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ABSTRACT

There is a growing demand for non-surgical means of cataract treatment. This 

dissertation presents three bodies of work that reflect the early-stage development of eye 

drop formulations aimed at delaying cataract progression. These formulations consist of 

the antioxidant 2-mercaptopropionylglycine (MPG) loaded onto nanodiamond particles.

Cataractogenesis is linked to oxidative damage to lens proteins. To investigate the 

potential of MPG for protection against oxidative damage, A549 cells were incubated in

0.6 mM tert-butylhydroperoxide (tBHP). Cells exposed to tBHP without MPG exhibited 

elevated levels of reactive oxygen species, which led to the depletion of the vital 

antioxidant glutathione and, ultimately, apoptosis. Co-administration of 5 mM MPG 

protected cells from tBHP-induced damage, resulting in maintenance of cell viability.

To monitor the uptake and fate of MPG in the eye, a rapid, high sensitivity HPLC 

method was developed for the analysis of MPG and its metabolite, 2-mercaptopropionic 

acid, in ocular tissues. Method validation experiments demonstrated the reliability of this 

method for quantifying MPG uptake and evaluating drug delivery strategies.

Achieving effective drug concentrations in the lens poses a major challenge. 

Nanodiamond is biocompatible, and its surface chemistry can be tailored to specific 

applications. Thus, it is emerging as a candidate of interest for drug delivery. 

Nanodiamond surfaces were functionalized with carboxyl (ND-COOH), hydroxyl (ND- 

OH), and amino (ND-NH2) groups to investigate the effect of ND surface chemistry on 

adsorption and release of MPG. The ND-NH2 exhibited the highest adsorption capacity, 

but the ND-OH was the most effective for sustained release.
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1. INTRODUCTION

1.1. GLOBAL HEALTH IMPACT OF CATARACTS

Cataracts are characterized by a cloudy opacification of the ocular lens that 

progressively worsens to the point of complete vision loss. They are also the leading 

cause of blindness worldwide.1 Currently, the only available treatment for patients with 

cataracts is surgical removal of the cataractous lens and subsequent implantation of an 

artificial lens. Although this procedure is routine and relatively safe, it is not without 

drawbacks. As with any surgery, there is a risk of serious complications such as capsular 

rupture, loss of vitreous, and endophthalmitis.2 In addition, artificial lenses lack several 

important properties of natural lenses. The natural lens is able to stretch, allowing for 

accommodation or focusing on objects or features at a variety of distances. Artificial 

lenses from cataract surgery do not recapitulate this ability. Furthermore, research 

conducted by Lim et al. suggests that the natural lens plays a significant role in 

maintaining ocular health.3 It serves as a reservoir for the vital antioxidant glutathione 

(GSH), protecting neighboring structures from oxidative damage. With this reservoir 

removed, patients may be at a greater risk of developing other oxidative stress-related eye 

disorders such as macular degeneration. Therefore, there is a high demand for non­

invasive pharmaceutical alternatives to surgery to treat, prevent, or delay cataract 

formation.

1.2. CATARACTOGENESIS AND AVENUES FOR TREATMENT

The lens contains highly ordered layers of tightly packed cells known as lens 

fibers. The refractive power and transparency of the lens is attributed to water-soluble
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proteins known as crystallins which compose more than 90% of the protein content of the 

lens.4, 5 Oxidative damage can disrupt the native structure of these proteins, resulting in 

aggregation and loss of transparency. Thus, cataracts are attributed to the aggregation of 

crystallins. The primary source of oxidative damage in cataracts is most likely ultraviolet 

radiation; however, other contributing sources of oxidative stress include injury, genetic 

mutation, and exposure to toxicants or ionizing radiation.

In order to maintain transparency, the nuclear portion of the lens forgoes light­

scattering organelles such as nuclei, mitochondria, and endoplasmic reticula.6 As a result, 

lens fiber cells are less metabolically active than most tissues, and once these cells 

mature, the crystallins are not replaced. Therefore, oxidative damage to crystallin proteins 

accumulates over a person’s lifetime, progressively worsening with age. It is well 

documented that damage to these proteins is correlated to their aggregation.7, 8 Oxidation 

of cysteine and methionine residues progressively increase with cataract severity until 

>90% of cysteine residues and 50% of methionine residues are oxidized.7 Oxidation of 

cysteine residues in crystallin proteins is noteworthy because it results in intra- and inter­

protein cross-linking, altering the native structure of the protein, decreasing the solubility 

and thus, lens transparency.

Crystallins rely heavily on endogenous antioxidants such as GSH to protect them 

from oxidative damage in order to preserve their normal structure and function.3, 8 9 

However, levels of these endogenous antioxidants decrease significantly with age,10, 11 

leaving the lens vulnerable to oxidative insult.12, 13 Indeed, reports have shown that more 

than 60% of GSH is depleted in cataractous lenses.8



Since loss of endogenous antioxidant defenses is so strongly correlated with the 

progression of age-related nuclear cataract, bolstering these defenses with exogenous 

antioxidants is one of the primary treatment strategies being explored for delaying 

cataract progression.

Supplementing GSH directly is impractical due to its low membrane permeability 

and enzymatic degradation; however, other thiol-containing antioxidants have shown 

some promise. Thiol antioxidants can scavenge ROS and undergo thiol-disulfide 

exchange with oxidized cysteine residues. Indeed, reports in the literature demonstrate 

that thiol antioxidants may prevent or ameliorate cataracts.14, 15

1.2.1. Tiopronin. Tiopronin, formally known as 2-mercaptopropionyl glycine 

(MPG), is an FDA-approved thiol antioxidant that is used clinically to treat cystinuria. 

Patients with cystinuria have high levels of cystine in their urine, resulting in cystine 

kidney stones. Tiopronin undergoes thiol-disulfide exchange with cystine to form 

tiopronin-cysteine, which is more urine-soluble. This thiol-disulfide exchange, in 

combination with the capacity for scavenging ROS, may be beneficial for protecting 

against oxidative insults and reducing crystallin protein disulfides in the lens.

In fact, MPG has demonstrated anticataract effects in various animal and cell 

models16-20 and even human cataract patients.21 Although these results are promising, the 

routes of administration used are impractical for human patients. When MPG is 

administered orally, very high doses are required for it to accumulate in the lens. This is 

attributed to the fact that the lens lacks a direct, dedicated blood supply. Maintaining such 

high doses can result in several systemic side effects.22, 23

3
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1.2.2. Eye Drops Are the Preferred Route of Administration. Eye drops offer 

several advantages over oral and other systemic routes of administration. They are easy to 

administer and allow for localized application to the target organ, circumventing the need 

for high systemic doses and reducing the risk and severity of side effects. However, this 

approach poses challenges as well. The eye has a number of anatomical and physiological 

barriers against foreign species, and the majority of the drug is blinked away or wasted in 

tears.24 The remaining drug must then penetrate the cornea and diffuse through the 

aqueous humor in sufficient concentrations to reach the lens. In order to achieve effective 

concentrations of MPG in the lens, it is necessary to prolong residence on the cornea.

1.2.3. Drug Delivery Vehicles Can Promote MPG Uptake and Efficacy. To 

increase drug residence time and penetration, drug delivery methods such as 

biocompatible polymers or gels have been explored. For example, a poloxamer gel-based 

drug delivery vehicle for MPG was studied in rodents.18 The drug delivery gel increased 

MPG residence time, allowing more the drug to penetrate the cornea, and thus delayed 

cataract formation significantly longer compared to MPG solution. Although they have 

generated a great deal of interest for ocular drug delivery,25-27 gels are not ideal agents for 

this purpose due to their instability under sterilization and storage conditions.28-30 In 

addition, as an antioxidant, MPG is prone to oxidation under these conditions. An ideal 

delivery platform for a thiol drug like MPG would prolong its retention on the ocular 

surface, augment its antioxidant properties, and protect it from premature degradation.

1.2.4. Nanodiamond Drug Delivery. Nanodiamond (ND) is a promising 

candidate for drug delivery due to its biocompatibility, physical properties, and 

customizability.31 Further, ND is chemically stable and does not degrade under harsh



sterilization conditions.32 Nanodiamonds are approximately spherical particles with a 

primary particle size of 4-6 nm, which results in specific surface areas in the range of 

300-500 m2/g for adsorption or chemical binding of drugs.33 Moreover, the surface of 

nanodiamond can be functionalized to suit a variety of applications.34 For example, 

carboxylated nanodiamond (ND-COOH) can be used for the delivery of positively 

charged chemotherapy drugs.35-40 The majority of the ND-COOH surface will be 

negatively charged at physiological pH (7.4) due to the deprotonation of the carboxylic 

acid groups. The positively charged chemotherapy drug tends to remain bound to the 

negatively charged ND-COOH due to electrostatic interactions. Upon reaching the acidic 

microenvironment surrounding tumor cells, however, the negative charge on the ND- 

COOH will become neutralized. With electrostatic interactions greatly reduced, the drug 

is readily desorbed in the tumor microenvironment.

In the case of ocular drug delivery, pH-triggered release is not a primary concern. 

Instead, it may be useful to engineer the nanodiamond surface to maximize interactions 

with the cornea in order to improve residence time and resist being blinked away. Other 

considerations include ND loading capacity, agglomeration, rate of release, toxicity 

limits, and impact on drug effectiveness. Nanodiamond may also be particularly 

advantageous for delivery of antioxidants because they can absorb UV light, thereby 

preventing premature degradation of the antioxidant drug.41 Even better, some studies 

have shown that ND may exhibit some level of intrinsic antioxidant activity.41, 42

5
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1.3. DEVELOPMENT AND EVALUATION OF ND:MPG FORMULATIONS

The studies reported in this dissertation reflect the foundational work necessary 

for evaluating the potential for MPG to protect against oxidative stress and to establish 

and evaluate the potential of ND as an MPG delivery vehicle for the prevention of 

cataract and other age-related eye disorders. This dissertation reports the following three 

studies in greater detail:

1. The potential of MPG to protect cells from oxidative damage was evaluated in an 

epithelial cell line commonly used for early drug screening.

2. A high-sensitivity method was developed for quantifying MPG and its metabolite, 

MPA, in ocular tissues. This is a necessary tool for determining the extent of 

MPG loading and release from ND, as well as its fate when administered to 

biological models.

3. The effect of ND surface chemistry on adsorption and release of MPG was 

determined. This information is important for informing the selection of surface 

functionality in the context of different applications. The results of this study can 

also be used to understand why one type of ND functionalization may be more or

less effective than another.
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PAPER

I. PROTECTIVE EFFECTS OF TIOPRONIN ON OXIDATIVELY 
CHALLENGED HUMAN LUNG CARCINOMA EPITHELIAL CELLS (A549)

Justin Beltz1, Anna Chernatynskaya1, Annalise Pfaff1, Nuran Ercal1’*

1Deparment of Chemistry, Missouri University of Science and Technology, Rolla, MO
65409

1J. Beltz and A. Chernatynskaya contributed equally to this work as primary authors.

*Corresponding Author

Address: 230 Schrenk Hall, 400 West 11th Street, Rolla, MO 65409 

Phone: (573) 341 6950 

E-mail: nercal@mst.edu

ABSTRACT

Tiopronin (MPG) is a thiol antioxidant drug that has been explored as a treatment 

for various oxidative stress-related disorders. However, many of its antioxidant 

capabilities remain untested in well-validated cell models. To more thoroughly 

understand the action of this promising pharmaceutical compound against acute oxidative 

challenge, A549 human lung carcinoma cells were exposed to tert-butyl hydroperoxide 

(tBHP) and treated with MPG. Analyses of cell viability, intracellular glutathione (GSH) 

levels, and prevalence of reactive oxygen species (ROS) and mitochondrial superoxide 

were used to examine the effects of MPG on tBHP-challenged cells. MPG treatment 

suppressed intracellular ROS and mitochondrial superoxide and prevented tBHP-induced

mailto:nercal@mst.edu


GSH depletion and apoptosis. These results indicate that MPG is effective at preserving 

redox homeostasis against acute oxidative insult in A549 cells if present at sufficient 

concentrations during exposure to oxidants such as tBHP. The effects of treatment 

gleaned from this study can inform experimental design for future in vivo work on the 

therapeutic potential of MPG.

Keywords: thiols, antioxidant, oxidative stress, reactive oxygen species (ROS), 

glutathione, tiopronin
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1. INTRODUCTION

#-(2-mercaptopropionyl)glycine (MPG), or tiopronin, is low-molecular-weight 

thiol derivative of glycine that has been used to treat a variety of conditions. MPG was 

one of the first disease-modifying anti-rheumatic drugs [1-3], but it has been superseded 

by biologics and is now only applied in certain refractory cases [4,5]. MPG is the first- 

line treatment for cystinuria, in which it forms mixed disulfides that are up to 50 times 

more soluble than cystine, thus preventing the formation of cystine kidney stones [6,7]. 

While these applications fill important medicinal niches, the antioxidative properties of 

MPG have warranted its investigation for the treatment of more prevalent conditions. Its - 

SH moiety can reduce disulfide linkages between oxidized biothiols, like glutathione 

disulfide, restoring them to their native state [8,9]. In addition, MPG is regarded as an 

effective chelator of heavy metals such as mercury and copper. In silico models predict 

that formation of MPG-copper(II) complexes can reduce the rate constant of the first step 

in the Haber-Weiss reaction six-fold [10]. Because of these significant antioxidant



properties, MPG has been used to protect against chemotherapy-induced nephro- and 

hepatotoxicity [11,12] , radiation poisoning [13], and ischemia-reperfusion injury to 

cardiac and lung tissue [12,14]. Further, MPG may be able to counteract oxidative 

processes that lead to lens opacification in senile cataracts [15-21]. MPG offers several 

advantages over similar drugs, including a more favorable side effect profile than D- 

penicillamine [4] and better bioavailability than ^-acetylcysteine [22,23]. Moreover, 

MPG’s primary metabolite, 2-mercaptopropionic acid, is also a potent radical scavenger 

[24]. With the growing impetus to repurpose pharmaceuticals, the medical community 

stands to gain potential treatments and greater understanding of oxidative stress-related 

conditions from renewed interest in MPG. However, its action against acute exogenous 

oxidative insult in cell models has not been thoroughly characterized.

