
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 2020

Cyber physical security of avionic systems Cyber physical security of avionic systems

Anusha Thudimilla

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Thudimilla, Anusha, "Cyber physical security of avionic systems" (2020). Doctoral Dissertations. 2923.
https://scholarsmine.mst.edu/doctoral_dissertations/2923

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2923?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2923&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CYBER PHYSICAL SECURITY OF AVIONIC SYSTEMS

by

ANUSHA THUDIMILLA

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2020

Approved by

Bruce M. McMillin, Advisor
Jennifer Leopold
Ricardo Morales

Venkata Siddharth Nadendla
Jonathan Kimball

Copyright 2020

ANUSHA THUDIMILLA

All Rights Reserved

ABSTRACT

iii

Cyber-physical security is a significant concern for critical infrastructures. The

exponential growth of cyber-physical systems (CPSs) and the strong inter-dependency be­

tween the cyber and physical components introduces integrity issues such as vulnerability

to injecting malicious data and projecting fake sensor measurements. Traditional security

models partition the CPS from a security perspective into just two domains: high and low.

However, this absolute partition is not adequate to address the challenges in the current CPSs

as they are composed of multiple overlapping partitions. Information flow properties are

one of the significant classes of cyber-physical security methods that model how inputs of a

system affect its outputs across the security partition. Information flow supports traceability

that helps in detecting vulnerabilities and anomalous sources, as well as helps in rendering

mitigation measures.

To address the challenges associated with securing CPSs, two novel approaches

are introduced by representing a CPS in terms of a graph structure. The first approach is

an automated graph-based information flow model introduced to identify information flow

paths in the avionics system and partition them into security domains. This approach is

applied to selected aspects of the avionic systems to identify the vulnerabilities in case of a

system failure or an attack and provide possible mitigation measures. The second approach

is based on graph neural networks (GNN) to classify the graphs into different security

domains.

Using these two approaches, successful partitioning of the CPS into different security

domains is possible in addition to identifying their optimal coverage. These approaches

enable designers and engineers to ensure the integrity of the CPS. The engineers and

operators can use this process during design-time and in real-time to identify failures or

attacks on the system.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor,

Dr. Bruce M. McMillin, for the continuous support of my research, and for his immense

knowledge, motivation, enthusiasm, and patience. His guidance helped me in all the time of

research and writing of this dissertation. I could not have imagined having a better advisor

and mentor for my doctoral study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Jonathan Kimball, Dr. Jennifer Leopold, Dr. Ricardo Morales, and Dr. Venkata Sriram

Siddhardh Nadendla for their insightful comments and encouragement, and for the inputs

they have provided which helped me to widen my research from various perspectives.

I would like to thank my fellow research students: Matthew Wagner, Fernaz, and

Simon, for their inputs, feedback, and cooperation. I would also like to thank my entire

research group for their thoughtful questions and feedback. Without their passionate partic­

ipation and input, this research could not have been successfully completed. In addition, I

would like to express my gratitude to some of the staff of the Computer Science department:

Rhonda Grayson, Elaina Manson, and Dawn Davis, for responding to all my queries.

Also, I would like to thank my friends for accepting nothing less than excellence

from me. Finally, I must express my very profound gratitude to my parents for providing

me with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this dissertation. This accomplishment

would not have been possible without them. Thank you!

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I

was funded by the US National Science Foundation under Award Number CNS-1505610

and received helpful support and funding from the Missouri S&T Intelligent Systems Center.

v

TABLE OF CONTENTS

Page

ABSTRACT.. iii

ACKNOWLEDGMENTS... iv

LIST OF ILLUSTRATIONS..viii

LIST OF TABLES... x

NOMENCLATURE... xi

SECTION

1. INTRODUCTION... 1

1.1. GRAPH-BASED INFORMATION FLOW MODEL - AVIONIC SYSTEMS 4

1.2. GRAPH NEURAL NETWORK MODEL... 5

1.3. DISSERTATION STATEMENT.. 5

1.4. DISSERTATION ORGANIZATION.. 7

2. LITERATURE REV IEW .. 8

2.1. CPS SECURITY... 8

2.2. INFORMATION FLOW MODELS .. 9

2.3. CYBER-PHYSICAL SECURITY IN AVIONIC SYSTEMS........................... 10

2.4. OTHER RELATED WORKS .. 11

3. BACKGROUND... 14

3.1. SECURITY M ODELS... 14

3.1.1. State Machine Model 14

vi

15

15

16

16

19

21

22

23

23

26

26

26

26

28

29

29

31

32

35

37

40

44

48

50

3.1.2. Information Flow Model

3.1.3. Non-interference M odel...

3.1.4. Non-deducibility M odel...

3.2. AVIONIC SYSTEMS...

THREAT M O D EL...

MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY................................

5.1. MODAL LOGIC..

5.2. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY (M SDND)...

5.3. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY MODEL (MS-
DND)..

5.3.1. Definition: Multiple Security Domain Exclusivity..........................

5.3.2. Definition: Event System ..

5.3.3. Definition: Security Domain...

5.3.4. Definition: Multiple Security Domain NonDeducibility................

GRAPH BASED M SD N D ..

6.1. FINDING INDEPENDENT PATHS...

6.2. ELIMINATE SUBPATHS ..

6.3. VALUATION FUNCTION..

6.4. SECURITY DOMAINS ...

MSDND ANALYSIS ..

7.1. ALTIMETER FAILURE...

7.2. SATELLITE FAILURE..

7.3. PITOT STATIC SYSTEM (PSS) FAILURE..

7.4. PRIMARY FLIGHT DISPLAY FAILURE...

7.5. MAGNETOMETER FAILURE...

7.6. RF INTERFERENCE.. 53

7.7. UNRELIABLE AIRSPEED INDICATIONS... 56

7.8. SUMMARY.. 58

8. MPENN-MESSAGEPASSINGEDGECONVOLUTIONSNEURAL NETWORK 62

8.1. GRAPH NEURAL NETWORKS (G N N)... 62

8.1.1. Graph Nets L ibrary ... 65

8.1.2. Importance of G raphs.. 68

8.1.3. Message Passing Neural Network (M PNN).. 69

8.1.4. Message Passing Edge Convolutional Neural Network (MPENN).... 69

8.1.4.1. Message functions.. 70

8.1.4.2. Graph convolutionallayers... 70

8.2. EXPERIMENTAL RESULTS.. 72

8.2.1. Datasets... 72

8.2.2. Configuration... 73

8.2.3. M etrics.. 73

8.2.4. Results .. 76

9. CONCLUSIONS ... 79

9.1. SUMMARY OF THE PROPOSED APPROACHES... 79

9.2. LIMITATIONS.. 80

9.3. FUTURE W O R K ... 80

REFERENCES ... 82

vii

VITA 88

LIST OF ILLUSTRATIONS

Figure Page

1.1. CPS Architecture... 1

5.1. Aircraft Architecture (1)... 24

5.2. Aircraft Architecture (2)... 25

6.1. Initial G raph ... 32

6.2. Information Flow Paths.. 33

6.3. Security D om ains.. 34

7.1. ATC Helps to Identify the Faulty A ltim eter.. 37

7.2. Graph - A ltitude... 38

7.3. Graph - Security Domains.. 39

7.4. Satellite Failure.. 41

7.5. Graph - Satellite Failure ... 42

7.6. Graph - Security Domains.. 43

7.7. Pitot Static System Failure .. 45

7.8. Graph - Altitude & Airspeed... 46

7.9. Graph - Security Domains.. 47

7.10. Primary Flight Display Failure.. 48

7.11. Graph - Air Speed, Turn, Heading, Altitude, Vertical Speed, Attitude, Air
Speed, Air Density, Outside Air Temperature & Total Air Temperature............... 49

7.12. Graph - Security Domains.. 50

7.13. Graph - Attitude & Heading... 51

7.14. Graph - Security Domains.. 52

7.15. ATC Disconnect.. 53

7.16. Graph - Latitude & Longitude.. 54

7.17. Graph - Secure and Non-Secure

viii

55

ix

7.18. Graph - Vertical Rate, Airspeed, Vertical Speed and Air D ensity........................... 56

7.19. Graph - Secure and Non-Secure... 58

7.20. Information Flow Paths vs NonDeducibility.. 61

8.1. Message Passing Architecture.. 68

8.2. MPENN Architecture... 71

8.3. MUTAG - A ccuracy... 72

8.4. NCI1 - A ccuracy... 73

8.5. NCI109 - Accuracy .. 74

8.6. M U T A G -Loss.. 75

8.7. NCI1 - L oss.. 76

8.8. NCI109 - L oss.. 77

x

LIST OF TABLES

Table Page

7.1. Scenario 1 - Information Flow P aths.. 38

7.2. Scenario 2 - Information Flow P aths.. 42

7.3. Scenario 3 - Information Flow P aths.. 46

7.4. Scenario 4 - Information Flow P aths.. 49

7.5. Scenario 5 - Information Flow P aths.. 51

7.6. Scenario 6 - Information Flow P aths.. 53

7.7. Scenario 7 - Information Flow P aths.. 57

7.8. Information Flow Paths of the Components in Avionic System s........................... 60

8.1. Results on MUTAG, NCI and NCI109.. 76

xi

NOMENCLATURE

Abbreviations Description

CIA Confidentiality, Integrity, and Availability

CNN Convolutional Neural Network

CPS Cyber Physical System

DAG Directed Acyclic Graph

DFS Depth First Search

GNN Graph Neural Network

IT Information Technology

M PNN Message Passing Neural Network

ND NonDeducibility

PSS Pitot-Static System

SACADA Supervisory Control and Data Acquisition

SD Security Domain

SMC Statistical Model Checking

SPC Statistical Process Control

AHRS Attitude and Heading Reference System

ATC Air Traffic Control

CSP Communicating Sequential Processes

FMS

IoT

RA

RF

HACMS

M SDND

Symbols

□ V

V

V

VSS X

W N V

W h V

V

Sx

Flight Management System

Internet of Things

Radio Altimeter

Radio Frequency

High-Assurance Cyber Military Systems

Multiple Security Domain NonDeducibility

xii

The Modal is always such that ("must be so")

A boolean statement that can be evaluated to true or false in w e W

Valuation Function

Valuation function of entity i w.r.t Sx

Values from world W cause V to evaluate to true ("models")

The statement V is valid in world W ("yields")

State Variable

Combination of State Varaibles

1. INTRODUCTION

CPSs are a combination of interacting computing, physical, and human operators

controlled and monitored by logic and integrated physics (Pasqualetti etal., 2012). In recent

years, there has been a significant increase in the development and deployment of smart

and mission-critical computing systems that are characterized by tightly coupled embedded

software devices and the physical environment (Humayed et al.. 2017). These systems are

referred to as critical infrastructures and are ubiquitous in unmanned aerial vehicles, au­

tonomous cars, smart grids, emergency services, oil and gas distribution networks, chemical

plants, manufacturing, communications, health care, and data centers. The security and

availability of the critical infrastructures are of utmost importance, and failure in ensuring

security and availability could have a catastrophic impact on economic growth and public

safety.

Figure 1.1. CPS Architecture

2

One of the key features of the CPS is the strong integration of cyber and physical

processes. The physical environment plays a crucial role in these systems by providing

necessary information to achieve significant functionalities. The integration of the physical

and cyber worlds is achieved through sensors that constitute the physical world; controllers

that render sensory inputs for cyber and physical elements, and actuators that drive the

physical world via controller inputs in the physical world (see Figure 1.1) (Sampigethaya and

Poovendran, 2013). Due to tight coupling between the cyber and the physical components,

new forms of risk have been introduced in the CPS. These risks have not been considered

adequately in the existing computing domain due to the lack of availability of tools to

identify vulnerabilities that arise due to the complex interactions between the cyber and

physical worlds. These risks can be classified as (1) cyber elements affecting the physical

environment and (2) physical elements affecting the cyber components. These interactions

lead to new security issues as assessing vulnerabilities and threats becomes challenging.

In addition to these complex interactions, the complexity of the CPS itself presents more

challenges in devising security mechanisms. Therefore, a concrete understanding of cyber­

physical interactions, threats, vulnerabilities, and attacks is essential to the development

of efficient security mechanisms. Hence, assuring the confidentiality and integrity of

information in a cyber-physical system is of prime importance.

Various security mechanisms have been deployed in the industry to identify vulner­

abilities and threats in CPSs. As each CPS infrastructure is different from others, different

security models are designed to provide suitable solutions. One of the widely used methods

to address the security vulnerabilities and threats are formal methods. Formal methods

serve as a framework for the specification, design, and verification of software-intensive

embedded systems, with a focus around provable functional safety and security targeted at

CPS (Clarke and Wing, 1996). They are a widely used means to provide the capability

to specify, model, verify, and integrate modern CPSs, and to design flows for enhancing

functional safety and security. Formal methods are considered to be one of the most re­

3

liable mechanisms to help achieve security and privacy in CPSs. They model embedded

systems and adversaries in order to prove that a system under consideration is immune to

various classes of attacks. They provide well-established scientific foundations in the form

of precise adversary and system models and derive sound conclusions about the possible

behaviors of the system as the adversary interacts with it. Formal methods work well when

an adversary's behavior and the implications of an attack are well known.

Another popular security model to address vulnerabilities and threats in a CPS is the

Byzantine model. This model considers a set of connected abstract machines as a graph in

which few nodes may be faulty, and the communication link between these nodes to transfer

messages are represented by formal expressions. Recently, there have been substantial

progressions in automated and semi-automated formally verified analysis methods, such as

the seL4 microkernel (Elkaduwe et al., 2008), the CompCert optimizing C compiler (Leroy

et al., 2012), and secure vehicles and drones emerging from DARPA’s High-Assurance

Cyber Military Systems (HACMS) program (Fisher, 2014).

With the growth in CPSs, the above mentioned approaches will not be feasible

enough for two reasons:

• Any change or a new addition to the CPS will result in updating the security policy,

and this could become tedious over time.

• As each CPS is attributed with different characteristics, providing a universal and

scalable solution that can be applied to any CPS is difficult.

In this dissertation, two novel approaches have been introduced: (i) graph-based

information flow analysis model and (ii) a graph neural network model.

4

1.1. GRAPH-BASED INFORM ATION FLOW MODEL - AVIONIC SYSTEMS

The graph-based information flow model is aimed at identifying the vulnerabilities

in a CPS and providing mitigation measures. A study has been performed on one important

CPS application of avionic systems to ensure the safety of the onboard cyber and physical

flight systems as well as ground communication.

Aviation systems are a combination of many physical world components, such as

electronics, hardware, infrastructure, and humans, which are heavily reliant on digital

computing, storage, software, or data networking to function efficiently. Such components

are becoming the heart of modern aviation infrastructure and are consuming and sourcing

information at all times. Modern aircraft are advancing by incorporating the "cyber"

layer in physical components, infrastructures, and humans for improving onboard system

performance and services. The cyber layer must not only enhance performance but also

enable it. An in-depth analysis of all cyber-physical properties, integrations, and risks is

essential to ensure the security of the CPSs.

