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ABSTRACT

During the drilling and completion phases of oil and gas wells, cement is placed 

in the wellbore as a barrier between the casing and the formation. All casing strings must 

be cemented to protect and support the casing, and to isolate production zones. The 

primary cement must prevent the wellbore fluids from migrating in an annular flow path 

so as to allow the wells to be utilized without any control problems. The primary cement 

may fail to deliver full zonal isolation due to several reasons such as insufficient mud 

removal before the cementing, casing expansion, and contraction, high fluid losses, 

cement free fluids, inadequate hydrostatic pressure, high-pressure tests and temperature 

variations across the cement causing micro-annuli and cracks that may allow fluids to 

migrate. In addition, if the cement is placed in zones where corrosive fluids are presented, 

chemical degradation could compromise the cement integrity. If any of these failures 

occurred during the life of the well, remedial job must be performed to restore the well 

integrity. Failing to restore the cement integrity may lead to unwanted severe 

consequences to the environment, the equipment, and personnel. This work presents the 

results of evaluating several epoxy resin sealants that have the potential to replace the 

conventional Portland cement used in remedial jobs. This study includes the rheological 

behavior, curing kinetics, injectivity, plugging performance against water and CO2, 

chemical resistance, and the mechanical properties of epoxy resin sealants. This work 

compares the results of epoxy resin sealants to that of the conventional Portland cement. 

The findings obtained from this work can be utilized in optimizing the cement remedial 

operations.



v

ACKNOWLEDGMENTS

IN THE NAME OF ALLAH, THE MOST BENEFICENT, THE MOST 

MERCIFUL.

I would like to express my sincere gratitude to the Saudi Arabian Cultural 

Mission (SACM) for rewarding me a full funded scholarship and for their friendly 

assistance throughout the study.

I would like to gratefully thank my advisor, Dr. Abdulmohsin Imqam, for 

approving me to join his research group. I appreciate his encouragement, inspiration, and 

critical comments.

I would like to thank my defense committee members, Dr. Shari Dunn Norman, 

Dr. Kelly Liu, Dr. Taghi Sherizadeh, and Dr. Mahmoud Elsharafi, for their time and 

efforts in examining the dissertation and for all their constructive feedback.

I would like to acknowledge my brother from another mother, Ali Albrahim, for 

his great help and valuable discussions.

A great thanks goes to my family. Words cannot express how grateful I am to 

them for all the support and encouragement.

Catalina Vega Hurtado, if it was not for you, I would not be able to achieve this. 

Thank you from all my heart.



vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION................................................................... iii

ABSTRACT....................................................................................................................... iv

ACKNOWLEDGMENTS.................................................................................................. v

LIST OF ILLUSTRATIONS........................................................................................... xiv

LIST OF TABLES........................................................................................................... xix

1. INTRODUCTION.....................................................................................................1

1.1. STATEMENT AND SIGNIFICANCE OF THE PROBLEM............................1

1.2. EXPECTED IMPACTS AND CONTRIBUTION............................................. 4

1.3. OBJECTIVES..................................................................................................... 5

1.4. SCOPE OF WORK............................................................................................. 7

PAPER

I. A SIMPLE CLASSIFICATION OF WELLBORE INTEGRITY PROBLEMS 
RELATED TO FLUIDS MIGRATION...................................................................... 8

ABSTRACT................................................................................................................... 8

1. INTRODUCTION...................................................................................................... 9

2. MICRO-ANNULI AT THE CEMENTS’ INTERFACES........................................12

2.1. INSUFFICIENT MUD REMOVAL................................................................ 14

2.2. CASING EXPANSIONS AND CONTRACTIONS........................................ 16

2.3. CEMENT SHRINKAGE.................................................................................. 16

3. THE CREATION OF CHANNELS......................................................................... 21

3.1. FREE FLUIDS AND FLUID LOSSES 22



3.2. INADEQUATE HYDROSTATIC PRESSURE............................................ 23

4. THE INITIATION OF CRACKS/FRACTURES.................................................... 24

4.1. CASING PRESSURE VARIATIONS............................................................. 24

4.2. TEMPERATURE VARIATIONS.................................................................... 25

5. CEMENT DEGRADATION................................................................................... 27

6. CEMENT SOLUTIONS.......................................................................................... 28

6.1. FOAMED CEMENTS...................................................................................... 28

6.2. ELASTIC (FLEXIBLE) CEMENTS................................................................ 29

6.3. DENSITY CONTROLLED CEMENTS.......................................................... 29

6.4. GEOPOLYMER AND POLYMERIC CEMENTS.......................................... 30

7. DETECTION TECHNOLOGIES AND TREATMENTS FOR WELLBORE

FAILURES ..................................................................................................................  30

7.1. DETECTION TECHNIQUES.......................................................................... 31

7.2. TREATMENTS FOR WELLBORE FAILURES............................................ 32

8. CONCLUSIONS...................................................................................................... 33

REFERENCES ............................................................................................................  34

II. SEALANT INJECTIVITY THROUGH VOID SPACE CONDUITS TO
ASSESS REMEDIATION OF WELL CEMENT FAILURE................................. 40

ABSTRACT ................................................................................................................  40

1. INTRODUCTION.................................................................................................... 41

2. EXPERIMENTAL METHODOLOGY................................................................... 44

2.1. MATERIALS.................................................................................................. 44

2.1.1. Cement.................................................................................................. 44

vii

2.1.2. Preformed Particle Gel (PPG) 44



2.1.3. Hydrolyzed Polyacrylamide Polymer (HPAM)......................................45

2.1.4. Epoxy Resin............................................................................................ 45

2.2. RHEOLOGICAL MEASUREMENTS............................................................ 45

2.3. INJECTIVITY MEASUREMENTS................................................................. 47

3. RESULTS AND ANALYSIS.................................................................................. 48

3.1. RHEOLOGICAL RESULTS............................................................................ 48

3.2. SEALANT INJECTIVITY RESULTS............................................................. 50

3.2.1. Effect of the Void Size on Injectivity..................................................... 51

3.2.2. Effect of the Viscosity of the Fluid on the Injectivity.............................54

3.2.3. The Effect of Flow Rate on Injectivity................................................... 56

3.2.4. Effect of Heterogeneity on the Injectivity...............................................59

3.3. RHEOLOGY ANALYSIS AFTER SEALANT INJECTION......................... 61

4. CONCLUSIONS...................................................................................................... 63

REFERENCES ............................................................................................................  64

III. SOLIDS-FREE EPOXY SEALANT MATERIALS’ INJECTIVITY
THROUGH CHANNELS FOR REMEDIAL JOB OPERATIONS........................67

ABSTRACT................................................................................................................. 67

1. INTRODUCTION.................................................................................................... 67

2. EXPERIMENTAL DESCRIPTION........................................................................ 71

2.1. EXPERIMENTAL MATERIALS.................................................................. 71

2.1.1. API Class-H Cement...............................................................................71

2.1.2. Epoxy Resin............................................................................................ 71

2.1.3. Preformed Particle Gel............................................................................72

viii

2.1.4. Hydrolyzed Polyacrylamide Polymer. 73



ix

2.1.5. Cement Paste Preparation....................................................................... 73

2.1.6. Epoxy Resin Preparation.........................................................................73

2.1.7. Preformed Particle Gel Preparation........................................................ 74

2.1.8. Hydrolyzed Polyacrylamide Preparation................................................ 74

3. EXPERIMENTAL METHODOLOGY................................................................... 74

3.1. RHEOLOGICAL MEASUREMENTS............................................................ 74

3.2. ISOTHERMAL CURING MEASUREMENTS............................................... 75

3.3. INJECTIVITY MEASUREMENTS................................................................. 76

3.4. COMPRESSIVE STRENGTH MEASUREMENTS....................................... 77

4. RESULTS................................................................................................................  77

4.1. RHEOLOGICAL AND ISOTHERMAL CURING RESULTS....................... 77

4.2. INJECTIVITY RESULTS................................................................................ 80

4.2.1. Solids-Free Materials Injectivity Results................................................80

4.2.2. Semi-Solids Materials Injectivity Results...............................................82

4.2.3. Solids Materials Injectivity Results........................................................ 83

4.2.4. Sealants Injection in Heterogeneous Features Results............................86

4.2.5. Sealant Materials Injectivity in Different Features................................. 87

4.3. COMPRESSIVE STRENGTH RESULTS....................................................... 89

5. CONCLUSIONS...................................................................................................... 89

ACKNOWLEDGEMENTS......................................................................................... 90

REFERENCES ............................................................................................................  90

IV. LABORATORY STUDY USING POLYMER RESIN SYSTEMS TO 
REMEDIATE WELLBORES: RHEOLOGICAL CHARACTERIZATIONS, 
CHEMICAL RESISTANCE, PLUGGING PERFORMANCE, AND 
MECHANICAL PROPERTIES............................................................................. 94



x

ABSTRACT................................................................................................................94

1. INTRODUCTION.................................................................................................... 95

2. EXPERIMENTAL METHODOLOGY................................................................... 98

2.1. MATERIALS.................................................................................................... 98

2.1.1. Epoxy Resin A........................................................................................ 98

2.1.2. Epoxy Resin B........................................................................................ 98

2.1.3. Epoxy Resin C........................................................................................ 99

2.1.4. Class-H Cement...................................................................................... 99

2.2. DENSITY MEASUREMENTS........................................................................ 99

2.3. SHEAR VISCOSITY MEASUREMENTS.................................................... 100

2.4. ISOTHERMAL CURING MEASUREMENTS..............................................100

2.5. CALORIMETRY MEASUREMENTS.......................................................... 101

2.6. CHEMICAL RESISTANCE MEASUREMENTS..........................................101

2.7. INJECTIVITY AND PLUGGING PERFORMANCE MEASUREMENTS . 102

2.8. MECHANICAL MEASUREMENTS............................................................ 104

2.8.1. Compressive Strength Measurement.....................................................104

2.8.2. Tensile Strength Measurements............................................................ 105

3. RESULTS AND DISCUSSION............................................................................ 106

3.1. DENSITY RESULTS......................................................................................106

3.2. RHEOLOGICAL RESULTS AND ANALYSIS............................................106

3.2.1. Effect of Shearing and Temperature on Viscosity................................ 106

3.2.2. Effect of Temperature on Curing Kinetics............................................ 109

3.2.3. Sensitivity of Curing due to Temperature Change 115



xi

3.3. CALORIMETRY RESULTS AND ANALYSIS............................................116

3.4. CHEMICAL RESISTANCE RESULTS........................................................ 120

3.5. INJECTIVITY AND PLUGGING PERFORMANCE RESULTS................ 125

3.6. MECHANICAL PROPERTIES RESULTS....................................................130

4. CONCLUSIONS...................................................................................................133

NOMENCLATURE....................................................................................................135

REFERENCES............................................................................................................136

V. EVALUATION OF AN ULTRA-HIGH-PERFORMANCE EPOXY RESIN
SEALANT FOR WELLBORE INTEGRITY APPLICATIONS.......................... 139

ABSTRACT............................................................................................................... 139

1. INTRODUCTION.................................................................................................. 140

2. BACKGROUND AND EXISTING TECHNOLOGY.......................................... 143

3. EXPERIMENTAL MATERIALS..........................................................................147

3.1. CLASS-H CEMENT...................................................................................... 147

3.2. CEMENT PASTE PREPARATION.............................................................. 147

3.3. DILUTED RESIN............................................................................................148

3.4. CURING AGENT............................................................................................149

3.5. EPOXY RESIN PREPARATION.................................................................. 149

4. EXPERIMENTAL METHODOLOGY..................................................................150

4.1. RHEOLOGICAL MEASUREMENTS.......................................................... 150

4.2. DENSITY MEASUREMENT........................................................................ 151

4.3. ISOTHERMAL CURING MEASUREMENTS..............................................151

4.4. INJECTIVITY MEASUREMENTS................................................................151

4.5. BLOCKING PERFORMANCE MEASUREMENTS 152



4.6. COMPRESSIVE STRENGTH MEASUREMENT.......................................152

5. RESULTS AND ANALYSIS................................................................................ 153

5.1. RHEOLOGICAL RESULTS.......................................................................... 153

5.2. VISCOSITY OF THE SEALANT AT DIFFERENT TEMPERATURES .... 155

5.3. DENSITY RESULT........................................................................................156

5.4. ISOTHERMAL CURING RESULTS............................................................ 157

5.5. INJECTIVITY RESULTS.............................................................................. 158

5.6. BLOCKING PERFORMANCE RESULTS....................................................160

5.7. COMPRESSIVE STRENGTH RESULT....................................................... 161

6. CONCLUSIONS.................................................................................................... 162

REFERENCES..........................................................................................................163

VI. LABORATORY STUDY USING TEMPERATURE ACTIVATED EPOXY 
RESIN SEALANT FOR WELLBORE INTEGRITY APPLICATIONS: 
RHEOLOGY AND PLUGGING PERFORMANCE.......................................... 168

ABSTRACT..............................................................................................................168

1. INTRODUCTION.................................................................................................. 169

2. THEORETICAL BACKGROUND....................................................................... 172

2.1. EPOXY RESIN CURING MECHANISM......................................................173

2.2. MIXING RATIO CALCULATIONS..............................................................174

3. EXPERIMENTAL MATERIALS..........................................................................175

3.1. CLASS-H CEMENT...................................................................................... 175

3.2. BASE RESIN.................................................................................................. 176

3.3. REACTIVE DILUENT.................................................................................. 176

xii

3.4. CURING AGENT 177



3.5. CEMENT PASTE PREPARATION.............................................................. 179

3.6. EPOXY RESIN PREPARATION.................................................................. 179

4. EXPERIMENTAL METHODOLOGY..................................................................180

4.1. RHEOLOGICAL MEASUREMENTS.......................................................... 180

4.2. ISOTHERMAL CURING MEASUREMENTS..............................................181

4.3. DENSITY MEASUREMENTS...................................................................... 181

4.4. BLOCKING PERFORMANCE MEASUREMENTS....................................182

5. RESULTS AND ANALYSIS................................................................................ 183

5.1. RHEOLOGICAL MEASUREMENTS RESULTS........................................ 183

5.1.1. Viscosity of Neat and Diluted Resin..................................................... 183

5.1.2. Viscosity of the Sealant System............................................................ 186

5.2. ISOTHERMAL CURING MEASUREMENTS RESULTS.......................... 187

5.3. DENSITY MEASUREMENTS RESULTS....................................................189

5.4. BLOCKING PERFORMANCE RESULTS....................................................189

6. CONCLUSIONS.................................................................................................... 191

NOMENCLATURE....................................................................................................192

REFERENCES............................................................................................................192

SECTION

2. CONCLUSIONS AND RECOMMENDATIONS................................................197

2.1. CONCLUSIONS............................................................................................ 197

2.2. RECOMMENDATIONS................................................................................ 199

BIBLIOGRAPHY........................................................................................................... 200

xiii

VITA 201



xiv

LIST OF ILLUSTRATIONS

SECTION Page

Figure 1.1. Research scope of work.................................................................................... 7

PAPER I

Figure 1. A schematic diagram of a well........................................................................... 11

Figure 2. A simple classification of potential pathways for fluids to migrate...................12

Figure 3. An illustration of the locations where micro-annuli may form in the wellbore. 13

Figure 4. Cement disking caused by axial shrinkage.........................................................19

Figure 5. Channels created in a cemented annulus............................................................21

Figure 6. The left side shows the effect of shear damaging and the right side shows the
radial cracks...................................................................................................... 25

PAPER II

Figure 1. Illustration of the injectivity setup..................................................................... 48

Figure 2. Viscosity results of (a) class H cement and (b) epoxy resin.............................. 49

Figure 3. Viscosity results for HPAM solutions................................................................50

Figure 4. Effect of the void size on the injectivity of (a) HPAM, and (b) PPG................ 52

Figure 5. Effect of the void size on the injectivity of cement............................................53

Figure 6. Effect of the void size on the injectivity of epoxy (a) 1.753, and 4.572 mm
voids, and (b) 0.8763 mm void...........................................................................54

Figure 7. Effect of the viscosity on the injectivity of the polymer solutions.....................56

Figure 8. Effect of the injection flow rate on the injectivity of the HPAM solution....... 57

Figure 9. Effect of the injection flow rate on the injectivity of the PPG...........................58

Figure 10. Effect of the injection flow rate on the injectivity of the epoxy resin............ 59



xv

Figure 11. Effect of the heterogeneity on the injectivity of the (a) PPG, and (b) HPAM
solutions...........................................................................................................60

Figure 12. Effect of the heterogeneity on the injectivity of the epoxy (a) 1 ml/min,
and (b) 2 ml/min.............................................................................................. 60

Figure 13. Effect of the injection on the rheology of the HPAM solutions (2 ml/min).... 62

Figure 14. Effect of the injection on the rheology of the HPAM solutions (8 ml/min).... 62

PAPER III

Figure 1. The chemical structure of the epoxy resin components..................................... 72

Figure 2. The PPG in its dry condition and after swollen (Imqam et al., 2017)................73

Figure 3. The Injectivity setup...........................................................................................76

Figure 4. The viscosity results for the diluted resin and the cement................................. 78

Figure 5. The effect of temperature on the viscosity of the epoxy resin and the curing
process...............................................................................................................79

Figure 6. The injection pressure of solids-free sealant......................................................81

Figure 7. The injection pressure of semi-solids sealant.....................................................83

Figure 8. The injection pressure of cement as a sealant.................................................... 84

Figure 9. The injection pressure of cement as a sealant in model (a)................................85

Figure 10. The injection pressure of cement as a sealant in small tube size....................86

Figure 11. The injection pressure of solids-free sealant (a) and semi-solids sealant
(b) in a heterogeneous model...........................................................................87

PAPER IV

Figure 1. Illustration of the plugging performance setup................................................ 104

Figure 2. (a) Viscosity results of Epoxy Resin A as a function of shear rate. (b) The
rheological behavior of Epoxy Resin A............................................................107

Figure 3. (a) Viscosity results of Epoxy Resin B as a function of shear rate. (b) The
rheological behavior of Epoxy Resin B............................................................108



xvi

Figure 4. (a) Viscosity results of Epoxy Resin C as a function of shear rate. (b) The
rheological behavior of Epoxy Resin C.......................................................... 109

Figure 5. Effect of the temperature on curing of Epoxy Resin A....................................111

Figure 6. Complex viscosity results of Epoxy Resin A...................................................111

Figure 7. Curing results of Epoxy Resin B at room temperature.....................................112

Figure 8. Effect of the temperature on curing of Epoxy Resin B.................................... 113

Figure 9. Complex viscosity results of Epoxy Resin B................................................... 113

Figure 10. Effect of the temperature on curing of Epoxy Resin C.................................. 114

Figure 11. Complex viscosity results of Epoxy Resin C................................................. 115

Figure 12. Effect of the small temperature change on curing of Epoxy Resin B.......... 116

Figure 13. DSC results of Epoxy Resin A cured at room temperature...........................117

Figure 14. DSC results of Epoxy Resin B cured at 50 °C.............................................. 118

Figure 15. DSC results of Epoxy Resin C cured at 80 °C.............................................. 119

Figure 16. Effect of the temperature change on the mass loss of Epoxy resin A.......... 120

Figure 17. Epoxy resin A and cement samples immersed in the testing fluids............... 121

Figure 18. Pictures of the effect of the acid on the sealant compared to the cement.....124

Figure 19. Injectivity of Epoxy resin C (a) 1.753, and 4.572 mm voids, and
(b) 0.8763 mm void......................................................................................125

Figure 20. Plugging performance of Epoxy resin A against water..................................127

Figure 21. Plugging performance of Epoxy resin B against water.................................. 128

Figure 22. Plugging performance of Epoxy resin C against water.................................. 129

Figure 23. The axial and lateral strain of Epoxy resin A.................................................131

PAPER V

Figure 1. The chemical structure of Bisphenol A diglycidyl ether................................ 148



Figure 2. The chemical structure of cyclohexane dimethanol diglycidyl ether...............148

Figure 3. The chemical structure of diethyltoluenediamine............................................ 149

Figure 4. Injectivity and blocking performance setup..................................................... 152

Figure 5. The rheological results for neat and diluted resin............................................ 154

Figure 6. The effect of temperature on the viscosity of the sealant.................................156

Figure 7. The isothermal curing process of the sealant at two different temperatures. .. 158

Figure 8. Injection pressure with time for 0.51 mm channel (left side) and injection
pressure with time for 0.3 mm channel (right side)........................................ 159

Figure 9. Injection pressure of the cement in 0.51 mm channel......................................160

Figure 10. Water injection after placement of sealant in 0.51 mm channel.................... 161

Figure 11. The load vs time in compressive strength measurement................................ 162

Figure 12. Pictures of the sealant in liquid, solid and cured sealant in cubic form........162

PAPER VI

Figure 1. (a) The system in liquid state, (b) cure reaction takes place in continues 
liquid phase, (c) a cross-linking reaction occurs at some point called gel 
point, (d) the epoxy resin changes from liquid to solid state.......................... 174

Figure 2. The chemical structure of Bisphenol A diglycidyl ether..................................176

Figure 3. The chemical structure of cyclohexane dimethanol diglycidyl ether...............177

Figure 4. The chemical structure of diethyltoluenediamine............................................ 178

Figure 5. The chemical structure of diethyltoluenediamine............................................ 179

Figure 6. Blocking performance setup.............................................................................182

Figure 7. The viscosity results for neat and diluted resin................................................ 184

Figure 8. The shear stress vs shear rate results for neat and diluted resin....................... 185

Figure 9. Effect of diluent on viscosity at low shear rate................................................ 185

Figure 10. Effect of temperature on the viscosity of the sealant....................................186

xvii



xviii

Figure 11. The isothermal curing process of the sealant at different temperatures.......188

Figure 12. The cured sealant between the parallel plates................................................188

Figure 13. Injection pressure of water in sealed tube (4.572 mm)..................................190

Figure 14. Injection pressure of CO2 in sealed tube (4.572 mm)....................................191



xix

LIST OF TABLES

PAPER I Page

Table 1. Causes of micro-annuli formation and their time of appearance.........................13

Table 2. Notes for effective mud removal......................................................................... 15

Table 3. A list of the most important considerations for measuring cement shrinkage.... 19

Table 4. Considerations when designing a cement with low shrinkage............................20

Table 5. Mechanical properties notes................................................................................ 26

PAPER II

Table 1. Effect of flow rate, void size, heterogeneity, and viscosity on the injectivity. ... 61 

PAPER III

Table 1. The chemical composition of class-H cement.....................................................71

Table 2. Summary of the estimated injectivity of different sealants in [ml/min*psi]......89

PAPER IV

Table 1. The density of the epoxy resin systems............................................................106

Table 2. The weight change of Epoxy resin A and cement as a function of time.........123

Table 3. The weight change of Epoxy resin B and cement as a function of time.........123

Table 4. The weight change of Epoxy resin C and cement as a function of time.........124

Table 5. The compressive strength results of Epoxy resin A.......................................... 130

Table 6. The tensile strength results of Epoxy resin A.................................................... 131

Table 7. The compressive strength results of Epoxy resin B...........................................132

Table 8. The tensile strength results of Epoxy resin B.................................................... 132

Table 9. The compressive strength results of Epoxy resin C...........................................133



xx

Table 10. The tensile strength results of Epoxy resin C................................................ 133

PAPER V

Table 1. A summary of seven wellbore failures.............................................................. 144

Table 2. The properties of the sealant used in the field jobs............................................145

Table 3. The chemical composition of class-H cement................................................... 147

PAPER VI

Table 1. The chemicals used in formulation the sealant..................................................178

Table 2. The density measurements of the sealant.......................................................... 189



1. INTRODUCTION

1.1. STATEMENT AND SIGNIFICANCE OF THE PROBLEM

Gas, oil, and water are natural resources that can be found in subterranean 

formations. Recovering these valuable resources, usually require drilling a wellbore into 

the pay zone formation. During the drilling and completion phases of a wellbore, a 

casing (steel pipe) is run in the wellbore to provide an annulus for cementing. Next, 

primary cement is placed in the annulus as a barrier between the casing and the 

formation. The cement main functions are to protect and support the casing, and to isolate 

production zones. The cement must prevent the wellbore fluids from migrating in an 

annular flow path to allow the well to be utilized without any control problems. The main 

objective of cementing the annulus is to provide zonal isolation of the formations that 

have been penetrated by the wellbore. The cement must restrict any fluid communication 

during the life of the well among these various formations and the surface. If the primary 

cement failed to deliver full zonal isolation at any period of the life of the well for any 

reason, a remedial job must be performed to restore the integrity of the cement.

Despite the numerous amount of research and the numerous field operations that 

have been conducted throughout the world, cement failures are still occurring within the 

life of wells from the drilling phase to the abandonment of the well (Santos, 2015).

During the life of the well, the primary cement may fail to deliver full zonal isolation due 

to several reasons such as insufficient mud removal prior to cementing, casing 

expansions, and casing contractions. These conditions may cause micro annuli either 

between the cement and the casing or between the cement and the formation. Other



failures such as channels may occur because of high fluid losses, cement free fluids, and 

inadequate hydrostatic pressure. Besides, high-pressure tests and temperature variations 

across the cement may cause cracks in the cement sheath. Also, if the cement is placed in 

zones where corrosive fluids are presented, chemical degradation could compromise the 

cement integrity. If any of these failures occurred during the life of the well, a remedial 

job must be performed to restore the well integrity. Failing to restore the cement integrity 

may lead to unwanted severe consequences to the environment, the equipment, and 

personnel.

The potential leakage of fluids may compromise the efficiency of hydrocarbon 

recovery and carbon storage. Carbon storage is part of the Carbon Capture and Storage 

(CCS) program, which is a program that has been developed to reduce the amount of 

Carbon Dioxide (CO2) emissions in the atmosphere by capturing, transporting, and 

securely injecting CO2 in depleted oil and gas reservoirs or in deep saline aquifer 

formations (CCS Association, 2019). CO2 is one of the greenhouse gases that became a 

serious issue due to its impact on the environment. CO2, which makes up around 81% of 

the greenhouse gases emitted in the United States according to the U.S. Environmental 

Protection Agency (EPA, 2016), can raise the global temperatures, reduce water supplies, 

and alter the growing season for food crops. For these reasons, it is essential to ensure 

that the CO2 injection wells are well isolated to keep the CO2 underground and prevent 

any gas migration. Gas migration, when occur, is reported through pressure buildup, 

referred to as “sustained casing pressure (SCP),” and can be a significant safety hazard. 

The Mineral Management Service of the United States reported in 2003 that SCP affects
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more than 8,000 wells in the Gulf of Mexico (Rusch, 2004). The well integrity of these 

wells must be restored to put them back safely into production or permanently plug them.

The Norwegian standard defines well integrity as “application of technical, 

operational, and organizational solutions, to reduce risk of uncontrolled release of 

formation fluids throughout the life cycle of a well” (Norsok D-010, 2013). Norsok D- 

010 specifies that: “there shall be two well barriers available during all well activities and 

operations, including suspended or abandoned wells, where a pressure differential exists 

that may cause uncontrolled outflow from the borehole/well to the external environment”. 

For these reasons, primary cement designs must be optimized in such a way that 

accomplish short and long-term zonal isolation. In addition, existing wells with zonal 

isolation issues must be remediated by either squeeze cementing or any other sealant 

materials. Squeeze cementing is a process in which a cement slurry is placed in the voids 

behind the casing. This process is one of the most common methods that have been 

implemented in the field to repair the cement (Shryock and Slagle 1968). As an 

alternative, other sealant materials may be injected into the voids such as epoxy resin 

sealants. Epoxy resin sealants, which are mixtures of resin and hardeners, were 

effectively used in the past few years. However, this type of materials as wellbore 

integrity sealants are relatively new and require an intensive and comprehensive 

laboratory work to prove their effectiveness. To the author’s best knowledge, there are 

many epoxy resin sealants available in the market, but the temperature activated epoxy 

resin sealant is the only sealant that has been used in the petroleum field. Temperature 

activated epoxy resin sealant requires a certain temperature level to cure and develop 

enough strength to plug cements’ gaps. In this study, the temperature-activated epoxy

3



resin sealant was investigated at different temperatures to quantify its curing time, 

rheological behavior, injectivity, plugging performance, chemical resistance, and 

mechanical properties. In addition, two more types of epoxy resins were evaluated in this 

research as potential cement sealants. This work evaluated three types of epoxy resin 

sealants and compared their results to that of the conventional cement.