To bridge this gap in understanding, well-established cell lines such as A549 are 

commonly used to study the action of drugs in vitro [25-27]. As a pulmonary epithelial 

cell line, it is often employed to study effects of inhalation exposure to environmental 

contaminants, in which oxidative stress plays a key role [28]. Further, it is recognized as 

a useful model for early-stage biopharmaceutical research, including studies of drug 

metabolism and cytotoxicity [29,30]. A well-validated oxidant is another integral 

component of an appropriate system for testing an antioxidant drug. For in vitro studies, 

tert-butyl hydroperoxide (tBHP) is more reliable than hydrogen peroxide, as tBHP has 

demonstrated more consistent ability to induce oxidative stress than H2O2 [31,32]. This 

may be attributed to the greater stability of the tert-butoxyl radical in aqueous solution 

[33] and fewer enzymes dedicated to its detoxification (e.g., glutathione peroxidase only 

versus glutathione peroxidase and catalase for H2O2) [25]. Further, decomposition of

9



tBHP and downstream action of its byproducts may recapitulate many of the oxidative 

mechanisms observed in vivo, including lipid peroxidation, DNA damage, depletion of 

GSH and protein thiols, alteration of intracellular calcium homeostasis, and apoptosis 

[25,34]. For these reasons, tBHP is better suited for probing the intracellular action of 

MPG. Therefore, we utilized tBHP to rapidly induce severe oxidative damage in A549 

cells and administered MPG simultaneously to test the action of MPG against acute 

oxidative insult. To observe and characterize the effects of MPG under these conditions, 

we examined cell viability, intracellular GSH levels, and distribution of cells in apoptotic 

and non-apoptotic populations exhibiting intracellular ROS and mitochondrial 

superoxide.

10

2. MATERIALS AND METHODS

2.1. CHEMICALS AND REAGENTS

MPG, tBHP solution, Tris-HCl, L-serine, boric acid, 

diethylenetriaminepentaacetic acid, and A-(1-pyrenyl)maleimide were purchased from 

MilliporeSigma (St. Louis, MO). MPG stock solutions were prepared in sterile Type 1 

water prepared in-house with a Millipore Simplicity 185 System. Glacial acetic acid, o- 

phosphoric acid, and high-performance liquid chromatography (HPLC) grade solvents 

were purchased from Fisher Scientific (Fair Lawn, NJ).
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2.2. CELL CULTURE AND PRELIMINARY EXPERIMENTS

A549 (human lung carcinoma) cells were kindly provided by Dr. Yue-Wern 

Huang from the Biological Sciences Department at Missouri University of Science and 

Technology.

Cells were grown in phenol-red-free DMEM/F12 medium (Thermo Fisher 

Scientific, Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) and 1% penicillin/streptomycin/amphotericin B (Thermo Fisher Scientific) in a 

humidified incubator with 5% CO2/95% air at 37°C. Serum- and growth-factor-free 

medium was used for all MPG and tBHP experiments, instead of the fully supplemented 

media described above. Cells were passaged twice per week at a subcultivation ratio of 

1:3. All experiments were performed using cells between passage 10 and 30.

To determine an appropriate concentration of tBHP for use in this study, A549 

cells were seeded in multiple-well plates and divided into groups. Each group was 

incubated for 3 hours with a different concentration of tBHP in serum-free media, 

ranging from 0.25 mM to 4.0 mM. Cytotoxicity of tBHP in each group was assessed via 

MTT assay as described below to identify the range of concentrations at which cell 

viability was reduced to 50-60% of the control, which was shown to be 0.5 to 1.0 mM. 

To determine whether cells received sufficient oxidative insult, intracellular GSH levels 

were measured in groups treated with tBHP concentrations ranging from 0.4 to 0.8 mM 

for 3 hours. Based on these preliminary experiments, a concentration of 0.6 mM tBHP 

was selected for use in the remaining experiments.

Next, an appropriate concentration of MPG for treating tBHP-exposed cells was 

selected. To determine whether MPG alone had any adverse effect on cell viability,
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A549 cells were seeded in multiple-well plates and divided into groups. Each group was 

incubated for 3 hours with different concentrations of MPG in serum-free media, ranging 

from 0.08 mM to 10 mM, and MPG was not found to significantly affect cell viability at 

these concentrations (data not shown). To determine an appropriate concentration for use 

in tBHP-exposed cells, a similar experiment was conducted with the simultaneous 

addition of 0.6 mM tBHP and either 1.0, 1.5, 2.5, or 5.0 mM MPG for 3 hours. Cell 

viability and GSH levels in respective groups indicated that 5.0 mM MPG provided 

optimal protection against tBHP. Based on these preliminary experiments, 5.0 mM MPG 

and 0.6 mM tBHP were used in subsequent experiments to determine the effects of MPG 

on oxidative stress induced by tBHP.

2.3. EXPERIMENTAL DESIGN

The A549 cells were grown in complete media and allowed to proliferate for 24 

hours. The cells were divided into 4 treatment groups: control, MPG only, tBHP only, 

and MPG + tBHP. After the 24-hour proliferation time, the complete medium was 

removed and replaced with the treatment medium associated with the corresponding 

treatment group (Table 1). The treatment media were supplemented with tBHP or MPG 

immediately prior to each experiment from freshly prepared concentrated stock solutions. 

The cells were allowed to incubate in the treatment media for 3 hours. After this time, the 

treatment media were removed. Cell viability and oxidative stress parameters including 

GSH and flow cytometric analysis of ROS and mitochondrial superoxide were 

determined after treatment as described in the following sections.
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Table 1. Treatment media compositions
Group Treatm ent m edium

Control M edium
MPG only M edium  + 5 mM MPG
tBHP only M edium  + 0.6 mM tBHP

MPG + tBHP M edium  + 5 mM MPG + 0.6 mM tBHP

2.4. CELL VIABILITY

Cells were seeded at a density of 2 x 104 cells/well in 96-well plates and allowed 

to adhere and proliferate for 24 hours. Then, cells were divided into groups and treated as 

described in the experimental design. After the treatment, the treatment media were 

replaced with fresh F12 medium, and cell viability was determined using the Vybrant 

MTT Cell Proliferation Assay Kit (Invitrogen, Carlsbad, CA) as described by the 

manufacture. The MTT assay is a colorimetric assay through which cell viability is 

estimated by conversion of the water soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- 

dimethyltetrazolium bromide) to an insoluble formazan by viable cells. The formazan is 

then solubilized by sodium dodecyl sulfate (SDS), and the concentration is determined by 

measuring absorbance at 570 nm using a microplate reader (Fluor Star Optima, BMG, 

Labtech). Cell viability was expressed as the absorbance by the contents of a given well 

divided by that of the mean absorbance measured for the control group.

2.5. QUANTIFICATION OF INTRACELLULAR GSH LEVEL

Cells were seeded at a density of 6 x 105 cells/well in 6-well plates 24 hours 

before the experimental treatment. Cells were treated as described in the experimental 

design. Following treatment, the cells were harvested with trypsin/EDTA and collected in



1.5 mL RINO tubes (Next Advance, Troy, NY, USA). The cell suspensions were 

centrifuged at 500 x g  for 10 min at 4°C. The supernatants were removed, and the cells 

were resuspended in 1 mL aliquots of PBS to rinse away remaining media and 

extracellular GSH. This centrifugation and rinsing process was repeated. After rinsing, 

the cells were centrifuged again at 500 x g  and resuspended in 250 pL aliquots of chilled 

serine-borate buffer (100 mM Tris-HCl, 5 mM L-serine, 10 mM boric acid, 1 mM 

diethylenetriaminepentaacetic acid, pH 7.0). A 100 pL scoop was used to add about 100 

pL of zirconium oxide beads (0.5 mm diameter, Next Advance) to each of the cell 

suspensions. The cells were homogenized using a Bullet Blender Storm tissue 

homogenizer (Next Advance) at speed “8” for 3 min. After homogenization, the cells 

were immediately centrifuged at 5000 x g  for 5 min at 4°C. Then, 100 pL aliquots of 

supernatant were collected from each RINO tube for analysis of GSH and total protein 

content.

Intracellular GSH levels were determined by HPLC with pre-column 

derivatization and fluorescence detection, according to a method developed in our 

laboratory [35]. Briefly, 50-pL aliquots of cell homogenate were diluted with 200 pL of 

serine-borate buffer. The samples were derivatized by the addition of 750 pL of N-(1- 

pyrenyl)maleimide (1 mM in acetonitrile). The samples were mixed and allowed to react 

for 5 min. After this time, 10 pL of 2 M HCl were added to stabilize the fluorescent 

adducts. Samples were filtered with 0.45 pm nylon membrane filters. Samples were 

injected onto an Orochem (Naperville, IL, USA) Reliasil ODS-1 column (4.6 mm i.d. x 

250 mm) and eluted with a mobile phase consisting of 70:30 (v/v) acetonitrile-water with 

1 mL/L of o-phosphoric acid and 1 mL/L of glacial acetic acid, delivered at a flow rate of

14



1 mL/min. GSH levels were determined by using a calibration curve prepared from 

standards processed in parallel with the unknown samples.

The GSH levels were normalized to the amount of total protein present in each 

sample. Total protein levels were estimated using the Coomassie dye-binding method 

described by Bradford [36]. Bradford dye reagent (Bio-Rad, Hercules, CA, USA) was 

diluted five-fold in serine borate buffer, and 1 mL aliquots of the diluted dye reagent 

were added to 20 pL of diluted cell homogenate in cuvettes. The samples were left to 

incubate at room temperature for at least 5 min. The absorbance of 595 nm light was 

correlated to the total protein concentration using a calibration curve. Albumin from 

bovine serum was used to make calibration standards to estimate the protein content in 

the cell homogenates.

To account for differences in live cell populations between treatment groups,

GSH levels were reported in nanomoles of GSH per milligram of protein (nmol/mg).

2.6. FLOW CYTOMETRY ANALYSIS OF APOPTOTIC CELLS AND 
INTRACELLULAR ROS MEASUREMENT

Intracellular ROS content was measured using the carboxy derivative of 

fluorescein, carboxy-HsDCFDA (6-carboxy-2’,7’-dichlorofluorescein diacetate, 

Molecular Probes, Invitrogen), due to its additional negative charges that enhance cellular 

retention [37]. Flow cytometry (BD Accuri C6, BD Biosciences, Ann Arbor, MI) was 

used to assess the distribution of cells that contained ROS (ROS+ cells) within apoptotic 

and non-apoptotic cell populations. Cells were seeded on 24-well plates (Corning) at a 

density of 2 x 105 cells/well, grown over 24 hours, divided into groups and dosed as 

described previously. Trypsinized cells were washed with PBS and re-suspended in 250
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gL of PBS containing 10 gM carboxy-H^DCFDA. After incubation for 30 minutes at 

37°C, the cells were washed with annexin V binding buffer and stained with 7-AAD (7- 

aminoactinomycin D, BD Pharmingen) and Annexin V Alexa Fluor 647 Conjugate 

(Invitrogen) for 15 minutes at room temperature in the dark. The FL-1 channel (Xex = 488 

nm and Xem = 533 nm) was used for carboxy-H2DCFDA, and the FL-3 channel (Xex = 533 

nm and Xem = 670 nm) was used for 7-AAD. Annexin V Alexa Fluor 647 fluorescence 

was measured using the FL-4 channel (Xex = 640 nm and Xem = 675 nm). Debris were 

excluded by forward vs. side scatter gating. Results are reported as percent of total cell 

population.

2.7. FLOW CYTOMETRY DETERMINATION OF MITOCHONDRIAL 
SUPEROXIDE

MitoSOX Red mitochondrial superoxide indicator (MSR) is a fluorogenic dye for 

selective detection of superoxide in mitochondria of live cells (Molecular Probes,

Eugene, OR). MSR is a dihydroethidium dye with a lipophilic, positively-charged side- 

chain for targeted absorption by the mitochondria. Upon oxidation by superoxide, the dye 

exhibits red fluorescence [38]. For analysis of superoxide generated in mitochondria, 

cells were grown in the same conditions as for the measurement of ROS content via flow 

cytometer. Harvested cells were washed with PBS and re-suspended in 250 gL of PBS 

containing 5 gM MSR. Cells were incubated for 30 minutes at 37°C. After incubation 

with MSR, LIVE/DEAD Fixable Green Dye (Molecular Probes, Eugene, OR) was added 

directly to each sample according to the manufacture’s recommendation. Cells were 

incubated for an additional 15 minutes at room temperature. The final stain, Annexin V 

Alexa Fluor 647 Conjugate, was added after washing cells with annexin V buffer. Cells

16
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were analyzed by flow cytometry using the FL-1 channel (kex = 488 nm and Xem = 533 

nm) for LIVE/DEAD Fixable Green, the FL-2 channel for MSR (kex = 488 nm and kem = 

585 nm), and the FL-4 channel for Annexin-V Alexa Fluor 647 (kex = 640 nm and kex = 

675 nm). Results are reported as percent of total cell population with MSR fluorescence 

(MSR+) cells in apoptotic and viable populations in each treatment group. Debris were 

excluded by forward vs. side scatter gating.

2.8. STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad Prism 8 software (GraphPad, 

San Diego, CA, USA). All values were reported as mean ± standard deviation of at least 

three separate experiments, with n = 3-16. Statistical significance was performed by two­

way analysis of variance (ANOVA) for flow cytometry experiments and one-way 

ANOVA for all other experiments. ANOVA was followed by Tukey’s or Dunnette’s 

multiple comparison tests.

3. RESULTS AND DISCUSSION

3.1. SELECTION OF DOSING CONCENTRATIONS

To determine an appropriate concentration of tBHP for inducing oxidative stress, 

cell viability and GSH levels were determined following exposure to varied 

concentrations of tBHP. GSH, y-glutamyl-cysteinyl-glycine, is the most abundant non­

protein thiol in the body and an essential endogenous antioxidant. It plays a vital role in 

reduction and detoxification of ROS, including peroxides like tBHP and is therefore 

crucial to the maintenance of redox homeostasis. Increase in oxidants can upset this
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delicate balance, leading to the oxidative modification of critical cellular components, 

dysfunction, and ultimately apoptosis. The effects of increasing fBHP concentrations on 

cell viability and GSH levels are reported in Figure 1. Concentrations from 0.25 mM to 

4.0 mM significantly decreased cell viability in a dose-dependent manner. The effect of 

tBHP concentration on GSH levels and cell morphology were also considered for 

selection of an appropriate concentration of fBHP for subsequent experiments. tBHP 

concentrations from 0.4 mM to 0.8 mM resulted in a statistically significant decrease in 

levels of intracellular GSH, which correlates with the dose-dependent decrease in cell 

viability.

Figure 1. A. Plot of cell viability vs. fBHP concentration. The height of the columns 
indicates the mean viability from 9 experiments. Error bars indicate standard deviation. 

B. Plot of intracellular GSH concentration vs. fBHP concentration. The height of the 
columns represents the mean of 3 experiments. Error bars indicate standard deviation. 

****p < 0.0001 compared to control. ***p < 0.001 compared to control. *p < 0.05
compared to control.

Upon comparing the effects of tBHP on GSH levels and cell morphology, it was 

noted that at 0.6 mM fBHP, GSH had decreased by approximately 50%, but at 0.8 mM,



cells lost adhesion, which interfered with analysis and weakened integrity of the model 

overall. A tBHP concentration of 0.6 mM struck the best balance between oxidative 

damage and maintenance of normal cell morphology. Therefore, 0.6 mM tBHP was 

selected for subsequent experiments. Although this tBHP concentration is relatively high, 

the A549 cell line is reportedly resistant to oxidative insult [39].

