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ABSTRACT

iii

As more renewable energy is added to the electric grid, energy storage becomes a 

high priority. Suggestions have been made for energy storage in the form of fuel and 

chemicals. Currently, Solid Oxide Electrolysis systems can operate in endothermic mode 

and reduce the electrical requirement by supplying heat. Fuel synthesis from syngas is 

exothermic and can supply heat. However, the temperature mismatch in the normal 

operation of the electrolysis step and fuel synthesis step makes the direct utilization of 

this heat impossible. This work explores possibilities of alternate arrangements of 

coupling electrochemical systems and chemical synthesis. This work also explores 

potential for heat integration between the electrolysis and synthesis steps. This is done 

through exploring higher temperature fuel synthesis systems, and a new intermediate 

temperature electrolysis system.

The successful use of a Mo2C/HZSM-5 catalyst for ethylene production is shown. 

Analysis of potential benefits and limitations of each technological approach are 

examined. The breakeven carbon pricing for the hybrid energy system production of 

chemicals to be competitive with fossil-fuel based chemical production is calculated.
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1. INTRODUCTION

1.1. PREVIOUS WORK

Until fossil-based fuels no longer dominate U.S. and global energy portfolios, 

there is a need to continue to explore innovative and cost-effective approaches to reduce 

carbon dioxide emissions. Hybrid-energy systems (HES) are an increasingly active area 

of research. Hybrid systems are the cooperation of various energy systems all together to 

produce an optimum economic and technical output [1, 2, 3]. These systems produce a 

synergy in further reducing carbon emissions by utilizing all the energy streams [4]. A 

single-unit direct electrochemical system for the production of fuel and chemicals is 

proposed for integration into hybrid energy systems. This work includes a techno­

economic evaluation of the proposed single unit direct electrochemical systems as part of 

a hybrid energy system. Results from this techno-economic study will guide the 

development of an environmentally sustainable and economically attractive conversion 

methodology. The goal will be to establish a process that uses CO2 to generate a value- 

added product instead of focusing on ways to sequester it in the ground.

Previous work has focused on a proposed sustainable hybird energy system that 

combines an oxy-fired Pressurized Circulating Fluid Bed (PCFB) reactor with a solid 

oxide electrolysis (SOE) unit. [1] Steam from the PCFB and captured carbon dioxide, 

together with renewable electric power generated via wind turbines is fed to the SOE unit 

to generate oxygen and hydrogen [5].

Using the same main components of the previous hybrid energy system, this work 

focuses on the development of an integrated Fischer Tropsch and solid oxide electrolysis



cell (FT-SOEC) for the hydrocarbon synthesis steps. The FT-SOEC replaces the typical 

separate unit operations of a SOEC system with water gas shift (WGS) reactors and 

Fischer Tropsch (FT) reactors. This work also shifts the product focus based on the 

economics. Instead of focusing primarily on the production fuels, this work focuses on 

the green production of petrochemical feedstocks. A sample hybrid energy system with 

the major components examined in this work is shown in (Figure 1.1).

2

Figure 1.1 Typical Hybrid Energy System To Produce Liquid Fuels From CO2 [6]

1.2. BACKGROUND

The modern energy sector is increasingly moving away from pure fossil fuel 

systems and moving towards renewable energy production. These renewable generation 

systems are more environmentally friendly and sustainable, and they reduce greenhouse 

gas emissions. A major challenge for these systems is that they are non-dispatchable.



Additionally, the scope and scale of the energy transition incurs debate as to whether or 

not existing assets in the energy system can be replaced quickly enough to address 

climate change concerns, or if they need to be repurposed or modified to reduce the most 

severe impacts of fossil based energy systems. Addressing these challenges through 

hybrid systems provides greater flexibility and economic output than simple single unit 

and storage systems.

A proposed major link in the sector-coupling of energy systems is hydrogen. The 

US Department of Energy’s H2@scale initiative focuses on the ways that hydrogen can 

be used to reduce carbon emissions (Figure 1.2). This work focuses primarily on using

3

Figure 1.2 Modified Pathway Focus From DOE’s H2@Scale Program



electricity from renewable sources and baseload nuclear to bypass many of the 

intermediate processes and products for direct production of other end-use chemicals.

1.2.1. Major Components of the Proposed Hybrid Energy System. To better 

understand the proposed hybrid energy system, the major individual components will 

now be discussed. Some of these components are interchangeable with other similar 

components, however, for the scope of this work only the following will be included in 

the economic analysis of the system. A baseline comparison between an integrated SOEC 

and fuel synthesis system will be compared with a system that includes separate 

electrolysis and fuel synthesis operational units. This will clarify the advantages and 

disadvantages of the proposed system compared to the established technological baseline.

1.2.1.1. Carbon dioxide source. An industrial carbon dioxide source will be part 

of the system. The carbon dioxide will be used to produce chemicals. This results in the 

system being a carbon beneficiation system rather than simple sequestration. For a 

variety of end-use chemicals, the long-term stability of the finished products will result in 

a non-geologic sequestration. Most plastics and chemicals end up as products and any 

decay to atmospheric carbon emissions is very slow. Sample carbon dioxide sources 

include, stream methane reformers, cement plants, bioethanol, and traditional fossil fuel 

electric generating stations. For the purposes of the economic analysis, it assumes that 

carbon dioxide can be obtained for $40/ton. This represents a lower bound estimate of 

commonly expected costs for the capture of CO2 from point source emissions [7]. This 

generalizes the result from a single specific carbon dioxide source to a broadly applicable 

starting point for the analysis of any hybrid energy system.

4
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1.2.1.2. Renewable energy from wind turbines. Effective use of intermittent 

renewable wind energy in the HES requires some combination of effective storage, 

dispatchable generation or dispatchable loads. The proposed system operates a 

dispatchable load by using a SOE unit that operates at variable rates without efficiency 

loss. This configuration allows a wind turbine to produce at full rated capacity during 

periods of acceptable wind supply and convert all generated electricity immediately into a 

chemical based product.

1.2.1.3. Carbon-emission-free baseload-type generator. The baseload 

generation unit is either a fossil plant, such as the PCFB coal plant with Carbon Capture 

and Sequestration (CCS) in the previous work by Bucheit et al. or an existing light water 

reactor nuclear power generator [5]. Existing nuclear power units typically have 

typically fully depreciated capital assets and have difficulty ramping output up and down. 

In the case of nuclear, the operating cost of light water reactors in the Unites States is 

approximately $30/MWh. Since there are many times the market electricity costs go 

below that, the nuclear plant would be able to operate more profitably by selling the 

electricity at a fixed cost for hydrogen production.

Coal plants have a similar paradigm to nuclear plants. A coal plant with CCS 

would provide an ideal source for the carbon dioxide needed to produce the hydrocarbon 

chemicals necessary for displacement of traditional petroleum-based chemicals. 

Additionally, most chemicals would act as a form of carbon sequestration as they are not 

intended to be burned and re-release the carbon to the atmosphere.

For the purposes of the HES, the only significant difference between the nuclear 

plant and the coal plant are the availability of CO2, either directly from the power plant or



indirectly. The nuclear plant can use the electricity without the need for carbon capture, 

but in context of the HES, it is assumed that any coal-based electricity also includes CCS.

1.2.1.4. Solid oxide electrolyzer. Solid Oxide Electrolysis (SOE) is an emerging 

technology that provides flexibility and opportunities for use in a hybrid energy system. 

Historically, research focus has generally been on solid oxide fuel cells; however, the 

research emphasis is now shifting toward solid oxide electrolytes in electrolyzers [8].

This is changing as several commercial electrolyzers companies have grown over the past 

several years. The minimum electrical input to a solid oxide electrolyzer is substantially 

lower than either alkaline or PEM electrolyzers. The lower electrical requirements along 

with the ability to utilize process heat in the reaction increase the efficiency of the water 

splitting reaction. [9] In the past longevity and costs have been key issues, as well as the 

price of carbon-free electricity [10] [11]. These challenges have largely been addressed 

by the development of better electrolytes, electrodes, and production processes, as well as 

cost of electricity declines associated with the increase in solar and wind electricity 

production. [12] [13] [14]

1.2.2. Components Of The Hybrid System That Will Not Be Studied.

Although there are many components of the hybrid energy system, previous work has 

shown all the major components are capable of operation together. For this work the 

focus will be solely on the FT-SOEC, and other components will interact with the FT- 

SOEC through a grid connection or via simple direct electricity production and 

consumption. This focus results in a system boundary where the primary economic input 

to the system is the pricing and availability of green electricity.

6
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1.3. ELECTROCHEMICAL REDUCTION OF CO2

The traditional use of SOEC in the reduction of CO2 is the co-electrolysis of CO2 

and steam into syngas. This approach is well validated experimentally [9] [15]. The 

alternative approach for using SOEC to produce fuels is standard high temperature steam 

electrolysis followed by water-gas shift reactions (WGS). This is the approach used by 

Sunfire to produce “blue crude” for Audi [16].

In comparison to SOEC co-electrolysis, the direct electrochemical reduction of 

CO2 directly to hydrocarbon fuels and chemical feedstocks in a one step process is a very 

difficult technical challenge. Many different approaches have been tried. The results are 

typically either low efficiency, or low power density of the device [17] [18] [19]. 

Additionally, the selectivity to molecules other than methane and carbon monoxide is 

rare. This work seeks to develop a new strategy to directly employ some of the 

advantages of existing SOEC technology in a novel way to produce a single-unit 

operation, multi-step reaction chain to produce fuels and chemicals. The proposed 

strategy and obstacles will be discussed.

In order to produce valuable chemicals of interest, a catalyst with high selectivity 

and a reasonably high conversion efficiency is required. The current body of literature on 

FT catalysis is based on much lower operating temperatures than are compatible with 

SOEC. The application of existing syngas conversion catalysts to higher operating 

temperatures is the initial point of exploration for candidate catalysts. Literature 

examination of known (Fischer-Tropsch) FT catalyst mechanisms provides insight into 

the possible mechanisms expected at higher temperatures.
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For this work, we will approximate the operating characteristics of the subsequent 

separation processing steps. The rest of the system and the separation train will be 

simplified (Figure 1.3). The difficulty of the separation will depend on the single-pass 

yield of the catalyst. The fuel synthesis system’s main components are the integrated FT 

and SOEC system, a separation and product storage train, a recycle loop, and a DC 

electric power source. Due to the range of product compositions, a simplified separation 

scenario will be used as a first order estimate for the initial techno-economic analysis.

1.3.1. Current State Of The Art. The current state of the art in electricity to fuel 

conversion is a multi-step process typically involving high temperature or low

Overhead Product R ecyc le : Methane

Figure 1.3 Integrated Fuel Synthesis And Co-Electrolysis Reactor Scheme



temperature electrolysis, followed by water-gas shift, and then sent to a syngas 

conversion reactor [20] [21]. Most syngas conversion reactors are of the Fischer-Tropsch 

type, although there are other variants that are not typically defined as FT. This work 

focuses on systems that use a single integrated unit electrolysis and fuel conversion 

device. The general challenges of these types of devices are low efficiency, low yield and 

low power density.

1.3.2. Low-Temperature CO2 Electrochemical Reduction. The majority of the 

direct CO2 electrochemical reduction processes have very low current densities. At 

higher current densities the efficiency and selectivity both drop dramatically [22]. CO is a 

common product of these reaction systems. Both copper and silver are common catalysts 

and appear to be close to the ideal for these types of reactions [23]. Gold electrodes are 

also occasionally used [24]. Examples of the low temperature direction conversions 

devices are shown in Table 1.1.

9

Table 1.1 Survey Of Existing Single-Unit Electrochemical Synthesis Of Hydrocarbons



10

In order to deploy these types of systems economically the current density needs 

to increase by an order of magnitude or more while maintaining the same overall system 

efficiency and selectivity [35]. Even the highest currents are still too low to be considered 

candidates for viable commercial systems.

1.3.3. High-Temperature CO2 Electrochemical Reduction. For high 

temperature SOEC-based direct electrochemical reduction to non-syngas products, there 

is very little in the way of experimental data. Data from Fujiwara et al. is shown in Figure 

1.4 and is projected onto a chart of the theoretical products at each stage of reduction

[36]. It can be seen that, overall, the data agrees quite well with the thermodynamic 

equilibrium with an exception of the CO2 and CO data being shifted more significantly. 

There is a high likelihood this relates to either the Boudouard reaction, water-gas shift or 

some other reforming reactions occurring during the quenching of the outflowing gas 

streams.