1.2. EXPECTED IMPACTS AND CONTRIBUTION

Results obtained from this work will promote the use of epoxy resin sealants in 

the restoration of wellbore integrity. In addition, the results gathered herein will help in 

understanding the curing mechanism and the performance of epoxy resin sealants. The 

variety of epoxy resin sealants prepared and tested in this work can be used to optimize 

the selection of the sealant and will help in answering which epoxy can be used for which 

application depending on the location of the cement failure and the environment in that 

location. The following points are expected from this work:

• Rheological characterization of three epoxy resin sealants prepared using different 

base resins and several hardeners. This characterization will help in selecting the 

appropriate sealant depending on the factors that affect the operation such as the 

viscosity of the sealant as a function of temperature and shear rate, the curing time 

with respect to temperature, and the elastic and viscous moduli. The sealants 

investigated herein are for low, moderate, and high temperature applications or in 

other words for primary cement failures at the surface and/or at intermediate or 

production sections of the well.
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• The plugging performance of the epoxy sealants against water and CO2 in both 

cement cores and steel tubes will be assessed and compared to other sealants, 

which will provide insights into the applicability and the ability of these sealants 

to be alternative to the well-known Portland cement.

• Evaluation of the mechanical properties of the epoxy resin sealants including 

compressive and tensile strength. This evaluation will be compared to the cement 

results.

• The durability of the epoxy sealants compared to conventional cement in harsh 

conditions will answer the big question of how safe to use a relatively expensive 

material in the long term. This is also important from the environmental point of 

view.

• The injectivity of the epoxy resin sealants (solids-free) is compared to semi-solids 

sealants, and solids materials. In this study, the effect of the size and shape of the 

voids on the injectivity of the sealants is characterized. In addition, to the effect of 

the viscosity of the fluid and the effect of the injection flow rate on the injectivity, 

which will help in optimizing the selection of the proper sealant based on the 

application.

1.3. OBJECTIVES

The primary objective of this research is to provide an intensive and 

comprehensive laboratory study of several wellbore sealant materials in particular epoxy 

resin to solve wellbore integrity problems. The following objectives will be established
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• To provide a better understanding about the appropriate epoxy resin sealant that 

should be applied for different environments including high temperature curing 

epoxy for deep well applications, low temperature curing epoxy for surface 

remedial operation, and moderate temperature epoxy for the applications that 

require moderate temperatures like a cement failure remediation that could occur 

behind an intermediate casing. This is important to eliminate the concern of 

premature curing which may result in a failure in restoring the integrity of a well.

• To examine the ability of the sealants to shut off water and CO2 migrations. This 

includes determining the limits of the sealants in terms of blocking pressure.

• To investigate the injectivity of several materials and analyze the main factors that 

affect the injectivity of these materials, which is a key property that has not 

received enough attention in the literature on wellbore integrity. In this study, the 

primary factors affecting the injectivity will be studied individually to identify 

which were major and which were minor. These factors include the type of fluid, 

void size into which the remedial fluid is injected, viscosity of the fluid, flow rate 

of the injection, heterogeneity of the void, and effect of the injection on the 

properties of the injected fluid.

The results collected from this work will provide comprehensive knowledge and 

insights into epoxy resin sealants and their performance in restoring zonal isolation. The 

results will also highlight the vital role of temperature on the performance of this type of 

sealant compared to conventional Portland cement. This research covers the lack of 

laboratory works that investigate the performance of epoxy resin sealants in the oil and 

gas industry and compare their performance to that of cement and other polymer sealants.
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1.4. SCOPE OF WORK

To achieve the objectives of this study, this work was divided into three main 

tasks as shown in Figure 1.1. Task 1 was conducting literature review and collect 

information related to cement failures. Task 2 was evaluating the injectivity of several 

types of cements’ sealants including solids-free sealants (epoxy sealants and polymer 

solutions), semi-solids sealant (particle gel), and solids sealant (cement) in different void 

space features. Task 3 was an evaluation of three types of epoxy resin sealants. The 

evaluation included rheological characterization, plugging performance, chemical 

resistance, and mechanical properties.

Figure 1.1. Research scope of work.
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PAPER

I. A SIMPLE CLASSIFICATION OF WELLBORE INTEGRITY PROBLEMS 
RELATED TO FLUIDS MIGRATION

ABSTRACT

This work classifies in a simple form the wellbore integrity problems that cause 

fluids migration in oil and gas wells. This paper updates the categorization provided by

[1], which classifies the wellbore integrity problems based on the time of manifestation. 

[1-3], and other researchers categorized the problems related to wellbore integrity 

similarly. These categorizations are found in multiple publications and are representative 

of most cements’ failures that may lead to fluids migration. However, most of these 

categorizations are too broad and do not clearly state and describe the wellbore failures.

In addition, categorizing the failures based on the time of their appearance may not be 

enough to realize, recognize, and understand how connected the failures are. Well- 

integrity failures are continuously occurring and represent major issues in the oil and gas 

wells. Therefore, a new and simple classification that accounts for the potential locations 

of each failure, the causes of the failures, and methods to stop the failures is necessary. 

This paper aims to classify the failures that may occur in the wellbore into four main 

failures: (1) micro-annuli that forms between the cement and its surroundings, (2) 

channels that creates pathways through the body of the cement, (3) fractures/ cracks in 

the cement sheath, and (4) cement chemical and mechanical degradation. Definition of 

these problems, causes of these problems, and solutions for those failures are summarized



in this paper to clarify, understand, and provide a guideline to prevent and avoid such 

problems. Along with the classification, general considerations for the cement-testing 

methodologies against these failures are listed. This work also provides the oil and gas 

industry with some of the technologies that have been used to avoid oil cements failures.

1. INTRODUCTION
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Gas communication, gas leakage, gas seepage, gas and fluids migration, and 

multiple extra names are synonyms of a repetitive issue that occur in the oil and gas 

wells. This problem occurs due to failing in achieving full zonal isolation and results in 

costly maintenance operations and threats to the environment and surrounding 

communities. Gas migration or fluids migration in general can be a flow between 

different formations and zones, and fluids flow from one formation to the surface. Flow 

to the surface if it transpires it would be as short as within minutes or few hours of 

completing the well. On the other hand, flow between different formations and zones 

may not be spotted for weeks, months, or even years. Despite the numerous amount of 

laboratory research and field jobs that have been applied around the world, these flows 

are still turning out within the life’s cycle of the wells starting from the drilling of the 

wells until the plug and abandonment of the wells [1]. One of the common methods in 

reporting gas migration is through a pressure buildup called sustained casing pressure 

(SCP). Studies have shown that around 60 % of the offshore wells in the Gulf of Mexico 

(GOM) have reported sustained casing pressure [4]. The well integrity can be defined as 

“application of technical, operational, and organizational solutions, to reduce risk of



uncontrolled release of formation fluids throughout the life cycle of a well” [5]. Norsok 

D-010 specifies that: “there shall be two well barriers available during all well activities 

and operations, including suspended or abandoned wells, where a pressure differential 

exists that may cause uncontrolled outflow from the borehole/well to the external 

environment”. For these reasons, optimizing the cement slurry designs is essential to 

guarantee zonal isolation [6].

During the drilling and completion phases of a well, a casing (steel pipe) is run in 

the wellbore to provide an annulus for cementing. The casing depth is determined using 

pressure safety drilling window, which contain a range of pressure from pore pressure to 

fracture pressure [7]. Next, a cement slurry is mixed at the surface and pumped through 

the casing to the annulus. A schematic diagram of a wellbore indicating the role of the 

cement as a barrier between the casing and the formation is shown in Figure 1. All casing 

strings must be cemented for two main objectives: (1) to protect the casing and support it 

and (2) to fully isolate production zones. For the well to be used without control 

problems, the cement must prevent the wellbore fluids from migrating in an annular flow 

path. Fluid communication should be restricted at any period of the life of the well among 

the various formations and the surface, no matter which fluids these formations are 

saturated with, water, oil, or gas [8-9]. The cement sealing off the annulus may be 

exposed to different condition that may compromise its integrity. Conditions such as 

pressure and temperature regimes, high mechanical loads from pressure testing and 

production operations. To achieve good cement job that provide full zonal isolation and 

that is able to withstand those conditions many considerations must be considered. All the 

variables related to cementing jobs must be analyzed, from the drilling to abandonment.
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To achieve this and as a start, the cement failures must be classified according to their 

locations in the wellbore and the reasons behind them.
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Figure 1. A schematic diagram of a well.

Today, studies focus on preventing these cement problems by modifying the 

formulation of the cement slurry, but the main drawback is that most of the studies deal 

with each failure individually, which leads to many inaccurate assumptions. That is why 

this study has been conducted.

The simple classification showed in Figure 2 classifies the potential cement 

failures into four categories: (1) micro-annuli that form at the cements’ interfaces, (2) 

channels that are created through the cement body, (3) fractures/ cracks that develop in 

the cement, and (4) cement chemical and mechanical degradation. The simple 

categorization is constructed based on the location at which the failure may occur in the

wellbore.
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Insufficient Mud Removal

Casing Expansions / Contractions

Cement Shrinkage

Free Fluids & Fluid losses

Inadequate Hydiostatic Pressure

Pressure Variations and Tests

Temperature Variations

Chemically

Mechanically

Micro-Annuli

Channels

Fluid Migration

Fractures/ Cracks

Cement
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Figure 2. A simple classification of potential pathways for fluids to migrate.

2. MICRO-ANNULI AT THE CEMENTS’ INTERFACES

The micro-annuli at the cements’ interfaces should be understood and the causes 

of these gaps that potentially allow fluid migration should be studied to be avoided [3]. 

These gaps may allow pathways for formation fluids to migrate from high to low pressure 

formations, yielding to a dangerous pressure buildup [10-13].

The micro-annuli are mainly formed because of the debonding between the 

cement and its surroundings, as shown in Figure 3. Therefore, it is essential to design a 

cement slurry that is able to adhere with its surroundings. Failure to achieve and maintain 

such adhesion could lead to fluid communication between the different formations and

between one formation and the surface [14].
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Figure 3. An illustration of the locations where micro-annuli may form in the wellbore.

The causes of the debonding between the cement and its surroundings are (1) 

insufficient mud removal resulting from drilling operation, (2) casing expansions and 

contractions resulting from production and/or completion operations, and (3) cement 

shrinkage, which is a phenomenon that cement go through during the hydration and 

setting processes. Table 1 lists the causes of micro-annuli and the time of occurrence for 

each of the causes.

Table 1. Causes of micro-annuli formation and their time of appearance.

The Cause Time of Occurrence Reference

Insufficient mud 
removal

During the drilling and cementing of the well [15]

Casing expansions 
and contractions At any period of the life’s cycle of the well [11]

Cement shrinkage
During the cementing process and/or after a long 

time of operation [16]
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2.1. INSUFFICIENT MUD REMOVAL

Eliminating the remaining mud from the well, especially the mud cake formed on 

the formation is a key step for attaining complete seal for the wellbore. Insufficient mud 

removal could compromise the zonal isolation. The mud cake formed on the formation is 

desirable for drilling operation to reduce fluid losses. However, it is undesirable for the 

cementing as the mud cakes are mainly made of polymers that degrade with time. The 

degraded mud cakes leave behind paths for fluids to migrate. In 1940, [17] revealed the 

effects of several parameters on the mud removal. Parameters like drilling fluid 

conditions, pipe centralization and movement during cementing, pump rate, and density 

differences between fluids, besides the effects of pre-flushes. This area of research 

resumed in the 1960s as [18] showed the benefits of pumping a highly dispersed slurry 

that is low in density and exhibit low fluid loss on the mud removal. During the same 

period, [19] presented their work, which showed the effects of surfaces types on the 

adhesion properties between cement and casings. Their conclusions included that good 

adhesion is achievable when coating the casing with sand, while the least adhesion was 

by having an oily casing. Another practice that must be considered is the centralization of 

the casings and was the topic of discussion in the 1970s, especially in deviated wells [6]. 

By late 70s, [20] estimated the mud mobility factor (MMF), which measures in percent 

the removed drilling fluid. By the 1980s, the industry finally started to combine all of the 

above parameters during the process of removing the mud. Table 2 summarizes the most 

important parameters regarding mud removal. It is vital when cementing a well to 

consider the importance of centralizing the casing to avoid settling related issues, the 

geometry of the hole to pump sufficient amount of cement, and the type of casing used.
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Also, circulating the well and conditioning the drilling fluids to break the mud into 

thinner fluid, pre-flushing the well either mechanically or chemically, and the use of 

spacers must be considered side by side with the correct formulations of the fluids used.

Table 2. Notes for effective mud removal.

Consideration Notes Reference

1 Casings Centralization To prevent particles settling and to 
distribute the cement evenly [6, 17]

2 Borehole geometry To calculate the volumes accurately to 
ensure sufficient cements’ height [6, 20]

3 Casing selection
The type of casing, the running speed that 

may breakdown the formation, exacerbating 
the situation with loss circulation zones

[6, 19]

4 Circulating the well 
and mud conditioning

To thin the mud and break the gel particles 
left on the walls of the well [6]

5 Pre-flushes

Mechanically by pumping the fluids to a 
turbulent flow at a specific rate:

• Limited by well security.
• Restricted by the wide side of the 

annulus.
Chemically by flushing fluids in a laminar 

flow:
• Using chemicals to pre-flush.
• Protects the formation and provides 

stability.

[6, 21-23]

6 Spacers

Essential Spacers’ Properties:
• Compatibility with mud and cement.
• Rheological properties and spacer 

weight.
• Ability to alter the wettability of the 

casings and the formations.
• Contact time and flow rates.

[6, 21-27]
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2.2. CASING EXPANSIONS AND CONTRACTIONS

The expansion and contraction of the casings are other causes of micro-annuli. 

Casing expansion/contraction are outcomes of internal pressure or thermal stresses 

exerted to the casing [28]. Increasing the internal pressure or the temperature in the 

wellbore may expands the casing (ballooning effect), the cement then will counteract the 

forces from the expansion, which will induce stresses in the cement [29]. Consequently, 

if these stresses exceed the cement strength, failures will occur, and fluids migration 

pathways may be created. A decrease in the density of the drilling fluids or reduction in 

the temperature contracts the casing, resulting a gap between the cement and the casing 

[3, 8, and 11]. The consequences of casing expansions/ contractions should be mitigated 

through enhancing the shear strength and the tensile bonding strength of the cement 

design [14] as these consequences may compromise the cement integrity, resulting in 

permanent cement damages.

2.3. CEMENT SHRINKAGE

About 120 years ago, Le Chatelier, 1900 reported that Portland cement can shrink 

up to a 4.6% reduction in volume after setting. This was an important discovery. To 

measure the cement shrinkage, Le Chatelier used a simple setup that was a flask, named 

later the flask method [16]. In this method, the cement is poured in a flask and covered 

with water. The flask has a tube connected to it and the difference in the water volume in 

the tube is described as volume shrinkage of cement. Since that discovery and up until 

today, cement shrinkage has become an interesting topic. Many researchers around the 

world have been conducting laboratory experiments to scientifically explain the



phenomenon of cement shrinkage. Cement shrinkage can be divided into two general 

shrinkages:

The first one: “Chemical shrinkage” this type of shrinkage is from the reaction 

between the water and the mineral compositions of the cement. There is a decrease in the 

absolute volume of the cement as the products from the exothermic reaction are lower in 

volume than that of the reactants. Such a reduction in volume may lead to micro-annuli 

formed, especially during early ages of the hydration process of the cement [30-31]. One 

of the theories indicates that the great factor influencing this type of shrinkage is the 

generation of calcium-silicate crystals. Throughout the hardening process of the cement, 

water adsorbs onto and is absorbs into these crystals, which reduces the total volume of 

the cement paste [32].

The second one: “Bulk shrinkage,” this type of shrinkage is associated to the 

cements’ pore structure as the cement loses its fluidity during the hardening and a 

capillary network is formed. The water contained in this network is consumed over time 

(dried); therefore, the capillary tension increases in the pores. In consequence, the pores 

collapse to release the tension, which originate a reduction in the external volume [16].

The pore contraction has the biggest effect on shrinkage [31 and 33].

How Does Cement Shrinkage Allow Fluids to Enter the Cement? The cement 

transformation from liquid state to solid state may allow fluids entry. Upon adding the 

water to the cement, the hydration starts, and the cement develops what is called static gel 

strength (SGS). When the cement slurry develops enough SGS, the transition time start. 

This transition time prevents full transmission of hydrostatic pressure. The transition time 

finishes as soon as the slurry advances enough solid properties to stop percolation of gas
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through the cement [34]. The shrinkage is of little importance prior to the start of 

transition period, as the movement of fluids will compensate the shrinkage in earlier 

stages. However, fluids may enter the cement column if the hydrostatic pressure drops 

under the pore pressure of the formation during the transition time. The hydrostatic 

pressure fall off is mainly caused by the first type of shrinkage, so it is essential to 

minimize it [31].

Cement shrinkage may let fluids to enter the cement, allowing fluid 

communication to take place. Measuring the cement shrinkage precisely is vital to enable 

the elimination of its effects. Multiple experimental methodologies were developed to 

quantify cement shrinkage. One of the very first methods is the flask method mentioned 

earlier in this paper is. In spite of the fact that it is still applied, the amount of slurry 

utilized in this test may affect the overall results negatively [16]. During the last decade, 

countless attempts were made to construct a method and a procedure to estimate the 

shrinkage accurately, for example [30-32, 35-36]. These works made an effort to modify 

the traditional methods specified by the American Petroleum Institute (API) namely, 

ring-mold, membrane method, and cylindrical-sleeve, to obtain results that are more 

reliable. Table 3 lists some of the most important considerations to achieve optimal 

measuring methodology.

The direction of shrinkage is another important parameter to be considered. For 

example, disking may occur due to axial shrinkage. If the cement exhibits axial shrinkage 

and cannot slide, disking occurs as illustrated in Figure 4. To avoid such cement failure 

the direction of shrinkage must be monitored during the testing of cement shrinkage.
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Table 3. A list of the most important considerations for measuring cement shrinkage.

Consideration Note References

1 Data Recording Monitoring the first 24 Hrs. of the 
hydration process

[16, 30, 
and 32]

2 Accuracy of Instrument The changes in shrinkage might be 
very small [30]

3 Curing Conditions (P & T)
High pressure/temperature increase 

shrinkage
[16, 30­

31]

4 Conditions (P & T) Must 
Remain Constant Depressurizing has huge impact [35]

5 Permeability of Formation Whether cement will be exposed to 
water [16]

6
Confining Environment in 

which the test is being 
conducted

To determine the direction of 
shrinkage [16, 35]

7 Shear History of Slurry Shearing the slurry reduces the 
shrinkage [16]

Figure 4. Cement disking caused by axial shrinkage.



In addition, the properties of the cement slurry formulation must be perfected, 

beginning with selecting the proper water to cement ratio. Excessively minimizing the 

water content in the cement may compromise the compressive strength of the cement 

[32] although maximizing it reduces shrinkage. Also, the shrinkage when it occurs affects 

the bonding of the cement with its surrounding [39]. Additives can be introduced to the 

cement slurry to overcome shrinkage. Additives like bentoniter, sodium silicate, 

magnesium oxide (MgO), calcium oxide (CaO), and silica powder. Those additives can 

help reducing the effect of cement shrinkage and enhancing the bonding strength between 

the cement and the steel casing [37]. Table 4 lists additional considerations when 

designing a cement with low shrinkage.
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Table 4. Considerations when designing a cement with low shrinkage.

Consideration Note References

1 Free water To reduce shrinkage free water 
must be minimized [32]

2 Water to cement ratio Increasing the water amount 
increases shrinkage [16, 32]

3 Slurry Yield The higher the yield the lower the 
shrinkage [32]

4 Amount of Additives Must 
Be Optimized

Excessive expansion could yield to 
gas leakage

[35, 38]

5 Shortening Transition Time This helps avoiding gas migration [16, 31]

8 Thermal Behavior of the 
Cement

The thermal behavior has an effect 
on the shrinkage [3]
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3. THE CREATION OF CHANNELS

The channels that can be created through the cement sheath represent a 

dangerous issue, mostly in presence of hydrogen sulfide gas (H2S) [40], the channel can 

be only in a small part of the cement sheath or extended to the whole section. However, 

the micro-annuli discussed above can provide for the channels a pathway allowing fluids 

migration.

Fluids may channel the cement mainly due to two reasons: (1) the cement 

design has high fluids loss or free fluids content and (2) improper hydrostatic pressure 

(the density of the slurry is not enough to exert pressure that keeps the formation fluids in 

the formations. Channels are created when the hydrostatic pressure exerted by the cement 

falls below the pore pressure of the formation. This may happen in the initial hydration 

process of the cement. Figure 5. Shows the locations of the channels in the wellbore.

Figure 5. Channels created in a cemented annulus.
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3.1. FREE FLUIDS AND FLUID LOSSES

During the placement process of the cement in the annulus of the wellbore and 

the setting time, the cement may lose some of its fluids to the porous formations. If the 

fluid loss is high, invasion of fluids to the liquid cement may take place. This fluids 

influx may establish irreversible pathways in the cement allowing the fluids to migrate 

between formations and, possibly, even to the surface [24]. The fluids lost from the 

cement may lead to a higher density slurry (possibly higher than the fracture gradient of 

the formation) that may break the formation. In addition, in this process, the cement 

particles may plug the formations’ pores, constructing a cement filter cake. The thickness 

of the filter cake may increase as the displacement continues, which would lead to an 

increase in the required circulating pressure. Extreme cake thickness may plug the 

annulus, disabling additional displacement [41-42]. In addition, a cement slurry with 

fluids less than the planned might set prior to the end of the cementing, which would 

cause the column of cement to reach an insufficient height [43].

The hydration process of the cement is the main parameter that controls fluids 

migration. During the transition time of the cement, fluids can channel the cement. 

Ideally, cement slurry that sets immediately after placement will eliminate the channels 

problem. Nonetheless, such a slurry using Portland cement is impossible. Thus, 

shortening the transition time is the only way to mitigate this problem. Lowering the 

cement fluid loss may help also but the fluid loss additives tie up the water required for 

the hydration and release it in a slow manner through the hydration process. Yet, some of 

the water required for hydration may be driven out, creating micro-capillaries in the 

cement, another path for fluids to migrate. In addition, this may affect other properties of



the cement, generating additional issues [41] such as the dilution of cement particles, 

which would negatively affect the compressive strength of the cement [32]. On the other 

hand, optimizing the required amount and correct type of fluid loss additives will 

maintain the fluidity of the slurry and will reduce the risk of premature dehydration [44]. 

The importance of minimizing free fluids, which are fluids that set apart from cement 

slurry when left at static conditions, was proved by [45]. This work proved lowering the 

fluid loss must be accompanied with low free fluids and preferably no free fluids.

3.2. INADEQUATE HYDROSTATIC PRESSURE

Inadequate hydrostatic pressure exerted by the cement column during its initial 

hydration may also create irreversible pathways for fluids through the cement sheath [1].

In the wellbore, two pressures must be kept: the formation (pore) pressure and the parting 

(fracture) pressure. The cement should exert a pressure higher than that of the pore 

pressure and lower than that of the fracture pressure [40]. Failing to do so increases the 

likelihood of having channels or damaging the formation. Fluids can only invade the 

cement slurry if the formation pressure exceeds the hydrostatic pressure. The hydrostatic 

pressure can be controlled by controlling the density of the cement. Controlling the 

density is by the use of additives. Several additives may be added to the cement slurry to 

increase or reduce the density such as barite and hematite for increasing the density and 

bentonite and glass spheres to reduce it. There is also the water-extended cement systems, 

which have relatively low density but also lower compressive strength, longer thickening 

time, and higher permeability compared to normal cement systems. One more approach 

to reduce the density is the injection of nitrogen gas with stabilizers to the slurry known
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as foam cement. This technique provides strong, low density, and low permeability 

cement system [46] but on the other hand a higher cost cement especially when it comes 

to the required equipment.
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4. THE INITIATION OF CRACKS/FRACTURES

The initiation of fractures in the cement is considered a long-term issue. In 

several cases, cementing jobs were conducted effectively, resulting a good sealant, but 

eventually a pressure buildup was noticed [12]. Cement cracks may be the reason of 

pressure build up. Moreover, the cement deteriorates with time as result of post­

cementing jobs like integrity tests, production, and stimulation [47]. Thermodynamic 

cycles also contribute in the initiation of this type of features [11]. Also, over pressurizing 

the casing or applying high thermal loads can destroy the cement [3, 48]. Cracks are also 

results of chemical degradation when some chemicals invade the cement and expand 

originating cracks inside the cement [49].

4.1. CASING PRESSURE VARIATIONS

At the end of the cementing job, the well is subjected to pressure tests to 

determine the integrity of the casing. High testing pressures can cause radial cracks in the 

cement [29, 48, 50-51]. These tests also develop shearing forces at the outer part of the 

casing, and in consequence, cracking might occur in the inner part of the cement [8]. In 

addition, conducting these tests before the cement fully cured rises the probability of 

forming micro-annuli [48]. Pressure variations in the casing appears continuously due to



mud replacement (change in density), pressurizing tests (integrity and leak-off), 

stimulation, perforation, and/or remediation operations. When the pressure variation is an 

increase in pressure (positive pressure), this will lead to radial or shear cracks. Radial, if 

the cements’ stiffness is larger than the stiffness of the formation and shear when the 

cement has larger flexibility [51]. For the case of negative pressure, micro-annuli may 

form. Figure 6 differentiates between the two damages.
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Figure 6. The left side shows the effect of shear damaging and the right side shows the
radial cracks.

4.2. TEMPERATURE VARIATIONS

The effects of temperature changes are similar to those of the pressure changes. 

For the high temperature operations, the cement would be subjected to high temperature 

variations. The casing expands as result of the temperature increase, which may leave the 

cement in a large deviatory state of stress. Cement may crack from excessive temperature 

changes. The cracks may occur due to tension failure [51] or compressive failure [52]. 

The cracks may start at the cement-casing interface and propagates to the cement-



formation interface. The crucial effects of these cracks are present when the casing 

contracts back to its original state (relaxes), causing the cracks to open and leading to 

annular flow [53]. It is important not to expose the cement sheath with a large 

temperature increase as the casing will expand more than the cement, which will induce 

compressional stresses in the cement (radial cracks) and similarly in temperature decrease 

the casing will contract more than the cement inducing tensile stresses in the cement 

(debonding). Reduce the sharp increase and decrease in temperature when possible. Table 

5 summarizes the main notes for cement mechanical properties design.
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Table 5. Mechanical properties notes.

Consideration Note Reference

1 Cement Stiffness Has a great impact on the mechanical 
properties [51]

2 Formation Stiffness Has a great effect on the mechanical 
properties [8, 51]

3 Cement Thermal 
Properties

To count for changes in the cement 
volume [29, 52]

4 Expected Loads on 
The Cement

To avoid overloading [52]

5 The Confining Effect Confining pressure on the cement 
supports it [52]

6 Cement Flexibility To avoid the consequences of casing 
expansion

[29, 51, and 
54]

7 Cement Pore Pressure High pore pressure may increase the 
chances of micro-annuli [51]
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5. CEMENT DEGRADATION

Cement like any other material may degrade with time. The degradation can be as 

result of chemical interactions or mechanical causes. For the petroleum industry, 

durability of the cement used is an important parameter. Durable cement or durability of 

cement may be defined as a cement that preserves its mechanical properties and low 

hydraulic conductivity (porosity and permeability) with time [55]. Durability of oil well 

cement may be compromised by one of two degradations (1) chemically and (2) 

mechanically.

Chemically: The oil well cement is in contact with several kinds of fluids and 

gases during the lifetime of the well and even after abandonment. This contact may 

degrade the cement. Thus, the durability of cement must be examined in the presence of 

different corrosive fluids that can be found in oil and gas reservoirs, such as hydrogen 

sulfide, carbon dioxide, and brines.

Mechanically: The oil well cement is also under compressive and tensile loadings 

during the lifetime of the well and after abandonment. These loadings may exceed the 

cement strength, leading to unwanted consequences compromising zonal isolation.

In the hydration process, Portland cement produces calcium-silicate-hydrates (C- 

S-H) and calcium hydroxide (CH). The C-S-H is responsible for increasing the strength, 

while CH does not contribute as much. Generally, lowering the permeability of the 

cement and reducing its calcium hydroxide content help increasing the chemical 

resistance [49]. Chemicals can penetrate the cement and expand causing internal cracks 

or dissolve into the cement and destabilize the C-S-H crystals. Laboratory experiments



for testing the durability of the cement must simulate the downhole thermodynamic 

conditions (pressure, temperature, fluids, etc.) to better understand the cement 

degradation and prevent it. For some cases, an alternative to Portland cement is essential 

especially for permanently plugging [55].