In the next set of experiments, a variety of MPG concentrations from 1.0 to 5.0 

mM were tested in different groups to determine the appropriate concentration for 

protection against oxidative stress induced by 0.6 mM tBHP. Intracellular GSH levels 

were used to assess the effectiveness of each dose, and the results are shown in Figure 2.
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MPG + tBHP

Figure 2. Plot of intracellular GSH concentration vs. dosing concentration of MPG. The 
height of the columns represents the mean of 3 experiments. Error bars indicate standard 
deviation. ****p < 0.0001 compared to tBHP only. **p < 0.01 compared to tBHP only.

Concentrations ranging from 1.0 mM to 5.0 mM MPG afforded significant 

improvement in GSH levels compared to untreated, tBHP-exposed cells, but cells treated



with 5.0 mM MPG exhibited the highest GSH levels. Since preliminary experiments 

showed concentrations of MPG up to 10 mM to be nontoxic to A549 cells, treatment with 

5.0 mM MPG was deemed an appropriate treatment for tBHP-induced oxidative stress 

for the remainder of the study.

3.2. EFFECT OF MPG ON INTRACELLULAR GSH IN OXIDATIVELY 
CHALLENGED A549 CELLS

To confirm the effects of 5.0 mM MPG on intracellular GSH levels in A549 cells, 

the cells were divided into groups as discussed in the experimental design and seeded as 

described earlier. The results of the intracellular GSH analyses are reported in Figure 

3A.The data were normalized by the amount of protein present in each sample to account 

for differences in viable cell count. Exposure to tBHP without MPG resulted in a 

significant decrease in intracellular GSH levels compared to the control group. Cells 

treated with MPG, either with or without tBHP, had GSH levels that were not 

significantly different from that of the control group. Therefore, administration of 5.0 

mM MPG with 0.6 mM tBHP was effective for preventing loss of free GSH, and MPG 

alone does not increase GSH levels beyond that of the control group. These results are 

consistent with the hypothesis that GSH levels are spared by the action of MPG as 

opposed to being directly increased.

3.3. EFFECT OF MPG ON VIABILITY OF OXIDATIVELY CHALLENGED 
A549 CELLS

To determine whether MPG could protect cells from tBHP-induced loss of 

viability, the MTT assay was used as an indicator of cellular metabolism. This assay is
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based on the ability of metabolically active cells to reduce MTT to an insoluble, colored 

formazan product that can be measured spectrophotometrically. Cell viability for each 

treatment group is reported in Figure 3B as a percentage of absorbance at 570 nm 

compared to that of the control group. As was the case in our preliminary studies, cells 

exposed to 0.6 mM fBHP without MPG exhibited significantly less viability compared to 

the cells in the control group, and the viability of cells in the MPG + tBHP group was 

statistically similar to that of the cells in the control group. Treatment of A549 with 5 

mM MPG alone also did not increase or decrease cell viability.

Figure 3. A. Plot of treatment vs. intracellular GSH concentration. The height of the 
columns indicates the mean of 9 experiments and error bars represent the standard 

deviation. B. Plot of treatment vs. cell viability. The height of the columns indicates the 
mean of 14 experiments, and error bars represent the standard deviation. ****p < 0.0001

compared to control.

This trend closely parallels that of intracellular GSH levels and makes sense in the 

context of the biochemistry behind the MTT assay. The reduction of MTT to formazan is 

sensitive to decreases in available NADPH [40]. The NADPH cofactor serves as the 

reductant for a host of anabolic processes, as well as the reduction of oxidized glutathione



to its active reduced form. Thus, gross metabolic dysfunction resulting from tBHP is 

manifested in the inability of oxidatively damaged, dying cells to reduce MTT and 

regenerate GSH from its oxidized form. In contrast, cells treated with MPG exhibited 

marked improvement in both cell viability and GSH levels. We hypothesize that this is 

due to the following effects of MPG. As a thiol antioxidant that can directly reduce 

tBHP-derived ROS, MPG can spare GSH from oxidation, leaving cellular GSH stores 

largely intact. In preventing oxidation of GSH, MPG also preserves NADPH for use in 

reductive biosynthesis and conversion of MTT to formazan.

3.4. EFFECT OF TREATMENT ON APOPTOTIC AND NECROTIC CELL 
POPULATIONS

Flow cytometry is a well-established technology that has been widely used for 

measuring intrinsic and extrinsic properties of fluorescently labeled cells. This property 

permits the identification of subpopulations within the sample, and quantification of cell 

populations through selective fluorescence labeling. While microplate readers provide 

rapid data acquisition, the accuracy of the measurements suffers since the end value 

corresponds to the average fluorescence per well while flow cytometry provides 

information at the single-cell level. For this analysis, cells were labeled with 7-AAD and 

Annexin V Alexa 647 to investigate live, necrotic, and apoptotic cell populations. Live 

cells are not typically permeable to 7-AAD. Cells in early apoptotic stages bind only to 

Annexin V Alexa 647, while cells in late apoptotic stages bind to both Annexin V Alexa
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647 and 7-AAD. Necrotic cells bind to 7-AAD, but not Annexin V Alexa 647.
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Representative dot-plots from the flow cytometry analysis are provided in Figure

4. The mean distributions of cells among apoptotic, necrotic, and viable cell populations 

from 8 replicate experiments are summarized in Table 2.
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Figure 4. Representative dot-plots from flow cytometry analysis of apoptotic cells. 
Shown are plots of fluorescence associated with Annexin V Alexa 647 (FL-4) vs. 7-AAD

(FL-3) from different treatment groups.

Table 2. Effects of exposure to tBHP and treatment with MPG on viable, apoptotic, and
necrotic subpopulations.

Subpopulation
Cells in subpopulation (% of total cell population)t

Control MPG only tBHP only MPG + tBHP
Early apoptotic 3.1 ± 1.3 2.6 ± 0.9 4.3 ± 1.3 3.0 ± 0.7
Late apoptotic 2.3 ± 0.4**** 2.3 ± 0.6**** 11.2 ± 4.7 2.9 ± 0.7****
Viable 94.3 ± 1.2**** 94.5 ± 0.8**** 81.7 ± 8.2 93.5 ± 1.0****
Necrotic 0.4 ± 0.3 0.6 ± 0.4 2.8 ± 2.6 0.6 ± 0.6

t Mean ± SD of 8 experiments.
**** p  < 0.0001, compared to tBHP only group.
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As observed previously, the percentage of viable cells in the MPG + tBHP treated 

group was significantly higher than in the tBHP group. Further, the percentage of viable 

cells in the MPG + tBHP group was statistically similar to the percentages in the MPG 

only group and the control group. The same trend was observed within late apoptotic 

subpopulations. Exposure to 0.6 mM tBHP without MPG resulted in an elevated 

proportion of cells exhibiting fluoresence associated with binding of 7-AAD and Annexin 

V Alexa 647. However, cells treated with MPG, alone or with tBHP, were not 

significantly different from the control cells. These data suggest that exposure to 0.6 mM 

tBHP without MPG results in oxidative stress-associated apoptosis while treatment with 

MPG mitigates the damage that triggers this process. Although there does not appear to 

be a significant difference in the proportion of cells occupying the necrotic quadrant 

among groups, this can be attributed to the fact that cellular debris are excluded prior to 

quantitation. There was a significantly lower number of cells available for counting in the 

tBHP only group, compared to the other groups. This loss of countable cells is indicative 

of membrane disintegration associated with tBHP exposure.

3.5. DISTRIBUTION OF CELLS WITH ROS PRESENT IN APOPTOTIC AND 
NON-APTOPTOTIC SUBPOPULATIONS

Based on the results of GSH and MTT assays, we hypothesized that MPG 

prevents cell death by protecting cells from oxidative damage, and therefore, we would 

expect to see significantly higher levels of ROS in cells in the tBHP only group than in 

the other groups. To estimate the levels of intracellular ROS, carboxy-HsDCFDA was 

used to identify ROS+ cells. Carboxy-HsDCFDA is a membrane-permeable derivative of 

the fluorescent probe fluorescein. Upon cleavage of its acetate groups and oxidation by



intracellular ROS, the dye becomes trapped within the cell and fluoresces green [38]. 

Cells were co-stained with two other fluorescent probes, Annexin V Alexa Fluor 647 

conjugate and 7-AAD, and then the cells were subjected to flow cytometric analysis. 

Representative dot plots are shown in Figure 5. In this study, co-staining was used to 

differentiate between apoptotic and non-apoptotic cell subpopulations and to exclude 

necrotic cells since membrane leakage makes estimation of intracellular ROS unreliable.
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Figure 5. Representative dot-plots from flow cytometry analysis of ROS in apoptotic and 
live subpopulations. The cells were gated excluding debris. Viable cells were gated by 

exclusion of 7-AAD+ cells (FL-3) on 2D plots (live gate). The quantification of ROS was 
done using 2D plots of Carboxy-H^DCFDA (FL-1) vs. Annexin V Alexa 647 (FL-4).
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Table 3. Effects of tBHP exposure and MPG treatment on percentage of ROS+ cells in
apoptotic and live cell populations.

Subpopulation Cells in subpopulation (% of total cell population)*
Control MPG only tBHP only MPG + tBHP

ROS in apoptotic cells 1.7 ± 0.9 1.3 ± 0.8 3.6 ± 1.4 1.6 ± 0.6
ROS in live cells 1.5 ± 0.5**** 2 2  + 1 1  **** 22.5 ± 2.3 4.2 ± 1.0****
Total ROS 3.3 ± 0.9**** 3.5 ± 1.6**** 26.1 ± 2.7 5.8 ± 1.1****

t Mean ± SD of 8 experiments.
**** p < 0.0001, compared to tBHP only group.

The results of the analysis (summarized in Table 3) indicate that there were 

indeed significantly more ROS detected in live cells treated with tBHP only than in any 

of the other groups. This correlates well with the GSH and cell viability results and is 

consistent with the supposition that MPG protects cells from oxidative stress by reducing 

ROS associated with exposure to tBHP.

Numbers of ROS+ cells in apoptotic subpopulations were low in all groups, and 

differences between these subpopulations did not reach statistical significance. Small 

subpopulations of apoptotic, ROS+ cells may be due to the exclusion of late-stage 

apoptotic and necrotic cells by gating out 7-AAD-fluorescent cells. As shown in Table 2, 

the tBHP only group had a significantly higher subpopulation of late-stage apoptotic 

cells, suggesting that tBHP-induces rapid progression to late-stage apoptosis or secondary 

necrosis [41]. Since these cells exhibit 7-AAD fluorescence, they would have been gated 

out and thereby excluded from the study [42].

3.6. DISTRIBUTION OF SUPEROXIDE PRESENT IN MITOCHONDRIA OF 
APOPTOTIC AND NON-APOPTOTIC POPULATIONS

Low levels of superoxide in mitochondria are generated as a result of normal

metabolic processes, but excessive amounts are associated with electron-transport chain
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dysfunction [43]. This can lead to decreased ATP production, loss of mitochondrial 

membrane potential, and ultimately opening of the mitochondrial permeability transition 

pore and initiation of the apoptotic cascade [44,45]. In this way, mitochondria are highly 

sensitive to fluctuations in redox status, [44] and may serve as a predictor of apoptotic 

response to acute oxidative insult [45].

MSR, a mitochondria-permeable dye, fluoresces upon oxidation by superoxide. 

Similar to the flow cytometric analysis of ROS+ cells, MSR was used to determine the 

percentage of cells with superoxide present in the mitochondria. Representative dot plots 

are shown in Figure 6.

Figure 6. Representative dot-plots of from flow cytometry analysis of superoxide in 
mitochondria. The total cells were gated excluding debris. Viable cells were gated by 

exclusion of Live/Dead green+ cells (FL-1) on 2D plots (live gate). The quantification of 
MSR+ cells was done using 2D plots of MSR (FL-2) vs. Annexin V Alexa 647 (FL-4).
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Table 4 shows the quantitative results as mean percentages of the total cell 

population. The percentage of MSR+ live cells in the MPG + tBHP group was 

significantly decreased compared to that in the tBHP only group. This indicates that MPG 

was able to preserve mitochondrial redox status. In light of the cell viability and GSH 

results, it may be the case that MPG prevents downstream release of mitochondria- 

derived ROS into the cell and halts progression towards apoptosis.

Table 4. Effects of exposure to tBHP and MPG on the percentage of MSR+ cells in
apoptotic and live cell populations.

Subpopulation
Cells in subpopulation  (% of total cell p o p u la tio n ^

Control M PG only tB H P only M PG + tBH P

M SR+ in ap op to tic cells 2.1 ± 0.5 2.0 ± 0.4 3.9 ± 1.3 2.3 ± 0.5

M SR+ in live cells 1.2 ± 0.4**** 1.3 ± 0.3**** 24.3 ± 3.2 8 .6  ± 1 .9 ****

Total M SR+ cells 3.2 ± 0.8**** 3.5 ± 0.5**** 28.2 ± 3.5 10.9 ± 2.2****
t Mean ± SD of 8 experiments.
**** p  < 0.0001, compared to tBHP only group.

4. CONCLUSIONS

In this study, tBHP was used to induce oxidative stress in A549 cells. Cells 

exposed to 0.6 mM tBHP without MPG showed elevated levels of intracellular ROS, 

mitochondrial superoxide, and cell death while also showing reduced levels of the vital 

antioxidant GSH and reduced cell viability. When 5.0 mM MPG was present along with 

0.6 mM tBHP, normal levels of these oxidative stress parameters were maintained. It is 

likely that MPG is interacting as a direct ROS scavenger, and the results obtained through 

this study suggest that if MPG is present in sufficiently high concentrations during an 

oxidative insult, it can be highly effective at preventing the ensuing damage. It is



probable that the MPG reacts directly with tBHP in the treatment medium, reducing it 

and its oxidative byproducts before they can cause significant damage to the cells. This 

action is desirable for treatment applications which demand protection against acute 

oxidative insult such as radioprotection, but it is important to consider the dosing 

conditions and timing since biological systems are inherently dynamic. This in vitro 

system lacks many of the complexities of in vivo models and is therefore subject to some 

limitations. Due to the robust nature of this lung carcinoma cell line, a relatively high 

dose of tBHP was required to model acute oxidative stress. Despite the popularity of this 

approach, it may not directly translate to in vivo systems. Thus, the results of this study 

warrant further investigation in more representative models, such as primary cell cultures 

and eventually animal studies.
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ABSTRACT

Tiopronin, formally 2-mercaptopropionylglycine (MPG), is currently prescribed 

to treat cystinuria and rheumatoid arthritis, and its antioxidant properties have led to its 

investigation as a treatment for cataracts, a condition in which oxidative stress is strongly 

implicated. To study its accumulation in the eye, a reliable, isocratic HPLC method was 

developed for the determination of MPG and its primary metabolite 2-mercaptopropionic 

acid (MPA) in plasma and relevant ocular tissues. This method utilizes pre-column 

derivatization and fluorescence detection. The 3.5 min separation enables high- 

throughput analysis, and validation experiments demonstrated that this method is suitable 

for evaluating ocular accumulation of MPG and MPA at concentrations as low as 66 and 

33 nM, respectively. Excellent linearity was achieved over the working concentration 

range with R2 > 0.997. Extraction recovery was reproducible within each matrix and

mailto:nercal@mst.edu


exceeded 97%. Accuracy was within 13.3% relative error, and intra- and inter-day 

precisions were within 6% CV and 7% CV, respectively. Sample stability was 

demonstrated under various storage conditions, and the use of an internal standard 

conferred exceptional ruggedness. This method has been successfully applied for the 

determination of MPG and MPA in plasma, cornea, lens and retina following 

intraperitoneal administration of the drug in Wistar rats.

