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ABSTRACT

iii

In this research work, bench-scale and micro-scale flotation tests were conducted 

to separate phosphate minerals from silicate minerals using direct and reverse flotation 

approaches, respectively. Experiments were conducted at different flotation conditions 

including reagents’ type, reagents’ dosages, pulp’s pH, and flotation time.

In the direct flotation process, two polymers were selected to promote the 

depression of silicates: hybrid polyacrylamide-based polymers (Hy-PAM) and chitosan. 

Results indicated that the highest recovery of P2O5 (86.82%) was obtained when the Hy- 

PAM polymer was used compared with 66.7% and 40% when chitosan and commercial 

inorganic depressant were used, respectively. The experimental datasets obtained from the 

direct flotation tests were assimilated to develop an artificial neural network (ANN) model 

to predict the flotation efficiency of phosphate minerals in relation to various process 

parameters. The developed ANN model predicted that optimum flotation performance can 

be achieved at 4 min of flotation time, 250-300 g/ton of reagents’ dosages, and pH 9.

The reverse flotation tests were conducted using two types of ionic liquid collectors 

(THAI and HMLHF) in micro-flotation system wherein pure apatite and quartz were used 

as an example of phosphate and silicate minerals, respectively. Results obtained from 

mixed minerals flotation showed that quartz’s recovery and grade were ~90% and ~64% 

when HMLHF was used at pH 11. When THAI was used, the recovery and grade of quartz 

were 87% and 70.3%, respectively, compared with 87% and 65.3% when commercial

amine collector was used.
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1. INTRODUCTION

1.1. PHOSPHATE DEPOSITS AND ORE PROCESSING

Phosphate rocks are one of the non-renewable resources in the earth's crust [1]. 

There are three major types of phosphate deposits in the world: sedimentary, igneous, and 

metamorphic [1], [2]. Approximately 80 % of these deposits are sedimentary, 15% are 

igneous, and 5% are metamorphic. The sedimentary deposits are mainly located in the 

Middle East, China, the United States, and Morocco. Igneous deposits are distributed in 

South Africa and Russia, while the metamorphic deposits are located in India [1], [3], [4]. 

The worldwide phosphate reserves are shown in Figure 1.1. As shown, Morocco and 

Western Sahara in North Africa contain approximately 50% of the world’s phosphate 

reserves [4].
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Figure 1.1 Worldwide phosphate reserves and deposits [4].
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Phosphate ore bodies are usually associated with other minerals of no economic 

values [4]-[8]. These minerals include clays, silicates, calcites, and dolomite [4], [9], [10]. 

Dolomite and silicates are the major gangue minerals that need to be removed at the early 

stages of processing since their presence has a negative impact on downstream processing. 

Their low solubility may cause blinding or blogging of filters, which could increase the 

pumping costs [4], [11].

Several beneficiation techniques are usually applied to enrich phosphate minerals 

in the ore. The choice of the beneficiation technique depends on the mineralogical and 

morphological characteristics of the ore body. These techniques include size reduction and 

screening, electrostatic separation, magnetic separation, and froth flotation [4], [11], [12]. 

The size reduction and screening method is a traditional technique used to upgrade 

phosphate minerals. It utilizes the differences in the friability factor between phosphate 

minerals and the associated gangue minerals, but a high percentage of phosphate minerals 

is lost in the coarse size fraction [13]. The electrostatic separation method is a combination 

of attrition, gravity separation, and desliming that has been successfully used to remove 

silicates and carbonates minerals from phosphate ore. This method has less efficiency at 

larger scale production operations due to the low capacity of the electrostatic separators

[13] . The magnetic separation method is practically used when processing igneous 

phosphate rocks that contain significant amounts of magnetic gangue minerals [4], [12],

[14] . The Froth flotation process is usually used to upgrade phosphate minerals in most 

phosphate production plants. The Froth flotation process exploits the difference in surface 

hydrophobicity of mineral particles. In this process, mineral particles are selectively 

captured and carried by air bubbles to the froth product, whereas hydrophilic minerals are
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discharged as tailings or reject. Therefore, it is considered one of the most selective and 

versatile techniques for mineral enrichment. [4], [12], [14]—[16].

1.2. STATEMENT OF THE PROBLEM

Phosphate is one of the most common minerals essential to human, animal, and 

plant life [17]—[19]. It is an important mineral commodity used in phosphoric acid 

production, which is used to make phosphate salts for fertilizers [12], [20]. The phosphate 

ore bodies are usually associated with other minerals (gangue minerals) such as siliceous, 

calcareous, and clayey minerals. These minerals are generally removed during the 

beneficiation processes of phosphate ores [4], [12], [21]. Silicate minerals are the most 

common gangue minerals associated with phosphates ores and present several technical 

challenges and complex processing, especially in the processing of lower-grade ores [4]. 

To make the chemical extraction process of phosphates economically feasible, phosphate 

minerals must be physically enriched to remove the majority of silicates prior to chemical 

dissolution [12], [22]. Since silicates are liberated at finer sizes, the froth flotation process 

is usually used to separate phosphates from silicates [23], [24].

Phosphate minerals can be separated from silicates using either direct froth flotation 

(i.e., phosphates are floated, and silicates are depressed) or reverse flotation process where 

phosphates are depressed, and silicates are floated [4], [23]. Despite the extensive and 

successful application of this process in phosphate separation, selective depression silicate 

minerals remain a serious challenge. This is primarily due to changes in ore quality, 

crystalline phases, and water quality over time -  all of which affect the interfacial micro­

processes taking place in liquid-solid-gas interfaces that govern the froth flotation behavior
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of constituent minerals. Therefore, there is an urgent need for the utilization of “flexible” 

and sustainable reagents that remain selective and perform efficiency in different 

conditions.

Furthermore, phosphates' flotation efficiency is influenced by several key process 

variables [e.g., water chemistry, reagents chemistry, feed characteristics, cell type, and 

aeration rate]. Although each of these parameters influences the flotation process outcomes 

(recovery and grade) independently, their interdependence makes the process control very 

difficult. Therefore, it is of central importance to develop and employ adaptive intelligent 

control tools that consider the diversity of these variables and their mutual interaction to 

ensure process stability and desired outcomes.

1.3. OBJECTIVES OF THE CURRENT WORK

This research proposes different approaches to improve the separation of silicate 

minerals from low-grade phosphate ore by froth flotation process. The specific objectives 

are:

1. To investigate the potential of using organic-inorganic hybrid polyacrylamides 

(functional synthetic polymers) and chitosan (biodegradable polymer) as 

selective depressants of silicates in the direct flotation process of low-grade 

phosphate ore.

2. To investigate the potential of using ionic liquid (IL) as selective collectors of 

silicates in the reverse flotation process of a model phosphate ore.

3. To investigate the effect of key process variables on the recovery of phosphate 

minerals (in terms of P2O5) and the grade of the concentrate products; and
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4. To develop and employ a machine learning (ML) platform to predict the flotation 

process outcomes in relation to various process variables, which in turn can be 

used to optimize the flotation efficiency of phosphate minerals.

1.4. BROADER IMPACTS AND INTELLECTUAL MERIT OF THE PRESENT 
WORK

1.4.1. Broader Impact. This research will contribute immensely to the existing 

body of knowledge on froth flotation efficiency in mineral processing. Results generated 

from this study will be beneficial at different frontiers:

1.4.1.1. Economic benefits. Selection of the reagents plays a significant role in 

evaluating the economic feasibility of the froth flotation process of minerals at industrial 

scale. Commercial flotation depressants that are currently used in industrial operations 

need at least two flotation stages, in most cases, for either direct or reverse flotation. This 

is to enhance the process efficiency and to upgrade the phosphate concentrates to the 

required economic production-grade, which should be at least 24% of P2O5 [25]. Based on 

the results obtained from this work, the proposed reagents could produce the target 

economic grade of P2O5 in a single-stage flotation, which could reduce the energy and 

reagent consumption. For example, a flotation plant with double-stage flotation needs 15 

KW.h per ton [26]. The average industrial electricity rates are 8.820/KW.h [27]. The 

energy cost is $1.323 per KW.h/ton. In a single-stage flotation, the hourly energy 

consumption is 7.5 KW.h per ton. This should reduce the energy cost to $0.6615 per 

KW.h/ton. In addition, the proposed techniques and alternative reagents helped 

significantly to improve the flotation outcomes at shorter flotation time. This potential
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reduction in the energy consumption is critical at an industrial scale where energy cost is a 

determinant factor to assess the economic feasibility of flotation processes.

1.4.1.2. Environmental benefits. As the waste produced from the phosphate 

industry presents many challenges due to the environmental impacts of their disposal, the 

new reagents should improve the environmental profile of the flotation process and reduce 

the tailing discharge. For example, the proposed reagents have the potential to reduce the 

amount of tailing products since they are able to significantly increase the recovery of 

phosphates in the concentrate products. This will help to reduce the cost of tailing disposal. 

Also, in the direct froth flotation practice, sodium silicate is usually used as a dispersant of 

silicate minerals to suppress their flotation [9]. Although sodium silicate has shown good 

performance in depressing the flotation of silicate minerals, recent studies indicated that 

sodium silicate is toxic to aquatic and terrestrial organisms [28]-[30]. Moreover, it may 

cause irritation to the skin and eyes [30]. Therefore, its replacement with green reagents 

from sustainable resources is appealing. Furthermore, chitosan polymer used as an 

alternative depressant of silicates is considered a green biodegradable reagent. Recent 

research approved that chitosan is very safe for human uses like dietary and approved for 

pharmaceutical manufacturing, and no adverse effects reported in the skin or eyes [31], 

[32].

1.4.2. Intellectual Merit. The proposed research should result in a better 

understanding of the factors that impact the froth flotation process. Considerable 

information will be generated through the different phases of this work that will broaden 

the knowledge in the field of phosphate mineral flotation. The findings of this study should 

also advance the fundamental knowledge in different areas of science and engineering as
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follows: Understanding the interaction mechanism between mineral particles in the 

flotation pulp and the reagents through electro-kinetic measurements, Fourier-Transform 

Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS) will 

contribute to the field of applied surface science.

• Understanding the mineralogical and morphological characteristics as well as grain 

liberation of the flotation feed will assist in selecting the best separation method 

and thus will contribute to the fields of process mineralogy and separation science.

• Development of machine learning and artificial intelligence models for reliable 

prediction of flotation performance will pave the path for developing “smart 

systems” for better control of phosphate flotation in industrial plants, especially 

when polymers are used as process aids. Such control is vital to ensure peak 

performance and process stability with no significant amplification in cost and time 

-especially in industry- scale froth flotation procedures, which feature continuous 

variation in feed characteristics and water quality.

1.5. RESEARCH STRATEGY

The following explains how the project was accomplished through the 

implementation of four major research phases.

1.5.1. Phase I: Investigations on Mineralogical and Morphological 

Characteristics of Low-Grade Phosphate Ore. Characterization studies such as X-ray 

Diffraction (XRD), X-ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), and 

Mineral Liberation Analysis (MLA) were first conducted to identify the mineralogical and 

morphological characteristics as well as grain liberation to understand the behavior of the
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flotation feed better. In this phase and as shown in Figure 1.2. the tasks focused on

preparing phosphate samples by mixing, collecting, drying, and sieving according to

ASTM C136-14 protocol, then extensive characterization studies on different size fractions

were performed using XRD, XRF, SEM, and MLA.

then  s iev ing  a c c o rd in g  to  m ine ra ls  in  the  phosphate
ASTM C136-14 p ro to c o l. sam p les  a t d if fe re n t size

fraction.

Figure 1.2 Schematic representation of tasks performed in Phase I.

