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ABSTRACT

iii

A classical sensor tasking methodology is analyzed in the context of generating 

sensor schedules for monitoring resident space objects (RSOs). This approach, namely 

maximizing the expected Kullback-Leibler divergence in a measurement update, is evalu­

ated from a probabilistic perspective to determine the accuracy of the conventional approach. 

In this investigation, a new divergence-based approach is proposed to circumvent the myopic 

nature of the measure, forecasting the potential information contribution to a time of inter­

est and leveraging the system dynamics and measurement model to do so. The forecasted 

objective exploits properties of a batch measurement update to frequently exhibit faster 

optimization times when compared to an accumulation of the conventional myopic em­

ployment. The forecasting approach additionally affords the ability to emphasize tracking 

performance at the point in time to which the information is mapped.

The forecasted divergence is lifted into the multitarget domain and combined with 

a collision entropy objective. The addition of the collision consideration assists the tasking 

policy in avoiding scenarios in which determining the origin of a measurement is difficult, 

ameliorating issues when executing the sensor schedule. The properties of the divergence- 

based and collision entropy-based objectives are explored to determine appropriate opti­

mization schemes that can enable their use in real-time application. It is demonstrated 

through a single-target tasking simulation that the forecasted measure successfully outper­

forms traditional approaches with regard to tracking performance at the forecasted time. 

This simulation is followed by a multitarget tasking scenario in which different optimiza­

tion strategies are analyzed, illustrating the feasibility of the proposed tasking policy and 

evaluating the solution from both schedule quality and runtime perspectives.
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1. INTRODUCTION

1.1. MOTIVATION

Since the dawn of space exploration, attempts have been made to maintain a level of 

awareness of the objects in orbit about Earth. Catalogs were created and maintained to not 

only record knowledge of the location and trajectory of these resident space objects (RSOs), 

but also in an attempt to determine the intent of unknown RSOs. The launch of Sputnik 

I in 1957 placed the first artificial satellite in orbit about the Earth, and the population of 

RSOs has only increased since. Advances in technology over the decades have enabled 

more launches to occur and more satellites to be deployed, and, consequently, RSO catalogs 

have been forced to grow in magnitude.

The increase in RSOs is not solely a function of the new assets placed in orbit either; 

the risk of conjunction events in orbit is ever-present and can result in the generation of a 

significant amount of space debris with dynamics that are difficult to predict or model. In 

2009, an unintentional collision occurred between the American Iridium 33 satellite and 

Russian Kosmos 2251 spacecraft, generating an array of debris of varying sizes [86]. In 

2013, two similar events occurred: a collision between a Russian BLITS nano-satellite with 

debris from the destroyed Fengyun FY-1C satellite [46], and a collision between Ecuador’s 

Pegasus cubesat with a debris cloud from a Tysklon-3 upper stage left over from a previous 

launch [66]. Each of these events can generate hundreds of new RSOs [45], a frustrating 

fact as each conjunction might have been avoided with sufficient knowledge of the objects 

present and their trajectories.

The problem of discovering these RSOs after their creation, be it through collisions, 

decommissions, or launches, is one of significant importance; however, as the population of 

RSOs continues to grow unbounded, the problem of improving knowledge and maintaining
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awareness of previously detected objects becomes increasingly difficult. Further, the rate 

at which RSO catalogs grow will likely do nothing but increase, not only due to advances 

in space programs across the globe, making satellite deployment more accessible, but also 

due to the advances in ground-based sensors as the size of detectable objects decreases and 

the distances at which they can be detected increases.

As the number of RSOs has grown, so have the complications they induce. From 

a military perspective, a larger population of satellites provides more cover for nefarious 

RSOs to carry out their objectives. Maintaining awareness of these potential adversaries 

becomes compounded by the growing popularity of cubesats, a much smaller form factor 

spacecraft as compared to older satellites, providing an option to reduce the size and thus 

the ability to detect RSOs. Alternatively, the presence and density of RSOs pose potential 

threats to upcoming efforts for crewed space flight and, as such, possessing knowledge of 

their orbital characteristics at any given time is paramount to successful mission planning. 