1. INTRODUCTION
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MPG is a small-molecular weight synthetic aminothiol. It is also known by the 

generic name tiopronin. It is primarily used to treat cystinuria and rheumatoid 

arthritis.(Carlsson, Denneberg, Emanuelsson, Kagedal, & Lindgren, 1993) Its thiol 

moiety confers antioxidant properties such as the ability to scavenge free radicals 

(Castaneda-Arriaga, Vivier-Bunge, & Raul Alvarez-Idaboy, 2016) and undergo thiol 

disulfide exchange.(Lindell, Denneberg, & Jeppsson, 1995) It has also been investigated 

as a potential treatment for cataracts, (Ichikawa et al., 1980; Jiang, Sun, Shen, Wang, & 

Wang, 2009) in which oxidative stress has been strongly implicated.(Lou & Dickerson, 

1992; Truscott, 2005)

Although oral administration of MPG is most commonly used for cystinuria or 

rheumatoid arthritis patients (Carlsson et al., 1993), it is not an effective route for 

achieving appreciable concentrations of the drug in ocular tissues, especially the lens 

which lacks dedicated vasculature. Local, topical administration in the form of eye drops 

may allow for greater accumulation of the drug at its proposed site of action with lower



dosages and fewer side-effects, but only if sufficient concentrations can be achieved in 

the surrounding tissues to allow for diffusion or transport into the lens.Jarvinen,

Jarvinen, & Urtti, 1995) Unfortunately, rapid elimination in tear fluid and numerous 

anatomical barriers prevent accumulation of MPG in the lens when instilled as eye drops. 

Drug delivery vehicles may be able to overcome this obstacle, (Abdelkader, Alany, & 

Pierscionek, 2015; Jiang et al., 2009) but evaluating their efficacy for this application 

poses several key challenges. As shown in Figure 1, MPG is quickly metabolized to 2- 

mercaptopropionic acid (MPA) in plasma.(Hercelin et al., 1992)
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In addition, preliminary experiments in our lab suggest that MPA itself is a potent 

antioxidant, and simply measuring ocular tissue levels of MPG alone provides an 

incomplete picture of its fate and distribution after administration. An ideal method



would be able to simultaneously determine levels of MPG and its major metabolite, 

MPA.(Hercelin et al., 1992) In addition, a highly sensitive and specific method is 

necessary when working with very limited sample quantities and highly complex 

biological matrices such as rodent cornea or retina (Dalle-Donne & Rossi, 2009).

If the method is to be used for such analyses, validation in the matrices of interest 

is also important. In this case, the cornea, lens, and retina are of primary interest. The 

cornea is the foremost obstacle to ocular drug penetration, and understanding the drug’s 

interaction with this tissue may provide key insights for improving its ability to mediate 

effects in more posterior structures such as the lens.(Jarvinen et al., 1995) As cataracts 

are the result of oxidative damage to crystallin proteins in the lens, this tissue is the 

proposed primary site of action for MPG. Additionally, the lens serves as an antioxidant 

reservoir, (Lim, Umapathy, Grey, Vaghefi, & Donaldson, 2017) and applying MPG may 

help to restore redox balance, thereby inhibiting processes leading to opacification. The 

retina is highly metabolically active and therefore sensitive to disruptions to ocular redox 

balance. In addition, its proximity to the ocular blood supply can provide additional 

information regarding influx and elimination of MPG and MPA. Finally, because a large 

proportion of any drug instilled in eye drop form is eliminated by tear fluid and passes 

into the bloodstream, (Jarvinen et al., 1995) plasma levels of MPG and MPA are also of 

interest for understanding the ocular uptake of this drug. Finally, practical considerations 

such as ease of implementation and sample processing should be taken into consideration 

for experiments involving time-sensitive materials, such as biological tissues and drugs 

with labile thiol functional groups. In these cases, robust methods that offer rapid and

38



39

convenient quantification of drug concentration are preferred for high-throughput routine 

analyses.(McMenamin, Himmelfarb, & Nolin, 2009)

Other methods exist for determination of MPG in tissues.(Dalle-Donne & Rossi, 

2009) While most methods employ HPLC separation, detection methods vary. Some rely 

on UV detection, which can suffer from limited sensitivity and interference in complex 

matrices. Others employ mass spectrometric detection, which may not be accessible or 

practical in many cases. Fluorescence detection, on the other hand, is both highly 

sensitive and economical, making it the most popular method for detection of thiol 

compounds. (McMenamin et al., 2009) Indeed, our group has previously demonstrated 

successful quantification of biologically relevant thiols, including MPG, via 

derivatization with maleimide dyes and HPLC separation of the fluorescent adducts. 

(Penugonda, Wu, Mare, & Ercal, 2004; Ridnour, Winters, Ercal, & Spitz, 1999; Wu, 

Goldstein, Adams, Matthews, & Ercal, 2006) However, the method described here offers 

several significant improvements in terms of robustness, convenience, precision, 

accuracy, and analysis time. It also eliminates critical matrix interferences from lens 

samples which were not validated in the previous technique. It entails an isocratic RP- 

HPLC separation following pre-column derivatization of free thiols with ThioGlo-3, a 

maleimide-based fluorogenic probe (see Figure 2). Prior to derivatization, reduction with 

tris(2-carboxyethyl)phosphine (TCEP) and addition of an internal standard minimize 

effects of thiol oxidation during processing. The following validation studies demonstrate 

that this method can accurately and reliably quantify both MPG and its major metabolite 

MPA in ocular tissues and plasma at nanomolar concentrations.
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Figure 2. Derivatization of thiols with ThioGlo-3.

2. EXPERIMENTAL METHODS

2.1. CHEMICALS AND REAGENTS

MPG, MPA, N-acetylcysteine (NAC), TCEP, Tris-HCl, L-serine, and 

diethylenetriaminepentaacetic acid (DETAPAC) were all purchased from MilliporeSigma 

(St. Louis, MO, USA). Type I water was obtained using a Millipore Simplicity 185 water 

purification system. ThioGlo-3 was purchased from Covalent Associates, Inc. 

(Bellingham, WA, USA). All other reagents were purchased from Fisher Scientific 

(Pittsburgh, PA, USA). was adjusted to pH 7.4 with NaOH. All other reagents were 

purchased from Fisher Scientific. The injection vehicle for the animal study was a 

phosphate buffered saline (pH 7.4) consisting of 137 mM NaCl, 2.7 mM KCl, 8 mM 

Na2HPO4, and 1.5 mM KH2PO4. Serine borate buffer (SBB) consisting of 100 mM Tris- 

HCl, 5 mM L-serine, 10 mM H3BO3, and 1 mM DETAPAC was prepared in type 1 water 

and adjusted to pH 7.0 with NaOH.
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2.2. ANIMALS

All animal procedures were approved by the Missouri University of Science and 

Technology Animal Care and Use Committee. A litter of male Wistar rats weighing 12­

18 g were purchased from Charles River Laboratories (Wilmington, MA, USA). All 

animals were housed in a temperature-controlled room with a 12 h light-dark cycle. The 

rats were fed and watered ad libitum with Purina rat chow and municipal tap water. Six 

rats were fasted overnight prior to receiving an intraperitoneal injection of either MPG 

(250 mg/kg body weight) or vehicle alone. Forty minutes after receiving the injection, the 

animals were anesthetized, and blood was collected into heparin-coated Vacutainers (BD, 

Franklin Lakes, NJ, USA) via intracardiac puncture. The animals were euthanized and 

the whole eyes were immediately removed and carefully dissected in isotonic PBS to 

obtain the corneas, lenses, and retinas. Plasma was collected after centrifugation of whole 

blood samples at 2000 x g. All samples were stored in a freezer at -80°C until analysis.

2.3. SAMPLE PREPARATION

Corneas, lenses, and retinas were thawed and transferred to microcentrifuge tubes 

containing 500 pL of ice-cold SBB, spiked with 2.5 pM internal standard (NAC) and 75 

pM TCEP. The tissues were sheared in this buffer on ice using a Tissue-Tearor (BioSpec 

Products, Inc., Bartlesville, OK, USA). The samples were removed from ice and allowed 

to stand for 30 min for temperature equilibration and reduction of disulfide bonds. Matrix 

protein content was determined via the Coomassie dye-binding method described by 

Bradford. (Bradford, 1976) Briefly, Bradford dye reagent (Bio-Rad, Hercules, CA, USA) 

was diluted five-fold in SBB, and 2.5 pL of the working reagent was added to 50 pL of



tissue homogenate. The absorbance at 595 nm was recorded after 5 min. Aliquots from 

lens and retina homogenates were diluted 15-fold and 2-fold, respectively to keep protein 

levels within the working linear range for the Bradford assay. The homogenates were 

then centrifuged for 5 min at 11,000 x g. For derivatization, 100 pL of the supernatant 

solutions were transferred to tubes containing 25 pL of SBB and 375 pL of ThioGlo-3 

(33 pM in HPLC-grade acetonitrile). After 20 min, samples were acidified with 5 pL of 2 

N HCl, and then diluted with 250 pL of mobile phase component A.

Plasma samples were thawed, and 40-pL aliquots of plasma were diluted with 160 pL of 

SBB spiked with 2.5 pM internal standard and 75 pM TCEP, and allowed to stand for 30 

min. The diluted plasma samples were then centrifuged for 5 min. at 11,0000 x g. Then, 

125 pL of the supernatant solutions were transferred to tubes containing 375 pL of 33- 

pM ThioGlo-3. After 20 min, samples were acidified with 5 pL of 2 N HCl, and then 

diluted with 250 pL of mobile phase component A.

The samples were filtered into sampler vials using 0.2-pm nylon syringe filters (Fisher 

Scientific).

2.4. PREPARATION OF CALIBRATION STANDARDS

Calibration standards were prepared by spiking 25 pL of working solutions of 

MPG and MPA into 100 pL of pooled drug-free samples of the corresponding matrix, 

diluted in SBB spiked with internal standard and TCEP. The final concentrations of NAC 

and TCEP all of the calibration standards were 331 nM and 9.93 pM, respectively. 

Calibration standards were prepared at 9 levels over the range of 66.2 -  1656 nM for
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MPG and 33.1 -  828 nM for MPA.
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2.5. HPLC PARAMETERS

A Thermo Scientific Dionex UltiMate 3000 Series HPLC system equipped with a 

Dionex LPG-3400-SD pump, a Dionex ACC-3000 autosampler, and a Dionex FLD-3100 

fluorescence detector was used for the duration of this study. The analytes were separated 

in a Kinetex Ci8 column (75 mm x 4.6 mm i.d.) with 2.6-pm superficially porous 

particles (Phenomenex, Torrance, CA, USA). The column oven was set to 30°C. The 

mobile phase was prepared by on-line mixing of two components (isocratic 1:1 blend). 

Component A was prepared by diluting 1.00 mL of 85% H3PO4 (HPLC-grade) to 900 mL 

with Type 1 water, adjusting the pH to 2.46 by dropwise addition of NaOH, and diluting 

to a final volume of 1 L. Component B was prepared by mixing 200 mL of component A 

with 800 mL of HPLC-grade acetonitrile. Both components were filtered using 0.22-pm 

nylon membrane filters (Foxx Life Sciences, Salem, NH, USA) and degassed prior to 

use. The mobile phase was pumped at a flow rate of 3.0 mL/min. Separation was 

completed within 3.5 min. The xenon lamp was operated in “Standard” mode, and the 

detector sensitivity settings were adjusted according to the timetable shown in Table 1.

Table 1. Detector settings

Tim e,
min

Excitation A, 
nm

Em ission  A, 
nm

Sensitivity
level*

0.000 365 445 1

0.760 365 445 5

1.900 365 445 8

*Each sensitivity level represents an 8-fold increase in detector response.
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2.6. METHOD VALIDATION

Validation of the method described here was performed in accordance with the 

USP and ICH guidelines. Specific definitions and approaches to the parameters validated 

are given below:

2.6.1. Selectivity. Selectivity was determined for each matrix. Spiked and 

unspiked samples of each matrix taken from six different animals were individually 

processed and analyzed as described above. Chromatograms from spiked and unspiked 

samples were compared to determine whether there were any endogenous sources of 

interference with the NAC, MPG, and MPA peaks.

2.6.2. Linearity and LLOQ. Linearity was assessed from calibration standards 

prepared at nine concentration levels for each matrix. Standards for each calibration point 

were prepared in triplicate. Concentration ranges were chosen to reflect those expected 

after administration of MPG. For each curve, the concentration of calibration standards 

was plotted against the analyte’s peak area relative to that of the internal standard. 

Calibration curves were calculated by unweighted linear least-squares regression. The 

LLOQ in each matrix was accepted as the lowest standard concentration point on the 

curve that exhibited less than 20% RSD from the mean and less than 20% relative 

deviation from the target concentration.

2.6.3. Sample Stability. The stability of the processed samples was evaluated for 

typical storage conditions, including storage on the autosampler tray at 30°C for up to 12 

hours, at 4°C for up to one week, and after three freeze-thaw cycles from -80°C. Stability 

of MPG and MPA in sample matrix was also evaluated over 3 hours at room temperature 

and 48 hours at -80°C. The determination of sample stability was made using triplicate
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samples matrices spiked with low (166 nM MPG, 83 nM MPA) and high (662 nM MPG, 

331 nM MPA) levels of MPG and MPA. Stability was reported as the ratio of the 

detector response obtained from samples subjected to the indicated storage conditions to 

that of replicate samples injected immediately.

2.6.4. Precision, Accuracy, and Recovery. Precision, accuracy, and relative 

recovery were evaluated in each matrix spiked with high (662 nM MPG, 331 nM MPA), 

medium (331 nM MPG, 166 nM MPA), and low (166 nM MPG, 83 nM MPA) levels of 

MPG and MPA. Five replicate samples were analyzed for each level. Intra-assay 

precision is reported as the coefficient of variation (%CV) of five replicate samples 

analyzed in the same analytical run. Inter-assay precision is reported as the %CV for 15 

replicate spiked samples processed over three different days by two different analysts 

with freshly prepared reagents. For determination of relative recovery, spiking solutions 

of MPG and MPA were added to samples prior to sample processing. The recovery is 

reported as the ratio of the detector response from samples spiked before processing to 

the response obtained from analogous samples spiked just prior to derivatization.