Another work with experimental testing of methane production in SOEC co­

electrolysis has a similar overall result [37]. The experimental result shows a fully 

oxidized inlet of steam and carbon dioxide being reduced by 7.5% compared to the fully 

reduced state (Figure 1.4). A small amount of methane production (.013%) is shown to be 

achievable at 650 °C. This is much lower than needed for a viable system; however, it is 

nearly identical to the expected thermodynamic limit of methane formation given the 

outlet composition. There is some in the literature discussion of whether hydrogenation 

of carbon is a probable pathway for some of the methane formation in a direct 

electrochemical reduction system [36]. Based on the experimental results shown in 

literature, there is some evidence to suggest that carbon hydrogenation is a valid pathway
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Figure 1.4 In-Situ Direct Methanation SOEC Experiment Vs Theory At 1 Bar And 800
°C [36]

for methane production in a SOEC methanation system. This pathway is significant for 

the high degree of reduction proposed in this work. The experimental data plotted here 

and the other experimental results reviewed for this study, also operated at much higher 

applied voltages than is typically seen in SOEC. These high voltages cause instability in 

the electrolyte and electrodes. Such high voltages would not be suitable for long-term 

operation of a commercialized system. Also of note, is that at the conversion achieved, 

the total quantity of methane is very small. A much higher overall current relative to the 

flow is needed in order to see significant methane production.
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2. RESEARCH OUTLINE

2.1. RESEARCH OBJECTIVES

The primary objective of this work is the production of C2+ hydrocarbons in a 

single integrated electrolyzer and FT unit. A Techno-Economic Analysis (TEA) is used 

to screen the most economical and technically achievable hydrocarbon candidates and 

compare them with hydrogen production and a traditional syngas and Fischer-Tropsch 

route to hydrogen production. The comparison between technoeconomic status the 

proposed systems and the state-of-the-art systems is a secondary objective in the process 

that supports the primary objective. The technoeconomic evaluation will evaluate the 

necessary CO2 cost for the system to breakeven with conventional routes.

2.2. RESEARCH QUESTIONS

The main questions that this work seeks to answer are:

1. What are the optimal economic products for electrochemical production?

2. What are the operating conditions where those products are compatible 

with thermodynamic and kinetic pathways?

3. What combinations of catalysts and electrolytes work under the conditions 

identified by the thermodynamics and electrolyzer operating conditions?

2.3. RESEARCH APPROACH

The research approach is to identify catalysts, experimentally test, and 

economically evaluate the proposed integrated fuel synthesis-SOEC system. A subset of



fuels and chemicals are targeted for production by examining the simple fuels and 

chemicals that are high value for a given energy input. The literature review and 

economic analysis will inform which types of catalytic systems and target products are of 

particular interest. Thermodynamic and kinetic analysis will also be used to screen 

catalysts for the proposed system. The limitations of test facilities and equipment will 

also inform the initial systems proposed and test.

Experimental validation tests will be performed after finding catalysts that are 

compatible with the requirements of the typical SOEC electrolytes. This experimental 

validation of the literature and theory is a critical advancement. These results will provide 

the basis for the final techno-economic models.

The techno-economic analysis will evaluate system performance for conversion to 

hydrocarbons. A modified version of the DOE’s H2Analysis tools will be used to 

estimate the system economics. By comparing results with conventional routes, a

13

breakeven carbon cost for these routes will be calculated.



14

A key driver of any energy system is the energy efficiency. A significant 

attractive feature of SOEC systems are their higher theoretical energy efficiency 

compared to other hydrogen production systems. This section on thermodynamics will 

help identify the impact of the integration of the FT and SOEC units into a single FT- 

SOEC system. It will also identify the operational difficulties associated with coking due 

to the very high electrochemical reduction of steam and carbon dioxide in the SOEC. The 

thermodynamic benefits will be used to modify the economic analysis in the DOE’s 

H2Analysis tool. The thermodynamic challenges will be a consideration in the catalyst 

screening section.

3.1. WATER SPLITTING

The thermodynamics of in-situ generation of fuels and chemicals simultaneous 

with electrolysis is beneficial for electrolyzer efficiency. The governing equation for the 

thermodynamics of the system is the Nernst equation. Various reaction products and 

pathways have different limiting efficiencies.

For a given reaction, the minimum thermodynamic voltages can be found by the 

following equation:

Eeq=AG/z^ (Eqn. 1)

where Eeq is voltage, AG is the change in free energy, z is moles of electrons transferred 

in the reaction step, and F  is Faraday’s constant.

3. THERMODYNAMICS
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Voltage over the thermal-neutral voltage (eqn 2) results in heat production and 

loss of system efficiency.

Eta=AH/z^ (Eqn. 2)

Using the heat of formation and the Gibbs energy of formation for water as a 

function of temperature, along with eqn. 1 and eqn 2, one can easily construct Figure 3.1. 

The graph of AGf and AHf can then be used to determine the maximum amount of heat 

that can be used within the reaction at a given temperature. The difference between AGf 

and AHf increases with increasing temperature. In addition to kinetic limitations, this is 

part of why high temperature electrolysis is more able to use heat as an input to water or 

steam electrolysis. Not only are the kinetics improved, but also the maximum driving 

potential is higher. For a given cell, the current is defined by the operating voltage, the

Water Splitting Thermodynamics
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Figure 3.1 Water Splitting Thermodynamics And Typical Operating Temperatures And
Voltages For PEM, Alkaline, And SOEC
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open circuit potential, and the resistance of the cell. This is just a restating of Ohm’s Law 

applied to an electrochemical cell.

V  =  l x R  (Eqn. 3)

Voltage is always a differential property. In this case, the voltage difference is the 

difference between the applied voltage and the open circuit potential. Restating Ohm’s 

Law specifically for an electrolysis cell yields the following equation.

fop f Open c ir c u i t f X R  (Eqn. 4)

The open circuit potential at a given temperature is a function of gas composition. 

The full Nernst equation gives the open circuit potential as a function of temperature and 

gas composition.

E= £ 0  _  ln f  n (pproducts)X\  
ztF 'n ( Preactants')y / (Eqn. 5)

where x and y are the stoichiometric coefficients of the products and reactants. E0 is the 

standard potential of the reaction at the given temperature. The other terms R, z, F, and T 

have been previously defined.

The net heat load for a hypothetical cell is shown in Figure 3.2. It can be seen that 

for total conversion of the inlet gases the net heat generation of the cell is always greater 

than zero. A similar analysis by O’Brien et al. has previously been validated 

experimentally to show heat generation and consumption over the flow path of a SOEC 

stack [38]. When including the heat needed to convert water to steam, the net heat 

generation is zero for a much smaller value than the typical electrolysis only system. It is 

possible that some of this excess higher quality heat could be recovered to further 

improve the system efficiency, but that is beyond the scope of this work.
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The thermal load of the electrolysis stack is zero at the operating voltage of 1.28 V. In an 

ideal system with perfect heat recovery, the thermal load of the whole system is zero at

Electrolysis Heat of Reaction

Water Electrolysis Net Heat Load□ b

Ohmic Heatinn

Reaction with Steam Production

r  0.88 1.48

-0.4

D.G
Driving Voltage (V)

Figure 3.2 Net Heat Flux For A Theoretical Water Electrolysis Cell

1.48 V. This corresponds to the higher heating value (HHV) of hydrogen divided by zF 

Eeq=AG/z^ (Eqn. 1). In this case z is the number of electrons transferred per mole of 

hydrogen (z=2) and F is Faraday’s constant. Actual thermal losses mean that the total 

energy would be higher. However, the 39 kWh/kg represents the minimum energy input 

to the system. If the system has no other thermal energy inputs, the total electricity 

demand required is a minimum of this value.
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3.2. IN-SITU FUEL SYNTHESIS

Thermodynamically, the heat release of Fischer-Tropsch can be used to provide 

heat for the co-electrolysis system. The temperature at which the FT reactions occur, 

limits the amount of heat that it can provide to the system. The increasing quality of heat 

provides an increasing availability to provide energy and increase the theoretical 

efficiency of the hybrid FT-SOEC system. The thermodynamically favorable region for 

olefin production, the FT operating region and SOEC operating region do not historically 

overlap. The necessary adjustment is to raise the FT temperature and lower the SOEC 

temperature. This allows the system to operate where the heat released by the FT reaction 

can supply the heat needed for the SOEC water splitting reaction. The overall energy 

input to the system can be viewed from control volume of the electrolysis stack as 

entirely supplied by electrical energy. Figure 3.3 shows the net heat flux of an integrated 

FT and electrolysis system. It can be seen that the relevant thermal neutral operating 

points for the SOEC stack and for the entire system are shifted compared to steam 

electrolysis only operation. Heat recovery reduces the heat needed to be removed for the 

FT reaction, and eliminates the heat needing to be supplied for the water splitting 

reaction. The overall effect from an energy efficiency perspective is to reduce the overall 

required electrical input energy at the electrolysis stack. However, it should be noted that, 

from an exergy perspective, the increasing utilization of electricity over various grades of 

heat, results in a lower exergetic efficiency than from an ideal system. However, since the 

work anticipates that much of the energy for the electrolysis stack will come from 

renewable electricity sources, this has a negligible impact from an overall system 

perspective.
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Figure 3.3 Net Heat Flux For A Theoretical Combined FT And Electrolysis Cell

In terms of outlet hydrocarbon composition, increasing the pressure can shift the 

equilibrium to longer chain hydrocarbons due to Le Chartliers principle. The molar 

quantity of reactants is higher than the molar quantity of products. This is one reason that 

FT reactors typically operate at pressures of 10-80 Bar. However, at these temperatures 

this is only a minor shift compared to the overall thermodynamic favorability of methane 

production. As will be discussed in a later section, the catalyst kinetics will be a 

determining factor between the yields of olefins and methane during the in-situ syngas 

formation and reaction.

3.3. COKING

A key metric of concern will become coking. The coking will depend largely on 

the operational parameters of the system. Factors such as CO2/H2O feed ratio,



temperature, pressure, and catalyst type will all affect the ability for coke formation to 

occur. The thermodynamic regime where coking cannot occur will be examined as the 

primary area of operation (Figure 3.4). Similar work done by Jensen et al. [39] shows the 

coking regime for methane formation. As shown higher hydrogen to carbon ratios reduce 

the coking rate. Higher hydrogen to carbon ratios unfortunately also encourages methane 

formation. A variety of different compounds can be added to the system in order to 

promote coking resistance [40]. These will be discussed further in the relevant catalysis 

and electrochemistry sections.
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Figure 3.4 Coking And Non-Coking Region For Different C:H Ratios For The 
Synthesis Of Hydrocarbons In-Situ. Conditions Are At 1 Bar And 650 °C. HSC

Chemistry 6.0
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4. CATALYSIS

The kinetics of the catalytic system are a key limitation of the system. Compared 

to normal operating temperatures of 200-400 °C for syngas to olefins, the operating 

temperature for SOEC systems is much higher. The increased temperature increases the 

overall catalytic activity of the system. However, keeping the output CH4 production rate 

low is still a large priority. The kinetics of methane formation in general grow favorable 

at increasing temperatures. If the overall kinetics are not supportive of producing C2+ 

hydrocarbons at the required temperatures, then the candidate system is not viable. 

Therefore, while yield and catalytic activity are of importance, reasonable activity and 

selectivity towards C2+ hydrocarbons production is a key metric in evaluating the 

potential catalysts and products. A secondary concern for initial screening of potential 

system is catalyst coking. Catalyst coking is of major importance to system lifetime. 

While the system will almost certainly thermodynamically favor coke formation, it needs 

to be kinetically inhibited on the catalyst active surfaces. There are many possibilities for 

reducing coke formation, and these will be discussed but not evaluated experimentally 

beyond the basic catalyst systems tested. Analyses and literature screening of synthesis 

catalysts potentially compatible of higher temperature C2+ hydrocarbons synthesis routes 

and catalysts is a major step in completing the objective of this work.

As a result of literature review and initial experimental screening with non­

electrolyzer reactant systems, two different catalyst approaches are explored. The first is 

a syn-gas to olefin catalyst. The second is a non-oxidative methane coupling catalyst.
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4.1. SYN-GAS TO OLEFIN APPROACH

These competing requirements of high hydrogen for non-coking, high per pass 

conversion, and low hydrogen to carbon ratio for higher olefin yield show the limits of 

this approach. A highly selective catalyst could potentially produce primarily olefins and 

hydrogen. At low temperature, hydrocarbons are the thermodynamically favored 

products. At higher temperature the reaction shifts towards syngas, carbon, and methane. 

FT is more exothermic than the other undesired reactions, and so increasing temperature 

shifts away from the conversion towards FT products.

The heat release of the FT reaction results in the overall reaction being net 

exothermic. The excess heat can be used for various process services, such as producing 

steam for the electrolyzer. [41] However, because FT is exothermic, the reaction 

decreases with increasing temperature. This presents a challenge for the high operating 

temperatures required for SOEC.