6. CEMENT SOLUTIONS
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Along with the good cementing practices described in this paper, the cement 

properties can be modified in a way that prevent the wellbore integrity failures from 

occurring. In this section of this work, some of the cementing systems that have the 

potential to overcome the mentioned failures are briefly listed and reviewed.

6.1. FOAMED CEMENTS

Foam cement is a cement slurry that is mixed with foaming agent (nitrogen or air) 

along with an adequate amount of stabilizers. This type of cement was proposed back in 

the 1980s [56]. This type of cements is mainly used for low fracture gradient formations 

where cements with low density are required. Foamed cements are low in density and 

behave like thixotropic fluids, meaning the cement slurry remains fluid when sheared but 

develop high viscosity when the shearing stops [57]. This behavior reduces the transition 

time of the cement and hence reduces the probability of fluids migrations. This cement 

develops relatively high compressive strength and high elasticity [58].
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6.2. ELASTIC (FLEXIBLE) CEMENTS

Flexible or elastic cements are cements that are mixed with elastomers (rubber) 

and fibers. Adding such additives to the cement slurry increases the tensile strength of the 

set cement and lowers the Young’s modulus [58] thereby enhance the mechanical 

properties of the cement. Enhancing these properties reduces the possibility of having 

cracks and fractures within the cement sheath as results of casing expansion and 

contraction.

6.3. DENSITY CONTROLLED CEMENTS

One of the main concerns when cementing the oil and gas wells is the density of 

the cement. Reducing the density of the cement requires increasing the amount of water 

in the slurry known as water-extended cements, which might compromise other 

properties like the strength of the set cement.

Other methods to reduce the cements’ density is adding other extenders such as 

sodium and potassium silicates. These extenders also have limitations when it comes to 

the strength of the cement and the thickening time of the cement. This led to the use of 

glass beads (microspheres that have the ability to lower the density without or with little 

effect on the strength).

On the other hand, increasing the cement density can be achieved by adding 

weighting agents such as barite and hematite. Generally, controlling the cement density 

helps avoiding the channeling problems.
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6.4. GEOPOLYMER AND POLYMERIC CEMENTS

Polymeric cements or cement s that contains polymers are cement systems with 

superior properties. Enhancing Portland cement by adding thermosetting polymers such 

as epoxy resin or latex like styrene butadiene latex enhances the mechanical properties of 

the cement like tensile strength, elasticity, and more importantly the bonding properties. 

These types of cements have better resistance against chemicals and contaminations. 

Geopolymer cement is another new product that may have the potential to overcome the 

shrinkage problems. Geopolymer cement is a mixture of fly ash, which is a by-product 

with an activator. The activator is a mixture of sodium silicate and sodium hydroxide 

(NaOH). The strength of this type of cement depends on the molarity of the NaOH and 

the amount of sodium silicate added.

7. DETECTION TECHNOLOGIES AND TREATMENTS FOR WELLBORE
FAILURES

So far, this work discussed the cement failures that may occur during the life span 

of oil and gas wells, the causes of those failures, and some of the preventive solutions to 

avoid those failures. However, those failures have occurred in many wells around the 

globe and the integrity of the wellbores are prone to more failures in the future. For this 

reason, it is vital to discuss the failures’ detection techniques and the available solutions 

and treatments for wellbore integrity failures along with some of the parameters that

affect the selection criteria of the treatments.
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7.1. DETECTION TECHNIQUES

After the placement of the cement in the annular between the casing and the rock 

formations, there are several tests and loggings conducted to confirm zonal isolation. 

Some of these are conducted during the life of the well and some after well abandonment. 

Typically, an annular pressure test, also known as “casing pressure test” is run. Any 

casing below the conductor should be tested to 500 psi or 0.22 psi/ft, whichever is greater 

[59]. The test is run for about 12 hours. If there are more than 10% reduction in pressure 

within the first 30 minutes or there are any indication of leakage, the casing should be 

recemented or repaired to ensure zonal isolation and no significant leak in the subsurface 

system. This is not the only method as there many other accepted methods such as 

annular pressure monitoring and radioactive tracer survey. There are also tests to examine 

the state of the wells after some time have passed such as fiber optic temperature surveys, 

noise-log, and the cementation logs such as cement bond logs, ultrasonic imager tool 

(USIT), and isolation scanner [60]. To detect the annulus content and whether micro 

annuli have formed cement bond logging are being used to measure the bond between the 

casing and the cement. The measurements are conducted by using acoustic sonic and 

ultrasonic tools and displayed in millivolt units, decibel attenuation, or both. An increase 

in the decibel attenuation or decrease in the millivolts are indications of better-quality 

bonding of the cement and its surroundings [61]. For the channels and cracks that might 

develop within the cement sheath, isolation scanner is used for detection. Isolation 

scanner evaluate the cement job and the casing conditions to confirm the effectiveness of 

the annular barrier for zonal isolation. This technique distinguishes the low-density solids 

from liquids to point out whether channels have been created in the cement sheath or not.



Another detection technique is evaluating the state of the casing in the wellbore using 

caliper survey and wall thickness survey to identify whether the casing in a good 

condition or corrosion, deformation, and weight loss is occurring [60].

7.2. TREATMENTS FOR WELLBORE FAILURES

In the past years, the oil and gas industry have worked hard to develop several 

materials to be used for treating cement failures. Starting by the use of conventional 

oilfield cement to the use of nanotechnologies. Generally, the treatment for all of the 

categories is selected based on many parameters including but not limited to the aperture 

size, the equipment available on site, the accessibility to the failure zones, etc. As a rule 

of thumb, if the size is more than 400 micrometer, conventional oil field cement is 

injected to the affected zones to repair the primary cement. If the size is less than 400 

micrometers but higher than 120 micrometer, micro-fine cement and ultra-fine cement 

are the solutions as those two types of cement have smaller particle size compared to the 

conventional cement. If the size is less than 120 micrometer, advanced technologies such 

as polymer resin are being used to mitigate the problem. Polymer resins are thermoset 

materials that are solids-free and can penetrate very tight gaps [62].

For all the classes of failures mentioned in this work, polymer resins (epoxy 

resins) seems to be the most effective solution. It is a new technology for the oil and gas 

industry but it has been applied successfully in oil and gas wells lately and the reason 

why we it is believed that this type of material is one of the best is its ability to develop 

high compressive and tensile strength reducing the possibility of having cracks and 

fractures in the cement, it ability to penetrate small gaps that other sealing materials
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cannot access, its ability to develop bonding with cement, formations, and steel filling the 

micro annuli around the cement, and its stability under high temperature conditions.

8. CONCLUSIONS

This study provides a guideline to better understand wellbore integrity problems 

and work in avoiding them. Publications from around the world were reviewed, 

experimental techniques were evaluated, and data from laboratory experiments were 

analyzed to summarize wellbore integrity failures. This study classified the wellbore 

integrity problems in a simple way to help prevent those failures. The main conclusions 

obtained from this work are as follow:

■ Today, the petroleum industry focuses on the short-term properties, which is good 

for the first days after the cement placement. However, the long-term properties 

are as important as the short-term and tests should be conducted for the durability 

of the cement.

■ The initial state of stress in the cement sheath must be studied to estimate the 

limitation of the cement downhole.

■ To better evaluate the state of stress in the cement after setting, the hydration 

process of the cement and time effect should be analyzed.

■ It can be concluded from this review that the sealant material for oil and gas wells 

must follow these criteria:

□ Has low environmental impact with desired density.

□ Low fluid losses and very little to zero free fluids.
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□ High mechanical strength and experience low shrinkage.

□ Short transition time and chemical resistance.

□ Adhesive properties with steel and different types of formations.
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II. SEALANT INJECTIVITY THROUGH VOID SPACE CONDUITS TO ASSESS 
REMEDIATION OF WELL CEMENT FAILURE

ABSTRACT

The primary cement of oil and gas wells is prone to fail under downhole 

conditions. Thus, a remedial operation must be conducted to restore the wellbore integrity 

and provide zonal isolation. Many types of materials are currently used and/or have the 

potential to be employed in wellbore integrity applications, including, but not limited to, 

conventional Portland cement, microfine and ultrafine cement, thermoset materials, and 

thermoplastic materials. In this study, several types of materials were selected for 

evaluation: (1) conventional Portland cement, which is the most widely used in remedial 

operations in the petroleum industry, (2) polymer resin, which is one of the most recent 

technologies being applied successfully in the field, (3) polymer solutions, and (4) 

polymer gel, which is a semisolid material that has shown potential in conformance 

control applications. This work addresses injectivity and the parameters that affect the 

injectivity of these materials, which to the authors’ best knowledge have not been 

addressed comprehensively in the literature. The results of this study demonstrate the 

effects of several factors on the injectivity of the sealants: void size, viscosity of the 

sealant, injection flow rate, and heterogeneity of the void. The results also promote the 

use of solids-free sealants, such as epoxy resin, in wellbore remedial operations because 

epoxy resin behaved like Newtonian fluid and can therefore be injected into very small 

voids with a minimum pressure requirement.
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1. INTRODUCTION

During the life of oil and gas wells, the wellbore cement is subjected to numerous 

types of failures, with many causes, as addressed by Alkhamis and Imqam (2021). 

Failures include, but are not limited to, the formation of micro-annuli between the well 

cement and its surroundings, cracks and fractures within the cement sheath, and channels 

that may develop during the hydration process of the cement. The failures may occur due 

to insufficient mud removal before the cementing operation, improper hydrostatic 

pressure delivered by the cement slurry during the primary cementing operation, casing 

expansion and contraction, and/or post-cementing causes, such as high-pressure tests and 

high-temperature variations during production (Thiercelin et al., 1998; Alkhamis and 

Imqam, 2018). Whether these failures occurred during drilling and completion, 

production, or even after abandonment, a remedial cementing job or “secondary 

cementing” operation is performed to restore the wellbore cement integrity. The well 

integrity is known as “application of technical, operational, and organizational solutions, 

to reduce risk of uncontrolled release of formation fluids throughout the life cycle of a 

well” (Norsok D-010, 2013). For this reason, the wellbore cement integrity must be 

maintained through the life of the well and after abandonment. Prior to any remedial 

operation, an injectivity test, using solids-free fluids, is conducted to determine some of 

the parameters required for secondary cementing as this operation requires a careful 

analysis. This analysis includes estimating the significance of the problem, evaluating the 

associated risk factors, selecting the proper sealing material, choosing the placement 

technique, and assessing the economic costs.
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Many materials can be used to seal the fluids’ pathways, which are created in the 

wellbores when failures occur, including conventional Portland cement, microfine 

cement, ultrafine cement, polymer gels, and polymer resins. The advantages and 

disadvantages of each of these sealing materials is discussed below.

For decades, Portland cement has been employed as the first choice for remedial 

jobs (Shryock and Slagle, 1968). In a process known as squeeze cementing, the cement 

slurry is forced into an opening in the casing to fill the voids behind the casing. The 

cement will then hydrate inside the voids, plugging any pathways for fluid migration. 

Although, this might sound like an easy process, it is associated with many 

complications. For example, the process may require more than one squeeze to plug the 

voids (Sanabria et al., 2016), or it might need a different squeezing technique, such as 

hesitation squeeze. In addition, this operation is limited by the void size (Jones et al., 

2014), as the cement’s solid particles may form a bridge in narrow clearances (Davis, 

2017). Microfine and ultrafine cement are also limited in penetrating voids less than 300 

microns in width (Wasnik et al., 2005). Another limitation is the vulnerability of the 

cements’ thickening time during which it can be affected by contamination (Dahlem et 

al., 2017). Also, this operation requires casing perforation in general. As alternatives, 

polymer gels and polymer resins may be used in cement remediation to overcome the 

limitations of conventional cement.

Polymer gels are mixtures of polymers and crosslinkers that can be combined and 

optimized to transform from liquids at the surface to semisolids in place. The 

polymerization may be activated by pressure, temperature, salinity, or acidity. Polymer 

gels can penetrate small voids, but the 3-D structure of the gel may break down at high



temperatures, losing its ability to trap fluids such as water in conformance control 

applications. Other limitations of polymer gels are their lack of mechanical strength 

(Wasnik et al., 2005) and bonding properties (Abdulfarraj and Imqam, 2019).

On the other hand, polymer resins, which are mixtures of base resins and 

hardeners (i.e., “curing agents”), have superior properties, as reported repeatedly in the 

literature. Polymer resins are defined as “free flowing polymer solutions that can be 

irreversibly set to hard, rigid solids” (Morris et al., 2012). The exceptional properties of 

polymer resins vary and include pre-curing (e.g., their tunable rheological behavior) 

(Alsaihati et al., 2017); surface wetting and adhesion abilities (Brooks et al., 1974; 

Shaughnessy et al., 1978); the ability to penetrate narrow voids (Todd et al., 2018); 

tunable density (which can be used for areas with a narrow fracture gradient) (Sanabria et 

al., 2016); and resistance to contamination (Perez et al., 2017). In addition, polymer 

resins possess excellent post-curing properties, such as high mechanical strength (Ali et 

al., 2016; Elyas et al., 2018), high resistance to significant strain (Khanna et al., 2018), 

and good bonding properties (Genedy et al., 2017). As a bonus, the polymerization 

reaction of polymer resins forms no by-product during hardening (Muecke, 1974), 

resulting in very little to no shrinkage. These properties have been also reported by 

Alkhamis et., (2019).

Selecting the proper sealant depends on the field job itself, meaning there are no 

general guidelines or rules to be followed in every case. However, there are some 

materials properties that can help to increase the possibility of a successful remedial 

operation. This work focuses on estimating the injectivity of several materials and 

analyzing the main factors that affect the injectivity of these materials, which is a key
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property that has not received enough attention in the literature on wellbore integrity. In 

this study, the primary factors affecting the injectivity were studied individually to 

identify which were major and which were minor. These factors included the type of 

fluid, void size into which the remedial fluid was injected, viscosity of the fluid, flow rate 

of the injection, heterogeneity of the void, and effect of the injection on the properties of 

the injected fluid.
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2. EXPERIMENTAL METHODOLOGY

2.1. MATERIALS

2.1.1. Cement. The cement used in this study was prepared by mixing API class 

H cement obtained from Halliburton company with distilled water. The grain size ranged 

from 10 to 150 microns. The water/cement ratio was 0.38, as stipulated in API 

specification 10A (API, 2010). The mixing was conducted in accordance with the mixing 

procedure of API RP 10B-2 (API, 2013), in which water was added first to a two-speed, 

bottom-drive laboratory blender, after which dry cement was added gradually to the 

blender while mixing at low speed for approximately 15 s. Then, the speed of the blender 

was increased to high speed for around 35 s.

2.1.2. Preformed Particle Gel (PPG). LiquiBlockTM 40K, a cross-linked 

polyacrylic acid/polyacrylamide copolymer particles gel obtained from Emerging 

Technologies was mixed with 1% NaCl brine solution. The dry gel particles were added 

to the brine solution during mixing with a magnetic stirrer. The solution was then left 

overnight to ensure full swelling. Next, the swollen particles were sieved and applied in



this study as a semisolid material. The dry particle sizes ranged from 420 to 841 microns 

(20-40 mesh).

2.1.3. Hydrolyzed Polyacrylamide Polymer (HPAM). A commercially 

available 20% hydrolyzed polyacrylamide polymer was mixed with distilled water using 

a magnetic stirrer. The powdered polymer was added slowly to the water while mixing, 

and the mixing was continued for around 24 hours to obtain a homogenous solution.

Three concentrations were used, 0.1% (1000 ppm), 0.3% (3000 ppm), and 0.6% (6000 

ppm), with the polymer solutions being solids-free materials.

2.1.4. Epoxy Resin. Epoxy resin was prepared by mixing an epoxy resin with an 

aromatic hardener at room temperature. The base resin was a diglycidyl ether of 

bisphenol A (DGEBA) obtained from Miller-Stephenson Chemical Company diluted 

with cyclohexanedimethanol diglycidyl ether (CHDGE), obtained from the same 

company. The diluent amount added to the resin was 100% by resin weight. The selection 

of this amount was based on a previous study conducted by Alkhamis and Imqam (2019). 

The aromatic hardener was diethyltoluenediamine (DETDA), obtained from Albemarle 

Corporation. The diluted DGEBA was accurately weighed into a glass beaker with the 

appropriate amount of DETDA (52% by weight of the diluted resin). The sample was 

stirred thoroughly at which point the curing agent was completely dissolved and a clear 

homogeneous mixture was obtained.

2.2. RHEOLOGICAL MEASUREMENTS

For the rheological measurements, three types of instruments were used. A 

dynamic shear rheometer (DSR) with parallel plates system supplied by Anton Paar
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measured the viscosity of the epoxy resin and the storage modulus (G’) of the PPG. A 

rotational viscometer (model 800) supplied by OFI Testing Equipment, Inc. (OFITE), 

characterized the viscosity behavior of the cement. A rheometer supplied by Brookfield 

Ametek, model DV3T assessed the viscosity of the polymer solutions.

To measure the viscosity of the epoxy resin, samples ranging from 0.5 to 1.0 ml 

of epoxy resin were placed on the lower plate of the instrument, and the upper plate was 

lowered to maintain a gap of 0.5 to 1.0 mm. The readings were taken in both ascending 

and descending order in a range from 0.1 1/s to 1000 1/s. To measure the storage 

modulus of the PPG, a sample of the swollen gel underwent in a similar procedure to the 

one undergone by the epoxy, but in this test, an oscillatory motion was applied at a 

frequency of 1 Hz to estimate the strength of the PPG.

For the cement’s viscosity measurements, the cement slurry was mixed and 

preconditioned at room temperature for 20 minutes. Then, the slurry was poured into the 

viscometer cup. The dial readings were taken in both ascending and descending order, 

with the highest speed being 300 rpm so not to disturb the slurry. The slurry viscosity 

readings were recorded as the average of the two dial readings at each speed.

For the HPAM viscosities, the solutions were prepared and samples of 8 ml were 

poured into the cup of the rheometer; readings were taken in both ascending and 

descending order. The rotational speeds were in the range of 0.1 to 250 rpm, with a 

waiting time of two minutes between each speed. The viscosity values presented in this 

work are the average values of the readings at each speed. The torque percentages were 

also recorded at each speed, and any torque value lower than 10% was removed as 

recommended by the rheometer’s manufacturer.
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2.3. INJECTIVITY MEASUREMENTS

Prior to any remedial operation, an injectivity test is performed to set the 

pressures and flow rates at which remedial fluids can be pumped into leakages zones.

This test helps in determining the key parameters for the treatment as well as the major 

limitations of the operation.

In this study, the experimental setup (Figure 1), consisted of a syringe pump, an 

accumulator, two pressure transducers, and stainless-steel tubes with various inner 

diameters (i.e., 0.876, 1.753, and 4.572 mm). This setup was prepared to establish the 

injectivity of several materials that have been employed or have the potential to be used 

for wellbore integrity applications. The materials included conventional API cement, 

solids-free polymer solutions, epoxy resin, and semisolid particle gels (PPG).

First, the accumulator was filled with the tested material and the injection began 

at a low flow rate of 1 ml/min. As it was, increased to 2, 4, and 8 ml/min, the injection 

pressure and the halfway pressure were recorded by pressure transducers. The fluids were 

collected from the outlet to be observed visually and tested using the rheological 

measurements mentioned above. Then, the injectivity of the fluids was calculated using 

Equation 1.

Injectivity = Injection  Flow Rate  
Injection  Pressure

(1)

where the injection flow rate is expressed in ml/min, the injection pressure is expressed in 

psi, and the injectivity is expressed in ml/psi*min.
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Figure 1. Illustration of the injectivity setup.

3. RESULTS AND ANALYSIS

3.1. RHEOLOGICAL RESULTS

Multiple parameters affect the injectivity of any material, with one of the most 

significant being its viscosity. In this study, the viscosity of the cement was measured 

using a rotational viscometer. Figure 2a shows the viscosity behavior of API cement class 

H. The cement exhibited a behavior similar to that of Bingham plastic model, which 

requires a yield stress to initiate flow.

On the other hand, the epoxy resin behaved like a Newtonian fluid (Figure 2b), 

where no stress or only a very small stress was required to initiate flow, and the viscosity 

was independent of the shear rate. The viscosity of the epoxy resin was found to be 

around 400 cp.
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Figure 2. Viscosity results of (a) class H cement and (b) epoxy resin.

For the PPG, since the material is semisolid, the rheology characterization makes 

more sense in terms of the storage modulus, which represents the strength of the material. 

The strength of PPG can be controlled by adjusting the salinity of the brine in which the 

gel particles are swollen (Imqam et al., 2017). However, the swelling capacity will also 

be affected. In general, the higher the salinity, the higher the strength and the lower the 

swelling ratio. In this study, the gel particles were swollen in 1wt% NaCl, resulting in a 

G’ of 850 Pa, estimated using the DSR.

For the HPAM solutions tested in this study, a rotational rheometer with a cup 

was used. HPAM is a solid-free solution that is widely used in enhanced oil recovery 

applications. For wellbore integrity it can mixed with an initiator to create a 3-D network 

to plug cement gaps. In this work, three concentrations of HPAM were studied; 0.1% 

(1000 ppm), represented in this paper as low viscous solution (LV); 0.3% (3000 ppm),



50

represented in this paper as moderately viscous (MV); and 0.6% (6000 ppm), represented 

in this paper as highly viscous (HV).

Figure 3 illustrates the rheological behavior of the HPAM solutions. The HPAM 

solutions experienced shear thinning behavior in which the viscosity decreased by 

increasing the shear rate. Different concentrations were selected to study the effect of the 

viscosity of the material on its injectivity.

Shear Rate [1/s] Shear Rate [1/s]

Figure 3. Viscosity results for HPAM solutions.

3.2. SEALANT INJECTIVITY RESULTS

The injectivity of the materials tested was measured using the setup in Figure 1. 

Several experiments were conducted to better identify and understand the most important 

factors that affect cement remedial operations and the selection of the proper sealant. 

These factors include the type of fluid injected, void size into which the remedial fluid is



injected, viscosity of the fluid, flow rate of the injection, heterogeneity of the void, and 

effect of the injection on the properties of the injected fluid.

3.2.1. Effect of the Void Size on Injectivity. Three void sizes were used, 

consisting of two-foot tubes with inner diameters of 0.8763 mm, 1.753 mm, and 4.572 

mm. The fluids’ injection pressure and halfway pressure were monitored and recorded.

The injectivity of each fluid at various conditions was calculated based on the flow rate 

used and reaching stable pressure. Figure 4a illustrates the injection pressure of the 0.1% 

(1000 ppm) polymer solutions (i.e., LV polymer solution), showing that after 

approximately 10 minutes, the solutions reached stable pressure. The pressure increased 

as the void size decreased. The pressure was around 0.07 psi when the 4.572 mm void 

was used and increased to around 2.85 psi when the 0.8763 mm void was used. Both 

experiments were run at a flow rate of 1 ml/min. This huge increase in pressure reduced 

the injectivity by approximately 96.5% (from 10 to 0.348 ml/psi*min). There were no 

changes in the appearance of the solutions before and after the injection, which correlates 

to the viscosity measurements that will be presented later in this paper.

Figure 4b shows the injection pressure of PPG vs. time. The void size had a more 

significant impact on the injectivity of the PPG, increasing the injection pressure from 

around 2 to 80 psi using a flow rate of 1 ml/min for both tests. In addition, permanent 

deformation of the gel particles was observed at the outlet of the 1.753 mm void but not 

in the 4.572 mm void.

The permanent deformation of the PPG and the great increase in the injection 

pressure when the 1.753 mm void was used eliminated the need to use smaller sized void.
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Figure 4. Effect of the void size on the injectivity of (a) HPAM, and (b) PPG.
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Conventional Portland cement is the most widely used material for oil and gas 

wells repairs. However, Portland cement has limitations, and primarily the size of the 

gaps that the cement can penetrate, as evident in Figure 5a. With a void size of 4.572 

mm, the cement injection pressure was slightly higher than that with LV polymer solution 

and relatively smaller than with the PPG. In this experiment, the cement showed high 

injectivity and passed through the void easily. However, when the void size was reduced 

to 1.753 mm, the cement injection pressure increased drastically to more than 500 psi.

The associated reduction in the injectivity of the cement was near 99.78%. This effect of 

the void size on the cement injectivity has led the industry to shift or consider shifting to 

alternative sealants for wellbore remediation operations. In addition, the industry has 

sought other solutions, such as altering the methods of injecting the remedial sealants. 

Figure 5b demonstrates how using the same void size (1.753 mm) but switching the 

injection mode from running squeeze to hesitation squeeze helped raise the chances of 

successful cement placement. Lastly, in Figure 5b, the effect of the constant injection
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pressure can be seen in the far right section of the graph, which shows that the cement 

was not able to pass through the first foot to the point where the second pressure recorder 

was located; however, switching the method of injection facilitated the process, as shown 

in P2 at the 18th minute. Also, the constant injection pressure supported the continual 

increase in P2, which indicate that the cement was flowing inside the void. At the effluent 

of the void of these experiments, there were two major observations worth mentioning. 

First, when using the larger void size (4.572 mm), the effluent manifested at first as drops 

of water, followed by cement slurry, then again as a few drops of water, followed again 

by cement slurry, indicating that the water might have separated from the cement slurry 

during the injection. This separation can greatly impact the outcome of the remedial 

operation. Second, during the 1.753 mm test, there were only a few drops of water, but 

the cement was able to plug the void. These changes in the cement fluidity can be 

overcome using additives, such as fluid loss additives. In this study, only neat cement 

was injected to reduce the complexity of the tests.

0 20 40
Injection Time [min]

0 20 40 60 80
Injection Time [min]

Figure 5. Effect of the void size on the injectivity of cement.
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On the other hand, the epoxy showed similar behavior to the HPAM, in terms of 

injectivity with respect to the void size. Figures 6a shows the low injection pressure 

required to force the epoxy into the 1.753, and 4.572 mm voids. The injectivities of the 

epoxy at a flow rate of 1 ml/min were 0.27 and 10.0 ml/psi*min. However, the injectivity 

reduced to approximately 0.025 ml/psi*min when 0.8763 mm void was used (see Figure 

6b), which is due to the high viscosity of the epoxy. This viscosity can be altered using 

diluents, reactive materials that can reduce the viscosity with minimum effects on 

mechanical properties, as reported in the literature.

0 10 20 30 40
Injection Time [min]

Figure 6. Effect of the void size on the injectivity of epoxy (a) 1.753, and 4.572 mm
voids, and (b) 0.8763 mm void.

3.2.2. Effect of the Viscosity of the Fluid on the Injectivity. To understand 

whether the viscosity of the injection fluid had a major impact on the injectivity of the 

materials in the remedial jobs, three polymer solutions were injected into the same void 

size at the same flow rate (2 ml/min). The polymer solutions were HPAM with low



viscosity (LV), HPAM with moderate viscosity (MV), and HPAM with high viscosity 

(HV). HPAM was selected because the rheological results of HPAM showed shear 

thinning behavior. The three HPAM solutions were injected into the smallest void size 

used in this study (0.8763 mm). Figure 7a shows the polymer injection pressure. Similar 

to the previous tests, the injection continued until a stable pressure was reached. In this 

case, the stabilized pressures for the LV, MV, and HV polymer solutions were around

3.9, 5.3, and 10.72 psi, respectively. These injection pressures were compared to that of 

water and the viscosity of the injection fluid played a major role in the injectivity of the 

material (see Figure 7b), which shows the relationship between the injection pressure and 

the flow rate. Figure 7b was generated using the same polymer solutions but different 

flow rates (i.e., 1, 2, 4, and 8 ml/min). This relationship allowed for studying the 

combined effect of the flow rates and the viscosity on the injectivity of the materials. The 

relationship between the injection pressure and the flow rate for water is linear, unlike the 

relationship for the polymer solutions.

Results similar to these should be considered in the field when sealants are 

applied. It is better for a successful sealant placement to employ a Newtonian fluid where 

the pressure at each flow rate can be predicted effectively. Additionally, it is beneficial 

that only a low or very small yield stress is required to initiate flow.

It is noteworthy that the injectivity of the Newtonian fluid (water herein) did not 

change by changing the flow rate. This will be discussed further in the results of the 

epoxy resin injection.
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Figure 7. Effect of the viscosity on the injectivity of the polymer solutions.