3. RESULTS AND DISCUSSION

MPG is an important pharmaceutical for the management of diseases such as 

cystinuria and rheumatoid arthritis, and its antioxidant properties may find use in a 

number of oxidative stress-related conditions, including cataracts and other age-related 

eye diseases. For this purpose, it is necessary to understand the distribution of MPG and 

its major metabolite MPA in ocular tissues as well as its absorption into the bloodstream.



Moreover, preliminary experiments conducted in our lab suggest that MPA is also a 

potent free radical scavenger, and as such, an important contributor to the therapeutic 

effects of MPG. In recent years, drug delivery vehicles have emerged as a promising 

strategy for increasing drug penetration and residence in the eye. However, in order to 

evaluate their ability to increase MPG concentrations in the eye, a sensitive and reliable 

method for monitoring MPG levels in ocular tissues needed to be developed and 

validated.

3.1. CHROMATOGRAPHY

The method described herein is based on one previously developed by our group 

(Penugonda et al., 2004). However, the newer method offers several key advantages over 

the original and overcomes some key limitations. Although the method described by 

Penugonda et al. was suitable for determination of MPG in a number of other biological 

matrices, it was not suitable for our more recent studies investigating ocular drug uptake. 

This was mainly due to the presence of endogenous compounds that would co-elute with 

MPG. As a result, it was necessary to modify and re-validate the method for this 

application. In order to achieve the separation required to eliminate the interference, a 

column with higher efficiency was selected, and a new mobile phase composition was 

optimized based on the results of typical scouting gradient experiments.

Some representative chromatograms are shown in Figure 3. ThioGlo-3 alone 

produced a detectable peak at 3.4 min. Addition of TCEP gave rise to a high intensity 

peak that is retained for 0.5 min, and a lower intensity peak with a retention time of 1.7 

min. The internal standard, NAC, is retained for 1.1 min. Derivatization of MPG and
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MPA gave rise to two peaks each. Derivatized adducts of MPG were eluted after 1.3 min 

and 1.4 min, and adducts of MPA were eluted after 2.3 min and 2.5 min.

Figure 3. Overlay of representative chromatograms from samples containing A, ThioGlo- 
3 in sample diluent; B, ThioGlo-3 + TCEP; C, ThioGlo-3 + TCEP + NAC; D, ThioGlo-3 
+ TCEP + NAC + MPA; E, ThioGlo-3 + TCEP + NAC + MPG + MPA. The peaks are 

associated with the indicated analytes 1, NAC; 2,3, MPG; 4,5, MPA.

MPG and MPA are both chiral thiols, each containing a single stereocenter. When 

these chiral thiols react with a maleimide probe such as ThioGlo-3, a second stereocenter 

is formed as shown in Figure 4. Thus, four stereoisomers are possible. (Kullman et al., 

2000) We hypothesize, therefore, that the two diastereomeric pairs were separated due to 

the increased chromatographic efficiency of this method. Although multiple products 

were formed following derivatization of MPG and MPA, quantitation was not 

significantly hindered. The formation of fluorescent adducts following derivatization with
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ThioGlo-3 was quantitative and reproducible, and the results were consistent when using 

MPG sourced from different manufacturing lots. Furthermore, baseline resolution was 

achieved for all relevant peaks across the working concentration range (resolution > 2.07, 

USP). For determination of MPG and MPA, the greatest precision and accuracy were 

achieved by integrating the peaks eluting at 1.4 min for MPG and 2.3 min for MPA.

Figure 4. Derivatization of thiols containing a stereocenter gives rise to products with two
stereocenters.

As an isocratic separation that is completed within 3.5 min, this method requires 

only 12 mL of mobile phase per run, only 40% of which is organic solvent. Furthermore, 

this method offers greater sensitivity than those utilizing UV detection and poses less of 

an economic barrier to researchers compared to methods utilizing LC-MS, which can be 

prohibitively expensive to acquire and maintain. Thus, the method described here is 

faster, more economical, and more environmentally friendly than many existing 

techniques.
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3.2. SELECTIVITY

Figure 5 shows representative chromatograms obtained from the analysis of 

spiked and unspiked plasma, cornea, lens, and retina extracts. The matrices investigated 

did not contain any detectable, endogenous compounds that would co-elute and interfere 

with the analytes of interest. Most of the endogenous aminothiols such as GSH, cysteine, 

homocysteine, and CysGly elute within the first 60 seconds. The derivatization technique 

coupled with the separation and detection method produces interference-free 

chromatograms, making the technique selective for NAC, MPG and MPA.

3.3. LINEARITY AND LLOQ

The calibration curves (sample shown Figure 6) were created by plotting the 

concentration of calibration standards vs. the analyte’s peak area relative to that of the 

internal standard. The regression data from each calibration curve is summarized in Table

2. The linear ranges achieved for MPG and MPA in each of the matrices were suitable for 

determinations in real samples. The smallest level on the calibration curve that was 

accurate within 20% of the target concentration and with less than 20%RSD was 

accepted as the LLOQ for MPG and MPA in each matrix. The LLOQs achieved ranged 

from 66 -  99 nM for MPG and were < 33 nM for MPA per 10 pL injection.Given the 

drug availability challenges associated with the eye and the relatively small size of the 

ocular tissues, low LLOQs are necessary for studies investigating ocular drug uptake and 

retention. This is difficult to achieve with other methods available such as those utilizing 

UV detection; however, the use of fluorescence detection offers much higher 

sensitivity.(Kusmierek, Chwatko, Glowacki, & Bald, 2009) One disadvantage resulting



from the separation of stereoisomers of MPG and MPA is that the LOD and LLOQ are 

increased; however, the limits were still suitable for our applications.
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Figure 5. Representative chromatograms from processed tissue samples. Each plot 
depicts an overlay of the spiked matrix (B) on top of the unspiked matrix (A). Spiked 

matrices contained 500 pmol of NAC, 500 pmol of MPG, and 250 pmol of MPA during 
derivatization. Unspiked matrices contained 500 pmol of NAC. Peak labels: 1, NAC ; 

2,3, peaks arising from MPG derivatization; 4,5, peaks arising from MPA derivatization.
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Figure 6. Calibration curves for MPG (left) and MPA (right) diluted in SBB. The solid 
black dots represent the mean response from three replicate injections.

Table 2. Summary of linear regression

Matrix Analyte Regression equation R2 Linear 
range, nM LLOQ, nMa

SBB MPG y = 0.1904x - 8.319 0.9991 66 - 1656 99.34
MPA y = 0.4078x - 1.616 0.9997 33 - 828 33.11

Plasma MPG y = 0.0566x - 2.9861 0.9979 66 - 828 66.23
MPA y = 0.778x - 6.1789 0.9998 33 - 828 33.11

Cornea MPG y = 0.1958x - 12.1028 0.9987 66 - 1656 66.23
MPA y = 0.442x - 3.085 0.9998 33 - 828 33.11

Lens MPG y = 0.2363x - 11.5415 0.9997 66 - 1656 66.23
MPA y = 0.738x - 6.9977 0.9997 33 - 828 33.11

Retina MPG y = 0.2171x - 15.8672 0.9973 66 - 1656 99.34
MPA y = 0.4418x - 2.9531 0.9999 33 - 828 33.11

aLLOQ is given for an injection volume of 10 pL.

3.4. SAMPLE STABILITY

Due to the oxidizable nature of the aminothiol analytes and the nature of the 

sample, it is important to ensure that the sample will be stable enough under typical 

storage and exposure conditions to be reliably analyzed. Since aminothiols are prone to 

oxidation, it is recommended to derivatize or otherwise stabilize the samples as soon as 

possible. Spiked matrix samples left at room temperature for 3 hours or frozen at -80°C



for 48 hours before reduction and derivatization provided results within 2% deviation 

from samples injected immediately. Processed samples were evaluated at 30°C for up to 

12 hours to ensure stability while queued on the autosampler rack. Additionally, stability 

was evaluated after storage for 1 week at 4°C, as well as after three freeze-thaw cycles. 

The results of these experiments are summarized in Table 3. After the samples have been 

processed, they are stable beyond typical handling conditions. All samples were stable at 

30°C for at least 12 hours. Acceptable stability was also achieved after storage for up to 

one week at 4°C, and after three freeze-thaw cycles of samples stored at -80°C.
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Table 3. Stability of derivatized samples

30°C 30°C 4°C Three freeze-thaw
Spike 6 hours 12 hours 1 week cycles
Levela --------------------------------------------------------------------------------------------------------------

MPG MPA MPG MPA MPG MPA MPG MPA

SB
B L 101.9% 97.2% 99.6% 96.9% 96.2% 103.7% 95.9% 98.3%

H 98.6% 98.2% 98.9% 96.2% 99.4% 105.7% 96.1% 93.6%

Pl
as

m
a L 96.3% 103.9% 97.6% 99.2% 97.6% 112.2% 97.6% 105.7%

H 99.9% 98.3% 103.2% 95.3% 100.4% 100.0% 100.5% 96.8%

C
or

ne
a L 99.5% 97.8% 101.7% 93.8% 100.6% 101.5% 99.2% 98.3%

H 100.0% 100.5% 100.8% 99.8% 99.0% 99.6% 98.9% 96.3%

Le
ns

L 98.0% 98.0% 98.3% 95.7% 97.8% 104.2% 97.7% 103.5%

H 99.3% 97.2% 99.4% 95.0% 99.1% 103.1% 97.7% 99.8%

R
et

in
a L 100.0% 100.9% 99.1% 99.8% 97.3% 110.2% 98.1% 111.9%

H 101.0% 100.3% 101.8% 97.9% 97.0% 100.0% 97.7% 100.7%

a Spike levels: L, 166 nM MPG, 83 nM MPA; H, 662 nM MPG, 331 nM MPA
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The convenient one-step reduction and addition of internal standard provides for 

greater sample stability with respect to oxidation, evaporation, and processing. 

Furthermore, the reduction step allows for determination of total MPG and MPA, by 

freeing up protein bound MPG and MPA or other mixed disulfides. This is particularly 

important, as their hypothesized mechanisms of action involve thiol-disulfide exchange, 

indicating that a significant portion of MPG and MPA may be oxidized at their sites of 

action.

3.5. PRECISION, ACCURACY, AND RECOVERY

Precision, accuracy, and relative recovery were determined according to the USP 

and ICH guidelines. The results are summarized in Table 4.

Table 4. Precision, accuracy, and recovery
Precision Accuracy Relative Recovery

Matrix Spike
Levela

Intra-day
(%CV)

Inter-day
(%CV) (%RE) (%, mean ± S.D.)

MPG MPA MPG MPA MPG MPA MPG MPA
SBB L 0.51 1.11 3.00 2.16 10.14 -3.85 n.a. n.a.

M 0.34 1.38 2.28 2.23 1.99 -3.72 n.a. n.a.
H 0.16 0.52 0.56 1.07 0.74 -1.13 n.a. n.a.

Plasma L 4.15 3.03 6.99 3.65 -10.25 5.16 111.3 ± 2.39 97.4 ± 2.36
M 5.40 0.76 5.89 2.83 -8.74 1.50 104.5 ± 4.43 98.8 ± 1.56
H 2.59 1.29 2.72 2.32 -13.25 -1.19 111.4 ± 8.07 102.4 ± 1.13

Cornea L 0.65 0.98 3.40 1.32 -3.06 -2.49 98.3 ± 0.14 100.1 ± 1.71
M 0.29 0.55 2.09 1.68 5.42 -4.14 96.4 ± 0.59 102.3 ± 0.61
H 0.10 0.30 0.78 0.67 5.66 -4.26 99.9 ± 1.60 102.0 ± 0.38

Lens L 2.04 2.17 4.50 2.67 -4.63 5.45 110.9 ± 2.96 99.1 ± 4.08
M 0.60 1.01 3.61 1.48 -7.31 0.98 111.7 ± 0.53 102.5 ± 1.50
H 0.60 0.69 1.23 0.75 -5.02 1.77 111.3 ± 0.72 102.5 ± 1.97

Retina L 0.84 1.95 1.01 2.28 4.11 -3.34 99.4 ± 0.45 104.5 ± 0.34
M 0.21 0.67 1.96 2.25 0.43 -2.76 99.5 ± 1.43 103.3 ± 0.50
H 0.26 0.30 1.16 1.04 1.26 -4.79 101.4 ± 1.92 105.0 ± 0.36

a Spike levels: L, 166 nM MPG, 83 nM MPA; M, 331 nM MPG, 166 nM MPA; H, 662 nM
MPG, 331 nM MPA
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Intra-day and inter-day precision for all samples were below 5.5% and 7.0% RSD, 

respectively. Determinations in plasma samples were accurate within 13.3% of the spiked 

concentration while those from ocular tissues were accurate within 7.4% of the spiked 

concentration. The relative recovery was consistent across low, medium, and high spikes 

of MPG and MPA within matrices. All values were within the acceptability criteria.

3.6. DETERMINATION OF MPG AND MPA IN PLASMA AND OCULAR 
TISSUES

The method validated as described above was successfully applied for the 

simultaneous determination of MPG and MPA in Wistar rat plasma and ocular tissues 

following injection of MPG. Wistar rats were administered PBS or MPG (250 mg/kg 

body weight) by intraperitoneal injection. This dose is relatively high compared to those 

used in human patients, which was necessary in order to observe even low levels of MPG 

in ocular tissues. None of the animals were given MPA. Samples were processed as 

described in the methods section. The results are summarized in Table 5.

Table 5. MPG and MPA concentration in Wistar rat tissues 40 min after intraperitoneal
administration of MPG

Sample [MPG] [MPA]
Mean ± Standard Deviation (N = 3)

Plasma 88.30 ± 9.13 pM 9.13 ± 3.50 pM

Cornea 11.93 ± 1.36 nmol/mg protein 1.36 ± 1.06 nmol/mg protein

Lens 0.41 ± 0.12 nmol/mg protein 0.12 ± 0.07 nmol/mg protein

Retina 2.43 ± 1.42 nmol/mg protein Not detected



No MPG or MPA was detected in samples collected from animals injected with 

PBS. Both MPG and MPA were present in plasma, cornea, and lens samples from the 

animals that were injected with MPG. Since MPA was not detected in the animals 

injected with PBS, this indicates that MPG was metabolized to MPA following injection. 

The retina did not contain detectable levels of MPA, but low levels of MPG were present.