In examining some of the lower carbon number products, ethylene and other short 

olefins are commonly studied for synthesis via FT reactions. Fe, Co, and Ru based 

catalysts are very common approaches to olefin production from syngas [42]. Based on 

these being the typical low-temperature (200-300 °C) catalysts for FT to olefins, the 

potential for their use at high temperatures was examined.

By looking at the chain growth probability in the standard Anderson-Schulz-Flory 

(ASF) distribution, we can look and see what the fractions of various hydrocarbon ranges 

by chain propagation probability (Figure 4.1) [43]. This helps to develop a system for 

chain growth probability to optimize the product distribution.
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Figure 4.1 Product Weight Distribution By Carbon Number Of Fischer-Tropsch
Polymerization Reaction

The product weight distribution determined by the ASF distribution shows the 

relative importance of a low methane yield. Kinetically restricting the formation of 

methane is the most substantial improvement to the yield of desired products that can be 

made. The overall target chain propagation value is based on maximizing the production 

of C2-C3 olefins. As can be seen in Figure 4.2, the maximized total C2-C3 olefin 

production occurs at a chain propagation probability of 0.41.

Additionally, the chain growth probability has an activation energy associated 

with the change in probability [44]. By determining the chain growth probability as a 

function of temperature we can find a target for the upper limit temperature for good 

chain growth to C2-C4 hydrocarbons. Research shows that both increasing temperature



and increasing H2/CO ratio decrease the chain propagation probability. Since it is 

required that the FT-SOEC will be at a higher temperature than normal FT reactors, and 

coking probability is decreased with increasing H2/CO ratio, it is important to evaluate 

the effect of these changes on the chain propagation probability. Using approximation of 

the chain growth
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Figure 4.2 Weight Fraction Of C2 And C3 Hydrocarbons As A Function Of Alpha

probability as a function of temperature, an estimation of the high temperature chain 

propagation probability is made in order to estimate high temperature product 

distribution. [45] [46]

To increase selectivity to C2+ hydrocarbons, limiting hydrogen active-sites 

prevents the hydrogen addition to CH3 groups. The catalyst surface most often achieves



this by reducing the number of adjacent H-M active sites. Without being able to have 

hydrogen adsorbed to the surface, the CH3+H group becomes kinetically unfavorable 

Figure 4.3). However, this must be tuned in the consideration that CH2 groups are still 

necessary for a stable and active pathway to unsaturated bond formation. In the case of 

higher alcohols this can be achieved through stable OH groups bonding on the surface to 

OH groups to help the process proceed.
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Figure 4.3 Fischer-Tropsch mechanism pathways [41] [47]

The initial screening for catalyst selection was to find catalysts that still were 

selective towards non-methane and non-carbon-dioxide products at elevated 

temperatures. Additionally, selectivity towards olefins over alkanes was preferred. Low 

activity was not a serious impediment in the initial catalyst screening. The increased 

operational temperatures of the catalyst will increase the overall reactivity. The overall 

system economics are more strongly affected by the SOEC system than the subsequent 

FT steps. When thermodynamic limitations are taken into consideration, the SOEC 

electrode area is expected to provide excess catalyst surface area for FT synthesis.



By examining the literature of FT-olefin synthesis, an estimate of the alpha chain 

propagation factor as a function of temperature was derived. Starting with the following 

equation from [48]
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a  = (Eqn. 6)

By calculating and fitting the chain propagation probabilities for various catalyst families 

to the literature. We can approximate the chain propagation probability activation energy 

for the various catalysts. For the catalysts examined the syngas ratio is nearly constant, 

thus turning the entire pre-exponential factor into one unknown.

By fitting the data to the Ruthenium catalyst, it can be seen that the difference in 

Figure 4.4 that the activation energy for the methanation and olefin synthesis reaction is 

much smaller than for the Fe-Co-Ce catalyst system. This suggests a Ru based catalyst 

might be a viable candidate for the production of the olefins at very high temperature 

(Figure 4.5). Unfortunately, experiments show Ru tends towards methanation at higher 

temperatures [49]. In contrast to Ru, the Fe-Co-Ce quickly becomes pure methanation 

reaction at higher temperatures due to the much higher activation energy [50] [51]. This 

is based on the predicted chain propagation probability.. However, if the hydrogen 

addition to the methyl group is kinetically restricted then the termination steps may still 

favor a product higher in ethylene and higher olefin production [52]. Manganese is well 

characterized and has been shown to promote olefin formation on Fe and Co catalysts 

[49-54]. The addition of sulfate compounds was shown to promote olefin formation on Fe 

supported on Alumina to temperatures up to 550 °C.
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Figure 4.4 Fe-Co-Ce Catalyst Alpha Vs Temperature With Alpha Fit To Eqn 6

Potassium has also been used as a promoter and observed to increase olefin 

production on Fe-based catalyst [53] [54] [55]. The Co and Fe catalyst system was 

screened to determine the effectiveness of the cheaper Fe-Co based catalyst. Coking may 

still present an issue for system lifetime. The variety of supports can also impact the 

overall composition and catalytic activity of the system. Major types of supports include 

alumina and carbon-based supports [56] [57]. Potentially compatibility issues with 

supports is discussed in the SOEC electrochemistry section.

The operating conditions for the system still require that olefin production be 

thermodynamically favorable, while simultaneously having effective electrolysis steps. 

These conflicting requirements are partially satisfied by increasing the pressure and 

operating in the 500-700 °C temperature range. At higher temperature the system has is
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Figure 4.5 Ru Catalyst Alpha Vs Temperature With Alpha Fit To Eqn 6

predicted to have a lower theoretical maximum per pass yield, while at lower 

temperature, the electrolyzer power density is poor.

Based on the screening results of the catalyst literature and analysis, Co-Fe based 

catalyst on a ceria support was selected as the initial candidate for the FT-SOEC system. 

It represents a reasonable compromise between availability, cost, performance, 

compatibility with SOEC, and similarity to existing SOEC cell composition. This proof 

of concept catalyst and cell combination will be used to show whether or not within the 

thermodynamic boundaries that in-situ olefin synthesis in a SOE unit is viable via a 

syngas intermediate.
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4.2. METHANE COUPLING CATALYST SYSTEM APPROACH

An alternate approach was formulated based on the non-oxidative coupling of 

methane (non-OCM). This approach utilizes the methane formation of the nickel catalyst 

in the electrode to feed a non-oxidative coupling methane catalyst. Concerns about 

coking still apply. In this case much more oxygen is removed from the reaction. Since 

hydrogen is one of the products of methane dehydro-aromatization, any excess hydrogen 

unreacted in the methanation reactions reduces conversion. This two-step catalytic 

system has more flexibility in operating temperature, but it still has significant challenges 

with the potential for carbon deposition. In order to get significant conversion to methane 

in the electrolysis step carbon deposition will be an even greater concern than a syn-gas 

route.

Thermodynamic products calculations were performed over a range of oxygen 

content. These calculations were performed using HSC chemistry 6.0. The decreasing 

oxygen content corresponds to the electrochemical reduction expected in the SOEC 

system. Table 4.1 shows the concentration of various expected products of non-oxidative 

coupling methane. These calculations are compared to calculations from literature and 

show a very similar result [58].

Changing these calculations to the desired operating temperature and plotting vs 

oxygen content gives the composition vs percent reduction. The calculations are 

performed using a 4:1 H:C ratio. For the purposes of the catalyst, coking is considered to 

be kinetically excluded and is not considered. Based on the method’s previous agreement 

with reported calculations from values, the thermodynamic predictions of these
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Table 4.1 Weight Fraction of C2+ Hydrocarbons Via Non-Oxidative Coupling Methane
as a Function of Temperature (Celsius)

calculations are expected to be accurate with an adequate catalyst (Figure 4.6, Figure 4.7, 

and Figure 4.8).

Examining the product composition at 650 C, ethylene is an almost negligible 

product, however, methane yield can be almost complete conversion of the incoming 

products to methane. As shown, at near total reduction of the system the production of 

ethylene becomes noticeable for the 725 C case. In fact, the limiting case of total 

reduction is the pure methane feed cases given in the table with comparisons to literature.

At 800 C, the ethylene production is approaching a level that is significant enough 

that separations might be practical for the recovery of the ethylene from the methane. 

Further increases in temperature may be beneficial but have a trade-off with SOEC 

system lifetime and materials. For the proof-of-concept testing, remaining with a more 

common 800 C operating temperature for stability and better baseline comparison is an 

appropriate compromise. Future integration of SOEC with non-oxidative coupling 

methane can potentially benefit from the increasing yield of ethylene with increasing

temperature.
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Figure 4.6 Electro-Reduction Of Steam And Carbon Dioxide At 650 C And 1 Bar

Figure 4.7 Electro-Reduction Of Steam And Carbon Dioxide At 725 C And 1 Bar
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Figure 4.8 Electro-Reduction Of Steam And Carbon Dioxide At 800 C And 1 Bar

There is an extensive body of literature on a variety of non-oxidative coupling 

methane catalysts. Most of these catalysts are based on zeolites of different varieties. A 

very common and easy to procure and synthesize catalyst candidate is Mo-HZSM5.

The operation of zeolites at high temperature and high steam is a concern for the stability 

of the catalyst. The catalyst stability is also an area of concern for the electrodes. The 

zeolites are a compound of silica and alumina, at high temperature and steam, the catalyst 

is subjected to “steaming” and dealuminifcation. The removal of alumina from the 

structure causes an overall coarsening and decrease in surface area. The long-term 

degradation of the catalyst results from the removal of the alumina from the crystal 

lattice.

Silica appears to remain stable during the steaming process. This is significant for 

the system lifetime. Silica is a known poison to SOEC systems. For any long-term 

system, the stability of silica species in the system is critical. The silica can form silicic
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acid and due to the change in pO2 at the electrolyte and catalyst interface, deposit on the 

triple phase boundary. This generally results in a near-irreversible poisoning of the 

system activity. stable in the structure. The long-term operation of an SOEC system with 

co-located zeolite is a topic of future, but an area of consideration in catalyst selection.
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5. SOEC ELECTROCHEMISTRY

This section examines the challenges for a typical SOEC to operate under the 

conditions expected for the FT-SOEC system. The two major concerns are coking and 

electrolyte resistance. A coking resistant SOEC system will significantly reduce the 

challenges of integrating a FT reaction system into the SOEC stack. Coking is also a 

significant concern for non-OCM-SOEC. In order to have any substantial per pass 

conversion to non-methane products, coking resistance of the electrolyzer is essential to 

any of the proposed FT-SOEC systems.

Relatively low temperatures for SOEC needed for the FT-SOEC system create 

significantly increased ohmic resistance in the electrolyte. The ability of the system to 

operate at reasonable power density and efficiency requires a low resistance electrolyte. 

Unlike the FT-SOEC system, non-OCM-SOEC prefers higher operating temperatures and 

the conductivity of the electrolyte is not a significant challenge for that approach.

In contrast with the difficulties of power density, at the lower temperature desired 

for the system, many of the durability difficulties associated with SOEC processes can be 

avoided. The need for non-ferritic materials for the interconnect and other balance of 

plant components can be reduced or eliminated by the lowering operating temperature 

requirement of the SOEC system. The major trade-off for operating at a lower 

temperature is the overall power density of the SOEC. This trade-off is why most current 

SOEC systems are operated at a temperature much higher than the temperatures 

necessary for the traditional routes of C2+ hydrocarbon synthesis.
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5.1. COKING RESISTANT ELECTRODES

Coking of the electrode will primarily affect system longevity and is not a 

primary concern for the initial proof-of-principle testing of this project. However, the 

potential need for very high oxygen removal makes the coking resistance a necessary 

consideration important for the initial system. The high rate of oxygen removal may 

quickly create a situation where a non-coking-resistant electrode will degrade in minutes.

Traditional SOFC and SOEC electrodes are nickel based. Nickel is an excellent 

promoter of carbon deposition. This presents challenges for the system design. From the 

catalyst and thermodynamic discussion, we can see that the need for coking resistance in 

the system will be unavoidable. Normal operation of SOFC systems and SOEC systems 

avoids coking by having sufficient steam and low enough conversion to avoid coking 

conditions. Nevertheless, significant research has gone into the production of coking 

resistant SOFC systems. The ability to feed unreformed hydrocarbons without steam is of 

significant interest for SOFC systems. Due to interest in co-electrolysis, this type of anti­

coking behavior, while not as prevalent, is also an area of research for SOEC systems.

In the past, different electrode compositions have been used in order to reduce the 

coking of the electrode itself. Platinum has been used for this purpose. This approach 

would be completely uneconomical for any large scale SOEC system and was not 

considered for the candidate systems.