1.5.2. Phase II: Investigations on the Adsorption Characteristics of Reagents 

on Phosphate and Silicate Surfaces. This phase aimed to build a strong foundation to 

design an appropriate experimental procedure that were implemented in the following 

phases to achieve the optimum separation of silicates from phosphate minerals. In this 

phase, the fundamental features of reagents adsorption on minerals surfaces were 

investigated. Quartz was used as an example of silicate minerals, while apatite was used as 

an example of phosphate minerals. All the tasks of this phase are outlined in Figure 1.3.
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Sodium silicate dispersant and amine collector were selected as conventional 

reagents for comparison purposes. Chitosan, organic-inorganic hybrid polyacrylamide 

(Hy-PAM), tetrahexylammonium iodide (THAI), and 1-Hexyl-3-methylimidazoli 

hexafluorophosphate (HMLHF) were tested as alternatives to the conventional reagents. 

Zeta potential measurements were performed on mineral surfaces before and after the 

addition of reagents to study the influence of these reagents on the electrical characteristics 

of the selected minerals and understand the flotation behavior of minerals.

• Reagents selection.
• Stock solutions of reagents 

at different concentration.

• Z e ta  p o te n tia l m easu rem ent. • A d s o rp tio n  m echan ism  o f
re ag e n ts  on a p a tite  and 
quartz.

Figure 1.3 Schematic representation of tasks performed in Phase II.

1.5.3. Phase III: Investigations on the Flotation Behavior of Phosphates and 

Silicates Minerals using Alternative Reagents. In this phase, froth flotation experiments 

were conducted using conventional and alternative reagents. As stated earlier, two different 

approaches were investigated to enhance the separation of phosphates from silicates 

(Figure 1.4.).
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The first approach investigated the applicability of functional and green polymers 

as alternatives to conventional depressant of silicates minerals in the direct flotation of 

phosphate ore. Two different polymers were selected in this study: hybrid polyacrylamide- 

based polymers (Hy-PAM) as an example of functional synthetic polymers and chitosan 

polymer as an example of sustainable, biodegradable natural polymers. Batch flotation 

experiments were conducted using a laboratory-scale Denver cell. Baseline experiments 

were performed periodically based on specific conditions in order to define a base recovery 

and to ensure the reproducibility of the results as well as a congruity of the experimental 

parameters. The flotation process outcomes were studied as a function of various process 

variables, including pulp’s pH, flotation time, reagent type, and reagent dosages.

Figure 1.4 Schematic representation of tasks performed in Phase III.
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The second approach was to explore the ability of ionic liquids (ILs) to serve as 

selective collectors of silicate minerals in the reverse phosphate flotation process. Micro­

flotation tests were conducted using a Hallimond tube to understand the effect of ILs on 

the flotation of apatite and quartz without external factors such as mechanical parameters; 

thus, it is an excellent tool to assess the suitability of a particular reagent in the froth 

flotation process. Concentrate and the tailing products obtained were weighed, dried, and 

analyzed using X-ray Fluorescence Spectroscopy (XRF) and X-ray Diffraction (XRD).

1.5.4. Phase IV: Machine Learning (ML) Modeling to Predict the Flotation 

Performance of Phosphate-Silicate Ores. In this phase, as shown in Figure 1.5, the 

experimental datasets and information pertaining to the influence of experimental variables 

were processed under the progressive-and-adaptive framework of machine learning (ML). 

Artificial neural networks (ANN) were used in this study to model the flotation behavior 

of phosphate and silicate minerals in direct froth flotation processes.

Task 1: 
Model 

programming
Data Training 
Data Testing 

Model validating

Task 2:
Prediction the 

flotation behavior 
?f phosphate and 
silicate minerals 

in direct froth 
flotation 

processes

Figure 1.5 Schematic representation of tasks performed in Phase IV.
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ANN has been used recently to predict the metallurgical performance of the 

flotation process in various applications with excellent accuracy [33]—[38]. Python was 

used to code the ML model. The mean absolute error (MAE), coefficient of determination 

(R2), and root-mean-square error (RMSE) were used as performance indicators of the ANN 

model.

1.6. ORGANIZATION OF DISSERTATION

This dissertation contains six sections. The key contents of each section are 

provided below.

Section 1: This section provides the overall introduction of the thesis, including the 

background, statement of the problem, research objectives, broader impacts and intellectual 

merit of the work, and finally, the research scope and strategy.

Section 2 : This section presents a comprehensive literature review on the 

fundamental principles of froth flotation process, an overview of industrial froth flotation 

practices applied to phosphate ores, and a thorough review of the factors that impact the 

flotation efficiency of phosphate minerals.

Section 3 : This section discusses the direct froth flotation process of low-grade 

phosphate ore in the presence of synthetic and natural polymeric depressants in batch 

flotation systems. The section also provides a detailed characterization of phosphate ore 

used in this study and a fundamental investigation of the electrical characteristics of 

minerals at water-solid interfaces.

Section 4 : This section discusses the application of ionic liquids (ILs) as 

alternatives collectors of silicate minerals in the reverse flotation process of phosphate
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minerals in the micro-flotation system. The section also provides systematic investigations 

on the fundamental features of ILs’ adsorption on mineral surfaces.

Section 5 : This section presents the application of machine learning (Artificial 

Neural Network, ANN) to predict the process outcomes (i.e., recovery and grade) in the 

direct froth flotation of low-grade phosphate ores in relation to a process variable. Process 

optimization is also discussed.

Section 6: This section provides the overall conclusions, contributions of this work, 

and recommendations for future research.
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2. LITERATURE REVIEW

2.1. FROTH FLOTATION FUNDAMENTALS

In 1897, the first industrial commercial flotation process was established at Glasdir 

mine by Elmore’s brothers for sulfides minerals [26]. Since that time, the froth flotation 

process has become one of the most selective techniques used in mineral separation 

processes. Froth flotation is extensively used to enrich sulfide minerals (i.e., galena, 

chalcopyrite, sphalerite, molybdenite, and pentlandite) as well as non-sulfides such as 

phosphate minerals, iron ores, and fine coal [23], [39]-[42]. Froth flotation utilizes the 

differences in wetabilities of minerals in a three-phase system that consists of solids, gas, 

and water [10]. In this process, hydrophobic particles attach to air bubbles to form a froth, 

which is basically solid-air aggregates containing entrapped water. Hydrophilic minerals 

tend to stay in the pulp as waste products or flotation tailings [4], [43]. Figure 2.1 represents 

the concept of the froth flotation process [44].

Air Bubble
motor

controllera-air supply froth concen
layer ran

Iced dosage Hydrophobic minerals
valve (Attached to air bubble)

moved upslurry
BUBM—

stirrer
^ lad ings

mixing
Hydrophilic mineral

moved down

Figure 2.1 Principle of the froth flotation process.
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There are three closely correlating components in any froth flotation system -  all 

of which affect the flotation process efficiency (Figure 2.2) [9]. The first component is 

mechanical, which includes cell design, agitation speed, and airflow rate. The second is 

chemical, which comprises flotation reagents such as collectors, frothers, and depressants, 

as well as the pH of the flotation pulp. The third is operational, which includes feed flow 

rate, the particle size of the flotation feed, and flotation time [4], [45].

r

Mechanical <

•cell design 
•agitation speed 
•airflow rate 
• cell bank control

Chemical <
• flotation reagents 
•pH of the flotation pulp 
•pH modifier

Operational

• feed flow rate
• particle size of the flotation feed
• flotation time
• feed characteristion
• pulp density
• temperature

Figure 2.2 Different variables in froth flotation process.

To maximize the flotation efficiency (recovery and grade) of a specific mineral, 

the flotation process is usually undertaken in different stages [46]. As shown in Figure 2.3,
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the first stage called rougher flotation, which produces products with coarse particle size 

and removes most of the valuable mineral to the next stage, the cleaning stage. The cleaning 

stage aims at producing as high a concentrate grade as possible. The final stage, the 

scavenging stage, is applied to recover the valuable minerals that were not collected during 

the first roughing stage [23], [47]-[49].

2.2. PHOSPHATE FLOTATION PROCESS

In general, the separation of phosphate minerals from the associated gangue 

minerals by froth flotation is technically a challenging process due to the variability in ore 

composition and similar physicochemical properties of constituent minerals [2], [46], [50]- 

[52]. There are two main flotation practices adopted by the phosphate industry: the direct 

flotation process and the reverse flotation process.
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2.2.1. Direct Flotation. The direct process is more preferred due to its high 

separation efficiency. It is generally used to separate the phosphate ores that contain 

significant amounts of silicates and dolomite within 20-25% and 4-6%, respectively [10], 

[53]. In this process, phosphate minerals are rendered hydrophobic, floated, and collected 

in the froth zone at ~ 75% - 80% recovery and 30% - 34% grade, while the gangue minerals 

are depressed [4]. Florida’s phosphate mines have used direct froth flotation for a long time 

[4]. As shown in the flow diagram, Figure 2.4, the phosphate feed is conditioned by adding 

fatty acid as a collector of phosphate minerals and sodium silicate as a dispersant of silicate 

minerals at pH 9-9.5 and 70-75 wt.% of solid concentration. The flotation feed is then 

transferred to the rougher flotation circuit to float phosphate minerals and fine silicates 

while coarse silicates sink in the tailings zone [4].

Figure 2.4 Flow diagram of the direct flotation process at Florida’s phosphate mines [4].

2.2.2. Reverse Flotation. In the reverse flotation practice, gangue minerals are

floated while the phosphate minerals are depressed or dispersed and collected in the



tailings [4], [10]. Reverse flotation is used to separate the phosphate ores that contain 

significant amounts of silicate minerals and more than 25% of carbonates [53].

As an example, Florida’s phosphate mines also use the reverse froth flotation 

process[4]. As shown in the flow diagram, Figure 2.5, the phosphate feed is conditioned 

by adding amines as a collector of silicates and starch as a dispersant of phosphate minerals 

at pH 6.5-8 to float the fine silicates to tailings and sink the phosphates and coarse silicates 

to sink zone followed by dewatering. The dewatered phosphate sink is floated from coarse 

silicates by direct flotation process [4].

18

Figure 2.5 Flow diagram of reverse flotation process at Florida’s phosphate mines [4].

2.3. VARIABLES AFFECTING FROTH FLOTATION EFFICIENCY

Froth flotation process utilized the difference in surface properties of minerals at 

water-solid-gas interfaces. Chemical reagents are added in the flotation cell in order to 

modify the surface properties of different minerals to allow selective separation.
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Therefore, the types and dosages of different chemical reagents added to the flotation pulp 

can adversely affect the flotation process efficiency. The reagents can be classified into 

various types: collectors, depressants, dispersants, and frothers [9], [54]. For example, fatty 

acids anionic collectors are usually used as phosphate collectors in the direct phosphate 

flotation process for ore containing 20%-25% silicates minerals [11], [55]. Whereas 

cationic collectors, such as amines, are used in the reverse flotation process to float silicates 

and carbonate minerals [9]. Table 2.1 shows the most common collectors used in phosphate 

flotation operations.

Table 2.1 Common collectors used in phosphate flotation operations [9].

Floated mineral Ionic property Collector group Flotation system

Phosphate Anionic Oleic acid 
Tall oil
Disodium dodecyl phosphate

Direct Flotation

Silicates Cationic Amines
Dodecylamine

Reverse Flotation

Carbonates Anionic Fatty acids 
Sulfonated fatty acids

Direct Flotation

On the other hand, the dispersants and depressants are usually used to suppress the 

flotation of gangue minerals in direct froth flotation [9], [54], [56]-[59]. Many types of 

depressants and dispersants are available. For the best results, the type of flotation system 

(direct or reverse) and collector type need to be determined [9]. Table 2.2 shows a list of 

common depressants used in phosphate flotation operations.

The mineral impurities in the phosphate ore present many challenges due to the 

similarity in most of their physical and chemical properties to those of phosphates. This makes 

the separation difficult, costly, and environmentally influential. For example, the ore at the
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Kapuskasing Phosphate Operations (KPO) contains a significant amount of magnetite, which 

has similar surface properties to phosphate minerals. In this operation, the fatty acids used as 

collectors of phosphate minerals could also collect iron minerals [60], [61]. Similarly, the 

starch used as a depressant of iron minerals could depress phosphate minerals [60], [61]. 