Research in recursive filtering has been heavily leveraged in addressing this issue; given 

ample data, many different robust and reliable filtering approaches exist for propagating and 

updating target state estimates, allowing RSO catalogs to be maintained for reference when 

planning or executing missions or in determining the intent of particular targets. In order 

to maintain these state estimates, observations must be acquired through either ground- or 

space-based observer stations.

Diversity in geographic locations, measurement types, and the sensor fidelity of 

ground-based stations provides a variety of data available for a filter to process. For 

example, the United States Space Surveillance Network can provide radar or optical data on 

targets in deep space as well as lower Earth orbits, generating either range, range rate, right 

ascension, or declination measurements of the targets (or some combination thereof) from 

over thirty different ground-based station locations [87]. Data from space-based satellites, 

such as the U.S. Air Force’s Space-Based Space Surveillance Block 10 system, can also be 

processed in tandem with the ground-based observations [29]. The differing perspectives
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brought on by the different sensor locations and data types provide a diverse collection of 

information, enabling different facets of a target state to be honed and the overall state of 

the target to be determined to a reasonable precision. However, while tracking RSOs can be 

achieved with ample data, the true problem lies in the number of these objects, as they vastly 

outnumber the available sensor resources. It is simply not possible for ground-based sensors 

to continuously observe every RSO in the sky, necessitating a means of properly scheduling 

measurements of RSOs in an effective manner. These schedules should maintain target 

state estimates without neglecting other targets and without losing track custody (i.e., the 

ability to regain sight of the target), while utilizing the differing data types and perspectives 

provided by the available sensor resources. This is an example of the problem of sensor 

tasking, and this question has been posed and investigated under several different paradigms.

1.2. HISTORICAL PERSPECTIVE AND PREVIOUS WORKS

The initial conception of a sensor tasking policy with respect to space object tracking 

began with the launch of Sputnik 1. Due to the anticipation of the first launches of human- 

made space vehicles and the concerns experienced during the Cold War, much thought 

and consideration had been put into a system in which these artificial satellites would 

be tracked and observed. One individual in particular was Harvard astronomer and then 

director of the Smithsonian Astrophysical Observatory (SAO) Dr. Fred Whipple, who in 

1955 defined a three phase plan for addressing the problem. Phase one would establish the 

Minitrack network, a network of sensors capable of observing satellites. Phase two would 

establish the SAO as the centralized computing station that would receive and process all 

of the observations received by the network. All of this performance would be dependent 

upon phase three, dubbed Operation Moonwatch, a program that would enlist the amateur 

scientists of the public to turn their cameras and telescopes upward in an attempt to identify 

potential craft as they traversed the sky [60].
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The initial observations from Operation Moonwatch gave a rough idea of where 

objects of interest might be in the sky in order to provide an approximate pointing direction 

to the sensors located across the globe. In the end, it was this group of public servants, 

ranging from astronomy hobbyists to high school science groups, that was called into action 

as the launch of Sputnik I took the world, including the professionally staffed tracking 

stations, by surprise [60, 80]. Operation Moonwatch was discontinued in 1975, and the 

Minitrack network eventually became obsolete, being replaced by more advanced and more 

specialized sensor networks such as the Tracking and Data Relay Satellite System and the 

Deep Space Network. However, investigations into the problem of sensor tasking have 

continued to this day, with the complexity and sophistication of the proposed solutions 

growing proportionally to the technologies that the policies are scheduling.

The problem of sensor tasking is an intrinsic problem in the areas of orbit determi­

nation, space situational awareness (SSA), and space traffic management (STM), and the 

number of avenues that can be taken in addressing the problem is staggering. Depending 

upon the particular goal for a solution, referred to as a sensor tasking objective or a sensor 

management policy, the actual implementations or policies can vary drastically. Broadly 

speaking, space object sensor tasking objectives can be classified under two high-level 

categories: object discovery and catalog maintenance. The former is of primary concern 

in building catalogs of newly identified RSOs, whereas the latter is concerned with main­

taining these catalogs and observing any potential changes to an RSO orbit brought on by 

factors such as maneuvers or orbit decay. The two objectives are not necessarily mutually 

exclusive, but comprise the broad goals that a sensor tasking policy intends to address in 

SSA and STM applications.