Recent work by Skafte et al. has shown the development of a coking resistant 

electrode that is based on ceria electrodes [59]. Ceria is an oxygen-bearing compound and 

is able to keep the oxygen available to surface adsorbed species. Changing adsorbed 

carbon dioxide and carbon monoxide species to carbonates prevents the onset of carbon



formation. At high reducing conditions the system is exposed to in order to produce the 

extreme deoxygenation of the feed required, the ceria may not be able to supply all of the 

necessary surface oxygen.

Another approach to reducing coking would be to include some sulfur in the feed. 

Sulfur-passivated nickel has been shown to greatly reduce the tendency towards coking 

relative to methanation or methane reforming reactions. This is the basis for the Haldor 

Topsoe’s SPARG process [60]. However, it is observed that the onset of coking under 

these circumstances, while delayed compared to bare nickel, is still very early relative to 

the total oxygen removal desired for the high yield of hydrocarbons in the FT-SOEC 

system.

5.2. ELECTROLYTE CONDUCTIVITY

The conductivity of the electrolyte is one of the more limiting factors in SOEC 

performance. Exploring the impact of adjusting the operating temperatures of the SOEC 

electrolyte to meet the needs of an integrated synthesis step is vital in predicting the 

capabilities and requirements of the combined systems. FT-SOEC has far greater 

constraints due to the preference towards lower temperature operation for the catalyst 

kinetics. NOCM -SOEC has no issues and favors even higher temperatures than the 

typical SOEC operating temperatures. The compromise for optimizing for FT-SOEC is 

system performance, while the compromise for NOCM -SOEC is system lifetime. Since, 

system lifetime is only assessed qualitatively for this research, a greater focus is placed 

on assessing how to optimize the SOEC component performance for lower than normal 

operating temperatures in order to be compatible with the integrated FT steps.
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The objective of integrating FT-based ethylene synthesis with hydrogen 

production by solid oxide electrolysis places a practical upper limit on device operating 

temperature of about 650°°C in order to achieve a useful equilibrium syngas conversion 

at a reasonable operating pressure. The standard operating temperature for SOEC 

operation is around 800°°C. While thermodynamics allow a greater use of heat to offset 

electric energy input as temperatures increase, the reasons for SOEC operation near 

800°°C are a compromise between performance, and lifetime. Further increases in 

temperature provide greater performance, but a much shorter useful lifetime.

Lowering the operating temperature to 650°°C still enables the high efficiency 

capabilities of operating below thermal-neutral voltage but may require a new cell design 

and material set relative to standard electrolyte-supported cells developed for 800°°C 

operation. Although Ceria is known to have a much higher ionic conductivity than 

zirconia, it has not found wide usage among SOFC developers due to its mixed 

conductivity when exposed to reducing atmospheres such as hydrogen (low pO2) which 

results in an internal shorting current that hurts efficiency and complicates thermal 

management [61]. However, the pO2 conditions for electrolysis remain favorable for a 

ceria electrolyte to be used for combined FT-SOEC.

The 800°°C ionic conductivity of YSZ is 0.02-0.03 S/cm and 0.10 S/cm for ScSZ 

meaning that for an equivalent ionic resistance contribution, a ceria electrolyte operating 

at 650°°C must be a factor of 3 thinner than YSZ and 8 relative to ScSZ [62]. For 

comparable performance to an 800° electrolyte supported SOEC of YSZ or ScSZ, the 

target thickness for a ceria electrolyte is in the range of 15- 50p,m (Figure 5.1). These 

electrolyte thicknesses are achievable with commonly available electrode-supported cells.
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Figure 5.1 Ohmic Losses Vs Electrolyte Thickness. Typical Electrolyte Supported 
Cells And Electrode Cell Electrolyte Thickness Shown Operated At 650 °C

Where hydrogen electrode-supported SOFCs are preferred, in SOEC mode an 

oxygen electrode-supported cell design offers performance advantages. At the moment, 

oxygen electrode-supported cells are a subject of research and not commonly available. 

Due to the differences in SOFC and SOEC, the fuel side and oxygen side structure, can 

have different optimal thickness. In SOFC the fuel electrode is a much thicker nickel 

cermet. This thick, dense nickel cermet structure adds considerable mass transfer 

resistance while functioning as a cathode in SOEC mode. The SOEC anode (oxygen 

evolution electrode) offers no mass transfer resistance, as the oxygen mole fraction in the 

anode pores is 100%, making the pO2 equal to the local total gas pressure. Evolved 

oxygen flows out of the porous anode in the Darcy flow regime under a pressure gradient 

rather than by Fickian diffusion under a concentration gradient. The very small pressure



gradient required to achieve an oxygen flux through a porous anode (oxygen electrode) 

corresponding to the target 300mA/cm2 is negligibly small in contrast to rather 

pronounced cathode (hydrogen electrode) mass transfer polarizations seen in SOFC 

hydrogen electrode supported cells operated in SOEC mode.

The resistance of the electrolyte provides ohmic heating. The ohmic heating can 

also contribute to the heat necessary for the water splitting reaction. Electrode supported 

cells are commonly available, however, the additional nickel area makes them more 

likely to catalytically convert the products to equilibrium; this is undesirable.

Due to the ease of which electrolyte-supported cells are able to adapt to custom 

electrodes, a YSZ thick electrolyte supported cell will be used to validate electrode 

performance. The use of electrochemical impedance spectroscopy (EIS) can separate the 

electrolyte effects from the electrode effects. Future work could include an electrode 

supported cell of a different catalyst composition. Until a proper catalyst is identified 

formulating a new electrode composition is a substantial effort that may be invalidated by 

the fuel synthesis pathway catalyst requirements. In the event that a target electrode is 

developed that needs low-temperature operation in order to be effective in hydrocarbon 

production, adaptation to an electrode supported cell with thin electrolyte, or a ceria 

supported cell will need to be developed.

39
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6. ECONOMIC PRODUCT SCREENING

The initial economic screening attempts to identify products that are higher value 

on an energy input basis. Additionally, products that have large market depths, and 

market accessibility are also favored. Comparisons are made to hydrogen as the baseline 

economic case for SOEC in a hybrid energy system. A desirable, but not strictly 

necessary feature of the product screening is for the product to be economically favorable 

compared to the hydrogen production baseline.

6.1. PRODUCT ECONOMICS OVERVIEW

Figure 6.1 provides a guideline to the pricing of various hydrocarbon outputs. The 

vertical axis provides the marginal cost, while the horizontal axis provides a proxy for 

capital costs. All other factors equal, products higher and to the left are more economical. 

Factors such as market capacity, transport costs, compression and handling provide other 

changes that may affect the costs. It can be seen that within the catalyst families, the 

olefin catalysts have the highest average output.

At the date of the initial data (2016), the olefin catalyst could produce olefins 

economically at an electricity input price of $80/MWh (Figure 6.2). An updated version 

with 2020 market prices is shown in Figure 6.1 for comparison. However, the market and 

delivery to market of hydrogen is much more complicated. Efforts to optimize the olefin 

catalyst to a much higher mix of low carbon olefins would improve product value and 

therefore improve the overall system economics. Additionally, the available market
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Figure 6.1 Electrochemical Production Of Chemicals Pricing. Prices Based On--March
2016 [64] [65] [66] [67]

prices of low-cost electricity have improved over the time frame between these economic 

cases. A more recent case using ERCOT real time pricing data from 2018 provides 

insight into the availability of cheap wholesale electricity [63].

Recently the production of olefins has significantly increased. The increase in 

production has decreased much of the profit potential that was part of the original 

motivation for this work. A case study of sample catalysts shows that for various market 

conditions, one before the oil price crashes, and one after-- hydrogen is the most 

consistently able to be produced at a profit.
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Figure 6.2 Electrochemical Production Of Chemicals Pricing. Prices Based On June
2020 [67] [68]

6.2. MARKETS

The petrochemical products market is substantially different from the hydrogen 

market. There is an estimated $100 billion of hydrogen production consumed worldwide 

every year [69]. By comparison, the petrochemical market is approximately four times 

larger at an estimated $450 billion in 2020[70]. Most major markets for hydrogen are 

contracted and dedicated purpose production. By comparison, most petrochemical 

products have a robust openly traded market price. This makes the exact evaluation of 

SOEC produced hydrogen’s profitability more difficult than that of petrochemicals. 

Often, hydrogen will be able to set its price in negotiations with a buyer.
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The chief competition for electrolytic hydrogen is fossil fuel reforming. The 

typical market price for a large-scale steam methane reforming plant is around $1/kg [71] 

[72]. At smaller scales the price of hydrogen goes up significantly. For the near future, in 

the absence of any carbon taxes or other climate change oriented policies, green hydrogen 

will not be cost competitive for the most large scale hydrogen production plants.

However, for small distributed systems, current electrolyzer costs are already at or near 

cost-parity with fossil-based hydrogen.

The difficulty in competing with large centralized users is further compounded by 

the difficulty in delivering hydrogen long distances. The extra costs of long-distance 

transport to potential market further locks hydrogen into sale to dedicated end-users and 

co-location of the hydrogen production near that end-user. Hydrogen can cost several 

$/kg to transport a thousand miles. The costs of compression, specialized tube trailers, 

and the low density of the product contribute heavily to these costs. Pipelines are also 

costly. Estimates ultimately put a hydrogen pipeline in the same approximate cost as a 

natural gas pipeline [73]. Although pipeline transport can be effective, the leakage rate 

can represent a significant cost compared to a similar leakage rate of natural gas. This is 

due to the inherent value of hydrogen being much higher per unit volume, combined with 

a roughly 4x higher leakage rate compared to natural gas.

In comparison to hydrogen, the market for petrochemicals is much more 

uncertain. The market price can fluctuate wildly even within the course of a single year. 

This presents a different set of difficulties in evaluating the economics of a multi-decade 

capital project. The uncertainty drives the production of non-fossil fuel-based 

petrochemicals to be a very risky proposition. While higher market prices can produce a
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very lucrative product, downturns can cause for the plant to shutdown and lead to costly 

losses.

While the direct market competitiveness of petrochemicals is lower than 

hydrogen, they have a much lower cost of transportation. This allows these products to 

compete in an open market and have a much wider access to geographic locations for 

production-unconstrained by needing to be near an end-user facility. Methanol and 

benzene are liquids at ambient conditions. Specialized tube trailers for cryogenic 

transport of ethylene are readily available. Hydrocarbon gas liquid pipelines are also 

accessible for a large amount of the country. Particularly, there are lots of hydrocarbon 

gas liquid pipeline access in parts of the country that have good wind energy resources.

The broad comparison between hydrogen and other petrochemicals can be 

summed up as hydrogen is more cost competitive and able to negotiate prices. However, 

due to transport costs for hydrogen, it requires being in close geographic proximity to the 

end user. In contrast, petrochemicals compete in a commodity market, but are able to be 

located freely geographically while having a much larger market access.

The breakeven pricing depends on the market price for the olefins. Olefin 

production competes in a commodity marketplace. This is both a benefit and a challenge. 

In comparison to a typical SOEC, the hydrogen produced does not have a large 

commodity market. Most hydrogen is produced and used on site by the end-user. The 

main users are ammonia production, methanol production, and petrochemical production. 

The necessity of co-location of hydrogen production and consumptions makes 

establishing a market for the hydrogen difficult. In contrast, olefins are frequently traded 

on the open market. Polymer manufacturers are often sited next to refineries to lower



distribution costs, but are more often separate entities. Additionally, the petrochemical 

market has been affected by the recent shale gas boom. The shale gas boom has altered 

the product distribution for the typical refinery [74]. There is a relative abundance of 

ethane compared to propane. The reduction in cracking units has led to the need for more 

on purpose olefins productions rather than production as byproducts. These have come on 

line in the recent years are partially responsible for the significant drop in ethylene prices. 

It is reasonable to expect that any significant reduction in shale gas will create a reverse 

market shift. This is a significant market opportunity for technology that can both 

displace fossil fuel inputs, and provide load leveling capabilities.

6.2.1. Paraffins. Alkanes and other paraffins form a large part of the products of 

a barrel of oil. These products are generally lower value and sold mostly for their energy 

content or for use as lubricants. While these are often the starting point for a lot of 

technology evaluations, based on their low value relative to energy input, this work 

considers them to be an uneconomical starting point for synthetic petrochemical 

technologies. In the future, if synthetic petrochemical technologies come down in price 

and fossil fuel based petrochemicals have environmental penalties attached to them then 

substitute fuels can potentially be an economical product.