3.2.3. The Effect of Flow Rate on Injectivity. For each material studied herein, 

flow rate experiments were conducted using multiple void sizes to study the effect of 

flow rate on the injectivity of the sealants. First, HPAM solutions were injected into the 

void. Figure 8a shows the results of injecting the moderate viscosity HPAM solution into 

a 0.8763 mm void. As can be seen, increasing the flow rate resulted in an increase in the 

injection pressure. The calculated injectivity associated with these measurements also 

showed an increase in the injectivity from 0.114 ml/psi*min at a flow rate of 1 ml/min to 

0.803 ml/psi*min at a flow rate of 8 ml/min. Similar results were obtained when the low 

viscosity and high viscosity polymer solutions were injected. The results of changing the 

void size were also consistent with this behavior. However, the relationship between the 

stabilized injection pressure and the flow rate were not linear (Figure 8b), the opposite of 

the results obtained when water was injected.
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the injectivity of the HPAM solution.

The PPG showed similar results to those of the HPAM solutions, as shown in 

Figure 9a but with the PPG, it was even more difficult to define a clear relationship 

between the injection pressure and the flow rates, as shown in Figure 9b. These results 

further complicate the remedial operation. The behavior of the PPG is to the elasticity of 

this semisolid material. The gel particles deformed inside the void space, resulting in a 

high fluctuation in the pressure readings. The results presented here are for a void of 

4.572 mm, the largest size used in this study. For the smaller size (1.753 mm), the results 

were even more complicated, and the gel particles left the void with permanent 

deformations. This might be solved using semisolid gel particles that can reassociate 

inside the void, creating an impermeable network capable of permanently plugging the

cement features.
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Figure 9. Effect of the injection flow rate on the injectivity of the PPG.

Epoxy, which is one of the most recent technologies in wellbore integrity, 

behaved differently. When the rheological properties of the epoxy resin were tested, it 

showed Newtonian behavior, which is the preferred behavior for this application in terms 

of the yield stress required to initiate movement. Figure 10a shows the results of injecting 

epoxy resin into a void size of 1.753 mm, where increasing the flow rate of the injection 

resulted in an increase in the injection pressure. However, in this case the relationship 

between the injection pressure and the flow rate was linear, as shown in Figure 10b.This 

is significant and advantageous because in this case, the injectivity was independent, and 

the injection pressure could be predicted precisely prior to any remedial job, leading to a 

placement with less risk of fracturing the cement and its surroundings, which would

exacerbate the situation.
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Figure 10. Effect of the injection flow rate on the injectivity of the epoxy resin.

3.2.4. Effect of Heterogeneity on the Injectivity. The effect of the 

heterogeneity of the voids on the injectivity of the sealants in Figures 11a and b, which 

show the injection pressure of the PPG and HPAM solutions, respectively. These figures 

show the pressure reading at various locations in the void. The solid-free material 

(HPAM) experienced no effect as a result of the heterogeneity, while the pressure reading 

for PPG rose and decreased and also reached higher values than those obtained using a 

uniform void of the same size. This suggests that using a solids-free sealant reduces the 

risk of false readings during the placement of the sealant.

Figure 12a shows that epoxy sealants experiences minimum effect when injected 

into heterogenous void space. The pressure readings recorded at both the inlet and 

halfway of the void were close to each other and the material was smoothly flowing in 

the void. Figure 12b illustrates the effect of increasing the flow rate in a heterogenous 

void. Again, the epoxy flowed smoothly, and the pressure readings were close. The
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injectivity was slightly higher than that of the 1.753 mm void but lower than the 4.572 

mm void. Additionally, the flow rate had very little effect on the injectivity.

0 200
Injection Time [min]

Figure 11. Effect of the heterogeneity on the injectivity of the (a) PPG, and (b) HPAM
solutions.
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Table 1 summarizes the results of the various sealant injectivities obtained at 

different flow rates, void sizes, and viscosity. Only Newtonian fluids showed the same 

injectivity when the flow rates varied.
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Table 1. Effect of flow rate, void size, heterogeneity, and viscosity on the injectivity.

.a
a

a

1
S
b

V o id  s iz e ,  1 /1 6 ”  ( 0 .8 7 6 3  m m ) V o id  s iz e ,  1 /8 ”  ( 1 .7 5 3  m m ) V o id  s iz e ,  1 /4 ”  ( 4 .5 7 2  m m ) H e t e r o g e n e o u s  V o id s

W a t e r
L V

( H P A M )
M V

( H P A M )
H V

( H P A M )
E p o x y
R e s in

S o lid s -
l r e e

( H P A M )

E p o x y
R e s in

S e n tis o lid
( P P G )

C e m e n t
S o lid s -

f i e e
( H P A M )

E p o x y
R e s in

S e m is o l id
( P P G )

C e m e n t
S o lid s -

f r e e
( H P A M )

E p o x y
R e s in

S e m is o l id
( P P G )

1 7 .7 1 0 0 .3 4 8 0 .2 4 3 0 .1 1 4 0 .0 2 5 1 .163 0 .2 7 0 0 .0 1 1 7 0 .0 0 2 10 1 0 .0 0 0 0 .4 9 7 5 0 .9 0 9 1 .786 0 .5 1 9 0 .0 3 5 4

2 10 .005 0 .5 1 9 0 .3 7 6 0 .1 8 7 - 1 .852 0 .2 6 2 0 .0 2 3 1 - 1 0 .5 2 6 1 1 .0 5 0 0 .5 9 1 7 - 2 .8 9 9 0 .5 2 2 0 .0 5 1 4

4 1 0 .5 0 9 - 0 .5 6 5 0 .2 9 7 - 3 .0 7 7 0 .2 6 7 0 .0 4 1 4 - 1 9 .0 4 8 1 1 .7 9 9 0 .8 9 4 9 - 3 .8 0 9 0 .5 3 6 -

8 10 .0 0 5 - 0 .8 0 3 0 .4 4 9 - 4 .4 4 4 0 .2 7 2 0 .0 6 0 2 - 3 0 .7 6 9 1 2 .7 8 0 0 .6 7 9 7 - 5 .2 9 8 0 .5 4 3 -

3.3. RHEOLOGY ANALYSIS AFTER SEALANT INJECTION

Earlier, it was stated that the cement had undergone phase separation during and 

after the injection into the voids, which can affect the efficiency of the cement inside the 

cement gaps. In addition, we mentioned that a deformation effect occurred when PPG 

was injected into the 1.753 mm voids, which might negatively affect the remedial 

operation. Conversely, the HPAM solutions and epoxy resin maintained their rheological 

behavior after injection. For the HPAM, the results of the rheology were almost identical 

before and after the injection, including injection at different flow rates. Figure 13a 

shows the rheology results of the HPAM solutions before the injection, while Figure 13b 

displays the results directly after the injection. Figure 13 only presents the results of 

injecting the HPAM solutions into the smallest void (0.8763 mm). Similar results were



obtained for the other flow rates (Figures 14a and b) and for the epoxy resin system.

These results are good indication and can wrap up the results of this study and a 

conclusion can be drawn that solids-free sealants such as epoxy resin might be the most 

effective solution for wellbore integrity applications.
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Figure 13. Effect of the injection on the
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of the HPAM solutions (2 ml/min).
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Figure 14. Effect of the injection on the rheology of the HPAM solutions (8 ml/min).
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4. CONCLUSIONS

This work presented the injectivity of several materials that can be used in the 

wellbore remediation of oil and gas wells. The effects of several factors were studied in 

detail, allowing several conclusions to be drawn. The main conclusions are summarized 

below:

• The void size, viscosity of the sealants, injection flow rates, and heterogeneity of 

the voids played major roles in determining the injectivity of the sealants. Having 

a sealant with Newtonian behavior was beneficial in eliminating the effect of the 

flow rate.

• Solids-free sealants exhibited the most potential to successfully remediate 

wellbores in terms of the injectivity of the material.

• Solids-free sealant demonstrated high injectivity and low degradation after 

injection.

• The epoxy resin showed Newtonian behavior, and the injectivity showed the 

effect that Newtonian materials have on the injectivity.

• The cement presented a huge limitation in terms of its ability to penetrate small 

voids.

• The PPG showed good injectivity, but unless this injectivity is correlated with the 

ability to develop enough strength to hold reservoir fluids in place, this injectivity

is not useful.
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III. SOLIDS-FREE EPOXY SEALANT MATERIALS’ INJECTIVITY THROUGH 
CHANNELS FOR REMEDIAL JOB OPERATIONS

ABSTRACT

Remedial cementing job is an operation conducted in the petroleum industry to 

restore the primary cementing integrity of oil and gas wells. The remedial job is needed 

when the integrity of the primary cement is compromised, and the wellbore is prone to 

fluids migration. This work studies the behavior of several sealants that can be used in a 

remedial job including solids-free material, semi-solids material, and Portland cement. 

The focus of this study is on testing the rheological behavior, the injectivity, the effect of 

the size of cement’s voids on the injectivity of different sealants, and the strength of the 

sealants. Laboratory experiments were conducted to evaluate the performance of several 

sealants in different cement’s voids sizes. The results of this work demonstrate that 

solids-free materials such as epoxy resin has the highest injectivity among the tested 

sealants even in very small gaps. The epoxy resin develops higher compressive strength 

than that of the conventional Portland cement. This work points out the importance of 

selecting the appropriate type of sealant on the effectiveness of the remedial job.

1. INTRODUCTION

During the drilling and completion phases of oil and gas wells, cement is placed 

in the wellbore as a barrier between the casing and the formation. All casing strings must 

be cemented to protect and support the casing, and to isolate production zones. The



operation of cementing the wellbore casings is called primary cementing. The primary 

cement must prevent the wellbore fluids from migrating in an annular flow path so as to 

allow the wells to be utilized without any control problems. The main objective of 

cementing the annulus is to provide zonal isolation. No fluid communication should 

happen during the life of the well among the formations and the surface, no matter which 

fluids these formations are saturated with water, oil, and gas (Thiercelin et al., 1998; 

Alkhamis and Imqam, 2018; Ahdaya and Imqam, 2019).

The primary cement may fail to deliver full zonal isolation due to several reasons 

such as insufficient mud removal before the cementing, casing expansion, and 

contraction. These conditions may cause micro annuli either between the cement and the 

casing or between the cement and the formation. Other failures such as channels may 

occur because of high fluid losses, cement free fluids, and inadequate hydrostatic 

pressure. In addition, high-pressure tests and temperature variations across the cement 

may cause cracks in the cement sheath. Also, if the cement is placed in zones where 

corrosive fluids are presented, chemical degradation could compromise the cement 

integrity. If any of these failures occurred during the life of the well, remedial job must be 

performed to restore the well integrity. Failing to restore the cement integrity may lead to 

unwanted severe consequences to the environment, the equipment, and personnel. The 

well integrity is defined as “application of technical, operational, and organizational 

solutions, to reduce risk of uncontrolled release of formation fluids throughout the life 

cycle of a well” (Norsok, 2013). For this, the integrity of the cement must be maintained 

through the life of the well and after abandonment.
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Remedial cementing job, also known as secondary cementing, is an operation 

conducted to restore the primary cementing integrity of a well. This operation requires as 

much attention as primary cementing if not more. Many considerations must be taken 

into account to guarantee success. All parameters related to the remedial job must be 

analyzed carefully, starting with estimating the significance of the problem, evaluating 

the associated risk factors, conducting injectivity test, selecting the proper sealant, 

picking out the placement technique, and assessing economic costs. Generally, there are 

two main pumping techniques used in remedial squeeze operations, (1) running squeeze, 

in which the zone of interest is isolated and the cement is squeezed continuously into the 

zone, (2) hesitation squeeze, where cement slurry is pumped intermittently with short 

shutdown periods (Goodwin, 1984; London et al., 2013).

For remedial operations, squeeze cementing is usually the method of repair 

(Shryock and Slagle 1968). Squeeze cementing is the process of forcing a cement slurry 

into a hole in the casing and the voids behind the casing. A properly designed cement 

slurry will cure inside the voids without fluid losses to the matrix of the formation. 

However, this method may require multiple squeezes to achieve shut-off (Sanabria et al., 

2016). This method is also limited by the leakage size (Jones et al., 2014) as the cement 

contains solid particles that may starts bridging in narrow clearances (Davis, 2017). Even 

micro cement can be limited in penetrating gaps of less than 300 microns in width 

(Wasnik et al., 2005). Another limitation related to micro cement is the cements’ 

thickening time that get affected by contamination (Dahlem et al., 2017). Generally, 

squeezing cement require casing perforations. One of the alternative techniques to
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squeeze cementing is the use of cross-linked polymers and polymer resins, which can 

easily penetrate small gaps.

A combination of polymer and cross-linker can be optimized on the surface to 

transform from liquid form to semi-solids at downhole temperature. Although, polymer 

gel can penetrate micro pores and channels, the 3D network structure of the gel 

breakdown at high temperatures and lose its ability to trap fluids such as water in water 

shut off applications. The other limitation of cross-linked polymers is their lack of 

mechanical strength (Wasnik et al., 2005). In addition, to the weak bonding between 

these polymers and their surroundings (Abdulfarraj and Imqam, 2019).

Polymer resin systems are mixtures of base resin and curing agents. Polymer resin 

systems can be defined as “free flowing polymer solutions that can be irreversibly set to 

hard, rigid solids.” (Morris et al., 2012). Many researchers mentioned the superior 

properties of polymer resin systems as sealant such as (Alsaihati et al., 2017), who 

mentioned their good and tunable rheological behavior. Todd et al., 2018 discussed how 

solids-free material could penetrate small gaps. The good wetting and adhesive properties 

of these sealants for mineral surfaces were studied by (Brooks et al., 1974 and 

Shaughnessy et al., 1978). The flexibility in density which is good for areas of narrow 

fracture gradient was mentioned by (Sanabria et al., 2016), and the resistance to 

contamination was studied by (Perez et al., 2017). In addition, to these liquid properties, 

solid cured sealant provides high mechanical strength (Ali et al., 2016 and Elyas et al., 

2018), resists significant strain (Khanna et al., 2018), develops good bonding properties 

(Genedy et al., 2017). In addition, the polymerization reaction of polymer resin systems 

forms no by-product during (Muecke, 1974). Alkhamis et al., 2019 evaluated in details an
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epoxy resin system and the results were promising. For these reasons, this type of sealant 

is being used for cement remedial jobs.

This work, which is an extension of (Alkhamis et al., 2019), presents the results of 

testing several sealants including cement, semi-solids, and solids-free polymer to point 

out some factors related to remedial jobs. The study includes the rheological behavior, 

the injectivity, the effect of the size of cement’s voids on the injectivity of the sealants, 

and the strength of the sealants. The findings obtained from this work can be utilized in 

optimizing the cement remedial operations.

2. EXPERIMENTAL DESCRIPTION

2.1. EXPERIMENTAL MATERIALS

2.1.1. API Class-H Cement. The cement systems used in this study were 

prepared using American Petroleum Institute (API) Class-H cement and distilled water. 

Using gas Pycnometer, the specific gravity of the cement was measured to be 3.18. The 

chemical composition of Class-H cement was obtained using X-ray fluorescence 

spectroscopy (XRF). Table 1 lists the chemical composition of class-H cement.

Table 1. The chemical composition of class-H cement.

Comp. CaO SiO2 Fe2 O3 Al2 O3 SO3 MgO K2 O SrO TiO2 Other
Wt % 65.72 20.36 6.19 3.17 2.26 1.32 0.43 0.21 0.16 0.18

2.1.2. Epoxy Resin. A mixture of Bisphenol A diglycidyl ether resin (BADGE), 

which is an undiluted difunctional resin and cyclohexane dimethanol diglycidyl ether



(CHDGE), which is a reactive diluent was used as the base resin material in this study.

The base resin was cross-linked (cured) by an aromatic curing agent known as 

diethyltoluenediamine (DETDA). Figure 1 shows the chemical structure of the epoxy 

resin components.
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Figure 1. The chemical structure of the epoxy resin components.

2.1.3. Preformed Particle Gel. A commercial superabsorbent polymer was used 

as semi-solids material in this study. The preformed particle gel (PPG) is a cross-linked 

polyacrylic acid/polyacrylamide copolymer. The dry particles size are around 400-800 

microns as shown in Figure 2. The PPG samples were swollen in a brine solution, which 

consists of distilled water and 1.0% sodium chloride (NaCL).
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a) Dry PPG b) Swollen PPG

Figure 2. The PPG in its dry condition and after swollen (Imqam et al., 2017).

2.1.4. Hydrolyzed Polyacrylamide Polymer. The hydrolyzed polyacrylamide 

polymer (HPAM) used in this work was 20% hydrolyzed. It is a commercially available 

polymer. It was provided as a white granular powder. The HPAM was mixed with 

distilled water and used in the injectivity experiments to mimic solids-free material.

2.1.5. Cement Paste Preparation. All API cement slurries were mixed following 

API RP 10B-2 (2013) procedure at room temperature in a two-speed bottom-drive 

laboratory blender. Dry cement particles were added to the blender at a uniform rate 

while mixing at low speed for around 15 seconds. Then, the blender was covered while 

the mixing continued for 35 seconds at high speed. All cement systems had a 

water/cement ratio (WCR) of 0.38 in accordance to API specification 10A (API, 2010).

2.1.6. Epoxy Resin Preparation. To prepare the epoxy resin mixture, a specific 

amount of the diluted resin were weighted and mixed at room temperature by hand and/or 

using a magnetic stirrer until a homogenous fluid was obtained. Then, a calculated 

amount of curing agent was added to the blend and mixed at low shear rate until the



mixture was clear and homogenous. For the high temperature experiments, the mixture 

was heated until the desired temperature while stirring using heated magnetic stirrer.

2.1.7. Preformed Particle Gel Preparation. To prepare the preformed particle 

gel (PPG) system, the dry particles of PPG were added to 1% brine solution and left for 

48 hours to ensure that the particles are fully swollen. Then, the particles were placed in a 

sieve to separate the particles from the excessive brine solution.

2.1.8. Hydrolyzed Polyacrylamide Preparation. To prepare the hydrolyzed 

polyacrylamide polymer (HPAM), a specific amount of the polymer was mixed with a 

specific volume of distilled water at room temperature using a magnetic stirrer at low 

shear rate for 24 hours.

74

3. EXPERIMENTAL METHODOLOGY

This part of the study provides the description and procedure of each experiment 

conducted in this work. The experiments include the sealants’ rheological behavior 

measurements, the isothermal curing measurements, the injectivity measurements, and 

the strength measurement.

3.1. RHEOLOGICAL MEASUREMENTS

An advanced Anton Paar Rheometer, which is a dynamic shear Rheometer (DSR) 

with parallel plates system, was used to measure the viscosity of the HPAM and the 

epoxy resin systems. Samples of 0.5 to 1.0 ml of the materials were placed on the lower 

plate of the instrument and the upper plate was lowered to a gap of 0.5 to 1.0 mm. The



reading were taken in both ascending and descending order in a range of 0.1 1/s to 1000 

1/s. The Rheometer was also used to measure the storage moduli (G’) of the PPG, which 

represent the strength of the material. G’ was measured at a frequency of 1 Hz.

The viscosity of the cement slurries was measured using an Ofite viscometer 

(model 800). For these measurements, the slurries were preconditioned before obtaining 

the rheological readings at room temperature and atmospheric pressure. The dial readings 

were taken in ascending order, and then in descending order with highest speed of 300 

rpm. Higher speeds were not used to avoid disturbing the cement slurries. The ratio of the 

two readings at each speed was used to help qualify some of the slurry’s properties (API 

RP 10B-2 2013). The slurries rheological measurements were recorded as the average of 

the two dial readings at each speed.

3.2. ISOTHERMAL CURING MEASUREMENTS

These measurements are executed to estimate the gelling time of the epoxy resin 

to define its workability. This information is essential to be known to protect the 

downhole equipment and to ensure a safe and successful placement of the sealant inside 

the cement voids. For these measurements, sinusoidal oscillatory tests using the dynamic 

shear Rheometer (DSR) were performed at an angular frequency of 10 rad/s and the 

complex viscosity increase with time was monitored while the preheated epoxy resin 

sample was curing at high temperature. In these tests, disposal parallel plates of 25 mm in 

diameter were used as the tests were run until the epoxy resin reached a complex 

viscosity of 9,000,000 centipoise. The plates were discarded after each experiment.
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3.3. INJECTIVITY MEASUREMENTS

The injectivity test is a well-known test in the oil and gas industry. This test is 

performed to establish the rate and pressure at which fluids can be pumped into the 

treatment target without fracturing the formation. This test is conducted in the field prior 

to any remedial job to help determine the key parameters of the treatment and the 

operating limitations. In this work, an experimental setup consists of a syringe pump, an 

accumulator, two pressure transducers, and stainless-steel tubes with different inner 

diameters were used as shown in Figure 3. First, the accumulator was filled with the 

tested sealant, the injection started at different flow rates (1, 2, 4, and 8 ml/min), the 

injection pressure and the halfway pressure were monitored and recorded by the pressure 

transducers. The effect of flow rates on the injectivity of each type of the sealants, the 

effect of the size of the voids on the injectivity of the sealants, and the effect of the 

heterogeneity of the voids on the sealants were studied along with some effects of the 

size of the voids on the properties of the tested sealants.

S ealan t

Pressure
I ran saucers

Sealant
P U M P

n  S ealan t

l ubes
Accumulators

I l l lucnt
Figure 3. The Injectivity setup: (a) represent 4.572 mm inner diameter tube, (b) represent 

1.753 mm inner diameter tube, and (c) represent a combination of both tubes.
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3.4. COMPRESSIVE STRENGTH MEASUREMENTS

For the compressive strength measurements of the epoxy resin, the epoxy resin 

was preheated to 80°C prior to pouring it into 2” x 2” x 2” cubic molds. The molds then 

were placed in an oven at 80°C for 24 hours. Then, the cured cubes were carefully 

removed from the molds. The specimen height and width were measured using a caliper, 

and the minimum surface area was calculated. A hydraulic press was used to measure the 

force required to crush the samples. The compressive strength was reported in [psi]. For 

the compressive strength measurements of the cement, the same procedure was followed 

except for the curing condition as the cement was cured in a water bath at room 

temperature.

4. RESULTS

The results of each experiment are presented and analyzed in this section 

according to their importance in the application of the sealants in the remedial operation.

4.1. RHEOLOGICAL AND ISOTHERMAL CURING RESULTS

First, the viscosity of the solids-free material (diluted epoxy resin) was measured 

using the Rheometer. Figure 4a presents the shear stress vs shear rate chart. The diluted 

epoxy resin showed Newtonian rheological behavior with no or very low yield stress. The 

viscosity was found to be around 400 cp at room temperature with no effect of changing 

the shear rate on the viscosity. The amount of the diluent was around 50% by weight of 

the total mixture. Different concentrations of diluent were also studied and their results



are presented in a different study that focuses on the epoxy resin as a sealant and the 

effect of the diluent on the viscosity of the resin, the results can be found in (Alkhamis et 

al., 2019). Then, using the Ofite viscometer the rheological behavior of the neat class-H 

cement slurry was obtained, and the cement behaved like Bingham plastic model. This 

behavior as shown in Figure 4b requires some yield stress, which is the minimum stress 

required to initiate flow. In addition, the storage moduli (G’) of the PPG, which represent 

the strength of the material was found to be 850 pa.

78

0 200 400 600 800 1000
Shear Rate [1/s]

Figure 4. The viscosity results diluted resin and the cement.

Since the solids-free material studied here was epoxy resin, which require 

elevated temperature to be activated, the viscosity of the epoxy at higher temperatures 

was evaluated. The temperature presented here is 80 °C different temperatures are 

presented in (Alkhamis et al., 2019). Figure 5a shows the effect of the higher temperature 

on the viscosity of the epoxy resin. The viscosity was found to be around 23 cp and the 

behavior is Newtonian like. Figure 5b shows the complex viscosity vs time, which



represent the isothermal curing result of the epoxy resin at 80 °C. The epoxy resin’s 

complex viscosity was increasing slightly for around 6 hours from 23 cp to around 400 

cp, which could be where the gelling time started. Then, the liquid material started to 

transform to solid after around 8 hours. After 10 hours, there was a rapid increase in the 

complex viscosity reaching around 24,000 cp. When the system cured for around 14 

hours, the complex viscosity was around 9,000,000 cp. After obtaining this result, HPAM 

with similar viscosity (around 23 cp) was selected to be used in the injectivity 

measurements. HPAM exhibited shear-thinning behavior but it was used in this study 

anyway because the results that will be obtained using HPAM will underestimate the 

injectivity of solids-free sealant especially at low flow rates. It was essential to use 

different material than epoxy resin in the injectivity measurements because this type of 

experiments require high amount of sealant and because the epoxy require the addition of 

heat source to the setup used.
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Figure 5. The effect of temperature on the viscosity of the epoxy resin and the curing
process.
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4.2. INJECTIVITY RESULTS

Before any remedial job, injectivity test may be conducted by injecting a solids- 

free material through the annulus of the wellbore from the surface or through perforations 

in the casing to determine the injectivity factor. This practice’s objective is to increase the 

success rate of the remedial job (Alsaihati et al., 2017). Solids-free systems are needed in 

the applications where the injectivity is very low and the injectivity factor is very high. 

For example, in an application where the injectivity factor is between 2000 and 4000 

psi*min/bbl, micro fine cement can be used while in an application where the injectivity 

factor is greater than 6000 psi*min/bbl, cement is not a good choice (Cowan, 2007). The 

injectivity factor is inversely proportional to the injectivity.

In this study, the injectivity of a solids-free material (HPAM, which has similar 

viscosity as the epoxy resin), semi-solids material (PPG), and solids material 

(conventional Portland cement) were obtained. Using the setup shown in Figure 3, 

different sealants were injected at four flow rates (1, 2, 4, and 8 ml/min) into the designed 

channel models a, b, and c. The injectivity of the sealants at the different flow rates were 

calculated using the following equation:

.  . . .  . .  Injection  f lo w r a t eInjectivity = --------------------- (1)
Injection  pressure

where, the injection flow rate is expressed in [ml/min]; the injection pressure is expressed 

in [psi]; and thus, the injectivity is expressed in [ml/min*psi].

4.2.1. Solids-Free Materials Injectivity Results. Figure 6 illustrate the injection 

pressure results for the solids-free material in void size of 1.753 mm and 4.572 mm inner 

diameters. The prepared solids-free solution was poured in the accumulator and the 

injection started using the syringe pump at low flow rate (1 ml/min). Then, the flow rate



was increased from 1 to 2 to 4 to 8 ml/min. The injection continued until stable pressure 

was achieved after each injection rate. As shown in Figure 6a the injection of the solids- 

free material at 1 ml/min stopped after injecting around 60 ml of the sealant and the 

pressure monitoring showed stable pressure of around 0.86 psi. This pressure and flow 

rate were used in the injectivity equation and the injectivity was around 1.163 

ml/min*psi. The same protocol was followed but with increasing the flow rate from 1 to 

2 to 4 to 8 ml/min, respectively. Increasing the flow rate from 1 to 8 ml/min increased the 

stable pressure to around 1.78 psi, which is a low pressure considering the size of the 

void and the high flow rate. This result indicate that the solids-free materials have high 

injectivity even in very small gaps. The injectivity increased by increasing the flow rate. 

Similarly, Figure 6b shows the stable injection pressures of the four injections but into 

the larger 4.752 mm. The stable injection pressures for the flow rates were lower than 0.4 

psi. The solids-free material was able to penetrate both tubes very easy and with no 

deformation.
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4.2.2. Semi-Solids Materials Injectivity Results. Figure 7 illustrate the injection 

pressure results for the semi-solids material into channel size of 1.753 mm and 4.572 mm 

inner diameters. To measure the injectivity of semi-solids material, the prepared PPG 

particles were packed in the accumulator and the injection started using the syringe pump 

at low flow rate (1 ml/min). Then, the flow rate was increased from 1 to 2 to 4 to 8 

ml/min. The injection stopped when the injection pressure reached stable pressure.

The injectivity of the semi-solids material at 1 ml/min in the small tube was 

around 0.0117 ml/min*psi, which is a lower injectivity when compared to the solids-free 

material at the same flow rate and void size. The same protocol was followed in injecting 

the semi-solids material but with increasing the flow rate from 1 to 2 to 4 to 8 ml/min, 

respectively. Figure 7a shows the stable injection pressures of the four injections. 

Increasing the flow rate from 1 ml/min to 8 ml/min increased the stable pressure by 

around 62%. The injection pressure of the semi-solids material at a high flow rate (8 

ml/min) in the small tube was around 138 psi, which is a high pressure when compared to 

the solids-free material. This result indicate that the semi-solids materials have good 

injectivity, but the properties of the PPG changed as the particles clearly deformed. The 

deformation of the particles can be easily visualized.

In a similar way, the PPG was injected in model (a) and the stable injection 

pressures for the four flow rates are shown in Figure 7b. The semi-solids material was 

able to penetrate the larger tube with pressures lower than 12 psi. Interestingly, the semi­

solids material in this case did not deform when collected from the outlet of the setup. 

