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ABSTRACT 

The paragenesis of minerals occurring in the bedding­

replacement fluorspar ores in the Crystal, Hinerva No. 1 and Hill 

mines in the Cave-in-Rock district, Hardin - ~ County, Illinois, has 

been studied by underground, binocular, petrographic and ore 

microscopic examination. More than 300 hand specimens were 

collected from the mines, 100 thin sections were prepared and 36 

polished surfaces were examined to prepare paragenetic diagrams 

for the Crystal and Minerva No. 1 mines. 

The minerals determined in the fluorspar ores were: fluorite, 

sphalerite, galena, chalcopyrite, pyrite, marcasite, calcite, 

strontianite, witherite, barite, quartz, dolomite, oil and bitumen. 

Most of these minerals are present both in disseminated form and 

as crystals deposited in vugs, but calcite, strontianite, witherite 

and barite were observed to be deposited from the ore solutions 

only in cavities. 

The paragenetic sequence of minerals formed in the disseminated 

ores has a general similarity to that of the minerals formed in 

vugs, particularly in the Crystal mine, but there are important 

differences between the two sequences. The latter sequence includes 

some minerals which are not present in the earlier sequence, but 

it is especially characterized by repetitive generations of mineral 

deposition. The repetitive nature is believed to be controlled 

by slight variations in the chemistry of the ore solutions 

during deposition. 

The paragenesis in the Minerva mine No. 1 differs from that 

of the Crystal mine by the occurrence of strontianite and witherite, 
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by the number of generations and by the presence of important local, 

late corrosion. These differences in mineralogy and paragenesis are 

believed to have resulted from slight areal variations in the 

chemical nature of the ore solutions. 
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Chapter I 

INTRODUCTION 

A. Purpose of Investigation 

1 

The principal purpose of this investigation was to determine 

the depositional sequence of the minerals occurring in the bedding­

replacement deposits of three selected mines in the Cave-in-Rock 

fluorspar district, Hardin County, Illinois. All of the minerals 

found in those mines were studied and described. 

B. Location and Accessibility 

The Cave-in-Rock fluorspar district is located on the north­

eas~ern margin of the Illinois-Kentucky fluorspar field, in Hardin 

County, Illinois. The district is bounded on the south and east 

by the Ohio R~ver and on the northwest by the Peters Creek fault 

zone (Figure 1). 

Three mines were examined forthis investigation: 1) the 

Crystal mine, . ld the Minerva mine No. 1, both operated by the 

Minerva Oil Company, and 3) the Hill mine, which is operated by 

the Ozark-Mahoning Company. The Minerva mine No. 1 and the Hill 

mine are located about 5 miles north of the town of Cave in Rock, 

the former in the SW 1/4 of Sec. 24 1 T. 11 s., R. 9 E., and the 

latter in the E 1/2 of Sec. 23 1 T. 11 s., R. 9 E. The Crystal 

mine lies approximately 5 miles northwest of the town, in the 

S 1/2 of Sec. 23 1 T. 11 s., R. 9 E. 

The mines are reached by dirt roads leading from Illinois 

State Highways 1 and ~46 which traverse the district. The nearest 



ILLINOIS 

INDEX MAP 

*" 

~ 

0· M kilL L MINE 

~MINERVA MINE NO.I 
6 

MILL 
vv 0· M MILL 

«'" o ~ 0-M WEST GREEN MINE 

V~(r,<,; ~ ~ CRYSTAf MINE & MILL 

c, VICTORY MINE 
~~ 

~~ 
q 

1 0 

MILES 

FIG. I. LOCATION MAP FOR THE CAVE-IN-ROCK DISTRICT 

2 

3 
I 



rail connection is available at Rosiclare, which is located about 

15 miles southwest of the Crystal mine. 

c. Field and Laboratory Work 

A graduate field trip to the Crystal mine with Dr. Richard 

D. Hagni on April 2, 1965, brought to the writer's attention the 

need for the investigation of mineral paragenesis in selected 

mines in the fluorspar district. Subsequently, arrangements 

3 

were made to study and collect from the Crystal, Minerva No. 1, 

and Hill mines. Several periods between June 1, 1965 and October 

12, 1966 were utilized to examine those three mines and to collect 

over 300 specimens. 

Laboratory work was performed mainly during the Autumn 

semester of 1966. All of the collected specimens were closely 

examined megascopically and with the aid of a binocular microscope. 

As an additional aid, 100 thin sections and 36 polished surfaces 

were prepared and examined. X-ray diffractometer and spectroscopic 

tests were utilized for uncertain mineral species. A paragenetic 

sequence was prepared for each specimen, and the individual 

sequences were interpreted and collected to prepare a composite 

paragenetic sequence for each of two mines, the Crystal mine and 

the Minerva mine No. 1. For the Hill mine, which received the 

least study, selected paragenetic relations were described but a 

diagram was not prepared. 

D. Previous Work 

The first report on the occurrence of fluorite in the southern 
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Illinois fluorspar district was published in 1819, but Bastin 

(1931, P• 55-65) was the first investigator to discuss in some 

detail the paragenesis of the ores in the bedding replacement 

deposits. He classified the minerals of the coarser non-banded 

ore into three groups, primary, secondary and miscellaneous. He 

discussed the relationships between the minerals but did not 

present a diagram to illustrate these paragenetic relationships. 

Based upon the relationships described in this report, a para­

genetic diagram (Bastin, 1939, p. 113) was subsequently prepared. 

The paragenetic sequence given for the bedding replacement 

deposits was: fluorite, chalcopyrite, marcasite, galena and 

calcite. 

Currier (1944, pp. 30-52) studied the bedding-replacement 

deposits in the Cave-in-Rock district and described the development 

of banded or coontail ore. He noted that the sulfide minerals, 

galena, sphalerite, chalcopyrite and marcasite, began depositing 

during the later stages of fluorite mineralization and believed 

that they were continuously deposited after the cessation of 

fluorite deposition. 

Grawe and Nackowski (1949, p. 331) were the first to identify 

strontianite and witherite in the Cave-in-Rock district. They 

reported that strontianite was deposited prior to witherite, and 

that both minerals were deposited after fluorite, sphalerite, 

calcite and barite but before late fluorite, quartz and calcite. 

Weller, Grogan and Tippie (1952, PP• 118-122) discussed the 

minerals occurring in the bedding-replacement deposits of the Cave­

in-Rock district and noted that the mineral assemblage is similar · 
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to that of the Rosiclare district. They prepared a diagram of 

the general sequence of mineral deposition at the Davis-Deardorff 

mine in the Cave-in-Rock district. This sequence differed from 

that of Bastin by the addition of the minerals, sphalerite, 

quartz, barite and bitumen, the reverse order of deposition of 

marcasite and galena, and the recognition of two stages of 

deposition of fluorite, chalcopyrite, quartz and iron sulfide. 

Freas (1961) studied the temperatures of mineral formation 

at the Victory and Deardorff mines. He recognized two generations 

of fluorite as well as two generations of sphalerite and quartz. 

He noted that early fluorite occurs commonly as the coarsely 

crystallized and lightly colored bands in coontail ore, whereas 

late fluo~ite, represented by purple or blue colors, occurs both 

in banded ore and in vugs. 

Brecke (1962), in a paper on genesis of the Cave-in-Rock 

district ores, emphasized the multiplicity of fluorite depositional 

stages. He believed that the sphalerite replaced residual 

carbonates left by fluoritization of the impure bands of coontail 

ore. 

Hall and Friedman (1963) discussed principally the composition 

of fluid inclusions in the minerals of the Cave-in-Rock district. 

To investigate the change in fluid composition through time, they 

prepared a paragenetic diagram for the cavity filling and vein 

forming minerals in the Oxford, Hill, and Deardorff mines. They 

recognized five stages of fluorite which were distinguished by 

color and paragenetic position. 



Pinckney (1966) has found as many as seven stages of purple 

fluorite in his studies largely in the Hill-Leadford mine. 

E. Historical Summary of Fluorspar Mining 
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In 1819, "fluo spar" or "fluat of lime" was discovered near 

Shawneetown, Illinois. The first discovery of lead ore seems to 

have been made in 1839 during the sinking of a well on the Anderson 

farm, about a mile s ·outhwest of Rosiclare, in southern Illinois. 

In 1842 1 William Pell discovered fluorspar and galena on his 

farm located about one-half mile southwest of Rosiclare. He 

initiated the Pell mine, now part of the Rosiclare mine, which 

was the first mining operation in the southern Illinois fluorspar 

district. Only galena was recovered at that time and the associated 

fluorite was neglected. 

About 1880 a decline in lead price and an increase in demand 

for fluorspar caused a transition from lead to fluorspar mining. 

The first mining in the Cave-in-Rock district was initiated 

on Spar Mountain in 1903 by the Cleveland-Illinois Company. The 

district has been an important producer of fluorspar since 1918. 

The flooding of the mines in the Rosiclare district in 1923 

through 1924 stimulated the mining of the bedding-replacement 

deposits in the Cave-in-Rock district. Production from the latter 

area has steadily grown due to comparatively simple mining and 

milling methods and to the increase in demand for fluorspar in 

the steel, aluminum, ceramic and chemical industries. 

In 1964, Illinois supplied 58% of the total domestic output 

of fluorspar to rank first among the fluorspar-producing states. 
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The larger portion of the southern Illinois fluorspar production 

comes from the mines in the Cave-in-Rock district. Most of those 

mines are operated by two mining companies, Minerva Oil and Ozark­

Mahoning. 

Three milli~ plants for fluorspar and zinc concentrate 

currently are operating in the Cave-in-Rock district (Figure 1). 

The Minerva Oil Company operates the Crystal mill and the Minerva 

No. 1 plant. The Ozark-Mahoning's heavy media plant is located 

near their West Green mine. 
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A. General 

Chapter II 

GEOLOGY OF THE DISTRICT 

The geologic formations exposed in the Cave-in-Rock 

district (Figure 2) are of Mississippian and Pennsylvanian age. 

They consist principally of limestones, sandstones, ~alc~eous 

sandstones and shales. Some of the limestone members are shaly 

and sandy. The formations strike approximately N. 70° w. and 

dip to the northeast an average of 4°. 
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The southern part of the district is characterized by a 

gently rolling terrain ranging in elevation from 400 to 460 feet 

above sea level. The St. Louis Limestone of the Meramec Series 

outcrops in the terrain close to the Ohio River. It is the oldest 

formation known to outcrop in the district. The youngest surface 

formation is the Caseyville Sandstone and Conglomerate of Penn­

sylvanian age. It outcrops in the northeastenn part of the 

district at an elevation of about 600 feet. 

The igneous rocks in Hardin County have been subdivided by 

Currier (in Weller, 1920 1 p. 237) into: lamprophyre, mica-peridotite, 

and volcanic breccia (?). The first two rocks occur as dikes, 

while the last is known only from weathered boulders and drill 

core ,;.- ( Snyder and Gerdemann, 1965). All of the igneous rocks are 

dark gray to dark greenish gray in color where fresh, and contain 

brown and black mica, pyroxenes, olivine, apatite, magnetite, and 

titanite. They are extensively altered to carbonate, serpentine 

and chlorite. Many occurrences of these igneous rocks in Hardin 

County have been described by Weller and others (1952 1 PP• 71-73). 
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B. Stratigraphy 

The columnar section of sedimentary formations in the Cave­

in-Rock district, Hardin County, Illinois, modified from Mining 

Engineering (1958 1 no. 1 1 p. 65} 1 is given in Figure 3. The 

portion of the stratigraphic column involved in this particular 

area is briefly described below. 

1. Meramec Series 

a. St. Louis Formation 

Good outcrops of the St. Louis Formation occur in 
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the Ohio River bluffs between the towns of Elizabethtown and Cave 

in Rock. The formation varies in color from pale blue or gray in 

fresh exposures. It is dominantly a fine- to very fine-grained 

limestone and it usually contains large amounts of lenticular or 

irregular nodules of chert which are arranged parallel to the 

bedding planes. 

b. Ste. Genevieve Formation 

The Ste. Genevieve Formation consists of three 
\ 

major members and one minor member. The three persistent members 

are the Fredonia Limestone, the Rosiclare Sandstone and the Levias 

Limestone. The minor member, which occurs within the Fredonia 

Limestone, is locally termed the "Sub-Rosiclare Sandstone" or the 

"Spar Mountain Sandstone" (Tippie, 1945, p. 1658}. 