6.2.2. Oxygenates. The oxygenate class of products present an opportunity if the 

selectivity of the catalyst can be refined to a narrow chain length. The production of C1 

oxygenates is valuable and provides an entry point for a wide variety of chemical 

pathways (Figure 6.3). Methanol currently represents about $40 billion per year in 

revenue worldwide. Changing pathways for other petrochemicals to be produced via 

methanol could increase that market substantially. C4+ oxygenates also provide a high

45
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value product. With butanol being a drop-in substitute for gasoline in most engines, it 

also provides a large market opportunity for producing as much butanol as desired. The 

issue is that in order to be viable as drop-in replacement, the cost will have to go down to 

the point where it is cost competitive with gasoline, which thereby reduces the profit 

margin on the butanol

Figure 6.3 Chemicals And Fuel Use Pathways Of Methanol

production. Currently most catalysts produce a large amount of ethanol and propanol. 

Both of these compounds are very low value relative to alternatives. A catalyst that is 

highly selective towards methanol or butanol at the combined synfuel-SOEC operating 

temperatures would make these attractive target chemicals.

6.2.3. Olefins. Olefins are high value feedstock chemicals and form one of the 

basic building blocks for much of the petrochemical industry’s finished products (Figure 

6.4). The majority of ethylene goes into polyethylene production. Similar production 

between other olefins and their corresponding polymers is also common. This provides a 

benefit to the overall system as byproduct ethane and propane have the ability to feed into
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Figure 6.4 Major Chemical Products Derived From Ethylene [75] [76]

the existing crackers. The byproduct, light alkanes, can be used as feedstock for further 

olefin production using existing systems.

A survey of ethylene production from 2014 shows that the majority of ethylene 

production from steam crackers is located in Texas. [77] The map of ethane crackers 

(Figure 6.5) shows production of the olefins to be tied to the oil and gas industry, with the 

majority located near the gulf coast. Therefore, when market power prices are used in the 

economic analysis, it will be using power prices from the Texas region. Similarly, stand­

alone wind data will also be used from that region.

As can be seen from the market prices of ethylene and propylene and their 

polymers, the market trends are similar for all the products [68]. Since simple plastics are 

near substitutes for each other they are not able to sustain a significant price differential 

relative to each other without the market following. Although a poly-olefin plant would
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Figure 6.5 Hydrocarbon Gas Liquid Pipelines And Ethylene Cracker Map [78]

add value and reduce the transportation costs, analyzing poly-olefin manufacturing is 

beyond the scope of this work and is a potential subject for analysis in a future hybrid 

energy system.

6.2.4. Benzene, Toulene, Xylene. Another class of chemicals that is attractive for 

being widely used, easily transported, and high value per input energy are the benzene, 

toluene, xylene (BTX) chemicals. There a number of derivative products that are of key 

importance to the economy that are produced from BTX chemicals (Figure 6.6).
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Figure 6.6 Benzene Product Pathways

6.2.5. Ammonia. The traditional operating temperature for Haber-Bosch and 

similar ammonia synthesis reactions are 400-600 °C and 200-300 Bar (Figure 6.7). The 

FT catalyst candidate Ru is also an ammonia synthesis catalyst. An ammonia focused 

system does gain the benefit of no coking challenges. However, the pressures involved 

are much higher. The integrated production of ammonia in the system is of interest, 

however, with the high pressures involved, but with an integrated ammonia synthesis 

reactor test is beyond the scope of this work.

Figure 6.7 Equilibrium Ammonia Concentration As A Function Of Temperature And
Pressure
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7. INTERMEDIATE TEMPERATURE ALKALINE ELECTROLYZER SYSTEM

Concurrent with SOEC work, a second electrolyzer system was proposed and 

tested as part of this work. Theoretical integration of this electrolyzer is discussed below. 

The motivation for this work was started from reading the effects of temperature on 

alkaline electrolysis activity [79]. In recent years, there has been a growing interest in 

high-temperature alkaline electrolysis systems. This work is one of several that 

independently has been working on that approach [80] [81].

This work shows that endothermic operation of alkaline electrolysis is possible in 

a temperature range of 200-300 °C. This correlates well with the optimal temperature of 

FT reactions. A high-temperature, pressurized alkaline electrolysis systems was designed, 

built, and tested. These operating temperatures open up a host of proven catalysts for 

olefin and other FT-synthesis products [82].

7.1. INTEGRATED ALKALINE AND FT SYSTEM ANALYSIS

Endothermic operation at 1.3-1.4V water electrolysis with significant current 

density is feasible. Operating at this voltage gives an endothermic load of 40 kJ/kg. 

Feeding that system to a FT results in a heat release of 100 kJ/kg. In order to closely 

thermally couple the two units, a small reaction space is proposed to reside in the bipolar 

plate of the high-temperature alkaline electrolyzer. The design is physically similar to a 

micro-channel heat exchanger. The operations performed are functionally equivalent to a 

micro-channel heat exchanger, a micro-channel reactor, and an alkaline electrolyzer all in 

one package. Based upon a current density of (0.5 A/cm2) and a GHSV of 6000/hr, then
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the appropriate thickness of this internal reactor is 4mm. This is only nominally different 

than a typical bipolar plate by a factor of 2.

7.2. EXPERIMENT

The intermediate temperature alkaline electrolysis system was operated at the 

vapor pressure of the system. At a series of different temperatures, various current 

sweeps were performed, as well as EIS measurements. These measurements characterize 

the cell as operating in line with expectations from the reviewed literature. In comparison 

with traditional alkaline, PEM, and SOEC, the system behaves with a comparable current 

to SOEC despite operating at a much lower temperature. A peak current of 256 mA/cm2 

at 1.4 V is excellent electrochemical performance for water splitting Figure 7.1.

Under these conditions the cell is 100% energy efficient. The only losses to the 

system were from heat losses through the insulation. As this was a proof-of-concept 

device, no effort was made to quantify heat losses to the surroundings. This level of 

efficiency is a significant achievement for water electrolysis. The electrochemical 

characterization of the system shows a consistent improvement based on increasing 

temperature. The Nyquist plot shows the very low ohmic and polarization losses for the 

system (Figure 7.2). At 246 °C the ASR is approximately 0.92 ohm-cm2.

The challenges associated with the technology are the complicated pressurized 

separation of the produced gases from the electrolyte. This requires a large volume of 

pressurized hot electrolyte, or a recuperating electrolyte cooler to recover the heat while 

cooling the electrolyte to a much less aggressive temperature. Very few materials have
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long stable lifetimes at the operating conditions of the cell. Teflon and PEEK coatings are 

expected to be needed on most of the high temperature wetted parts.

Figure 7.1 I-V Curves Of High Temperature Alkaline Electrolysis Compared With 
Previous Literature Experiments And Traditional Technologies [83]

Figure 7.2 Nyquist Plot Of High Temperature Alkaline Electrolyzer
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7.3. ECONOMICS

The initial estimates of the economics for the intermediate temperature alkaline 

electrolysis route to fuels are nearly identical to the standard route of SOEC followed by 

FT. The operating energy requirement and the reactor conditions are all nearly the same. 

The only significant difference is the lack of energy required for steam production. Also, 

due the immaturity of the technology, no thorough analysis or estimate of full-scale 

production system costs is available. An estimated cost of being similar to full-scale 

alkaline or SOEC is a reasonable starting point, but the uncertainty in the final cost of the 

system is still a large variable. Due to these difficulties in estimating the system cost, a 

preliminary estimate based-off of the separate unit SOEC and FT economic analysis will 

be made in the results of the economic evaluation section.
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8. INTEGRATED FUEL SYNTHESIS AND SOLID OXIDE ELECTROLYSIS

8.1. METHODS

The system uses commercially available parts where possible. The test setup is 

designed for 1” nominal diameter circular button cells. The test furnaces are temperature 

controlled. The gas flows were measured by calibrated rotameters. Steam was added via a 

temperature-controlled humidifier. Gas samples are taken via aluminized mylar sample 

bags. The gas composition is analyzed via an Inficon micro GC or a Bruker FID system. 

Electrochemical measurements were taken by a Gamry potentiostat and EIS machine. 

Long duration current and voltage holds were performed by an Arbin electrochemical 

measurement and charging system.

8.1.1. Catalyst Preparation. The olefin production catalyst was prepared by 

combining HZSM-5 with molybdenum oxide at 5% wt molybdenum oxide. The 

compound was then calcined at 500 °C for 5 hours. The calcined catalyst was then screen 

between 60 and 40 mesh screens. The catalyst was then loaded into the system and 

reaction bonded with the cell at 500 °C for 2 hours. The catalyst was activated by flowing 

syngas over the cell at 650 °C for 12 hours. This is done in order to form the Mo2C phase 

that is the active site for the reaction. After 12 hours, the system was put under a 50/50 

mix of CO2 and H2 . This purge condition was continued for 1 hour. The images of fresh 

catalyst compared to used catalyst clearly show the change of chemical composition of 

the catalyst Figure 8.1. The degree to which the color change is a result of the formation 

of the Mo2C or coking is unknown. Both carbon despostion and Mo2C would give the 

observed grey coloring.
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Figure 8.1 Fresh And Spent Mo HZSM5 Catalyst

8.1.2. Cell Description. The cells are a YSZ electrolyte supported cells with 

either the custom applied electrode or a nickel cermet electrode. The oxygen side of the 

system has a lanthanum cobalt ferrite electrode (LSCF) which has been shown to have 

long service life with low degradation for electrolysis mode. The electrolyte is ~150 

micron thick. Both of the electrodes are ~30 microns thick. The electrodes are both 2 cm2 

in active area. The electrodes are square on a 1-inch round cell. The cobalt cell was 

fabricated using the same techniques as the standard nickel cell, with cobalt oxide 

replacing nickel oxide on a 1:1 basis. Given the similar density of cobalt to both metallic 

nickel and nickel oxide, direct substitution of nickel with cobalt provided a simple 

starting point for an initial cobalt-based cell. The ink was prepared using a 3-roll mill and 

then screen printed onto the electrolyte substrate.

8.2. TEST STAND

The cells were glass sealed to the top of a 12” long zirconia tube. Platinum mesh 

current collectors and leads were fixed from the test cell to cold connections for the



56

power supply and EIS equipment. A rubber stopper is connected to the tube outside of the 

hot zone. The stopper has two tubes, one for inlet and one for outlet flows. The 

experimental setup was modified for this work, and a valve was added to the test stand to 

change flow direction from a gas-sampling bag and a vent line is on the outlet side. The 

inlet side is connected to the bubbler and has a valve to connect to a sampling line Figure

8.2.

Figure 8.2 Test Stand Diagram for High Temperature FT-SOEC

8.2.1. Test Stand Operating Constraints. Given the fully oxidized incoming 

stream composed of water and carbon dioxide, the current necessary to fully electrolyze 

the stream can be found as a function of flow rate. This is calculated by taking the molar
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Table 8.1 Current Needed For Full Reduction Of Incoming Steam And Carbon Dioxide
Stream For A Given Gas Flow Rate

Flowrate (SCCM) 1 2 3 4 5 6 7 8 9 10

Current (A) 0.58 1.15 1.73 2.31 2.88 3.46 4.04 4.61 5.19 5.77

oxygen flow rate in the feed and the number of electrons needed to remove all of the 

incoming oxygen.

The results in Table 8.1 show that the current and flow rates needed are not 

compatible with the test stand capabilities. At higher temperatures, the current increases 

to a noticeable fraction of the needed current at low flow rates. However, even in this 

case, the current is not sufficient by itself to achieve sufficient electrochemical reduction 

of the incoming gases to the extent required by non-OCM and FT synthesis. These 

limitations on current and flow rates shifted the experimental design to having an already 

partially reduced incoming gas system instead of a totally oxidized inlet flow. This is 

achieved by having a lower inlet steam concentration, a higher incoming hydrogen 

fraction, and in the case of the high temperature reaction, methane in the feed is included 

as well. Based on the lower temperature Sabatier reaction steps and shifts, a high 

conversion to methane with high percent oxygen removal is a reasonable approximation 

of a higher current to flowrate ratio system. These experimental changes also correspond 

directly to a full system that would require a recycle stream to recover methane in order 

to improve the overall selectivity towards C2+ hydrocarbons.

8.2.2. Sampling Method. Samples were taken both from the collected gas bag, 

and from the sample line on the inlet side. Samples were compared between the two 

sample points to see if a significant difference between the two sample locations was
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observed. The sampling method was tested with known gas compositions and showed no 

detectable variation deviation between the two sample points. After this verification, 

samples for post-electrolysis reaction measurements were taken from the gas sample bag. 

Inlet samples were taken with flowing gas in order to validate the inlet composition to the 

reactor and an open valve to the feed line. The baseline samples sometimes included 

small amounts of nitrogen. Based on observations of sampling directly from a gas stream, 

the contaminating nitrogen appears to be from the sample draw and injection method. 