This indicates the importance and the effect of the size pf the voids on the properties of 

semi-solids materials when used as possible sealants for wellbore integrity applications.
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4.2.3. Solids Materials Injectivity Results. For the cement injectivity 

measurements, the cement systems were mixed and preconditioned in accordance to API 

specifications and then were poured in the accumulator. Figure 8 illustrate the injection 

results of the cement.

Figure 8a shows the injection pressure of the cement slurry at constant flow rate 

of 1 ml/min. The stable pressure was around 1.1 psi, which is higher than that of the 

solids-free material but relatively lower than the semi-solids material. The injectivity was 

calculated to be 0.909 ml/min*psi. The cement penetrated the large channel (4.752 mm) 

easily and showed high injectivity. However, when the smaller channel was used the 

injectivity reduced by 99.78 % and the injection pressure increased to around 514 psi at 

the same flow rate (1 ml/min) as shown in Figure 8b. This experiment was not stopped



after this reading as the injection continued but after switching to hesitation squeeze 

mothed.
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Referring to the injectivity result of the cement in the large channel, it is 

important to point out that the cement injection pressure started to fluctuate after around 

40 minutes of injection as shown in Figure 9. The pressure seems to have separated the 

water from the cement as drops of water started to appear in the effluent between times to 

time.

This can be overcome using additives like fluid loss additives in the cement, 

which create more complicity to the remedial operation. The cement system used in this 

study was neat cement with no additives.
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The very low injectivity of the cement in the small channel was related to 

following running squeeze method, where continuous pumping is used to force the 

cement into the squeeze interval (phase 1 in Figure 10). Using this method the injection 

pressure increased to around 514 psi and the reading of the halfway pressure transducer 

(P2) was around zero. After reaching the high injection pressure in this experiment, it was 

interesting to switch to hesitation squeeze method in which the pumping sequence is 

started and stopped repeatedly. Using this method, the cement was forced in the small 

channel efficiently as shown in Figure 10 (phase 2), where P2 increased to around 25 psi. 

Then, the injection continued with constant pressures (phase 3 in Figure 10). Using this 

method P2 kept increasing until it reached around 100 psi indicating that the cement has 

penetrated the small channel. However, the effluent during this experiment was only few 

drops of water and no cement was produced. This part of the study will be expanded in



the future to better understand the injectivity of cement. The placement method of the 

cement will be also studied.

86

600

500

400 

300
Ph
s o

200<D
"f?
HH

100 

0
0 20 40 60 80

Injection Time [min]
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4.2.4. Sealants Injection in Heterogeneous Features Results. For solids-free 

sealant, the injection pressure was not affected significantly when the heterogeneity was 

introduced. As shown in Figure 11a, the injection pressure of the sealant was lower than 

that of the small channel and higher than that of the large channel. This result indicates 

the ability of the solids-free material to penetrate the cement’s channels at low pressures 

even in the presence of different channel. This important for the remedial operations to 

ensure successful placement of the sealant and full zonal isolation. The effect of smaller 

clearances must be studied in the future. Figure 11b presents the effect of heterogeneity 

on the injection pressure of semi-solids material. The results here indicate more



significance of heterogeneity on the injection pressure of semi-solids material when 

compared to solids-free material. The pressure fluctuated and reaching stabilized pressure 

was harder. It can be noticed that the particles of the semi-solid material were packed in 

the large channel and the pressure increased before they entered the smaller channel. The 

particles were also deformed as a result of penetrating the small channel.
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4.2.5. Sealant Materials Injectivity in Different Features. Table 2 summarizes 

the injectivity results of the sealants. It can be seen clearly that the injectivity results of 

the solids-free sealant were higher than that of the semi-solids material (PPG) and the 

solids material (conventional Portland cement).

For the small channel size (1.753 mm), the solids-free material penetrated the tube 

without any deformation or changes in the properties and the results of the injectivity 

ranged between 1.163 ml/min*psi to 4.444 ml/min*psi at different flow rates. The



injectivity of the solids-free sealant increased when the flow rate was increased. On the 

other hand, the semi-solids material showed lower injectivity results in the small channel 

size and the polymer particles deformed upon flowing through the tube. This result 

indicates that the semi-solids material can penetrate the small channels but the properties 

of the material may change and affect the plugging performance. The trend of the 

injectivity with respect to the flow rate was similar to that of the solids-free material. For 

the solids material, the cement faced difficulties to penetrate the small channel size and 

required higher pressures and addition to the use of different injection method.

For the larger channel size (4.572 mm), the solids-free material and the semi­

solids material were able to penetrate the tube easily and showed higher injectivity 

values. Once again, the solids-free material had the highest injectivity of the three 

sealants. It is important to point out that the semi-solids material in this case was able to 

penetrate the tube with no deformation and the injectivity results for the different flow 

rates were between 0.4975 ml/min*psi and 0.8949 ml/min*psi. The cement was also able 

to penetrate the large channel void and it noticed the importance of the fluid loss 

additives in the cement slurry to avoid the water separation and loss of properties. 

Generally, as expected the injectivity of the sealants increased when the size of the 

feature was increased.

For the heterogeneous model, there was no significant effect of heterogeneity on 

the flow of solids-free material but there was some effect on the semi-solids material as 

reaching stable pressure was difficult and the results of the injection pressure fluctuated. 

Based on these findings, solids-free material could be the best choice for cement remedial 

operations.
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Table 2. Summary of the estimated injectivity of different sealants in [ml/min*psi].

F low
R ate

[m l/m in]

C h an n el size (1 .753  m m ) C h an n el size (4 .572  m m ) H etero g en eo u s C h an n el

Solid s-
free

Sealant

S em i­
solids

Sealant

C em en t
Sealant

S olids-
free

S ealan t

S em i­
solids

S ea lan t

C em en t
Sealant

Solid s-free
Sealant

Sem i-so lid s
Sealant

1 1.163 0.0117 0.002 10 0.4975 0.909 1.786 0.0354

2 1.852 0.0231 - 10.526 0.5917 - 2.899 0.0514

4 3.077 0.0414 - 19.048 0.8949 - 3.809 -

8 4.444 0.0602 - 30.769 0.6797 - 5.298 -

4.3. COMPRESSIVE STRENGTH RESULTS

The compressive strength of the cement sheath was found to be around 720 psi 

after 24 hours curing and around 3,816 psi after 72 hours. On the other hand, the epoxy 

resin compressive strength was found to be higher than 8,500 psi after 24 hours. The 

epoxy resin samples did not fail at high loads and show high ductility when compared to 

Portland cement. These results prove that epoxy resin have higher strength than Portland 

cement and can be used more effectively. The PPG as a material has no compressive 

strength.

5. CONCLUSIONS

By studying the three types of sealants that can be used in cement remedial jobs, 

several findings were obtained. These findings are based on the results and the analysis of 

the rheological measurements, the injectivity results, and the compressive strength result.

The main conclusions are summarized below:
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• The epoxy resin exhibited Newtonian behavior with very low or no yield stress on 

contrast of Portland cement, which exhibited Bingham-plastic flow.

• The injectivity of the solids-free material is higher than that of the semi-solids and 

solid cement especially in small channel voids.

• The solids-free material was able to penetrate the small channel voids at very low 

pressures.

• Unlike solids-free sealant, both solid cement and semi-solids sealant deformed 

when they flow through small size tube indicating that the size of the cement 

voids play a major role on the performance of these sealants.

• The curing time of the epoxy resin can be controlled, and the compressive 

strength of the epoxy resin is higher than that of the cement.
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IV. LABORATORY STUDY USING POLYMER RESIN SYSTEMS TO 
REMEDIATE WELLBORES: RHEOLOGICAL CHARACTERIZATIONS, 

CHEMICAL RESISTANCE, PLUGGING PERFORMANCE, AND 
MECHANICAL PROPERTIES

ABSTRACT

Carbon capture and storage (CCS) in oil and gas reservoirs always requires 

maintaining full control of fluids within a well so as to prevent unintended fluid 

migration, which may harm the environment. The well integrity must be maintained to 

implement such projects successfully. The cement in oil and gas wells, when 

compromised, may provide pathways for fluids to migrate. Cement is one of the most 

common sealants employed to seal such pathways. Recently, alternatives to conventional 

Portland cement were developed to overcome cement limitations. One of those 

alternatives is thermosetting sealant.

This study is intended to evaluate three types of thermosetting materials, epoxy 

resins. The study includes examining the rheological behavior of the sealants under 

different temperatures, the curing kinetics of the sealants, the effect of temperature on the 

curing time, the thermal degradation and glass transition temperatures, the injectivity of 

the sealants in small gaps, the chemical resistance of the sealants in presence of corrosive 

fluids, the plugging capability, and the mechanical properties. The findings of this work 

prove the ability of the epoxy resins to penetrate and plug cements’ pathways, providing

94

zonal isolation.
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1. INTRODUCTION

To employ oil and gas reservoirs for carbon capture and storage projects, the well 

integrity of the oil and gas wells must be maintained as these wells have been identified 

to be the most vulnerable to provide pathways for CO2 to escape (Todorovic et al., 2016). 

The well integrity must also be maintained during any period of the life of oil and gas 

wells from drilling the well through production and even after plug and abandonment. 

Conventional Portland cement have been used for primary, secondary, and plugging and 

abandonment cementing. The cement is placed in the annulus as a barrier between a steel 

pipe casing and the various formations. The cement must be able to protect and support 

the casing, and to isolate production zones, preventing wellbores’ fluids from migrating 

in an annular flow path so as to allow the well to be used without any control problems 

(Alkhamis and Imqam, 2018). However, during the life of the well, the cement is prone 

to deterioration and the cement may fail to deliver full zonal isolation. Cements’ failures 

may occur due to chemical causes or due to mechanical reasons (Jimenez et al., 2016; 

Alkhamis and Imqam, 2021). In both cases, the outcomes can severe and can affect the 

environment and the human life. In order to overcome the consequences of the cement 

failures, researchers all over the world have been working in developing alternative 

materials that can be applied safely to remediate cements’ leakages and restore the 

integrity of oil and gas wells whether to continue extracting oil and gas, plugging the 

wells for good, or to use the wells for CO2 storage projects.

As an alternative to Portland cement, epoxy resins can be used as sealants 

materials. Epoxy resins are thermosetting polymers, which contain in their unset phase



(prior curing) one or more epoxide groups. Epoxide group is one or more three- 

membered rings, known also as oxirane, and/or epoxy. The molecular weight of epoxy 

resins varies greatly. They exist in the forms of solids and liquids with wide range of 

viscosities. Chemically, the epoxide groups in the resin may react with many types of 

curing agents that contain hydroxyl, carboxyl, amine, amine group. The result of the 

reaction is a hard 3D cross-linked network. Some other types of epoxy resins may be 

cross-linked by themselves through catalytic homopolymerization. Some systems will 

cure at ambient temperature, but many require heat to cure (T=150-200 °C) (Marfo et al., 

2015). Other additives or fillers and diluents may be added to modify the properties of the 

final product.

Todorovic et al., 2016 tested the ability of a commercially available epoxy resin 

sealant to plug artificial fractures that were created in cement cores. The sealant sealed 

the fractures completely in one case, where the permeability of a fracture (created 

between steel plate and cement) was reduced from 47 Darcy to almost zero and reduced 

the permeability in a second sample (cement to cement fracture) from 1717 Darcy to 41 

Darcy. Alsaihati et al., 2017 evaluated the rheological behavior, the mechanical 

properties, and the thickening time of an epoxy resin sealant and compared the obtained 

results to that of a polyester based sealant. The results showed the ability of the epoxy 

resin to develop high compressive strength in short time and the tensile strength ranged 

from 100 to 2000 psi. In addition to the low viscosity of the epoxy resin sealant at 

ambient temperature (26.7 °C). The system was applied in gas wells in Saudi Arabia and 

was able to seal leakages. In 2018 Khanna et al., presented a field case where a leakage in 

cement was detected. Epoxy resin system was injected into a channel of approximately
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0.3875 inches. Due to the elastic nature, high penetration capacity, and the fluid 

immiscibility of the epoxy resin system, a rig-less remedial operation was conducted 

successfully. Singh et al., 2019 demonstrated the ability of epoxy resin to repair casing 

leak. In this work, the type, concentrations of resin and the curing agent, in addition to, 

the temperature of reaction and glass transition temperature were discussed. This study 

proved how extremely easy to execute a remedial operation using epoxy resin. Several 

other superior properties of epoxy resin sealants were discussed in several publications 

such as the surface wetting and adhesion abilities (Brooks et al., 1974; Shaughnessy et 

al., 1978); the ability to penetrate narrow voids (Todd, L et al., 2018); tunable density 

(which can be used for areas with a narrow fracture gradient) (Sanabria et al., 2016); and 

resistance to contamination (Vicente et al., 2017). In addition, the high mechanical 

strength (Ali, A et al., 2016; Elyas et al., 2018), stability at high temperature (Bertram et 

al., 2018), and good bonding properties (Moneeb et al., 2017). As a bonus, the 

polymerization reaction of polymer resins forms no by-product during hardening 

(Muecke, 1974), resulting in very little to no shrinkage. These properties have been also 

reported by Alkhamis et., (2019).

In this work, three epoxy resin systems were selected for evaluation. One that can 

be cured at room temperature without the need of elevated temperatures (Epoxy resin A).

A second one that cures at room temperature but require longer time to cure (Epoxy resin 

B) because such sealant can be used where moderate temperatures are present. The 

moderate temperatures will accelerate the chemical reaction of the sealant, reducing the 

curing time. The third sealant (Epoxy resin C) is an epoxy resin that was applied in the 

field successfully. This sealant requires elevated temperature to cure and this work is an
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attempt to understand the effect of varying the temperature on the curing of this sealant. 

This work characterizes three epoxy resin systems based on rheological properties, 

chemical resistance, plugging performance, and mechanical properties.

2. EXPERIMENTAL METHODOLOGY
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2.1. MATERIALS

2.1.1. Epoxy Resin A. The mixture of epoxy resin A was prepared by mixing at 

room temperature epoxy Novolac (Phenol, polymer with formaldehyde, glycidyl ether, 

and o-Cresyl glycidyl ether) with an aliphatic hardener (a blend of benzyl alcohol, 1,2- 

cyclohexanediamine, diethylenetriamine, and Bisphenol A). Both the resin and the 

hardener were obtained from Euclid Chemicals Company. The resin was accurately 

weighed in a glass beaker and then the hardener was added (50% by weight of resin). The 

sample was stirred thoroughly at which point a clear homogeneous mixture obtained.

2.1.2. Epoxy Resin B. The mixture of epoxy resin B was prepared by mixing at 

room temperature a 1:1 stoichiometric mixture of the base resin with an aliphatic 

hardener. The base resin is diglycidyl ether of bisphenol A (DGEBA) obtained from 

Miller-Stephenson Chemical Company, Inc. diluted with cyclohexanedimethanol 

diglycidyl ether (CHDGE) obtained from Miller-Stephenson Chemical Company, Inc. 

The diluent amount added to the resin was 100% by weight of resin. The selection of this 

amount was based on previous study conducted by (Alkhamis and Imqam, 2020). The 

aliphatic hardener was polyetheramine (PEA) obtained from Huntsman corporation. The 

diluted DGEBA was accurately weighed into a glass beaker with the appropriate amount



of PEA (35% by weight of diluted resin). The sample was stirred thoroughly at which 

point the curing agent was completely dissolved and a clear homogeneous mixture 

obtained.

2.1.3. Epoxy Resin C. The mixture of epoxy resin C was prepared by mixing at 

room temperature a 1:1 stoichiometric mixture of the base resin with an aromatic 

hardener. The base resin was the same base resin of epoxy resin B. The aromatic 

hardener was diethyltoluenediamine (DETDA) obtained from Albemarle chemical 

company. The diluted DGEBA was accurately weighed into a glass beaker with the 

appropriate amount of DETDA (52% by weight of diluted resin). The sample was stirred 

thoroughly at which point the curing agent was completely dissolved and a clear 

homogeneous mixture obtained.

2.1.4. Class-H Cement. The cement used was prepared by mixing API class H 

cement obtained from Halliburton company with distilled water. The water/cement ratio 

was 0.38, as stipulated in API specification 10A (API, 2010). The mixing was conducted 

in accordance with the mixing procedure of API RP 10B-2 (API, 2013), in which water 

was added first to a two-speed, bottom-drive laboratory blender, after which dry cement 

was added gradually to the blender while mixing at low speed for approximately 15 s. 

Then, the speed of the blender was increased to high speed for around 35 s.

2.2. DENSITY MEASUREMENTS

Since the epoxy resin sealants studied in this paper are intended for wellbore 

remedial operations, it was important to control their density. In general, a density that is 

higher than the density of water is desired. In this work, the densities of the mixed epoxy
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resin sealants were measured using simple weighting method, where a specific volume of 

each epoxy resin was placed on a high precision balance to measure the mass. Then, the 

density of each epoxy resin was calculated by dividing the mass of the epoxy by its 

volume. The density was recorded in [gm/ml] and converted to [lbm/gal].

2.3. SHEAR VISCOSITY MEASUREMENTS

The viscosities of the epoxy resin sealants were measured using a dynamic shear 

Rheometer (DSR) (model: MCR 302) with parallel plates system supplied by Anton Paar. 

For these measurements, samples of about 0.5-1.0 ml of each epoxy resin sealant were 

placed on a disposal plate of 25 mm in diameter on the lower part of the instrument.

Then, the upper plate was lowered to a gap between 0.5 to 1.0 mm. The readings were 

taken in both ascending and descending order in a range of 0.1 1/s to 1000 1/s. The aim 

of these measurements was to evaluate the effect of shear rate on the viscosities of the 

epoxy resin sealants. Testing the sealants under different shear rates mimics the 

placement of the sealants in the wellbore.

2.4. ISOTHERMAL CURING MEASUREMENTS

The isothermal curing experiments of the epoxy resin sealants were conducted to 

identify the gelation time of the epoxy sealants and the effect of temperature on the 

gelation time. Defining the workability of the sealants in terms of gelation is essential in 

the proposed application of this work to protect downhole equipment and to ensure a safe 

and successful placement of the sealants in the wellbore without premature curing. 

Sinusoidal oscillatory tests using the same DSR were conducted at an angular frequency



of 10 rad/s (1.5915 Hz) and the complex viscosity, storage modulus, and loss modulus 

change with time were monitored. The samples were placed following the same 

procedure mentioned in section 2.3. The isothermal curing of the epoxy resin samples 

was measured at different temperatures ranges between room temperature to 120 °C.

2.5. CALORIMETRY MEASUREMENTS

The calorimetric properties of the three epoxy resins evaluated in this study were 

studied by using a differential scanning calorimeter (DSC), model SDT Q600 V20.9 

Build 20. For this measurement, epoxy resin samples of approximately 5-10 mg were 

used in alumina pans. The measurements were performed under nitrogen atmosphere in 

temperature ramp mode from room temperature up to 600 °C. The temperature rate was 

set to 5 °C/min. The goals of these measurements were to evaluate the heat reaction of the 

epoxy resins as a function of curing temperature and time. In addition, to evaluate the 

thermal degradation temperature of the epoxy resins along with the glass transition 

temperature (Tg). Five experiments were conducted using the three epoxy resins. The first 

three were using epoxy resin A. The samples were cured at three different temperatures 

room temperature, 50, and 80 °C. The other two were using epoxy resin B and Epoxy 

resin C cured at 50 and 80 °C, respectively.

2.6. CHEMICAL RESISTANCE MEASUREMENTS

Following the injection of cement or other materials in the well. The materials are 

subjected to corrosive fluids downhole. The downhole conditions vary from low to high 

temperatures/pressures and the presence of corrosive fluids that can compromise the
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10% sodium hydroxide (NaOH) solution, 50% NaOH solution, mineral oil, 10% sodium 

chloride (NaCl) solution, and 36% NaCl solution at room temperature. In addition, 

samples were placed under pressure and temperature of supercritical CO2. The weight 

change was recorded after 3 days, 28 days, and 3 months. The results of the performance 

of the epoxy resin sealants were compared to that of cement.

2.7. INJECTIVITY AND PLUGGING PERFORMANCE MEASUREMENTS

Prior to any remedial operation, an injectivity test is performed to set the 

pressures and flow rates at which remedial fluids can be pumped into leakages zones.

This test helps in determining the key parameters for the treatment as well as the major 

limitations of the operation. The injectivity of the epoxy resin sealants was estimated by 

injecting the sealants into stainless-steel tubes with various inner diameters (i.e., 0.876, 

1.753, and 4.572 mm) at constant flow rate and recording the injection pressures. Then 

the injectivity was calculated by dividing the flow rate by the injection pressure.

The plugging performance of the epoxy resin sealants was evaluated using the 

experimental setup in Figure 1. The experimental setup, consisted of a syringe pump, an 

accumulator, two pressure transducers, a hand pump, and a core holder. The syringe 

pump was used to inject the water/CO2 in the accumulator and then to the core holder, 

where the cement cores were placed. The hand pump was used to apply confining 

pressure around the cores forcing the water/CO2 that was injected by the syringe pump to 

the cement channel and the pressure transducers were used to record the pressure drop
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sealants. To test the ability of epoxy resins to withstand corrosive fluids, specimens of

epoxy resins and cement were immersed in water, 50% sulfuric acid, 98% sulfuric acid,
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across the cement cores. The confining pressures around the cores were maintained at 

pressure of 2600 psi during the water experiments and at pressure of 1000 psi during the 

CO2 experiments. A second syringe pump and a back-pressure regulator were used in the 

CO2 experiments to control the flow of the CO2 at the outlet.

The permeabilities of the cement channels prior to the treatments were estimated 

by calculating the pressure loss across the cement core using Hagen-Poiseuille equation 

(Equation 1), which is a physical law that obtains the pressure drop across uniform 

cylindrical pipes assuming incompressible and Newtonian fluid that flows in laminar 

flow. The calculated pressure drop was then substituted in Darcy Law (Equation 2), 

leading to Equation 3 that was used to estimate the permeability of the channels.

8* ^*L*Q  
n* r 4

(1)

where AP is the pressure loss expressed in (pa), p is the dynamic viscosity expressed in 

(pa.s), L is the core length expressed in (m), Q is the volumetric flow rate expressed in 

(m3/seconds), and r is the channel radius expressed in (m).

A p  _  Q* v * L
k*A

(2)

where, k is the permeability expressed in (mD), A is the cross-sectional area of the 

channel expressed in (cm2), Q is the volumetric flow rate expressed in (cm3/seconds), p is 

the dynamic viscosity expressed in (cp), L is the core length expressed in (cm), and AP is 

the pressure loss expressed in (atm).

k _  2.0428 * 1010 * d2 (3)

where, k is the permeability expressed in (mD) and d is the channel’s diameter expressed 

in (inches).
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The permeabilities of the channels after the treatment were calculated using Darcy 

Law (Equation 2) and the pressure drops in this case were measured using the transducer 

placed at the inlet of the core holder of Figure 1. The permeabilities were calculated using 

water. Each permeability result presented in this study is the average value of three 

experiments.

Figure 1. Illustration of the plugging performance setup.

2.8. MECHANICAL MEASUREMENTS

2.8.1. Compressive Strength Measurement. Determining the compressive 

strength of the sealants is essential to ensure the ability of the sealants to withstand 

downhole conditions. Compressive strength test simply measures the force needed to 

crush a sample of any material. For this test, the sealants were mixed and poured in 2” x 

2” x 2” cubic molds and/or 2” x 4” cylindrical molds. The molds then were placed in a 

curing bath at the desired temperature for 24 hours. Then, the cured samples were



carefully removed from the molds. The specimens’ dimensions were measured using a 

caliper and the minimum surface area was calculated. Any specimen of the cubic samples 

with height less than 48 mm (1.9-inch) was discarded as recommended by (API RP 10B- 

2 2013). Finally, the specimens were placed in a hydraulic press where force was applied 

until failure. Axial/lateral laser sensors were used to detect axial/lateral deformation of 

the samples. The compressive strength results were calculated as force over area. At least 

three samples for each sealant were measured.

2.8.2. Tensile Strength Measurements. Tensile strength is another parameter 

that must be measured to ensure the wellbore long-term integrity. When the cement 

tensile strength exceeded, a radial crack may form along the cement sheath axis, which 

would create a high conductivity path for the fluids to migrate (Iremonger et al., 2015). 

Herein, the tensile strength was measured using an indirect method that is known as the 

Brazilian test. The technique used in this test is applying diametric compression force to 

induce tensile stresses across the diameter of the sealant cylindrical sample until failure 

occur. For this test, 2” x 4” cylindrical molds were used. The molds were placed in a 

curing bath at the desired temperature for 24 hours. Then, the samples were removed 

from the molds and sawed into three samples of 1” in thickness. The samples diameter 

and thickness were measured and documented. Then, the samples were placed in a 

hydraulic press machine where force was applied until failure. It is important to check if 

the failure crack is parallel to the load direction, otherwise the result is not reliable 

(Iremonger et al., 2015).
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3. RESULTS AND DISCUSSION

3.1. DENSITY RESULTS

After mixing the sealants, samples of 0.2 to 0.3 ml were weighted in order to 

obtain the densities of the sealants. The density of each of the three sealants was higher 

than that of the water. The densities of the Epoxy Resins A, B, and C were 1.2, 1.13, and 

1.05 gm/ml, respectively. These densities can be easily modified, when required, by 

adding materials with high specific gravity known as “weighting agents”. In this paper, 

the density was measured for the pure sealants without any additives. Table 1 lists the 

results of the density measurements. The values listed in the table are the average values 

of three measurements were conducted.

Table 1. The density of the epoxy resin systems.

Sealant Volume [ml] Mass [gm] Density [gm/ml] Density [lbm/gal]

Epoxy Resin A 0.3 0.360 1.20 10.0145

Epoxy Resin B 0.5 0.566 1.13 9.44699

Epoxy Resin C 0.2 0.210 1.05 8.76267

3.2. RHEOLOGICAL RESULTS AND ANALYSIS

3.2.1. Effect of Shearing and Temperature on Viscosity. It was essential to 

measure the viscosity of sealants prior to injecting them into the cement gaps. The 

viscosity of Epoxy resin A, which was intended for application of low temperatures was



measured at three temperatures, 24, 30, and 40 °C as shown in Figure 2. The viscosity of 

Epoxy resin A at room temperature ranged between 1000 to 1100 cp with a small effect 

of shear rate. At this temperature the material exhibited a shear thinning behavior as can 

be seen in Figure 2a. Increasing the temperature from 24 to 40 °C reduced the viscosity of 

the epoxy from around 1100 to approximately 700 cp.

Figure 2b shows the shear stress vs. shear rate for Epoxy resin A and one 

important parameter that affect the placement of sealants rose, which is the yield stress.

The sealant shows very low yield stress that is required to initiate flow. The 

measurements of the viscosity wee only conducted at small and low range of temperature 

since the material react faster under higher temperatures, which will be explained later in 

this work.
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Figure 2. (a) Viscosity results of Epoxy Resin A as a function of shear rate. (b) The 
rheological behavior of Epoxy Resin A.
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The viscosity of Epoxy resin B was measured at wider range of temperatures from 

24 to 80 °C and the effect of temperature on the viscosity was higher than Epoxy resin A 

(see Figure 3a). First, the viscosity of Epoxy resin B at room temperature is lower than 

that of Epoxy resin A. This is favorable for the application of Epoxy resin B as it was 

intended for deeper targets in the well, where moderate temperatures are expected. The 

low viscosity of Epoxy resin B is a result of two parameters implemented in this sealant: 

(1) the use of reactive diluent in the base resin, which was mixed to reduce the viscosity 

of the resin and (2) the low viscosity characteristic that the curing agent offers. The 

viscosity of Epoxy resin B at room temperature was around 118 cp and decreased to 

around 30 cp when the temperature increased to 80 °C. The material exhibited Newtonian 

like behavior, where no stress or only a very small stress was required to initiate flow, 

and the viscosity was independent of the shear rate (see Figure 3b).

0 500 1000
Shear Rate [1/s]

Figure 3. (a) Viscosity results of Epoxy Resin B as a function of shear rate. (b) The 
rheological behavior of Epoxy Resin B.



On the other hand, Epoxy resin C, which was intended for application of high 

temperature experienced the greatest impact of temperature on viscosity. Increasing the 

temperature from room temperature to 80 °C reduced the viscosity by approximately 95% 

(from 466 to 23 cp), almost 22% higher reduction in viscosity than that of Epoxy resin B. 