Therefore, a magnetic separator is usually applied in such cases after the flotation process to 

remove magnetite. Figure 2.6 shows the process flowsheet. First, the ore is crushed and ground 

to minus 300 microns [62]. A flotation feed contains 55 wt.% of solids is conditioned with 

water and reagents. Starch is added first as a depressant of iron minerals, then tall oil “fatty 

acids” is used as phosphate collector at typical dosages of 1200 g/ton and 800 g/ton, 

respectively. The pH of the flotation pulp is kept between 10.5 to 11 using sodium hydroxide 

(NaOH). After that, the concentrate is sent to a two-stage wet magnetic separation circuit to 

remove magnetite minerals that floated with phosphate minerals. The final concentrate is 

thickened, filtered, and thermally dried. The P2O5 grade of the concentrate shall be at least 

36%, and the equivalent contents of Fe2O3 and MgO should be less than 2.5% and 0.6%, 

respectively [62].

Table 2.2 Common depressants used in phosphate flotation operations [9].

Depressed mineral Depressant Flotation system Collector for floated 
minerals

Phosphate Aluminum sulfate 
Sodium carbonate 
Phosphoric acid 
Starch

Reverse Flotation Amines
Carboxyethyl-
imidazoline

Silicates Sodium silicates Direct Flotation Fatty acids
Carbonates Sodium silicates 

Polysaccharides 
Hydrofluoric acid

Direct Flotation Fatty acids
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Figure 2.6 Flotation process flowsheet adopted at Agrium Inc.-Kapuskasing Phosphate
Operations (KPO) [62].

The particle size of the feed plays a significant role in the phosphate flotation 

process. Research efforts have been made to figure out the optimum particle size range. As 

shown in Figure 2.7, the optimum particle size that gives the best flotation efficiency of 

phosphate minerals was found between +36 micron to -125 micron [16], [46], [63]-[65].

Moreover, in any flotation process, pH is a critical factor that can adversely impact 

the selectivity of reagent adsorption at mineral surfaces and thus the efficiency of minerals 

separation. In phosphate flotation, the optimum pH in the direct froth flotation process is 

between pH 9 and pH 11. It is usually modified by adding soda ash (sodium carbonate). 

However, in reverse froth flotation process wherein silicates or carbonates are floated, the 

optimum pH is between five and eight [46], [58], [66], [67].
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Figure 2.7 Flotation recovery of phosphate minerals as a function of particle size of
flotation feed [16].
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3. ENHANCED RECOVERY OF PHOSPHATE MINERALS FROM LOW- 
GRADE ORE USING DIRECT FROTH FLOTATION

3.1. BACKGROUND

Both synthetic and natural polymers have been extensively applied for decades in 

mineral flotation [37], [68], [69]. This is due to their tenability and the opportunity to 

enhance the flotation performance at lower costs [68], [69]. Chitosan has been successfully 

tested as a green depressant to replace sodium cyanide in complex sulfide ore flotation 

[37]. Polyacrylamide-based synthetic polymers are widely used in mineral flotation as 

multifunctional reagents. Depending on the integrated functional groups, polyacrylamides 

and their derivatives have been used as collectors, depressants, activators, or modifiers 

[37], [70]. Hybrid organic-inorganic polyacrylamide polymers (Hy-PAM) were 

successfully applied in fine coal flotation to enhance the combustible recovery and reduce 

the ash contents of coal concentrates [70].

Two different polymers were selected in this study: hybrid polyacrylamide-based 

polymers (Hy-PAM), as an example of functional synthetic polymers; and chitosan 

polymer as an example of sustainable, biodegradable natural polymers. Hy-PAM is an 

organic-inorganic hybrid polymer consisting of nano-size Al (OH)3 inorganic particles 

grafted on polyacrylamide organic chains. Figure 3.1 shows the structure of the hybrid 

polyacrylamide polymer (Hy-PAM) used in this study.

Hy-PAM was anticipated to adsorb on the surface of slime-forming minerals in fine 

coal flotation process and depress their flotation and mechanical entrainment into the froth 

layer [70]. A previous study by Alagha et al. (2011) showed the capability of Hy-PAM
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polymers to adsorb on the surface of ultrafine silica particles, flocculate them, and enhance 

their sedimentation in solid-liquid separation processes [71].

Natural polyaminosaccharide (chitosan) was utilized as a depressant of pyrite in the 

sulfide flotation process [37], [72]-[74]. The structure of the chitosan polymer is shown in 

Figure 3.2. It is anticipated that chitosan could potentially form metal complexes (chelates) 

on specific mineral surfaces — depending on the electron affinity of metal ions in the 

crystal lattice — and makes the surface hydrophilic, thus depressing their flotation.

[37],[74]-[80].
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Figure 3.2 Structure of chitosan polymer [37].

The successful application of Hy-PAM and chitosan in the previously mentioned 

studies, along with their unique structural characteristics, have brought the motivation to 

use these polymers in this study as depressants of silicate minerals in the direct flotation 

process of low-grade phosphate ore.

3.2. METHODOLOGY AND MATERIALS

3.2.1. Mineral Samples and Flotation Reagents. Representative low-grade 

phosphate ore samples were provided from a phosphate plant located in the United States. 

All reagents used in the direct flotation tests, displayed in Table 3.1, were purchased from 

Fisher Scientific Company, USA. The chitosan polymer's molecular weight used in the 

flotation tests was 1526.464 g/mol, and the deacetylation degree was 85%. Hy-PAM was 

synthesized in-house according to a procedure described elsewhere [59], [71], [81]. The 

molecular weight of the synthesized Hy-PAM polymer was 6*106 Dalton and was 

determined using the Zetasizer Nano ZS instrument. Sodium carbonate (Na2CO3) and
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hydrochloric acid (HCl) were used to adjust the pH of flotation pulp and mineral 

suspension used in zeta potential studies. Pure apatite and quartz were purchased from 

Ward's Science Company, USA.

Table 3.1 A list of reagents used throughout this study.

Reagent Type Reagent Name Target Mineral

Collector Sodium Oleate Apatite

Dispersant Sodium silicate Quartz

Depressant

Al(OH)3-PAM (Hy-PAM) Quartz

Chitosan Quartz

Frother Methyl isobutyl carbinol (MIBC) —

3.2.2. Characterization of the Flotation Feed. In order to understand the 

mineralogical and morphological properties of low-grade phosphate ore, a comprehensive 

characterization studies were employed by using X-ray Diffraction (XRD), X-ray 

Fluorescence (XRF), Scanning Electron Microscopy (SEM), and Mineral Liberation 

Analysis (MLA) on the low-grade phospahte ore and flotation feed.

3.2.2.I. Particle size distribution. Several screens with different size fractions 

were used for sieving. These screens were placed and shaken for a specific time, as 

determined by the ASTM C136-14 protocol. Figure 3.3 shows the particle size distribution 

of the flotation feed. The 80% passing size (P80) of the flotation feed was approximately

100 microns.
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Figure 3.3 Particle size distribution of the flotation feed.

3.2.2.2. M ineral liberation analysis (MLA). Random particle mounts were 

created from the sieved material for MLA analysis. MLA data was obtained by the XBSE 

method, where the acquired backscattered electron (BSE) image is used to differentiate the 

mineral phases based on the gray level as the gray level intensity varies, dependent on the 

phase composition. The acquired X-ray spectrum obtained from each phase was compared 

to the X-ray mineral database to determine mineral phases qualitatively. The surface area 

data for each mineral was used for the quantitative determination of the minerals identified.

• M odal mineralogy. As shown in Figure 3.4.A, the flotation feed particles 

presented complex textures with many of the phases displaying variable chemistries. The 

primary phosphorus-containing phases were apatite and apatite-fluorite mix. Apatite and
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mixed apatite phase (apatite-fluorite mix) were found in the flotation feed at 33.06% and

29.96, respectively. Quartz was found to be 17.81%, mica (K-Al silicate) was nearly

8.49%, fluorite was 4.95%, and K-Feldspar was 4.24%.

4 □  Apatite 33.66 3 □  Albite 0.66 17 □  Rutile 0.03
5 □  Fluorapatite 29 96 19 □  SiAISOK-Mix 0.22 13 ■  llmenite 0.02

16 □  Quartz 17.81 7 ■  Calcite 020 21 ■  Zircon 0.01
15 □  Mica 8.49 8 ■  Dolomite 0.16 12 ■  Gypsum 0.01
11 ■  Fluorite 4.94 9 ■  FeO 009 20 ■  Sphalerite 0.01
14 D K-Feldspar 4.24 6 1 I Biotite 0.09 18 ■  SeCd-Mix 

2 ■  Al-Phosphate
0.00
0.00

Liberated Binary Ternary or greater Liberated Binary Ternary or greater

Figure 3.4 Model mineralogy (A) Classified MLA image of the flotation feed (Particle 
inset units are in pixels and concentration palette values are in area percentages); (B) 

Mineral locking of fluorapatite; (C) Mineral locking of apatite [59].
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The distribution of the main minerals in the flotation feed is shown in Figure 3.4.B 

and C, which shows the percentages of the liberated and locked phosphate minerals in the 

flotation feed. As indicated, more than 50% of phosphate minerals in the feed were locked 

or associated with other gangue minerals (mainly quartz, mica, and feldspar). The grade of 

phosphate minerals (P2O5) in the flotation feed was 21.6%, as determined by MLA. MLA 

indicated that some interlocking of quartz, apatite, and fluorapatite occurred. Many 

particles were mostly-one mineral. This observation indicated that it might be possible to 

concentrate the phosphorus bearing minerals by flotation.

• M LA-calculated composition. The MLA-calculated bulk elemental 

content, presented in Figure 3.5, was derived from the MLA modal mineralogy and the 

assigned chemical formulas. Phosphorus was 12.4% in the sample according to MLA- 

based calculations.

MLA-calculated elemental composition (Wt.%)
40

Elements in flotation feed

Figure 3.5 MLA-calculated elemental composition (Wt.%).
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• Elemental distribution. Apatite was the primary phosphorus-containing 

phase, which accounted for 53.4% of the total phosphorus distribution by mineral, as seen 

in Table 3.2.

Table 3.2 Phosphorus distribution by mineral type.

M ineral Flotation feed
Apatite 53.4
Apatite-Fluorite mix 46.6
Al-Phosphate 0.0
SeCd mix 0.0
Fe-Phosphate 0.0
Total 100

• G rain size. Figure 3.6 shows the grain size of apatite, mixed apatite/fluorite, 

and quartz. The apatite was grained larger than the mixed apatite/fluorite with a grain size 

distribution P80 of over 100 microns for apatite compared to 90 microns for mixed 

apatite/fluorite. Both apatite and apatite/fluorite phases were larger than quartz (65 

microns).

• M ineral liberation. Apatite was slightly better liberated than the mixed 

apatite/fluorite phase and quartz, as shown in Figure 3.7. The liberation of apatite by sieve 

fraction showed decreasing liberation with decreasing particle size (Figure 3.8), which is 

unusual. However, observation of the MLA false-color image indicated that attached mixed 

phases were more prevalent as particle size decreased and likely caused this result. The 

liberation of the mixed apatite/fluorite phase was not clear, but also seemed to show better 

liberation for the coarser particles (Figure 3.9) vice versa in the liberation of quartz (Figure 

3.10).
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Figure 3.6 Mineral grain size distributions of apatite phases.

Figure 3.7 Composite mineral liberation by particle composition for the apatite, mixed
apatite/fluorite, and quartz.
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Figure 3.8 Mineral liberation of apatite phase by sieve fraction in the flotation feed.

Figure 3.9 Mineral liberation of the mixed apatite phase by sieve fraction in the flotation
feed.
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Figure 3.10 Mineral liberation of the quartz phase by sieve fraction in the flotation feed.

• M ineral associations.As seen in Table 3.3, the apatite was associated with

three phases: mixed apatite, quartz, mica, and K-Feldspar. Moreover, it was also shown as 

free surfaces. The mixed apatite-fluorite phase was most strongly associated with apatite 

than other associations.

Table 3.3 Phosphate mineral associations in the flotation feed.