Samples concentrations reported are adjusted on the basis of the total non-nitrogen 

volume.

8.3. TEST PROCEDURE

The tests were carried out with the following there different types of cells: a 

baseline nickel cell, a screen printed cobalt-based cell, and the nickel cell with the 

addition of Mo/HZSM-5 catalyst loaded and bonded to the surface. All cells were 

mounted via a sealing glass to the tubes. Electrical connections were made with platinum 

mesh and wires. The cells were checked for leaks via a flammable gas detector. Leak 

checking at temperature was checked again via a static open circuit voltage (OCV) 

measurement for a non-flowing, closed volume tube. Cells that showed significant drop 

in OCV over the course of 5 minutes were cooled, re-examined, and re-sealed before 

further testing.

8.3.1. Baseline Nickel Cell. The tests were performed with a variation of 

CO2/H2O feed ratio. The steam content was controlled by adjusting the temperature of the 

humidifier. The during IV curve generation voltage was swept at a rate of 10 mV/s. EIS
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showed the overall system performance. Nyquist plots were produced at a voltage of 1.1 

V, and gas samples were taken at various intervals. The system was then allowed to run 

at steady state at 1.1 V for 12 hours. After which a new polarization plot and Nyquist plot 

were obtained.

8.3.2. Cobalt Electrolysis Cell. Tests were performed with the custom cobalt 

electrode which was then reduced under hydrogen for 30 minutes before running the 

system with the same parameters as the first test. Due to the low-overall current density, 

the cell was the run in sealed-batch mode for 12 hours.

8.3.3. Nickel Cell with Mo-HZSM5 Layer. Operation of the nickel cell at 650 

°C with the Mo-HZSM5 catalyst was performed. The cell operated at a current of 

approximately 90 mA and was allowed to remain stable at that production rate for 1 hour 

before gas sampling. The inlet flows were 1 SCCM CO2 and 1 SCCM H2 . These were 

measured by calibrated rotameters and confirmed with a water displacement method.

This gas composition was flowed through a room temperature humidifier (30 °C). At 

higher temperature,e the gas flows were raised to 30 SCCM and methane was introduced 

as the main component. The gas composition was 97% methane and the remainder CO2 

and H2O to simulate high conversion. It was expected that methane reforming reactions 

would occur in order to provide the expected overall ratios of CO and H2 as well.

8.4. RESULTS

The results from the experimental testing show consistent confirmation of the 

targeted production of C2+ hydrocarbons. While the overall production rates are low and 

the total percentage of C2 hydrocarbons is low, the measurement is consistent and well



within the sensitivity of the GC detection. For the low-temperature reactions, the 

possibility of another source contaminating the sample is very low.

8.4.1. Electrochemical Performance. The electrochemical performance of the 

cells at all temperatures were well within the normal expected values for electrolyte 

supported SOEC cells. While there was substantial variation between cells, it is within 

the typical variation for small scale button cell testing. The number of defects in 

processing and installation can cause this substantial variation. Most of the variation is 

typically due to the attaching of current collectors and leads and not from the cell itself. 

The overall variation in the area specific resistance (ASR) between the cells tested is 

fairly large but within previously observed variations of cell performance. The ASR 

varied between as low as 0.6 ohm cm2 and as high as 1.2 ohm cm2.

8.4.1.1. Baseline nickel cell. The baseline nickel cell performed as expected. This 

validates the cell batch and method. When accounting for the difference in water 

electrolysis vs steam electrolysis, the cell operated at an electrical efficiency of 106% at a 

current density of 330mA/cm2. This represents the endothermic operating mode (Figure

8.3, Figure 8.4). The total system energy is supplied by the test stand heater and the 

heaters for the gas-humidification system. The overall system efficiency is not measured 

by the button cell testing equipment.

The overall ohmic resistance is slightly higher than is otherwise expected, but it 

within the variation observed in other cells produced.

8.4.1.2. Cobalt cell. The cobalt-based cell performed similarly to the nickel-based 

cells. At 800 °C the ASR was 0.95 ohm-cm2. The performance at 600 °C is shown from 

the Nyquist plot in Figure 8.5 Cobalt Cell Nyquist Plot At 600 °C. There was a significant
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Figure 8.3 Baseline Nickel Cell IV Curve At A Temperature Of 800 °C

Figure 8.4 Baseline Nickel Cell Nyquist Plot At 800 C

decrease in total current over the course of the cell testing. The initial cell current was 80 

mA. This degraded to 19 mA over the course of 12 hours. After the completion of testing, 

heavy coking was observed on this cell. This is the most likely cause of the significant 

degradation of the cell.



8.4.2. Nickel Cell With Mo-HZSM5 Layer. The serial resistance of the cell is 

approximately 0.48 ohm-cm2 (Figure 8.6 Figure 8.7). This correlates with the expected 

value of YSZ at 800 °C of .03 S/cm. This is a good indication that the leads were well 

attached to the cell and provided good electrical conductivity. The highly reducing 

conditions of the methane non-OCM shift operation may have positively changed the 

overall performance of the cell. Similar behavior was observed by Skafte et al. [59]. The 

decreased overall resistance of the cell is potentially attributed to the increasing mixed 

ionic/electronic conduction of the ceria-based fuel electrode.

The Nyquist plots show very typical electrochemical behavior for the cell. There 

is no noticeable difference between operation under these conditions and operation under 

typical steam electrolysis conditions. An ohmic resistance of 0.5 ohm-cm2 and total 

resistance of 0.6 ohm-cm2 is still within typical range of an electrolyte supported cell 

operating at 800 °C. However, since it is on the low end of the range, this another
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Figure 8.6 Voltage-Current Curve For Nickel Cell At 800 C

Figure 8.7 Nyquist Plots Of Cell At 800 C

possible indication of the increased electrode activity due to the higher activation energy 

provided by change in ceria structure.

8.4.3. Chemical Products. The products of the system overall agree very strongly 

with the thermodynamics. The nickel and cobalt cells both coked at the low-temperature 

operating conditions in an attempt to produce methane. Some methane was detected but
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for both the nickel and cobalt cells no detection of C2 hydrocarbons to the detection limits 

of the system. The high temperature operation of the nickel cell with Mo-HZSM5 showed 

significant change in C2 and the product was near the thermodynamic limits of the gas 

composition.

8.4.3.I. Cobalt cell products. The overnight products showed a small amount of 

methane. The overall composition on a dry basis is shown below in Table 8.2

Table 8.2 Cobalt Cell Products At 600 °C (Mole Percent)

After failing to observe any products when operated under electrolysis condtions, 

syngas was fed to the cell at the same temperature. When operated with a syn-gas feed to 

simulate high electrochemical conversion of the incoming feed, the product distribution 

again came very close to the predicted equilibrium composition. The syngas composition 

is approximately 2:1 H2 :CO. The results of syngas feed to the cell can be seen in Table

8.3.

Table 8.3 Cobalt Cell with Syn-Gas Feed (Mole Percent)



It is worth noting the trace amount of ethylene and ethane that is above the 

theoretical predictions for the composition. The very low production suggests that for this 

route to be successful as a FT-SOEC system, the electrochemical activity would have to 

improve significantly in order to have sufficient current to drive the reaction. Significant 

coking was also observed on the cell. This is the probable cause of cell electrochemical 

activity decreasing over the operating time.

8.4.3.2. Low temperature products. The results of these test conditions show 

that at low flow rate the composition is significantly different than equilibrium. A small 

amount of non-equilibrium ethane and ethylene are formed. A significant amount of 

excess hydrogen and unreacted CO2 are also present. This validates the catalytic ability of 

the system to produce higher hydrocarbons even when the bulk composition is 

thermodynamically unfavorable. Some potential causes for the non-equilibrium 

composition are surface adsorption composition, diffusivity limitations to reaction sites, 

flow-bypassing the catalyst bed, and kinetic limitations.

The approximate total inlet gas flowrate of 2 SCCM meant that it took 15 minutes 

for a sample of sufficient volume to be available for GC injection. The system was 

allowed to run for 45 minutes between samples. The gas sampling bag was changed 

between samples. These lower flow rates and longer sample collection times increase the 

overall uncertainty in these measurements.

The nickel with Mo/HZSM5 cell was operated in constant voltage mode. A small 

change in the overall composition due to the relatively small change in current was 

observed. The total composition on a CHO basis is shown in Figure 8.8. It can be seen 

there is an overall trend of increasing total hydrogen content. The oxygen content
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decreases proportionally to the hydrogen. There is also a small decrease in carbon in the 

exit composition. This suggests that carbon deposition was occurring and being shifted 

towards increasing carbon deposition under these conditions. The shift in composition 

validates the theoretical approach of using electrolysis for the removal of oxygen from 

the system through the electrolyte membrane to shift the equilibrium towards the target 

composition.

Figure 8.8 Ultimate Composition Of Outlet Vs Current

The chemical composition of the outlet vs current is shown in Figure 8.9 Mole 

Percent Of Products Vs Current. Again, hydrocarbon products increase, while 

oxygenated species decrease with increasing current. The presence of C2 species is in line 

with the thermodynamic prediction. The presence of high CO2 while simultaneous
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Figure 8.9 Mole Percent Of Products Vs Current

production of methane is unexpected under these conditions. A shift-reaction occurring 

during the exit stream cooling seems to be the most likely cause. The total amount of C2 

hydrocarbons is small, but indicates that the catalyst is active for the production of C2 

hydrocarbons.

These results give a high level of confidence that it is technically achievable 

under the right conditions to produce C2 hydrocarbons directly in a SOEC system. The 

overall Faradaic efficiency towards C2 products is very low. While this inhibits the 

economic viability of the process, it represents a similar overall current towards non­

hydrogen products as the surveyed non-syngas, low-temperature CO2 electroreduction

reactors discussed in the introduction.
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8.4.3.3. High temperature products. At 650 °C, the results from the nickel cell 

w/ Mo/HZSM5 show the potential for production of C2 hydrocarbons in a SOEC cell.

The higher current density of a cell at higher temperature is of interest in order to increase 

the potential for significant production rates. However, at 800 °C, methane is not a 

thermodynamic product at ambient pressure. The production of ethylene is only a 

relatively weak function of pressure, whereas methane formation is strongly favored by 

increasing pressure. The test is not capable of pressurized operation, and a pressurized 

operation with external heating and a hot wall vessel is not feasible at this stage of the 

work. Therefore, in order to simulate the effects of the electrolysis shift of equilibrium, 

methane was fed into the reactor to simulate the high-pressure conversion of the 

electrolysis products to methane. This high-methane inlet composition also approximates 

the incremental conversion over a cell at much higher total current to flow ratios, and the 

expected composition for a full-scale plant with separation and recycle. Observing the 

shift in the composition under these conditions, can provide an approximation of the 

intermediate conversion within the proposed integrated synfuel and SOEC system.

In Figure 8.11 the trend shows that electrolysis shifted the products further 

towards the olefin and higher hydrocarbon content. Using the Bruker 450 FID, no 

aromatic compounds were observed. The lack of benzene is uncommon for the product 

composition of Mo/HZSM5 catalyst. Based on the literature, the steaming of the zeolite 

may lead to the loss of acid sites via dealuminifaction. It has been shown that boron- 

based Mo/ZSM5 produces ethylene instead of benzene [84]. It is suggested that the high 

steam concentration reduced the acidity of the sites to the point that ethylene was the 

favored product of the reaction.
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Given the thermodynamic composition of the overall products, it is probable that 

there is some ethylene in the reaction effluent is produced from the cracking of ethane to

Figure 8.10 Ultimate Composition At Exit At 800 °C

ethylene and not from the coupling of methane. However, the natural gas feed used to 

produce the high methane concentration in the feed also had a lower total C2 count than 

the reactor composition. The explanation for residual CO2 and H2O in the exit stream is 

uncertain. It can also be seen that there are some non-proportional shifts in outlet 

composition for several species. This may be due to the water-gas shift reaction being 

catalytically active during the exit of the reaction. Overall, the system does show 

consistent increasing removal of oxygen proportional to increasing current. Calculations 

done in HSC chemistry on the basis of the theoretical composition observed at high
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Figure 8.11 Mole Percent Composition At Exit At 800 °C. Minor Products C2H4, 
C2H6, CO Are Plotted On The Secondary Axis

temperature were shifted to lower temperatures. The most plausible explanation is the 

shift reactions were frozen at some point during the cool down of the product gas stream.