(1) Fredonia Limestone 

The Fredonia Limestone member is divided into 

the "upper" and the "lower" by the Sub-Rosiclare Sandstone. The 

lithologic characters of both parts differ considerably from bed 

to bed. They are highly fossiliferous, oolitic limestones. The 
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color varies from bluish gray to nearly white; it generally is 

lighter than that of the St. Louis Limestone. 

The Sub-Rosiclare Sandstone is present 40 to 65 feet below 

the top of the Fredonia. It varies in composition from silty 

sandstone to sandy limestone. 

(2) Rosiclare Sandstone 
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The Rosiclare Sandstone is composed dominantly 

of a fine-grained and grayish-green calcareous sandstone. The 

weathered or leached rock becomes a porous and rusty brown sandstone. 

A green shale layer varying in thickness from zero to 8 feet is 

common at the base of the sandstone. According to Tippie (1945, 

p. 1660), an unconformity exists locally between the Rosiclare 

Sandstone and the underlying Fredonia Limestone. 

(3) Levias Limestone 

Overlying the Rosiclare Sandstone is the 

youngest member of the Ste. Genevieve Formation, the Levias 

Limestone, formerly known as the "Lower Ohara Limestone" (Weller, 

1920 1 p. 112). The member resembles the Fredonia Limestone, varying 

from light-gray, oolitic to darker, dense limestone. 

2. Chester Series 

a. Renault Fommation 

The Renault Formation, the lowest formation of 

the upper Mississippian, is divided into two parts, the Shetlerville 

Member and the Downeys Bluff. 

(1) Shetlerville Member 

The Shetlerville Member consists of interbedded 

limestone and shale. The limestone beds are gray and oolitic; the 
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shales are greenish gray and calcareous. Both members locally are 

fossiliferous. 

(2) Downeys Bluff 

The Downeys Bluff is the upper member of the 

Renault Formation. It is gray or bluish gray to brown in color 

and it is crystalline to fin~-grained. Small amounts of shale 

partings locally are present between the limestone layers. Oolitic 

or crinoidal limestone beds also are present. 

b. Bethel Sandstone 

The Bethel Sandstone varies in color from gray or 

nearly white in fresh exposures to brown in weathered exposures, 

and it is fine-grained and compact. Cross-bedding is common. 

The contact between the Bethel and Renault formations is unconfor­

mable. 

c. Paint Creek Formation 

The Paint Creek Formation consists of thinly inter­

bedded layers of sandstone and shale. Sandstone is predominant 

locally. 

d. Cypress Sandstone 

The Cypress Sandstone is a massive and compact 

sandstone which is quite similar to the Bethel Sandstone. An 

unconformity is present between this formation and the underlying 

Paint Creek. 

e. Golconda Formation 

The Golconda Formation consists of successive beds 

of shale and limestone. The limestone beds are bluish to gray, and 

locally they contain abundant fossils. The shales are gray or dark 



gray to bluish, and locally fossiliferous. 

f. Hardinsburg Sandstone 
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The Hardinsburg Sandstone is fine-grained and white 

to pale gray. The formation contains shale beds or shaly partings. 

g. Glen Dean Sandstone 

The Glen Dean Sandstone is composed of alternating 

beds of limestone and shale. The limestones of this formation are 

gray, crystalline and fossiliferous. The shales are calcareous 

and gray in color. 

h. Tar~~;· Springs Sandstone 

The Tar Springs Sandstone is tan to light gray in 

color and it generally is shaly. This formation forms the bedrock 

over part of the vicinity of the Minerva mine No. 1 (Nackowski, 

1949, p. 20). 

i. Vienna Limestone and Waltersburg Sandstone 

According to Weller (1952), these two formations 

are poorly developed and are not known to outcrop in Hardin County. 

j. Menard Limestone 

The Menard Limestone is a formation which consists 

of a fine-grained limestone with shale beds. 

c. Structure 

Two features of regional structure are most striking in the 

Cave-in-Rock district, the Hicks Dome and northeast trending 

faulting. The Hicks Dome is a circular uplift of strata about 10 

miles in diameter, in Hardin County, Illinois. From the center of 

the dome, which is located approximately 10 miles west of the mines 



examined for this study, the rocks dip outward 10° to 30° in all 

directions. Some writers believe that the domal structure was 
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caused by deep-seated igneous activity in the region of the Illinois­

Kentucky mining district (Brown, ~~·• 1954; Snyder and Gerdemann, 

1965). 

While the sedimentary rocks in the Cave-in-Rock district 

appear to have been relatively undisturbed structurally, the entire 

Illinois-Kentucky mining district is centered in the most complexly 

faulted area in the central part of the United States. Northwest 

of the Cave-in-Rock district the Peters Creek fault zone, which 

consists of several subparallel faults as shown in Figure 2, forms 

the southeast boundary of the Rock Creek graben. The graben block 

has been downthrown 1,000 feet or more. No profitable mineral 

deposits have been developed along the fault zone, but the bedding­

replacement deposits of the Cave-in-Rock district are nearby and 

may be genetically related to the fault zone. 



A. Introduction 

Chapter III 

FLUORITE DEPOSITS 

Fluorite is produced in the United States from deposits in 

the following states: Illinois-Kentucky, Colorado, Montana, 

Nevada, New Mexico and Utah. The most important of these is the 

Illinois-Kentucky mining district where fluorite has been mined 

for nearly a century. The Illinois-Kentucky mining district may 

be subdivided into the Kentucky and southern Illinois district$. 

The latter, in turn, often is subdivided into the Cave-in-Rock 

and Rosiclare districts. The Cave-in-Rock district is the most 

important producer of fluorspar among the various district sub­

divisions. 
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The fluorite deposits of southern Illinois have been classified 

into two principal types, the so-called "bedding-replacement 

deposits" and the "vein deposits". The Cave-in-Rock district is 

characterized by the first type, and all of the mines examined 

for this investigation belong to that district. The bedding­

replacement deposits locally are called "blanket deposits". The 

westerly neighboring Rosiclare district is characterized by vein 

deposits. Secondary residual deposits formed at the surface by 

weathering may be considered to constitute a third type from which 

a small amount of ores have been mined in the past but they are 

not being mined today. 

The two primary types of ores exhibit nearly the same minerals, 

but the relative proportions of some minerals differ. For example• 

calcite and galena are more abundant in the vein deposits than in 
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the bedding-replacement deposits. 

The bedding-replacement deposits were nearly neglected during 

the early history of fluorspar mining in southern Illinois. Since 

about 1910, however, considerable attention has been directed toward 

their development, primarily because of the advantages involved in 

the mining of these deposits and because their large volumes 

helped meet the increase in demand for fluorspar. 

The following discussion and subsequent sections of this 

thesis deal exclusively with the bedding-replacement type deposits 

of the Cave-in-Rock district. 

B. Ore Horizons and Distribution 

The replacement deposits occur in various favorable horizons 

of the thick Renault and Ste. Genevieve formations. Almost all of 

the ore currently being mined comes from three main stratigraphic 

horizons: 1) Bethel-Renault contact zone; 2) Rosiclare-Fredonia 

(upper) contact zone; and 3) Sub-Rosiclare horizon. The lithologic 

characters of these three contact zones are illustrated in 

Figure 4. Ores occur principally within the upper portion of 

the limestone members below these contact zones. Minor ore deposits 

occur in the upper part of the Levias Limestone, the basal portion 

of the Renault Limestone, and within the upper and lower Fredonia 

Limestones. 

Figure 5 shows the areal distribution of ores mined in each 

of the three main ore-bearing horizons in the Cave-in-Rock district, 

southern Illinois. The main mineralized belt, as defined by 

Weller (1952, p. 108), is 4,000 to 5,000 feet wide and 5 miles long, 
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and it lies at a distance of 1,800 to 4 1 600 feet southeast of the 

Peters Creek fault zone. Two of the mines studied, the Minerva's 

Crystal and No. 1 mines, are included in the main belt; they are 

representative of the Rosiclare and Bethel horizons, respectively. 

In the Ozark-Mahoning's Hill mine, which lies outside of the main 

belt, the ore occurs on both the Rosiclare and Sub-Rosiclare 

horizons. 

The ore bodies typically are elongated and tabular or lenticular, 

usually lying parallel to the bedding of the host limestone. Based 

upon their structural relationships, the ore bodies either are 

rather symmetrical about a central fissure or they lie at one 

side of a minor fault (Figure 6). The southwestern portion of 

the ore bodies in the Crystal mine is typical of the first type. 

In this type the elongated ore body together with the overlying 

sedimentary formations exhibit an inclination from the periphery 

toward the center of the ore body approximately 15° to 30°. The 

nature of this structure is described by the local term "boat 

structure". Underground photographs of a "boat structure" are 

illustrated in Figures 7 and a. The ore body of the A. L. Davis 

mine is a good example of the second type of structure shown in 

Figure 6. 

The ore bodies vary in thickness from 3 to 30 feet, and in 

width from 30 to 900 feet. Lengths are commonly 200 to 1,500 

feet, although lengths up to 4 1 000 feet have been mined. 

c. Fabric 

The fabric of the fluorspar deposits may vary somewhat from 
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Fig. s. Areal distribution of the three major ore horizons of the 
Cave-in-Rock district (from E. A. Brecke, 1962). 
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Fig. 6. Schematic cross-sections of the two general types of bedding­
replacement deposits, southern Illinois (from~~ Grogan, _l949). 



Fig. 7. Photograph looking along the shortest axis of a "canoe­
shaped" ore body. Rosiclare-Fredonia contact zone, Crystal mine. 
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Fig. 8. Photograph looking along the longest axis of the ore body 
shown in Figure 7. Note the inclination and the thin fluorite bands 
(pu~ple) developed along the bedding planes of the Rosiclare sand­
stone (grey) and along the fractures perpendicular to the bedding. 
Rosiclare horizon, Crystal mine. 
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place to place. The characteristic features, such as banding , 

vugs or cavities and comb structure, appear to be common throughout 

the mines in the Cave-in-Rock district. 

Banding is perhaps the most noteworthy feature which may be 

said to characterize the bedding-replacement deposits. There are 

several types of banded ore, but the most common is that which 

locally is termed "coontail ore". It consists of alternating 

light- and dark-colored layers or bands. The light-colored bands 

are relatively pure fluorite, while the dark-colored, more impure 

bands may contain sphalerite, galena, carbonate and organic matter, 

in addition to fluorite. Coarsely crystalline, pure fluorite 

bands alternating with impure fluorite-galena bands are shown in 

Figure 9. 

The layers or bands in coontail ore range in thickness commonly 

from a fraction of an inch to 2 inches, and they are parallel or 

subparallel to the bedding of the enclosing rock. Single bands 

locally may extend for a distance of several feet. 

The alternating layers of fluorite in some coontail ore were 

observed locally to extend laterally more than 20 feet (Figure 10). 

The pure layers are mostly milky or creamy white in color, but 

some exhibit a purple tint. The impure bands are dark brown to 

gray with a purple tint. A typical specimen of coontail ore is 

shown in Figure 11. Microscopic examination of thin sections of 

coontail ore reveals that the darker layers consist of approximately 

95% fluorite, and they often reveal stylolites (Figure 12). 

Thin sections of some 1mpure bands in coontail ore exhibit 

scattered finely crystalline fluorite cubes (Figure 13), which may 
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Fig. 9. Bands of fluorite (purplish white) alternating with those 
of galena-fluorite (bluish gray). Rosiclare horizon, Crystal mine. 