Mineral Apatite Apatite/Fluorite
Mix

Feldspar Mica Quartz Free
Surface

Al-Phosphate 0.8 5.2 3.7 9.4 10.4 70.5
Apatite 21.8 3.2 7.2 7.7 59.3
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3.2.2.3. X-ray diffraction (XRD). XRD was conducted on the flotation feed to 

investigate the crystalline minerals phases associated with the phosphate minerals. As 

shown in Figure 3.11, two major minerals were detected: apatite and quartz.

Angle

Figure 3.11 X-ray diffraction (XRD) patterns of the flotation feed.

3.2.2.4. Scanning electron microscope (SEM). Qualitative and semi-quantitative 

chemical analyses in the Energy Dispersive X-Ray Spectroscopy (EDS) mode were 

performed to detect the flotation feed's significant elements. EDS analysis in Table 3.4 

revealed Oxygen (O), Fluorine (F), Calcium (Ca), Phosphorus (P), Silicon (Si), and Sodium
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(Na) atoms in large amounts, which demonstrates that apatite and quartz are the dominant 

minerals in the sample.

Table 3.4 EDS analysis of flotation feed.

Element Wt.% At% Element Wt.% At%

O 30.66 48.73 Cl 0.15 0.1

F 10.03 12.4 Cd 0.42 0.09

Na 4.85 4.95 K 1.14 0.68

Mg 1.43 1.38 Ca 18.73 10.98

As 0.36 0.11 Ti 0.2 0.1

Al 2.29 2.86 V 0.34 0.16

Si 9.53 8.24 Cr 0.36 0.16

P 10.63 5.16 Fe 1.9 0.8

Hg 0 0 Zn 5.37 1.93

S 1.61 1.18 Total 100 100

3.2.2.5. Zeta potential measurements. Zeta potential measurements were used to 

examine the electrical properties of mineral surfaces in the presence and absence of 

reagents (i.e., sodium oleate, sodium silicate, Hy-PAM, and chitosan) to understand the 

behavior of the flotation feed. Zeta potential measurements were performed using a 

Zetasizer Nano ZS (Malvern, Westborough, MA, USA) (Figure 3.12). A stock solution 

was prepared at 0.1 wt.% of pure mineral (apatite or quartz) in a 0.1M potassium chloride 

(KCl). Zeta potential measurements were obtained at different pH. Either hydrochloric acid 

(HCl) or sodium carbonate (Na2CO3) was used to adjust the pH in all zeta potential

measurements.
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Figure 3.12 A photograph of zetasizer nano ZS instrument used in this study.

3.2.3. Flotation Experiments. Flotation experiments were performed using a 

laboratory-scale Denver flotation machine, as shown in Figure 3.13. Baseline experiments 

using collector “sodium oleate” and frother” MIBC” without any dispersant or depressant 

were first conducted to define the base recovery and grade of P2O5 and to determine the 

optimum solid concentration. As mentioned in Table 3.1, both dispersant and depressants 

were tested at four different dosages: 150, 200, 250, and 300 g/ton. The pH of the flotation 

pulp and flotation time was varied, as shown in Table 3.5. The flotation feed was prepared 

and sieved based on the optimum size fraction between +35pm and -125pm. In a typical 

flotation experiment, the pulp containing the ore sample in tap water was first agitated for
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4 minutes, followed by the addition of Na2CO3 to adjust the pH as needed. Collector 

“sodium oleate” was then added, followed by dispersant “sodium silicate” or depressant 

“Hy-PAM or chitosan” at a predetermined dosage. The pulp was agitated for 4 min then 

frother “MIBC” was added. The concentrate products were collected at different flotation 

time, dried, and characterized. The flotation performance was examined based on the 

recovery and the grade of P2O5 in the concentrate product. P2O5 recovery was calculated 

using the dry weights of concentrates and tailing products using Equation 3.1, where C and 

T are dry weights of the concentrate and tailing products, respectively, and c and t are the 

percentages of P2O5 in concentrates and tailings, respectively [82].

Recovery = Cc/ (Cc+Tt) *100% (3.1)

Figure 3.13 A photograph of denver flotation cell used in this study.
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Table 3.5 Different conditions and parameters used in this study.

R eagents' dosages
Experiment Variable conditions Collector

(g/ton)
Frother
(g/ton)

Fixed
conditions

Effect of the solid 20 wt.% 200 63.5 F lo tation
content 40 wt.% tim e: 10 m in

60 wt.% p H  ~9

B aseline experim ents 
(Collector and  
Frother)

Effect of the p u lp  
p H

N atu ra l p H  
(6.87) 
p H  9

200 63.5 F lo tation  
tim e: 10 m in  
Solid  content: 
60 wt.%

Effect of the 10 m in 200 63.5 Solid  content:
flo tation  tim e 4 m in 60 wt.%  

p H  ~ 9

Flotation experim ents

Effect of the 
d isp ersan t dosage

150 g /ton  
200 g /ton  
250 g /ton  
300 g /ton

200 63.5 Solid  content: 
60 wt.%

w ith  sodium  silicate Effect of the p u lp  
p H

N atu ra l p H  
(6.87) 
p H  9

200 63.5 Solid  content: 
60 wt.%

Effect of residence 10 m in 200 63.5 Solid  content:
tim e 4 m in 60 wt.%

Flotation experim ents

Effect of the H y- 
PA M  dosage

150 g /ton  
200 g /ton  
250 g /ton  
300 g /ton

200 63.5 Solid  content: 
60 wt.%

w ith  H y-PAM Effect of the p u lp  
p H

N atu ra l p H  
(6.87) 
p H  9

200 63.5 Solid  content: 
60 wt.%

Effect of residence 10 m in 200 63.5 Solid  content:
tim e 4 m in 60 wt.%

Flotation experim ents

Effect of the H y- 
PA M  dosage

150 g /ton  
200 g /ton  
250 g /ton  
300 g /ton

200 63.5 Solid  content: 
60 wt.%

w ith  chitosan Effect of the p u lp  
p H

N atu ra l p H  
(6.87) 
p H  9

200 63.5 Solid  content: 
60 wt.%

Effect of residence 10 m in 200 63.5 Solid  content:
tim e 4 m in 60 wt.%
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3.3. RESULTS AND DISCUSSIONS

3.3.1. Zeta Potential Measurement. Zeta potential measurements were performed 

on pure mineral samples (apatite and quartz) before and after mixing with reagents at 

different pH. As mentioned earlier, zeta potential measurements were performed using a 

Zetasizer Nano ZS instrument (Malvern Instruments, Inc., Westborough, MA, USA). 

Figure 3.14 shows the change of the surface charge of apatite and quartz dispersions over 

the pH range of 2-12 without any reagent addition. As shown in Figure 3.14, at the natural 

pH of the flotation feed (pH ~ 7), the measured zeta potential values of apatite and quartz 

were -7 .4  and -20.3 mV, respectively. The optimum pH in direct phosphate flotation 

reported in the literature is 9-11 [83].

» Pure Apatite 9  Pure Quartz

Figure 3.14 Zeta potential measurements of apatite and quartz at different pH.

At that pH range, the average zeta potential values of apatite and quartz were 

between -17 mV to -25 mV and between -34 mV to -50 mV, respectively. This difference
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in the electrical characteristics at natural and basic pH makes it possible to selectively alter 

the surface properties of either mineral through the addition of an appropriate reagent. For 

example, a negatively charged reagent will preferentially adsorb on the surface of apatite 

particles since they are less negative. In contrast, a positively charged reagent will 

preferentially adsorb on the surface of quartz particles due to attractive electrostatic forces 

that will lead to partial charge neutralization.

On the other hand, Figures 3.15 A and B show the change in zeta potential values 

of quartz and apatite suspensions after mixing with different reagents (i.e., sodium oleate, 

sodium silicate, Hy-PAM, and chitosan) at natural pH of ~7 and pH 9, respectively. As 

indicated by the change in the magnitude of zeta values (AQ after reagent adsorption, the 

interaction of quartz with Hy-PAM was stronger in comparison with apatite. For example, 

at pH 9, quartz's zeta value increased by +18 (from -34m V  to -16  mV) after mixing with 

Hy-PAM. In apatite, the zeta value increased by +6 mV when mixed with Hy-PAM 

polymer at the same pH.

Also, Figure 3.15 shows the zeta potential of apatite and quartz after mixing with 

chitosan. As indicated, the change in the magnitude of zeta potential after chitosan’s 

addition was more significant for quartz at both pH values tested. For example, at pH 9, 

the magnitude of zeta potential change (AQ after the addition of 250 ppm of chitosan 

polymer was +30.2 mV compared to +0.3 mV in the case of apatite. This difference in the 

electrical characteristics at pH 9 makes it possible to selectively alter the surface properties 

of quartz through the addition of chitosan to suppress the flotation of silicate minerals and 

thus enhance the flotation efficiency of apatite.
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Figure 3.15 Zeta potential measurements of apatite and quartz after mixing with different
reagents at natural pH (A) and pH 9 (B).

3.3.2. Investigations on the Potential of Polymers to Aid Silicate Depression in 

Phosphate’s Flotation Process. Baseline experiments, flotation experiments with sodium 

silicate, flotation experiments with Hy-PAM, and flotation experiments with chitosan were 

conducted using a laboratory-scale Denver cell. The flotation process outcomes were 

studied as a function of various process variables including pulp’s pH, flotation time, 

reagent type, and reagent dosages.

3.3.2.1. Baseline experiments. The baseline experiments were performed 

periodically at different conditions, including a solid percentage in the flotation pulp, 

flotation time, and pulp’s pH. These experiments were conducted to define base recovery
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and ensure the reproducibility of the results and congruity of the experimental parameters. 

As shown in Figure 3.16, the best P2O5 recovery was obtained at 60 wt. % of solid. The 

flotation performance at pH 9 was better as compared to the performance at natural pH, 

whether the flotation time was short (4 min) or long (10 min). The recovery of P2O5 at pH 

9 was slightly better when the flotation time was at 10 min. For example, at 10 min of 

flotation time, the average recovery of P2O5 was 77% and 76% at pH 9 and natural pH, 

respectively. At the same flotation time, the P2O5 grade of the concentrate products was 

23.4% at pH 9 and 24.1% at natural pH.

1 Average o f Recovery P2O5% ■Average o f Grade P2O5%
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0
NpH pH 9 NpH pH 9 NpH pH 9 NpH pH 9 NpH pH9 NpH pH 9

10 min 4 min 10 min 4 min 10 min 4 min

20% 40% 60%

Flotation conditions

Figure 3.16 Baseline flotation experiments at different flotation conditions.

3.3.2.2. Flotation experiments in the presence of sodium silicate dispersant. In

this set of experiments, sodium silicate was chosen as a dispersant since it is considered
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one of the most effective inorganic dispersants for silicate minerals. It is widely used in 

industrial operations. Different influencing parameters such as flotation time, pH, and 

dispersant’s dosage were examined to optimize the flotation process in the presence of 

sodium silicate dispersant. As shown in Figures 3.17 and 3.18, the highest recovery and 

grade were obtained at 4 min flotation time, 250 g/ton sodium silicate dosage, and pH 9.

100

90

£■
a>
>

80

= 150 g/ton 

= 200 g/ton 

= 250 g/ton 

= 300 g/ton

Figure 3.17 Flotation recovery of P2O5 in the presence of sodium silicate at different
flotation conditions.

Sodium silicate dispersant helped significantly to improve the flotation outcomes at 

shorter flotation time, which is critical at an industrial scale where energy consumption is 

a determinant factor in assessing the economic feasibility of flotation processes. At a 

shorter flotation time of 4 min, the addition of sodium silicate at pH 9 increased the grade 

of concentrates to 28.4% compared to 23.4% in the baseline experiment without affecting
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the recovery. As indicated, the recoveries of P2O5 in concentrate products were 74% in the 

baseline experiment compared to and 73.88% when sodium silicate was used.

35
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20
0)■0
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NpH pH 9 NpH pH 9

4 min 10 min
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= 300 g/ton

Figure 3.18 Concentrate grade of P2O5 in the presence of sodium silicate at different
flotation conditions.