Advancements in technology bring new challenges for those involved with the

process and maintenance of modern passenger aircraft. The consequences of software

failure can range from insignificant (no effect on aircraft performance) to catastrophic (e.g.,

major avionic system failure and engine faults). With the advancements in communications

and the quality of jet engines, there is an increased shift towards automation. However,

automation creates additional problems such as pilots finding it increasingly difficult to

cope with a lack of transparency of onboard systems which can lead to a loss of situational

awareness and loss of control in flight (LOC-I). Loss of control has been the primary cause

of accidents during the years 2010 and 2014 in which 43% of the 37 fatal accidents was due

to pilot's lack of understanding of what was happening in the cockpit.

The limitations experienced by modern air transport system include loosely inte­

grated flight phases in time and space; voice communications between pilot and controller;

predeparture operations based on manuals; and trajectories based on clearances not adapt­

5

able to varying factors like failures, emergencies, congestion, and weather. These processes

can be optimized by cyber-physical interactions using a range of solutions: trajectory-based

flight operations, satellite-based navigation, communicating monitoring and position data,

automated data links between pilot and controller, and a strongly connected information net­

work of real-time air traffic control and meteorological data (Sampigethaya and Poovendran,

2013). The common impacts of cyber and physical interactions that affect performance must

be balanced, as there are trade-offs to be measured. Additionaly, the Internet of Things

(IoT) has introduced new challenges by making aircraft devices and sensors a standard rather

than nice-to-have options. This makes the maintenance of secure data links an important

factor for the pilots as well as the in-flight passengers. Aviation security has moved from

the position of seldom-discussed to that of critical importance. With the evolving changes

and the introduction of new systems, aviation security remains a critical area of research to

improve security measures.

1.2. GRAPH NEURAL NETW ORK MODEL

A next-generation CPS requires the implementation of advanced deep learning al­

gorithms to incorporate intelligence into the physical processes to enable high-performance

computing architectures to identify meaningful patterns. In this dissertation, a novel deep

learning method has been introduced to classify the graphs of a CPS based on the attacks

or failures in a CPS.

1.3. DISSERTATION STATEMENT

Information flow analysis supports the resilient design and active detection of anoma­

lies in CPSs. The complex nature of CPSs significantly increases the difficulty of determin­

ing information flow as well as mitigating the corresponding integrity problems. This work

applies graph based analysis to CPSs to determine information flow and partition them into

6

security domains based on the reliance of information flow paths. In this dissertation, two

approaches have been proposed: (i) the first approach is based on graph-based analysis, and

(ii) the second approach is based on graph neural networks.

The results show that the inter-dependency between the physical and cyber properties

of a CPS can preserve and leak information. The key to formalize these approaches is to

determine a consistent semantic representation of the cyber and physical elements, their

interaction, and the physics of the system, and to devise a formal modeling technique for

determining information flow. This dissertation presents a formal model for information

flow analysis in a CPS and introduces an approach to perform the analysis, including

both state-based analysis and automated analysis through graph networks. An avionics

system, which is a critical infrastructure, is used to demonstrate the first approach, whereas

various benchmark datasets from the chemical domain are used to demonstrate the second

approach. The proposed approaches can analyze the information flows, verify whether

the avionic system and the datasets used inherently preserve integrity, and categorize the

security space into different security partitions based on the integrity level. The ultimate

goal of these partitions is to identify the optimal number of security domains that illustrates

the coverage of the security domains.

This dissertation attempts to represent the CPS as a graph-based network and find

the optimal number of security partitions that define the trust level of the system. This is

achieved by using two approaches:

• Graph-based analysis: This approach is used to identify the information flow paths

and cluster them into security partitions.

• A neural network-based graph classification: This approach uses message passing

neural network and edge convolutions to classify the graphs as either secure or non­

secure based on the edge and node attributes.

7

1.4. DISSERTATION ORGANIZATION

Section 2 describes the related work performed in the field of cyber-physical security,

introducing the reader to the existing work done in this field and the associated shortcomings

of implementing the existing methods. To illustrate the implementation of the automated

analysis, Section 3 presents a brief overview of the avionic systems and information flow

models. Section 4 presents the threat model used to identify attacks, vulnerabilities, threats,

and countermeasures that impact the system. The graph-based information flow model is

introduced in Section 5 and is applied to selected aspects of the avionic systems to identify

the security vulnerabilities and propose mitigation techniques if applicable. Section 8

presents the graph neural network model implementation and experimental results. Section

9 discusses the summary of this work, limitations, and future work.

8

2. LITERATURE REVIEW

In this section, a review of some of the previous work is introduced. This review

helps in demonstrating the idea of information flow and also presents a few shortcomings

that this work aims to avoid.

CPSs play an essential role in controlling and monitoring various control processes

in critical infrastructure systems. Due to the complex nature of CPS interactions, there is a

necessity to devise mechanisms to protect against attacks and failures. There is an increase

in the analysis of vulnerabilities of CPS resulting from malicious, faulty components, and

system failures. Various security methods have been proposed to address security issues

such as the denial of service attacks (Amin et al., 2009), false data injection attacks (Liu

et al., 2011), stealthy deception attacks (Teixeira et al., 2010), and replay attacks (Mo and

Sinopoli, 2009) in critical infrastructures such as avionics, smart-grids, and autonomous

vehicles.

2.1. CPS SECURITY

Research investigations have been carried out over the past decade that specify the

importance of CPS security. Earlier works such as (Cardenas etal., 2011,2008a,b; Sandberg

et al., 2010) reiterated the fact that the concept of cyber attacks is not only significant

to the cybersecurity community but also to many other interest groups. Instead, these

threats must be analyzed from an extensive system and infrastructure perspective, and that

component-wise approaches may not be sufficient and need to be studied and analyzed from

infrastructure-wide and system-wide perspectives (Dibaji et al., 2019). Deception attacks,

disclosure attacks, and disruption attacks have been discussed at length in (Cardenas et al.,

2008b; Teixeira et al., 2015). CPS security issues arise in a wide-range of applications.

On a regular basis, there are reports of cyber attacks in various sectors that include a

9

cyber component. A large number of subsystems present in power systems indicates that

the impact of cyber-physical attacks varies significantly depending on when and where

they occur. In addition to these applications, CPS security was studied in (Cho and Woo,

2017) to address the cyber attack in 2014 in nuclear power plants and analyzed various

security methods to identify such attacks. In (Wang et al., 2016), a review on deception

and disruption attacks in CPSs was performed. The importance of security in Supervisory

Control and Data Acquisition (SCADA) was discussed in (Miller and Rowe, 2012) and in

Modbus control systems in (Huitsing etal., 2008). A survey was carried out by (McLaughlin

et al., 2016) on security aspects of information and communication channels of industrial

control systems. The survey done by (Lamnabhi-Lagarrigue et al., 2017) on industrial

control systems also signified the importance of security. Many researchers have used

mathematical models that ed the physical systems and were composed of a set of relations

between the system states and its control inputs. Control inputs are restricted by physical

inputs to define a finite set of admissible inputs or controls. A deviation in these inputs

results in inaccurate outputs, which in turn affects the system.

2.2. INFORM ATION FLOW MODELS

Information flow security is yet another widely used approach to prevent secret data

from leaking to malicious entities. Two primary variants of information flow security are

either static or dynamic. The dynamic approach uses labels to describe the security level

and propagates these labels to ensure the integrity of the data with respect to invariants or

predefined policies, whereas the static approach executes information security policies. A

vast majority of research in this field is focused on proving the non-interference property

(describes the information flow restrictions) and using a combination of language features

and system models to implement information flow security (Sabelfeld and Myers, 2003).

10

In the literature, various information flow models based on process algebra have

been introduced. In (Lowe, 2004) the author introduced a new definition of information

flow based upon an operational model of communicating sequential processes (CSP), which

analyzes how the behavior of one entity or agent can influence another entity’s or agent’s

view of the system. There is an extensive amount of research done in the area of CPS

security to address the security issues by using information flow paths. The real challenge

for information flow security is applying the vast theory and language-based designs such

as Jif (Myers et al., 2001) and FlowCaml (Pottier and Simonet, 2002; Simonet and Roc-

quencourt, 2003) to real-world problems (Zdancewic, 2004). Widely known methods to

perform security analysis are formal methods that consider the cyber-physical interactions

to identify potential risks and challenges that arise due to the complex transformations in

airplane systems.

2.3. CYBER-PHYSICAL SECURITY IN AVIONIC SYSTEMS

The research in ADS-B security either focuses on cyberattacks or physical com­

ponent failures, but not both. Significant research has been done in this field to analyze

the security vulnerabilities, attacks, and system failures in avionic systems (Manesh and

Kaabouch, 2017; McCallie et al., 2011; Strohmeier et al., 2014). A time-stamp based

method based on signal propagation time to identify and reject spoofed ADS-B messages

between senders and receivers was proposed by (Kim et al., 2017). A light weight security

solution to guarantee the privacy and integrity of ADS-B messages by integrating crypto­

primitives such as FFX and TESLA was proposed by (Yang et al., 2017). Similar work

was carried out in (Yang et al., 2018) for congested data links and resource-constrained

avionics. In (Thudimilla and McMillin, 2017), ProVerif was used to identify the attacks in

ADS-B and TCAS systems. The analysis was limited to proving observational equivalence

(anonymity property) through the composition of processes, thus lacking computational

11

capability. Several works have been done to analyze the security vulnerabilities, attacks,

and system failures in ADS-B systems (Manesh and Kaabouch, 2017; McCallie etal., 2011;

Strohmeier et al., 2014) that consider cyber attacks alone.

2.4. OTHER RELATED WORKS

Anomaly detection in CPSs has been extensively studied. Practical problems with

this approach include the need for precise knowledge of the system’s design and configura­

tions as well as the need to accurately model the system’s complex physical behavior. The

authors in (Mitchell and Chen, 2014), categorized anomaly detection methods as knowledge

and behavior-based methods. Knowledge-based detection techniques examine well-known

attack characteristics but require keeping a dictionary of attack signatures. Despite having

low false positive rates, these methods are ineffective against zero-day attacks. In contrast,

behavior-based techniques check for anomalies in runtime behavior. These techniques are

pervasive in CPS anomaly detection, since CPSs are automated and present more unifor­

mity and predictability than conventional information technology (IT) systems (Kravchik

and Shabtai, 2018).

There are multiple anomaly detection techniques such as statistical process control

(SPC) (mur, 2016) that include shewhart charts, exponentially weighted moving average,

and cumulative sum. These methods are inadequate to handle the complex nature of the

CPS as CPS operates in an unpredictable environment. Consequently, this has resulted in an

increased shift from the formal specification or signature-based techniques to the machine

learning techniques to develop rational and adaptive approaches to identify anomalies in

CPSs (Kravchik and Shabtai, 2018). Nevertheless, the implementation of machine learning

techniques in detecting anomalies in data is considered a challenging task. This is mainly

due to the dependency of these methods on enormous amounts of labeled data and the

anomaly classes to learn from, in which inconsistencies are usually rare or neglected in

12

the real environment. In addition, most of the existing unsupervised methods may not be

effective to recognize anomalies due to the existence of temporal dependencies and noise

in real-time applications.

Below are some of the tools used for CPS security in the literature.

• UPPAAL: UPPAAL is an integrated tool environment for modeling, validating, and

verifying real-time systems modeled as networks of timed automata (Behrmann et al.,

2004). Few functionalities of the UPPAAL extension include visualization of the

results in the form of probability distributions, time-bound based evaluation of the

number of runs, and computation of expected values.

• Statistical Model Checking (SMC): SMC refers to a set of techniques that monitor

several runs of a system concerning the specific property. SMC utilizes results

from statistics to get an overall estimate of a design's correctness by approximating

undecidable problems. This approach has been widely used in model checkers.

Traditional SMC model checkers described in (Katoen et al., 2011; Sen et al., 2005;

Younes, 2005) are inadequate to handle timed systems and are limited in either

addressing the capability of computing an estimate of the probability or testing

whether this probability is greater or equal to some threshold.

• Petri nets: Petri nets are a mathematical and graphical modeling tool that describes the

structure and behavior of a system by modeling distributed causality and concurrency

of a system (Peterson, 1977). Petri nets have been widely used in manufacturing

systems, fault-tolerant systems, formal languages, and communication networks.

• MoDeST: Another framework that is used for model checking is the MoDeST toolset

(Bohnenkamp etal., 2004) which handles the specification of stochastic timed systems

but fails to yield full stochastic models in case of parallel composition.

13

There is a necessity to address the security vulnerabilities that arise from the complex

interactions between the cyber and physical components. This dissertation is aimed at

addressing the above-specified issues by focusing on cyber and physically enabled attacks

by using an automated model-based approach to identify security risks and providing

mitigation measures.

14

3. BACKGROUND

This section presents a brief overview of the various security models and avionic

systems used in this dissertation.

3.1. SECURITY MODELS

Security models are used to determine the implementation of security, agents that

can access the system, and the objects that they can access. To be precise, they are a way

to validate security policies. In general, security models are implemented by enforcing

confidentiality, integrity, or availability (also referred to as CIA triad).

• Confidentiality: Confidentiality is the term used to ensure privacy. Confidentiality

plays a vital role in preventing sensitive information from being leaked to unauthorized

personnel.

• Integrity: Integrity is one of the essential elements of security objectives. Integrity

plays a vital role in security because it can verify the modification of data by unautho­

rized users, unauthorized changes made by authorized users, and ensures consistency

of data internally as well as externally.

• Availability: The system’s availability to authorized users is vital for an information

system to be useful. Availability ensures uninterrupted access to the system. Threats

to availability include non-malicious threats such as system failures and malicious

threats such as denying access to users.

3.1.1. State Machine Model. The state machine model is based on a finite state

machine and is used to model complex systems (Conrad et al., 2012). They deal with

different attributes, such as actions, transaction functions, and state variables. The state

15

machine defines the behavior of a finite number of states, the transitions from one state to

another state, and actions that result from the transitions. A state machine model prevents

the system from entering into a vulnerable state by monitoring the system’s state. The state

machine model is considered a foundation for many security models as it relays the state of

the system at a given time.

3.1.2. Inform ation Flow Model. The information flow model is based on the state

machine concept and serves as the basis for designing popular security models such as the

Biba, Bell-LaPadula, non-interference, and non-deducibility models. The information flow

model is composed of objects, state transitions, and states. The ultimate goal of this model

is to prevent insecure information flow and unauthorized access.

3.1.3. Non-interference Model. The non-interference model defined in (Goguen

and Meseguer, 1982) states that “objects and subjects of different levels do not interfere

with the objects and subjects of other levels. The model uses inputs and outputs of either

low or high sensitivity. Each data access attempt is independent of all others, and data

cannot cross security boundaries.” In terms of CPS modeling, objects refer to subsystems,

components, or documents, whereas subjects refer to operators, system users, networks,

applications, or processes. In this model, a system’s sensitivity levels are categorized as

low or high. Low sensitivity represents unclassified information, whereas high sensitivity

represents classified information or resources that require specific clearance to access. It

essentially states that users with low sensitivity cannot learn information about the user’s

activities with high sensitivity.