Although a similar method for analysis of MPG in biological tissues was 

developed in our lab and described by Penugonda (Penugonda et al., 2004), endogenous 

interferences prevented determination of MPG in lens tissue, and thus it was unsuitable 

for evaluating ocular uptake of MPG. Furthermore, the method described here offers a 

number of significant improvements over the previous method: First of all, this method 

simultaneously measures concentrations of MPA as well as MPG. In addition, TCEP 

reduction allows for determination of total MPG, comprising its oxidized and reduced 

forms. The current method’s use of an internal standard greatly improves accuracy and 

robustness. Finally, the new method is twice as fast. Therefore, this method is more 

suitable for evaluating drug delivery vehicles designed to enhance the ocular uptake of 

MPG.
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4. CONCLUSION

A reliable HPLC-FLD method was developed for simultaneous determination of 

MPG and its major metabolite, MPA. Because this drug exhibits potential as an 

antioxidant treatment for cataracts, the method was validated in ocular tissue matrices

and plasma for the purpose of monitoring the uptake and distribution of the drug
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throughout treatment. The method was successfully applied to the analysis of plasma and 

ocular tissues of animals injected with MPG, wherein both analytes MPG and MPA were 

detected in animals treated with the drug. While other techniques for the analysis of MPG 

exist, the method described here accomplishes it isocratically in under 4 minutes with 

widely available instrumentation. Moreover, the reduction step and internal standard 

confer stability with respect to oxidation during processing and other variations in sample 

handling, making this method ideal for routine analysis of MPG and MPA in both basic 

research and clinical settings.
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ABSTRACT

Tiopronin is an FDA-approved thiol drug currently used to treat cystinuria and 

rheumatoid arthritis. However, due to its antioxidant properties, it may be beneficial in a 

variety of other conditions. One primary obstacle to its wider application is its limited 

bioavailability, which necessitates administration of high systemic doses to achieve 

localized therapeutic effects. Incorporation of a drug delivery vehicle can solve this 

dilemma by providing a means of controlled, targeted release. Functionalized 

nanodiamond is a promising theranostic platform that has demonstrated great potential 

for biomedical applications, including drug delivery. Design of nanodiamond theranostic 

platforms requires comprehensive understanding of drug-platform interactions, and the 

necessary physical chemical investigations have only been realized for a limited number 

of compounds. Towards the long-term goal of developing a nanodiamond-tiopronin 

treatment paradigm, this study aims to shed light on the effects of nanodiamond surface
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mailto:nercal@mst.edu
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chemistry on adsorption and release of tiopronin. Specifically, adsorption isotherms were 

measured and fit to Langmuir and Freundlich models for carboxylated, hydroxylated, and 

aminated nanodiamonds, and release was monitored in solutions at pH 4.0, 5.8, 7.3, and

8.1. Our results indicate that aminated nanodiamonds exhibit the highest loading capacity 

while hydroxylated nanodiamonds are the most effective for sustained release. Therefore, 

a high degree of flexibility may be afforded by the use of nanodiamonds with different 

surface chemistries optimized for specific applications.

Keywords: Nanodiamond; Functionalization; Adsorption; Desorption; Drug delivery

1. INTRODUCTION

Tiopronin is a low-molecular-weight thiol drug used for the treatment of 

rheumatoid arthritis and cystinuria. It has also demonstrated potential benefits in a variety 

of other conditions, including heavy metal1 and radiation poisoning,2 and cataract.3 A 

primary mechanism of its action in these conditions is the direct scavenging of free 

radicals and maintenance of healthy levels of glutathione (GSH), a vital antioxidant and 

the body's most abundant non-protein thiol.4-5However, the effectiveness of tiopronin is 

limited by its bioavailability. Tiopronin is weakly acidic and becomes deprotonated at 

physiological pH. The negatively charged conjugate base (Figure 1) cannot easily 

penetrate the low polarity lipid bilayer of cell membranes. Furthermore, when 

administered topically, insufficient residence time on physiological barriers such as the 

skin or cornea can severely curtail its uptake and deeper penetration into tissues.6 These 

effects necessitate the administration of higher dosages, increasing the risk and severity



of adverse side effects. It is therefore desirable to provide a means by which small 

hydrophilic molecules such as tiopronin can be transported and released in a controlled 

manner at their desired site of action. Towards this end, drug delivery vehicles offer a 

promising alternative to the large systemic doses of neat drug and excipient used 

currently.7 For example, it has been shown that poloxamer hydrogels significantly 

enhanced uptake and effectiveness of tiopronin in a rat model of age-related nuclear
ocataracts.8

61

In addition to providing controlled transport and release of a well-defined and 

therapeutically consequential payload, drug delivery vehicles must be highly 

biocompatible and stable under formulation conditions (which may include autoclaving 

or irradiation). Sustained release is also desirable, given that the conditions mentioned 

above may be long-term or chronic illnesses. In these respects, hydrogels present many 

challenges with regard to chemical stability, longevity, and especially sustained and 

controlled release.9 Nanodiamonds (NDs), however, are not subject to these limitations. 

Detonation nanodiamonds, which are inexpensive and commercially available, are 

nontoxic and are considered the most biocompatible of all carbon nanoparticles.10 Each 

ND particle possesses a core of sp3 hybridized carbon that is chemically inert and similar 

to bulk diamond, while the surface comprises fully exposed, covalently attached



functional groups that can be tailored for optimal interaction with the drug payload and 

environment.10-11 Modification of surface chemistry affords a high degree of control, 

specificity, and flexibility with respect to drug-ND interaction.12-14 Here we investigate 

the potential of ND as a promising candidate platform for delivery and sustained release 

of tiopronin.

A critical step in assessing the suitability of a drug delivery platform is to 

determine its capacity to carry and release the compound of interest. 

Adsorption/desorption is the simplest and therefore preferred mechanism of loading and 

release. It requires no chemical modification of the drug, which reduces risks of 

interfering with its biological activity.13 The rich surface chemistry of ND allows for a 

high degree of control over drug-ND interactions, which is exerted through the creation 

of functional groups such as -COOH, -OH, or -NH2 on the ND surface. Controlling ND 

surface chemistry can significantly affect loading capacity, strength of binding, and 

release of the desired drug.14 Because tiopronin is negatively charged at physiological 

pH, the electrostatic interaction between adsorbent and adsorbate can be tailored to 

optimize the drug delivery platform.

Although understanding adsorption and release is essential for development of 

ND-drug complexes capable of delivering well-defined dosages, these phenomena have 

been largely unexplored for ND as a carrier of tiopronin or other similar thiol drugs. By 

understanding the effects of surface functionalization on ^-potential, adsorption 

monolayer capacity, and cumulative drug release, we can determine the optimal surface 

chemistry for ND-mediated delivery of tiopronin for a variety of conditions. Consistent 

and reliable delivery of tiopronin and related compounds can pave the way for more
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targeted treatment regimens that produce the same therapeutic effects with significantly 

lower incidence of side effects.

2. EXPERIMENTAL METHODS

2.1. MATERIALS AND REAGENTS

UD90 ND powder was donated by NanoBlox, Inc. Tiopronin, tris(2- 

carboxyethyl)phosphine (TCEP), N-acetylcysteine (NAC), and K2HPO4 were purchased 

from MilliporeSigma (St. Louis, MO, USA). ThioGlo-3 was purchased from Covalent 

Associates Inc. (Bellingham, WA, USA). All other reagents were purchased from Fisher 

Scientific (Pittsburgh, PA, USA). Type 1 water was prepared in-house using a Millipore 

Simplicity 185 purification system (MilliporeSigma). Citrate-phosphate buffers were 

prepared to the desired pH by mixing 0.1 M citric acid with 0.2 M Na2HPO4 in varied 

ratios as shown in Table S1. The pH 8.1 buffer was prepared by dissolving 1.628 g of 

K2HPO4 and 0.089 g of KH2PO4 in type 1 water and then diluting to a final volume of 

100 mL in a volumetric flask.

2.2. PURIFICATION AND SURFACE MODIFICATION OF ND

To remove non-diamond carbon, 2.0 g of as-received ND were placed into a 50­

mL porcelain crucible and heated in air at 425°C for 2 hours in a Thermolyne 2L D1 

Benchtop Muffle Furnace (Thermo Scientific).15 Then, the NDs were refluxed overnight 

in 50 mL (1:1) volume of 35 wt. % aqueous HCl : 70 wt. % aqueous HNO3 to remove 

traces of metals and metal oxides and to hydrolyze surface anhydrides. The mixture was 

then allowed to cool to ambient temperature. Excess acids were removed by decanting
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followed by several cycles of rinsing and centrifuging with deionized water until the pH 

was neutral. Then, the mixture was dried in a desiccator with drierite under vacuum at 

ambient temperature for about two days, yielding a purified carboxylated ND (ND- 

COOH). This ND-COOH was used as a starting material for the synthesis of all other 

functionalized NDs in this work.

Aminated ND (ND-NH2) was produced in two stages: 1) conversion of ND- 

COOH to acyl chloride ND (ND-COCl), 2) reaction of ND-COCl with ethylenediamine 

(EDA).16 In the first stage, a mixture of 1.0 g of ND-COOH in a 100 mL round-bottom 

flask with a Teflon-coated magnetic stirrer bar, 50 mL thionyl chloride (SOCh), and 0.5 

mL of anhydrous dimethylformamide (DMF) as a catalyst was sonicated in an ultrasonic 

bath to break all visible ND agglomerates. The flask was then connected to a condenser 

closed with a drierite-filled drying tube and heated overnight under reflux at ~70 °C to 

yield ND-COCl. The flask was then cooled to ambient temperature, and excess SOCl2 

was removed by vacuum distillation at < 50 °C to suppress thermal decomposition of 

SOCl2. The residual solid was rinsed six times with 50 mL anhydrous THF, and excess 

THF was decanted. The solid was then dried overnight in a desiccator containing drierite 

under vacuum at ambient temperature. In the second stage, 1.0 g of dry ND-COCl was 

mixed with 50 mL anhydrous ethylenediamine in a 100 mL round-bottom flask 

containing a Teflon coated magnetic stirrer bar. The mixture was sonicated in an 

ultrasonic bath until all visible agglomerates of nanodiamond disappeared. The flask was 

then connected to a condenser closed with a drierite drying tube and heated overnight at 

~60 °C under reflux. After cooling to ambient temperature, ND-NH2 powder was 

precipitated, and excess EDA was gently removed using a pipette. The resulting ND-NH2



powder was rinsed six times with 50 mL fresh anhydrous THF to remove any traces of 

adsorbed EDA. A few drops of THF from the last wash were mixed with ~10 mL of 

deionized water, and the pH of the solution was measured to test for complete removal of 

EDA, as indicated by neutral pH. The resulting ND-NH2 was dried on a watch glass at 

room temperature in ambient air. Aminated ND was characterized as reported before.16

Hydroxylated ND (ND-OH) was synthesized as described previously.17 1.0 g ND- 

COOH was purged several times with argon gas in a 250-mL Schlenk flask containing a 

Teflon-coated magnetic stirrer bar. Anhydrous tetrahydrofuran (THF) was degassed by 

purging with argon gas for one hour. 5 mL of degassed THF was added to the Schlenk 

flask containing ND-COOH, and the mixture was sonicated to break all visible 

agglomerates. Then, 10 mL of a 2.0 M solution of lithium aluminum hydride (LiAlH4) in 

THF was added. The mixture was stirred overnight at ambient temperature under argon. 

The excess of (LiAlH4) was quenched by dropwise addition of 1 M HCl. Then, 1 M KOH 

was added until neutral pH. The product was rinsed and centrifuged several times with 

water and finally with acetone. The resulting ND-OH was dried overnight at 90 °C.

2.3. CHARACTERIZATION OF FUNCTIONALIZED ND

Transmission Electron Microscopy (TEM) was carried out using an FEI Tecnai 

G2 F20 S-TWIN transmission electron microscope equipped with field-emission gun, 

operated at 200 kV. TEM samples were prepared by drop-casting aqueous ND 

suspensions onto carbon-coated copper grids followed by drying in the ambient 

atmosphere. Additional structural information was obtained by small-area electron 

diffraction (SAED), performed using the same instrument. X-ray diffraction (XRD)
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analysis of as-received ND was conducted using a PANalytical X’Pert multipurpose 

diffractometer (Malvern Instruments, Ltd., Malvern, UK), powered by a Philips 

PW3064/60 X-ray generator with a Cu Ka (X = 1.540598 A) radiation source. Fourier 

Transform Infrared (FTIR) spectra were recorded using a Thermo Nicolet NEXUS 470 

FT-IR Spectrometer, in a range 400-4000 cm-1 with 1 cm-1 resolution. Pellets were 

prepared by pressing a mixture of 2 mg ND and 200 mg KBr under a load of 10-15 tons. 

A Zetasizer Nano ZSP and an MPT-2 multi-purpose titrator (Malvern Instruments, Ltd.) 

were used to determine Z-potential and size of the ND agglomerates as a function of pH 

(Z-potential titration) at 23 °C. For all NDs, 10 mL of 0.01 wt. % ND colloidal solution 

was used to measure Z-potential and average particle size with 0.5 pH steps over a pH 

range 2.0 -  9.0 with three measurements at each pH. To minimize initial aggregation, for 

negatively charged ND-COOH the starting pH was 9.0, and for positively charged ND- 

NH2 and ND-OH the starting pH was 2.0. The titrator was thoroughly cleaned and primed 

after every sample measurement to avoid contamination and remove air bubbles, and the 

pH probe was properly calibrated to ensure accurate results.

2.4. ADSORPTION STUDY

ND stock suspensions were prepared in pre-weighed, reinforced RINO 

microcentrifuge tubes (Next Advance, NY, USA) by dispersing functionalized NDs in 

type 1 water at a nominal concentration of 1.4 wt. %. The actual concentration of each 

stock solution was determined by weighing the NDs and the ND-water suspension. The 

NDs were dispersed by bombarding the outsides of the RINO tubes in a Bullet Blender 

Storm (Next Advance) at max speed for 10 min. The tubes were then sonicated in an
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ultrasonic bath for 20 min. The tubes containing ND stocks left to equilibrate to room 

temperature on a rotator. The contents of the tubes were vigorously vortexed immediately 

before any liquid transfer procedures. The density of each stock ND suspension was 

determined by weighing aliquots measured out with a volumetric pipette. The density 

was used to convert the concentration from mg ND/g solution to units of mg/mL. 

Appropriate dilutions were made to aliquots of ND stocks with type 1 water to yield a 

working concentration of 2.00 mg/mL. An 804 ppm stock solution of tiopronin was 

prepared by dissolving 80.4 mg of tiopronin in type 1 water in a 100-mL volumetric 

flask. All working solutions were prepared by dilutions of this stock solution. In 2-mL 

microcentrifuge tubes, 500 pL of 2.00 mg/mL ND working solutions were mixed with 

500 pL of the appropriate working tiopronin solution to produce samples containing 1 

mg/mL functionalized ND and 0-200 ppm tiopronin. The samples were thoroughly mixed 

by vortexing and placed on a rotator for 24 hours. After this time, the samples were 

placed in a centrifuge and subjected to 12,000 x g for 12 min. The supernatants were 

collected and centrifuged again at 12,000 x g for 12 min to remove any remaining NDs. 