Fig. 10. Alternating layers of light- and dark-colored fluorite 
( "coontail ore"). The banding, which occurs at the Rosiclare and 
Fredonia (upper) contact zone, is continuous for a lateral distance 
about 20 feet. Crystal mine. 
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Fig. 11. A typical "coontail ore" specimen. Note the tabular 
vugs (black) in the central portions of several pure layers 
(light yellow). Some vugs are crusted with thin layers of black 
bitumen. Same locality as Figure 10, Crystal mine. 



Fig. 12. Photomicrograph showing a stylolytic seam preserved in 
the relatively impure fluorite layers. Crystal mine. Plane 
polarized light. SOX. 
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Fig. 13. Fluorite cubes in impure ore bands. The dark area 
consists of carbonaceous matter. The cubes contain tiny particles 
of unreplaced calcite. Minerva mine No. 1. Plane polarized light. 
sox. 
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contain tiny remnants of calcite. Carbonates may occur in other 

banded ores, and thin sections prepared from the central portion of 

the fabric shown in Figure 14 exhibit scattered minute rhombohedral 

carbonates within fluorite (Figure 15). The carbonate rhombs may 

be dolomite, and Brecke (19$2, p. 504) noted that carbonates in 

a similar occurrence are ferruginous dolomite. 

Other types of banding locally are represented in the Cave­

in-Rock district. Fluorite bands may intercalate with bands of 

other minerals, such as sphalerite, galena (Figure 16), barite 

and calcite. 

Bastin (1931 1 p. 48) distinguished "V- and W-shaped" bandings 

from laterally extensive banding. In cross section, "V- and 

W-shaped" bandings contain one and two or three central, nearly 

vertical fractures, respectively. W-shaped banding, observed at 

a pillar near the working stope of the southwest ore body in the 

Minerva mine No. 1, consists of intercalated bands of sphalerite­

fluorite and calcite with remnants of dissolved fluorite. 

Some bands are wavy as shown in Figu~e 17. Some barite ore 

bands in the abandoned third ore body of the same mine have a wavy 

texture. 

In contrast to the banded fabrics described above, some ore, 

termed "disseminated ore" is characterized by scattered grains of 

fluorite and other minerals, such as sphalerite, galena and 

chalcopyrite throughout the host rock. This ore is referred to 

by the miners as low-grade ore. Disseminated ore usually occurs 

at the outer margin of the deposits. 
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fluorite 

A 

-
Fig. 14. Sketch s~owing impure part of a specimen from the Minerva 
mine No. 1. The area marked "A" consists of chert, carbonaceous 
matter and a small amount of fluorite. Note that the stylolytic 
and carbonaceous bands bend around the central carbonate-fluorite 
area. Bethel horizon. 6X. 

Fig. 15. Photomicrograph of dolomite (?) rhombs occurring within 
the central portion of the carbonate-fluorite area shown in 
Figure 14. · The black area is fluorite. Crossed nicols. SOX. 
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Fig. 16. Thick irregular galena bands (dark blue gray) alternating 
with fluorite (yellowish white to purple). Note the narrow calcite 
vein (white, right of geologic pick) crossing the banding. Rosiclare 
horizon, Crystal mine. 

Fig. 17. Wavy bands of fluorite (purplish PraWn) and calcite (white). 
Sphalerite occurs associated with the fluorite. Bethel-Renault 
contact zone, Minerva mine No. 1. 
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Vugs or cavities frequently occur within the massive or coarse 

ore. Most vugs are elongate in shape, and their longer dimensions 

are nearly parallel to the bedding. Some vugs appear to be 

connected to each other (Figure 18). The vugs may be lined with 

well-formed crystals of fluorite, quartz, galena, sphalerite, 

calcite and barite. 

Some pure layers of the ores show "comb structure" (Figure 19). 

Comb structure is a term applied to crusts of crystals that have 

grown inward from opposite walls of a fracture or fissure. 

Fluorite ores with comb structure tend to break along the vugs between 

the two opposing combs. Late crystals, such as calcite, tend to 

be deposited only on the bottom comb (Figure 20). Similar features, 

termed "snow on the roof" by Bastin ( 1931, p. 39), were thought by 

him to indicate gravitational control during the crystallization of 

calcite. 



Fig. 18. 
fluorite. 
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Elongated, partly interconnected vugs within a massive 
Rosiclare-Fredonia contact zone, Crystal mine. 



Fig. 19. Specimen from the Crystal mine showing comb structure 
in the lowest thick band (see arrow mark). 

Fig. 20. Vug surface of the bottom comb of the specimen shown in 
Figure 19. Note that tiny calcite crystals (yellowish white) coat 
the comb fluorite. 
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The minerals known to be present in the bedding-replacement 

deposits of the Cave-in-Rock district are fluorite, sphalerite, 

galena, chalcopyrite, pyrite, marcasite, calcie, witherite, 

strontianite, barite, quartz, dolomite, oil and bitumen. Although 

fluorite is the most valuable mineral in the district, sphalerite 

is of secondary economic importance in some deposits. More 

sphalerite is recovered from the Minerva mine No. 1 than from 

any other mine in the Cave-in-Rock district. Galena, which is 

locally abundant, rarely is recovered, The remainder of the 

minerals are present in smaller amounts and they constitute no 

present economic value, Secondary minerals known to occur in the 

Cave-in-Rock district are cerussite, smithsonite, anglesite, 

malachite and pyromorphite, 

Fluorite is used in diverse industries. In the form of gravel 

or pellets it is used as a flux in the steel-making process. Finely 

ground fluorspar is consumed in the preparation of synthetic 

cryolite, a sodium aluminum fluoride mineral. This electrolyte 

is used in the aluminum industry to reduce aluminum from its oxide 

form. The chemical industry consumes fluorspar in the production 

of hydrofluoric acid, which is an important compound in the 

manufacture of refrigerants, pressurized gas for aerosol containers, 

resins for fluoroplastics, etc. Fluorspar is used in the ceramic 

industry in the manufacture of porcelain enamels, facings for bricks, 

etc. 



Each of the minerals in the Cave-in-Rock district are 

discussed in this chapter in their general order of abundance 

or importance. 

B. Description of Minerals 

1. Fluorite (CaF2 ) 
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Fluorite is one of the important halide minerals, along 

with halite (NaCl), sylvite (KCl), cryolite (Na3AlF6 ) and carnallite 

( KMgCl3 • 6H20). Fluorite is commercially called "fluorspar". 

Fluorite is the most abundant mineral in the bedding-replace­

ment deposits. It occurs mainly as banded, massive, and disseminated 

ore. The banded ore is composed of alternating layers of light­

colored pure and dark-colored impure fluorite. The massive ore 

is shown in Figure 18. The disseminated ore is characterized by 

fine granular fluorite distributed through the host rock, often 

with other disseminated minerals such as sphalerite and galena. 

Well-developed crystals occur as simple cubes in vugs or 

cavities where they range in size from microscopic dimensions up 

to about 13 ern. on a side. Cubes are the most common and their 

faces are more or less irregular or smooth and glassy. Such cubes 

often consist of a mosaic of numerous small crystals in nearly 

parallel aggregation, sometimes referred to as lineage structure 

(Buerger, 1932). Cubic crystals showing dodecahedral modifications 

were described by Currier (1944, p. 31), but they were not 

observed by the present writer. Cubic fluorite crystals averaging 

6 mm. across and modified by the tetrahexahedron {310} (Figure 21) 

were rarely observed in the Crystal mine to be deposited on white 
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quartz crystals in vugs. Fluorite cubes are remarkably cleavable 

along octahedral planes. Octahedral cleavage fragments commonly 

are sold in shops in the Cave-in-Rock district. 

Fluorite from the district displays many strikingly beautiful 

colors. These include colorless or milky-white, pale or deep 

purple, lavender, yellow or amber, sky-blue and greenish-blue. 

The various shades of yellow and purple are the most common. While 

color zoning may occur in some massive ore, it is more common in 

crystals. Such zoning is parallel to the crystal faces and it 

may consist of two colors, commonly a yellow core enclosed by a 

purple shell, or it may consist of layers of various shades of 

one color as shown in Figure 22. 

Inclusions frequently are present in fluorite crystals, 

where frequently they form bands parallel to the crystal faces of 

fluorite. Oil and bitumen were recognized in some fluid inclusions. 

Chalcopyrite, sphalerite, galena and quartz occur in some fluorite 

as solid inclusions. The cubic faces of some lilac fluorite are 

marked by small, dark purple spots around tiny chalcopyrite crystals 

which contribute locally to the coloration. 

2. Sphalerite (ZnS) 

Sphalerite was called "blende" by the early German miners 

who were disappointed to find it rather than galena. The term 

"sphalerite" from the Greek has the same meaning as "blende" 

derived from blenden (to deceive). 

Sphalerite commonly occurs as fine or coarse grains in 

disseminated ore, and less commonly as crystals in vugs or 

cavities. Rarely it occurs in massive aggregates. 
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Fig. 21. An observed crystal form of fluorite, a cube a {100} 
with tetrahexahedron ! {310}, 

Fig. 22. Fluorite crystals showing color zoning. Barite (white) 
is superposed upon the fluorite. Crystal mine. 
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Sphalerite crystals generally are small in size, usually 

ranging from 2 to 6 mm. in diameter. The dominant crystal form 

is that of the tetrahedron with or without modifications by cubic 

or dodecahedral faces. 

Most sphalerite varies in color from brown or brownish 

black to reddish or yellowish brown, but some is brownish green. 

Brownish black crystals are especially adamantine in luster 

(Figure 23). Darker-colored varieties of sphalerite are subrnetallic 

in luster, and they may have relatively higher iron contents. 

Cadmium and germanium occur as trace elements in sphalerite 

from the Minerva mine No. 1. The Minerva's zinc concentrate 

contains as much as 1.0% cadmium and 0.03% germanium (Mining 

Engineering, 1958, no. 1, p. 67). 

3. Galena (PbS) 

While galena is the most abundant sulfide mineral in 

the vein type deposits (Currier in Weller, 1920, p. 253) 1 it is 

locally abundant in the bedding-replacement deposits. 

The mode of occurrence of galena is much like that of 

sphalerite. It commonly occurs in irregular or cubic forms 

in disseminated ore or in impure bands of coontail ore, and less 

commonly as well-formed crystals in vugs. 

Galena cubes are restricted to disseminated ore, while 

cube-octahedral galena occurs in vugs (Figure 24). All galena 

cubes deposited in vugs were observed by the writer to exhibit 

tiny octahedral truncations under the binocular microscope. 

The galena crystals in both of the above types of occurrence 

range from 1 mm. to 2 em. across. 
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7 

Fig. 23. Adamantine sphalerite (dark brown) deposited upon quartz 
(white). Viscous bitumen coats the minerals in the central and 
lower portions of the photograph. A later, coarser, brown variety 
of quartz is locally present (upper right). Hill mine. 

Fig. 24. Cubo-octahedral galena crystals deposited upon white quartz 
in a vug. Galena occurs between two combs of quartz (not shown in 
the photograph). Crystal mine. 
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4. Chalcopyrite (CuFeS 2 ) 

Chalcopyrite was called "copper-pyrite" by Henkel in 

1725 when he noticed the difference between this mineral and pyrite. 

In the bedding-replacement deposits chalcopyrite occurs in 

small amounts but to a greater extent than do pyrite and marcasite. 

Chalcopyrite is widely distributed as inclusions within fluorite 

and calcite and as minute crystals deposited upon fluorite 

(Figure 25) and other minerals. Crystals within fluorite occur 

as acicular or nail-like forms, 1 to 4 mm. long. Chalcopyrite is 

associated with sphalerite and galena in disseminated ore. 

Chalcopyrite crystals deposited upon other minerals generally 

are microscopic in size, but some are as large as 3 mm. in diameter. 

The common crystal form is the tetragonal disphenoid {112} either 

with or without the tetragonal dipyramid {011}. Some chalcopyrite 

crystals display slight iridescent colors due to tarnishing by 

surface alterations. · 

5. Pyrite (FeS2) 

The name pyrite originated from the Greek meaning "fire" 

and it was applied by Dioscorides and Pliny in the first century 

after Christ to those · minerals which produced sparks when struck 

by a hammer. 