With the non-interference model, a strict separation of various security levels can

be achieved by hiding activities with high sensitivity irrespective of what lower-level users

can see or access. This separation ensures minimizing leaks and breaches that might occur

through secret channels. This model considers the impact of higher security level subjects’

activities on the system’s state, keeping lower security levels separate. Hence, creating

covert channels through shared resources or inference attacks is not possible.

16

3.1.4. Non-deducibility Model. In 1986, David Sutherland (Sutherland, 1986)

introduced the information-theory based non-deducibility security model to quantify the

information flow from one user to another. Sutherland’s definition states that "Given a set

of possible worlds Q and two information functions f \ and f 2 with domain Q, we say that

information flows from f \ to f 2 if and only if there exists some possible world m and some

element z in the range of f 2 such that z is achieved by f 2 in some possible world, but in

every possible world o>' such that f\(o>') = f\(m), f 2(m') * z". Each discrete execution of

the system can be considered an element of the set of possible worlds. Information about

the system is represented by an information function whose domain is the set of possible

worlds. This model is considered to be too restrictive and weak as the information can flow

from high-level objects to low-level objects but the reverse is not possible.

3.2. AVIONIC SYSTEMS

MSDND is applied to selected aspects of the avionic systems to check for fail-

ures/attacks and then partition them into different security domains based on the behavior

they exhibit.

The aviation industry experienced exponential growth in computing capabilities

and interaction complexity. Current practice addressing safety concerns include a build and

test approach following industry-standard recommended practices such as SAE ARP 4761

and 4754. The software development practices furnish limited attention to nonfunctional

qualities such as timing, latency, performance, reliability, safety, or security. These concerns

are usually addressed by modeling and analysis or simulation, which are captured by

analytical models that quickly become outdated as the architecture and design emerge. This

results in delayed discovery of system-level errors, with studies showing up to 80% leakage

to this phase.

17

Modern aircraft are heavily reliant on the extensive use of electronic instruments

and displays. The significant advantage of using electronic devices is the ease of exchange

of data between different devices. It serves as a basis for not relying on the flight manuals

and provides improved automatic flight control.

Modern aircraft use increasingly sophisticated avionic systems that are composed

of heterogeneous CPSs that assist in controlling and operating the plane by the crew. These

systems use microprocessor-based computer systems and are composed of hardware and

software components that are capable of processing large amounts of data in a short time.

Avionic systems are deployed in a wide variety of applications, such as flight control

and instrumentation systems, navigation, and communication systems. These systems

function by receiving data from multiple sensors, including air temperature probes, fuel

sensors, angle-of-attack probes, and pitot-static pressure systems. These computers process

data from the sensors, apply various functions and forward information to the electronic

displays. The pilots continuously monitor the status of the engine and environment from

these displays. These systems collect information from many interacting components to

ensure the proper functioning of the system.

Most integrated multi-sensor applications receive information from multiple sensors

to provide redundancy management, improve performance, achieve graceful degradation

when sensor failures occur, and increase robustness. Flight operations that provide guidance

information to the pilot depend primarily upon precise and continuous awareness of flight

position and attitude. Technical requirements for air navigation systems primarily include

accuracy, physical attributes such as weight and volume, electrical power, and system

integrity.

A detailed description of the various components used in scenarios described in

Section 7 can be found in Administration (2016, 2017). Flight instruments enable an aircraft

to be operated with maximum performance and enhanced safety, especially when flying

long distances. Manufacturers provide the necessary flight instruments, but to use them

18

effectively, pilots need to understand how they operate. Pilots need to be very familiar with

the operational aspects of the pitot-static system and associated instruments, the vacuum

system and associated instruments, the gyroscopic instruments, and the magnetic compass.

19

4. THREAT MODEL

Before coming up with a security solution, having the knowledge of who/what we

protect a CPS from is of great importance in addition to the knowledge of existing attack

mechanisms, vulnerabilities, and failures. The potentiality aspect is critical in this context;

potential threats that may not necessarily have occurred, but might. The loss might be

in safety measures, confidentiality, integrity, safety, or availability of resources, whereas

the harm implies harming people, the environment, or systems. As CPS applications are

becoming more ubiquitous, people are becoming a critical asset to protect, in addition to

the information and communication elements.

Building a good threat model is crucial to assess the security vulnerabilities in the

system and coming up with efficient mitigation measures. To launch an attack an adversary

must compromise one or more components in the system or introduce malicious components

into the system. The threat model is composed of the following:

• Source: The source of a threat is the entity responsible for initiating a threat which

includes system failure, adversarial attacks, and environmental factors.

- Failures: This class of threats represents an observable error in the system that

is caused accidentally or by malfunction of a legitimate CPS component.

- Adversarial: This class of threats represents a malicious outside attacker or an

insider with an intention to compromise the system. Few examples include

terrorists, activists, and criminal groups trying to compromise the system by in­

jecting malicious data or tampering the existing data. Adversaries can be passive

or active. Passive adversaries have limited capabilities such as eavesdropping on

communication channels, whereas active adversaries have the ability to modify

the contents of the communication channels and compromise the data.

20

- Environmental: This class of threats represents failures or malfunctions caused

by natural disasters.

• Goal: The ultimate goal of the threat model is to capture the features of the system

that may lead to system failure or identify the features that are modified as a result of

an attack.

• Consequence: The attack or failure in a CPS results in compromising integrity, safety,

and availability of the system. In this threat model, attacks and failures are considered

to exhibit similar behavior (Stroud, 2003).

In case of an attack, the adversary is assumed to have full control of the faulty

components: the adversary can eavesdrop, intercept, and modify any message with respect

to the faulty component. In this section, failures and attacks are assumed to be arbitrary and

unbounded. The threat model assumes that the adversary cannot exploit certain aspects of

the systems such as:

• The adversary cannot corrupt or modify the proposed model.

• The adversary cannot modify more than half of the participating entities to perform

specific operations.

21

5. M ULTIPLE SECURITY DOMAIN NONDEDUCIBILITY

Traditional security models such as the Bell-LaPadula model, non-interference, and

non-deducibility are better expressed in terms of Shannon-style information flow (McLean,

1990). Extending this work, researchers have introduced flow-based security models by

analyzing security-relevant causal factors. Models such as non-interference, Generalized

non-interference, and extensions to non-interference designed to protect high-level output,

are not flexible in considering causal factors as they require to consider programs as explicit

input to systems. The Bell-LaPadula model that primarily addresses access control has few

drawbacks such as the model addresses only confidentiality and does not address access

control over covert channels (Gallagher, 1992).

Early research in security models focused on the nondisclosure of information.

There has been a significant shift towards integrity models due to the importance of data in

decision-making and actions (McCumber, 1991). A CPS’s safety can be compromised by

a failure to understand requirements or defects in its implementation. In terms of security,

defining what a system should do is comparatively a difficult task as a high degree of

precision is required to prevent undesired outcomes or defects. To increase the model’s

precision, researchers have used formal language or information-theoretic approaches to

model CPSs.

This shift toward information-theoretic models of security introduces new oppor­

tunities to develop security models that have significant dependence on information flows.

One primary class of security models that are proven to be the closest match to this approach

is the non-deducibility property. This property is essentially based on a theory of informa­

tion sharing, which attempts to ensure security by partitioning the security space into just

two partitions or domains: high and low. On the other hand, non-interference based models

include information flows inherently, but there has been little work done in developing a

22

method for evaluating such models. Will these absolute partitions guarantee to identify the

inconsistencies in the system? Will these partitions help in identifying attacks in a complex

CPS with more than two security partitions? To address these issues, this section presents

an improved version of non-deducibility called Multiple Security Domain NonDeducibility

(MSDND), which considers multiple partitions.

5.1. MODAL LOGIC

The applications of modal logic to mathematics and computer science have become

increasingly essential (Goldblatt, 2006). Modal logic refers to the validation of an expression

in the form of ‘necessarily’ and ‘possibly’. The term ‘modal logic’ is used more broadly

in the security domain, which is a family of logics to characterize the difference between

valid and invalid arguments. Creating a logic is a difficult task as it is dependent on a set

of axioms and rules designed to prove the valid arguments statable in the language. The

main challenge lies in achieving soundness and completeness by formulating every valid

argument as proof in the system. Modal logic is an umbrella term for a variety of classes,

such as provability logic and advanced modal logic.

Modal logic is primarily used as a tool for representing structures or models. Modal

logic talks about algebraic semantics, topological semantics, and graphs. These are known

as Kripke semantics for modal logic and is the best-known style of modal semantics.

In the literature, modal logic has been used as a tool for reasoning about time, beliefs,

computational systems, necessity, and possibility (Blackburn and Van Benthem, 2007).

Although diverse, these applications have some critical things in common such as time-

flow, relations between cognitive alternatives, computational state transitions, and networks

of possible worlds. All these can be represented as simple graph-like structures, and modal

logic is proved to be an appealing tool for handling such structures as they are rich in

representing information.

23

5.2. M ULTIPLE SECURITY DOMAIN NONDEDUCIBILITY (MSDND)

MSDND was introduced in (Howser and McMillin, 2013), which is based on modal

logic (Blackburn etal., 2006; Goldblatt, 2006) to address the shortcomings of the traditional

security models which work well only if the boundaries for the security domains are clearly

defined. The MSDND model presented in (Howser and McMillin, 2013) can check for

non-deducibility with respect to two states at any single point of time. Calculating the

security domains for complex infrastructures are difficult. However, our work is aimed at

handling this issue as well as automating the MSDND analysis for partitioning the security

domains based on the information flow traversal.

In this dissertation, {V} is used to define a set of valuation functions, such that

Vls (w) indicates the value of state variable Sx as seen by an entity i in world w. NOTE:

If the state variable, say Sl has no valuation function, which returns the value of a state

variable, then MSDND fails to determine the value of that state variable nor the value of

any logical expression associated with the state variable (Howser and McMillin, 2013).

Note: State variables are represented by <̂0, <£i,^m or by a combination of state

variables represented by Sx.

Sx = ^ 0 A ^ 1 A ^ 2 A ^3 A

In this paper, each state variable is associated with the component ID (See Figures 5.1

and 5.2). For example, Satellite 1 is represented by <̂0, Barometric Altimeter by and

control panel by <̂9.

5.3. M ULTIPLE SECURITY DOMAIN NONDEDUCIBILITY MODEL (MSDND)

This section discusses the MSDND model to check for non-deducibility with respect

to multiple states and overlapping security domains. It also introduces various definitions

that are used to define MSDND.

£ 1

cfp*
CD

>-to•-ip

>i-io
51
CD
o
B•-*CD

StaticPressure,
DynamicPressure, Altitude,
VerticalSpeed, AirSpeed,
MachNumber

IAS, Mach
Number, True
Airspeed,
Altitude, Vertical
Speed, OAT, TAT,
AirDensity

Air Temp
Probe

__ (27)___

IAS, MachNumber,
TrueAirspeed, Altitude,
VerticalSpeed, OAT, TAT

IAS, Mach
Number, True
Airspeed,
Altitude, Vertical
Speed, OAT, TAT,

Radio
Altimeter

(47)

AircraftCourse, GroundSpeed,
Distance, FuelConsumed, FFTR,
ETBW

Altitude,
VerticalSpeed,
Heading,
AirSpeed,
Attitude, Turn,
AirDensity

Latitude,
Longitude,
GroundSpeed
, Altitude,
Velocity,
VerticalRate,
AirSpeed,
Heading,
AircraftID

FuelConsumed,
FFTR, ETBW

AircraftCourse, GroundSpeed, Distance,
FuelConsum ed, FFTR, ETBW

to

Figure 5.2. A
ircraft A

rchitecture (2)

StaticPres
sure,
AOAPress
ure,
PilotPress
ure

AO A
Sensor

(46)

Nav DB
(33)

Fuel
Sensors

(32)

IMU (29)
Attitude,
Heading IRS (34)

AirSpeed,
AirDensity

Latitude,
Longitude,
Altitude,
GroundSpeed

Latitude, _
Longitude

Fuel Level

Latitude,
Longitude

Latitude,
Longitude

Latitude,
Longitude,
Attitude,
AngularRate,
Velocity,
Heading

Satellite 1 (0) I Satellite 2 (1) I Satellite 3 (2)

Latitude, Longitude,
Altitude,
GroundSpeed, Time

Aircraft ID, Ground
Speed, Distance,
Latitude, Longitud
Vertical Rate,
Altitude, Time,
TrackAngle

Aircraft n (44)
I

Aircraft 1 (45)

Aircraft ID, Ground
Speed, Distance,
Latitude, Longitude,|
Vertical Rate,
Altitude, Time,

GPS Receiver
(4)

ADS-B
capable

Transponder
(6)

Aircraft ID, Ground Speed,
Distance, Latitude,
Longitude, VerticalRate,
Altitude. Time. TrackAngle

TrackAngle
Barometric

Altimeter (14)

< (J) Q (J LU
Auto­

pilot (25)

ADS-B Receiver
(40)

Aircraft ID, Ground Speed,
Distance, Latitude,
Longitude, VerticalRate,
Altitude, Time, TrackAngle
ADS-B Antenna

(Rx)(39)

Latitude,
| TSI-B Longitude, tI TSI-B Antenna (Tx)
| Transmitter (42) Altitude | (43)

Latitude,
Longitude,
Altitude

ATC Center/
RCMS (41)

toOi

26

5.3.1. Definition: M ultiple Security Domain Exclusivity. There exists some

world with multiple states in which, at any instance, the system can be in one true state, and

the others are false.

(where one of Sa, Sb,Sc, ... is True
(5.1)

otherwise False

5.3.2. Definition: Event System. Event System (ES) is a composition of a different

sets of objects and the events that are passed from one object to another based on the inputs.

The shift of these objects and events triggers the transition of one state to another state.

5.3.3. Definition: Security Domain. A security domain is a logical partition of

the ES based on different parameters depending on the context of entity i. Each security

domain is composed of different states.

u UieISDi = (ES) (5.2)

5.3.4. Definition: M ultiple Security Domain NonDeducibility. In the MSDND

model, an entity i is any part of the system capable of independent observation or action.

The ES consists of multiple security domains, SDi, as viewed by each entity i in the model.

These domains may, or may not, overlap depending on the complexity of the ES (Howser

and McMillin, 2013). A system is MSDND if

MSDND (ES) = 3w e W: [w h □ f (Sa,Sb,Sc,....)]

A [w N ($V)Sa A ^ S fc A ^ . . .]
(5.3)

An MSDND proof creates a logical argument of conditions on the observable state

of the system under consideration. These conditions are assessed for their valuation from

the point of view of a particular security domain. The valuation function determines the

validity of a particular state based on the validity of the preceding states. If no valuation

27

function can be found, then the system is MSDND secure (which is a bad thing as it means

an attacker can hide their actions from a particular security domain). Breaking MSDND is

a good thing as it means the system can detect the attacker.