3.3.2.3. Flotation experiments in the presence of Hy-PAM depressant. Flotation 

experiments in the presence of Hy-PAM were conducted at 60 wt. % feed solids. In this 

set of experiments, the influence of polymer dosage and froth collection time was examined 

at different pH values (Figures 3.19 and 3.20). As shown, in the presence of 250 g/ton of 

Hy-PAM, the recovery of phosphates minerals significantly improved when the flotation 

was performed at natural pH compared to alkaline pH at both shorter and longer flotation 

time. At natural pH and flotation time of 4 min, the P2O5 grade increased to 28.6% 

compared to~27% at alkaline pH.
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Moreover, when the flotation time increased to 10 min, the grade of the concentrate 

products marginally changed at both natural and alkaline pH. At natural pH and in the 

presence of 250 g/ton Hy-PAM polymer, the recovery of phosphates minerals at 10 min of 

flotation increased to 84.8% compared to 80.5% at 4 min of flotation time while the grade 

marginally decreased by~0.2%. However, from the economic point of view, only a 4% 

increase in recovery with more than double increase in time makes it less expensive and 

more valuable to run the process at a shorter time as there is no improvement in the grade. 

Under these conditions, the average recovery of P 2O5 was 80.5%, and the grade of P2O5 

increased from 21.6% in the feed to 28.6% in the concentrate products.
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Figure 3.19 Flotation recovery of P2O5 in the presence of Hy-PAM at different flotation
conditions.
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Figure 3.20 Concentrate grade of P2O5 in the presence of Hy-PAM at different flotation
conditions.

Figure 3.21 shows a comparison between the flotation performance of P2O5 in the 

presence of 300 g/ton of sodium silicate and Hy-PAM at pH 9. At the shorter time (4 min), 

both P2O5 recovery and grade were higher when the Hy-PAM was used compared to the 

sodium silicate. The average recovery and grade of P2O5 was 75% and 28.4% in the 

presence of Hy-PAM. Compared to 39% P2O5 recovery and 15% P2O5 grade in the presence

of the sodium silicate
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100

= Average of Recovery P2O5% 

= Average of Grade P2O5%

Figure 3.21 Comparisons of flotation performance of P2O5 in the presence of sodium
silicate and Hy-PAM at pH 9.

3.3.2.4. Flotation experiments in the presence of chitosan depressant. Flotation 

experiments in the presence of chitosan were conducted at a solid concentration of 60 wt.%. 

In this set of experiments, the influence of chitosan dosage and froth collection time was 

examined at different pH levels. As shown in Figures 3.22 and 3.23, the highest recovery 

was obtained at 10 min flotation time, pH 9, and 300g /ton of chitosan. Figures 3.22 and 

3.23 also show the average recovery and grade of P2O5 collected after 4 minutes and 10 

minutes at natural pH (pH~7) and pH 9. As indicated, increasing flotation time had a 

positive impact on the flotation performance of phosphate minerals. The maximum 

recovery and grade of P2O5 collected after 10 minutes were 66% and 25%, respectively,
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compared to recovery and grade values of 55% and 23%, respectively, after 4 minutes of 

flotation time.

Results showed that the flotation recovery of P2O5 was enhanced when pulp’s pH 

increased to 9 at both 4 and 10 minutes of flotation time. For example, the recovery and 

grade of P2O5 at pH 9 and 10 minutes of flotation time were 67% and 25%, respectively, 

compared to 54.1% and 21.6% at natural pH. These results support the zeta potential 

measurements, which indicated stronger interactions between quartz and chitosan at higher 

pH. In addition, results showed that the flotation recovery of P2O5 slightly increased by 

increasing the dosage of chitosan at both pH values tested regardless of the flotation time. 

For example, in the presence of 300 g/ton of chitosan polymer, the recovery of P2O5 was 

68% compared to 62% at 250 g/ton.
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Figure 3.22 Flotation recovery of P2O5 in the presence of chitosan at different flotation
conditions.
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Figure 3.23 Concentrate grade of P2O5 in the presence of chitosan at different flotation
conditions.

Overall, the results indicated that the optimum conditions of phosphate flotation, 

and simultaneous depression of silicates, in the presence of chitosan polymer are: 300 g/ton 

of chitosan, pH 9, and 10 minutes of flotation time. At these optimum conditions, the 

overall recovery of P2O5 was ~ 70% compare to ~40% in the presence of commercially 

applied silicate dispersants, as shown in Figure 3.24.

Figure 3.25 shows a comparison between the flotation performance of phosphate 

minerals presented at % recovery of P2O5 in the presence of 300 g/ton of commercially 

dispersant sodium silicate, Hy-PAM, and chitosan at pH 9. The results showed that at 10 

min flotation, the highest recovery of P2O5 (86.82%) was observed when the Hy-PAM was 

used. The second highest recovery obtained was 66.7% when chitosan polymer was used. 

Both polymers were more selective than sodium silicate. Also, the highest grade of P2O5 

(28.4%) was obtained when H-PAM was used.
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Figure 3.24 Comparisons of flotation performance of P2O5 in the presence of sodium
silicate and chitosan at pH 9.
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Figure 3.25 A comparison between the flotation performance of P2O5 in the presence of 
commercial dispersant sodium silicate, Hy-PAM, and chitosan at pH 9.



4. RECOVERY OF PHOSPHATE MINERALS USING IONIC LIQUIDS IN 
REVERSE FLOTATION PROCESS

4.1. BACKGROUND

Ionic liquids (ILs) are molten salts with melting temperatures below 100Co. They 

have gained considerable attention due to their unique structural properties [75], [76]. 

Among these properties are non-flammability and negligible vapor pressure. Moreover, It 

is possible to tailor their structures by changing the cation or anion parts to target a specific 

metal ion [77]-[80].

Due to their unique structural properties and physiochemical flexibility, ILs have 

been widely used in separation techniques such as froth flotation, leaching, solvent 

extraction, and ion exchange [75], [76], [81]—[83]. In the froth flotation process, ILs were 

first introduced by Sahoo et al. The authors studied trioctylmethylammonium salicylate 

(TOMAS) as a novel collector of quartz in iron ore flotation. In the study, iron minerals 

were upgraded from 38% to 67%, which was better than the grade obtained using 

conventional collectors such as Amines [84]. A mixture of an imidazolium ionic liquid was 

used to develop a new type of coal slime collector, tested in coal slime flotation, and 

compered with n-dodecane [85]. The flotation experiments showed that the new collector 

could be applied to recover the clean coal without the need for a frother, and it could be 

yielded the same performance as that in n-dodecane. A comprehensive study was also 

performed to examine the adsorption behavior of different ILs on quartz in iron ore [86]. 

FTIR, XPS, and molecular modeling were used to investigate the adsorption mechanism. 

The results showed stronger adsorption of IL’s onto the quartz surfaces compared to the 

iron oxide surfaces [86]. Azizi et al. used tetrabutylammonium bis (2-Ethylhexyl)-
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phosphate as a collector of model monazite and bastnaesite minerals. Results indicated that 

IL was a better collector as compared to hydroxamic acid collectors that are commonly 

used in the flotation of Rare-Earth Elements (REE) [87]. In addition to their high 

selectivity, another advantage to use ILs in froth flotation is their dual functionality (i.e., 

collectors and frothers)[84], [86]-[89].

To the best of the authors’ knowledge, the application of ILs in phosphate 

processing has not been explored yet. Therefore, in this work, micro-flotation tests and 

fundamental studies have been conducted to investigate the potential of ILs to serve as 

selective collectors of silicates in reverse flotation of phosphate minerals. As shown in 

Figure 4.1, two ILs were chosen: Tetrahexylammonium iodide (CH3 (CH2)54 N (I)), and 1- 

Hexyl-3-methylimidazoli hexafluorophosphate (C10H 19F6N 2P). These ionic liquids have 

been selected because they possess the quaternary nitrogen atom that is anticipated to 

preferentially adsorb on the negatively charged fine and ultrafine silicate particles [83], 

[89]. The long alkyl chain in the IL structures facilitates the attachment of silicates to air 

bubbles and enhances floatability [89].

Figure 4.1 Chemical structure of A) Tetrahexylammonium iodide (THAI), and B) 1- 
Hexyl-3-methylimidazoli hexafluorophosphate (HMLHF).
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4.2. M ETHODOLOGY AND M ATERIALS

4.2.1. M aterials. Chemical reagents and pH modifiers used in this study were 

purchased from Fisher Scientific (Hampton, NH, USA). These included dodecylamine 

(DA) conventional collector of silicate minerals; Tetrahexylammonium iodide (THAI), and 

1-hexyl-3methylimidazoli hexafluorophosphate (HMLHF) — the proposed alternative 

collectors of silicates minerals. Both hydrochloric (HCl) and sodium carbonate (Na2CO3) 

were used as pH modifiers to adjust the pH in both flotation and adsorption experiments. 

Pure apatite and pure quartz were purchased from Ward's Science Company, USA.

4.2.2. Zeta Potential M easurem ent. Zeta potential of mineral suspensions was 

measured using the Zetasizer Nano ZS instrument (Malvern Instruments, Inc., 

Westborough, MA, USA). Zeta potential measurements of apatite and quartz surfaces were 

conducted in the presence and absence of the ILs at a pH range between 3-to-11. A stock 

solution was prepared at 0.1 wt. % of pure mineral in a 0.1M KCl. Either HCl or NaOH 

was used to adjust the pH of mineral suspensions. The prepared mineral suspension was 

agitated using an IKA RW20 mechanical stirrer for 30 min at a constant agitation rate of 

250 rpm. The suspensions were allowed to settle overnight. The supernatant liquid was 

considered for all the zeta potential measurements.

4.2.3. A dsorption Studies. Both X-ray Photoelectron Spectroscopy (XPS) and 

Fourier-transform infrared spectroscopy (FTIR) were used to detect the change in bonding 

characteristics and binding energy after the adsorption of ILs on mineral surfaces (i.e., 

apatite and quartz). The XPS and FTIR studies were carried out using the KRATOS AXIS 

165 XPS and Thermo Scientific™ Nicolet™ iS50 FTIR Spectrometer at 32 scans with a 

resolution of 4cm-1, respectively. All the ILs-treated quartz and apatite samples were
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prepared by adding 1*10-3 M of IL to mineral suspensions of either quartz or apatite (10 

wt. %). The suspensions were agitated for 30 min, filtered, thoroughly rinsed with distilled 

water, and dried at room temperature. In XPS studies, the instrument was first calibrated 

by running broad surveys of clean Ag sample at 80 and 160 pass energy (PE), focusing on 

Ag3d range, running pre-adjustments spectra, and maximizing the single-noise ratio for 

each channel spectroscopic detector, then re-running all broad surveys. Internal standards 

were used to calibrate the curve fitting and high-resolution spectra of quartz and apatite 

samples. Calibration process were done by using the C 1s component at (Binding Energy 

“BE” = 28.4.8 eV), Si 2p component (BE = 102.0 eV), and P 2p component (BE = 132.5 

eV). All XPS spectra were processed by using CasaXPS software.

4.2.4. M icro-flotation Experim ents. A Hallimond micro-flotation tube, shown in 

Figure 4.2, was utilized in this study with 150 mL internal volume. Micro-flotation tests of 

a single mineral system (apatite or quartz) and binary mineral system (equal masses of 

apatite and quartz) were conducted at room temperature to explore the potential of ILs to 

serve as selective quartz collectors. Nitrogen was used as a gas phase at a rate of 40 

cm3/min, and the pressure was kept at 10 psi. One gram of either apatite or quartz was used 

in each flotation experiment in single mineral flotation tests. In binary mineral flotation 

tests, 0.5 grams of apatite and 0.5 grams of quartz were used in each test. The particle size 

of minerals was between +75 pm to -150 pm obtained by grinding and sieving. The pulp 

was conditioned for 3 min before any reagent addition. Na2CO3 was used to adjust the pH 

to 7, 9, or 11 as needed. IL dosages were added at 50, 100, and 150 g/ton. The pulp was 

then pumped into the Hallimond tube. In single flotation tests, apatite and quartz's 

recoveries were calculated using the net dry weight of concentrates, assuming the grade of
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minerals was 100%. Since the grade of apatite and quartz in the concentrates were variable 

in a binary mineral system, XRD was applied to determine the grade and calculate the 

recovery. For comparison, the flotation performance of minerals in the presence of 

dodecylamine (DA) — a conventional collector of silicate minerals was tested. Flotation 

experiments using DA were conducted at optimum conditions as determined from single 

and binary micro-flotation tests using. Table 4.1 shows the different experimental 

conditions used to investigate the flotation efficiency of apatite and quartz in the reverse 

flotation process.