Free tiopronin was determined in the supernatant using a sensitive HPLC technique 

described previously.18 Briefly, the supernatant was diluted as necessary, and 25 pL of 

supernatant was added to 100 pL of reducing buffer (75 pM TCEP and 2.5 pM NAC in 

pH 7.0 citrate-phosphate buffer). The sample was then derivatized by the addition of 375 

pL of 33 pM ThioGlo-3. The derivatized sample was acidified by the addition of 5 pL of 

2 M HCl and diluted with 250 pL of 15 mM H3PO4. Finally, the sample was filtered and 

subjected to HPLC analysis. The calibration standards were processed in parallel with the 

unknown samples.

67



68

2.5. RELEASE STUDY

The release study methodology was adopted from a previous investigation.13 

NDs were loaded with tiopronin by mixing 6.1 mL of 2.00 mg/mL ND in 15-mL 

centrifuge tubes with 6.1 mL of 80, 200, or 400 ppm tiopronin for ND-COOH, ND-OH, 

and ND-NH2, respectively. These concentrations were selected based on the maximum 

monolayer adsorption capacity of each ND type, as determined in the adsorption study. 

The tubes were placed on a rotator for 24 hours to equilibrate. After this time, 12 mL of 

each loaded ND sample was divided into 12 pre-weighed 2-mL microcentrifuge tubes. 

The loaded NDs were centrifuged as described previously, and the supernatants were 

carefully removed with a pipette. The supernatants were analyzed in the same manner as 

the adsorption samples to determine the amount of tiopronin adsorbed in each sample. To 

wash away unbound tiopronin, the loaded NDs were rinsed with 1000 pL of type 1 water. 

The samples were centrifuged to precipitate the NDs, and the water was carefully 

removed with a pipette. This step was repeated once more. After washing, the loaded ND 

precipitates were dried under vacuum in a Vacufuge Concentrator 5301 (Eppendorf, 

Hauppauge, NY, USA) heated to 60°C. The NDs were left to dry for at least 3 hours, 

until they had a dry, cracked appearance. The mass of ND remaining in each tube was 

determined by subtracting the weight of the empty tube from that of the tube with dried 

NDs. The weight of adsorbed tiopronin molecules was negligible. To investigate the 

relationship between pH and tiopronin release, the loaded NDs were divided into four 

groups per ND type (pH 4.0, 5.8, 7.3, and 8.1) with 3 replicates per group. The loaded 

NDs were resuspended by vortexing in a buffer solution with a pH corresponding to the 

group. The volume of buffer added was based on the mass of ND remaining in each tube



after rinsing and drying such that the ND concentration would be 1 mg/mL. The tubes 

were placed on a rotator during the desorption study. Every 24 hours, the tubes were 

centrifuged to precipitate the NDs as described previously. Sample volumes equal to 15% 

of the total buffer volume were collected from the supernatant solution for tiopronin 

analysis. This volume was replaced with an equal volume of fresh buffer, and the NDs 

were resuspended by vortexing. The tubes were then returned to the rotator. The samples 

were analyzed for tiopronin in the manner described in previous sections, however, 

separate calibration standards were prepared for each of the pH 4.0, 5.8, 7.3, and 8.1 

buffers to account for matrix effects during analysis (Figures S1-4). Determinations of 

statistical significance were made using two-way ANOVA followed by a Bonferroni post 

hoc test using GraphPad Prism 5.

3. RESULTS AND DISCUSSION

3.1. CHARACTERIZATION OF FUNCTIONALIZED ND

Representative TEM micrographs of ND-COOH are shown in Figure 2. Figure 

2A shows a low-resolution image of an ND-COOH sample, which reveals typical 

morphology of detonation nanodiamonds dried on TEM grid. The sample appears 

uniform, and although separate single nanodiamond particles were found in the sample, 

larger clusters were primarily observed. The high resolution TEM image of ND-COOH 

in Figure 2B shows 0.206 nm (111) d-spacing of crystalline diamond. The selected-area 

electron diffraction (SAED), shown in Figure 2C, confirms the diamond crystalline 

structure of the ND-COOH particles, with strong SAED rings corresponding to (111),
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(220), and (311) planes of ND with d-spacing of 0.206 nm, 0.127 nm, and 0.109 nm, 

respectively. The measured d-spacing values match well with the structure of cubic 

diamond. 19-20 XRD of the as-received ND (Figure 3A) shows three prominent peaks 

consistent with diffraction of diamond at 29 = 43.9°, 75.2° and 91.3° indexed as (111), 

(220) and (311) planes in cubic diamond.
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Figure 2. A. Low resolution and B. High resolution TEM micrographs of ND-COOH 
showing 0.206 nm d-spacing. C. Selected area electron diffraction pattern of ND-COOH 

sample consistent with small ND primary particle size and diffraction rings 
corresponding to the (111), (220), and (311) planes of diamond.

Surface chemistry of ND, ND-COOH, ND-OH and ND-NH2 was characterized 

by FTIR spectroscopy (Figure 3B-C). Figure 3C confirms covalent bonding of amino 

groups to ND surface in ND-NH2. The peaks at 3418 cm-1 present in all ND spectra 

correspond to O-H stretching vibrations and could be assigned to O-H or adsorbed 

water.21 The C-H stretch bands at ~2870 and ~2923 cm-1 originate from hydrogen atoms 

attached to ND surface, as well as from CH2 groups of EDA in ND-NH2. The bands at
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1637 cm-1 and ~3418 cm-1 in ND-NH2 arise from the bending and stretching modes of N- 

H as well as remaining O-H bonds.21-22 ND-NH2 amide peaks correspond to blue-shifted 

Amide I (1667 cm-1) and Amide II (1520 cm-1), as well as Amide III (~1320 cm-1)

(Figure 3C).22 A small C=O band at 1776 cm-1 in ND-NH2, suggests the presence of 

carbonyl species (carboxylic acids, ketones, esters, etc.) in the ND-NH2.16
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Am ide II O-H Amide I 
1520 1637 1667

O-H
O-H or N-H

n d -n h 2

ND-OH
100
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Figure 3. A. XRD pattern of as-received ND. B. FTIR spectra of as-received ND, ND- 
COOH, ND-OH, and ND-NH2. C. FTIR spectra of ND-COOH and ND-NH2 in the range 

of wavelength corresponding to Amide bands. Dashed lines indicate absorbance 
corresponding to major functional groups D. Z -potential vs. pH and E. Mean diameter of 
ND agglomerates vs. pH for ND-COOH (•), ND-OH (■), and ND-NH2 (▲). Reported as 

mean ± standard deviation. Arrows indicate direction of titration for each type of ND.
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The effect of pH on Z-potential was investigated for ND-COOH, ND-OH, and 

ND-NH2 (Figure 3D) to make predictions about electrostatic interactions between 

tiopronin and NDs. ND-COOH has a strongly negative Z-potential above pH 3.8 due to 

deprotonation of ND-COOH to ND-COO-. ND-OH has a moderately positive Z-potential 

in acidic and neutral pH with an isoelectric pH 7.9, above which a negative Z-potential 

was observed. The positive Z-potential in acidic pH may result from ND-OH protonation 

or the presence of hydrogen terminations (ND-H) formed during the preparation of ND- 

OH. ND-H has been previously reported to exhibit a highly positive Z-potential for 

reasons that are not entirely clear.22-23 ND-NH2 has a weakly positive Z-potential in acidic 

pH with an isoelectric pH 6.1, above which it has a weakly negative Z-potential. Although 

ND-NH2 is expected to have a more strongly positive Z-potential in acidic pH compared 

to ND-OH, contribution from remaining COOH groups in ND-NH2 (also seen in FTIR) 

results in a surface with mixed electrostatic affinity and a lower net Z-potential. The effect 

of pH on the size of ND agglomerates was also investigated. The results are shown in 

Figure 3E. For ND-COOH, pH had a significant impact on the extent of agglomeration. 

The nominal size of ND-COOH clusters was 200 nm for pH > 4. Below pH 4, significant 

aggregation of ND-COOH was observed, with particle sizes ranging from 3.4 to 5.7 p,m. 

This observation can be attributed to protonation of the carboxylate group, resulting in 

reduction of the magnitude of Z-potential as indicated in Figure 3D and, consequently, a 

significant decrease in colloidal stability. For ND-OH, average size increased with 

increasing pH, with sizes ranging from 0.8 to 5.7 p,m. This is also in agreement with the 

Z-potential titration data, which shows that the magnitude of ND-OH Z-potential drops 

with increasing pH, leading to weaker electrostatic repulsion between individual particles



w hich confers colloidal stability. For N D -N H 2 , the effect o f  pH  on size w as m uch less 

pronounced. The average diam eter o f  N D -N H 2 agglom erates ranged from  2.5 to  3.2 pm. 

This result is reasonable considering N D -N H 2 has a m ix o f  carboxylate and am ine 

surface m oieties and exhibited only small changes in net Z-potential over the tested pH  

range.
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3.2. ADSORPTION OF TIOPRONIN

A dsorption isotherm s w ere constructed by plotting the equilibrium  tiopronin 

concentration (Ceq) follow ing adsorption vs. A, the am ount o f  adsorbed drug per gram  o f 

ND , calculated by taking the difference o f  the tiopronin  initial solution concentration (Co) 

and the equilibrium  concentration after 24 hours. The experim ental adsorption isotherm s 

(Figure 4) w ere fit by nonlinear least-squares regression to  Langm uir and Freundlich 

m odels. The L angm uir m odel (Equation 1) assum es that all adsorption sites are identical 

w ith respect to  affinity for adsorbate and energy o f  adsorption.

A = Am a x
Ceq

l+ K iC eq
(1)

This m odel also assum es that all adsorbed m olecules are in contact w ith the 

adsorbent (i.e., m onolayer adsorption).25 In E quation 1, Amax represents the m axim um  

m onolayer adsorption capacity o f  the adsorbent, and K l represents the strength o f 

binding. The Freundlich m odel (Equation 2), in contrast, accom m odates m ultilayer 

adsorption and adsorbent surface heterogeneity .26 In this em pirical m odel, K f  and n  are 

relative indicators o f  adsorption capacity and favorability, respectively.

A = K FCgqn (2)
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Figure 4. A-C. Langm uir (solid red line) and Freundlich (blue dashed line) fits to 
experim ental adsorption isotherm s o f  A. N D -C O O H , B. N D -O H , and C. N D -N H 2 . D.

Overlay o f  Langm uir fits from  A-C.

For all three N D s, R values for adsorption data fits to  either m odel are all greater 

than 0.97. Amax values for N D s change in the follow ing order: N D -C O O H  < N D -O H  < 

N D -N H 2 (Table 1). The same trend is observed for Kf  values. N either the L angm uir 

b inding strength Kl nor the Freundlich adsorption favorability param eter n follow s this 

trend: both are highest for N D -C O O H , but N D -O H  has the low est Kl , w hile N D -N H 2 has 

the low est n . Overall, the L angm uir m odel fits the experim ental data m ore closely than 

the Freundlich m odel for all three N D s investigated here. This indicates that the 

interaction o f  tiopronin w ith  the N D  surface m ay be understood largely in term s o f  the 

Langm uir m odel and m onolayer adsorption. Specifically, the param eters Amax and Kl 

derived from  this m odel can be used to  com pare the properties o f  functionalized N D s as
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adsorbents for tiopronin and to predict their relative effectiveness for different 

applications. Parameters for each of the fits, as well as the resulting Pearson’s correlation 

coefficients (R) are shown in Table 1.

Table 1. Parameters and Pearson’s correlation coefficient for Langmuir and Freundlich
curve fits to adsorption data

ND
Langmuir Freundlich

Amax (mg/g) Kl (mL/mg) R n Kf R

COOH 7.54 295 0.986 3.87 17.3 0.976
OH 42.9 49.8 0.989 2.21 118 0.971

NH2 210 76.2 0.996 2.01 824 0.980

Tiopronin is a weak acid, with a -COOH pKa of 3.9. Therefore, a significant 

proportion of the dissolved tiopronin will become negatively charged in water. ND- 

COOH exhibits negative Z-potential. Thus, the low monolayer adsorption capacity of the 

ND-COOH may be explained by electrostatic repulsion between the deprotonated ND- 

COO- and the deprotonated tiopronin. The high adsorption capacity of the ND-NH2 may 

be the result of other factors. Under the mildly acidic conditions of the adsorption studies, 

ND-OH possesses a more strongly positive Z-potential than ND-NH2 (Figure 3D), yet it 

has a lower Amax. This suggests that the higher adsorption capacity of ND-NH2 cannot be 

explained solely in terms of electrostatic attraction between positively charged surface 

functional groups and tiopronin. It therefore becomes necessary to consider the effects of 

colloidal stability on available adsorption sites. Agglomerates formed more readily by 

less positively charged ND-NH2 exhibit greater variation in available adsorption sites, 

including areas where tiopronin may accumulate and be trapped, leading to greater 

apparent Amax and binding strength of ND-NH2 27 While exhibiting a stronger electrostatic



attraction to  the anionic tiopronin, the greater net positive charge, in addition to the 

capacity for extensive hydrogen bonding w ith water, is thought to stabilize the N D -O H  

particles in the suspension, resulting in less agglom eration and few er such sites o f 

hindered desorption.

Figure 5 shows a plot o f  Amax vs. Kl for N D s w ith different surface chem istries 

studied here. A lthough the underlying m echanism s have not been w ell-established for the 

vast m ajority o f  drug-N D system s, the apparent discrepancy betw een drug binding 

strength and adsorption capacity has been reported before13-14, 26 and indicates that these 

characteristics m ay be independently tailored to  m eet the needs o f  different applications. 

The ability to  design N D  drug delivery system s w herein both loading capacity and 

binding strength can be m odified to  suit the application is extrem ely attractive, as safe 

and effective delivery o f  drugs w ith different potencies and toxicities w arrant highly 

tailorable vehicles that can carry and release the drug as required. Furtherm ore, the gap 

betw een acknow ledgm ent o f  their evident utility and com m and o f  the m echanism s 

responsible, m ay provide greater im petus for further investigations o f  N D  theranostic 

platform s.
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Figure 5. A. Kl vs. Amax B. Separation factor Rl vs. Co
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Separation factor Rl is related to  Kl by equation 3, w here Co is the initial 

concentration o f  adsorbate. The value o f  Rl indicates w hether adsorption is irreversible 

(Rl = 0), favorable (0 < Rl < 1), or unfavorable (Rl > 1) at the initial concentration o f 

adsorbate.28

R, = (3)1+K LCo

Given that Kl values ranged from  76.2 and 295 m L/m g, Rl values approach 1 as 

Co approaches 0 m g/m L and 0 as Co approaches infinity. Therefore, adsorption o f 

tiopronin onto functionalized N D  is favorable at any concentration and becom es m ore 

favorable as concentration increases.29

i

3.3. RELEASE STUDY

Tiopronin is negatively charged at physiological pH  (7.4), and therefore cannot 

readily cross the phospholipid bilayer o f  m ost cell m em branes by passive diffusion. N D - 

m ediated delivery o f  tiopronin across the m em branes in a form  o f  a thin (m onom olecular) 

adsorbed layer m ay circum vent this problem , w hile potentially im proving bioavailability 

o f  the drug. In addition, since both tiopronin and functionalized N D s have pH -labile 

protons, w e exam ined the potential for pH -triggered relase o f  tiopronin  from  NDs. 