Figure 4a shows the viscosity of Epoxy resin C vs. shear rate. Similar to Epoxy resin B, 

this sealant exhibited Newtonian like behavior (Figure 4b). The low viscosities of Epoxy 

resin B and C is desirable property as those materials were intended for deep applications 

(cement gaps at deeper locations in the well) and the low viscosities will help injecting 

those sealants into cement gaps with lower pressures requirements.
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Figure 4. (a) Viscosity results of Epoxy Resin C as a function of shear rate. (b) The 
rheological behavior of Epoxy Resin C.
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3.2.2. Effect of Temperature on Curing Kinetics. The effect of temperature on

the curing of the three epoxy resins was conducted to identify the gelation time.



Identifying the gelation time of the sealants is essential to protect downhole equipment 

from premature curing and to ensure a safe and successful placement of the sealants in 

the wellbore. Placing the sealants in the cement gaps successfully is not enough to 

guarantee full zonal isolation, it is important to confirm that the epoxy resin is cured in 

place to provide zonal isolation before proceeding with other operations.

First, Epoxy resin A was mixed and placed on the plate of the rheometer at room 

temperature and the test started. The curing time of the epoxy at room temperature is 

shown in Figure 5. At early stages of the curing G’ and G’’ show low values, where G’’ 

was higher than G’, showing that the system is in the viscous region. As time proceeded, 

specifically, after 11 hours the system reached the gelation time at which G’ crossed over 

G’’ and the system entered the elastic region. This point is called gel point. Increasing the 

temperature of the curing showed that the temperature has an inverse relation to the 

gelling point as the gelling point of the Epoxy resin A at 30 °C was approximately 8 

hours.

Similar trend can be seen on Figure 5 for the temperatures 45 and 60 °C.

However, at those two temperatures the curing time is too short and pre-maturing 

problems can occur in the field. Figure 6 shows complex viscosity increasing with time 

during the curing process. It can be seen the effect of temperature on the complex 

viscosity. This property can help understanding the state of the sealant with respect to 

time. From these results it can be concluded that the epoxy resin require shorter sitting 

time than the cement and thus shorter remedial job time.

It is also useful to consider the wait on the operation time. Shortening the waiting 

time can save a great amount of money.
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Figure 5. Effect of the temperature on curing of Epoxy Resin A.
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Figure 6. Complex viscosity results of Epoxy Resin A.



Second, the curing kinetics of Epoxy resin B were determined employing the 

same procedures of followed in determining the curing kinetics of Epoxy resin A. The 

curing experiments were conducted at room temperature then increased to up to 100 °C. 

Epoxy resin B showed the same behavior of Epoxy resin A as can be seen on Figures 7,

8, and 9. At room temperature, the time to reach the gel point was around 65 hours which 

is a very long time for rig workover. The long time of curing because of the use of 

aliphatic amine hardener. For this reason, Epoxy resin B was selected for moderate 

temperature applications in which the temperature will speed up the curing process as 

shown in Figure 8. In addition, it can be observed that at temperatures as high as 60 °C, 

the curing time is short so, this suggest that this material can be used for temperatures 

between room to 50 °C.
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Figure 7. Curing results of Epoxy Resin B at room temperature.
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Figure 8. Effect of the temperature on curing of Epoxy Resin B.
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Figure 9. Complex viscosity results of Epoxy Resin B.



The last set of experiments were conducted using Epoxy resin C in which 

aromatic amine hardener was employed. This type of hardener requires elevated 

temperature to cure. This sealant was used successfully in the field as addressed by 

(Alsaihati et al., 2017; Elyas et al., 2018; and Singh et al., 2019) but curing time of this 

sealant needed to be studied and especially the effect of temperature on the curing. Once 

again, the temperature reduced the curing time of the epoxy resin (see Figures 10 and 11).

At 80 °C, the time required for the sealant to reach the gel point was approximately 18 

hours while at 100 °C was 7 hours.
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Figure 10. Effect of the temperature on curing of Epoxy Resin C.
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Figure 11. Complex viscosity results of Epoxy Resin C.

These results are accurate for the time required for the sealants to form 3D 

network that is able to stop well’s leakage but the pumping time and the thickening of the 

material during the pumping process are different and require the use of consistometer 

where the workability and the consistency of the sealants are monitored while the 

material is under continuous shearing. The measurements here mimic the curing of the 

sealants after the placement inside the cement gaps and how much time is required for 

sealants to develop enough strength to withhold downhole conditions.

3.2.3. Sensitivity of Curing due to Temperature Change. It is known that a pre­

flush is usually conducted prior to any remedial operation. This pre-flush is conducted to 

estimate the pressure and temperature of targeted zones. The pre-flush is important when 

cement is used but it is more important when thermosetting materials are employed. 

Figures 12a and b demonstrate this importance. A change of temperature as low as 5 °C 

affected the curing time by around 20%. The temperature estimation during the pre-flush
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must more accurate and the change in the temperature after the pre-flush but before the

sealant placement must also be considered to ensure successful remedial job.
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Figure 12. Effect of the small temperature change on curing of Epoxy Resin B.

3.3. CALORIMETRY RESULTS AND ANALYSIS

The calorimetry measurements were conducted to identify the thermal 

degradation temperatures of the epoxy resin sealants. In all the cases, first stage mass loss 

is related to the loss of surface moisture, inherent moisture and other volatiles present in 

the samples. As some of the chemicals are not 100% pure but either diluted resin and/or 

hardener. It means they contain some solvent, which will also contribute to this first stage 

mass loss. Figures 13, 14, and 15 show mass loss. For Epoxy resin A, the mass loss was 

in three stages. The first was from room temperature to 210 °C, where up to 15.65% of 

the mass was lost. The second stage can be attributed to the breakdown of the methylene 

linkages presented in most Novolac resins. Around 220 °C and up, transformation of



ether bridges to methylene bridges occurs with simultaneous loss of formaldehyde. At 

this stage, thermal crosslinking occurs in most of Novolac resins. Figure 13 shows that up 

to 46.73% of mass was lost in the range of 215 °C to 350 °C. For the third stage of mass 

loss, 350 °C and above, the degradation showed is associated with the aromatic ring 

structure present. Beyond this mass loss, whatever organic residue is remaining will 

attribute to the remaining mass at the end. For the glass transition temperature of Epoxy 

resin A, multiple transitions can be seen and that can be attributed to the glass transitions 

of the individual component and not a specific Tg of a crosslinked polymer. Tg of this 

crosslinked polymer system should be between 160 to 180 °C. Both the mass loss and Tg 

are at higher temperatures than the proposed application for this sealant. These results 

indicate that Epoxy resin A can be used for low temperature applications safely.
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Figure 13. DSC results of Epoxy Resin A cured at room temperature.



For Epoxy resins B and C, it can be observed that there is only one stage of mass 

loss up to 94.38% for Epoxy resin B and up to 95.56% for Epoxy resin C. This is because 

these sealants consisted of pure resins and hardeners and even the diluent used was a 

reactive one, which contributed in getting a fully crosslinked polymer systems without 

any free or unreactive components.

The Tg of those two sealants were slightly higher than that of Epoxy resin A. It is 

important to mention that the glass transition temperature and the mass loss occurred at 

temperatures higher than the proposed application for these materials.
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Figure 14. DSC results of Epoxy Resin B cured at 50 °C.
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Figure 15. DSC results of Epoxy Resin C cured at 80 °C.

The effect of the curing temperature on the mass loss was also studied using 

Epoxy resin A as shown in Figure 16. Similar results were obtained for the mass loss in 

terms of the stages. However, increasing the curing temperature reduced the mass loss 

slightly in the first and second stages. The reduction was around 1 to 5%. This reduction 

can happen due to two reasons. The first one is the loss of some volatiles solvents during 

the curing of the samples before the measurements and the second one can be attributed 

to the additional induced crosslinking in the system during curing process as a function of

temperature.
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Figure 16. Effect of the temperature change on the mass loss of Epoxy resin A.

3.4. CHEMICAL RESISTANCE RESULTS

The chemical resistance measurements were conducted to evaluate the ability of 

the epoxy resin sealants to withstand downhole harsh fluids. Two sulfuric acid solutions 

were prepared for this measurement (98% and 50%). The 50% sulfuric acid was prepared 

by diluting the 98% sulfuric acid. To prepare 50% NaOH solution a conical flask filled 

with 500 ml of distilled water was placed in a magnetic stirrer then, 500 grams of NaOH 

pellets were added gradually. Then, distilled water was added until 1000 ml of 50% 

NaOH was obtained. The 10% NaOH was prepared in a similar manner. To prepare a 

10% NaCl solution, a 100 gram of NaCl was mixed with a liter of distilled water and for 

the 36% NaCl, 360 grams were mixed with a liter of distilled water. Then, the epoxy 

resin and cement samples were immersed in the solutions for a total of three months. The
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weight change was recorded at several periods. Figure 17 shows the samples of Epoxy

resin A and the cement immersed in the solutions.

Figure 17. Epoxy resin A and cement samples immersed in the testing fluids.

All the samples experienced weight gain in the water, but the cement had the 

highest weight gain of around 1.81% after 3 months. All the samples had the same color 

through the 3 months testing period. Similar behavior was observed in the sodium 

hydroxide solutions and the sodium chloride solutions but with less weight gain than that 

of the water, which is due to the difference of the osmotic pressure of water as reported in 

the literature. All the sealants showed good resistance to alkaline solutions and that was 

because of the amine hardeners used in the formulations of those epoxy resins. For the 

mineral oil, the weight change was very small, and it seemed that there is no interaction 

between the sealants and the mineral oil. On the other hand, the sulfuric acid had major 

impacts on all the sealants excluding Epoxy resin A. Table 2 lists the results of the 

cement and Epoxy resin A. The cement in the 50% sulfuric acid lost 0.91% of its weight



after 3 days and broke down into small pieces after 28 days. However, the epoxy resin 

sealants were able to maintain their shape and experienced a weight gain instead. The 

reason why the cement was showed behavior is that the cement is very alkaline in nature, 

which makes it susceptible to acid attack. During the hydration process of the cement, the 

products are calcium silicate hydrate and calcium hydroxide. The acid reacts with the 

calcium hydroxide resulting in highly soluble calcium salts (calcium sulfate) by-product. 

Calcium sulfate in turn causes degradation. The dissolution of the calcium hydroxide 

caused by the acid attack proceeds in two phases. (1) with calcium hydroxide in the 

cement paste and (2) the acid reaction with the calcium silicate hydrate. As one would 

expect the second phase will not begin until all calcium hydroxide is consumed. The 

dissolution of the calcium silicate hydrate, in the most advanced cases of acid attack, can 

cause severe structural damage to the cement. In the case of the reaction between the 

cement and the 50% sulfuric acid, low soluble salt was formed, which acted as partial 

inhibitor, blocked the passages through the cement, which in turn retarded the overall 

process. This can be seen in Figure 18 (The white powder covering the cement samples).

For the epoxy resins tested here, especially B and C, the use of amine in the formulation 

increased the destruction of the samples in the 98% sulfuric acid. Overall, Epoxy resins 

cured with amine has good resistance to alkaline solutions and that cured with acid 

anhydride has good resistance to acid solutions. Figure 18 shows the effects of 50% and 

98% sulfuric acid on the Epoxy resin A and the cement from day 1 to 3 months. The 

samples shown are before and after the immersing in the sulfuric acid. The results of 

Epoxy resin B and C are presented in Tables 3 and 4, respectively.
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Table 2. The weight change of Epoxy resin A and cement as a function of time.

% Weight Change as a Function of Time
Reagent Cement Epoxy Resin A (LT)

3 days 28 days 3 months 3 days 28 days 3 months
Deionized Water 0.34 1.24 1.81 0.23 0.58 1.02

50% Sulfuric Acid -0.91 D D 0.22 0.44 0.57
98% Sulfuric Acid -10.71 -12.66 -16.60 -1.11 -3.62 -3.98

10% NaOH 1.24 1.96 2.70 0.18 0.47 0.84

50% NaOH 0.76 0.67 2.16 0.05 0.10 0.29
10% NaCl 0.66 1.60 2.23 0.22 0.52 0.92

36% NaCl 1.95 2.54 2.84 0.13 0.34 0.60
Mineral Oil 0.37 0.75 0.92 0.02 0.05 0.05

scC02 NT 0.17 NT NT 4.07 NT

Notes
Cement Samples were cured for 7 days

D = Destroyed
Epoxy samples were cured for 24 hours

Table 3. The weight change of Epoxy resin B and cement as a function of time.

% Weight Change as a Function of Time
Reagent Cement Epoxy Resin B (MT)

3 days 28 days 3 months 3 days 28 days 3 months
Deionized Water 0.34 1.24 1.81 0.18 0.59 1.00

50% Sulfuric Acid -0.91 D D 2.33 8.21 15.34
98% Sulfuric Acid -10.71 -12.66 -16.60 -18.87 -46.64 D

10% NaOH 1.24 1.96 2.70 0.17 0.46 0.80
50% NaOH 0.76 0.67 2.16 0.05 0.18 0.39
10% NaCl 0.66 1.60 2.23 0.15 0.48 0.84
36% NaCl 1.95 2.54 2.84 0.11 0.32 0.55

Mineral Oil 0.37 0.75 0.92 0.03 0.06 0.07

scC02 NT 0.17 NT NT 5.38 NT

Notes
Cement Samples were cured for 7 days

D = Destroyed
Epoxy samples were cured for 24 hours



124

Table 4. The weight change of Epoxy resin C and cement as a function of time.

% Weight Change as a Function of Time
Reagent Cement Epoxy Resin C (HT)

3 days 28 days 3 months 3 days 28 days 3 months
Deionized Water 0.34 1.24 1.81 0.10 0.32 0.57

50% Sulfuric Acid -0.91 D D 8.86 34.17 62.20
98% Sulfuric Acid -10.71 -12.66 -16.60 -19.68 -38.51 D

10% NaOH 1.24 1.96 2.70 0.09 0.28 0.50

50% NaOH 0.76 0.67 2.16 0.05 0.15 0.33
10% NaCl 0.66 1.60 2.23 0.10 0.31 0.57
36% NaCl 1.95 2.54 2.84 0.07 0.22 039

Mineral Oil 0.37 0.75 0.92 0.03 0.07 0.15
scC02 NT 0.17 NT NT 2.78 NT

Notes
Cement Samples were cured for 7 days

D = Destroyed
Epoxy samples were cured for 24 hours

Figure 18. Pictures of the effect of the acid on the sealant compared to the cement.
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3.5. INJECTIVITY AND PLUGGING PERFORMANCE RESULTS

Epoxy resin C was injected into three void sizes, consisting of two-foot tubes with 

inner diameters of 0.8763 mm, 1.753 mm, and 4.572 mm. The sealant injection pressure 

was monitored and recorded. The injectivity of the sealant was calculated based on the 

flow rate used and reaching stable pressure. Figures 19 shows the low injection pressure 

required to force the epoxy into the 1.753, and 4.572 mm voids. The injectivities of the 

epoxy resin at a flow rate of 1 ml/min were 0.27 and 10.0 ml/psi*min. However, the 

injectivity reduced to approximately 0.025 ml/psi*min when 0.8763 mm void was used, 

which is due to the high viscosity of the epoxy. This viscosity can be altered using 

diluents, reactive materials that can reduce the viscosity with minimum effects on 

mechanical properties, as reported in the literature.
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Figure 19. Injectivity of Epoxy resin C (a) 1.753, and 4.572 mm voids, and (b) 0.8763
mm void.
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Overall, the capability of the epoxy resin to penetrate these voids with very low- 

pressure requirement promote such materials for wellbore integrity applications over 

conventional Portland cement. The estimated injectivity of the epoxy resin here is almost 

ten times higher than the injectivity of the cement using the same void sizes as addressed 

by Alkhamis et al., (2020). The same work also demonstrated that the cement particles 

tend to bridge and require higher pressures and different techniques to penetrate the 

tubes.

For the plugging performance measurements, the channel length and diameter 

were measured and the permeability of the channel before the treatment was estimated 

using Equation 3 (see section 2). Then, the Epoxy resins were placed in the channels and 

left to cure at the desired temperature. For Epoxy resin A, which was cured at room 

temperature, the permeability of the channel was around 1196345.4 Darcy. Then, the 

epoxy was placed in the channel and after 24 hours the core was placed in the core holder 

shown in Figure 1. After that water was injected at a flow rate of 0.1 ml/min. The 

pressure started to increase gradually indicating no leakage through the cement core.

After approximately 3 hours and 46 minutes and at a pressure of 2140.1 psi, the first drop 

of water showed up at the outlet of the core holder, but the injection pressure kept 

increasing. At 2200 psi the injection was switched to constant pressure instead of 

constant flow rate due to equipment limitation. At the 2200 psi constant pressure the flow 

rate of the water at the inlet was recorded to be around 0.0113 ml/min. Using Equation 2 

(Darcy Equation) the permeability at 2200.1 psi was estimated to be 0.026 mD as shown 

in Figure 20. Since now we have initiated a new crack in the cement core, it was 

interesting to measure the reduction in permeability at different pressures so, the injection



started at 500 psi constant pressure and there was no water at the outlet of the core 

indicating that the crack is too small that the 500 pai is not enough to force the water into 

the crack. Then, the pressure was increased to 1000, 1500, and 2000 psi. The 

corresponding permeabilities were 0.025, 0.0185, and 0.017 mD, respectively (see Figure 

20). For the CO2 experiments, cores with similar artificial channel were used. The epoxy 

was first placed in the cores and left to cure for 24 hours. Then, the CO2 was injected. At 

the beginning the pressure at the inlet was increasing while the pressure at the outlet was 

zero. When the pressure reached around 650 psi, the pressure at the outlet started to 

increase indicating that the gas initiated a flow path in the core.
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Figure 20. Plugging performance of Epoxy resin A against water.



For Epoxy resin B, the injection started at 0.1 ml/min constant flow rate until the 

water breakthrough, which was at 2055.5 psi. In this case, there was no reason to switch 

to constant pressure injection as the pressure drop after the water breakthrough was high 

as the pressure dropped from 2055.1 psi to around 50.8 psi. The permeability after 

treatment was estimated to be in the range of 9.6 to 11.3 mD at flow rates ranges between

0.1 ml/min to 1.0 ml/min as described in Figure 21. These results indicate that Epoxy 

resin B had the lowest permeability reduction of the three epoxy resins tested. For the 

CO2 experiments, similarly Epoxy resin B had lowest breakthrough pressure of 

approximately 400 psi.
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Figure 21. Plugging performance of Epoxy resin B against water.



For Epoxy resin C, the injection started at 0.1 ml/min constant flow rate and 

pressure kept increasing to a maximum of 1747.5 psi with an estimated breakthrough 

pressure of 1207.4 psi. The reduction in the permeability after initiating a new crack in 

the core were in a range of 0.078 to 0.255 mD at several constant pressures. Figure 22 

shows the flow rate and permeability at each pressure. Overall, the three sealants were 

able to withstand a differential pressure higher than 1000 psi. In the case of sealants A 

and C, the permeability reduction was high even after the breakthrough. Epoxy resin B 

was able to withstand a differential pressure of 2000 psi but the reduction in permeability 

after the breakthrough was relatively low. For the CO2 experiments, Epoxy resin C 

showed the highest resistance to the gas as the breakthrough pressure was around 775 psi.
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Figure 22. Plugging performance of Epoxy resin C against water.



For all the three epoxy resin sealants, the measurements were conducted three 

times and the results were close. The results presented here are for the lowest values 

obtained to avoid overestimating the plugging performance of the sealants.

3.6. MECHANICAL PROPERTIES RESULTS

In this study, two mechanical properties were investigated, the compressive and 

the tensile strength. Epoxy resin A showed high compressive strength after 24 hours 

curing at room temperature. The compressive strength was measured to be approximately 

10111 psi as shown in Table 5. The elastic modulus was around 2.16 Gpa, which is low 

value compared to cements, which have elastic modulus in the range of 10 to 30 Gpa.

This shows that the Epoxy resin is more flexible than the cement as the stiffness of the 

cement yield to radial cracks in the sheath, which creates pathways for the formations 

fluids to migrate. Figure 23 shows the stress vs strain of Epoxy resin A sample 2. The 

tensile strength of Epoxy resin A was around 3543 psi as shown in Table 6, which was 

higher than that of the cement as the cement develops tensile strength less than 500 psi in 

24 hours.
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Table 5. The compressive strength results of Epoxy resin A.

Epoxy 
resin A

Avg
Diameter

[mm]

Avg
Length
|mm|

Elastic
modulus

[Gpa]

Poisson’s
ratio

Compressive
Strength

[Mpa]

Compressive 
Strength [psi]

Sample 1 50.46 96.2 2.5 0.37 72.613 10531.62

Sample 2 50.59 98.34 2.2 0.33 69.251 10044.008

Sample 3 50.67 97.35 1.8 0.36 67.283 9758.57

Average - - 2.16 0.35 69.715 10111.31
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Table 6. The tensile strength results of Epoxy resin A.

Epoxy 
resin A

Avg
Diameter 

| min |

Avg
Thickness

[mm|

T/D Ratio 
[0.2-0.75]

Max Force [kX]
Tensile Strength 

[Mpa]
Tensile Strength 

[psi]

Sample 1 50.59 25.59 0.51 56 .2524 27.67 4013 .2

Sample 2 50.40 25.51 0.51 45.5511 22.56 3272.1

Sample 3 50.47 27.43 0.54 4 9 .6204 22.81 3308.3

Average - - - - 24.43 3543.3

Lateral Strain ( e) 

Axial Strain ( e)

Figure 23. The axial and lateral strain of Epoxy resin A.

For Epoxy resin B, the compressive strength was found to be around 10409.7 psi 

as shown in Table 7. The tensile strength was around 2509 psi, which is relatively lower 

than that of Epoxy resin A, but higher than the tensile strength of cement. The results are

listed in Table 8.
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Table 7. The compressive strength results of Epoxy resin B.

Epoxy 
resin B

Avg
Length
[mm]

Avg
Width
[mm]

Elastic
modulus

[Gpa]

Poisson’s
ratio

Compressive
Strength

[Mpal

Compressive 
Strength [psi]

Sample 1 49.89 51.52 2.54 0.361 72.034 10447.64

Sample 2 50.12 49.19 2.61 0.314 70.447 10217.47

Sample 3 50.15 48.02 2.46 0.321 72.836 10563.97

Average - - 2.54 0.332 71.177 10409.69

Table 8. The tensile strength results of Epoxy resin B.

Epoxy 
resin B

Avg
Diameter

[mm]

Avg
Thickness

[mm]

T/D Ratio 
[0.2-0.75]

Max Force [kN]
Tensile Strength 

[Mpa]
Tensile Strength 

[psi]

Sample 1 50.60 25.79 0.51 21.8464 10.66 1546.1

Sample 2 50.63 25.74 0.51 36.8466 18.00 2610.7

Sample 3 50.39 27.28 0.50 33 .2188 16.60 2407.63

Average - - - - 17.3 2509.1

For Epoxy resin C, the compressive strength was found to be around 15101 psi as 

shown in Table 9. The tensile strength was around 2988 psi, which is relatively lower 

than that of Epoxy resin A, but higher than the tensile strength of cement and Epoxy resin 

B. The results are listed in Table 10. The use of aromatic hardener with bisphenol A as 

base resin resulted in the highest compressive strength. All the three sealants developed 

flexibility higher than the cement. This flexibility may play a major role in the wellbore, 

avoiding radial cracks that are created in the cement sheath due to its stiffness. These 

results can be used as a base for future work where these types of sealants can be added



to the cement slurry in primary cementing. The use of such additive may enhance the 

mechanical properties of the cement.
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Table 9. The compressive strength results of Epoxy resin C.

Epoxy 
resin C

Avg
Length
[mm]

Avg
Width
fmml

Elastic
modulus

[Gpa]

Poisson’s
ratio

Compressive
Strength

[Mpal

Compressive 
Strength [psi]

Sample 1 50.79 48.09 2.73 0.328 113.508 16462.94

Sample 2 51.12 50.97 2.87 0.372 98.322 14260.4

Sample 3 51.73 51.29 2.67 0.317 100.529 14580.5

Average - - 2.75 0.339 104.11 15101.28

Table 10. The tensile strength results of Epoxy resin C.

Epoxy 
resin C

Avg
Diameter

[mm|

Avg
Thickness

[mm]

T/D Ratio 
[0.2-0.75]

M ax Force [kN]
Tensile Strength 

[Mpa]
Tensile Strength 

[psi]

Sample 1 55 .62 23 .88 0.43 45 .5 4 2 9 21.83 3166.2

Sample 2 57 .40 25.41 0 .44 41 .1 8 8 2 17.98 2607 .8

Sample 3 55 .46 22.83 0.41 43 .5883 21 .92 3179 .2

Average - - - - 20 .6 2 987 .78

4. CONCLUSIONS

This paper investigated comprehensively the applicability of three thermoset 

materials to be reliable alternatives to Portland cement in wellbore integrity applications.

The main conclusions of this work are summarized below:



• The viscosities of the sealants were highly dependent on temperature as 

increasing the temperature reduces the viscosity significantly and at the same time 

reduces the curing time of the sealants. The sealants behaved like Newtonian 

fluids and the shear rate had no significant impact on viscosity.

• Epoxy resin C showed high injectivity and ability to penetrate small gaps when 

compared to conventional Portland cement.

• The three sealants had thermal degradation temperatures and Tg higher than the 

proposed applications.

• The three sealants showed high capability of plugging cement channels and 

reduces the permeability to zero. In addition, the permeability reduction after 

initiating new cracks in the cement was high. The sealants were able to stop water 

leakage and CO2 leakage.

• This work covered the rheology and plugging performance of the sealants but the 

workability of the sealants (thickening time) needs to be investigated in the future.

• All the sealants showed great ability to withstand chemicals, but Epoxy resin A 

was the only sealants that was able to withstand the 98% sulfuric acid. Thus, 

epoxy resins formulated similar to Epoxy resin A can be implemented in 

applications where sulfuric acid is present.

• The results of this study show that Novolac based resins are suitable for low 

temperature applications as the sealant tested here was able to develop high 

strength and was able to plug cement channels and reduce the permeability. In 

addition, the use of aliphatic curing agent for moderate temperature applications 

require further study as the material reacted volatilely in presence of heat. Lastly,
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the aromatic curing agent was the most suitable for application where 

temperatures are high as Epoxy resin C was able to plug the cement gaps and 

develop high strengths in short time.
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NOMENCLATURE

Gram per milliliter gm/ml

Pound per gallon lbm/gal

Radian per second rad/s

Dynamic Shear Rheometer DSR

Degree Celsius C

Degree Celsius per minute °C/min

Centipoise cp

Pascal pa

Differential scanning calorimeter DSC

Glass transition temperature Tg

Millidarcy mD

Pound per square inch psi

Milliliter per minute ml/min
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V. EVALUATION OF AN ULTRA-HIGH-PERFORMANCE EPOXY RESIN 
SEALANT FOR WELLBORE INTEGRITY APPLICATIONS

ABSTRACT

After drilling each section of a well, cement is placed in the annulus of the casing 

and the formation. The cement integrity must be ensured during the life cycle of the well 

or after abandonment. If for any reason, the cement lost its integrity, the consequences 

could be severe for personnel, equipment, and the environment. When the cement fail, 

leakages may occur through the cement pathways and sealant materials are used to plug 

these pathways. This study investigates a temperature activated epoxy resin sealant to 

evaluate the potential use of this sealant as an alternative to Portland cement in oil and 

gas wells. This study focuses on analyzing the rheological behavior of the sealant, the 

effect of temperature on the rheology and the curing time of the sealant, the penetrability 

of the sealant into small voids, and the blocking efficiency of the sealant. Experimental 

tests were conducted to evaluate the epoxy resin sealant including rheological 

measurements, density, injectivity, blocking efficiency, and mechanical properties. The 

findings of this study show that this sealant has low viscosity and Newtonian rheological 

behavior, low density as low as water, high injectivity and penetrability even in small 

gaps, ability to resist differential pressure higher 1000 psi, and extremely high 

compressive strength. This work demonstrates that epoxy resin sealant can be used 

effectively and safely in sealing cement voids.
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1. INTRODUCTION

Gas leakage, gas migration, gas seepage, and many other terms are synonyms to a 

problem that exists in hydrocarbon wells. This problem occurs due to a failure to achieve 

full zonal isolation and may result in high maintenance costs and threats to surrounding 

communities and the environment. Gas migration can be flow between zones, flow into 

shallow sands, and/or flow to the surface. Flow to the surface would occur within minutes 

or hours after completing the well while flowing between zones may not be noticed for 

weeks or even months. Many studies and field operations have been conducted 

throughout the history and well-integrity failures are still occurring through the wells’ life 

from drilling to plug and abandonment (Santos, 2015). Gas migration is reported through 

pressure buildup, referred to as “sustained casing pressure (SCP),” and can be a 

significant safety hazard. The Mineral Management Service of the United States reported 

in 2003 that SCP affects more than 8,000 wells in the Gulf of Mexico (Rusch, 2004). The 

Norwegian standard defines well integrity as “application of technical, operational, and 

organizational solutions, to reduce risk of uncontrolled release of formation fluids 

throughout the life cycle of a well” (Norsok, 2013). For these reasons, primary cement 

designs must be optimized in such a way that accomplish short and long-term zonal 

isolation (Sauer, 1987).