As mentioned earlier, we use a variant of MSDND modal (Howser and McMillin,

2017) to model complex CPSs and analyze the security vulnerabilities. MSDND is used to

model avionic systems to identify the vulnerabilities and propose mitigation techniques.

28

6 . GRAPH BASED MSDND

The analysis used in this work considers an aircraft system as a graph network where

each node represents a component in the system, and the edges represent the information

flow between two nodes. Each edge consists of a set of labels, and each label has a value

associated with it. This algorithm consists of five steps:

• Identify all the paths in the network using DFS with respect to a label, which indicates

the information flow from one node to another and sorts the result set in descending

order of subgraph size.

• Identify the subgraphs and eliminate them to get a reduced unique subgraph set.

• In the reduced set, traverse through each edge to check for discrepancies indicated

by the inconsistent values associated with the edge labels during run-time and design

time. The discrepancies in the data are caused by an attack or a failure in the system.

These discrepancies can be identified by finding the in-degree for each node and check

for the consistency of the values associated with labels.

• A node with in-degree > 3 will help break the NonDeducibility, as it contains more

than two information flow paths, which helps identify the faulty component or the

component under attack, which is responsible for sending incorrect data.

• Classify the information flow paths into Secure and Non-Secure domains based on

the valuation function.

A graph G = (V, E, L) consists of a set of nodes V, a set of edges E, and a set of

labels L associated with each edge. A graph S = (Vs, Es, Ls) is a subgraph of graph G = (V,

E, L) iff V c V, Es c E and Ls contains l where l is the label under consideration.

Figure 5.1 and Figure 5.2 represents various interacting components in an aircraft

referred as nodes. Each edge has a set of labels and values associated with them, which

represents the information flow.

29

Algorithms 1 and 2 are used to find all the graphs associated with each label and

eliminate the subpaths in order to obtain unique graphs for each label. Source code for these

algorithms can be found here: https://github.com/anushaat/MSDND

6.1. FINDING INDEPENDENT PATHS

Algorithm 1 uses DFS to find all the paths with edges labeled with l. Theorem 6.1.1

presents the logical arguments that are necessary to prove the correctness of Algorithm 1.

Theorem 1: In DFS of a directed acyclic graph (DAG) G = (V, E, L), vertex s is a

descendant of vertex d iff the search discovers d, that there is a path from s to d consisting

entirely of edges with label l.

Proof: Suppose that DFS is run on a DAG G = (V, E,L) to determine the independent

paths for each vertex vi e V. It suffices to show that for any pair of distinct vertices s, d e V,

if G contains an edge from s to d . If s = d, then the path from s to d contains only s which

indicates the source or initial node. If d is an immediate descendant of u, then the path from

s to d contains label l. If d is any descendant of s, all edges on the simple path from s to d

contains label l.

With a runtime complexity of O(V + E), where V represents the number of nodes

and E represents the number of edges, this algorithm will result in all the subpaths associated

with the specified label.

6.2. ELIM INATE SUBPATHS

This algorithm is aimed at eliminating the frequent subpaths which occur more

than once. This helps in achieving non-redundant subpaths, which helps in identifying the

faulty component or the component under attack. Theorem 6.2.1 provides necessary logical

arguments to prove the correctness of Algorithm 2.

https://github.com/anushaat/MSDND

30

Algorithm 1 Algorithm to find independent paths
Input: Graph dataset G, find all the paths with respect to label l
Output: Result set R which includes all paths associated with each label l

1 : function DFS(G,u)
2 : visited.add(u)
3: if onPath.contains(u) then
4: result.add(Path)
5: else
6 : for all v e adj[u] do
7: if v.labels.contains(l) then
8 : D FS(G ,u)
9: Path.pop()

1 0 : re tu rn result

Algorithm 2 Algorithm to eliminate the subpaths
Input: Graph dataset G, eliminate frequent subpaths
Output: Set of all graphs associated with each label l

1

2

3
4
5
6

7
8

9
1 0

1 1

1 2

13
14
15
16
17
18
19
2 0

function ELiMiNATESuBPATHs(result)
res ^ null
for i ^ 0 to N do

S ^ result.get(i)
k ^ result.get(i).size()
if k = maxSize then

res.add(S)
for all s in res do

c o u n t^ 0

N ^ s.size()
for i ^ 0 to N - k + 1 do

if s(i) == result.get(i) then
for j ^ 0 to k do

if s(i + j) == result.get(j) then
count + +

else
break

if count! = k then
res.add (result.get (i))

re tu rn res

31

This algorithm solely operates on the sorted result set obtained from Algorithm 1.

Lines 5-7 gets the longest path and stores in k and saves the paths with size k into the final

result without any processing. Lines 8-19 uses a variant of sliding window technique to

obtain the non-redundant paths and save it to the result. The sliding window algorithm

is an optimization algorithm to eliminate unnecessary iterations over a collection and is

dependent on the size k . This implies that, fewer iterations are needed when k is large and

higher number of iterations are needed when k is small. Line 20 returns the non-redundant

paths from the list of paths obtained from Algorithm 1. The runtime complexity of this

algorithm is O(nm + k), where n represents the size of the result set, m represents the size

of subpath, and k represents the size of the sliding window.

Theorem 2: Consider any directed acyclic graph G = (V, E, L), and let lm the

label in L based on which the graph traversal is done. The algorithm produces a nonempty

subpath set Sp, with edges containing values associated with lm from result set Ri.

Proof: Let Sp be a maximum-size subset of paths associated with label lm in Ri.

Let (ni, ...nj, ...nk) where i < j < k be the set of nodes connected by edges Ep associated

with label lm in Sp . If the edges connecting ni ^ n- and n- ^ nk are equal then we are

done, eij = ejk, since ejk is a subset of edge set Ep associated with label lm. If eij ± ejk,

let the edge set E'p = Ep - (e-k} u (eyy}. By substituting eij for eyk we get E'p = Ep , which

shows that eyy and e-k belongs to the same set i.e. having same label. This is true because

ni is a child of ny and nk is a child ok ny. Since E'p = Ep , we conclude that E'p contains

edges with label lm, and it includes e-k.

6.3. VALUATION FUNCTION

By definition, a valuation function characterized by various parameters returns the

value of a state variable depending on the context of the system. In this case, the valuation

function returns true if the in-degree for an individual node is greater than 2 for a specific

variable.

32

6.4. SECURITY DOMAINS

Security domains act as a determining factor in the classification of information flow

paths in the system based on the trust/integrity level achieved by evaluating the information

flow paths. A security domain is considered as a logical partition of the system in which

all the paths have an identical valuation function. The security domains are constructed as

follows:

• Every component in the system is considered to be in its own security domain.

• The process of traversing the graph from one node to another node with respect to a

feature combines all the nodes with different security domains into one single domain.

• This process is repeated for all the features which results in multiple security domains

(total number of information flow paths).

33

• If the valuation function exists and the values across all the edges are consistent for

a certain label, all the security domains are combined into a single domain called

Secure. If no valuation function exists, the security domains are combined into a

single domain called Non-Secure.

To illustrate the above steps, consider a graph G as shown in Figure 6.1. It has seven

nodes A - G, which are considered to be in their own security domain. After performing

information flow traversal on the graph g with respect to the feature L results in 3 information

flow paths, as illustrated in the Figure 6.2. These three information flow paths are considered

to be in their own security domains resulting in 3 security domains. The consistency check

of the values associated with label L results in two different values x and y. The conflicting

values associated with feature L indicates the observer that one of the nodes is faulty or

under attack.

©-̂ -©-"KD
Figure 6.2. Information Flow Paths

The illustrated information flow paths in Figure 6.2 show that node C is sending

incorrect data and is said to be faulty. Based on this, the security domains can be further

combined into Secure and Non-Secure domains. This partitioning of the domains helps the

observer to identify the problem and make decisions based on the context.

34

Figure 6.3. Security Domains

Theorem 3: MSDND analysis eventually results in two security domains SDsecure

and SD fifon—Secure of the directed acyclic graph provided as its input.

Proof: Suppose that MSDND is run on a given DAG, G = (V, E, L). to determine the

security partitions with respect to label l e L .l t suffices to show that for any pair of distinct

vertices (u,v)eV. if security partition SD secure contains an edge from u -> v with edge label

/ represented by (u -> v).l. then (u -* v).l = I. This indicates that the edges connecting the

nodes in a particular security domain have consistent label values which ultimately helps

in classifying the security partitions. Consider any edge (u, vj explored by MSDND. When

this edge is explored, v cannot be added to the security domain unless the edge connecting

u to v does not contain label /. Theorem 2 proved that the result set R, contains non-empty

subpath sets Spr composed of edges with values associated with a specific label. Therefore,

the distinct pair of vertices of a path in SD secure partition contains an edge from u -> v,

such that (u -> v).l = I

35

7. MSDND ANALYSIS

CPS design is a complex process as one needs to be concerned about physical,

cyber, and cyber-physical threats. To alleviate the effects of such attacks, a CPS should

be designed to ensure adequate and effective preventative measures are in place at the

physical and cyber levels. The physical level measures include physical access restriction to

assets, utilizing fault tolerance systems, employee monitoring, and keeping backup copies

in remote locations. The cyber level measures include imposing robust cryptography

techniques, using certified software, and user/service authentication measures.

The fundamental problems that need to be addressed while building any CPS include:

• Design the most reliable system that meets designated specifications.

• Ensure the system’s operation in the best conceivable way to meet specified require­

ments.

The optimal standard for achieving the problems mentioned above is to define them

in terms of the performance measures and financial considerations. The major hurdle is to

predict the performance measures of the system before it is developed or operated. This

is not straightforward because most designers lack good intuition for complex systems.

Additionally, proper computational mechanisms are hard and complex to develop. The data

needed is difficult to obtain due to various factors, such as the sensitivity of the data.

CPS security research is structured around the modeling of systems for computing

performance measures. The research in this field is based on stochastic processes, ap­

proximation methods, non-linear analysis and optimization, statistics, and other modeling

techniques. In addition to these measures, there might be cases comprised of unforeseen

scenarios such as unexpected failures, problems caused by unreliable machines, causal

failures due to old equipment and environmental factors. These factors need to be con­

36

sidered while coming up with an effective way of handling such scenarios. This section

presents the MSDND analysis to address the issues with traditional approaches mentioned

earlier. The MSDND analysis helps in identifying the failures and attacks in a CPS during

design-time and run-time with the help of graph based analysis by analysing the values

associated with the edge labels. MSDND analysis is an effective mechanism that can be

implemented at design time and can serve as a potent tool for detecting and mitigating cyber

and physical threats. This is achieved by depicting the CPS in terms of a graph network and

partitioning them into different security domains based on edge labels. This analysis helps

in identifying causal failures such as (i) failures caused by equipment operation outside the

actual parameters, (ii) highly reliable equipment failure affecting other equipment, and (iii)

failures caused by interacting components operating according to specification.

This section presents real-world case studies demonstrating how MSDND can help

identify the cyber-physical vulnerabilities and failures in the avionic systems. Each case

study represents either an attack on the system or a failure in the system. The attacks

and failures are represented by incorrect values associated with the edge labels. These

incorrect values are injected manually to represent an attack or failure. MSDND is applied

to these scenarios to identify the vulnerabilities and provide mitigation techniques based

on the valuation functions. All the scenarios are divided into two parts: 1) Identifying

the compromised system. 2) Applying the graph-based model to identify the information

flow paths and use the MSDND model to identify the faulty paths associated with the

avionics system. Several aspects of the avionic systems have been evaluated to detect an

attack or failure using the proposed methodology, capturing the information flow paths and

partitioning them into security domains. Furthermore, the effectiveness of using security

domains has been demonstrated to help with design time and real-time attack detection.

37

7.1. ALTIMETER FAILURE

Theorem: In the case of altimeter compromise, the MSDND model yields de­

ducibility using automated graph-based analysis, thereby allowing critical information flow

to the pilot and the controller.

Proof: Consider a scenario in which the barometric altimeter is faulty and is

sending incorrect altitude data to the pilot (See Figure 7.1). In this case, the altimeter

displays incorrect altitude values and thus making them NonDeducible to the pilot.

Figure 7.1. ATC Helps to Identify the Faulty Altimeter

The MSDND analysis is performed on graph G with respect to the feature “Altitude”,

which results in a subgraph, as shown in Figure 7.2. Step 1 results in 129 information flow

paths, and the resulting information flow paths set are further reduced by applying step 2.

This results in 49 information flow paths by eliminating the subpaths (See Table 7.1). After

eliminating the subpaths, step 3 is applied to evaluate the values associated with each label

to check for consistency. If there is any inconsistency, the in-degree for each node of the

information flow paths is calculated. If a node has an in-degree > 2 indicates that there is

38

Table 7.1. Scenario 1 - Information Flow Paths

Feature # Paths # Indepen­
dent Paths

MSDND Secure Nodes

Altitude 129 49 Not ND Secure 6

more than one independent information flow path carrying similar information. If one such

node exists, it is considered to have a valuation function, which eventually helps break the

NonDeducibility property. If the valuation function exists for a node, the incoming edges

are evaluated by backtracking to identify the faulty source. In this scenario, a valuation

function exists for node 6, which helps break the NonDeducibility property. Figure 7.3

represents the Secure and Non-Secure partitions with respect to the feature “Altitude”.

Figure 7.2. Graph - Altitude

The MSDND analysis is applied to verify the correctness of the graph-based MS-

DND analysis. For this, consider three information flow paths (GPS domain, Altimeter

domain, and ATC domain) to verify the correctness. Other information flow paths can also

be used to determine if the MSDND property holds.

39

This scenario considers two security domains, SDA {Altimeter Domain} and SDGPS

{GPS Domain}. By combining the valuation functions in SDA and SDGPS with respect to

the altitude value from the pilot domain,

SA = A - 1 (^ 4 A - 1 (^5 A -1(̂ 28 A _'SC7 A _'SC19 A - 'SC20 => (7.1)

Since the information received from the barometric altimeter domain is faulty, the

pilot cannot valuate the correctness of the altitude data in that domain.

S ops = <P3 A <̂4 A <̂5 A <̂28 A <fi7 A <Al9 A <̂20 => (7 .2)

Even though the information received from the GPS domain is not faulty, the

correctness of the altitude data cannot be valuated in that domain as the pilot cannot

validate the correctness of the data with just two information flow paths.

From Equation 7.1 and Equation 7.2, the pilot can see two different information

flow paths which result in different altitude values.

Figure 7.3. Graph - Security Domains

40

By combining Equation 7.1 and Equation 7.2,

M SD N D (E S) = 3w e W: [w h □ f (SA, SGPS)]

A [w N ($Vpa A $Vp]
(7.3)

Therefore, the pilot cannot deduce that the barometric altimeter is faulty and is

sending incorrect altitude data. This situation can be resolved by having an additional

information flow path which helps the pilot to resolve the conflict.