Figure 4.2 A photograph of hallimond micro-flotation tube used in this study.
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Table 4.1 Experimental conditions used to investigate the flotation efficiency of apatite 
and quartz in the reverse flotation process.

Minerals Reagents pH Dosage (g/ton) Time (min)

Quartz HM LHF 7, 9, and 11 50, 100, and 150 1, 2, and 3

THAI 7, 9, and 11 50, 100, and 150 1, 2, and 3

DA O ptim um  pH* O ptim um  dosage** 1, 2, and 3

Apatite HM LHF 7, 9, and 11 50, 100, and 150 1, 2, and 3

THAI 7, 9, and 11 50, 100, and 150 1, 2, and 3

DA O ptim um  pH* O ptim um  dosage** 1, 2, and 3

Binary mineral system HM LHF O ptim um  pH* O ptim um  dosage** 1, 2, and 3

THAI O ptim um  pH* O ptim um  dosage** 1, 2, and 3

DA O ptim um  pH* O ptim um  dosage** 1, 2, and 3

* The optimum pH was at 9 and 11.

** The optimum dosage was at 150 g/ton

4.3. RESULTS AND DISCUSSIONS

4.3.1. A dsorption Studies. FTIR spectra of pure minerals before and after mixing 

with ILs are shown in Figures 4.3 and 4.4 (1 and 2). Spectra 1-B and 2-B show 

apatite/THAI (A-THAI) and quartz/THAI (Q-THAI), respectively. In the case of quartz, 

the spectra (2-B) displayed a new primary amine peak (N-H stretching) at ~2950 cm-1 and 

alkane peak (C-H stretching) at 2850 cm-1, while no new peaks were detected for apatite 

when treated with A-THAI (1-B). Results showed preferential adsorption of THAI on 

quartz surfaces through the N-H functionality in THAI’s structure. Spectra 1-C and 2-C 

show the FIIR spectra of apatite and quartz after being treated with HMLHF, respectively.
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A new primary amine group peak (N-H stretching) and alkane group (C-H stretching) were 

detected for both apatite (spectra.1 -C) and quartz (spectra.2-C). These results indicated that 

HMLHF has the ability to adsorb on both minerals.

THAI -----HMLHF

I I I I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Wavenumber, cm-1

Figure 4.3 FTIR spectra of pure THAI and HMLHF.
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Figure 4.4 FTIR spectra of pure apatite(l-A), A-THAI (1-B), A-HMLHF (1-C), pure 
quartz(2-A), Q- THAI (2-B), and Q-HMLHF (2-C).

The XPS spectra were obtained from apatite and quartz single minerals that were 

treated with HMLHF and THAI. As charging occurred in the measurement, the Si 2p 

component (BE = 102.0 eV) and P 2p component (BE = 132.5 eV) were used as internal 

standards to calibrate the entire XPS spectra of quartz and apatite samples. The XPS 

spectra o f THAI and HMLHF were obtained as references. Figures 4.5 (A and C) show the 

XPS spectra for ILs in a pure state. As seen, the presence of carbon and nitrogen peaks was 

confirmed according to the chemical formula of both ILs. The high-resolution spectra of N 

1s electron were acquired for both ILs. As shown in Figure 4.5-B, the N 1s of THAI spectra



59

consist of a single binding energy peak at 401.5 mV. This peak corresponds to a primary 

amine s group (N-H stretching). N 1s of HMLHF spectra (Figure 4.5-D) consists of two 

binding energy peaks; the first peak was detected at 397.9 mV and the second peak at 401.0 

mV. These two peaks correspond to the two nitrogen atoms in HMLHF.

Figure 4.5 XPS spectra for (A) THAI, (B) N 1s of THAI, (C) HMLHF, and (D) N 1s of
HMLHF.
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The high-resolution spectra of N 1s were examined on quartz and apatite before 

and after ILs adsorption. As shown in Figures 4.6 A and B, no N 1s peaks were observed 

on the high-resolution spectra of pure quartz or pure apatite (before ILs treatment).

The N 1s high-resolution spectra of quartz-treated THAI (Q-THAI) in Figure 4.7 

were deconvoluted into a single component at 401.1 eV from nitrogen atoms. This new 

peak in the XPS spectra Q-THAI suggested that THAI may get adsorbed on quartz surface. 

Compared to the N 1s spectrum of apatite-treated THAI (A-THAI), no peak corresponding 

to amine was detected, which suggested that there was no adsorption of THAI on apatite

surface.
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The N 1s high-resolution spectra of quartz-treated HMLHF (Q-HMLHF) is shown 

in Figure 4.7. The spectra showed two peaks at 399.8 eV, and 401.1 eV originated from 

the two nitrogen atoms in the HMLHF structure. The N 1s spectrum of apatite-treated 

HMLHF (A-HMLHF) also showed 2 peaks at 399.7eV and 400.8 eV (Figure 4.7). Table 

4.2 showed the magnitude shifting of the binding energies of N 1s after adsorption on 

mineral surfaces. The result suggested that HMLHF could adsorb on both apatite and 

quartz with a larger binding energy shift in the case of quartz. There was no observed shift 

of N 1S in the case of Q-THAI which suggested that the adsorption of THAI on quartz is 

physisorption rather than chemisorption.

N sofA -THAN 1s of Q-THAIN 1s of THAI

785 X10

396397 398399400401 402403404
Binding Energy (eV) Binding Energy (eV) Binding Energy (ev)

N Is  of Q-HMLHF N 1s of A-HMLHFN 1s of HMLHF

1520, 1520.
£ 1 5 1 0 .£ 1 5 1 0 .

1500, 1500.
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Figure 4.7 XPS spectra of N 1s of pure IL and IL treated quartz and apatite.
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Table 4.2 Binding Energy Shifts of the N 1s of ILs before and after adsoprtion on apatite
and quartz.

P u re  sa m p le  n a m e In it ia l N  (1s) T re a te d  sa m p le  n a m e F in a l N  (1s)

Pure TH A I N1: 40 1.5
A -TH A I N1: 0

Q -TH A I N1: 4 0 1 .1

Pure H M LH F
N1: 401 
N2: 397.9

A -H M LH F
N1: 4 0 0 .8  
N2: 399.7

Q -H M LH F
N1: 4 0 1 .1  
N2: 399.8

According to the previous observations, two nitrogen atom peaks were observed in 

both Q-HMLHF and A-HMLHF spectrum, which indicates that HMLHF can adsorb both 

mineral surfaces. Figure 4.8 shows the intensity of N 1s spectra pure minerals before and 

after being treated with HMLHF. As shown, a higher intensity value was observed for Q- 

HMLHF compared to A-HMLHF. The change in intensity value between pure quartz and 

Q-HMLHF was more significant than the changing intensity value between pure apatite 

and A-HMLHF. The direct relationship between the binding energy and intensity 

suggested that adsorption between HMLHF and quartz is stronger than HMLHF and apatite 

[84]. [89]. Also, the results indicated that HMLHF has abilities to adsorb the quartz 

surfaces better than THAI due to the shifting of two nitrogen atoms into the quartz surface 

instead of one nitrogen atom. But also, it can adsorb into the apatite surfaces as mentioned 

previously which is anticipated to preferentially adsorb on the negatively charged quartz 

surfaces [83], [89]. Results from the XPS studies suggested that both THAI and HMLHF 

have the potential to serve as selective collectors of silicates in reverse flotation of 

phosphate minerals.
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Figure 4.8 the XPS curve fitting of N (1S) of pure minerals and HMLHF treated quartz
and apatite.

4.3.2. Zeta Potential M easurem ents. Zeta potential was used to investigate the 

electrical characteristics at mineral/water interfaces before and after the adsorption of ILs 

at different pH and stock concentrations. As indicated, the zeta values of pure apatite and
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quartz in Figure 3.9 (section 3.0) regularly decreased with increasing the pH. It was also 

noticed that the magnitude of zeta potential of pure quartz is more negative compared to 

apatite at pH 9 and pH 11 (most of the phosphate flotation plants carry out flotation of 

phosphate ores at this pH range [21], [46]). The average zeta potential values of apatite and 

quartz were -17m V and -34mV, respectively, at pH 9 and -25 and -42  mV at pH 11. This 

difference in the electrical characteristics at each pH makes it possible to selectively alter 

the surface properties of either mineral by adding an appropriate reagent.

Figures 4.9 show quartz and apatite's zeta values before and after treatment with 

THAI and HMLHF at pH 7, pH 9, and pH 11. At pH 7, the zeta potential value of apatite 

after treatment with THAI was -10.55 mV compared to -7.4 mV for pure apatite. The zeta 

potential value of quartz increased from -20.3 mV to -16.09 mV after treatment with THAI. 

At pH 9 and 11, the results indicated a stronger interaction between ILs, and quartz surfaces 

compared to apatite surfaces. The changes in the magnitude of zeta potential values of 

apatite after treatment with THAI were smaller compared to quartz at both pH. Also, at the 

same range of pH, the shift of zeta potential (AQ of quartz after treatment with HMLHF 

was higher compared to quartz with THAI. For example, at pH 9, the shift of zeta potential 

(AQ of quartz after treatment with THAI was +12.22 mV compared to the shift of zeta 

potential (AQ of quartz after treatment with HMLHF (+21.95 mV). These results 

supported the XPS studies obtained in the previous section that indicated the HMLHF has 

better adsorption in quartz surfaces compared to THAI.
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Figure 4.9 Zeta potential measurements of mineral suspensions before and after
adsorption of ILs.

4.3.3. M icro-flotation Experim ents. Micro-flotation tests were conducted using a 

Hallimond tube to understand the effect of ILs on the flotation of apatite and quartz without 

external factors such as mechanical parameters; thus, it is an excellent tool to assess the 

suitability of a particular reagent in the froth flotation process.
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4.3.3.I. Single m ineral flotation experiments in the presence of tetrahexyl- 

ammonium iodide (THAI) collector. Micro-flotation experiments using THAI were 

performed for single minerals (i.e., either apatite or quartz) at different experimental 

conditions, as shown in Table 4.1. In these experiments, the pulp pH, collector dosage, and 

flotation time were varied. The concentrate products were collected at different time 

intervals. Figure 4.10 shows the recovery of apatite and quartz in the presence of THAI. 

The overall flotation recovery of quartz was better than the flotation recovery of apatite. 

The quartz's recoveries at pH 11 were 90%, 86%, and 68% at 150, 100, and 50 g/ton, 

respectively, which were slightly better than the recoveries at pH 9 under the same 

conditions. The recovery of quartz increased with increasing THAI dosage and pH. The 

highest recovery of quartz (90%) was obtained at 150 g/ton of THAI and pH 11, while 

apatite recovery was 38% under the same condition. These results indicated that THAI 

could be used as a selective collector of silicate minerals in phosphates' reverse flotation.

100

THAI - 50 THAI -1 0 0  THAI -150

Figure 4.10 Recovery of apatite and quartz at different flotation conditions with THAI.
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4.3.3.2. Single m ineral flotation experiments in the presence of 1-hexyl-3- 

methylimidazoli hexafluorophosphate (HM LHF) collector. Micro-flotation 

experiments for single minerals with HMLHF were performed under conditions shown in 

Table 4.1. The concentrate products were collected at different time intervals. As shown in 

Figure 4.11, quartz recovery at different flotation conditions with HMLHF was better than 

apatite's flotation recovery. The recovery of quartz at 150 g/ton of HMLHF was 80%, 85%, 

and 90% at pH 7, 9, and 11, respectively. While at 50 g/ton of HMLHF, the recovery of 

quartz was 40%, 51%, and 67% at pH 7, 9, and 11, respectively. At 100 g/ton of IL and pH 

11, quartz's flotation recovery was 84%, compared to 32% apatite.