Object discovery and initial orbit determination are imperative to constructing RSO 

catalogs and enabling sensor networks to monitor and maintain knowledge of the positions 

and velocities of the RSOs. Due to the nature of the problem, however, determining 

sensor management strategies is difficult with a complete lack of knowledge of an object's
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existence, let alone its trajectory. At best, surveying for new objects can be handled from 

a sensor operations perspective, scanning the sky (or a portion of interest) in some clever 

manner and capturing images in a specific way. Solutions in this domain focus on aspects 

such as varying exposure times of optical sensors to capture streaks of moving objects, 

masking techniques to eliminate known stars from collected images, and sensor trajectory 

designs such as scanning across fixed right ascension angles to generate composite images 

(or data tracklets) of a portion of the sky to search for any unknown objects [74].

Alternatively, these methods can also be used to revisit objects that have previously 

been discovered, utilizing heuristic principles and a priori information to anticipate a pass 

in designating a sensor action [24, 25]. This is an example of a policy providing dual 

functionality in both object discovery and catalog maintenance; the a priori knowledge 

allows additional observations to be acquired of the object, while swaths of the sky are 

captured and processed for new object detections. Simultaneously growing and maintaining 

an RSO catalog is efficient, but as the size of RSO catalogs continues to grow, so does the 

complexity of maintaining their entries. Consequently, sensor tasking policies that place an 

emphasis on maintaining custody of RSOs within a catalog have received much attention 

over the years, resulting in a plethora of different strategies covering a wide range of 

sophistication and complexity.

A common theme throughout many of these sensor tasking approaches is to place 

an emphasis on a particular facet of the multiobject (or multitarget) tracking problem. For 

instance, policies can be defined almost exclusively on the abilities of the sensor being 

tasked. One approach is to perform an observability analysis to determine at which point 

along the nominal target trajectory the object's position and velocity are the easiest to infer 

from the perspective of the employed sensor. This is achieved by utilizing the singular 

values of the observability Gramian as indicators or measures of observability for a given 

target [23]. Another strategy that is focused primarily on the measurements quantifies the 

amount of information a sensor can provide through the use of the Fisher information gain
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(FIG) [44]. Alternatively, the dynamics governing the motion and evolution of the target 

state estimate can be examined through an assessment of the stability of the system; for 

instance, leveraging the largest Lyapunov exponent (LLE) estimate enables observations to 

be taken at points along the target trajectory that are more sensitive to the system dynamics as 

compared to the rest of the trajectory [89]. Alternatively, more sophisticated methods such 

as machine learning techniques can utilize training data or positive feedback to produce 

schedules; methods such as these have shown to be very useful and versatile, however 

their performance is dependent upon factors such as training data or tuning parameters 

that require careful consideration [54]. It is of interest to explore solutions that leverage 

knowledge of the employed models (such as the observability analysis, FIG-based, and 

LLE-based approaches) that more explicitly considers the state estimate density.

Some approaches that fall under this paradigm leverage advances in multitarget 

statistics and are built upon multitarget filters. The posterior expected number of targets 

(PENT) or the posterior expected number of targets of interest (PENTI) can be maximized to 

encourage a sensor platform to observe the most targets possible, or similarly the uncertainty 

in the number of targets present can be minimized [58]. These measures operate well as 

approximations to specific information theoretic measures and emphasize the importance of 

observing each target to ensure that they are not neglected, but again do not directly consider 

the impact an observation will have on the state estimates at hand. Other methods more 

explicitly handle the reduction in the uncertainty of the individual target state estimates, 

such as through the use of the reduction matrix [38] or more commonly through the use of 

information theoretic measures [2, 20, 27, 37, 50, 89].