S a TC = <£41 A (£42 A <£4 3 A <£3 7 A <£6 A <£2 8 A <£7 A £ 8 A £ 1 8 ^ 3Vp (7 .4)

In this scenario, the additional information flow path is retrieved from the GPS,

which is responsible for sending altitude data, as shown in Figure 7.1.

By combining Equation 7.1, Equation 7.2 and Equation 7.11,

M SDND (ES) = 3w e W: [w h □ f (SA, S R a , S g p s)]
(7.5)

a [w N (t V ^ a 3V P a 3V P]

Hence, the system is not MSDND secure to the pilot as he/she can deduce the correct

altitude value and thereby resolving the conflict by relying on alternate information flow

paths.

7.2. SATELLITE FAILURE

Theorem: In the case of satellite (GNSS) failure, using automated graph-based

analysis, the MSDND model yields NonDeducibility, thereby stopping critical information

flow to the pilots.

Proof: Consider a scenario in which the GNSS is faulty and is sending incorrect

position data to the aircraft. GNSS is responsible for sending the position data to the planes,

and the planes communicate with each other. In the case of GNSS failure, the position

41

information retrieved by the aircraft is incorrect, and the pilots communicate with each

other based on this information. This failure could lead to potential mid-air collisions and

incorrect decisions by the pilots if they could not identify the source that is sending incorrect

data (See Figure 7.4).

Once the flight position is retrieved, the pilots trust the information sent by satellite.

If there is another nearby aircraft, the pilots communicate based on the data transmitted by

the satellite. To illustrate this in a better way, let Pilot-1 represent the pilot from Plane-1

and Pilot-2 from Plane-2. Pilot-1 and Pilot-2 cannot identify the problem until they are too

close, eventually leading to a breakdown in the separation. With the automated MSDND

analysis, pilots can check for the consistency of information flow paths and find the source

of the erroneous data.

Figure 7.4. Satellite Failure

Figure 7.5 represents the subgraph generated with respect to the label “pos”. Once

the graph is generated, the sliding window technique with the length equal to the second

shortest path from the set is used to eliminate the subgraphs from the set of graphs.

Applying Algorithm 2 eliminates the subgraphs to avoid redundancy. In this case, there

42

Table 7.2. Scenario 2 - Information Flow Paths

Feature #Paths #Independent
Paths

MSDND Secure Nodes

Pos 4 3 ND Secure NA

are no subgraphs, and this step does not result in a reduced set. After eliminating the

subgraphs, the value associated with each label is evaluated to check for consistency. If

there is any inconsistency, the in-degree for each node in the inconsistent set is calculated.

If a node has an in-degree > 2 (indicates that more than one information flow paths are

carrying similar information), it is considered to have a valuation function that helps break

the NonDeducibility property. If the valuation function exists for a node, the incoming edges

are evaluated to identify the faulty source. In this case, none of the nodes has an in-degree

value greater than two (See Table 7.2). Therefore, the pilots from both the aircraft cannot

deduce that satellite failure is causing the transmission of incorrect information. Figure 7.6

represents the Secure and Non-Secure partitions with respect to the feature “pos”.

Figure 7.5. Graph - Satellite Failure

43

Once the flight position is retrieved, Pilot-1 trusts the information sent by Plane-2

and vice-versa. Pilot-1 and Pilot-2 cannot identify the problem until they are too close,

which leads to a breakdown in the separation.

By applying MSDND analysis, the correctness of the graph-based MSDND analysis

can be verified. In this case, two information flow paths from Pilot-1 Domain, and Pilot-2

domain are considered to verify the correctness.

The two security domains in this scenario are SDP1 {Pilot-1 Domain} and SDP2

{Pilot-2 Domain}. By combining the valuation functions in SDpl and SDP2.

Spl = -'Sc«0 A _,Sc«l A A _,SC«3 A _,SC«4 ~$V~pos (7-6)

Since the information received from the Pilot-2 domain is faulty, Pilot-1 cannot

evaluate the correctness of the position data in that domain.

Sp2 = -,SC£0 A ~'ipb\ A A A =>• ~$V~pOS 0-7)

Figure 7.6. Graph - Security Domains

44

Since the information received from the Pilot-1 domain is faulty, Pilot-2 cannot

valuate the correctness of the position data in that domain.

By combining Equation 7.9 and Equation 7.10,

Therefore, the pilots from both the aircraft cannot deduce that satellite failure is

causing the transmission of incorrect information.

Hence, the system is MSDND secure to the pilots as they cannot deduce the actual

true position of the planes.

7.3. PITO T STATIC SYSTEM (PSS) FAILURE

Theorem: In the case of the PSS’s primary static source failure, using automated

graph-based analysis, the MSDND model yields deducibility, thereby allowing critical

information flow to the pilots.

Proof: Consider a scenario in which the primary static source is blocked as shown

in Figure 7.7, and an alternate static source is used to provide static pressure. When this is

used as a primary source for pressure, the altimeter projects a higher altitude reading, ASI

displays higher airspeed than the actual airspeed, and VSI reports a momentary climb. In

such cases, pilots are advised to rely on the flight manual or pilot’s operating handbook to

calculate the error.

With the automated MSDND analysis, pilots can check for the consistency of

information flow paths and find the source of the erroneous data without relying on manuals

or handbooks. As MSDND captures all the information flow paths and performs checks

M SD N D (E S) = 3w e W: [w h □ f (Sp1,Sp2)]

A [w N ($V?Pos A ^P 1~ pos 'pos
(7.8)

45

for consistency, pilots can be notified when there is a discrepancy. If the valuation function

exists for airspeed and altitude, pilots can rely on other sources rather than computing the

error manually.

Figure 7.7. Pitot Static System Failure

Figure 7.8 represents the subgraph generated with respect to the labels altitude

and airspeed. Applying step 1 and step 2 of MSDND analysis results in 138 and 54

information flow paths, respectively (See Table 7.3). Step 3 results in an in-degree greater

than two for nodes ADS-B Transponder and Air Data Computer. These nodes help break

the NonDeducibility property and ensure that the pilot need not rely on inconsistent data.

Figure 7.9 represents the Secure and Non-Secure partitions with respect to the feature

altitude and airspeed.

The MSDND analysis is applied to verify the correctness of the graph-based MS­

DND analysis. In this case, three information flow paths from the PSS, radio altimeter

(RA), and GPS domain are considered to verify the correctness.

46

Table 7.3. Scenario 3 - Information Flow Paths

Feature #Paths #Independent
Paths

MSDND Secure Nodes

Altitude 129 49 Not ND Secure 6, 7, 18, 28,
37, 48

Airspeed 9 5 ND Secure 18

Figure 7.8. Graph - Altitude & Airspeed

The two security domains in this scenario are SDpss {pitot static system Domain}

and SDRA {radio altimeter}. By combining the valuation functions in SDpss and SDRA,

S p s S = -'<^26 A -'<^28 A ~l<Pl A —"A8 A “ "Al4 => t V ~ a (^ .9)

Since the information received from the Pilot-2 domain is faulty, Pilot-1 cannot

evaluate the correctness of the position data in that domain.

Sra = A <A48 A <̂7 A SG9 A <̂ 22 =4- (7.10)

47

Therefore, pilots cannot deduce that the pitot-static system is faulty and is sending

incorrect altitude data. This situation can be resolved by having an additional information

flow path that helps the pilots resolve the conflict.

S o p s = <̂ 3 A i f 4 A i f 5 A i f 28 A <£7 A < £19 A </?20 => 3 V„ (7 . 1 1)

In this scenario, the additional information flow path is retrieved from the ATC

controller, which is responsible for sending altitude data, as shown in Figure 7.7.

By combining Equation 7.1, Equation 7.2 and Equation 7.11,

M SD ND (ES) = 3w tW :[w \- a f (S A, SGPS, SArc)]

A [w 1= {tVta A 3VPa A 3 ^]
(7.12)

Hence, the system is not MSDND secure to the pilots as they can deduce the correct

altitude value and thereby resolving the conflict by relying on alternate information flow

paths. Therefore, the pilots can deduce that the pitot-static system is faulty.

48

7.4. PRIMARY FLIGHT DISPLAY FAILURE

Theorem: In the case of primary flight display’s (PFD) failure, the MSDND model

yields deducibility, thereby allowing critical information flow to the pilots.

Figure 7.10. Primary Flight Display Failure

Proof: Consider a scenario in which the PFD functions incorrectly as shown in

Figure 7.10. PFD serves as the primary reference for flight information for pilots. This

system gathers information from various sources and displays it in order to reduce the pilot’s

workload and increase situational awareness. As data from various sources is displayed on

PFD, any failure in the PFD could lead to projecting incorrect data or no data at all.

With the automated MSDND analysis, pilots can check for the consistency of

information flow paths and find the source of the erroneous data in addition to the Multi-

Function Display (MFD) present in the cockpit. As MSDND captures all the information

flow paths and performs checks for consistency, pilots can be notified when there is a

discrepancy. If a valuation function exists for any of the data, pilots can rely on other

sources rather than computing the error manually.

49

Table 7.4. Scenario 4 - Information Flow Paths

Feature #Paths #Independent
Paths

MSDND Secure Nodes

Altitude 129 49 Not ND Secure 6, 7, 18, 28,
37,48

Air Density 8 4 Not ND Secure 18
Airspeed 9 5 Not ND Secure 18
Heading 19 8 Not ND Secure 18, 31
OAT 5 3 ND Secure NA
TAT 5 3 ND Secure NA
Turn 12 3 ND Secure NA
Vertical Speed 13 6 Not ND Secure 28

Figure 7.11 represents the subgraph generated with respect to the labels Air Speed,

Turn, Heading, Altitude, Vertical Speed, Attitude, AirSpeed, Air Density, Outside Air Tem­

perature and Total Air Temperature.

Figure 7.11. Graph - Air Speed, Turn, Heading, Altitude, Vertical Speed, Attitude, Air
Speed, Air Density, Outside Air Temperature & Total Air Temperature

50

Applying step 1 and step 2 of MSDND analysis results in 186 and 81 information

flow paths, respectively (See Table 7.4). Step 3 results in an in-degree greater than two

for the nodes ADS-B Transponder and Air Data Computer. These nodes help break the

NonDeducibility property and thus ensuring that the pilot need not rely on inconsistent data.

Figure 7.12. Graph - Security Domains

Finally, step 5 is applied to partition the subgraphs based on the consistency of the

information flow paths into Secure and Non-Secure domains. Figure 7.12 represents the

Secure and Non-Secure partitions with respect to attitude and heading.

Hence, the system is not MSDND secure to the pilots as they can deduce the faulty

source and thereby relying on alternate information flow paths to operate the aircraft.

7.5. MAGNETOMETER FAILURE

Theorem: In the case of magnetometer failure, the MSDND model yields de­

ducibility, thereby allowing critical information flow to the pilots.

51

Table 7.5. Scenario 5 - Information Flow Paths

Feature #Paths #Independent
Paths

MSDND Secure Nodes

Attitude 14 6 Not ND Secure 6, 18
Heading 19 8 Not ND Secure 6, 18

Proof: Consider a scenario in which the magnetometer is faulty. In aeronautics,

the magnetometer can be used to measure the geomagnetic field vector information of the

position of the aircraft body, such as airplanes and satellites. According to the reference

model for the earth’s magnetic field and local magnetic field, the angle information of a

certain precision can be obtained through an algorithm. Therefore, the magnetometer is

widely used in aircraft attitude determination systems, especially in microsatellites, such

as nanosatellites and picosatellites, etc. Since this is one of the crucial instruments to

determine the attitude, ensuring the normal function of this is of great importance.

Table 7.5, illustrates the total number of information flow paths and valuation

functions associated with each label.

Figure 7.13. Graph - Attitude & Heading

52

With the automated MSDND analysis, pilots can check for the consistency of

information flow paths and find the source of the erroneous data in case of an attack or

a failure. As MSDND captures all the information flow paths and performs checks for

consistency, pilots can be notified when there is a discrepancy. If a valuation function exists

for any of the data, pilots can rely on other sources rather than computing the error manually.

Figure 7.13 represents the subgraph generated with respect to the labels Attitude and

Heading. Applying step 1 and step 2 of MSDND analysis results in 33 and 14 information

flow paths, respectively. Step 3 results in an in-degree greater than two for nodes Flight

Management System (FMS) and Attitude and Heading Reference System (AHRS) (See

Table 7.5). These nodes help break the NonDeducibility property and thus ensuring that

the pilot need not rely on inconsistent data.

Finally, step 5 is applied to partition the subgraphs based on the consistency of the

information flow paths into Secure and Non - Secure domains. Figure 7.14 represents the

Secure and Non - Secure partitions with respect to attitude and heading.

Figure 7.14. Graph - Security Domains

53

Table 7.6. Scenario 6 - Information Flow Paths

Feature #Paths independent
Paths

MSDND Secure Nodes

Latitude 64 25 Not ND Secure 6, 18
Longitude 64 25 Not ND Secure 6, 18

7.6. RF INTERFERENCE

Theorem: In the case of RF interference, the MSDND model yields deducibility,

thereby allowing critical information flow to the pilots.

Proof: Radio Frequency (RF) Interference is the term used to describe a range of

situations in which transmissions such as unwanted other than those from authorized users

of an RTF frequency interfere with radio reception.

Table 7.6, illustrates the total number of information flow paths and valuation

functions associated with each label.

Figure 7.15. ATC Disconnect

54

Radio interference usually comes from commercial stations on the ground. Some

of the key contributing factors for RF interference are weather, atmospheric conditions,

malicious and unauthorized transmissions. Interference can make communication difficult

or even impossible, resulting in loss of communication. This interference eventually results

in an increase in pilot workload and ATC workload and causes callsign confusion. Some

of the known problems associated with RF interference are ATC disconnect, autopilot

disconnect during the cruise, blank displays, uncommanded rolls or turns, FMS or autopilot

standby, inoperative altimeter.

Let us assume that the ATC connection is lost with the pilots due to RF interference

(See Figure 7.15). The MSDND analysis is applied to check whether the cause of the

problem can be identified. With the MSDND analysis, pilots can check for the consistency

of information flow paths and find the source of the erroneous data or stop relying on

inoperative instruments in case of an attack or a failure. As MSDND captures all the

information flow paths and performs checks for consistency, pilots can be notified when

Figure 7.16. Graph - Latitude & Longitude

55

there is a discrepancy or blank displays. If a valuation function exists for any of the data

such as latitude, longitude, or altimeter, pilots can rely on other sources rather than relying

on handbooks or operation manuals.

Figure 7.16 represents the subgraph generated with respect to the labels latitude and

longitude. Applying step 1 and step 2 of MSDND analysis results in 64 and 25 information

flow paths, respectively (See Table 7.6). Step 3 results in an in-degree greater than two for

nodes flight management system and ADS-B transponder. These nodes help in breaking

the NonDeducibility property and thus ensuring that the pilot need not rely on inconsistent

data.