Pyrite occurs as tiny crystals deposited upon fluorite (Figure 

26) and upon strontianite, as inclusions within calcite and within 

strontianite, and as grains associated with sphalerite in impure 

bands of coontail ore. 

Four,,: kinds of pyrite crystal forms were observed by the writer. 

Two of these, the octahedron-pyritohedron and the cubo-pyritohedron, 
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Fig. 25. Disphenoidal chalcopyrite crystals deposited upon purple 
fluorite. Crystal mine. 4X. 

Fig. 26. Pyrite crystals deposited upon tiny purple fluorite. The 
pyrite cubes are modified by octahedral faces. Crystal mine. 4X. 



are shown in Figure 27. The other two f orms are cubes with and 

without octahedral faces. 
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All of the pyrite crystals are tiny in size, and none larger 

than 1/2 mm. in diameter were observed. 

6. Marcasite (FeS2) 

In 1845, Hardinger recognized the difference in crystal 

system between marcasite and pyrite, and applied the old Moorish 

word "marcasite" to the orthorhombic form. 

Marcasite is less common than pyrite in the bedding-replacement 

deposits. It occurs as long tabular crystals associated with 

fluorite, calcite and strontianite (Figure 28). The tiny crystals 

generally are larger than those of pyrite. Marcasite crystals 

twinned on {101} are common. 

7. Calcite (CaC0 3 ) 

Calcite occurs as well-formed crystals in vugs. Some 

calcite fills the spaces between the coarsely crystalline fluorite 

combs of banded ore. The most common calcite crystal form is that 

of a scalenohedron with or without modification by rhombohedral 

faces. Less common are hexagonal calcite prisms modified by 

rhombohedral faces. Twinned calcite is common (Figure 29). 

Figures 30 and 31 show so-called "dog-tooth spar" and scalenohedral 

calcite, respectively. One especially fine, 2 em. long, calcite 

crystal collected from the Crystal mine is a combination of the 

negative rhombohedron {0112} and the positive rhombohedron {16•o•I6•l}. 

Most crystals of calcite are white to yellowish in color. 

Their sizes generally range from 1 mm. to 4 ern. in length, but 

some are as long as 16 em. 
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Fig. 27. Sketches of the crystal forms exhibited by pyrite. The 
left is octahedron o {111} and pyrithohedron e {210}. The right 
is cube and pyritohedron. 

Fig. 28. Tabular marcasite crystals, often twinned on {101). 
The yellow mineral is calcite. Minerva mine No. 1. 4X. 



Fig. 29. Calcite twinned on {~201} (center of the photograph) 
and {0001} (right). Hill mine. 
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Fig. 30. 
fluorite. 

Calcite, "dog-tooth spar", deposited upon cubes of 
Hill mine. 
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Fig. 31. Calcite scalenohedron. Hill mine. 
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Calcite also occurs in nodular aggregates of small, elongated 

crystals as shown in Figure 32. 

The globular carbonate shown in Figure 33 occurs at the 

Sub-Rosiclare horizon in the Hill mine, and is called aragonite 

by the miners. Hand specimens and thin sections reveal the 

carbonate to have a radially fibrous and concentrically zoned 

structure (Figure 34). The X-Ray pattern produced by this mineral 

shows that it is now calcite (see Table I). The mineral probably 

was aragonite originally, but subsequently it has inverted to 

calcite. 

8. Witherite (BaC0 3 ) 

Witherite was named after the mineralogist, Withering, 

who discovered the mineral in England in 1783. 

In the southern Illinois fluorspar district, witherite was 

first identified by Grawe and Nackowski (1949). It has been 

found only in two mines, the Minerva mine No. 1 and the West Green 

mine. 

Witherite occurs as white to yellowish white pseudobexagonal 

crystals which are repeatedly twinned on {110} to form columns 

(Figure 35). Such columns are terminated by nearly flat dipy­

ramidal faces. 

9. Strontianite (SrC03 ) 

Strontianite was first found at Strontian on the west 

coast of Scotland in 1791 from which it derived its name. 

In the Cave-in-Rock fluorspar district, strontianite is known 

to occur only in the Minerva mine No. 1. Strontianite generally 

occurs as columnar to fibrous aggregates exhibiting a radial 

structure. 
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Fig. 32. Nodules of fine, elongated calcite on yellow fluorite. 
One tiny chalcopyrite crystal (brownish yellow) is deposited on 
the fluorite (right specimen). Minerva mine No. 1. 
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Fig. 33. Globular calcite. Hill mine. 

Fig. 34. Photomicrograph showing radially fibrous structure of the 
calcite shown in Figure 33. Crossed nicols. SOX. 



TABLE I 

X-Ray Diffraction Pattern 
for 

the Globular Calcite Shown in Figure 37 

Calcite Calcite Globular Calcite 

~:Hanawalt 
' 

Rinn, ,';Swanson and Hill Mine 
and Frevel (1938) Fuyat (1953) Cave-in-Rock District 

d(A) I d(A) I d(A) !(log) 

3,87 8 3,86 12 3,85 11 

3,05 100 3, 035 100 3,037 100 

---- --- 2.845 3 2,849 9 

2,50 20 2.495 14 2,495 18 

2,28 24 2,285 18 2,281 27 

2,09 20 2,095 18 2,094 26 

1,927 5 ----- --
1.92 32 

1.913 17 1,912 36 

1,87 24 1.875 17 1,877 32 

---- -- 1,626 4 1.626 7 

1.60 16 1,604 8 1,600 13 

---- -- 1.587 2 1,587 9 

---- -- 1.525 5 1.521 13 

1.51 12 1,518 4 1,517 14 

1.478 5 1.510 3 1.509 12 

---- -- 1,473 2 1,470 6 

1.442 8 1,440 5 1.441 14 

1.428 5 1,422 3 1.419 14 
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*Standard X-ray diffraction powder patterns, N,B,S, Circular 539, 
vol. II, PP• 52-53. 
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Fig. 35. A mosaic of twinned, pseudohexagonal crystals of witherite. 
Pale yellow tint is stronger in photograph than in actual specimen. 
Minerva mine No. 1. 
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Strontianite (Figure 36) generally is white to pinkish white 

in color, and exhibits a vitreous luster, but Grawe and Nackowski 

(1949) noted fibrous aggregates which were brown in color due to 

inclusions of oil. X-ray diffraction patterns obtained from the 

white and pinkish varieties of strontianite are similar (Table II). 

10. Barite (BaS0 4 ) 

Barite (Figure 37) varies in color from white to yellowish 

or bluish white. It occurs as well-formed crystals in vugs, and 

the crystals are tabular on {001} with {210}, or with {210} and 

{101}. Barite may occur as radiating groups of tabular crystals 

or as acicular to bladed aggregates in bands. 

11. Quartz (Si02 ) 

Quartz occurs as fine-grained crystals in disseminated 

ore, and as relatively coarser crystals in vugs. In disseminated 

ore, quartz often forms the cementing matrix and individual 

crystals may be included within other minerals. 

Two types of quartz are present in vugs. One is white to 

colorless, and the other is brownish in color and larger in size. 

The former generally is an early vug lining (Figures 23 and 24), but 

it may also be deposited upon some of the other minerals. Some of 

these crystals are doubly terminated hexagonal prisms with two sets 

of rhombohedrons. White quartz crystals average 2~:mm. in length. 

Brownish quartz crystals often include tiny globules of oil or 

bitumen, and their brown coloration apparently is due to those 

inclusions. The hexagonal prisms of brown quartz are horizontally 

striated, and some show inequal growth of their faces (Figure 38). 
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Fig. 36. Strontianite associating with fluorite (a few light crystals), 
sphalerite (brown) and pyrite (very tiny). The minerals have suffered 
subsequent corrosion. Minerva mine No. 1. 

Fig. 37, Bluish barite crystals deposited upon white quartz. The 
crystals are tabular on {001} with modifications of {210} and {101}. 
The black stain (bottom right corner) is bitumen. Crystal mine. 



TABLE II 

X-Ray Diffraction Patterns 
for 

White and Pinkish Strontianite 

Strontianite 
White Pinkish 

Strontianite Strontianite 

A. s. T. M. Index 
Minerva Mine No. Card No. 5-0418 1 Minerva Mine No. 1 

Synthet ica11y Cave-in-Rock Cave-in-Rock 
Prepared District Di strict 

d(A) I d(A) I( log) d(A) !(log) 
I . 

4.367 14 4.374 14 4.353 12 

4.207 6 4.201 10 4.208 9 

3.535 100 3.538 100 3.534 100 

3.450 70 3.453 79 3.446 54 

3.014 22 3.013 25 3.008 18 

2.859 5 ----- -- ----- --
2.838 20 2.838 35 2.836 28 

2.596 12 2.592 25 2.596 17 

2.554 23 2.558 45 2.556 37 

2.481 34 2.476 48 2.473 43 

2.458 40 2.457 73 2.455 59 

2.4511 33 ----- -- ----- --
2.2646 5 2.2653 13 ----- --
2.1819 30 2.1819 30 2.1809 44 

2.1035 7 2.0964 13 2.0941 15 

2.0526 50 2.0512 70 2.0477 79 

1.9860 26 1.9893 33 1.9811 37 

1.9489 21 1.9489 33 1.9411 33 

1.9053 35 1.9028 52 1.9005 30 

1.8514 3 1.8396 7 1.8431 15 

1.8253 31 1.8241 40 1.8180 23 

1.8134 16 1.8139 40 1.8105 25 
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Fig. 38. Brown quartz. Hill mine. 
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12. Dolomite (CaMg(C03 ) 2 ) 

Numerous tiny carbonate rhombs 1 15 to 62 microns across, 

are found scattered through some of the disseminated ore or impure 

fluorite bands. Stain tests with alizarin red dye show that the 

carbonate is not calcite but rather it is another carbonate, probably 

dolomite. Brecke (1962, p. 505) indicated that tiny rhornbs similar 

to these are dolomite. 

Yellowish rhombohedrons of carbonate deposited in a vug upon 

corroded fluorite were noted in the Minerva mine No. 1 (Figure 39). 

Microscopic examination shows that the carbonate contains many 

small impurities. A stain test with alizarin red dye shows that 

it is not calcite. The pattern produced by X-ray analysis does not 

match that of dolomite and the writer was not able to match it to 

any other known pattern (Table III). The many inclusions which this 

mineral contains may have· complicated the x-ray pattern. 

13. Oil and Bitumen 

Oil and bitumen appear to be of widespread occurrence in 

the bedding-replacement deposits of the Cave-in-Rock district. 

Oil occurs as tiny globules included within fluorite (Figure 40) 

and quartz. Air bubbles are present in some globules and when they 

are unbalanced the bubbles move in a manner similar to that of a 

hand level. The color of the oil inclusions ranges from yellowish 

to greenish brown. 

Bitumen is a viscous or dry residue from oil. It occurs as 

small drops or thin layers coating other minerals. Masses of dark 

brown to black, viscous bitumen emitting a petroleum odor were noted 

in some vugs in the Hill mine, where it was deposited upon yellowish 



Fig. 39. Rhombohedral crystals of a carbonate deposited upon 
corroded surface of fluorite. Minerva mine No. 1. 3X. 
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TABLE III 

X-Ray Diffraction Pattern 
for 

the Rhombohedral Carbonate Shown in Figure 39 

d(A) I 

4-.92 12 

4.57 6 

4.19 21 

3.92 26 

3.59 13 

3.43 12 

3.35 12 

3.08 100 

2.76 
.,, 

2. 53 35 

2.44 19 

2.22 17 

2.18 12 

2.12 24 

2.04 9 

2 .oo 8 

1.98 9 

1.94 21 

1.90 32 

1.86 11 

1.72 10 

1.69 7 

1.63 6 

1.63 15 

1.61 10 

1.59 9 

1.5~ 19 
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Fig. 40. Oil inclusions (brown spots) within fluorite. Crystal 
mine. 4X. 
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fluorite cubes (Figure 41) and upon quartz and sphalerite 

(Figure 23). 