Information theory, in this context, provides an array of tools enabling the uncertainty 

in a probability density function (pdf) to be quantified. One fundamental category of tools, 

known as information entropies or simply entropies, enables the uncertainty in a pdf to 

be quantified in a volumetric sense [75]. Further, entropies facilitate the development of 

measures that yield a directed “distance” between two pdfs; these distance-like measures
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provide a non-negative scalar quantification of the difference between two pdfs, akin to a 

distance metric though lacking the symmetric property and failing to satisfy the triangle 

inequality. When coupled with techniques such as expectation hedging [58], these measures, 

known as information divergences [75], seem natural to use in a tasking framework, as they 

provide a mathematically rigorous means of quantifying the “strength” of the update that 

is realized in a filter. Consequently, attempting to maximize this distance is equivalent 

to maximizing the strength of the filter update in an information theoretic sense, where 

the strength of the update is the quantity of information ingested by the filter due to a 

particular observation. Additionally, working in the information space with regard to state 

estimates gives equal footing for comparison of different sensor types, whether that would 

be different types of measurements, different qualities of data, different sensor locations, 

different acquisition times, or some composite of the aforementioned elements, as the 

uncertainties (or reductions in uncertainties) are translated from potentially different vector 

spaces to a common information space.

This approach has been leveraged and tested as a sensor tasking objective in many 

works, ranging from DeMars and Jah’s comparison of employing the first moment of 

several different information divergences [20] to Hintz and McVey’s measure of global 

information flow [39]. While not a criticism of the approaches, many information theoretic 

methods consider only the expected value of the information divergence measures that 

they are utilizing, neglecting higher-order information and raising concerns that useful 

context is being discarded. Furthermore, these information theoretic formulations typically 

have a “myopic” construction, meaning specifically that the observation acquisition is only 

concerned with the impact of a measurement at its specific observation time. The result in 

the single-target domain when considering a set of observations is an objective function that 

accumulates the first moment of the divergence measure at discrete and unique measurement
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times; this first accumulation is then subsequently extended to the multitarget domain by 

simply further accumulating the expected divergences across all targets. While the approach 

is not inappropriate, there are several questions that are raised in its application:

• What context is omitted when using only the first moment o f the divergence? Is 

there useful knowledge that is being discarded when taking the first moment of the 

divergence rather than attempting to use its full underlying distribution?

• Is it appropriate to accumulate divergence measures that are computed at different 

points in time? Does this summation hold any physical interpretation? Is there a 

more appropriate way to address the problem of simultaneously considering multiple 

observation times?

• Can other facets o f the multitarget sensor tasking problem be addressed simulta­

neously in the same information space? The accumulation of expected information 

divergences across targets is a sound solution in the presence of independent and suffi­

ciently separated targets; however, in the case where multiple targets can (potentially) 

occupy a sensor’s field of view simultaneously, does this approach put systems at risk 

of entering potential misassociation scenarios (i.e. situations in which measurements 

are associated to targets that did not generate them, leading to problems such as label 

switching or track coalescence)? Is there a way to also consider and mitigate these 

risks?

Each of these questions warrants investigation. This dissertation documents this 

venture, detailing the theories and the resulting experiments as each point is explored in 

search of an effective and tractable sensor tasking policy. The result is new insight into 

a conventional divergence-based sensor tasking objective, the development of new sensor 

tasking objectives, and a study of their behavior to provide an intelligent and tractable means 

of optimizing sensor schedules.
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1.3. CONTRIBUTIONS

This dissertation seeks to add to the body of work in addressing the problem of 

sensor tasking specifically in the context of space object catalog maintenance, space traffic 

management, and space situational awareness. The key contributions of this work can be 

summarized as:

• performing a statistical characterization of conventional Kullback-Leibler sensor task­

ing, enabling quantification of the accuracy of its approximation;

• developing a novel generalization of expectation-hedged divergence-based sensor 

tasking objectives, extending information divergence use to non-myopic (referred to 

herein as forecasted) sensor management policies that provide support for multiple 

observations from multiple observers of multiple targets;

• carrying out a classification of the myopic and forecasted sensor tasking objectives, 

providing insight into appropriate selection of optimization solutions as well as a 

survey of some of the available solutions; and

• creating an entropic characterization of potential conjunction events, providing a sen­

sor tasking objective formulation that affords a user information-rich sensor schedules 

while avoiding potentially difficult data association events.