Finally, step 5 is applied to partition the subgraphs based on the consistency of the

information flow paths into Secure and Non-Secure domains. Figure 7.17 represents the

Secure and Non-Secure partitions with respect to latitude and longitude.

Figure 7.17. Graph - Secure and Non-Secure

56

7.7. UNRELIABLE AIRSPEED INDICATIONS

Theorem: In the case of unreliable airspeed indications, the MSDND model yields

NonDeducibility, thereby stopping critical information flow to the pilots.

Proof: A failure to promptly recognize and respond to erroneous flight instrument

indications can result in loss of control. To handle such situations, pilots should be aware of

the PSS’s functioning and an understanding of the types of erroneous indications that can

occur. The PSS will help the pilots realize that there is a problem and follow procedures to

establish and maintain the aircraft in a safe condition by referencing the aircraft attitude, the

thrust setting, and altitude as verified from at least two similar displays from independent

data sources. There is an enormous manual work involved in this process, and this might

lead to heavily relying on manuals to come up with an alternative solution.

Figure 7.18. Graph - Vertical Rate, Airspeed, Vertical Speed and Air Density

This situation is quite challenging as the pilots may only become aware of the

problem when the aircraft has adopted an unusual pitch attitude. This situation gets further

complicated, especially when the aircraft has entered a stall. The stall is a condition in

which an aircraft cannot produce the required lift for regular operation as it exceeded its

57

Table 7.7. Scenario 7 - Information Flow Paths

Feature #Paths #Independent
Paths

MSDND Secure Nodes

Vertical Rate 13 4 ND Secure NA
Airspeed 9 5 Not ND Secure 18

Vertical Speed 13 6 Not ND Secure 28
Air Density 8 4 not ND Secure 18

given critical angle of attack. In simple terms, a stall is defined as the aerodynamic loss of

lift that occurs when an airplane’s wing exceeds its critical angle of attack. Furthermore, in

the event of unreliable speed, autopilot, auto thrust, and flight directors can all contribute

to loss of control.

With the MSDND analysis, pilots can check for the consistency of information flow

paths and find the source of the erroneous data or stop relying on inoperative instruments

in case of an attack or a failure. As MSDND captures all the information flow paths and

performs checks for consistency, pilots can be notified when there is a discrepancy or blank

displays. If a valuation function exists for any of the data such as altimeter, autopilot mode,

turn, and heading, the pilot can rely on other sources rather than relying on handbooks or

operation manuals.

Figure 7.18 represents the subgraph generated with respect to the labels vertical

rate, airspeed, vertical speed and air density. Applying step 1 and step 2 of MSDND

analysis results in 43 and 19 information flow paths, respectively. Step 3 results in an

in-degree greater than two for nodes flight management system and ADC. These nodes help

in breaking the NonDeducibility property and thus ensuring that the pilots need not rely on

inconsistent data.

Table 7.7, illustrates the total number of information flow paths and valuation

functions associated with each label.

58

Finally, step 5 is applied to partition the subgraphs based on the consistency of the

information flow paths into Secure and Non - Secure domains. Figure 7.19 represents the

Secure and Non - Secure partitions with respect to attitude and heading.

Figure 7.19. Graph - Secure and Non-Secure

7.8. SUMMARY

This section presents a summary of the MSDND analysis performed on all the

scenarios. MSDND analysis is performed on each feature to identify the independent

information flow paths and the nodes that have a valuation function. This is essential to

identify the faulty components in the system or attacks. This analysis can be used to identify

design failures as well as can aid the pilots in identifying anomalous patterns in case of

an attack or failure in real-time. During design-time, this analysis can be used to identify

the vulnerabilities and propose possible mitigation measures. Table 7.8, illustrates the total

number of information flow paths and valuation functions associated with each label.

59

Figure 7.20 shows the information flow paths and NonDeducibility. The MSDND

analysis is performed on the data collected by referring to the flight manuals, pilot hand­

books, and from ADS-B exchange platform. Based on this analysis, it is evident that per­

forming consistency checks on the values associated with the edge labels of the information

flow paths gives an adequate understanding of the system's vulnerabilities. Additionally,

Figure 7.20 shows that the valuation function evaluating to true is higher for a feature with a

higher number of independent information flow paths that represent information flow from

different components in a CPS. In some cases, the valuation function is evaluated to false

even in the presence of a higher number of independent information flow paths. This result

indicates that there is not enough redundancy for that particular feature, and appropriate

measures can be taken during design-time to improve reliability in case of a failure and

thereby enhance safety. Hence, MSDND can be used as an effective design-time analysis

tool to identify vulnerabilities in the system and propose possible mitigation measures.

60

Table 7.8. Information Flow Paths of the Components in Avionic Systems

F eatu re # P a th s # In d e p e n d en t
P ath s

M S D N D S ecu re N od es

Altitude 129 49 Not ND Secure 6, 7, 18, 28, 37,
48

Aircraft Course 2 2 ND Secure NA
Aircraft ID 13 4 ND Secure NA
Air Density 8 4 Not ND Secure 18
Airspeed 9 5 Not ND Secure 18
Angular Rate 2 1 ND Secure NA
Distance 13 5 ND Secure NA
Dynamic Pressure 1 1 ND Secure NA
ETBW 3 3 ND Secure NA
FFTR 3 3 ND Secure NA
Fuel Consumed 3 3 ND Secure NA
Fuel Level 1 1 ND Secure NA
Ground Speed 28 8 Not ND Secure 6
Heading 19 8 Not ND Secure 18, 31
IAS 4 2 ND Secure NA
Latitude & Longitude 64 25 Not ND Secure 6, 18, 37
Mach Number 4 2 ND Secure NA
OAT 5 3 ND Secure NA
Pos 4 3 Not ND Secure 3
RA 2 2 ND Secure NA
Static Pressure 2 2 ND Secure NA
TA 2 2 ND Secure NA
TAT 5 3 ND Secure NA
Time 3 3 Not ND Secure 3, 6
Track Angle 11 3 ND Secure NA
True Airspeed 4 2 ND Secure NA
Turn 12 3 ND Secure NA
Velocity 4 2 ND Secure NA
Vertical Rate 13 4 ND Secure NA
Vertical Speed 13 6 Not ND Secure 28

61

Figure 7.20. Information Flow Paths vs NonDeducibility (The x-axis represents compo­
nents in an aircraft. The y-axis represents information flow paths, the solid line indicates
independent information flow paths, and the triangle represents whether the component is
MSDND secure in case o f an attack or failure.)

62

8 . MPENN - MESSAGE PASSING EDGE CONVOLUTIONS NEURAL
NETW ORK

8.1. GRAPH NEURAL NETW ORKS (GNN)

Graph analysis using convolutional neural networks (CNNs) has become widely

popular due to the ability to capture rich relational information among entities using struc­

tural graphs. CNNs are prevalent in fields such as computer vision, speech recognition, or

natural language processing (Simonovsky and Komodakis, 2017; Wu etal., 2020). Anomaly

detection is another important problem that has been well-studied within distinct research

areas and application ranges. The anomalies or outliers represent a deviation in the data.

According to (Hawkins, 1980), an outlier or anomaly is defined as an observation that

"deviates so significantly from other observations as to arouse suspicion that it was gener­

ated by a different mechanism." In all these fields, the underlying data representation is in

the form of a layer structure. In contrast, many other structures such as physical systems,

social networks, computational chemistry, and 3D-modeling have the data represented in

non-euclidean domains, which is easier to express in terms of graphs.

Nevertheless, this transition from grids to graphs of CNNs is complex and has

recently gained interest among researchers. Researchers have introduced GNNs that are

analogous to hierarchical CNN-like architecture to handle graph structures. Modeling

complex systems such as CPSs requires a model to learn from graph data. Graph structured

data provides scope for prediction tasks on a variety of real-world problems. This work is an

attempt to apply graph neural networks to critical infrastructures, to partition the security

space of a specific CPS into different domains. A graph classification algorithm using

GNNs is introduced in this section to achieve partitioning functionality. Performing such

63

an analysis using GNN is still in its initial stages due to the unavailability of large datasets

of CPS’s attack data. Since there is limited data available for a CPS, datasets from the

chemical domain are used for analysis.

The datasets used in this section has the following structure:

• Each chemical compound has a set of subgraphs with edge and node features. This is

similar to the subpaths associated with the particular feature discussed in Section 7.

For example, the information flow paths associated with the feature altitude while

traversing the graph.

• Each subgraph is associated with a label representing a certain property of the chem­

ical compound. This is akin to the domain label associated with information flow

paths i.e. Secure and Non-Secure.

Note: In the remainder of this section, the terms "class label" and "classes" are used

to represent the Secure and Non-Secure security domain partitions.

A few anomalies have been injected into the data that represent anomalies in a

CPS to perform the classification of the subgraphs into Secure and Non-Secure classes

based on domain partitioning. For example, consider the case of a compromised altimeter

which presents incorrect altitude readings. The anomalies, in this case, are represented by

incorrect altitude interpretations that differ from the ones retrieved from other components

in an aircraft, such as the GPS. Based on the actual and anomalous data, the proposed GNN

model classifies them into one of the two associated labels (in case of CPS, it is Secure and

Non-Secure) in the dataset. To represent these sort of instances, the edge features of a few

instances in the chemical compound datasets has been tweaked so that one class represents

data that belongs to Secure domain whereas the other class represents anomalous data that

belongs to Non-Secure domain.

64

The anomalies in chemical compounds originate from thermodynamic and structural

alterations (de Oliveira et al., 2006; Greer and Moldover, 1981). Structural anomalies

include distortions, phase changes, electronic configurations. Thermodynamic anomalies

include the effect of pressure and temperature. The analogous structural and thermodynamic

anomalies in a CPS include compromised control systems (malware and sending false

control signals), manipulated communication traffic, compromised sensors, and actuators

due to an attack or failure, incorrect information transmission due to wear and tear of

physical components. In the aircraft example, in case of an attack or failure, anomalies can

be in the form of incorrect sensor readings or display values. This similarity between the

anomalies in CPS and chemical compounds provided a strong basis to utilize the datasets

from the chemical domain to perform the security domain classification. In this work, the

primary goal is to demonstrate the GNN models’ effectiveness in automating the process of

partitioning the CPS’s security domains. This supervised learning can be used in real-time

with respect to a CPS to identify the vulnerabilities and partition them into security domains.

In this dissertation, a Message Passing Neural Network (MPNN) (Gilmer et al.,

2017), a general framework for supervised learning on graphs, has been used along with

edge convolutions (Simonovsky and Komodakis, 2017). Though there is increased research

related to the MPNN framework, there is a need for new variations that can fit well for

applications such as partitioning the security domain in a CPS. In this work, a neural

network architecture that accepts graphs of arbitrary structure has been introduced. Given a

dataset containing graphs in the form of (G ,y) where G represents a graph and y represents

its class, the model reads the graphs directly and learns a classification function. Two main

challenges associated with this approach are: 1) extracting useful features for classification

purpose characterizing the rich information encoded in a graph and 2) reading the graphs

sequentially in a significant and logical order. Addressing these challenges is essential,

particularly while handling complex structures like CPSs. In a CPS, the relationships

between nodes in a graph represent various components, and the edges represent complex

65

interactions with underlying semantics. A localized graph convolution model has been

implemented to address the first challenge, along with its association to graph kernels.

The SortPooling layer (Zhang et al., 2018) has been used to address the second challenge,

which sorts graph vertices in a logical order so that regular neural networks can be trained

on the graphs. The SortPooling layer is essential to sort the vertex features in a coherent

order. The sorted data can later be used by traditional convolutional and dense layers

to perform additional analysis. In the case of graphs, vertices can be sorted based on

their structural roles within the graph in contrast to image and text classification, which has

natural ordering. The graph labeling introduced in (Zhang et al. ,2018), has been used to sort

vertices in a preprocessing step, which is based on the Weisfeiler-Lehman (WL) algorithm

(Shervashidze et al., 2011). Experiments on benchmark graph datasets demonstrate that

the proposed architecture achieves excellent performance by classifying the graphs based

on domain partitioning.

The contributions are as follows: Section 8.1.1 introduces the Graph Nets library

that defines the graph structure. Section 8.1.2 discusses the importance of graphs in

physical systems. Section 8.1.3 discusses the MPNN model in terms of graph networks.

Section 8.1.4 introduces the neural network model based on edge convolutions to partition

the graphs into one of the two available classes.

8.1.1. G raph Nets L ibrary. The Graph Nets library (Battaglia et al., 2018) has

been used to define the graph structure. This network takes a graph as input and returns

a graph as output. The input graph is composed of edge-level (E), node-level (V), and

global-level (u) attributes. The output graph contains updated attributes with the same

structure as the input graph. Graph networks are part of the broader family of "graph neural

networks" (Scarselli et al., 2008). In this model, a graph is defined as G = (u, V, E) in

which u represents a global attribute, V = {vi}i=\:Nv represents the set of nodes, where vi

represents a node’s attribute, N v is the cardinality and E = {(ek,rk,s k)}k=v.Ne represents

the set of edges, where ek represents the edge’s attribute, N e is the cardinality of edges, rk

66

is the receiver node’s index, and sk is the sender node’s index. The functions defined in 8.1

are used to perform update and aggregation operation on the nodes, edges and the graph.

These can be formulated as follows:

e k = <Pe (ek ,v rk , V sk ,u) e'i = p ê v (E ')

v'i = (e'i,Vi,u) e = p ê u (E)

u = (f>u(e ,V ,u) Vi = p v̂ u(V) (8.1)

where Ei = {(ek,rk, sk)}rk=i,k=hNe, V' = {vi}i=i:Nv, and E ' = u,-E'. The (f>e is used to com­

pute individual edge updates, the <pv is applied across all nodes to compute individual node

updates, and the <pu is the global update which is applied once. The p functions each take

a set as input, and results in a single element which represents the aggregated information.

The important property of the p functions is that it is invariant to permutations of the in­

puts, and takes multiple numbers of arguments such as mean, maximum, and element-wise

summation.

Algorithm 3 Algorithm to update the node, edge and global attributes (Battaglia et al.,
2018)___

Input: Graph dataset G, with edges E, vertices V and global attribute u
Output: Updated Tensors for edges, nodes and global attributes l

1 : function G r a p h N e t w o r k (E, V, u)
2 : e'k — et
3: for i — l to N n do
4: let E ' = {(ek,r t,S k)}
5: e-' -)
6 : vi — <pv (ei,Vi,u)
7: let V' = {v }i=l:Nv
8 : let E ' = {(e'k,rt,sk)}k=i:Ne
9: e — (pe^ u (E ')

1 0 : v ' — (pv^ u (V')
1 1 : u — (pu(e ,v ,u)
1 2 : re tu rn (E ' ,V ',u)

67

The neural network model takes graph G as an input and the computations progress

from the edge, to the node, and finally to the global level. Figure 8.1 shows the message

passing architecture used in this work with its update and aggregation functions. Algorithm 3

which is a modified version of the algorithm proposed in (Battaglia et al., 2018) shows the

following steps of computation:

• In this algorithm, (pe is not applied to the edges, and ek is assigned to e'k for to match

the convention of the equations in 8.1. This results in a set of per-edge outputs for

each node, i, given by E ' = {(e'k,r k,s k)}rk=,k=1 :#e whereas E ' = u iE'i contains the

set of all per-edge outputs. For example, in an aircraft example this corresponds to

the altitude value that is being passed from one node to another.