A consistent change in the composition of the products on a C-H-O basis 

indicates that the products are shifting based on the removal of oxygen Figure 8.10. The 

overall carbon content of the exit composition is constant. While carbon deposition may 

be occurring, the rate of carbon deposition is not affected by the amount of oxygen 

removal. The products show a slight change that is not in line with the changes in current 

and oxygen content. This indicates there may be substantial potential for variability in the 

catalyst products due to time on stream and slight variations in feed and outlet 

composition.

The overall trend is towards increasing C2 hydrocarbons in the exit composition. 

The total exit C2 hydrocarbon concentrations are increasing with increasing current and
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Figure 8.12 Products Compared To Theoretical. Experimental Results Are Dotted 
Lines Of The Same Color As The Theoretical Prediction

Figure 8.13 Ethylene Measurement Vs Theoretical
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greater than the inlet C2 hydrocarbon composition. The formation of ethylene could have 

been a potential ethane cracking reaction, but with the total exit C2 count being greater 

than the total inlet C2 precludes the possibility that all of the C2 content was initially in 

the stream (Figure 8.12, Figure 8.13). However, if the outlet composition is viewed as 

having been quenched at a temperature between 400 and 500 °C, then the overall 

composition is once again in agreement with what would be theoretically expected. A 

somewhat higher than expected composition of CO2 relative to CO was also observed in 

the work of Fujiwara et al. [36]. This adds another set of data suggesting that a reaction 

shift is likely occurring as the products exit the system and that the reactions are 

quenched upon cooling.

8.4.4. Experimental Uncertainty. All results reported in this work are obtained 

using calibrated instruments and methods. These methods are intended to reduce the 

possibility of sample contamination affecting the result. Possibilities remain for flow 

conditions and reactions that could impact the interpretation of the results. There are no 

direct operational measurements to control for these types of sources of error. Separate 

effects testing of the catalysts, electrolysis, and measurement system are intended to 

reduce the possibilities of these types of effects being significant sources of error. With 

these considerations in mind, the duration of sampling needed in order to produce a 

sample of sufficient size to inject into the GC allows for a variation in catalyst and 

electrolysis performance. Drift in the performance of both the catalyst and electrolysis 

over time can introduce noise into the accuracy of the data. Electrical voltage and current 

measurements were taken at the beginning and end of the sample run. The timing of these 

measurements means that average current over a run may have a minor difference
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compared with the initial run. For most runs with significant interest, the current 

remained close to constant over the duration of a sample. Catalyst time on stream would 

also affect the results, as the duration needed for most sample collections was greater 

than 20 minutes.
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9. ECONOMIC EVALUATION

An economic evaluation of the candidate system is presented based on the 

experimental results. The proposed system is also evaluated in context of the state-of-the- 

art production pathway. Further modifications are explored to examine their impact on 

the economic viability of the technology. These modifications provide direction and 

suggestions for future work.

The economic cases are the following: hydrogen from grid, grid-connected wind- 

only hydrogen, conventional syngas to FT, integrated non-OCM-SOEC for ethylene, 

integrated non-OCM-SOEC for benzene. The non-OCM-SOEC systems are based on an 

optimized full-scale system based off of the proof-of-concept work shown in the 

experimental section. The breakeven prices will be compared to market prices to 

determine the appropriate CO2 costs needed to make the systems economically 

competitive.

The economic evaluation will use the default H2Analysis tool’s SOEC Future 

case as the template for the economic analysis. The inputs will be altered based on the 

change in chemical output, as well as updated market electricity prices, and capital costs. 

The inputs that will be altered are electricity costs, capital costs, system availability, and 

energy required for a unit product. Explanations and justifications for these changes will

be discussed and the cases evaluated.



75

9.1. INTEGRATED ELECTROLYSIS AND SYNTHESIS REACTOR COSTS

An estimate of the system costs is made by comparison to the typical FT and 

SOEC costs. The validity of the assumptions is reviewed both from engineering 

calculations and from literature review. Discussion of whether the system lifetime is 

substantially affected by the modified system is a major point of focus in validating the 

assumptions of the economic model.

Electrolysis Stack Learning Curve
2500 ----------------------------------------------------------------------

■  Other

Annual Production (MW/yr)

■  Vessel

■  Modules

Figure 9.1 Electrolysis Stack Learning Curve Based On A Single Production Site

9.1.1. System Costs. For a preliminary estimate, typical SOFC production is 

similar to the procedure for producing the non-OCM-SOEC. The key parameter of 

determining economic viability will be production scale. At low scale production, the 

costs will be high. At large scale production, the costs will be much lower. Several 

reports show that production levels of 10 MW/year per facility are enough to lower 

SOFC costs down to $500/kW [85] [86]. The cost of a similar electrolyzer is equivalent



to $250/kW (Figure 9.1). The production of SOEC systems is very similar to SOFC 

systems on a technical basis. The electrolyte and electrode being produced in a similar 

manner as for a standard SOFC system, makes the prediction that producing this system 

have similar costs to SOFC valid. The key difference in this cost estimate is that the 

nominal power of an SOFC system is roughly half that of an equivalent area SOEC 

system. This is due to the power density of an electrolyzer being approximately double 

the power density of a fuel cell. This leads to an estimated cost of full-production SOEC 

being cost competitive with other electrolyzer technologies.

The main variation between SOEC subtypes is the composition and cost of the 

electrode layer, as well as the advanced techniques to produce a thinner electrolyte. 

Overall, it is expected that the initial cost of an electrode supported SOEC will be the 

same or less than an electrolyte supported SOEC.

9.1.2. System Lifetime. The lifetime of the system is a key metric in determining 

the economic value of the system. The main challenges with the new system are the 

catalyst lifetime, the thin electrolyte, and the operating voltage.

Much work has been done over the past decade to improve the reliability and 

lifetime of solid oxide electrolyte systems. SOFC lifetimes have improved from 7000 

hours to 40000 hours These improvements carry over to solid oxide electrolysis systems. 

The modeling has assumed a system lifetime of 40,000 hours. It is believed this is a 

reasonable target for a fully developed SOEC system, and the catalytic and electrolyte 

behavior of the system are similar enough for the non-OCM-SOEC that this is a 

reasonable expectation. [13]
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9.1.3. Catalyst. The modeled synthesis catalyst lifetime is considered to be the 

useful life of the SOEC stack. The main method of deactivation at this temperature will 

likely be coking. In SOEC systems typical coking allows for steam or hydrogen 

regeneration of the catalyst. Catalyst coking with a constant steam feed should be reduced 

compared to other similar catalysts, such as oxidative coupling of methane. If the coking 

is severe, it is expected that the system can be regenerated to provide fresh catalyst 

activity. Changes to operating conditions to minimize the thermodynamic region of 

coking have already been examined. The next mechanism for catalyst deactivation is 

sintering. The catalyst however, will be operating at temperatures much higher than a 

typical olefin synthesis catalyst.

9.2. ELECTRICITY COSTS

The most impactful variables in the final cost of electrolysis-based hydrogen is 

electricity price and availability. The energy input cost of electricity under normal 

circumstances far exceeds the cost of any other input. Due to increasing availability of 

cheap green electricity, this factor is becoming less of a concern. Along with the 

increasingly low price, the increasing availability of non-dispatchable green energy 

increases the overall availability of clean electricity for hydrogen production. In 

analyzing ERCOT pricing data, estimates of the time-based carbon intensity of the grid 

will also be examined.

9.2.1. ERCOT Pricing Data. Wholesale electricity prices and generation data 

were obtained from the ERCOT website for the year 2018. These data provide the 

framework for analyzing the availability of cheap electricity for electrolyzer power
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requirements. While the data from ERCOT is easily accessible, a review of other regions 

shows that similar costs are often available. For instance, a normal primary voltage user 

in most of XCEL energy territory can reach an effective price of $35/MWh without 

participating in any demand response or other auxiliary service markets. This compares 

favorably with the $40/MWh for the 96th percentile pricing for ERCOT (Figure 9.2).

Figure 9.2 Real Time ERCOT Pricing Data Fraction Of Hours In A Year [63]

Using the ERCOT real time pricing data from 2018, it can be seen that the 50th 

percentile price is $22.14/MWh, while the $40/MWh price point is at the 96th percentile. 

Electricity at wholesale prices provides a large percentage of time that the system can 

operate economical if the electricity can be obtained at wholesale prices. The average 

price for the 96th percentile is $20/MWh. That provides a reasonable input of $20/MWh 

for the integrated synfuel SOEC system.
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Figure 9.3 ERCOT 2018 Wind Production Capacity Factor As A Fraction Of The Year
[87]

If an electrolysis system is designed to run only on wind power, the fraction of the 

time that the system can run at a given power level is able to be determined by Figure 9.3. 

For example, a system running with an uptime of 50 percent of the year would be able to 

operate at a capacity of 30% of the nameplate capacity of the wind generation and 

average power up to 50% of the rated power of the wind turbines Figure 9.4.

The remainder of the power can be sold. This arrangement would require an 

electrolyzer system sized to meet the generation availability expected. A simple linear 

approximation of the system, allows for an electrolyzer to run 80% of the time with the 

electrolyzer to be rated at 18% of the installed wind turbine nameplate capacity.

The most important factor in determining the final sale cost for products of the 

SOEC system is the expected cost of electricity. The plot ERCOT grid data shows seen 

that the cost of wholesale electricity is very insensitive to the number of hours per year
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Figure 9.4 Wind Capacity Vs Pricing And Wind Percent Of Load Vs Pricing For
ERCOT 2018

over a very wide range. The price only varies from $17/MWh at the 3rd percentile to 

$40/MWh at the 96th percentile. In the context of a grid-connected system, the 

assumption that the electricity price and integrated synfuel-SOEC capacity factor are 

uncoupled is a good assumption.

9.2.2. Hybrid Energy System Analysis. The impacts of the various uses and 

operating units on the electricity cost of the hybrid energy system are examined. In this 

approach to the hybrid energy system. The coal plant internally sells its CO2 to the 

synfuel system at the cost of capture. This leaves the electricity products as market priced 

commodities, and each unit is independently optimizing its own production towards the 

higher bidder. The wind-farm, nuclear power plant, and the coal plant are all effectively 

using the SOEC system as a price floor mechanism.



9.2.2.1. Nuclear co-generation. Having a variable load is advantageous for 

nuclear power plants [88]. With increasing renewable generation market penetration, the 

load following capabilities of nuclear plants is often exceeded. With most of the cost of 

generating nuclear power being fixed costs, this makes operating a nuclear power plant 

increasingly uneconomical. Hydrogen production has been suggested as an alternative 

use to utilize nuclear power. The market availability provided by olefins and other 

chemicals provides a better option for a commodity product from the nuclear hybrid 

system.

9.2.2.2. Wind turbine. The case for a wind turbine to have a behind the meter 

connection to the SOEC, and the associated costs is discussed. In the case studies without 

grid connected emissions, a wind-turbine is assumed to produce a significant portion of 

the SOEC system’s electrical needs. The modeling input for this is the capital cost of the 

wind turbines needed to provide the electricity for the SOEC system. The assumed capital 

cost for the wind turbines installed is $1500/kW [89]. Any electricity production above 

the needs is sold as a byproduct. The SOEC can buy electricity at market price when the 

wind-turbine does not meet the SOEC production demands, or the SOEC can be 

curtailed. It is assumed in the model, that the SOEC will not purchase electricity over the 

price of $40/MWh.

9.3. ECONOMIC CASES

The economic cases discussed are:

1. A baseline hydrogen-only production via SOEC

2. An SOEC system that feeds a FT reactor
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3. Non-OCM-SOEC targeting ethylene

4. Non-OCM-SOEC targeting benzene

These cases and the differences between the individual case assumptions and the 

baseline discussion are examined. The results of each case are discussed and compared.

9.3.1. Hydrogen Production. Using the default inputs for grid-hydrogen 

production from SOEC, we can see that the electricity price sensitivity is by far the 

dominant factor in produced hydrogen pricing. The key factor driving the system is 

electricity price. Other key economic parameters are the price of electricity, system 

lifetime, and market prices.

The hydrogen production system should often accept reduced operating time for 

reduced system operating capacity factor. By modifying the electricity price to what can 

be seen as available in wholesale electricity markets, and including the potential for 

ancillary services provided by the system, the average electricity price for a grid- 

connected electrolyzer can be reduced even further Figure 9.5. By changing the system 

from a grid-connected system, to a wind-connected system, the operating expenses 

change from utility consumption, to increased CAPEX.