Portland cement have been used mostly for primary cementing after drilling, for 

secondary cementing in remedial operations, and for plugging and abandonment. When 

the cement is placed in the annulus as a barrier between the casing and the formation, it 

must be able to protect and support the casing, and to isolate production zones. The



cement must prevent the wellbore fluids from migrating in an annular flow path so as to 

allow the well to be utilized without any control problems (Alkhamis and Imqam, 2018). 

Mature wells need to be permanently plugged and abandoned. Plugging and 

abandonment operations usually consist of placing several cement plugs in the wellbore 

to isolate the reservoir and other fluids bearing formations. It is essential to ensure that no 

leaks are developed after abandonment. During the life cycle of a well, the cement is 

exposed to pressure and temperature variations, high mechanical loads, and corrosive 

fluids attacks. These harsh conditions may compromise the cement integrity and the 

cement may fail in delivering full zonal isolation (Ahdaya and Imqam, 2019). If this 

happened during the active life of the well, remedial jobs must be performed to restore 

the integrity of the well. Squeezing cement is usually the method of repair (Shryock and 

Slagle 1968). In which cement is forced in the cement voids and/or between the cement 

and its surroundings. However, this method is limited by the size of the voids (Jones et 

al., 2014) as the cement slurry consists of liquid and fine particles. The particles may start 

bridging in narrow voids. Micro cement may be used as an alternative but it can be 

limited in penetrating a gap of less than 300 microns in size (Wasnik et al., 2005) in 

addition to the thickening time of the micro cement that gets affected by contamination 

(Dahlem et al., 2017). For these reasons, a solids-free material should be designed to 

overcome the drawbacks of using cement for remedial operations. One of the alternatives 

is the use of polymer resins. This sealant material can also be used effectively in plug and 

abandonment operations.

In the petroleum industry, epoxy resins have been used for sand consolidation, 

which strengthen the formation by binding the grains of the unconsolidated formation
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1973). Epoxy resin was also used in enhance oil recovery applications (Hakiki et al.,

2015; Tiwari et al., 2017). It can also be used as a lost circulation material (Knudsen et 

al., 2014) and for fluid losses mitigation (Teixeira et al., 2014).

Polymer resin systems consists of base resin and curing agent, also known as 

hardener. Polymer resins can be defined as “free flowing polymer solutions that can be 

irreversibly set to hard, rigid solids.” (Morris et al., 2012). Many studies have been 

conducted to investigate the properties of polymer resins. These properties includes the 

tunable rheological behavior of the material (Alsaihati et al., 2017) and the fact that the 

material is solids-free, which allows it to penetrate very small gaps (Todd et al., 2018).

The flexibility in density, which is an advantage in case of narrow fracture pressure 

gradient, and the tunable setting time that was mentioned by Sanabria et al., 2016, and the 

resistance to contamination studied by Perez et al., 2017. In addition, to these pre-curing 

properties, cured sealant provides high mechanical strength (Elyas et al., 2018), can 

resists significant strain (Khanna et al., 2018), and develops good bonding (Jimenez et al., 

2016; Genedy et al., 2017). Also, during the polymerization reaction of epoxy resin, no 

by-products are formed (Muecke, 1974). Epoxy resins provides high stability and 

durability at high temperatures, indicating reliability in the long term (Bertram et al.,

2018). Based on the literature, no scientific laboratory work has been conducted to study 

the injectivity of epoxy through small voids as well as no work has investigated the 

plugging efficiency of this material.
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together at their contact points (Marfo et al., 2015). Consolidated formations have higher

elasticity after hardening than that of the rocks glued to (Milkowski and Szwedzicki,



This study presents in detail the preparation of an ultra-high-performance epoxy­

resin sealant for wellbore integrity applications. The paper also evaluates the injectivity 

and blocking efficiency of the sealant, which to the author’s best knowledge are two tests 

that have not been conducted for epoxy-resin in the petroleum industry. In addition, the 

rheological behavior under different temperatures, curing kinetics, and compressive 

strength have been evaluated.

2. BACKGROUND AND EXISTING TECHNOLOGY
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In this section of the paper, a summary of seven successful field jobs are 

presented. This summary of field case studies prove that epoxy resin sealants work 

effectively. Table 1 lists seven cases where the wellbore integrity were compromised and 

remedial job was needed. These cases occurred in six different countries on both offshore 

and onshore locations. In some of these cases, several attempts to remediate the failure 

were conducted using conventional technologies but failed to successfully solve the 

problem. Epoxy resin sealants were the solution for all of these cases and the remediation 

jobs were conducted successfully. Like the case of Brazil offshore well (Perez et al., 

2017), where casing leakage was observed in the 9-5/8" x 13 3/8" casing. The 

investigation tests concluded that this leakage is due to cement channels behind the 

casing and the solution was pumping 15 barrel of epoxy resin at 5 bbl/min rate to seal off 

the leakage as shown in Table 2, which lists the properties of the epoxy resin used in 

these field jobs.
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Table 1. A summary of seven wellbore failures.

Paper Locatio
n

Well
Type

Total
Depth

(ft)

BHST
(F)

BHCT
(F)

Well problem Location 
of failure

(Alsaihat 
i et al., 
2017)

Saudi
Arabia

Gas
Well
(XA)

12450 210 178

Casing-casing 
annulus pressure of 
4614 psi, Tubing­

casing annulus 
pressure of 141 psi

9-5/8x13
3/8"

(Khanna 
et al., 
2018)

India Well
(RXY) 8300.5 182 167

Channels in a 
cement packer 

(0.3875")
7" liner

(Davis,
2017)

Gulf of 
Mexico

Offsho 
re Well 20413 - -

Obstruction in the 
casing requires 

special treatment 
in-tubing

7-3/4"x5-
1/2"

(Perez et 
al., 2017) Brazil Offsho 

re Well
10823.

5 137 108
Casing Leakage 

due to channels in 
the cement

9-
5/8"x13

3/8"

(Pardeshi 
et al., 
2017)

New
Zealand

Pilot
Hole

10285.
5 160 120

Pilot hole needs to 
be permanently 

plugged
12-1/4"

(Sanabria 
et al., 
2016)

Saudi
Arabia

UTNM 
N Well 7335 175 - Casing

Damage/Leakage 7" Liner

(Ali et 
al., 2016) Egypt

Produc
tion
Well

11224 - 188 Leak with 1 
bbl/min rate

4.5"
Liner
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Table 2. The properties of the sealant used in the field jobs.

Paper

24 hr
Compressive

Strength
(PSI)

Viscosity @ 
300 rpm

Gellin 
g time 
(Hrs)

Density
(ppg)

Volume
(bbl)

Rate
(bbl/min)

(Alsaihati et 
al., 2017)

1500 @ 
190 F 34 @ 178 F 8 @ 

178 F 9.11 20 4

(Khanna et al., 
2018)

12455 @ 
182 F 50 @ 60 F - 9.17 15.73 4.5

(Davis, 2017) - - - 14 35 1-4

(Perez et al., 
2017)

8750 @ 
137 F - - 9.28 15 5

(Pardeshi et 
al., 2017)

7400 @ 
185 F

230 @ 120 F 
300 @ 80 F - 9.3 27 3

(Sanabria et 
al., 2016) - - 3 @ 

175 F - 20 0.3

(Ali et al., 
2016)

> 6000 @ 
188 F

170 @ 188 F 
> 300 @ 80 F

2.5 @ 
188 F - 12 -

Although, the epoxy resin sealants have proved their capability to seal off cement

failures, one might ask:

• Why do we need to use epoxy resin instead of other technologies?

How about the cost of this type of materials?
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To answer the first question, some of the drawbacks of other sealing materials and 

technologies will be highlighted. Starting by conventional Portland cement, which is the 

first choice of squeezing materials. Portland cement has the advantage of low cost. 

However, Portland cement is highly susceptible to bridge when squeezing through tight 

restrictions due to the large size of the cement particles (Abdulfarraj & Imqam, 2019). In 

addition, Portland cement properties such as thickening time get affected by brine. Micro 

fine cement has similar mechanical properties to Portland cement, but its smaller particle 

size reduces the risk of bridging across tight restrictions (Dahlem et al., 2017). Micro fine 

cement does not have problem with bridging but still get affected with contamination.

One other technology is the use of casing patches or scab liners, which are 

common solutions to recover the integrity of casings. Casing patches work well for short 

distances, but the major drawback is the reduction in the diameter of the casing. In 

addition, any restrictions in the wells must be removed before running the patches. If the 

reason behind the sustained casing pressure is micro-annuli or channels, casing patches 

cannot seal the leakage (Todd et al., 2018).

To answer the second question, the importance of planning the remedial job and 

the importance of sealing the leakages will be pointed out. The cost of the remedial job is 

directly related to waiting time (economic rig time) that is why planning the remedial job 

is the most important aspect. The cost also depends on the zone; the zone determines the 

amount of shut off material needed. In addition, the equipment needed to perform 

remediation job is important (pump truck, plugs, spacers, and packers) (Sufall, 1960).

The remedial job when planned and executed carefully, the outcome is success.



Successful remedial job means production safely and effectively. Safely for both 

personnel and the environment.
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3. EXPERIMENTAL MATERIALS

3.1. CLASS-H CEMENT

American Petroleum Institute (API) Class-H oil well cement was used in this 

study to prepare cement cores. The specific gravity of the cement was measured, using 

gas Pycnometer, to be 3.18. The chemical composition of Class-H cement, which was 

obtained utilizing X-ray fluorescence spectroscopy (XRF) is listed in Table 3.

Table 3. The chemical composition of class-H cement.

Comp. CaO SiO2 Fe2 O3 Al2 O3 SO3 MgO K2 O SrO TiO2 Other

Wt % 65.72 20.36 6.19 3.17 2.26 1.32 0.43 0.21 0.16 0.18

3.2. CEMENT PASTE PREPARATION

All cement slurries mixed in this study had a water/cement ratio (WCR) of 0.38 in 

accordance to API specification 10A (API, 2010). The mixing was at room temperature 

in a two-speed bottom-drive laboratory blender. Dry cement was added to the water in 

the blender at a uniform rate while mixing at low speed for around 15 seconds. Then, the 

blender was covered and the mixing continued for 35 seconds at high speed (API RP 

10B-2 2013).
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3.3. DILUTED RESIN

The resin used in this study is Bisphenol A diglycidyl ether resin (BADGE), 

which is one of the most widely used epoxy resins. Figure 1 shows the chemical structure 

of BADGE. It was selected to be the base polymer in the formulation of this temperature 

activated epoxy resin due to its ability to produce a sealant with very good mechanical, 

adhesive, and chemical resistance when cured with appropriate curing agent.

Figure 1. The chemical structure of Bisphenol A diglycidyl ether.

Since the base resin has a very high viscosity between 11000 -  14000 cp, it was 

essential to dilute the resin using a diluent. Cyclohexane dimethanol diglycidyl ether 

(CHDGE) was used as a diluent. This reactive diluent is a difunctional modifier that 

gives moderate viscosity reduction with minimum loss in properties. The chemical 

structure of CHDGE is shown in Figure 2.

Figure 2. The chemical structure of cyclohexane dimethanol diglycidyl ether.
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3.4. CURING AGENT

Diethyltoluenediamine (DETDA), which is an aromatic amine, was used as a 

curing agent for the diluted resin. This curing agent is less reactive and require longer 

time and higher temperature to cure. The decrease in the reactivity can be due to steric 

hindrance by alkyl groups adjacent to the amino group (Dewprashad and Eisenbraun, 

1994). The low reactivity is important to minimize the rate of heat released (Pardeshi et 

al., 2016). Figure 3 shows the chemical structure of DETDA.

Figure 3. The chemical structure of diethyltoluenediamine.

3.5. EPOXY RESIN PREPARATION

To prepare the epoxy resin mixture, an amount of the resin and the reactive 

diluent were weighted and mixed at room temperature by hand and/or using a magnetic 

stirrer until a homogenous fluid was obtained. Then, a calculated amount of curing agent 

was added to the blend and mixed at low shear until the mixture. For the elevated 

temperature experiments, the mixture was heated until the desired temperature while the 

stirring continued using the magnetic stirrer.
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4. EXPERIMENTAL METHODOLOGY

In this study, the rheological behavior of the sealant was studied first including 

measuring the viscosity of the undiluted resin, the diluted resin, and the final mixture 

(resin and curing agent). Then, the curing time of the sealant was measured. Lastly, the 

injectivity, blocking efficiency, and compressive strength of the material was discussed. 

In this section, the details of each experiment is presented, along with the procedure and 

the required outcomes from each experiment.

4.1. RHEOLOGICAL MEASUREMENTS

Measuring the viscosity of the base resin and the effect of changing the shear rate 

on the resin is important for this work. The effect of adding the diluent to the resin on the 

viscosity is also important to study as adding diluent to the base resin may change the 

behavior of the material. For these measurements, a dynamic shear Rheometer (DSR) 

with parallel plates system was used to characterize the rheological behavior of the base 

resin and the diluted resin. Samples of around 1.0 ml of the resin and diluted resin were 

placed on the lower plate of the instrument and the upper plate was lowered to a gap of 

around 1.0 mm. The readings were taken in both ascending and descending order in a 

range of 0.1 1/s to 1000 1/s. After that, the curing agent was added to the diluted resin 

samples and were preheated to several temperatures to obtain the effect of temperature on 

the rheology of the sealant.
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4.2. DENSITY MEASUREMENT

The density of the epoxy resin was measured using a simple weighting method. A 

specific volume of the sealant was placed on a high accuracy balance and the density was 

calculated by dividing the mass of the sealant by its volume. The value was recorded in 

[gm/ml].

4.3. ISOTHERMAL CURING MEASUREMENTS

These measurements are executed to estimate the gelling time of the epoxy resin 

to define the workability of the system at different temperatures. For a successful 

placement of the sealant inside the cement’s fracture without premature curing the 

equipment, the gelling time must be estimated. For these measurements, sinusoidal 

oscillatory tests using the DSR at angular frequency of 10 rad/s were performed and the 

viscosity increase with respect to time was recorded while the preheated sealant samples 

were curing under different temperatures.

4.4. INJECTIVITY MEASUREMENTS

The injectivity test in the field is performed to establish the rate and pressure at 

which fluids can be pumped into the treatment target without breaking the formation. 

Prior to any remedial job, this test is performed to determine the key parameters of the 

treatment and the limitations. In this study, a setup consists of syringe pump, 

accumulator, core holder, and hand pump for confining pressure was used as shown in 

Figure 4. The pressures were recorded using transducers. For this test, two cement core 

were prepared with artificial channels of different sizes 0.3 mm and 0.51 mm. For the

https://www.glossary.oilfield.slb.com/Terms/p/pressure.aspx
https://www.glossary.oilfield.slb.com/Terms/f/formation.aspx


The injectivity of the sealant was calculated by dividing the injection flow rate by the 

pressure and values were recorded in [ml/psi*min]. The 0.51 mm channel was also used 

to test the conventional cement injectivity.
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injectivity measurement, water was first injected in the channels followed by the sealant.

Figure 4. Injectivity and blocking performance setup.

4.5. BLOCKING PERFORMANCE MEASUREMENTS

The blocking performance measurements were conducted to test the sealant 

blocking efficiency. The sealant was placed in the channels of the cement and left in an 

oven for 24 hours to cure at 80 °C. Then, the cement cores were placed in the core holder 

of Figure 4 and water was injected.

4.6. COMPRESSIVE STRENGTH MEASUREMENT

The compressive strength measurements determine the strength of the sealant. 

Determining the compressive strength of the sealant is essential to ensure its ability to



withstand downhole conditions. This test simply measures the force needed to crush a 

sample of material. For this test, the sealant was preheated to 80 °C prior to pouring it 

into 2”x2”x2” cubic molds and place it in an oven at 80 °C for 24 hours. Then, the cured 

cubes were carefully removed from the molds. The specimen height and width were 

measured using a caliper, and the minimum surface area was calculated. A hydraulic 

press was used to measure the force required to crush the samples.

5. RESULTS AND ANALYSIS
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This part of the paper presents the results of each experiment and their analysis to 

point out their importance in the application of the sealant. The results include the 

rheological behavior of the sealant, the density, the curing time at different temperatures, 

the injectivity, the blocking efficiency, and the compressive strength of the sealant.

5.1. RHEOLOGICAL RESULTS

At low shear rate, the viscosity of the neat resin was found to be around 14764 cp. 

The viscosity decreased at higher shear rates with the lowest viscosity at 1000 1/s, which 

was found to be around 4000 cp as shown in Figure 5. These results indicate the shear­

thinning behavior of the sealant under accelerated shear rate. The measurements were 

conducted at room temperature and atmospheric pressure. The overall viscosity of the 

neat resin is high, and it was essential to dilute the resin. Generally, there are two types of 

diluent, reactive and unreactive diluent. The later one may have one big disadvantage that 

diluent may be lost during the curing reaction resulting in shrinkage in the material and
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loss of adhesion. So, CHDGE, which is a reactive diluent, was added to the resin at 

different concentrations 25 and 50%. Adding 50% reactive diluent reduced the viscosity 

by around 97% to be around 400 cp at room temperature. In addition, adding reactive 

diluent at concentrations higher than 25% eliminated the structure change that can be 

seen at high shear rates for the neat resin. The structure change was observed by taking 

the viscosity measurements of two ramps up and down. Figure 5 shows these results. In 

this study, 50%-diluted resin was selected to be the base resin for the sealant in the next 

experiments. The viscosity of the 50% diluted resin is in the range of 388 to 399 cp.
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Figure 5. The rheological results for neat and diluted resin.

Furthermore, the diluted resins showed Newtonian rheological behavior with no 

or very low yield stress. These results suggest that the material can flow under very low 

forces. It is important to point out that these results are for the resin part of the material



prior to adding the curing agent. The results of adding the curing agent are presented in 

the next section along with the effect of increasing temperature on the viscosity of the 

sealant.

5.2. VISCOSITY OF THE SEALANT AT DIFFERENT TEMPERATURES

In this part of the work, the viscosity of the sealant was measured. The curing 

agent was added to the diluted resin at stoichiometric ratio. The viscosity of the diluted 

resin was as mentioned earlier around 400 cp. The viscosity result of adding the curing 

agent to the diluted resin at 24, 60, 80, 100, and 120 °C are presented in Figure 6.

Increasing the temperature decreased the viscosity of the sealant. The viscosity of the 

sealant at 60, 80, 100, and 120 °C was around 45, 23, 15, and 9 cp, respectively, which 

are very good viscosities for sealant planned to be used for remedial and/or plug and 

abandonment operations. The low viscosity helps ensuring successful placement of the 

sealant in very tight clearances with very low pumping rates needed.

Once again, the material showed Newtonian behavior with no or very low yield 

stress. This suggests that the material can flow under very low forces. Unlike cement that 

behaves like Bingham plastic or Herschel Bulkley, this sealant behaves like Newtonian 

fluid. The Newtonian behavior and the low viscosity makes the sealant easy to pump (Al- 

Ansari et al., 2015). The results herein agree with the results presented by (Perez et al.,

2017 and Alsaihati et al., 2017).
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T=24 *C —* — T=60 =C  — T=SO =C  —• —T=10D X  T=120

Figure 6. The effect of temperature on the viscosity of the sealant.

These are the results of the sealant in its liquid state. At elevated temperatures and 

with time the curing reaction will take place in continues liquid phase. Then, a cross­

linking reaction will occur at some point. This point is called gelling point. At this point, 

the epoxy resin changes from liquid to rubber state. Then, to solid state. This can be 

determined by a rheological analysis of the isothermal curing process.

5.3. DENSITY RESULT

The density of the sealant was measured by simple weighting method. 0.20 ml of 

the sealant was taken and its weight was found to be 0.21 gm. Using these information, 

the density of the sealant was calculated to be 8.76 lb/gal. This density is higher than the 

density of water and lower than most of the fracture gradient pressures of formation. This 

is good to prevent fracking the formation while placing the sealant in the cement voids



5.4. ISOTHERMAL CURING RESULTS

The curing measurements were conducted at two constant temperatures 80 °C and 

120 °C. The results obtained from these measurements are important to determine the 

workability time of the sealant at different temperatures and to evaluate the effect of 

temperature on the curing process of the sealant. At 80 °C, the sealant’s complex 

viscosity was increasing steadily for around 6 hours. This time could be the gelling time. 

Then, the material started to transfer to solid after around 8 hours. After 10 hours, there 

was a rapid increase in the complex viscosity reaching around 24,000 cp. When the 

system cured for around 14 hours, the complex viscosity was around 9,000,000 cp as 

shown in Figure 7. The test was stopped at this point and the parallel plates were 

removed.

The parallel plates shown in the same figure were placed in a pure acetone and 

left for 24 hours. After 24 hours, the sealant was still able to adhere the plates together 

even though some small pieces of the cured material were observed around the plates. At 

120 °C, the same behavior was seen except for the curing time, which became shorter as 

the sealant was fully cured after 3 hours. Overall, the temperature increase speeded up the
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and good for displacing and remaining water in the cement fractures and/or between the

cement and its surroundings.

curing process.
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Figure 7. The isothermal curing process of the sealant at two different temperatures.

5.5. INJECTIVITY RESULTS

Prior to any remedial job, injectivity test may be conducted by pumping a solids- 

free material through the annulus of the wellbore to determine the injectivity factor to 

increase the success rate of the remedial job (Alsaihati et al., 2017).

In this study, several cement cores with two channel sizes 0.3 mm and 0.51 mm 

were used to measure the injectivity of the sealant compared to water and conventional 

cement. The sealant injectivity in the core with the channel size of 0.51 mm was found to 

be around 0.4228 ml/psi*min. The injection pressure was between 9 psi to 10 psi at 

constant flow rate of 4 ml/min as shown in Figure 8 (left side). The test was conducted 

for the sealant at 80°C. The same test was performed on the cement core with the smaller 

size and the injectivity was as expected smaller 0.2521 ml/psi*min showing that 

narrowing the size of the channel increases the injectivity factor and hence lowering the
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injectivity as shown in Figure 8 (right side). The water injection pressure was around two 

psi while the epoxy injection pressure was 16 psi. The flow rate was constant during the 

injection at 4 ml/min.

Figure 8. Injection pressure with time for 0.51 mm channel (left side) and injection 
pressure with time for 0.3 mm channel (right side).

Another experiment was conducted where cement was used as the injection 

material in the large channel (0.51 mm). The cement was injected at 4 ml/min flow rate. 

The injection pressure of the cement increased sharply to around 1000 psi in a few 

minutes as shown in Figure 9. The test was stopped at this pressure. This indicates that 

the cement was not able to propagate inside the cement’s channel. The injectivity using 

the cement was calculated to be 0.004 ml/psi*min assuming that the cement penetrated 

the channel at that pressure (1000 psi). The reduction in the injectivity is around 99% 

between injecting the sealant and the cement.
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5.6. BLOCKING PERFORMANCE RESULTS

To evaluate whether the sealant is able to seal cement’s channel, the sealant was 

placed in the channels of the cement cores and left in an oven at 80 °C to cure for 24 

hours. Then, the core was placed in the core holder and tested against water flow. The 

injection pressure of the water was at first 500 psi. At this pressure, no water was 

produced from the outlet for around 20 minutes. Then, the pressure was increased to 1000 

psi and left for around 15 minutes. Again, no water was observed at the outlet of the core 

holder. However, when the pressure increased to 1500 psi, only few drops of water 

appeared at the outlet of the core holder. The pressure was kept for around 40 minutes in 

which around 0.21 ml of water was produced as shown in Figure 10. At this pressure, the



sealant started to debond from the cement. After that, the pressure was increased to 2000 

psi to see whether the amount of produced water will increase or not but the amount of 

produced was similar. Similar results were obtained when the smaller channeled cement 

core was used. This experiment proves the ability of this sealant to completely seal 

cement channels in a differential pressure up to 1000 psi and to reduce the amount of 

produced water under higher pressures.
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Figure 10. Water injection after placement of sealant in 0.51 mm channel.

5.7. COMPRESSIVE STRENGTH RESULT

For the compressive strength of the sealant material, a load was applied to the 

cubic mold in a constant rate until the load reached a value greater than 22,067 lbf as 

shown in Figure 11. The cubic mold did not fail under this high load and returned to its 

original shape showing the high ductility and strength of the material. Figure 12 shows on



the right side one of the molds that were prepared for the compressive strength test, on 

the left side the epoxy resin after mixing in its liquid state, and in the center the cured 

epoxy resin, which was left in the flask for couple of days.
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Figure 11. The load vs time in compressive strength measurement.

Figure 12. Pictures of the sealant in liquid, solid state and cured sealant in cubic form.

6. CONCLUSIONS

By studying the epoxy resin sealant, several findings were obtained. These 

findings are based on the results of the analysis of the rheological measurements, density
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measurements, isothermal curing results, the injectivity and blocking performance results, 

and the compressive strength result. The main conclusions are summarized below:

• The temperature activated epoxy resin sealant studied in this work exhibits 

Newtonian behavior with no or very low yield stress, which indicates the ease of 

pump of this sealant.

• The density of the sealant is higher than that of water and low enough to be used 

for narrow fracture pressure gradient formations.

• The temperature of the curing plays a major role in the curing time of the sealant. 

The system is temperature activated which means that the sealant can be mixed 

in-house before transferring it to the remedial job location, which would save 

costs on equipment and time.

• The injectivity of the sealant is much higher than that of the cement and this 

sealant can penetrate very tight channels.

• The sealant has the ability to withstand differential pressure as high as 1000 psi 

and resists loads higher than 22,067 lbf after only 24 hours of curing.
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VI. LABORATORY STUDY USING TEMPERATURE ACTIVATED EPOXY 
RESIN SEALANT FOR WELLBORE INTEGRITY APPLICATIONS: 

RHEOLOGY AND PLUGGING PERFORMANCE

ABSTRACT

Cementing is one of the most important procedures conducted during drilling of 

oil wells. If the cement integrity is compromised at any point during drilling or 

production operations, the consequences could be severe for both personnel and 

equipment. Cement may fail to provide zonal isolation at any point of its life, which 

would create pathways for fluids to migrate. Sealant materials are used to plug these 

pathways. This work studies a temperature triggered epoxy resin sealant to be used as a 

sealant material for oil and gas wells. The focus of this work is on studying, the 

rheological behavior of the sealant, the effect of temperature on the viscosity and the 

curing time of the sealant, and the ability of the sealant to block water and carbon dioxide 

(CO2). Experimental tests were conducted to evaluate the properties and the performance 

of the epoxy resin sealant. The lab tests include rheological measurements and analysis, 

and blocking efficiency measurements. The chemicals used to develop the epoxy resin 

sealant were chosen based on rigid criteria. The criteria was based on environmental 

impacts, ease of chemical handling, and the mechanical strength of the final product. The 

findings of this study show that this sealant exhibits Newtonian rheological behavior and 

ability to resist differential pressure higher than 2000 psi against both water and CO2. 

This work demonstrates that epoxy resin sealant can be used effectively and safely in 

sealing the cement migration pathways.
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Gas, oil, and water are natural resources that can be found in subterranean 

formations. Recovering these valuable resources usually require drilling a wellbore into 

the pay zone formation. During the drilling and completion phases of a wellbore, a 

casing (steel pipe) is run in the wellbore to provide an annulus for cementing. Next, 

primary cement is placed in the annulus as a barrier between the casing and the 

penetrated formations. The cement main functions are to protect and support the casing, 

and to isolate production zones (Jimenez et al., 2016). The cement must prevent the 

wellbore fluids from migrating in an annular flow path so as to allow the well to be 

utilized without any control problems. The cement must restrict any fluid communication 

during the life of the well among various formations and the surface. If the primary 

cement failed to deliver full zonal isolation at any period of its life, remedial job must be 

performed to restore the integrity of the cement.