1.4. ORGANIZATION OF THE DISSERTATION

The subsequent sections are organized as follows: Section 2 provides the necessary 

background in probability and information theory, beginning first with a discussion of 

uncertainty representations for both single- and multitarget states. This is followed by 

Section 2.2 with the introduction of entropies, information theoretic measures that enable
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the scalar quantification of the uncertainty present in stochastic variables. The section 

concludes with the introduction of information divergences, defining the Kullback-Leibler 

divergence and its interpretation in the context of sensor tasking.

Section 3 provides the dynamical and observational modeling employed in this work. 

The different dynamic models are presented first, beginning with the general definition and 

continuing to define the two-body and Clohessy-Wiltshire models. Section 3.2 gives the 

general definition for the observer model and discusses different aspects to consider in a 

sensor tasking context, concluding the section with definitions of the measurement models 

that are employed in Section 6.

Section 4 presents a detailed discussion of single-target sensor tasking, beginning 

with the concept of filtering in Section 4.1. A brief discussion of the different types of filters 

leveraged in this work is included in this section, providing the various forms of the update 

that are used in later developments. Section 4.2 details the use of the Kullback-Leibler 

divergence as a sensor tasking objective. The conventional use of the divergence measure 

is defined first, providing an explanation of its myopic nature and a statistical analysis 

of the quantity. This analysis enables the appropriateness of the typical first moment 

approximation to be justified and provides useful insight that is leveraged when formulating 

a multipurpose objective function in Section 5. Section 4.2.2 provides a novel concept that 

generalizes the myopic form of divergence-based tasking measures, forecasting the quantity 

to a reference time of interest. The development of the forecasted measure is given in detail 

along with discussion of its behavior under different assumptions and its connection to the 

myopic objective. The section presents some optimization considerations in Section 4.2.3 

and concludes with the computation of the measure in the measurement space in Section

4.2.4.

Section 5 states necessary aspects to consider in the multitarget sensor tasking 

problem. The section opens with the extension of the objectives presented in the single­

target tasking section to the multitarget domain in Section 5.1, followed by a proof classifying
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both the myopic and forecasted objectives belong to the class of submodular set functions 

in Section 5.2. The section continues with a discussion of the problem of data association 

and the situations in which it can be difficult to address in Section 5.3. Section 5.4 proposes 

the use of information entropy to avoid difficult association scenarios and details its use 

as an objective simultaneously with the myopic and forecasted divergence objectives in 

Section 4. Section 5 goes on to formally construct the optimization schemes applied to the 

sensor schedule optimization in Section 5.6 and motivates a two phase optimization method 

in which the divergence- and entropy-based quantities are optimized separately, enabling 

submodular optimization schemes to be employed in the more computationally demanding 

optimization.

Section 6 exhibits two simulation scenarios. The first is intended to analyze the 

performance of the novel divergence-based objectives against other, more conventional 

information theoretic tasking policies. In this investigation, the behavior of the measures 

can be studied from a ground-based tracking scenario. The second simulation focuses on the 

results developed in Section 5, studying the performance of the proposed objective measures 

from both a schedule quality and runtime perspective in an increasingly demanding scenario, 

beginning with linear dynamics and a single observer and culminating with nonlinear 

dynamics and two observers.

Section 7 concludes the dissertation, providing final remarks on the investigations 

performed, additional questions the research has raised, and further directions for investi­

gations to pursue.