T iopronin-loaded N D -C O O H , N D -O H , and N D -N H 2 w ere dispersed at 1 m g/m L in 

buffers ranging from  pH  4.0 to  8.1. The am ount o f  tiopronin released w as m easured daily 

for the first ten days after w hich m easurem ents w ere taken every 2-3 days. N o significant 

release w as observed beyond 12 days. To understand the effect o f  pH  on tiopronin  release 

for each functionalized ND , the cum ulative release as a percentage o f  adsorbed tiopronin



was plotted vs. time (Figure 6A-C). Additionally, cumulative release after 1 day and 12 

days was compared across the different ND surface chemistries (Figure 6D-E).
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Figure 6. A-C. Plots of cumulative tiopronin release as a percentage of the initial amount 
of adsorbed tiopronin vs. time for A. ND-COOH, B. ND-OH, and C. ND-NH2 in pH 4.0 

(•), 5.8 (■), 7.3 (▲), and 8.1 (▼) buffer. Error bars are standard error of the mean 
(o/Vri). D-E. Cumulative tiopronin release after 1 day and 12 days, expressed as D. 

percentage of the initial amount of adsorbed tiopronin and E. mass of tiopronin released 
per gram of ND. The error bars are standard error of the mean. The pH of the desorption 

buffer is indicated above each corresponding bar.
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Table 2. Calculated distribution of tiopronin microspecies and Z-potential of ND
suspensions

Estimated Microspecies Distribution (%)*

pH
4.0 

5.8 

7.3

8.1

42.27%

1.15%

0.04%

0.01%

o

57.73%

98.82%

99.08%

94.64%

0.00%

0.03%

0.88%

5.35%

Z -potential (mV)

ND-COOH ND-OH

-22.6 +14.5

-34.1 +11.3

-36.2 +4.46

-37.8 -1.57

ND-NH2

+5.95

+0.86

-4.99

-7.23

*Chemicalize from ChemAxon was used for calculation of estimated microspecies 
distribution, Feb, 2019, https://chemicalize.com

Table 2 shows calculated microspecies distribution of tiopronin and Z-potentials 

determined for each functionalized ND at relevant pH levels. The majority of tiopronin is 

negatively charged over the tested pH range, with > 57% deprotonated at pH 4.0 and > 

99% deprotonated at pH 5.8 -  8.1. Thus, it was expected that release will generally 

increase under higher pH conditions which reduce the number of positive charges on the 

ND surface.

Figure 6A shows that pH had a minimal effect on the total amount of tiopronin 

released from ND-COOH. The difference in means with respect to release was 

statistically significant only between pH 4.0 and 8.1, but only after 5 days. This result is 

unsurprising since ND-COOH retains a highly negative Z-potential, even at pH 4.0. For 

this reason, ND-COOH may be useful for applications which require pH-independent 

release of tiopronin. It is also worth mentioning that because of the large number of 

negative surface charges on ND-COOH, it is much easier to maintain a small particle size 

distribution; even single-digit NDs can be prepared from ND-COOH without milling 

using salt-assisted ultrasonic deaggregation (SAUD).30 The pH also had a minimal effect

https://chemicalize.com


on the release of the tiopronin from ND-NH2 (Figure 6C). The difference in means can 

only be considered statistically significant between pH 6 and 7, and only after 8 days.

The Z-potential plot in Figure 3D suggests that a number of COOH moieties remain on 

the surface of ND-NH2. These groups are negatively charged within the pH range used in 

this study, contributing to the net surface charge and resulting in a low magnitude Z- 

potential. Although the means suggest that more release occurs at pH 4.0 than at pH 5.8, 

the difference between the means is statistically insignificant. The same is true for the 

means of pH 7.3 and 8.1. From a practical standpoint, no appreciable difference in release 

will be achieved by varying pH in the range of 4-8 for ND-NH2 or ND-COOH. The pH 

had the greatest effect on tiopronin release from ND-OH. The effect of pH on release 

follows a predictable trend with lower pH resulting in slower release. This effect starts to 

become significant after 3-4 days.

Figure 6D shows that ND-OH released the greatest amount of tiopronin in terms 

of percent relative to the amount adsorbed (2.6 -  13.1%) while ND-COOH released 1.8 -  

4.0%, and ND-NH2 released only 0.1 -  1.0%. However, due to the large differences in 

adsorption capacity, it is also worth comparing the mass of tiopronin that can be released 

per gram of loaded ND. Figure 6E shows that ND-OH also released the greatest amount 

of drug per gram of loaded ND (0.68 -  3.3 mg/g) while ND-NH2 released more drug than 

an equal weight of ND-COOH (0.14 -  1.4 mg/g from ND-NH2 vs. 0.12 -  0.34 mg/g from 

ND-COOH), owing to the large difference in adsorption capacity. Finally, it appears that 

prolonged release of tiopronin from ND-OH is possible under neutral or alkaline pH 

conditions since the concentration of free tiopronin continues to increase substantially 

several days after the start of the desorption experiments. In contrast, acidic conditions

80



81

retard continued release of tiopronin beyond that which is released initially. This trend is 

present in each of the functionalized NDs, and the effect can be considered statistically 

significant in ND-OH as determined by a Bonferroni post hoc test. This may be 

beneficial for delivery of tiopronin and other thiol antioxidants since their premature 

oxidation is a concern. ND-OH may slowly release tiopronin in the acidic environment of 

the stomach. Blood plasma is buffered at pH 7.4, allowing for increased drug release after 

entering the bloodstream. Additionally, weakly acidic formulations may be prepared 

which can prevent premature release and oxidation of the drug in topical formulations.

4. CONCLUSION

Adsorption and release of tiopronin is sensitive to the changes of ND surface 

chemistry. However, due to the complexity of interactions between surface functional 

groups, drug molecules, and the environment, this effect cannot be explained by simply 

examining net surface charges. Our results show that ND-OH provides the best balance 

between drug capacity and release, making it the best candidate for applications which 

benefit from prolonged release of large amounts of tiopronin. Furthermore, formulations 

of loaded ND-OH can be prepared at an acidic pH which may be able to prevent 

premature release and degradation of tiopronin. ND-COOH has a lower adsorption 

capacity but can provide moderate release independent of pH. Additionally, ND-COOH 

is easily dispersed due to electrostatic repulsion and high magnitude of Z-potential, so it 

may be best suited for applications that require low agglomeration and can benefit from 

high surface area of ND. Finally, desorption of tiopronin may not be necessary for all



applications, so although N D -N H 2 only releases a small portion o f  its payload, it has a 

very high capacity and m ay be useful in applications in w hich it is desirable to  have 

tiopronin attached on the surface o f  dispersed N D  for prolonged release or storage in the 

body w ith subsequent local release triggered by topical application o f  ultrasound, light, 

heat, and other stimuli.
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SUPPORTING INFORMATION

M ethodology for the preparation o f  citrate-phosphate desorption buffers is 

provided in Table S1. The pH  8.1 buffer used for desorption experim ents w as prepared 

by dissolving 1.628 g o f  K 2H PO 4 and 0.089 g o f  K H 2PO 4 in type 1 w ater and then 

diluting to  a final volum e o f  100 m L in a volum etric flask as m entioned in Section 2.1.

Sam ple calibration curves used for the determ ination o f  M PG  in desorption 

buffers, as described in Section 2.5, are shown in Figures S2-S5. M atrix  effects w ere 

significant am ong the different buffers, bu t peak areas w ere strongly correlated to  [MPG] 

in each buffer.

Table S1. Preparation o f  citrate-phosphate buffers

pH
0.1 M

C itric acid (m L)
0.2 M

N a 2H PO 4 (m L)

4.0 61.45 38.55

5.8 39.55 60.45

7.0 17.65 82.35

7.3 13.05 86.95
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Figure S3. Calibration curve for tiopronin in pH 7.3 desorption buffer
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SECTION 

2. CONCLUSIONS

Our long term goal is to develop an eye drop formulation that can delay the onset 

of cataracts. Antioxidant compounds have the potential to mitigate the oxidative damage 

associated with cataractogenesis, but achieving sufficient concentrations in the lens has 

proven difficult. In pursuit of this goal, our group is investigating the potential of ND as a 

platform for improving MPG residence in the eye and reducing levels of reactive oxygen 

species and oxidative damage associated with cataract. Each investigation presented in 

this dissertation aimed to address a specific research question.

2.1. TO WHAT EXTENT DOES MPG PROTECT CELLS AGAINST ACUTE 
OXIDATIVE INSULT?

Oxidative stress was induced in A549 cells by exposure to 0.6 mM fBHP. In 

untreated cells, 0.6 mM fBHP resulted in a significant loss of cell viability due to the 

increased generation of intracellular ROS and mitochondrial superoxide, resulting in 

GSH depletion. Cells that were simultaneously treated with 0.6 mM fBHP and 5 mM 

MPG were comparable to healthy cells; however, lower doses of MPG were much less 

effective at preventing cell death. Preservation of cell viability by MPG is most likely the 

result of direct ROS scavenging, and it is clear that relatively high doses need to be 

maintained in order for MPG to be effective in this model. However, when interpreting 

these results, it is important to consider the limitations of the model used. The cells used 

in this study were from a human lung carcinoma cell line, which is not intended or



expected to fully recapitulate human lenses. Furthermore, the intense, short-lived 

oxidative insult resulting from incubating the cells in fBHP is not representative of the 

gradual damage accumulated over a lifetime of exposure to relatively low concentrations 

of oxidants. More complex models studied over a much longer time would be needed in 

order to draw any conclusions with respect to anticataract efficacy. These experiments 

are reserved for later stages of drug development. Instead, the experiments discussed here 

served as a pilot study for establishing a benchmark for MPG's antioxidant activity in a 

simplified epithelial cell model. These results can serve as a basis for comparison against 

formulations composed of MPG adsorbed onto ND, but investigations with more 

complex models are certainly warranted. Future investigations exploring the antioxidant 

activity of MPG vs. ND:MPG will utilize human lens epithelial cells, corneal epithelial 

cells, and animal models.

2.2. HOW WILL MPG BE MEASURED IN CELL AND ANIMAL MODELS?

An HPLC method was developed for the determination of MPG and MPA in 

ocular tissues and other matrices. Pre-column derivatization and fluorescence detection 

allowed for high sensitivity, and the use of a 4.6-pm core-shell stationary phase resulted 

in rapid separation. Method validation experiments demonstrated that this method would 

be suitable for monitoring MPG uptake and residence in the lens and cornea. Other 

methods were available for MPG, but they were not suitable for our application either 

due to sensitivity limitations or matrix interferences. This method is a necessary tool for 

determining the efficacy of various drug delivery vehicles, as well as the fate of MPG 

after administration to the eye. This method offers simultaneous determination of MPA,
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the primary metabolite of MPG. One of the primary reasons MPG was selected for 

investigating ND-mediated delivery is that it is metabolized to MPA, making its fate easy 

to track. Other thiol drug candidates may be more effective as antioxidants, such as the 

GSH prodrug N-acetylcysteine amide (NACA) because they can increase the size of the 

total GSH pool in addition to directly scavenging ROS. However, NACA is de-acetylated 

in vivo to N-acetylcysteine (NAC), which is then further metabolized to cysteine, which 

is used not only for GSH synthesis but also for a number of other biological reactions. 

Tracking all of these metabolites without radiolabeling would be very difficult and 

resource-intensive. In contrast, MPG and MPA are not found in untreated human or 

animal lenses, making efforts to track MPG far more reliable.

2.3. WHAT IS THE OPTIMAL ND SURFACE CHEMISTRY FOR ADSORPTION 
AND RELEASE OF MPG?

Nanodiamond powder was functionalized to produce ND-COOH, ND-OH, and 

ND-NH2, and the effect of surface chemistry on adsorption and desorption of MPG was 

determined. It would seem from these experiments that ND-OH is the most promising 

candidate for ND-mediated delivery of tiopronin. The ND-OH provided the best balance 

between adsorption capacity and sustained release. Furthermore, its release was shown to 

be the most strongly influenced by pH. Relatively low amounts of MPG were released 

from ND-OH in slightly acidic conditions, even after 12 days, but ND-OH released large 

amounts of MPG at physiological pH (7.4) and under slightly basic conditions. Since the 

cornea can tolerate eye drop formulations as acidic as pH 4, acidic preparations of ND- 

OH:MPG can prevent premature release and degradation of MPG. Upon administration 

to the eye, the pH will equilibrate with that of the ocular surface and tear film, triggering
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prolonged release o f  greater am ounts o f  M PG. Finally, N D -O H  exhibits a positive Z- 

potential at physiological pH, w hich m ay help prolong retention o f  N D -O H :M PG  on the 

cornea due to  electrostatic attraction to  the negatively charged corneal surface.

A lthough N D -O H  seem s like a clear choice for N D -m ediated delivery o f  M PG, 

there are other factors to  consider w hen optim izing N D  surface chem istry for this 

application. For exam ple, it is unclear at this tim e w hether or not M PG  needs to  be 

desorbed from  the N D  in order to  act as a scavenger o f  ROS. I f  adsorption to  N D  does 

not im pede antioxidant activity, then N D -N H 2 m ay perform  even better than N D -O H  

since N D -N H 2 can carry significantly greater am ounts o f  M PG.

2.4. FUTURE DIRECTIONS

The contents o f  this dissertation represent the prelim inary w ork necessary for the 

developm ent and evaluation o f  N D  for delivery o f  M PG  to  the eye. The tools developed 

here will play an integral role in the assessm ent o f  N D  efficacy. M oving forw ard, several 

factors need to  be considered for the successful application o f  N D :M PG  in eye drop 

form ulations aim ed at delaying cataract. Firstly, it is im portant to  investigate the effect o f 

N D  on the antioxidant activity o f  M PG  to ensure that the N D  does not hinder its ability to 

scavenge RO S and to  determ ine w hether N D  can preserve or even prom ote the action o f 

M PG. A nother key step forw ard is to  determ ine the effect o f  N D  on corneal penetration 

and lenticular uptake o f  M PG  w ith appropriate cell and anim al models.

A fter optim ization o f  the N D :M PG  eye drop form ulation, it should be tested in an 

anim al m odel o f  age-related nuclear cataract. As o f  now, there is no anim al or cell m odel 

that fully recapitulates every relevant feature o f  hum an cataractogenesis; however, the
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Emory mouse model is recommended. Cataract development in these animals mimics 

important features of human age-related nuclear cataract. In contrast with models that 

employ short-lived, high-intensity oxidative insults to induce cataracts, Emory mice 

develop cataracts spontaneously over the course of 5-6 months. This gradual progression 

provides a window for monitoring pre-cataractous changes and the effects of preventative 

treatments.
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