14. Chalcedony 

Chalcedony occurs as spherulitic or banded aggregates 

in chert which has been partially replaced by fluorite (Figure 42). 

15. Secondary Minerals 

Currier (1944, p. 33) described the secondary minerals, 

cerussite and smithsonite: 

The carbonates of lead and of zinc have been observed 
in some of the deposits. The variety of smithsonite that 
is known, from its color and appearance, as "turkey-fat" 
has been found at Lead Hill as a coating on fluorspar 
crystals. 

Weller, Grogan and Tippie (1952, p. 120) noted that: 

Smithsonite, cerussite and anglesite, and malachite 
are found in small quantities in the oxidized portions 
of near-surface deposits. They result from groundwater 
alteration of sphalerite, galena, and chalcopyrite, 
respectively. 

Pyromorphite has been reported to occur in oxidized ore in 

the Patrick open-pit mine, about 3 miles west of the town of 

Cave in Rock (Grogan, 1946). 



Fig. 41. Viscous bitumen coating fluorite. Hill mi ne . 

Fig. 42. 
nico1s. 

Spherulitic chalcedony. 
sox. 

Minerva mine No. 1. 
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The deposition of minerals from ore-bearing solution takes 

place when the physical and chemical factors, such as temperature, 

pressure and composition become favorable to their precipitation. 

The deposition of any two ore minerals may be contemporaneous, 

successive or overlapping. The relative order of mineral deposition 

is known as the "paragenesis". 

Historically, paragenetic determinations were done entirely 

by the examination of hand specimens prior to the use of micro­

scope. The first microscopic examination of an ore for paragenetic 

purposes was that by Campbell and Knight (1906~. Subsequent 

microscopic studies of various ores have produced a wealth of 

ore textures. The paragenetic interpretation of ore microtextures 

has been discussed by Bastin (1918 and 1950), Lindgren (1930), 

Bastin,~· ~· (1931), Schwartz (1931 and 1951), Bandy (1954), 

Edwards (1954), and many others. 

The present investigation of paragenesis in the Cave-in-Rock 

district began with careful examination of ore specimens with the 

naked eye and with the aid of the binocular microscope. Selected 

specimens were sawed to reveal additional mineral relationships. 

Both petrographic and reflecting microscopes were utilized to 

examine fine-grained mineral relationships. The specimens utilized 

for this investigation were selected from the Crystal, Minerva 

No. 1 and Hill mines. 
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B. Development of Banded Ores . 

The development of banded or coontail ore has been the 

subject of much discussion because of its unusual texture. Coontail 

ore consists of alternating layers of coarse-pure and fine-impure 

fluorite. The impure fluorite bands may include a significant 

amount of other minerals, such as sphalerite and galena, forming 

sphalerite-fluorite or galena-fluorite banded ore. There are 

two general ideas on the development of such banding. The first 

has been advocated by Bastin (1931), who believes that the banding 

developed by rhythmic deposition during replacement by diffusion 

of the mineralizing solutions through a solid rock medium. Thus, 

both pure and impure bands are thought by Bastin to have developed 

by replacement. 

Most writers, however, believe that while the impure, disseminated 

bands developed by replacement, the pure fluorite bands formed 

principally in open spaces developed by solution of the host rock 

limestone. Currier (1944, pp. 37-38), for instance, states that: 

••• active fluariferous solutions from a feeding fissure 
proceeded along the purer limestone beds, progressively 
replacing the limestone. Hydrofluoric acid would easily 
and quickly react with the calcium carbonate of the lime­
stone to form calcium fluoride, ••• The ratio between the 
amount of Caco3 dissolved and the CaF2 formed would be 
completely stoichiometrical, and as the specific volume 
of CaF2 is only about two-thirds the specific volume of 
Caco3 the fluorspar thus formed by the above reaction 
would have been of insufficient volume to fill completely 
the space that was occupied by the replaced calcite. In 
any solution cavity thus formed, additional fluorspar, 
existing as CaF2 in the mineralizing solutions and picked 
up by these solutions because of reactions along the 
Paths of travel could be precipitated almost immediately, ' . so that at no time would the open space be extens~ve. 

Grogan (1949, p. 615) follows the thinking of Currier, and 

states that the volume reduction from stoichiometric replacement 



can theore tically amount to as much as 33 percent. 

Weller, Grogan and Tippie (1952 1 p. 126) have stated well 

the second idea on the development of banded ore as follows: 

Although it seems obvious that the crystals 
comprising the coarse fluorspar layers grew into open 
spaces, no such spaces have been observed at the ends 
of coarse layers. It may be that the ore solutions 
continued to deposit fluorspar after they ceased to 
dissolve limestone, and thus filled with fluorspar the 
openings already made. The formation of the coarse 
fluorspar layers involved cavity filling and cannot 
be considered replacement in the strict volume-for­
volume sense of the word, although the fine-grained 
layers apparently were formed in such a way. 

Similarly, Brecke (1962, p. 317) views the formation of the 

low-grade or disseminated bands in the following manner: 

••• the solution advanced as a front of the mineral­
izing influence and replaced available calcium carbonate 
or converted it to calcium fluoride. The refractory 
materials such as dolomite and silica were taken into 
solution but were precipitated in a zone ahead of the 
front. Fluid petroleum was either flushed ahead of 
the front or displaced by growing fluorite crystals 
••• The zone zhead of the front, therefore, contained 
not only the impurities of the volume of host rock 
but also contained the impurities that occurred in 
volume replaced by fluor"ite and became a highly refractory 
zone. The zone of accumulated refractory material was 
eventually by-passed by the advancing mineralizing front 
leaving plate-like masses of low-grade spar that appear 
as bands in the cross section. 

The present writer holds to the second theory, that the 

major portion of the pure layers of banded ore have formed by 

open space filling. The pure and highly crystalline nature of 
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the fluorite-rich bands and the common presence of comb structure 

support such an interpretation. Thus, the well crystallized 

minerals occurring as the pure bands are placed with the vug-

filling sequence in the paragenetic diagrams - for the Crystal 

and Minerva No. 1 mines. 



C. Paragenesis of the Crystal Mine 

Fluorite ore in the Crystal mine occurs on the Rosiclare 

horizon. In the Crystal mine ore the following minerals and 

hydrocarbons were identified: 

1) Dolomite (?) 

2) Fluorite 

3) Quartz 

4) Chalcopyrite 

5) Galena 

6) Sphalerite 

7) Marcasite 

8) Pyrite 

9) Calcite 

10) Barite 

11) Oil and Bitumen 

The minerals occur both in disseminated form and in well­

developed crystals deposited in open spaces. The minerals 

deposited in vugs generally appear to have formed after adjacent 

disseminated minerals and thus the former have been arbitrarily 

separated from and placed after the latter in the paragenetic 

diagram (Figure 43). The reader must bear in mind that while 

some proportion of those minerals which are disseminated may 

have formed by replacement at the same time at which their 

counterparts in the vugs were crystallizing, such time relation­

ships are not recorded as ore textures and therefore they are 

not shown in the paragenetic diagram, Tiny veinlets of some 

minerals extending to or from their crystals in vugs across 

6?. 
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DISSD*ATED SEQUENCE 1 WG-FILLING SEQUENCE 

FRACTURING X X X 

DOL.OIITE ~ 

FLUORITE ~ • 
QUARTZ - ... ~ 

QW.COPYRITE ~ - ... 
GALENA ~ 

SPHALERITE 

MARCASITE 

CALCITE 

PYRITE 

BARITE 

BITUMEN 

FIG. 43. PARAGENETIC DIAGRAM FOR THE CRYSTAL MINE 
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the disseminated ore show that most disseminated ore was cons olidated 

before the vug sequence developed. 

Each of the minerals listed are described below in the general 

paragenetic order. 

1. Dolomite 

A significant amount of carbonate was detected in thin 

sections prepared from impure bands of coontail ore or from dis­

seminated ore where it occurs as rhombs 15 to 62 microns across. 

Some carbonate grains are as large as 1/2 mm. across (Figure 44). 

Alizarin red stain tests showed that the carbonate is not calcite, 

but probably is dolomite. Most of the dolomite occurs as idiomorphic 

rhombs, but some is less regular in shape. The writer believes 

that most of the dolomite has deposited from the mineralizing 

solutions, but some dolomite may have been an original constituent 

of the host rock limestones. Currier (1944, p. 31) noted a 

ferruginous carbonate or ankerite which he believed to be an 

original constituent of some of the limestone layers. Brecke 

(1962, p. 505) reported pearly, white, rhombic crystals of dolomite 

scattered in low-grade fluorspar which he believed to have formed 

from the ore solutions. 

The disseminated dolomite rhombs are partly replaced by 

fluorite, sphalerite (Figure 45), quartz (Figure 46) and galena, 

and they may occur as inclusions in sphalerite (Figure 47) and 

quartz. These observations indicate that the dolomite was the first 

mineral to develop in the disseminated sequence. 

2. Fluorite 

Fluorite was the first mineral to be deposited in abundance. 



Fig. 44. An impure band of coontail ore consisting of fluorite 
(black)• dolomite (light gray) and quartz (white, tiny grains). 
Crossed nicols. sox. 
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Fig. 45. Dolomite (dol) replaced by sphalerite (sl). Two dolomite 
grains to the right extinguish simultaneously, indicating that they 
originally were portions of the same rhomb. Note tiny rhombs of 
dolomite in sphalerite and quartz. 30X. 

Fig. 46. Dolomite (dol) replaced by quartz (qz). All the remnants 
(center) extinguish uniformly. Note the general rhombic outline 
and several dolomite rhombs elsewhere in the quartz. 30X. 
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Fig. 47. Sphalerite (sl) with inclusions of galena (black). quartz 
(qz). fluorite (fl) and dolomite (dol) in an impure band of coon­
tail ore. Plane polarized light. SOX. 
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Microscopic examination of disseminated ore reveals that part 

of the fluorite occurring in impure bands or disseminated ore 

exhibits cubic outlines but most is irregular. Such cubes average 

approximately 2 mm. Some irregular fluorite grains are included 

within sphalerite and galena crystals where they appear to be 

replacement remnants (Figures 47 and 48). Fluorite also has been 

replaced by quartz as shown in Figure 49. Thus, some fluorite 

has formed prior to those minerals. 

The first fluorite to be deposited in open spaces consists 

of two occurrences, yellowish white to yellow fluorite in the 

pure bands of coontail or banded ore and yellow fluorite crystals 

deposited in vugs. The writer believes, as do Weller, Grogan 

and Tippie (1952 1 p. 126) 1 that the pure layers or bands of 

banded ore formed primarily by open space filling, and that they 

were deposited at essentially the same time as well-crystallized 

yellow fluorite in adjacent vugs. Yellow fluorite comb structure 

also is developed in open spaces in green sandstone. Coarsely 

crystalline to massive fluorspar, called "acid spar", was 

deposited in cavities parallel to the bedding (Figure 50) primarily 

at the top and margin of the ore deposit. 

Subsequent to the deposition of yellow fluorite, pu~p~e 

fluorite was deposited during at least two periods. The first 

generation of purple fluorite was deposited in fractures across 

yellow fluorite and it was deposited upon combs of yellow fluorite 

forming crystallographic overgrowths. Such specimens exhibit a 

thin layer of black bitumen which was deposited during a period 

between that of the earlier fluorite and that of subsequent purple 



Fig. 48 • 
(black). 

Replacement remnants of fluorite (white) in galena 
Plane polarized light. sox. 

Fig. 49. Fluorite (fl) replaced by quartz (qz) • . The entire 
fluorite area has the general shape of an original fluorite 
cube. 30X. 
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Fig. 50. Veins or bands of massive yellowish fluorite parallel 
to the bedding of sandstone. Note that purple fluorite is 
confined to the central portions of the yellowish bands. Rosi­
clare sandstone, Crystal mine. 
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fluorite. 

The difference in color of the two generations of fluorite • 
the intervening deposition of bitumen and the occasional presence 

of tiny quartz crystals at the contact are evidence for a time 

separation of the two minerals. In those vugs in which yellow 

fluorite is not present, white quartz crystals often occur as 

the first lining mineral prior to the deposition of purple fluorite. 