Figure 4.11 Recovery of apatite and quartz at different flotation conditions with HMLHF.

4.3.3.3. Com parison of single m ineral flotation perform ance of apatite and 

quartz  in the presence of ionic liquid collectors and commercially used dodecylamine 

collectors. Flotation performance of apatite and quartz in the presence of ionic liquid (ILs)
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collectors and commercially Dodecylamine collectors were compared to explore the 

potential of ILs to serve as alternatives to DA. Based on the previous tasks, pH 9 and pH 

11, and IL’s dosage of 150 g/ton was the optimum conditions that gave the best recoveries 

of quartz in micro-flotation tests. Therefore, micro-flotation tests using Dodecylamine 

(DA) were conducted at DA dosage of 150 g/t and pH 9 and 11 to allow comparison of 

performance in both cases (i.e., IL and DA). Figure 4.12 shows the recoveries of quartz 

and apatite minerals in single mineral flotation using DA and ILs. The highest quartz 

recoveries were obtained at pH 11 and 150 g/ton of DA, HMLHF, and THAI (90%, 93%, 

and 90%), respectively. Under the same conditions, apatite recovery was significantly low 

(38%) when THAI was used compared to DA (47%). These results indicated that THAI 

and HMLHF could be more selectivity than DA at that the pH range studied.

100

Am ine -1 5 0  H M LH F -1 5 0  THAI -1 5 0

Figure 4.12 Recovery of apatite and quartz at optimum flotation conditions (pH 9 and 11,
and 150 g/ton collector dosage).
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4.3.3.4. Com parison of flotation perform ance of binary m ineral system in the 

presence of ionic liquid collectors and commercially used dodecylamine collectors.

Micro-flotation tests of binary mineral systems were conducted to explore the selectivity 

of ILs as silicate collectors when mixed minerals exist. A binary minerals system was 

prepared by mixing pure apatite and pure quartz at an equal ratio (1:1). Micro-flotation 

tests of binary minerals systems were set up based on the optimum condition of identified 

from previous tasks (micro-flotation of single minerals). Figure 4.13 shows the recovery 

and grade of quartz minerals in concentrate products. As shown, when HMLHF was used, 

the recovery of quartz at pH 11 was the highest (recovery~90%), with low grade (~64%) 

as compared to THAI and Dodecylamine. Both THAI and Dodecylamine resulted in high 

recovery and grade at pH 9. For example, around 82% recovery of quartz at ~70% grade 

was obtained when Dodecylamine was used. While around 82% recovery at ~74% grade 

was obtained when THAI was used at the same pH. These observations are consistent with 

the results obtained from the adsorption studies in the previous section. HMLHF is 

anticipated to adsorb at both minerals (e.g., apatite and quartz); thus, it is less selective than 

THAI and DA. Results shown in Figure 4.14 indicated that a higher grade apatite’s 

concentrate was obtained when HMLHF was used compared to THAI and Dodecylamine.



70

Figure 4.13 The recovery and grade of quartz in the presence of ionic liquids and
Dodecylamine collectors.

100
90 

80 

70 

60 

S? 50

Average o f Apatite  recovery *  Average o f Apatite  grade

Figure 4.14 The recovery and grade of apatite in the presence of ionic liquids and
Dodecylamine collectors.
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5. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK MODELING TO 
PREDICT THE FLOTATION PERFORMANCE OF PHOSPHATE-SILICATE

ORES

5.1. BACKGROUND

The flotation efficiency of phosphate minerals is influenced by several key process 

variables [e.g., water chemistry, reagents chemistry, feed characteristics, cell type, and 

aeration rate]. Although each of these parameters influences the flotation process outcomes 

(recovery and grade) independently, their interdependence makes the process control very 

difficult.

Reliable prediction of process outcomes based on standard approaches is infeasible. 

Conventional modeling tools (e.g., semi-empirical mathematical functions and 

unconstrained/unsupervised statistical approaches) suffer from a number of limitations, 

including lack of applicability in complex systems (or systems that are different from the 

ones used for the model’s calibration), requirement of extensive model validation, and poor 

prediction capabilities. Furthermore, the prediction performance of conventional modeling 

tools is further aggravated due to the intrinsically nonlinear cause-effect relations in such 

systems, wherein a large number of influential variables exist and interact, thereby giving 

rise to prodigiously large degrees of freedom and complex input-output correlations. 

Therefore, there is an urgent need to develop and employ adaptive intelligent control tools 

that take into account the diversity of these variables and their mutual interaction to ensure 

process stability and desired outcomes.
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Machine learning (ML) models, in particular artificial neural networks (ANNs), 

have been used recently to predict the metallurgical performance of the flotation process 

in various applications [33]-[37]. Multi-layered ANN and random forests (RF) models 

were used to estimate concentrate grade in platinum flotation based on froth image analysis 

[98]. Labidi used ANN with 100 neurons to study the effect of various process variables 

on the flotation kinetics during paper de-inking [99]. Jorjani used ANN for predicting 

sulfur reduction in coal flotation (both organic and inorganic) using mixed culture 

microorganisms [100]. Multi-layered ANN was successfully employed to predict clayey 

coal's flotation behavior in the presence of Al(OH)3-PAM polymer, which served as ash 

depressant [56]. In their work, a cascade-forward NN with the back-propagation (BP) 

algorithm was applied to predict the impact of five operational parameters on flotation 

performance and recovery of coal and ash. Ali et al. used five different machine learning 

models: ANN, RF, adaptive neuro-fuzzy inference system, Mamdani fuzzy logic, and 

hybrid neural fuzzy inference system to predict the froth ash and combustible recovery of 

fine high-ash coal [101].

In this study, experimental datasets produced from direct flotation processes in 

section 3.0 were assimilated within the progressive-and-adaptive framework of machine 

learning (ML) using artificial neural networks (ANNs) model. The ANN platform was 

trained, validated, and employed to predict the flotation outcomes in relation to the pulp 

and reagents characteristics, which in turn were used to determine the optimum process 

variables in the presence of the proposed reagents.
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5.2. DATASETS DEVELOPM ENT

Data generated from laboratory tests (described in section 3) were compiled into a 

database and used to train the ANN model and test its prediction performance. The 

database consists of 60 distinct data-records, featuring key process parameters (as shown 

in Figure 5.1) in the direct froth flotation experiments and their respective efficiencies (i.e., 

grades and recovery of P2O5). The variables were sodium silicate dosage (commercial 

dispersant), Hy-PAM dosage (novel depressant), Chitosan dosage (green depressant), pH 

(natural pH and pH 9), and flotation time (4 minutes and 10 minutes).

Figure 5.1 Datasets developed from laboratory scale batch flotation experiments of
phosphate ore.
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5.3. NEURAL NETW ORK DESIGN

The artificial neural networks (ANNs) model was applied to predict and optimize 

phosphate minerals' flotation in the direct flotation process. Figure 5.2 shows the flowchart 

of the machine learning strategy applied in this study. Python was used to code the ANN 

model.

Figure 5.2 Flowchart of the machine learning strategy applied in this study.
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To create a reliable dataset and improve the model's performance, data cleaning 

was performed to remove the errors and duplicate data from the dataset. Then, the dataset 

was split into 75% training and 25% testing to evaluate the model. The model was trained 

and validated in three different hidden layers at different nodes.

In order to evaluate the performance of the ANN model, Mean Absolute Error 

(MAE), Coefficients of Determination (R2), and Root Mean Square Errors (RMSE) were 

used as performance indicators (Equations 5-1, 5-2, and 5-3). A good performance of the 

models was evaluated by defending the higher value of R2 and the lower value of MAE 

and RMSE [101], [102]. The best-hidden layers were used to predict the flotation outcomes 

and optimize the floatation inputs.

MAE = &?= l ( P l  4t)]
n

R 2 =  [Zj=i ( P i - P ) ( A i - A ) ] 2 

E =iCP i - p f ( A i - A ) 2 ]

(5-1)

(5-2)

RMSE 'm= i  ( p i - A i ) 2 

n
(5-3)

where,

n = Total number of observations in the data being used 

Pi = Predicted value by the model 

Ai = Actual value in data 

P = Mean of all the predicted values 

A = Mean of all the actual value

For the optimization process, a 100 random input of flotation time, pH, and reagent 

dosage were generated for each set (sodium silicate, Hy-PAM, and chitosan). All the
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random values were in the range of the trained data; for example, the range of flotation 

time was between 4 min and 10 min, the range of pH was between 7 and 11, and the range 

of reagent dosage was between 150g/ton to 300 g/ton. The model has predicted the flotation 

outputs based on the random inputs. After that, three-dimensional plots were established 

to optimize the flotation process.

5.4. RESULTS AND DISCUSSION

Table 5.1 shows the statistical analysis of training and testing data featuring four 

process variables: flotation time, pH, reagent type, and reagent dosage. 75% of the dataset 

was randomly selected as training data and 25% as testing data. As noted, the dataset 

contained three numerical features: time (4 min and 10 min), pH (pH 6.89 and pH 9), and 

reagent dosage (150, 200, 250, 300 g/ton), and one categorical variable (reagent type). The 

reagent type (sodium silicate, Hy-PAM, and chitosan) was converted into numerical data 

using One-Hot-Encoder. Data normalization was applied to capture the ANN model's 

accurate information. Table 5.2 shows the normalized data for both training and testing 

data.

Figures 5.3 and 5.4 show the real versus the predicted values of the ANN model's 

training and testing phases in three different hidden layers (one-hidden layer, two-hidden 

layer, and three-hidden layer) for both recovery and grade. Mean Absolute Error (MAE), 

Coefficient of determination (R2), and Root Mean Square Errors (RMSE) were used to 

evaluate the performance of the ANN model. These results indicated that three-hidden 

layers was given excellent performance compared to other hidden layers (Figure 5.3 E and 

F) and (Figure 5.4 E and F). It had MAE = 2.14, R2 = 97.83% and RMSE = 4.03% in
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training phosphate recovery, and MAE = 0.32%, R2 = 98.72% and RMSE = 0.42% for 

training phosphate grade. Table 5.3 presented the MAE, R2, and RMSE values for training 

and testing data for all the three hidden layers. These results showed a good performance 

in the three-hidden layer compared to other hidden layers; based on that, it was used to 

predict the flotation performance and for optimization study.