• In the next step, p e^ v is applied to E ', that aggregates the edge updates for all the

edges that project to node i, and results in ei. This edge update ei will be used in the

next step’s node update. In this way all the edge updates that project onto altimeter

are used to update the altimeter node based on the consistency of the edge attribute

ek.

• 0v is applied to each node i, which computes updated node attribute, v'i . This results

in a set of per-node outputs, V' = {v)}i=i:̂ v . In this step, each node’s attribute values

are updated to either of the three values 1 , - 1 , and 0 , where 1 represents edge attribute

values are consistent, - 1 represents edge attribute values are inconsistent, whereas 0

represents that the edge attribute does not exist.

• In the next step, p e^ u is used to aggregate all edge updates. This function is applied

to E ', and the result e will be used to compute the global update.

• p v̂ u is used to aggregate all node updates. This function is applied to V', and the

result v' will be used to compute the global update.

68

• In the last step, <pu is applied once per graph to compute global attribute update, u .

In the aircraft example, all the values associated with edge labels are aggregated to

result in E' and the node updates result in V' which are then used in the global update

process, w\ to update the class of the graph (Secure or Non - Secure).

E d g e U p d a t e N o d e U p d a t e G l o b a l U p d a t e

Figure 8.1. Message Passing Architecture

8.1.2, Importance of Graphs. Graphs can predominantly express arbitrary rela­

tionships among entities, which implicitly enables the model’s input to determine how

entities interact and stay isolated. For example, an edge between two nodes represents a

relationship, whereas the absence of an edge represents that there is no relationship and

cannot influence each other. The entities and relationships in a graph are represented by sets,

which are invariant to permutations. The graph networks being invariant to the order of the

input elements is often a desirable property. In addition, the node and edge update functions

are reused across all nodes and edges, respectively. This means every edge and node in the

graph has knowledge about other edges and nodes respectively which helps in computing

69

the global feature. This is an essential element which served as a motivation to partition

the security domains in a CPS by having the knowledge about every other component and

interactions between the components.

8.1.3. Message Passing Neural Network (MPNN). This section explains the

MPNN algorithm in terms of graph networks. In this section, the input is assumed to ex­

plicitly specify the relational structure. Examples of data with such an assumption include

physical systems, knowledge graphs, optimization problems, social networks, chemical

graphs, parse trees, and road networks with known interactions.

An adjacency matrixA and a set of feature vectors for the nodes are given as inputs

to the MPNN model. The adjacency matrix A is comprised of vector-valued entries to

indicate the information flow between different nodes in the graph. The edge and node

outputs typically are in the form of lists of vectors or tensors, one per edge or node, and

the global outputs are in the form of a single vector or tensor. This provides a flexible way

for a graph network's output to be passed to other deep learning networks such as CNNs.

MPNN proposed in (Gilmer et al., 2017) has similar structure to graph nets architecture

discussed in 8.1.1. The only difference is that the readout function used in (Gilmer et al.,

2017) doesn’t take E ' as an input.

8.1.4. Message Passing Edge Convolutional Neural Network (MPENN). This

section describes the various components of the proposed MPENN algorith to classify the

graphs into different classes (different domains in case of CPS) based on edge, node and

global updates. MPENN is comprised of three sequential stages as shown in Figure 8.2:

• The vertices’ local substructure features are extracted by the graph convolution layers

based on the edge features.

• Node features are computed and updated based on the consistency of the edge features,

which are then used to update the global feature.

70

• The final output predictions are made by the traditional convolutional and dense layers

by processing the updated graph representations.

8.1.4.1. Message functions. The following sections illustrate the functions used in

the MPENN model to compute node and edge features.

• Matrix Multiplication: The message function is defined as M (hv, hw,e vw) = Aevw hw

where hv and hw represent node features, evw represent edge features and A represents

adjacency matrix.

• Edge Network: The authors in (Gilmer et al., 2017) proposed a message function to

support vector-valued edge features. This function is represented by M (hv, hw, evw) =

A (evw)hw where A (evw) is a neural network which maps the edge vector evw to a

d-dimensional square matrix.

• Pair Message: In general, using matrix multiplication rule, the message from node

w to node v is not dependent on the hidden state hv and is a function only of the

edge evw and the hidden state hw. The messages should depend on both the source

and destination nodes to make an efficient utilization of the network channels in a

network. To achieve this, the message function described in (Battaglia et al., 2016)

has been used. Therefore, the modified message function is mwv = f (hw,hv,evw)

which represents the message from w to v accompanying edge e, where f is a neural

network.

8.1.4.2. G raph convolutional layers. The graph convolutional layers (Zhang et al.,

2018) takes a graph G and its node information is encoded in the matrix X e Rnxc as inputs,

where n is the input and c is the number of features. The graph convolution layer takes the

following form:

Z,+1 = f (D-1G Z W) (8.2)

71

where / is a non-linear activation function, G = G + I represents the adjacency matrix of

the graph, D represents the diagonal matrix, and Z e R,;xc represents the output activation

matrix. The following four steps discusses the graph convolution operation:

& : \ \r, n / \ \ \

i ”” /*

// \ w 0— \i\ m, & fxa
— *■ lit; ♦

x*4
Initial Graph

,
i3 \

H "̂"7
fell r*!l *

Edge Features

e l X f
e2
e3

Node Features X2
X3 Edge Convolutions on a single

node
Node updates

Figure 8.2. MPENN Architecture

• A linear function to transform the features is applied to the node information matrix,

denoted by XW. This transformation maps the input feature channels c to c channels

in the following layer. The filter weights used in the transformation W, are shared

among all vertices.

• In the next step, the node information is propagated to neighboring vertices as well

as the node itself using AY where Y = XW.

• In the next step, each row i is multiplied by D j^ . This is done to maintain a uniform

feature scale after graph convolution.

• In the final step, a pointwise non-linear activation function / is applied which outputs

the results of the graph convolutions.

72

The graph convolution extracts local substructure information by aggregating node

information in local neighborhoods. This enables the node information to be shared across

all the participating nodes and identify any discrepancy in the data.

8.2. EXPERIM ENTAL RESULTS

Three benchmark datasets have been used to evaluate the performance of the

MPENN model. All the three datasets have two class labels each representing certain be­

haviour. To achieve the intended partitioning functionality based on edge and node features,

a few instances of the data belonging to a particular class label have been modified to repre­

sent anomalies. The code and data are available at https://github.com/anusha_at/MPENN.

MUTAG accuracy scores based on batch sizes

Figure 8.3. MUTAG - Accuracy

8.2.1. Datasets. The benchmark datasets from various fields to compare and ana­

lyze the graph classification accuracy of MPENN using graph kernels are NCI1, NCI109,

and MUTAG. NCI1 and NCI109 datasets are composed of chemical compounds that are

screened to identify non-small cell lung cancer and ovarian cancer cell lines, respectively

(Wale et al., 2008). MUTAG (Debnath et al., 1991) is a data set with a collection of 188

https://github.com/anusha_at/MPENN

73

mutagenic aromatic and heteroaromatic nitro compounds labelled according to whether they

have a mutagenic effect on a specific bacterium called Gramnegtive bacterium Salmonella

typhimurium. All these datasets are vertex and edge labeled and has two class labels.

NCI1 accuracy scores based on batch sizes

Figure 8.4. NCI1 - Accuracy

8.2.2. Configuration. As described in Section 8.1.4, MPENN-network has four

layers. Its configuration is described as Conv-32^Conv-32^Conv-32^M P^GAP^FC-

32^D-0.1^FC-1, where Conv - o denotes a convolutional layer using batch normalization

with o output channels, D - p is a dropout with probability p, ReLU is the activation

function with dropout probability of 0.2, MP denotes max-pooling, GAP denotes global

average pooling, and FC - o denotes fully connected layer with o output channels. Labels

are encoded as one-hot vectors. The MPENN model is trained with stochastic gradient

descent (SGD) and cross-entropy loss for 300 epochs with batch sizes 1, 50 and 100 and a

variable learning rate starting from 0.001 and optimized after 50, 100, and 150 epochs.

8.2.3. M etrics. This section presents the metrics that are used to measure and

compare the performance of the MPENN model.

74

• Confusion Matrix: The Confusion matrix is one of the most intuitive and widely used

metrics in deep learning for finding the model’s correctness and accuracy. It is used

for classification problems in which the output belongs to one of the two or more

associated classes.

- True Positives (TP): True positives indicate instances in which the actual class

of the data instance and the predicted class is True.

- True Negatives (TN): True negatives indicate instances in which the actual class

of the data instance and the predicted class is False.

- False Positives (FP): False positives indicate instances in which the actual class

of the data instance is False, and the predicted class is True.

- False Negatives (FN): False refusals indicate instances in which the actual class

of the data instance is Dependable, and the predicted class is False.

NCI 109 accuracy scores based on batch sizes

Figure 8.5. NCI109 - Accuracy

75

• Accuracy: Accuracy is used to measure the total number of correct predictions made

out of all the predictions made by the model. Accuracy is given by,

TP + TN
A ccu ra cy = t p + f p + t n + f N (83)

• Loss: The loss function is an important parameter to calculate the error of the model

during the optimization process. Cross-entropy is the most commonly used loss

function in deep learning. Cross-entropy is from the information theory field, based

on entropy, and usually calculates the difference between two probability distributions.

The cross-entropy loss is given by,

1 N
L(y i j i) = - n E yi-l°s{p {y i)) + (1 - yt) .l°g (1 - p (yt)) (8 .4)

where yt represents the actual label, y t represents the predicted label, p(y) is the

probability of the label being the actual label, N is the size of the input,

MUTAG loss based on batch sizes

Figure 8 .6 . MUTAG - Loss

76

NCI1 loss scores based on batch sizes

Figure 8.7. NCI1 - Loss

Table 8.1. Results on MUTAG, NCI and NCI109. These datasets were evaluated for
accuracy and cross-entropy loss using MPENN.

Dataset Batch Size Epoch Accuracy Loss

NCI1 1 2 0 0 0 . 8 6 0.29
NCI109 1 2 0 0 0.91 0 . 2 1

MUTAG 1 300 0 . 8 0.24
NCI1 50 2 0 0 0.75 0.49

NCI109 50 2 0 0 0.5 0.74
MUTAG 50 300 0.9 0.31

NCI1 1 0 0 2 0 0 0.75 0.49
NCI109 1 0 0 2 0 0 0.5 0.74
MUTAG 1 0 0 300 0 . 8 8 0.35

8.2.4. Results. Table 8.1 exhibits that MPENN model performs with an accuracy

score of 87.33% for edge-labeled and node-labeled datasets to classify the graphs based

on edge and node features. Figures 8.3 - 8 . 8 demonstrates the performance of the model

over 300 epochs in terms of accuracy and loss. Each dataset performs well at different

77

NCI109 loss scores based on batch sizes

Figure 8 .8 . NCI109 - Loss

hyperparameter settings, and this can be chosen based on the performance of the model and

the dataset. The results demonstrate the importance of exploiting edge labels to identify the

anomalies and classify the graphs using convolution-based methods. The model works by

exploiting the edge feature to update the node features and then finally updating the global

feature to either one of the two class labels associated with the respective dataset. Each

dataset is characterized by different attributes, such as protein and chemical compounds. The

model achieved good performance by classifying the graphs based on the anomalies injected

into the data. For example, the MUTAG dataset is composed of different components, each

consisting of multiple subgraphs. These subgraphs are fed into the model to perform edge

and node updates. As discussed in Section 8.1.1, these node updates are used to update

the global state to either of the two class labels associated with the dataset (aromatic or

non-aromatic). In this case, the non-aromatic instances of the dataset are composed of

inconsistent edge labels representing a discrepancy representing anomalies in a CPS. The

MPENN model performs updates on these subgraphs to classify them based on the node

78

and global updates. These results show that MPENN can effectively classify the graphs

and can be used as a general mechanism to classify the graphs based on anomalies present

in the edge features. Two other datasets NCI1 and NCI106 have been used to make sure

that this model generalizes well to other datasets as well. Based on these results, this

model can be used to identify and classify the security domains in a CPS system with

proper hyperparameter settings, identify the security vulnerabilities in a CPS and perform

run-time anomaly detection to identify anomalies caused by various factors, as mentioned

in Section 4.

79

9. CONCLUSIONS

This section discusses the broader understandings and assumptions of this disserta­

tion, in addition to the technical specifications in sections 6 to 8 . This section is divided

into three sections: Section 9.1 presents the scope of applicability of the proposed approach

to CPS. Section 9.2 summarizes the limitations of the approach, including the concerns of

its practicality. Finally, Section 9.3 presents the directions of future work enabled by this

dissertation.

9.1. SUMMARY OF THE PROPOSED APPROACHES

Despite the extensive research in CPS security, there is a need to identify and

mitigate the attacks in CPS. In this dissertation, an automated MSDND model is designed

and implemented. MSDND is applied to various attack scenarios targeting a specific

component failure in an aircraft. MSDND works by identifying independent information

flow paths and partitioning them into different security domains based on the consistency

of the information flow. The model proposed in this paper is suitable for attacks and failures

in a CPS with complex state transitions.

From a conceptual point of view, the graph-based model performs the following

functions:

• Detect - Determine the presence of an anomaly or potential failures in the information

flow paths.

• Evaluate - Assess the impact of the anomaly based on the valuation functions.

• Prioritize - Determine if removing the affected information flow path affects the

system.

80

• Verify - Check if mitigation is possible by examining the nodes that have valuation

functions.

• Action - Partition the information flow paths into Secure and Non-Secure domains.

9.2. LIMITATIONS

Implementing a generalized security mechanism for a wide variety of CPS is a

difficult task. Our approach aims at solving this problem by implementing a graph-based

model and the features associated with the edges and vertices are hand-crafted. More

research can be done in this area to come up with automatic feature recognition and link

predictions.

9.3. FUTURE WORK

In moving forward, the focus would be on the following:

• Extend the MSDND analysis to other infrastructures and monitor if all the attack

scenarios are identified.

• Use MSDND to model confidentiality, integrity and availability vulnerabilities.

• Make MSDND analysis scalable to extend this to all the critical infrastructures to

identify and evaluate cyber-physical risks.

• Apply graph neural networks to automatically construct the graph and identify the

anomalies. This is done by clustering the components in the system based on the

validation of the information flow paths (the information flow paths qualified as

secure will be in secure security domain and the other information flow paths will be

in non-secure security domain).

81

• Use graph neural networks to construct the graphs from architecture diagrams of a

CPS and perform link prediction to connect different components.