A later, less abundant, purple fluorite occurs as tiny cubes, 

1 to 3 mm. on a side. It commonly is deposited upon quartz and 

galena (Figure 51), less commonly upon sphalerite. White quartz 

locally separates the deposition of early and late purple fluorites. 

3. Quartz 

Quartz appears five times in the paragenetic sequence. 

Quartz occurs as microscopic crystals in disseminated ores and in 

impure bands of coontail ore where they range from 25 microns to 

0.4 mm. in length and from 25 microns to 0.2 mm in diameter. 

In those disseminated ores in which quartz is abundant, it 

forms a cementing matrix for galena, sphalerite and chalcopyrite, 

but some euhedral quartz crystals are included near the margins of 

the sulfide minerals (Figure 52). Part of the quartz apparently 

formed before the sulfide minerals and part formed later. Thus, 

quartz occurring in disseminated ore and impure bands of coontail 

ore has crystallized earlier than the sulfide minerals, galena, 

sphalerite, chalcopyrite and marcasite, but later than disseminated 

fluorite. Currier (1944, p. 39) believes that some quartz also 

may have formed before fluorite in impure layers. 

Quartz deposited in vugs occurs as two types. The earlier 
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Fig. 51. Specimen showing crustification of calcite {yellowish 
white) on fluorite (dark purplish gray) on galena (medium gray). 
A thin band of white quartz fi~st lines the vug, and some quartz 
locally is present between galena and purple fluorite. Small 
quantities of chalcopyrite (yellow) occur with the quartz, on 
quartz and within galena. The scalenohedral calcite is modified 
by the positive rhombohedron. 
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Fig. 52. Photomicrograph of polished surface showing euhedral 
quartz (qz) adjacent to and included by galena (gn) and chalco­
pyrite (cp). Marcasite (me) occurs between the galena and 
chalcopyrite. sox. 



type is white, the later is a brownish color. The early white 

variety generally ranges from 1/2 to 1 mm, in diameter, although 

rare crystals up to 3 mm. were observed. It commonly forms an 

early vug lining (Figure 24), and it may coat unmineralized 

fragments of the host rock, often shaly sandstone. White quartz 

crystals may line both sides of fractures nearly perpendicular 

to banding, where they were deposited upon early purple fluorite. 

White to colorless quartz crystals deposited upon the cubic 
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faces of early purple fluorite are shown in Figure 53, and such 

quartz may be relatively coarsely crystallized and doubly­

terminated. Most white quartz was deposited before galena, but 

some crystals have continued to be deposited during and after the 

deposition of galena. Similar relationships were observed between 

quartz and sphalerite. White quartz generally was deposited as a 

first vug-lining mineral before sphalerite, but some was deposited 

after sphalerite. 

The later brownish quartz deposieed in vugs is relatively 

coarse, averaging approximately 3 mm. in diameter. Its pale to 

dark brownish color may be due primarily to inclusions of tiny 

globules of greenish to yellowish oil or brownish black bitumen. 

The prism faces of the quartz are horizontally striated. This 

late quartz may be deposited upon the early white quartz, cuba­

octahedral galena, early yellow and purple fluorite and rarely on 

late purple fluorite as shown in Figure 54. 

4. ChaLcopyrite 

Small amounts of chalcopyrite are of widespread occurrence 

in the Crystal mine. The mineral occurs in as many as seven 



Fig. 53. Clear quartz deposited upon the cubic faces of early 
purple fluorite. The quartz prisms are terminated by two 
sets of rhombohedrons. Bitumen locally stains the quartz brown. 
Some quartz groups (central part) form "mosaic bowls". 3X. 
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Fig. 54. Brownish, horizontally striated quartz deposited 
upon small late purple fluorite, which, in turn, is deposited 
upon yellow fluorite. Bitumen is deposited upon yellowish 
fluorite before purple fluorite. Calcite (white) is deposited 
upon both fluorites and on quartz. 3X. 



paragenetic positions as irregular grains in disseminated ore, 

inclusions within yellowish fluorite and as crystals on other 

minerals in vugs. 

In disseminated ore, chalcopyrite may contain inclusions 

of quartz and fluorite. Contiguous grains of chalcopyrite and 

galena most often show mutual boundaries, but rare euhedral 

chalcopyrite inclusions in galena suggest that chalcopyrite 

generally was earlier than galena (Figure 55). Although chalco­

pyrite was not observed to be contiguous to sphalerite in any 

of the polished surfaces prepared by the writer, its paragenetic 

position is known to be prior to that of sphalerite because of 

its relationship to galena. 

Acicular or nail-like chalcopyrite crystals, 1 to 4 mm. 

long, frequently are included within yellowish fluorite. These 

crystals appear to be confined to certain planes of the fluorite 

where they were deposited during a cessation of fluorite 

deposition. 
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Chalcopyrite also may be deposited with white quartz which 

forms an early crust in many vugs. Another period or continuation 

of that period of chalcopyrite deposition is evidenced by chalco­

pyrite deposited upon the crust-forming quartz and before subsequent 

galena. That tais period of chalcopyrite deposition continued 

during that of galena is shown by chalcopyrite inclusions within 

that galena. 

Even later chalcopyrite occurs as well-formed, 1 to 3 mrn., 

disphenoidal crystals deposited on sphalerite and other minerals 

(Figure 25), but earlier than late purple fluorite, brown quartz, 



., 

J / , • 

gn 

gn 

" ' \ ~. \. ., 

78 

plastic 

Fig, 55, Chalcopyrite (cp) included in and partly corroded by 
galena (gn) in disseminated ore. Tiny euhedral quartz (qz) 
locally is present. Reflected light, 60X, 



calcite and barite. That this period of chalcopyrite deposition 

partly overlaps that of sphalerite is shown by the fact that some 

chalcopyrite crystals are partially included within sphalerite. 
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Chalcopyrite was deposited very late as fine-grained, 1/4 mm., 

crystals both within and on calcite. Similar crystals are deposited 

on earlier minerals. 

s. Galena 

Galena was deposited in at least three different generations. 

The earliest galena, that which occurs in disseminated ore and 

impure bands of coontail ore, contains inclusions of earlier 

dolomite, fluorite and quartz crystals. Its age relationship to 

sphalerite is more complex. Where the two minerals are contiguous 

they generally exhibit mutual boundaries. Some galena is euhedral 

against and earlier than sphalerite as shown in Figure 56. Least 

commonly, the reverse age relationships are shown, where the 

euhedral rotund shape of sphalerite impinges upon galena (Figure 57). 

Thus, the depositional periods of the two minerals overlapped, 

but most galena formed before sphalerite. 

In vugs, galena was deposited in small amounts before the 

crystallization of the early white quartz as shown in the sketch 

(Figure 58), but galena was deposited in greater quantities after 

the deposition of the white quartz crust (Figures 24 and 59). All 

the galena crystals observed by the writer in vugs in the Crystal 

mine were cubes modified by the octahedron. 

6. Sphalerite 

Sphalerite occurs in two generations, in disseminated ore 

and impure bands of coontail ore, and as crystals in vugs. The 



Fig. 56. Photomicrograph showing euhedral galena (black) 
crystallized before sphalerite (dark gray) in impure bands of 
coontail ore. Plane polarized light. sox. 

• • 
' .. r ' 

Fig. 57. Photomicrograph showing euhedral rotund sphalerite 
(medium gray) crystallized before galena (light gray) in 
disseminated ore. Reflected light. 60X. 
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Open-space 

qz 

Disseminated ore 

Fig. sa. Quartz crystals (qz) deposited beside and partly 
upon galena (gn) in a vug. 3X. 

Fig. 59. Galena (black) deposited on white quartz in a vug. 
Crossed nicols. SOX. 
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first generation occurs as rudely euhedral crystals which may 

include the earlier formed minerals, dolomite, fluorite, galena 

and quartz (Figures 46 and 60). 
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Sphalerite also occurs as well-formed crystals in vugs. The 

tetrahedral crystals, with or without modification of cubic faces, 

were deposited on galena, white quartz and the early purple fluorite. 

The last age relationship also is shown by narrow sphalerite 

veinlets cutting early purple fluorite veinlets. 

7. Marcasite and Pyrite 

Marcasite and pyrite are the least abundant of the 

sulfide minerals. Each was observed to occur in one paragenetic 

position in the Crystal mine. Marcasite occurs in small amounts in 

disseminated ores where it generally is restricted to grains of 

cha~copyrite (Figure 52) and may have replaced that mineral. 

Bastin ( 193l,:;,p. 63) reported marcasite to be included within 

transparent fluorite in vugs as needle-like crystals, but Weller, 

~~· {1952, p. 120) believe those needles to be chalcopyrite. 

Marcasite was not observed to occur in any of the vug-fluorite 

studied by the writer. 

Pyrite was observed to occur in one small vug in the Crystal 

mine. Tiny, 0.1 to 0.3 mm., pyrite cubes modified by octahedral 

faces were deposited upon small late purple fluorite (Figure 26). 

Weller,~!!· (1952, p. 120) have observed small pyrite crystals 

encrusting fluorite and calcite in the Davis-Deardorff mine. 

a. Calcite 

Calcite is an abundant late mineral in the Crystal mine. 

The common crystal form is a scalenohedron with or without modification 



Fig. 60. Euhedral quartz crystal (dark gray) included by 
sphalerite (light gray) in disseminated ore. The black spots 
are pits. Reflected light. 60X. 
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by rhombohedral faces, shown respectively in Figures 51 and 61. It 

occurs less commonly as hexagonal prisms modified by rhombohedral 

faces (negative) and as rhombohedrons (combination of positive and 

negative rhombohedron). All forms of calcite were deposited after 

galena, white and brown quartz, all fluorite, sphalerite and chal­

copyrite (Figures 54 and 61). Calcite commonly coats the early 

purple comb fluorite (Figure 21), and it was deposited after some 

bitumen (Figure 62). Calcite also occurs as narrow veinlets which 

traverse yellow fluorite (Figure 63) and early purple fluorite. 

9. Barite 

Barite was the last mineral observed by the writer to be 

deposited in vugs. It occurs as bluish to yellowish white, 1 to 

8 mm., tabular crystals, which may be partly arranged in radiating 

groups. Barite was deposited after all of the other minerals, 

but rarely it is partly included in,:calcite. Barite crystals 

were observed to encrust early white quartz (Figure 35), to be 

deposited upon quartz and galena (Figure 64), and to include 

fragments of quartz (Figure 65). 

10. Oil and Bitumen 

Oil and bitumen probably were present rather continuously 

throughout the time of deposition of the ores (Hall and Friedman, 

1963, p. 891), but they were especially prevalent in the Crystal 

mine at three periods indicated on the paragenetic diagram. The 

first was bitumen which was deposited upon yellowish fluorite, 

white quartz and galena. The second was that deposited upon both 

stages of purple fluorite, sphalerite and disphenoidal chalcopyrite. 

The last common stage of bitumen was deposited after calcite and 



Fig. 61. Scalenohedral calcite deposited upon purple fluorite. 

Fig. 62. Rhombohedral yellow calcite formed after bitumen (black) 
deposited upon greenish, fine-grained sandstone. 
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Purple fluorite 

Calcite 
veinlets 

Yellow 
fluorite 

Fig. 63. Calcite veinlets transgressing yellow fluorite and 
connected with calcite crystals in a vug. Early purple fluorite 
has been deposited on yellow fluorite. Actual size. 
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Fig. 64. Barite crystals (yellowish white) deposited on quartz 
(white) and galena (dark gray). Note that part of the barite 
occurs in radiating groups. 3X. 

Green sandstone 

Green sandstone 

Fig. 65. Sketch showing a fragment of white vug quartz and 
host rock (dotted line) included in barite (ba). 2X. 
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before most barite. 

11. Fracturing 

Fracturing occurred during several periods. The most 

important fracturing was that which was prior to the introduction 

of ore-bearing solutions and which allowed those solutions access 

to the present sites of ore deposition. Such fracturing probably 

was connected with the uplift of the strata in southern Illinois. 

