risky. The results for observability were 

unintuitive. Participants who perceived energy sharing as more observable also perceived 

it as riskier. It is possible that observability was perceived as unappealing.

Overall, the VBN model was fairly consistent with results for solar adoption [18], 

while the DOI model deviated in more significant ways. The DOI model in Wolske et al., 

(2017) indicates there is an importance of reliable communication channels. Our research 

suggests that consumer understanding of consequences related to adopting a new 

technology is imperative when predicting interest. This suggests that VBN may be a more 

useful model for estimating interest in new energy technologies. However, as the 

technologies become more well known, other models like DOI may be better. In Wolske 

et al. (2017), DOI better predicted interest in adoption solar.

This study had three primary limitations. First, we had challenges measuring some 

of the constructs for energy sharing. The internal consistency of our measures was 

inconsistent. This is likely because most participants had little experience with energy 

sharing and, in fact, learned about it for the first time in this study. As a result, they may 

not have had stable perceptions, which increased the variance of our observed measures. 

In addition, there were higher rates of missing data (i.e., responses of “don’t know”) for 

constructs in DOI than VBN. This suggests personal experience consumers have with 

technologies directly affects their confidence in responding to the associated questions. In 

future work, measurement may improve with a larger sample size.

Second, this study did not distinguish between prosumer and consumer 

participation, which may influence the relevant behavioral theory. Framing the scenario in
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more concrete terms may improve estimation of constructs in DOI that are more directly 

related to behavior. VBN tends to capture more abstract interest. Future work should 

specify, and potentially experimentally manipulate, this feature to determine the 

antecedents for different types of participation.

Lastly, most participants had not heard of energy sharing before this study. This 

posed a measurement as well as interpretation problem. Some of the results, particularly 

for observability, were unintuitive. Future work may benefit from targeting geographic 

locations where participants are more likely to have real world familiarity with energy 

sharing. For example, targeting a study around the Brooklyn Microgrid may find 

participants who have more stable perceptions about energy sharing.

In the context of systems engineering, this study provides insight on how behavioral 

factors may influence the overall system performance of an energy sharing community. 

Failing to account for factors such as trust in industry and participant values may lead to 

the development of business models that struggle with adoption. In addition, optimization 

for system operation may be able to be improved by using behavioral theories to better 

account for when and how prosumers and consumers will engage with the system. For 

example, prosumers who are motivated by altruism may be more willing to decrease prices, 

or offer electricity for free, in the context of a heat wave where grid electricity is likely to 

be the least environmental (due to the use of fossil fuel intensive peaker plants). Rational 

economic theory would predict prices to increase when there is high demand -  but energy 

sharing communities may find more pro-community results.
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SECTION

2. CONCLUSION AND FUTURE WORK

The work in this dissertation focuses on the successfully implementing energy 

sharing and taking into consideration unique community needs and emergent aspects that 

will impact participants of an energy-sharing community. Identifying contributing factors 

that predict end-user participation in energy sharing will provide facilitator organizations 

with the knowledge to enhance energy-sharing efficiency. Additionally, the research in this 

dissertation uses stochastic programming considering uncertainty as an approach to 

optimize prosumer investment in DERs while acknowledging consumer want for 

electricity at a reduced cost. Successfully implementing energy sharing will be beneficial 

for the end-user participants of the sharing community and the facilitating entity because 

the load on the utility will be lessened, consumption of renewable energy sourced 

electricity will increase, consumers can actively decrease their energy burden, and 

prosumers will have an additional source of income to offset the DER investment cost.

The first paper in this dissertation uses the five system characteristics, as defined 

by Boardman and Sauser (2006), to describe energy-sharing communities. These 

characteristics are then defined using general equations to denote objective function, 

management ability, function, operating condition, and goal or purpose all while 

considering uncertainty associated with the specific participant or overall community. Two 

coordination methods of energy-sharing communities: (a) hierarchical coordination and (b) 

peer-to-peer coordination are then presented. These communities differ based on level of
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connectivity. Though the participants are the same in each proposed coordination, the 

hierarchical coordination has a higher dependency on the energy sharing management 

provider. Implementation of energy-sharing community coordination should be justified 

using attributes such as size, autonomy degree of participants, and connectivity feasibility.

Future work can include using simulation to understand and predict both negative 

and positive emergent aspects. By predicting emergent behavior, the positive aspects can 

be enhanced while the negative aspects can be avoided. Simulation may be used to actively 

address uncertainty associated with emergent behavior. Researchers may use energy 

storage systems, such as batteries or electric vehicles, as a back-up source for mitigating 

uncertainty.