Despite the huge amount of research and the numerous field operations that have 

been conducted throughout the world, cement failures are still occurring within the life of 

wells from the drilling phase to the abandonment of the well (Santos, 2015). During the 

life of the well, the cement may be exposed to the leftover of the drilling fluids, high 

mechanical loads, variations in pressure and temperature, chemical degradation due to 

carbonic acid and other corrosive fluids presented in the formations. Therefore, cement 

can fail and fluids leakage may happen. The cement failures include formation of micro­

annuli at the interfaces on each side of the cement, channels through the cement, and 

fractures within the cement matrix. These failures provide pathways for fluids (mainly

1. INTRODUCTION



gases) to migrate either form one formation to another and/or from one formation to the 

surface (Alkhamis and Imqam, 2018 and Ahdaya and Imqam, 2019). The consequences 

of these failures may be blowouts or leaks that can cause material damage, personnel 

injuries, loss of production and environmental damages resulting in costly and risky 

repairs. Often, these losses exceed the cost of the well’s repair (Sanabria et al., 2016).

For remedial jobs, squeezing cement is usually the method of repair (Shryock and 

Slagle 1968 and Perez et al., 2017). Squeezing cement is the process of forcing cement 

slurry into a hole in the casing and the cavities behind casing. However, this method may 

require more than one squeeze to achieve shut-off (Alkhamis et al., 2020) and is limited 

by the size of the leakage (Jones et al., 2014) as the cement contains solids that may 

increase the risk of particles bridging in narrow clearances (Davis, 2017). Even micro 

cement can be limited in penetrating a gap of less than 300 microns in width (Wasnik et 

al., 2005) in addition to the thickening time of the cement that gets affected by 

contamination (Dahlem et al., 2017). Generally, squeezing cement require casing 

perforations. One of the alternative techniques used to overcome the drawbacks of using 

cement for remedial jobs is the use of cross-linked polymers and polymer resins (epoxy 

resin), which can easily penetrate small gaps.

A combination of polymer and cross-linker can be optimized on the surface to 

transform from liquid form to semisolid mass at reservoir temperature. Although, 

polymer gel can penetrate micro pores and channels, at high temperature the 3D network 

structure of the gel breakdown and lose its ability to trap fluids such as water in water 

shut off applications. The other limitation is their lack of mechanical strength (Wasnik et 

al., 2005).
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On the other hand, polymer resin systems can provide a sealant with superior 

properties for wellbore integrity applications. Polymer resin systems can be defined as 

“free flowing polymer solutions that can be irreversibly set to hard, rigid solids.” (Morris 

et al., 2012). The properties of polymer resins include but not limited to good and tunable 

rheological behavior (Alsaihati et al., 2017), solids-free material that can penetrate small 

gaps (Todd et al., 2018), good wetting and adhesive properties for mineral surfaces 

(Brooks et al., 1974), especially, silica surfaces (Shaughnessy et al., 1978), flexibility in 

density which is good for areas of narrow fracture pressure gradient, tunable setting time 

(Sanabria et al., 2016), and exceptional resistance to contamination (Perez et al., 2017).

In addition, to these liquid properties, solid cured sealant provides high mechanical 

strength (Ali et al., 2016; Elyas et al., 2018), resists significant strain (Khanna et al.,

2018), develops good bonding properties (Genedy et al., 2017), forms no by-product 

during the polymerization reaction (Muecke, 1974), and has stability and durability at 

high temperatures, which indicates its reliability in the long term (Bertram et al., 2018).

For these reasons, this type of sealant is being used as an alternative to Portland cement 

for remedial jobs. One of the drawbacks of polymer resins is the incompatibility of the 

resin with water and this downside has been discussed and solved by the use of systems 

that is based on aliphatic resins (Eoff et al., 2001). The other important drawback is the 

limited shelf life of the epoxy resin; limited shelf life would require delivering raw 

materials to be mixed at the well site, which would add undesirable step to the remedial 

operation. Hence, the system should be delivered to the well site ready to be injected 

(Treadway et al., 1964). Shelf life is important also in the case of using the epoxy resin in

171



remote areas (Shaughnessy et al., 1978). This can be solved by using sealant that is 

activated by temperature.

Epoxy resin was first offered commercially in 1946 (Dewprashad and Eisenbraun, 

1994). The applications of epoxy resins are wide including protective coatings, adhesives, 

electrical laminates, reinforced plastics, and commercial flooring. In the oil and gas 

industry, epoxy resin has been used for wellbore strengthening (consolidation). Resin 

consolidation strengthen the formation by binding the grains of the unconsolidated 

formation together at their contact points (Marfo et al., 2015). It has higher elasticity after 

hardening than that of the rocks glued to (Milkowski and Szwedzicki, 1973). Epoxy resin 

has been also used to reduce gas oil ratio to enhance oil recovery (Tiwari et al., 2017).

The applicability of epoxy resin to be used for conformance control has been investigated 

by (Hakiki et al., 2015). It can be used for fluid losses mitigation (Teixeira et al., 2014) 

and as a lost circulation material (Knudsen et al., 2014).

This study presents in detail the preparation of temperature triggered epoxy resin 

sealant and investigates its performance through an experimental evaluation. The 

evaluation includes conducting lab experiments such as rheology to study the factors that 

affect rheological behavior of the sealant. This research also evaluates the curing kinetics 

of the epoxy resin system under different temperatures.

2. THEORETICAL BACKGROUND

Resins are divided into two categories (Wasnik et al., 2005): The first one is 

thermosetting resins, which are resins that change irreversibly under heat (from liquid to
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solid). Thermosetting polymers consists of chains with a relatively low molecular weight 

(<10000). The second one is thermoplastic resins, which are those, which soften and flow 

when heat and pressure are applied. They consist of chains with a relatively high 

molecular weight (>10000).

Epoxy resins are thermosetting polymers that contain in their unset phase (before 

curing) one or more epoxide groups. Epoxide group is one or more three-membered 

rings, known also as oxirane, epoxy, or ethoxyline group. The molecular weight of epoxy 

resins varies greatly. They exist in the forms of solids and liquids with wide range of 

viscosities.

Chemically, the epoxide groups in the resin may react with many types of curing 

agents (Also, called hardeners) that contain hydroxyl, carboxyl, amine, amine group. The 

result of the reaction is a hard three-dimensional cross-linked network. Some other types 

of epoxy resins may be reacted (cross-linked) by themselves through catalytic 

homopolymerization. Some of the epoxy resins will cure at ambient temperature but 

many require heat to cure (T=150-200 °C) (Marfo et al., 2015). Fillers or/and diluents 

may be added to modify the properties of the thermoset.

2.1. EPOXY RESIN CURING MECHANISM

Figure 1 shows the curing process of epoxy resins. The flow behavior of the 

system is similar and related to the cure process. The system at the beginning is in liquid 

state and cure reaction takes place in continues liquid phase. Then, a cross linking 

reaction occurs at some point called gel point. At this point, the epoxy resin changes from

173



174

liquid to rubber state. The gel time can be determined by a rheological analysis of the

cure process. After this point, the system starts to build 3D structure and become solid.

Figure 1. (a) The system in liquid state, (b) cure reaction takes place in continues liquid 
phase, (c) a cross-linking reaction occurs at some point called gel point, (d) the epoxy

resin changes from liquid to solid state.

2.2. M IXING RATIO CALCULATIONS

The epoxy resin system can perform its best at stoichiometric ratio of 1:1. To 

determine the amount of curing agent to be added to the resin to reach stoichiometric 

ratio of 1:1 simple calculation must be done. The calculation includes finding the phase 

ratio of the amine (phr) which is expressed in parts by weight per 100 parts by weight of

epoxy resin. Phr can be determined using Equation 1 (Petrie, 2006).

AHEWPnr of amine = x  100
EEW

(1)

where, AHEW is the active hydrogen equivalent weight of the curing agent and EEW is 

the equivalent epoxy weight.
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• Equivalent epoxy weight or epoxide equivalent weight (EEW) is the ratio of the 

molecular weight of epoxy resin over the number of epoxy groups as shown in Equation 

2 (Petrie, 2006). It is also known as the weight per epoxy (WPE).

EEW = MW  o f  ep o xy resin  
num ber o f  ep o xy groups

(2)

where, MW is the molecular weight expressed in [grams/mole]. Most of the resins used 

in the formulations of adhesives have EEWs in the range of 180 to 3200 (Petrie, 2006).

• Active hydrogen equivalent weight (AHEW) of curing agent is defined by the 

ratio of the molecular weight of amine over the number of active hydrogens per molecule 

see Equation 3 (Petrie, 2006).

AHEW = ------- MW  °f  amine--------  (3)
num ber o f  active hydrogens

where, MW is the molecular weight expressed in [grams/mole] and number of active 

hydrogens is the number of available hydrogens per molecule.

If the resin is to be diluted like the case of this study, then the EEW of the diluted 

resin shall be calculated using Equation 4.

Total w eight o f  m ixtu reEEW o f m ixture = weight o f part A\ (weight o f part B
EEW o f part A k EEW o f part B )

(4)

3. EXPERIMENTAL MATERIALS

3.1. CLASS-H CEMENT

The cement systems used in this study were prepared using American Petroleum 

Institute (API) Class-H oil well cement, which was provided by Haliburton, and distilled
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water. The specific gravity of the cement was measured, using gas Pycnometer, to be 

3.18.

3.2. BASE RESIN

The resin used in this study is an undiluted difunctional Bisphenol 

A/epichlorohydrin derived liquid resin known as Bisphenol A diglycidyl ether resin 

(BADGE). The resin was purchased from Miller-Stephenson Chemical Company, Inc. 

Figure 2 shows the chemical structure of BADGE. This is one of the most widely used 

resins. It was selected to be the base polymer in the formulation due to its ability to 

produce a sealant with very good mechanical, adhesive, and chemical resistance when 

cured with appropriate curing agent. BADGE can be produced by reacting Bisphenol A 

and excess epichlorohydrin in the presence of sodium hydroxide (Dewprashad and 

Eisenbraun, 1994). The degree of polymerization is controlled by the ratio of the 

reactants.

Figure 2. The chemical structure of Bisphenol A diglycidyl ether.

3.3. REACTIVE DILUENT

Since the base resin used in this study had a very high viscosity (in the range of 

11000 -  14000 cp), it was essential to dilute the resin using a diluent. Diluents are low 

viscosity liquids added to an epoxy resin system to reduce its viscosity. They generally



provide a plasticizing effect on the final product. One of their disadvantages is that they 

may be lost during curing which will result in shrinkage and loss of adhesion. To avoid 

this drawback, a reactive diluent known as cyclohexane dimethanol diglycidyl ether 

(CHDGE) was chosen to be utilized. This diluent is a difunctional modifier that gives 

moderate viscosity reduction with minimum loss of properties. It is also good for 

chemical resistance according to the manufacturer. The reactive diluent was purchased 

from Miller-Stephenson Chemical Company, Inc. The chemical structure of CHDGE is 

shown in Figure 3.
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Figure 3. The chemical structure of cyclohexane dimethanol diglycidyl ether.

3.4. CURING AGENT

The curing agent of the epoxy resin was selected based on several criteria such as 

reactivity, toxicology, and quality of final product. Diethyltoluenediamine (DETDA), 

which is an aromatic amine, was selected as a curing agent for the epoxy resin. This 

curing agent was obtained from Albemarle chemical company. DETDA is a liquid curing 

agent with alkylated aromatic nuclei. It is toxicologically safe. This curing agent is less 

reactive and require longer time and higher temperature to cure. The decrease in the 

reactivity according to (Dewprashad and Eisenbraun, 1994) can be due to steric 

hindrance by alkyl groups adjacent to the amino group. The low reactivity is important to
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minimize the rate of heat released during the chemical reaction (Pardeshi et al., 2016). 

Figure 4 shows the chemical structure of DETDA. Table 1 is a summary of the chemicals 

used in this study.

Figure 4. The chemical structure of diethyltoluenediamine.

Table 1. The chemicals used in formulation the sealant.

Materials Weight per 
epoxide [g/eq]

Viscosity 
[cp] at 25 

°C

Density [lb./gal] 
at 25 °C

Active hydrogen 
equivalent Weight 

[g/eq]

EPON 828 185-192
(187.6)

11000­
15000 9.7 -

Heloxy 107 155-165 (158) 55-75 9.1 -

Ethacure 100 - 158.4­
286.16 8.5 at 20 °C 89.1

The base resin, the diluent, and the curing agent used in this study can cause skin 

corrosion/irritation, eye damage/irritation, and may cause damage to organs through 

prolonged or repeated exposure. Wearing suitable protective gloves and eye or face 

protection is essential as precautionary action.
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3.5. CEMENT PASTE PREPARATION

All cement slurries were mixed at room temperature in a two-speed bottom-drive 

laboratory blender. Dry cement was added to the blender at a uniform rate while mixing 

at low speed for around 15 seconds. Then, the blender was covered while the mixing 

continued for 35 seconds at high speed (API RP 10B-2 2013). All cement systems had a 

water/cement ratio (WCR) of 0.38 in accordance to API specification 10A (API 2010).

3.6. EPOXY RESIN PREPARATION

To prepare the epoxy resin system, a specific amount of base resin and reactive 

diluent were weighted and mixed at room temperature by hand and/or using a magnetic 

stirrer until a homogenous fluid was obtained. Then, a calculated amount of curing agent 

was added to the blend and mixed at low shear rate until the mixture was clear and 

homogenous Figure 5. For the high temperature experiments, the mixture was heated 

until the desired temperature while stirring using the magnetic stirrer.

Figure 5. The chemical structure of diethyltoluenediamine.
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4. EXPERIMENTAL METHODOLOGY

This section provides a detailed description of each experiment conducted in this 

work, along with the procedure and the required outcomes from each experiment. The 

experiments include rheology, curing measurements, density measurement, and blocking 

performance. For the rheological part of this study, two sets of experiments were 

conducted. First, measuring the viscosity of the resin. The effect of adding reactive 

diluent was investigated in this part. Second, measuring the viscosity of the system after 

adding the curing agent to the resin and the reactive diluent. These measurements were 

taken under different shear rates to mimic the placement of the sealant in the targeted 

zones. Then, the curing measurements were taken under steady dynamic oscillatory to 

monitor the viscosity development of the system without deforming it simulating the 

curing time of the sealant inside the targeted zones.

4.1. RHEOLOGICAL MEASUREMENTS

These measurements are important for this study to optimize the amount of 

reactive diluent to be added to the base resin and to characterize the viscosity of the 

epoxy resin system and to measure the effect of temperature on the system. For these 

measurements, the epoxy resin samples were preheated to the desired temperatures. An 

advanced Anton Paar Rheometer, which is a dynamic shear Rheometer (DSR) with 

parallel plates system, was used to characterize the rheological behavior of the base resin 

and the epoxy resin. Samples of 0.5 to 1.0 ml of the epoxy resin were placed on the lower



plate of the instrument and the upper plate was lowered to a gap of 0.5 to 1.0 mm. The 

readings were taken in both ascending and descending order in a range of 0.1 to 1000 1/s.

4.2. ISOTHERMAL CURING MEASUREMENTS

These measurements are executed to estimate the gelling time of the epoxy resin 

to define the workability of the system. This information is essential to be known to 

protect the downhole equipment and to ensure a safe and successful placement of the 

sealant inside the fracture. If this measurement was not optimized, it may lead to a sealant 

with premature curing. For these measurements, sinusoidal oscillatory tests using the 

DSR were performed at an angular frequency of 10 rad/s and the complex viscosity 

increase with time was monitored while the preheated epoxy resin samples were curing 

under different temperatures. In these tests, disposal parallel plates of 25 mm in diameter 

were used as the tests were run until the material reached a viscosity of nine-million-cp.

4.3. DENSITY MEASUREMENTS

The density of the sealant is another critical property to be studied. Generally, the 

density of the sealant should be higher than that of water to displace it and lower than that 

of the formation fracture pressure gradient to avoid breaking it. The density was 

measured using simple weighting method. A specific volume of the sealant was placed on 

a high accuracy balance and the density was calculated by dividing the mass of the 

sealant by its volume. The value was recorded in [gm/ml].
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4.4. BLOCKING PERFORMANCE MEASUREMENTS

In this study, a setup consists of syringe pump, accumulator, back pressure 

regulator, and stainless-steel tubes were used as shown in Figure 6. The pressures were 

recorded using transducers.

For this test, several stainless-steel tubes were prepared with different inner 

diameters 1.753 mm and 4.572 mm and different lengths 3 inches and 12 inches. The 

epoxy resin was mixed and placed inside the tubes and left in an oven for 24 hours to 

cure at a temperature of 80 °C. Then, the tubes were removed and placed in the testing 

setup. The ability of the epoxy sealant to seal the tubes were tested against both water and 

CO2.

Figure 6. Blocking performance setup.
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5. RESULTS AND ANALYSIS

In this section of the paper, the results of each experiment are presented and 

analyzed according to their importance in the application of the sealant.

5.1. RHEOLOGICAL MEASUREMENTS RESULTS

5.1.1. Viscosity of Neat and Diluted Resin. First, the viscosity of the neat resin 

was measured using the Rheometer. The viscosity of the neat resin was found to be in the 

range of 3991 cp at high shear rate to 14764 cp at low shear rate. The behavior of the 

sealant under accelerated shear rate was shear-thinning meaning that increasing the shear 

rate decreases the viscosity of the resin. The measurements were conducted at room 

temperature and atmospheric pressure. The overall viscosity is high, and it was essential 

to dilute the resin using diluent. In general, there are two types of diluent, reactive diluent 

and unreactive diluent. The later one may have one big disadvantage that it may be lost 

during curing which will result in shrinkage and loss of adhesion. For remedial 

application, this is not preferable as it contradict the main goals of sealing cement 

fractures and that is one of the reasons why reactive diluent was selected. The other 

reason is that reactive diluents impart flexibility and mechanical strength to the sealant 

(Du et al., 2018). CHDGE reactive diluent was added to the resin at different 

concentrations 5.0%, 10%, 25%, 40%, and 50% (by weight of resin). Adding 10% and 

50%, reactive diluent reduced the viscosity by around 50% and 97%, respectively. In 

addition, adding reactive diluent at concentrations higher than 25% eliminated the 

structure change that can be seen at high shear rates for the neat resin, 5.0% diluted resin,
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and 10% diluted resin. The structure change was observed by taking the viscosity 

measurements of two ramps up and down. Figure 7 shows these results. In this study, 

50% diluted resin was selected for further experiments. The viscosity of the 50% diluted 

resin is in the range of 388 cp and 399 cp at room temperature.
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Figure 7. The viscosity results for neat and diluted resin.

Furthermore, the 25%, 40%, and 50% diluted resins showed Newtonian 

rheological behavior with no or very low yield stress as shown in Figure 8. This 

Newtonian-like behavior can also be observed in Figure 7, which shows that the viscosity 

of the material is independent of the shear rate. These results suggest that the material can 

flow under very low forces. It is important to point out that these results are for the resin 

part of the material prior to adding the curing agent. Figure 9 represents the effect of the



amount of reactive diluent on the viscosity of the neat resin. This figure can be used in 

general to predict the viscosity of the diluted resin.
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Figure 8. The shear stress vs shear rate results for neat and diluted resin.

Figure 9. Effect of diluent on viscosity at low shear rate.



5.1.2. Viscosity of the Sealant System. In this part of the study, the viscosity of 

the epoxy resin sealant was measured. The curing agent was added to the diluted resin at 

stoichiometric ratio. The viscosity of the diluted resin was as mentioned earlier around 

400 cp. The viscosity result of adding the curing agent to the diluted resin at 24°C, 60°C, 

80°C, 100°C and 120°C are presented in Figure 10. The viscosity of the sealant decreased 

with increasing the temperature. The viscosity of the sealant at 80°C was around 23 cp, 

which is a very good viscosity. This low viscosity helps ensuring successful placement of 

the sealant in very tight clearances with very low forces needed (Alkhamis et al., 2019).
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Figure 10. Effect of temperature on the viscosity of the sealant.

Again, the material showed Newtonian rheological behavior with no effects of 

shear rate on the viscosity of the material. These results suggest that the material can flow 

under very low forces. It is essential to point out that cement behaves like Bingham 

plastic or Herschel Bulkley while this sealant behaves like Newtonian fluid. The



Newtonian behavior and the low viscosity makes the sealant easy to pump (Al-Ansari et 

al., 2015). These are the results of the sealant in liquid state. At elevated temperature and 

with time the cure reaction takes place in continues liquid phase. Then, a cross linking 

reaction occurs at the gel point. At this point, the epoxy resin changes from liquid to 

rubber state. Then, to solid state. The gel point can be determined by a rheological 

analysis of the curing process presented next in this paper.

5.2. ISOTHERMAL CURING MEASUREMENTS RESULTS

Curing measurements were conducted at three constant temperature 80 °C, 100 

°C, and 120 °C. The objectives of these measurements are to determine the workability 

time of the sealant at different temperatures and to study the effect of temperature on the 

curing process of the sealant. At 80 °C, the sealant complex viscosity was increasing 

slightly for around 6 hours. This time could be the gelling time. Then, the material started 

to transfer to solid after around 8 hours. After 10 hours, there was a rapid increase in the 

complex viscosity reaching around 24,000 cp. When the system cured for around 14 

hours, the complex viscosity was around 9,000,000 cp as shown in Figure 11. The test 

was stopped at this point and the parallel plates were removed as shown in Figure 12. The 

parallel plates shown in the figure were placed in a pure acetone. The plates were 

removed 24 hours later; the sealant was still able to bond them together. Some small 

pieces of the cured material were observed around the plates. At 120 °C, the same 

behavior was seen except for the curing, which became shorter as the sealant was cured 

after 3 hours. These measurements are crucial to optimize the placement of the sealant in 

the cement fractures. Short curing time may result in premature hardening; this may plug
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the coil tubing before reaching the targeted zone. Long curing time may affect the sealant 

negatively if the formation fluids bypassed the sealant and/or created channels in it. 

Therefore, optimum-curing time is desired for successful remedial job. Also, determining 

the bottom hole temperature is important prior to the remedial job to determine the exact 

gelling time of the sealant at that temperature to determine the waiting on sealant time. 

The temperature increase speeded up the curing process. The effect of this acceleration 

on the properties of the sealant are being studied currently and will be published later.
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Figure 11. The isothermal curing process of the sealant at different temperatures.

Figure 12. The cured sealant between the parallel plates.
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5.3. DENSITY MEASUREMENTS RESULTS

The density of the sealant was found to be 8.76 lb. /gal. This density is slightly 

higher than the density of water, which is good for displacing the remaining water in the 

cement fractures and possibly good to prevent fracking the formation that has narrow 

fracture gradient. The density measurements are listed in Table 2.

Table 2. The density measurements of the sealant.

Ratio Volume [ml] Mass [gm] Density [gm/ml] Density [lb./gal]

1:1 0.20 0.21 1.05 8.76

5.4. BLOCKING PERFORMANCE RESULTS

The ability of the epoxy resin to seal the tubes was tested by injecting water in 

one side of the tube while the other side was left open to collect water if any leakage 

occurs. The test started by injecting the water at constant flow rate while monitoring the 

pressure at the inlet. The pressure started to build up gradually at the inlet of the tubes. 

The injection pressure reached around 2160 psi in around 22 minutes as shown in Figure 

13. After that, the injection stopped for safety reasons. At this high pressure the epoxy 

resin sealant showed an efficient blocking and no water was observed at the outlet of the 

tubes. This experiment was repeated using tubes with different diameters and different 

lengths and no leakages were observed in all the experiments. These results show the 

ability of the epoxy resin tested herein to bond with steel tubes. This an indication that
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this type of sealants can be used effectively in sealing the micro annuli that could form

between the cement and the steel casing in oil wells.

0 5 10 15 20 25
Injection Time [min]

Figure 13. Injection pressure of water in sealed tube (4.572 mm).

After testing the sealant against water leakages, similar experiments were 

conducted to test its performance against gases. First, the tubes were placed in the setup 

but this time another pressure transducer was installed at the outlet of the tubes in 

addition to back pressure regulator. These modifications were done to the setup to capture 

the CO2 gas in case of any leakages occur. The CO2 was injected at the inlet of the tubes 

at constant flow rate until the pressure reached around 2000 psi as shown in Figure 14. 

The outlet pressure remained zero during these experiments indicating that the epoxy 

resin sealant is also efficient against gases.
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Figure 14. Injection pressure of CO2 in sealed tube (4.572 mm).

6. CONCLUSIONS

By studying the epoxy resin sealant, several findings were obtained. These 

findings are based on the results of the analysis of the rheological measurements, density 

measurements, isothermal curing results, and blocking performance results. The main 

conclusions are summarized below:

• The temperature triggered epoxy resin sealant tested in this study exhibits

Newtonian behavior with no or very low yield stress, which indicates the ease of 

pump of this sealant.

• The density of the sealant is higher than that of water and low enough to be used

for narrow fracture pressure gradient formations.

• The temperature of the curing plays a major role in the curing time of the sealant.



• The system is temperature activated which means that the sealant can be mixed in­

house before transferring it to the remedial job location, which would save money 

on equipment and time.

• The sealant has the ability to seal tubes with different sizes and withstand pressures

as high as 2000 psi. The sealant was able to stop water and CO2 leakages.

NOMENCLATURE
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g/ml = Gram per milliliter.

psi = Pounds per square inch. 
lb/gal = Pounds per gallon.

BWOC = By weight of cement.

p = Density, Pounds per gallon. 
Pa = Pascal.

Cp = Centipoise.

p = Viscosity. 
gm = Gram.
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SECTION

2. CONCLUSIONS AND RECOMMENDATIONS

2.1. CONCLUSIONS

By studying the cement and the epoxy resin sealants, several findings were 

obtained. These findings are based on the results of the literature review regarding 

cement failures, the analysis of the rheological measurements, density measurements, 

isothermal curing results, injectivity measurements, chemical resistance measurements, 

blocking performance results, and mechanical measurements. The main conclusions are 

summarized below:

• Today, the petroleum industry focuses on the short-term properties, which is good 

for the first days after the cement placement. However, the long-term properties 

are as important as the short-term and tests should be conducted for the durability 

of the cement.

• The initial state of stress in the cement sheath must be studied to estimate the 

limitation of the cement downhole.

• To better evaluate the state of stress in the cement after setting, the hydration 

process of the cement and time effect should be analyzed.

• It can be concluded from this review that the sealant material for oil and gas wells 

must follow these criteria:

□ Has low environmental impact with desired density.

□ Low fluid losses and very little to zero free fluids.



□ High mechanical strength and experience low shrinkage.

□ Short transition time and chemical resistance.

□ Adhesive properties with steel and different types of formations.

• The viscosities of the sealants were highly dependent on temperature as 

increasing the temperature reduces the viscosity significantly and at the same time 

reduces the curing time of the sealants. The sealants behaved like Newtonian 

fluids and the shear rate had no significant impact on viscosity.

• Epoxy resin C showed high injectivity and ability to penetrate small gaps when 

compared to conventional Portland cement.

• The three sealants had thermal degradation temperatures and Tg higher than the 

proposed applications.

• The three sealants showed high capability of plugging cement channels and 

reduces the permeability to zero. In addition, the permeability reduction after 

initiating new cracks in the cement was high. The sealants were able to stop water 

leakage and CO2 leakage.

• This work covered the rheology and plugging performance of the sealants but the 

workability of the sealants (thickening time) needs to be investigated in the future.

• All the sealants showed great ability to withstand chemicals, but Epoxy resin A 

was the only sealants that was able to withstand the 98% sulfuric acid. Thus, 

epoxy resins formulated similar to Epoxy resin A can be implemented in 

applications where sulfuric acid is present.

• The void size, viscosity of the sealants, injection flow rates, and heterogeneity of 

the voids played major roles in determining the injectivity of the sealants. Having
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a sealant with Newtonian behavior was beneficial in eliminating the effect of the 

flow rate.

• Solids-free sealants exhibited the most potential to successfully remediate 

wellbores in terms of the injectivity of the material.

• Solids-free sealant demonstrated high injectivity and low degradation after 

injection.

• The epoxy resin showed Newtonian behavior, and the injectivity showed the 

effect that Newtonian materials have on the injectivity.

• The cement presented a huge limitation in terms of its ability to penetrate small 

voids.

• The PPG showed good injectivity, but unless this injectivity is correlated with the 

ability to develop enough strength to hold reservoir fluids in place, this injectivity 

is not useful.

2.2. RECOMMENDATIONS

Based on the results obtained from this study, it is recommended to investigate the 

use of additives for the epoxy resin sealants such as fly ash to reduce the cost of the 

sealants and to be used as primary cementing material. It is also essential to measure the 

thickening time of the sealant prior to any application.
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