The capital investment for a wind-farm is modeled in the system costs. The model 

then compares wind production vs the max power of the system. By choosing to keep the 

electrolyzer powered, an opportunity cost for electricity production is incurred. By 

looking at the ERCOT wholesale market data, a behind-the-meter connection of an 

electrolyzer system to a wind-farm can provide a very low opportunity cost compared to 

the production of hydrogen. This configuration can give an effective electricity cost of 

$20/MWh and very high availability.
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Electricity Costs (% of baseline)

Operating Capacity Factor
(96%, 88%, 44%)

Total Capital Investment 
($35,685K, $50,978K, $66,271 K)

Total Fixed Operating Cost 
($3,874K, $4,078K, $4,282K)

Plant Design Capacity (kg of H2/day) 
(52,500,50,000,47,500)

After-tax Real IRR
(8% , 8% , 8% )
Utilities Consumption (% of baseline)
(90%, 100%, 110%)

$0.0

1.84 | 2.07

76 1.94

183 11.87

1.84 1.87

1.85 1.85

$ 0.5 $ 1.0 $ 1.5 $ 2.0 $ 2.5 $ 3.0

Figure 9.5 ERCOT Wholesale Grid Priced Electricity To Hydrogen

9.3.2. Fischer-Tropsch and Solid Oxide. By examining the traditional system 

with discrete operating units, a baseline is established for comparison with FT-SOEC. By 

increasing the capital cost for the system with the cost of a FT reactor and changing the 

required energy input to the system, the baseline case is modified for the sale price of 

traditional FT pathways.

The reactor price used is $15,000/bpd of plant capacity. Much of the typical 

$80,000/bpd of plant capacity is due to the steam methane reforming for syngas 

production and the related syngas clean-up. This system replaces those components with 

an SOEC system and primarily needs just the FT reactor and a few other supporting 

pieces of equipment. The traditional FT reactor route uses the wind case for electricity 

sourcing, and an input CO2 cost of $40/ton. The energy input per unit mass is modeled on 

C10 alkane for the basis. This results in an approximate cost in $/ton of ethylene. 

Additional processing steps for the system are necessary in order to have a fully saleable
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Electricity Consumption (% of baseline) 
(50%, 100%, 200%)

Operating Capacity Factor 
(102%, 89%, 45%)

After-tax Real IRR
(10%, 10%, 14%)

Total Capital Investment 
($64,016K, $67,385K, $70,754K)

Total Fixed Operating Cost 
($5,276K, $5,554K, $5,831 K)

Plant Design Capacity (kg of H2/day) 
(105,000,100,000,95,000)

C 02  Feedstock Cost (% of baseline) 
(50%, 100%, 150%)

$0.0

Figure 9 .6  Fischer-Tropsch And SOEC Cost For Olefin Production

product, but the remainder of the costs are minor compared to the expected variation

within the analysis (Figure 9.6).

After the initial analysis, due to the broad uncertainties of the alkaline system

inputs, the FT and intermediate alkaline case is functionally identical to the FT-SOEC

case. The resulting cost per ton for both cases is $1520/ton olefin. The lower selectivity

of the FT catalyst results in more separations and products. The average sale price

averaged over the products is the result produced.

9.3.3. Non-OCM-SOEC Ethylene. This section evaluates the economic potential

of a non-OCM-SOEC system based on the preliminary experimental data Figure 9.7.

Following the same procedure as the combined FT-SOEC case, various changes to the

inputs to the H2Analysis case of Future SOEC production were made. The modified case

uses the reduced electricity input required for the non-OCM-SOEC, the reduced

electricity prices from a wind-farm, and a modified SOEC capital cost. The increased
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SOEC capital costs reflect the additional complexities associated with the production of a 

non-OCM-SOEC system. Additionally, the SOEC system lifetime is also reduced to 

reflect the consequences of the more extreme conditions of the system. The final 

modifications to the system are preliminary estimate for a separation loop and a thermal 

energy cost to drive that separation system. This system, like the traditional FT system, 

uses a CO2 cost of $40/ton for the carbon input.

Figure 9.7 Tornado Chart For FT-SOEC Production Of Ethylene ($/Kg)

Due to the relative complexity of the separations for ethylene production 

compared to the other cases, further examination and comparison with other economic 

evaluations in literature are discussed. By comparing the cost of a non-oxidative coupling 

of methane system with the cost of in stack high methane production replacing market 

natural gas, an approximate cost of the system can be compared to the modified 

H2Analysis tools result.

A significant discussion of the economics of direct non-oxidative coupling of 

methane by Huang et al. gives a breakeven price for ethylene at $1,227/MT [90]. The



basis for the result includes a methane feedstock cost of $2.85/Mcf of natural gas [91].

By rescaling the rest of the capital costs and non-natural gas costs of the system, a capital 

cost and operating cost for the modified H2Analysis can be used. With these changes to 

the H2Analysis tool inputs, the breakeven ethylene pricing moves from $1190/MT to 

$1410/MT. This is $100/ton less than the baseline separate FT and SOEC pathway.

9.3.4. Non-OCM-SOEC Benzene. The last economic case to be evaluated is the 

FT-SOEC with a target product of benzene. The overall conversion of the system to 

benzene is more favorable thermodynamically. The separation of the methane and 

benzene for the recycle stream is also much simpler. This reduces the operating energy 

requirement and capital costs for the separation compared to the FT-SOEC ethylene case. 

Other than these changes, and the appropriate changes to the energy input per unit mass, 

the inputs are the same as the FT-SOEC Ethylene case Figure 9.8. The changes overall 

per pass conversion and easier separation result in a benzene price of $1100/MT.
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Feedstock Consumption (% of baseline)
(50%, 100%, 150%)

Operating Capacity Factor
(84%, 70%, 35%)

After-tax Real IRR
(7%, 8%, 20%)

Utilities Consumption (% of baseline)
(95%, 100%, 105%)

Total Fixed Operating Cost 
($2,550K, $2,685K, $2,819K)

Plant Design Capacity (kg of H2/day) 
(52,500,50,000,47,500)

Total Capital Investment
($16,317K, $17,176K, $18,035K)
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Figure 9.8 Tornado Chart For FT-SOEC Production Of Benzene ($/kg)
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9.4. CARBON PRICING

The breakeven CO2 is calculated based on the results of the individual breakeven 

prices. The baseline CO2 emissions for the products are shown in Table 9.1.

Table 9.1 Carbon Emissions of Studied Chemicals By Pathway [92]

For the grid connected cases, carbon emissions are expected to be approximately 

300g CO2/kWh for ERCOT in 2020. With that carbon intensity, grid-electrolysis 

produced hydrogen will have approximately 12.6 kg CO2/kg H2 of carbon emissions.

This corresponds to the mid to high emissions range for steam methane reforming.

Changing the product output to olefins reduces the carbon output to 7.1 kg 

CO2/kg C2H4 . In contrast, making polyolefins from primary oil results in emissions of 

1.4kg CO2/kg C2H4 . It can be seen that with the current carbon intensity of the ERCOT 

grid, that the electrolysis-based system is higher carbon than the fossil-based alternatives. 

For benzene the result is much closer. The grid-based electrolysis route is 2.6 kg CO2/kg 

benzene.

The alternative to a grid-connected case would be to simply build wind turbines to 

directly feed the electrolyzer, and sell the excess to the grid or store it. Further analysis of



a wind driven case is evaluated here. This represents a better case to attempt to quantify 

the economic benefit of the hybrid system for chemical production with environmental 

externalities included. The grid-connected case would face additional costs with the 

carbon pricing added to the production costs. Because the carbon emissions are higher 

with grid connected carbon, we calculated what the breakeven grid-carbon intensity 

would be to have equivalent carbon emissions from the fossil-fuel based process and the 

SOEC pathway.

9.5. ECONOMIC SUMMARY

The results of the carbon intensity and economic costs are combined to produce a 

breakeven cost of carbon. Since the grid-connected cases are higher carbon than the 

fossil-fuel-based alternatives, they are not included in this section. A wind turbine 

connected system is used along with the current and historical market prices. The results 

of this analysis is shown in Table 9.2.
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Table 9.2 Chemical Costs Via Different Pathways. Breakeven CO2 Costs In Current And
Historical Markets

Chemical H2 C2H4

Clean Route $ 1,340 $ 1,410 $ 1,100
Current Market $ 1,000 $ 330 $ 500

C02 Price $ 27 $ 923 $ | 259
Historical Market $ 1,000 $ 1,000

C02 Price $ 350 $ 43

c6h6
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In terms of carbon abatement costs, all pathways other than hydrogen production 

are significantly higher than typical carbon prices. Historical prices of these chemicals 

present a better case. With the historical pricing, benzene may be a target chemical of 

interest for a low-carbon pathway.

9.6. SCALING AND APPLICABILITY

After examining the results and the theoretical thermodynamic limits of the 

system, while there is a small technically achievable amount of direct olefin production. 

the present economic argument for such a system is poor. While the production of 

hydrocarbons has merit, economically the profitability of such a system depends on 

relatively high oil prices. Given recent market trends and instability, the decision to 

construct a plant with a 20-year lifetime is a high-risk proposition. At this time, an 

integrated fuel synthesis reactor and solid oxide electrolyzer is to be unable to compete 

with a traditional coupled electrolysis and FT reactor in separate operational units. The 

thermodynamic and kinetic limitations of the systems would require a breakthrough in 

catalyst, solid oxide electrolyzer operating temperature, or both.
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10. CONCLUSIONS

10.1. DISSERTATION SUMMARY

Research into the integrated production of C2 hydrocarbons within a single 

combined SOEC and synthesis unit has been performed. The experimental results support 

the conclusion that production of C2 hydrocarbons are achievable in a highly reduced gas 

stream. The C2 products are produced at near the thermodynamic limit. System stability 

over 18 hours shows no signs of catastrophic failure or excessive degradation.

Economic evaluation of the proposed system suggests that like most synthetic fuel 

production systems, the economic viability is highly dependent on market conditions.

The fluctuations of the petrochemical market can change the economics from highly 

valuable to extremely poor. In order for the system to be justifiable, CO2 emissions costs 

need to be between $43-$923/ton in order to be competitive with fossil fuel-based 

sources. The wide range is dependent on market price volatility, and whether the target 

chemical is benzene or ethylene. Ethylene has breakeven carbon cost range of $350- 

$923/ton CO2, while benzene has a range of $43-259/ton CO2 . By comparison, low- 

carbon hydrogen can be cost competitive with fossil-based hydrogen for as little as 

$27/ton carbon.

Intermediate temperature alkaline electrolysis has also been demonstrated. The 

technical demonstration of the ability to operate electrolysis endothermically at or below 

traditional FT temperatures provides a case for thermal integration of the two systems. 

The relative immaturity of intermediate temperature alkaline electrolysis make full
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economic comparison difficult. The preliminary economic comparison is favorable with 

the other baseline technologies.

10.2. RESEARCH CONTRIBUTIONS

A novel and new approach to integrated fuel and chemical synthesis in a solid 

oxide electrolysis unit is the prime contribution of this work. The production of C2 via 

electrolysis at high temperatures on a SOEC has never been reported before. Use of 

catalysts and electrolytes at the limit of their reasonable operating conditions and 

combining them is new work. Specifically, the targeting of olefins via FT synthesis in- 

situ in the same unit as the SOEC is a new method developed by this work. The analysis 

of the thermodynamic operating space and economically profitable outputs are also 

unique and new contributions. Previous to this work, no analysis of endothermic low- 

temperature electrolysis coupled to Fischer Tropsch synthesis has been performed. The 

analysis of the integrated production of C2 hydrocarbons in a combined single high 

temperature electrolysis and synthesis reactor has also never been performed previous to 

this work. Proof-of-concept testing of the reaction scheme has been confirmed 

experimentally. Further examination of potential for improved catalysts and electrolyte 

behavior for the system are also significant contributions. The combination of a catalyst 

and operational conditions in a single unit was one of the main objectives of this work.
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10.3. LIMITATIONS

The experimental work is preliminary work done with the intent of being proof- 

of- concept. Further work can be used to establish long-term performance and 

degradation.

10.4. FUTURE WORK

Further work would focus primarily on an increased area cell, and pressurized 

operating conditions. This would allow for further shifting of the oxygen content in a 

single pass. These improvements would enable the examination of anti-coking materials 

and additives in order to shift the equilibrium yield from a syngas formation and 

mechanism to a surface hydrogenation mechanism. Additional optimization of catalyst 

performance, electrolyte, operating conditions, and process separations would be 

necessary to produce an economical device and system.
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APPENDIX

1. INSTRUMENTATION

1.1. POTENTIOSTAT/ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Gamry Reference 3000 Model

1.2. GAS CHOMATOGRAPH

Inficon 3000:
Channel A: Molecular Sieve, Argon. 
Channel B: Molecular Sieve, Helium. 
Channel C: Plot U, Helium.
Channel D: OV-1, Helium, not used.

Bruker:
Scion 456-GC
CP-Al2O3/KCL 50m, 0.32 MM ID, 5um df.

Figure A. 1 Equipment Test Stand
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