The second paper in this dissertation identifies energy-sharing communities as a 

decentralized complex adaptive system of systems. Boardman and Sauser (2006) suggest 

using the five characteristics of autonomy, belonging, connectivity, diversity, and 

emergence to describe system of systems. Our research suggests expanding the seven 

underlying characteristics to include autonomy, belonging, connectivity, complexity 

adaptability, self-organization, and feedback loops while keeping diversity and emergence 

as the two derived characteristics. These additional characteristics will provide a wider 

range of participant information that will be useful when attempting to describe participant 

interaction and necessary interfaces within the energy-sharing community. Additionally, 

two-stage stochastic programming is used as an optimization approach to minimize 

expected total cost including purchasing from the wholesale market in the first stage and 

minimize expected cost of adjustments in the second stage. The three different feasible sets 

of (a) no sharing communities, (b) multiple sharing communities, and (c) multiple
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Future work would include using a real-life dataset to run the stochastic 

programming approach to determine the reliability of the presented models. Seasonal 

forecasting may be useful for identifying variables associated with DER production. 

Researchers may choose to compare results from a two-stage robust optimization model 

with the proposed two-stage stochastic programming model. Characteristics that define an 

energy-sharing community as a decentralized complex adaptive system of system should 

also be elaborated. Researchers may determine the optimal population of prosumers and 

consumers within a community to ensure each autonomous system is likely to meet their 

goal.

The third paper in this dissertation provides a literature review and review of 

existing decentralized energy distribution systems. The literature review is segmented into 

four subsections: (a) decentralized coordination, (b) energy management systems, (c) 

energy management optimization, and (d) energy storage systems, to provide a more 

thorough analysis of research related to energy sharing. The review of current existing 

decentralized energy distribution systems specifically looks at the few energy-sharing 

communities currently functioning as well as other peer-to-peer communities and a 

community choice aggregation. Aspects that may have been considered when developing 

these communities are also elaborated to examine the influential characteristics when 

integrating the new technology. These aspects include: (a) country development, (b) 

participant population, and (c) technologies security. The results of the literature and 

existing project review indicate that though energy-sharing communities are being

uncooperative communities are used to describe the three different possible scenarios of

energy-sharing community connectivity.
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developed, there is still a significant gap between academic research performed to 

understand implementation of energy sharing and the existence of true energy-sharing 

communities. Positive and negative impacts of energy sharing is illustrated using a causal 

model. A wide range of impacts from the implementation of energy sharing are used to 

demonstrate how energy sharing will benefit economic value, environmental sustainability, 

resilience, and social welfare.

Future work can include addressing the gap between academic research and real- 

world implementation of energy sharing. Identifying factors that hinder energy providers 

from investing in the development of energy-sharing communities will provide a 

foundation for addressing commercialization concerns. Additionally, using energy sharing 

as a solution to the utility death spiral may encourage utility companies to invest in the 

technology necessary to facilitate energy sharing. Each of the four benefits of energy 

sharing identified using the causal model can be expanded in future research. By 

demonstrating the impact energy sharing has on environmental sustainability, economic 

values, resilience, and social welfare individually, energy providers may be encouraged to 

advance the accessibility of energy sharing.

The fourth paper in this dissertation compares three behavioral theories to identify 

the best model to predict consumer interest in participating in an energy-sharing 

community. The three behavioral theories used are: (a) value-belief-norm (VBN), (b) 

diffusion of innovations (DOI), and (c) theory of planned behavior (TPB). Statistical 

analysis and structural equation modeling were used to explain the data obtained from 195 

survey participants. The survey participants were given information about a fictional 

energy-sharing facilitator and the technologies necessary to participate in an energy



128

sharing community. Each participant was then asked a series of questions that were 

designed to define constructs within each behavioral model. Confirmatory factor analysis 

was then used to confirm each question assigned to their respective construct did, indeed, 

explain the nature of the construct as we intended. Structural equation modeling was then 

used to analyze relationships between the defined constructs and the output variable of 

interest in participating in energy sharing. The results of this paper show that VBN is the 

best fitting model for predicting consumer interest in participating in energy sharing.

Future work can focus on gathering data from consumers that have already invested 

in DERs and actively show an interest in sustainable development. Restricting survey 

participants to those that either already own DERs or participate in a renewable energy 

community may provide results consistent with the population that would likely be early 

adopters of energy sharing. Additionally, energy-sharing facilitators may be interested in 

identifying differences between residential and commercial perception of energy sharing 

to determine whether one group may be more receptive than the other.
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