Minor faacturing which occurred after the deposition of 

yellow fluorite is evidenced by the filling of fractures across 

yellow fluorite with early purple fluorite. 
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Subsequent minor fracturing occurred after early purple 

fluorite but before completion of sphalerite mineralization. This 

stage of fracturing is shown by veinlets of sphalerite which 

traverse veinlets of early purple fluorite and by veinlets of 

calcite which traverse yellow fluorite. 

12. Summary of Paragenesis,::of Crystal Mine Ores 

Most of the primary minerals in the Crystal mine were 

deposited during more than one period. Fluorite was deposited at 

least during four different periods, quartz during five, chalco­

pyrite during seve~, galena during three and sphalerite during 

two. Dolomite, marcasite, calcite, pyrite and barite were 

deposited during one period. 

The general order of formation of the minerals in disseminated 

ore was as follows: dolomite, fluorite, quartz, chalcopyrite, 

galena, sphalerite, marcasite and quartz. The order of deposition 

in open spaces was: yellowsih white to yellow fluorite, chalcopyrite, 

galena, early purple fluorite, white quartz, sphalerite, chalcopyrite, 



late purple fluorite, brown quartz, calcite with chalcopyrite, 

chalcopyrite and pyrite, and barite. 
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The two sequences of deposition, that of the disseminated 

minerals and that of the vug-filling minerals, exhibit both 

similarities and dissimilarities. They are similar in their 

general orders of deposition of fluorite, quartz, chalcopyrite, 

galena and sphalerite. Closer examination, however, reveals many 

dissimilarities between the two sequences. The most prominent 

of these are the occurrence of late calcite, pyrite and barite 

and the recurrence of additional generations of fluorite, quartz, 

chalcopyrite and galena in the vug-filling sequence which, except 

for two generations of quartz, are absent from the disseminated 

sequence. Other differences include the absence of marcasite in 

the vug-filling sequence, and the common simultaneous deposition 

of galena and sphalerite in the disseminated ores as contrasted 

to the consistent deposition of sphalerite after gale~a in the 

vug-filling ores. 

D. Paragenesis of the Minerva Mine No. 1 

Fluorspar in the Minerva mine No. 1 is mined on the Bethel 

horizon. Other horizons, such as the Levias, Rosiclare, and 

Sub-Rosiclare have been explored, but no production comes from 

those levels at the present time. Three ore bodies are developed 

on the Bethel horizon within the No. 1 mine. 

The following minerals, periods of corrosion, and hydrocarbons 

were found to occur in the ore bod:ies in the No. 1 mine: 



1) Dolomite 

2) Fluorite 

3) Quartz 

4) Pyrite 

5) Sphalerite 

6) Chalcopyrite 

7) Galena 

8) Calcite 

9) Barite 

10) Strontianite 

11) Corrosions 

12) Marcasite 

13) Witherite 

14) Oil and Bitumen 

Each of these minerals are discussed in the general paragenetic 

order listed above. 

1. Dolomite 

90 

Dolomite occurs twice in the paragenetic sequence in the 

Minerva mine No. 1 as shown in the paragenetic diagram (Figure 66). 

It occurs as rhombohedral crystals in impure bands of coontail ore 

and in disseminated ore (Figure 15). Some dolomite grains may be 

partly included by fluorite and entirely within sphalerite (Figure 67). 

Small broken pieces of dolomite are included within fluorite, 

and cracks within some dolomite fragments are filled by purple fluorite 

(Figure 68). 

Rhornbs of yellowish dolomite (?) are deposited on etched 

surfaces of yellow fluorite and calcite (Figure 39). The identity 
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Fig. 67. Photomicrograph showing dolomite (dol) partly included 
by fluorite (fl) and entirely within sphalerite (sl). Plane 
polarized light. 200X. 
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Fig. 68. Photomicrograph showing fragments of dolomite (light 
to medium gray) in fluorite (black). Crossed nicols. 50X. 
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of this dolomite is discussed in Chapter IV. Its paragenetic 

position is later than that of early calcite, but how much later 

could not be determined. Thus, its position on the paragenetic 

diagram is marked by a query. 

2. Fluorite 
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Five generations of fluorite in the colors, yellowish 

white to yellow, purple and blue• occur in the Minerva mine No. 1. 

The first generation is that of tiny fluorite cubes which occur in 

the impure bands of coontail ore. They may be included by 

sphalerite and replaced by pyrite (Figure 69). Fluorite appears 

to have replaced some chert (Figure 70). 

Yellow fluorite occurs as pure layers of banded ore and as 

crystals in vugs. 

Purple fluorite occurs as veinlets traversing chert (Figure 71) 

and yellow fluorite (Figure 72), and as crystals deposited upon 

dark to reddish sphalerite. Some purple fluorite may occur as 

crystallographic overgrowth crusts deposited on yellow fluorite 

combs. 

Blue fluorite occurs as small crystals deposited upon small 

yellow sphalerite crystals, which were, in turn, deposited on 

purple fluorite. 

The last stage of fluorite deposition consists of tiny pale 

purple fluorite crystals• 1 to 3 mm. across, deposited on witherite. 

Such crystals also were described by Nackowski (1949, P• 35). 

3. Quartz 

Quartz occurs in very small quantities in some disseminated 

ore and impure bands of coontail ore. The relationship of the tiny 
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Fig. 69. Fluorite (fl) included in sphalerite (sl) and pyrite (py) 
in impure bands of coontail ore. Reflected light. 200X. 

Fig. 70. Photomicrograph showing fluorite (black) replacing 
chert (white ~o gray). Crossed nicols. 200X. 
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Fig. 71. Photomicrograph showing a veinlet of purple fluorite 
(fl) crossing chert (light gray to black). Plane polarized 
light. 200X. 



Fig. 72. Veinlet of purple fluorite (see arrow) cutting yellow 
fluorite, chert (ch) and disseminated ore (greenish gray). 
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quartz crystals to fluorite is not shown, but their occasional 

inclusions in disseminated sphalerite suggests that quartz formed 

before sphalerite. Quartz also shows its euhedral shapes against 

the margins of sphalerite grains. 

Quartz crystals deposited in vugs were noted by Nackowski 

(1949, P• 37). They were deposited on fluorite, calcite, barite 

and witherite. 

4. Pyrite 
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Pyrite occurs in small quantities four times in the 

paragenetic s~quence. In impure bands of coontail ore, pyrite 

generally occurs as tiny cubes partly and entirely included within 

sphalerite, but some pyrite may have mutual boundaries with 

sphalerite. Thus, most of the disseminated pyrite has formed 

earlier than sphalerite, but its period of deposition may partly 

overlap that of sphalerite. 

A second generation of pyrite occurs as tiny, 2 to 5 microns, 

crystals included within calcite crystals deposited in vugs. The 

calcite derives a grey color partly from the pyrite inclusions. 

Third and fourth generations of pyrite are those of octahedrons 

modified by pyritohedrons deposited with strontianite (Figure 73) 

and upon corroded surfaces of strontianite (Figure 34). 

s. Sphalerite 

Sphalerite is much more abundant in the Minerva mine No. 1 

than in the Crystal mine, and it occurs in three paragenetic positions. 

It occurs as anhedral to euhedral grains in disseminated ore and 

impure bands of coontail ore, as crystalline masses in vugs and 

as small yellowish crystals deposited on earlier sphalerite and fluorite. 



Fig. 73. Pyrite (black) occurring within strontianite (gray ). 
Plane polarized light. 200X. 

125411 
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In disseminated ore and impure bands of coontail ore, 1/2 to 

3 mm. sphalerite crystals include and are later than dolomite 
' 

fluorite, quartz and pyrite (Figures 67 and 69). 

Dark to reddish brown sphalerite is deposited in vugs on 

yellow fluorite. 

Small quantities of yellowish brown, resinous sphalerite 
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may be deposited locally upon the earlier dark variety of sphalerite 

and upon purple fluorite. 

6. Chalcopyrite 

Chalcopyrite occurs in small amounts four times in the 

paragenetic sequence. Minute grains of chalcopyrite rarely occur 

in impure bands of coontail ore, and no chalcopyrite grain was 

observed to be contiguous to pyrite and sphalerite. Thus, their 

paragenetic position is marked on Figure 66 by a query. 

Small crystals, 1/4 to 1 mm. across, ·are included in and 

later deposited on yellow fluorite. Later, 1 mm. diameter 

crystals are included in or deposited on purple fluorite. 

7. Galena 

Galena was noted only in an ore body which is locally 

referred to as the third ore body and which was abandoned about 

20 years ago. One thin, 2.5 em. wide, band of galena was observed 

to occur near the top of a pillar, but its paragenetic relations 

to other minerals were indeterminate. Its position is approximated 

by comparison with its occurrence in the Crystal mine, but it is 

marked by a query in the paragenetic diagram. 

a. Calcite 

Calcite commonly occurs as scalenohedral crystals, and 



less commonly as rhombohedral ones. Two stages of calcite 

deposition were detected in the Minerva mine No. 1. 

Early calcite occurs as crystals deposited on yellow, purple 

and blue fluorite, and as a filling of spaces between the two 

combs of some banded ores. 
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Late calcite occurs as 1/2 mm. to 5 em. long, scalenohedral 

crystals deposited on the etched surfaces of fluorite (Figures 74 

and 75), sphalerite, strontianite (Figure 76) and the early calcite. 

Calcite fills fractures in fluorite (Figure 77) and strontianite 

(Figure 78). It also fills corrosion cavities of fluorite in 

coontail ore (Figures 79, 80 and 81). 

9. Barite 

Barite occurs as white acicular aggregates in the Minerva 

mine No. 1, and replaces fluorite, calcite, limestone and impure 

fluorite bands. The specimen shown in Figure 82 is a good example 

of barite partially replacing pure fluorite and calcite bands. The 

upper comb of flucrite has been almost entirely replaced by barite. 

Microscopic examination reveals a very irregular boundary between 

barite and replaced fluorite (Figure 83). All of the earlier 

yellow, purple and blue fluorites may be1 replaced by barite. 

10. Strontianite 

Strontianite occurs as white to pinkish, fibrous to 

acicular aggregates with a radial structure. Strontianite was 

observed to include fluorite, sphalerite, early calcite and pyrite. 

Its relationship to barite is not certain in those specimens where 

the writer observed the two minerals to be contiguous, but 

Nackowski (1949, p. 37) reported that: 



Fig. 74. Very tiny scalenohedral calcite crystals (white) 
deposited on corroded yellow fluorite cubes with local areas 
protected from corroding by prior deposition of bitumen (black). 
4X. 

Fig. 75. Acicular and scalenohedral brown calcite (bottom lef t) 
occurring on corroded purple fluorite. 
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Fig. 76. Tiny scalenohedral calcite crystals (white to greenish 
gray) deposited on a box-work of strontianite (white) developed 
by corrosion. Note that the early calcite (yellow) also is 
corroded. 
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Fig. 77. Calcite (white) veinlet traversing fluorite (dark gray). 
Crossed nicols. sox. 

Fig. 78. Calcite (white) veinlet traversing strontianite (gray). 
Crossed nicols. SOX. 
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Fig. 79. Calcite (white) filling corrosion cavities of pure 
fluorite bands in coontail ore. 
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Fig. ao. Photomicrograph showing calcite (gray) filling corrosion 
cavities of fluorite (black) in coontail ore shown in Figure 79. 
Crossed nicols. 200X. 

Fig. 81. Photomicrograph showing the same phenomenon as Figure 80. 
Crossed nicols. 200X. 
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Fig. 82. Banded ore consisting of (from top to bottom) barite, 
sphalerite-fluorite, barite, calcite, fluorite, barite, sphalerite­
fluorite, barite, and fluorite with some calcite. Note the 
irregular replacement boundaries between barite and the other 
minerals and the replacement remnants of fluorite within some 
barite bands. 