• Use a feature extraction model to label the nodes and vertices in a graph based on

neighbor interactions and their features.

82

REFERENCES

“Characterization of a cusum model-based sensor attack detector, author=Murguia, Carlos
and Ruths, Justin,” in “2016 IEEE 55th Conference on Decision and Control (CDC),”
IEEE, 2016 pp. 1303-1309.

Administration, F. A., “Pilot’s Handbook of Aeronautical Knowledge,” 2016, [Online;
posted 2016].

Administration, F. A., “Advanced Avionics Handbook,” 2017, [Online; posted 2017].

Amin, S., Cardenas, A. A., and Sastry, S. S., “Safe and Secure Networked Control Systems
Under Denial-of-Service Attacks,” in “International Workshop on Hybrid Systems:
Computation and Control,” Springer, 2009 pp. 31-45.

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al., “Interaction networks for learning
about objects, relations and physics,” in “Advances in neural information processing
systems,” 2016 pp. 4502-4510.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Ma­
linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al., “Re­
lational inductive biases, deep learning, and graph networks,” arXiv preprint
arXiv:1806.01261, 2018.

Behrmann, G., David, A., and Larsen, K. G., “A tutorial on UPPAAL,” in “Formal methods
for the design of real-time systems,” Springer, 2004 pp. 200-236.

Blackburn, P. and Van Benthem, J., “Modal logic: a semantic perspective,” in “Studies in
Logic and Practical Reasoning,” volume 3, pp. 1-84, Elsevier, 2007.

Blackburn, P., van Benthem, J. F., and Wolter, F., Handbook o f modal logic, Elsevier, 2006.

Bohnenkamp, H. C., d ’Argenio, P. R., Hermanns, H., and Katoen, J. P., “Modest: A
compositional modeling formalism for real-time and stochastic systems,” 2004.

Cardenas, A. A., Amin, S., Lin, Z.-S., Huang, Y.-L., Huang, C.-Y., and Sastry, S., “Attacks
against process control systems: risk assessment, detection, and response,” in “Pro­
ceedings of the 6 th ACM symposium on information, computer and communications
security,” 2011 pp. 355-366.

Cardenas, A. A., Amin, S., and Sastry, S., “Research Challenges for the Security of Control
Systems,” in “HotSec,” 2008a .

Cardenas, A. A., Amin, S., and Sastry, S., “Secure control: Towards survivable cyber­
physical systems,” in “2008 The 28th International Conference on Distributed Com­
puting Systems Workshops,” IEEE, 2008b pp. 495-500.

83

Cho, H. S. and Woo, T. H., “Cyber security in nuclear industry-Analytic study from the
terror incident in nuclear power plants (NPPs),” Annals of Nuclear Energy, 2017,
99, pp. 47-53.

Clarke, E. M. and Wing, J. M., “Formal methods: State of the art and future directions,”
ACM Computing Surveys (CSUR), 1996, 28(4), pp. 626-643.

Conrad, E., Misenar, S., and Feldman, J., CISSP study guide, Newnes, 2012.

de Oliveira, A. B., Netz, P. A., Colla, T., and Barbosa, M. C., “Structural anomalies for
a three dimensional isotropic core-softened potential,” The Journal of chemical
physics, 2006, 125(12), p. 124503.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., and Han-
sch, C., “Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity,”
Journal of medicinal chemistry, 1991, 34(2), pp. 786-797.

Dibaji, S. M., Pirani, M., Flamholz, D. B., Annaswamy, A. M., Johansson, K. H., and
Chakrabortty, A., “A systems and control perspective of CPS security,” Annual
Reviews in Control, 2019.

Elkaduwe, D., Klein, G., and Elphinstone, K., “Verified protection model of the seL4
microkernel,” in “Working Conference on Verified Software: Theories, Tools, and
Experiments,” Springer, 2008 pp. 99-114.

Fisher, K., “Using formal methods to enable more secure vehicles: DARPA’s HACMS
program,” in “Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming,” 2014 pp. 1-1.

Gallagher, R., “A guide to understanding security modeling in trusted systems,” National
Computer Security Center, USA, NCSC-TG-010, 1992.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E., “Neural message
passing for quantum chemistry,” in “Proceedings of the 34th International Confer­
ence on Machine Learning-Volume 70,” JMLR. org, 2017 pp. 1263-1272.

Goguen, J. A. and Meseguer, J., “Security policies and security models,” in “1982 IEEE
Symposium on Security and Privacy,” IEEE, 1982 pp. 11-11.

Goldblatt, R., “Mathematical modal logic: A view of its evolution,” in “Handbook of the
History of Logic,” volume 7, pp. 1-98, Elsevier, 2006.

Greer, S. C. and Moldover, M. R., “Thermodynamic anomalies at critical points of fluids,”
Annual Review of Physical Chemistry, 1981, 32(1), pp. 233-265.

Hawkins, D. M., Identification o f outliers, volume 11, Springer, 1980.

84

Howser, G. and McMillin, B., “A Multiple Security Domain Model of a Drive-by-Wire
System,” in “Computer Software and Applications Conference (COMPSAC), 2013
IEEE 37th Annual,” IEEE, 2013 pp. 369-374.

Howser, G. and McMillin, B. M., “Using Information-Flow Methods to Analyze the Se­
curity of Cyber-Physical Systems,” IEEE Computer, 2017, 50(4), pp. 17-26, doi:
10.1109/MC.2017.112.

Huitsing, P., Chandia, R., Papa, M., and Shenoi, S., “Attack taxonomies for the Modbus
protocols,” International Journal of Critical Infrastructure Protection, 2008, 1, pp.
37-44.

Humayed, A., Lin, J., Li, F., and Luo, B., “Cyber-Physical Systems Security—A Survey,”
IEEE Internet of Things Journal, 2017, 4(6), pp. 1802-1831.

Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H., and Jansen, D. N., “The ins and
outs of the probabilistic model checker MRMC,” Performance evaluation, 2011,
68(2), pp. 90-104.

Kim, Y., Jo, J.-Y., and Lee, S., “ADS-B Vulnerabilities and a Security Solution with a
Timestamp,” IEEE Aerospace and Electronic Systems Magazine, 2017, 32(11), pp.
52-61.

Kravchik, M. and Shabtai, A., “Detecting cyber attacks in industrial control systems using
convolutional neural networks,” in “Proceedings of the 2018 Workshop on Cyber­
Physical Systems Security and PrivaCy,” 2018 pp. 72-83.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Mur­
ray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., and Van den Hof, P., “Systems
& Control for the future of humanity, research agenda: Current and future roles,
impact and grand challenges,” Annual Reviews in Control, 2017, 43, pp. 1-64.

Leroy, X. et al., “The CompCert verified compiler,” Documentation and user’s manual.
INRIA Paris-Rocquencourt, 2012, 53.

Liu, Y., Ning, P., and Reiter, M. K., “False Data Injection Attacks Against State Estimation
in Electric Power Grids,” ACM Transactions on Information and System Security
(TISSEC), 2011,14(1), p. 13.

Lowe, G., “Semantic models for information flow,” Theoretical Computer Science, 2004,
315(1).

Manesh, M. R. and Kaabouch, N., “Analysis of Vulnerabilities, Attacks, Countermeasures
and Overall Risk of the Automatic Dependent Surveillance-Broadcast (ADS-B)
System,” International Journal of Critical Infrastructure Protection, 2017, 19, pp.
16-31.

85

McCallie, D., Butts, J., and Mills, R., “Security Analysis of the ADS-B Implementation in
the Next Generation Air Transportation System,” International Journal of Critical
Infrastructure Protection, 2011, 4(2), pp. 78-87.

McCumber, J., “Information systems security: A comprehensive model,” in “Proceedings
14th National Computer Security Conference,” 1991 pp. 328-337.

McLaughlin, S., Konstantinou, C., Wang, X., Davi, L., Sadeghi, A.-R., Maniatakos, M., and
Karri, R., “The cybersecurity landscape in industrial control systems,” Proceedings
of the IEEE, 2016,104(5), pp. 1039-1057.

McLean, J., “Security models and information flow,” Technical report, Naval Research Lab,
Washington DC, Center For High Assurance Computing Systems, 1990.

Miller, B. and Rowe, D., “A survey SCADA of and critical infrastructure incidents,” in
“Proceedings of the 1st Annual conference on Research in information technology,”
2012 pp. 51-56.

Mitchell, R. and Chen, I.-R., “A survey of intrusion detection techniques for cyber-physical
systems,” ACM Computing Surveys (CSUR), 2014, 46(4), pp. 1-29.

Mo, Y. and Sinopoli, B., “Secure Control Against Replay Attacks,” in “2009 47th annual
Allerton conference on communication, control, and computing (Allerton),” IEEE,
2009 pp. 911-918.

Myers, A. C., Zheng, L., Zdancewic, S., Chong, S., and Nystrom, N., “Jif: Java information
flow,” Software release. Located at http://www. cs. cornell. edu/jif, 2001, 2005.

Pasqualetti, F., Dorfler, F., and Bullo, F., “Cyber-Physical Security via Geometric Con­
trol: Distributed Monitoring and Malicious Attacks,” in “2012 IEEE 51st IEEE
Conference on Decision and Control (CDC),” IEEE, 2012 pp. 3418-3425.

Peterson, J. L., “Petri nets,” ACM Computing Surveys (CSUR), 1977, 9(3), pp. 223-252.

Pottier, F. and Simonet, V., “Information flow inference for ML,” in “Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,”
2002 pp. 319-330.

Sabelfeld, A. and Myers, A. C., “Language-based information-flow security,” IEEE Journal
on selected areas in communications, 2003, 21(1), pp. 5-19.

Sampigethaya, K. and Poovendran, R., “Aviation cyber-physical systems: Foundations for
future aircraft and air transport,” Proceedings of the IEEE, 2013,101(8), pp. 1834­
1855.

Sandberg, H., Teixeira, A., and Johansson, K. H., “On security indices for state estimators in
power networks,” in “First Workshop on Secure Control Systems (SCS), Stockholm,
2 0 1 0 ,” 2 0 1 0 .

http://www

86

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G., “The graph
neural network model,” IEEE Transactions on Neural Networks, 2008, 20(1), pp.
61-80.

Sen, K., Viswanathan, M., and Agha, G., “Vesta: A statistical model-checker and analyzer
for probabilistic systems,” in “Second International Conference on the Quantitative
Evaluation of Systems (QEST’05),” IEEE, 2005 pp. 251-252.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and Borgwardt, K. M.,
“Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, 2011,
12(77), pp. 2539-2561.

Simonet, V. and Rocquencourt, I., “Flow Caml in a nutshell,” in “Proceedings of the first
APPSEM-II workshop,” 2003 pp. 152-165.

Simonovsky, M. and Komodakis, N., “Dynamic edge-conditioned filters in convolutional
neural networks on graphs,” in “Proceedings of the IEEE conference on computer
vision and pattern recognition,” 2017 pp. 3693-3702.

Strohmeier, M., Schafer, M., Lenders, V., and Martinovic, I., “Realities and Challenges of
NextGen Air Traffic Management: The Case of ADS-B,” IEEE Communications
Magazine, 2014, 52(5), pp. 111-118.

Stroud, R., “On the relationship between fault tolerance and intrusion tolerance: experience
from the MAFTIA project,” 2003.

Sutherland, D., “A model of information,” in “Proceedings of the 9th national computer
security conference,” volume 247, Washington, DC, 1986 pp. 175-183.

Teixeira, A., Amin, S., Sandberg, H., Johansson, K. H., and Sastry, S. S., “Cyber Security
Analysis of State Estimators in Electric Power Systems,” in “49th IEEE conference
on decision and control (CDC),” IEEE, 2010 pp. 5991-5998.

Teixeira, A., Shames, I., Sandberg, H., and Johansson, K. H., “A secure control framework
for resource-limited adversaries,” Automatica, 2015, 51, pp. 135-148.

Thudimilla, A. and McMillin, B., “Multiple Security Domain NonDeducibility Air Traf­
fic Surveillance Systems,” in “2017 IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE),” IEEE, 2017 pp. 136-139.

Wale, N., Watson, I. A., and Karypis, G., “Comparison of descriptor spaces for chemical
compound retrieval and classification,” Knowledge and Information Systems, 2008,
14(3), pp. 347-375.

Wang, D., Wang, Z., Shen, B., Alsaadi, F. E., and Hayat, T., “Recent advances on filtering
and control for cyber-physical systems under security and resource constraints,”
Journal of the Franklin Institute, 2016, 353(11), pp. 2451-2466.

87

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y., “A comprehensive survey
on graph neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

Yang, H., Yao, M., Xu, Z., and Liu, B., “LHCSAS: A Lightweight and Highly-Compatible
Solution for ADS-B Security,” in “GLOBECOM 2017-2017 IEEE Global Commu­
nications Conference,” IEEE, 2017 pp. 1-7.

Yang, H., Zhou, Q., Yao, M., Lu, R., Li, H., and Zhang, X., “A Practical and Compatible
Cryptographic Solution to ADS-B Security,” IEEE Internet of Things Journal, 2018,
6(2), pp. 3322-3334.

Younes, H. L., “Verification and planning for stochastic processes with asynchronous
events,” Technical report, Carnegie-Mellon Univ Pittsburgh PA, School of Com­
puter Science, 2005.

Zdancewic, S., “Challenges for information-flow security,” in “Proceedings of the 1st In­
ternational Workshop on the Programming Language Interference and Dependence
(PLID’04),” 2004 p. 6.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y., “An end-to-end deep learning archi­
tecture for graph classification,” in “Thirty-Second AAAI Conference on Artificial
Intelligence,” 2018 .

88

VITA

Anusha Thudimilla was born in Hyderabad, India. She received her B.Tech. in

Information Technology from the Mahaveer Institute of Science and Technology in May

2012. She graduated with a Master of Science in Computer Science from Missouri Univer­

sity of Science and Technology in December, 2017. She received a Doctor of Philosophy in

Computer Science from Missouri University of Science and Technology in August, 2020.

After she moved to Missouri, Anusha worked as a student employee for the Miner

Phonathon at Missouri S&T. While there she greatly enjoyed her work as a research assistant

under Dr. Bruce McMillin for two years. In addition to publishing the papers presented in

this dissertation, Anusha presented her research at scientific meetings and participated in

conferences discussing challenges in high performance computing. This was possible as a

result of her securing competitive funding from the National Science Foundation. Anusha

earned multiple competition prizes for presentations given at the Missouri S&T Computer

Science department and the High-Assurance Systems Engineering (HASE) conference.

After MS graduation, she worked for Ungerboeck International as a Software En­

gineer. She later worked at ReachMobi Inc. as a full-stack developer while pursuing the

Ph.D. as a part-time student. In 2018, she left the industry to become a full-time Ph.D.

student. She interned as a Research Engineer at American Express during her Ph.D.

	Cyber physical security of avionic systems
	Recommended Citation

	tmp.1601480882.pdf.V0T5h