Table 5.1 Statistical analysis of trained and tested data.
T rainin g data

count m ean std m in 25% 50% 75% m ax
Tim e 45.0 6.66 3.02 4.0 4.0 4.00 10.0 10.0

pH 45.0 7.95 1.06 6.89 6.89 7.95 9.0 9.0
D osage 45.0 225.00 59.16 150.0 150.0 225.00 300.0 300.0

Sodium  silicate 45.0 0.355 0.48 0.00 0.00 0.00 1.00 1.00
H y-P A M 45.0 0.266 0.44 0.00 0.00 0.00 1.00 1.00
C hitosan 45.5 0.377 0.49 0.00 0.00 0.00 1.00 1.00

T esting data
count m ean std m in 25% 50% 75% m ax

Tim e 15.0 8.00 2.95 4.00 4.00 10.00 10.0 10.0
pH 15.0 7.95 1.096 6.90 6.90 7.95 9.0 9.0

D osage 15.0 225.00 50.00 150.0 200.0 225.00 250.0 300.0
Sodium  silicate 15.0 0.200 0.439 0.00 0.00 0.00 0.00 1.0

H y-P A M 15.0 0.533 0.516 0.00 0.00 1.00 1.00 1.0
C hitosan 15.0 0.266 0.457 0.00 0.00 0.00 0.50 1.0

Table 5.2 Statistical analysis of normalized trained and tested data.
N orm alized  tra in in g  data

count m ean std m in 25% 50% 75% m ax
T im e 45.0 0.444 0.50 0.00 0.0 0.00 1.00 1.00
pH _______ 45.0 0.511 0.50 0.00 0.0 1.00 1.00 1.00

D osage 45.0 0.600 0.34 0.00 0.5 0.60 0.83 1.00
Sodium  silicate 45.0 0.355 0.48 0.00 0.0 0.00 1.00 1.00

H y-P A M 45.0 0.266 0.44 0.00 0.0 0.00 1.00 1.00
C hitosan 45.5 0.377 0.49 0.00 0.0 0.00 1.00 1.00

N orm alized  testing  data
count m ean std m in 25% 50% 75% m ax

T im e 15.0 0.666 0.485 0.00 0.00 1.000 1.00 1.00
pH _______ 15.0 0.500 0.514 0.00 0.00 0.500 1.00 1.00

D osage 15.0 0.629 0.331 0.00 0.50 0.667 0.83 1.00
Sodium  silicate 15.0 0.200 0.439 0.00 0.00 0.00 0.00 1.00

H y-P A M 15.0 0.533 0.516 0.00 0.00 1.00 1.00 1.00
C hitosan 15.0 0.266 0.457 0.00 0.00 0.00 0.50 1.00
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Figure 5.3 Real vs. predicted values of the training phase of the ANN model for both of 
recovery and grade (A) one-hidden layer recovery (%), (B) one-hidden layer grade (%), 
(C) Two-hidden layer recovery (%), (D) Two-hidden layer grade (%), (E) Three-hidden 

layer recovery %, and (F) Three-hidden layer grade (%).
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Figure 5.4 Real vs. predicted values of the testing phase of the ANN model for both of 
recovery and grade (A) one-hidden layer recovery (%), (B) one-hidden layer grade (%), 
(C) Two-hidden layer recovery (%), (D) Two-hidden layer grade (%), (E) Three-hidden 

layer recovery %, and (F) Three-hidden layer grade (%).
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Table 5.3 Model evaluation of the three hidden layers.
ANN hidden 
layer

Flotation
perform ance

MAE% R2% RMSE%

Training Testing Training Testing Training Testing

One-hidden Recovery: 12.9 15.96 12.49 7.14 15.99 19.58
layer Grade: 3.46 3.19 25.62 24.53 4.17 3.61
Two-hidden Recovery: 4.79 4.30 84.16 93.88 6.84 5.02
layer Grade: 1.53 1.20 59.74 85.01 2.36 1.6

Three- Recovery: 2.14 2.83 97.83 96.05 2.51 4.03
hidden layer Grade: 0.32 0.75 98.72 86.67 0.42 1.51

Figures 5.5 and 5.6 show a comparsion between the predicted and the experimental 

values of P2O5 recovery and grade when three-hidden layer ANN model was employed. 

Results showed a good consistency. As indicated, optimal flotation inputs were observed 

in experiment number 10, 37, and 40 at 4 min of flotation time, 250-300 g/ton of reagents’ 

dosages, and pH 9.

Figure 5.5 Predicted and experimental values of P2O5 recovery using three-hidden layer
ANN.
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Figure 5.6 Predicted and experimental values of P2O5 grade using three-hidden layer
ANN.

One hundred random flotation inputs, the flotation time, pH, and reagent dosage 

for each reagent type, were generated to optimize flotation efficiency of low-grade 

phosphate ore. The optimum values were selected based on the highest recovery and 

highest grade from the expected outputs. Figures 5.7 and 5.8 show the expected recovery 

and grade of phosphate minerals in the presence of sodium silicate. A three-dimensional 

scatter plot was used to present the relationship between the flotation inputs and flotation 

outputs. The random flotation inputs (time, pH, and reagent dosage) were customized on 

the three axes (x, y, and z), respectively. The expected flotation outputs were represented 

as scatter points and scaled by a color bar range. The base recovery and grade of P2O5 

obtained in Section 3.3.2.1 were used as a minimum value for the purpose of the 

optimizations process.
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Figure 5.7 Predicted recovery and grade vs the random normalized input data in the
presence of sodium silicate.
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As seen, when the time is short, there was a possibility to obtain high recovery, but 

at the expense of grade at all range of other variables. While high recovery and high grade 

were expected at long flotation time. In the case of pH, high recovery and high grade were 

expected at low pH.

High recovery and high grade were also expected at a high dosage of sodium 

silicates. Results indicated that the optimum flotation performance in the presence of 

sodium silicate depressant could be obtained at long flotation time, low to medium pH, and 

high dosage. This means no real experiments are needed at a short time, high pH, and low 

dosages.

Figure 5.8 The relationship between the flotation inputs and expected flotation outputs in 
the presence of sodium silicate, recovery (A) and grade (B).
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Figures 5.9 and 5.10 show the expected recovery and grade of phosphate minerals 

in the presence of Hy-PAM. High recovery and high grade were predicted at the all range 

of flotation time, low and high pH, and medium to high reagent dosage. Results indicated 

that the optimum flotation performance in the presence of Hy-PAM could be obtained at 

short flotation time, low pH, and high dosage. This means no real experiments are needed 

at a long time, high pH, and low dosages. While in the presence of chitosan, as shown in 

Figures 5.11 and 5.12, long flotation time, high pH, and high dosage were needed to obtain 

high recovery and high grade.
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Figure 5.9 Predicted recovery and grade vs a random normalized input data in the
presence of Hy-PAM.
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Figure 5.10 The relationship between the flotation inputs and expected flotation outputs 
in the presence of Hy-PAM, recovery (A), and grade (B).
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Figure 5.11 Predicted recovery and grade vs a random normalized input data in the
presence of chitosan.
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Figure 5.12 The relationship between the flotation inputs and expected flotation outputs 
in the presence of chitosan, recovery (A), and grade (B).
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6. CONCLUSIONS AND RECOMM ENDATIONS

6.1. CONCLUSIONS

This research aimed at improving the separation of silicate minerals from phosphate 

minerals in froth flotation process by utilizing novel and selective reagents.

Functional synthetic polymers and green biodegradable polymer were used as 

alternatives to conventional inorganic depressants of silicate minerals in the direct flotation 

of low-grade phosphate ore. Prior to the flotation process, zeta potential measurements on 

apatite (model phosphate mineral) and quartz (model silicate mineral) were conducted to 

examine the electrical properties of mineral surfaces in the presence and absence of 

depressants in order to understand the behavior of the flotation feed. The results showed 

stronger interactions between the quartz surface and Hy-PAM and chitosan at pH 9 

compared to apatite. Bench-scale flotation tests of phosphate ore in the presence of Hy- 

PAM and chitosan were conducted at different conditions, including dispersant/depressant 

dosages, pulp’s pH, and flotation time. The flotation efficiencies (recovery and grade) of 

P2O5 in the presence of Hy-PAM, chitosan, and sodium silicate (commercial dispersant) 

were compared. The results showed that at 10 min flotation, the highest recovery of P2O5 

(86.82%) was observed when the Hy-PAM polymer was used. The second highest recovery 

was obtained at 66.7% when chitosan polymer was used. Both polymers were more 

selective than sodium silicate. Also, the highest grade of P2O5 (28.4%) was obtained when 

Hy-PAM was used. These results suggested that Hy-PAM and chitosan can be used as 

green and sustainable depressants of silicate minerals in the phosphate flotation process.
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This research also investigated the potential of ionic liquids (ILs) to serve as 

selective collectors of silicates in the reverse flotation of phosphate minerals. Two uionic 

liquids were selected in this study: Tetrahexylammonium iodide (THAI) and 1-Hexyl-3- 

methylimidazoli hexafluorophosphate (HMLHF). Zeta potential measurements, FTIR, and 

XPS, were performed on pure and IL-treated minerals (i.e., apatite and quartz) to study the 

adsorption selectivity and understand the flotation behavior of minerals. The results 

indicated that ILs had preferential adsorption on the quartz surfaces compared to apatite 

surfaces. The flotation behavior of apatite (model phosphate mineral) and quartz (model 

silicate mineral) was investigated in micro-flotation system at different parameters and 

conditions, including IL type, reagents’ dosages, and pulp’s pH. In single flotation tests, 

the best flotation performance was observed at pH 11 and 150 g/ton of THAI with 90% 

recovery of quartz, while the recovery of apatite was 38% under the same flotation 

conditions. When HMLHF was used, the recovery of quartz at 150 g/ton of HMLHF was 

93% at pH 11. The optimum flotation conditions were obtained at pH 9 and pH 11 in 150 

g/ton of THAI and HMLHF in single mineral flotation. These optimum conditions were 

compared Dodecylamine (DA) (commercial silicate’s collector). The results showed an 

increase in the recovery of apatite minerals when DA and HMLHF were used. The recovery 

of apatite was significantly lower (38%) when THAI was used compared to Dodecylamine 

(47%) and HMLHF (53%). These results were consistent with the adsorption studies. 

When HMLHF was used in mixed mineral flotation, the quartz’s recovery and grade were 

~90% and ~64%, respectively, at pH 11. When THAI and DA were used, the recovery and 

grade of quartz were 87% and 70.3%), and 87% and 65.3%, respectively. Based on the
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obtained results, this study demonstrated the potential of using ILs as alternative collector 

of silicate minerals in the reverse phosphate flotation at specific conditions.

Artificial Neural Network (ANN) model was employed to predict phosphate's 

flotation behavior in the direct froth flotation process. Mean absolute error (MAE), 

coefficient of determination (R2), and root-mean-square error (RMSE) were used as 

performance indicators of the model. The results showed that good prediction performance 

was obtained when three-hidden layers were used. The calculated MAE, R2, and RMSE 

for phosphate recoveries were 2.14 %, 97.83%, and 4.03%, respectively. For phosphate 

grade, the calculated MAE, R2, and RMSE were 0.32%, 98.72%, and 0.42%, respectively. 

A three-dimensional scatter plot was used to present the relationship between the flotation 

inputs and flotation outputs for optimization purposes. Results indicated that the optimum 

flotation performance in the presence of sodium silicate could be achieved at longer 

flotation time, low to medium pH, and higher dosages. Results showed that the optimum 

flotation performance in the presence of Hy-PAM could be achieved at shorter flotation 

time, low pH, and higher dosages. Moreover, in the presence of chitosan polymer, longer 

flotation time, higher pH, and higher dosages were needed to achieve high recovery and 

high grade.

6.2. RECOM M ENDATIONS FO R  FUTURE W O RK

Findings obtained from this study indicated that using hybrid polyacrylamide 

polymer (Hy-PAM) and chitosan as alternatives to conventional dispersants in direct froth 

flotation of phosphate minerals had positively impacted phosphate’s recovery and grade.
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However, to successfully implement this technology at an industrial scale, more work is 

recommended as follows:

1) Investigations on the flotation performance of phosphates as a function of 

additional operational variables such as agitation speed, airflow rate, temperature, 

and water chemistry. More datasets will be produced, which will enhance the 

accuracy of the developed ML model.

2) More investigations on the mechanism that govern the adsorption of polymers on 

phosphate and silicate minerals. This will allow for structural optimization of 

these polymers in relation to pulp’s attributes.

3) Testing other machine learning models such as random forest, adaptive neuro­

fuzzy inference system, Mamdani fuzzy logic, and hybrid neural fuzzy inference 

system, and compare their performances to ANN.

4) Detailed cost analysis to evaluate the economic benefits to use these reagents at 

industrial scale. This cost analysis should take into consideration the tailing 

disposal, water-treatment costs, energy consumption, and production rates 

compared to the case where conventional depressants are used.

Moreover, fundamental flotation studies conducted in this work show that 

tetrahexylammonium iodide (THAI) and 1-hexyl-3methylimidazoli hexafluorophosphate 

(HMLHF) could be used as alternatives to conventional amine collectors of silicate 

minerals in the reverse flotation of phosphate minerals. However, these studies were 

preliminary and conducted using model minerals (pure minerals) in micro-flotation 

systems wherein a limited number of physicochemical variables were tested. Therefore, 

more studies using batch flotation systems have to be conducted to examine the
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applicability of IL-based technology at industrial scale. These studies should investigate 

the impact of other physiochemical and operational variables on the flotation efficiency of 

phosphate mineral. Cost analysis needs to be done on IL-based technology to evaluate 

economic feasibility.
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