Fig. 83. Photomicrograph showing barite (white) replacing 
fluorite (black) in one of the barite bands shown in Figure 82. 
Crossed nicols. SOX. 
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Strontianite fills open spaces in masses of loosely 
aggregated barite needles. Strontianite has partly 
replaced barite needles, indicating that it was deposited 
after barite. 

11. Corrosion 

The minerals in some ore deposits exhibit periods of 

corrosion after their deposition. Such periods of corrosion have 

been neglected in the paragenetic studies of many deposits but 

they .constitute an integral part of the time sequence. Corrosion 

in the Minerva mine No. 1 appears to have occurred principally 

after the deposition of strontianite and earlier minerals but 

before the deposition of late calcite and witherite which may 
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occur upon the etched surfaces of fluorite (Figures 74, 75 and 84), 

sphalerite (Figure 34), early calcite (Figure 76) and strontianite 

(Figure 76). Two periods of corrosion are separated by pyrite and 

marcasite, which were deposited upon corroded surfaces of stron-

tianite and subsequently corroded themselves. The weak corrosion 

after the deposition of pyrite (Figure 34) and marcasite (Figure ~ 86) 

is evidenced by etch grooves which are continuous from strontianite 

through pyrite and marcasite. 

12. Marcasite 

Marcasite occurs in two paragenetic positions. The 

first generation of marcasite occurs deposited on corroded surfaces 

of strontianite and has been subsequently etched (Figure 86). 

A later period of marcasite deposition is represented by 

tiny crystals included in late calcite. 

13. Witherite 

Witherite was observed only in the abandoned third ore 

body. It was deposited on late calcite (Figure 87) and on the 



Fig. 84. Ragged, etched surface of an impure fluorite band ' 
(brown) upo n which calcite (yellowish white) is deposited. 
Purple fluorite veinlets (see arrow) formed before corrosion 
often localize the sites of calcite deposition. 

Yellow 
fluorite band 

Fig. 85. Sketch showing the vertical section along the A-A' 
marked in Figure 84. 2X. 
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Fig. 86. Marcasite crystals (tiny black spots) deposited upon 
the · ragged, corroded surface of strontianite. Note the effects 
of corrosion upon yellow fluorite, purple fluorite and dark 
brown sphalerite crystals. 

Fig. 87. Pseudohexagonal twinned crystals of witherite (white) 
deposited on calcite (yellow) and previously etched fluorite 
(purple). 2.SX. 
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etched surface of fluorite (Figures 88 and 89). Witherite 

crystals often were deposited on the walls of box-work fluorite 

and calcite formed by corrosion. 

14. Oil and Bitumen 

Oil and bitumen are less abundant in the Minerva mine 
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No. 1 than in the Crystal mine. While they may have been present 

throughout the entire period of mineralization, they were especially 

noted to be present during three periods. The first period was 

after yellow fluorite but before purple fluorite, the second after 

purple fluorite but before blue fluorite, and the last period was 

after corrosion but before witherite. 

15. Fracturing 

Several periods of fracturing occurred in the Minerva 

mine No. 1. The first of these was pre-mineral fracturing which 

provided access for the mineralizing solutions. 

Minor fracturing which occurred during mineralization is 

shown by fractures in yellow fluorite (Figure 72) and impure bands 

of coontail ore (Figure 85) which were filled by purple fluorite. 

Later minor fracturing is evidenced by fractures in corroded 

fluorite (Figure 77) and strontianite (Figure 78) which were filled 

with calcite. 

16. Summary of Paragenesis of Minerva Mine No. 1 Ores 

In the Minerva mine No. 1 fluorite was deposi~ed at 

least during five different periods, chalcopyrite and pyrite 

during four, sphalerite during three, dolomite (?), quartz, calcite 

and marcasite during two periods, Barite, strontianite and witherite 

were deposited during one period. 
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Fig. 88. Photomicrograph showing witherite (top) deposited on 
the etched surface of fluorite (below). Plane polarized light 
200X. • 

Fig. 89. Photomicrograph showing the same area as the above 
photograph but under crossed nicols. The white area is witherite, 
and the dark gray area is fluorite. 200X. 
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The general order of formation of the minerals in disseminated 

ore is: dolomite, fluorite, quartz, pyrite with chalcopyrite (?) 

and sphalerite. The order of deposition of the vug-filling 

minerals is: yellow fluorite, chalcopyrite, galena (?), sphalerite 

with chalcopyrite, purple fluorite, chalcopyrite, sphalerite, blue 

fluorite, calcite with pyrite, barite, strontianite with pyrite, 

corrosion, pyrite with marcasite, corrosion, calcite and dolomite 

(?),marcasite, witherite, pale purple fluorite and quartz. These 

two sequences, that of the disseminated ore and that of the vug­

filling minerals are quite dissimilar. They contrast rather 

strongly in the minerals present, the sequence in which they were 

deposited and in the number of mineral generations present. 

The general sequence of mineral deposition in the Minerva 

mine No. 1 is similar to that in the Crystal mine, but there are 

some differences in the minerals present, their abundance and the 

number of generations in which they appear. Witherite and 

strontianite are present in the Minerva mine No. 1, but they were 

not observed to occur in the Crystal mine. Quartz is much less 

abundant in the Minerva mine No. 1 than in the Crystal mine. 

Galena is less abundant and was not observed to occur in the 

disseminated sequence in the Minerva mine No. 1. The abundant 

minerals, fluorite, sphalerite and calcite appear in the ores of 

the Minerva mine No. 1 one more generation than they do in those 

of the Crystal mine. The less abundant minerals, however, appear 

more often in the Crystal mine ores, chalcopyrite and quartz in 

three additional generations, galena in two additional generations. 

Corrosion, which is so prominent toward the last stages of mineral-



ization in the Minerva mine No. 1, appears to be lacking in 

the ores of the Crystal mine. Lastly, the differences between 

the disseminated and vug-filli~ sequences are greater in the 

Minerva mine No. 1 than between those sequences in the Crystal 

mine. 

E. Paragenesis of the Hill Mine 

Fluorspar occurs at two stratigraphic horizons in the Hill 

mine, the Sub-Rosiclare-lower Fredonia and the upper Fredonia-

Rosiclare contact zones. A characteristic feature of the mine 

is that structurally it appears to have been developed along 

synclinal and collapsed zones of the overlying basal sandstone 

beds of the Rosiclare sandstone. Slump structures found in this 

mine are believed by Brecke (1962, p. 531) to have formed by a 

combination of host rock solution and stoping by penetration of 

fluorspar into the sandstone. 

The mineralogy of the ores in the Hill mine is similar to 

those occurring in the CrystaL mine. 
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The writer examined ·and described all the specimens collected 

from the Hill mine but the investigation was insufficient to 

prepare a paragenetic diagram and only some characteristic features 

of those specimens will be briefly described below. 

Most of the fluorite in the Hill mine is pale to dark purple 

in color. Some specimens exhibit two stages of purple fluorite 

separated by bands of one or more of the minerals, chalcopyrite, 

sphalerite, galena and calcite deposited parallel to the cubic 

faces of the fluorite (Figure 90). 



Other specimens exhibit three stages of purplish fluorite, 

a pale purple one and two dark purple varieties (Figure 91). 

White calcite with a yellowish tint was deposited after the pale 

purple fluorite, and a thin layer of calcite with sphalerite was 

deposited after the second fluorite. Brownish yellow calcite 

may form a crystallographic overgrowth enclosing the early white 

calcite. 

As many as five stages of purple fluorite were noted in 
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thin slices of specimens such as that shown in Figure 92. Various 

other minerals, especially sphalerite, but also galena and quartz, 

occur between fluorites of the various stages. Pincknf;ly (1966) 

has found as many as seven stages of purple fluorite to occur in 

the Hill mine. 

Some calcite scalenohedrons, 5 to 12 em. long, are composed 

of two generations. The inner cores and outer zones of such 

crystals (Figure 93) can be distinguished by their different 

colors and by the fact that they tend to break along the contact 

between the two zones, and tiny pyrite crystals are confined to 

the inner cores of calcite crystals studied by the writer (Figure 94). 
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Fig. 90. Two stages of purple fluorite separated by the deposition 
of chalcopyrite (yellow) and sphalerite (yellowish brown). 4X. 

Fig. 91. Specimen showing three stages of purplish fluorite 
and two stages of calcite. A thin layer of white calcite (see 
arrow) occurs between the last two stages of dark purple fluorite. 
Numerous tiny chalcopyrite crystals are deposited on the surface 
of the early white calcite. Note the growth zoning of the brownish 
yellow calcite. 



Fig. 92. Purple fluorite coated with calcite. Thin slices of 
this specimen reveal five stages of fluorite deposition separated 
by the deposition of sphalerite, galena and quartz. One band of 
sphalerite (yellow) may be seen toward the top of the specimen. 
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Fig. 93. Photomicrograph showing two stages of calcite deposition. 
The dark line is the crystal face (sca1enohedral) which marks the 
boundary between the inner core calcite (left) and the outer zone 
(right). Crossed nicols. SOX. 

Fig. 94. Pyrite crystals (black) included within the inner core 
of calcite shown in Figure 93. Pyrite is absent from the outer 
zone of calcite. Plane polarized light. SOX. 



Chapter VI 

SUMMARY AND CONCLUSIONS 

Underground observations, binocular examination of about 

300 hand specimens, petrographic and ore microscopic study of 

about 100 thin sections and 36 polished surfaces have permitted 

the writer to determine the mineralogy and paragenesis of the 

fluorite ores in the Crystal and Minerva No. 1 mines, and to 

discuss some aspects of paragenesis of the ores in the Hill mine. 

Thirteen minerals were found to occur in the two mines. 

Eight of these occur both in the disseminated form and as 

crystals deposited in cavities. Textural relationships observed 

in the disseminated ores and believed to be recorded here for 
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the first time are: (1) euhedral dolomite, quartz, pyrite and 

gaaena included within sphalerite, (2) replacement remnants of 

fluorite within galena and pyrite, {3) euhedral quartz and 

chalcopyrite included within galena and (4) marcasite replacements 

of chalcopyrite. Relationships between minerals deposited in 

cavities believed to be recorded here for the first time are: 

(1) thin bitumen layer between yellow fluorite and early purple 

fluorite, (2) brown quartz deposited upon late purple fluorite 

and other minerals, (3) euhedral pyrite included within strontianite 

and calcite, (4) euhedral pyrite and marcasite deposited upon 

corroded strontianite and (5) euhedral marcasite included within 

late calcite. 

The paragenetic sequence of minerals in the disseminated 

ores has a general similarity to the sequence of minerals 

deposited in vugs in the Crystal mine, but the sequence of vug-
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filling minerals differs from that of the disseminated minerals by 

the occurrence of late calcite, pyrite and barite and by the 

recurrence of additional generations of fluorite, chalcopyrite and 

galena. The differences between the paragenetic sequences of 

the disseminated and vug-filling minerals in the Minerva mine 

No. 1 are even more striking. They differ in the minerals present, 

the depositional sequence of those minerals and in the number of 

generations in which each mineral appears. The differences between 

the disseminated and cavity paragenetio sequences, together with 

textural evidence, suggest that most of the disseminated minerals 

formed before the deposition of minerals in vugs or cavities. 

The most noteworthy feature of the paragenetic sequence in 

the ores of the mines examined for this investigation is that 

of the repetitive nature of the deposition of many of the minerals. 

Chalcopyrite has been deposited as many as seven times, fluorite 

and quartz five times, pyrite four times, galena and sphalerite 

three times and calcite, marcasite and dolomite(?) two times. 

The writer interprets the paragenetic sequence to indicate 

that the nature of the solutions from which the minerals of the 

Cave-in-Rock fluorite ores were deposited changed gradually 

through time to provide the general paragenesis, but that local 

variations, particularly in pH, Eh and chemical concentrations, 

caused variations in the paragenesis from one mine to another. 

That the chemical conditions of the ore solutions often were near 

the boundary between deposition and non-deposition is shown by 

the repetitive nature of the deposition of many of the minerals. 



Repetitive access of the ore solutions to some cavities may have 

been important in producing local repetitive mineral deposition. 
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