1.5. SOME COMMENTS ON NOTATION

In the interest of clarity, this dissertation attempts to adhere to a consistent notation 

and terminology. In all of the following mathematical developments, lower case boldface 

symbols, such as x and 6, indicate that the quantity is a vector, whereas non-bold lowercase 

symbols, such as t or 5, indicate scalar values. Similarly, boldface functions, such as f  (•),
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indicate vector outputs while non-bold functions (and functionals) indicate scalar outputs, 

such as Mk l (•) (and DKL[•]). Capital boldface symbols, such as A and ^ ,  represent 

matrices.

It is frequently the case that a subscript on a variable indicates the time index at 

which the variable exists, for instance target state x k at time tk. When moving to the 

multitarget domain, a superscript in parentheses is added to indicate the particular target, 

i.e. xj^ is the state of target i at time tk. Lastly, in the event that there are also multiple 

observers, an additional subscript will precede the time index to indicate the current sensor, 

i.e. zSI denotes a measurement of target i at time tk acquired by sensor s. Due to the nature 

of some of the developments, the indices (and the symbols representing them) may change, 

but this is explicitly noted within the text.
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2. PROBABILITY AND INFORMATION THEORY

Given perfect mathematical models, absence of noise in sensor data, and full knowl­

edge of any maneuvers, tracking the position and velocity of a space object would be greatly 

simplified, as the motion of the objects would be deterministic in nature. In practice, such a 

scenario is not realizable. Sensors inherently have noise, such as thermal noise for electri­

cal sensors, interference power received by radar receivers, or errors accumulated in image 

processing for optical sensors. Models are rarely perfect, and errors due to model mismatch 

are generally present in both the dynamic and measurement models. Consequently, the 

processes that are being monitored are stochastic in nature, and in attempting to track the 

state of an RSO, it is useful to model the target state as a probabilistic quantity. This 

section covers the necessary background in probability and information theory to provide 

the foundation and context for the tools utilized throughout this work. Section 2.1 details 

modeling the target state; Section 2.2 discusses the roots of information theory and some of 

the fundamental tools that came from its development; and Section 2.3 provides the defini­

tion of information divergences and explains their initial use as well as the employment of 

the Kullback-Leibler divergence in the context of this work.

2.1. UNCERTAINTY REPRESENTATION

In order to account for the uncertainty present in tracking a target brought on by 

discrepancies between mathematical models and true behaviors as well as noisy sensors, a 

probabilistic handling of the target state and the measurement model is necessary. Through 

this treatment, the uncertainty in the true state can be incorporated in the model and noisy 

measurement data can be processed appropriately. In the single-target scenario, this is 

readily handled with basic probability theory. In the multitarget tracking case, the issue 

of maintaining target labels or target identities arises. This is ameliorated through an
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extension of probability theory to reduce the problem dependence on the specific labels, 

namely finite set statistics (FISST). This section will detail the basics of probability theory 

and its generalization to FISST.

2.1.1. Probability Theory. The recursive filtering and the information theoretic 

tools (namely entropy and divergence) employed in this work require the random mapping 

of a variable to be defined along with the corresponding event space. Given a continuous 

random vector, x, the event space for the random vector (or its support) can be defined 

as X such that x e X . For example, if the random vector of interest is defined to be the 

nx-dimensional target state, the event space is defined as the space of all real numbers of 

dimension nx, or X = Rnx. The definition of the random vector and the event space enables 

the definition of a probability density function (pdf). A pdf is a scalar mapping of the 

random vector, x, to a relative likelihood of a specific realization of the random quantity. 

More explicitly, the pdf f  : X ^  R > 0, f  (•) exhibits the following properties [85]:

f  (x ) >  0,

[  f  (x ) dx = 1.
J x

Possession of an analytic expression for the pdf of a random variable enables different 

properties of the random variable to be obtained. For instance, a fundamental definition the 

pdf affords is the expectation operator, a function that returns the value the stochastic input 

is most likely (on average) to take on; taking the expected value of a random variable, x, 

with respect to pdf f  (•) is defined as [61]

E { x } = E f  (x){ x }

(2.1)
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where the subscript f  (x ) denotes the expectation is taken with respect to pdf, f  (•). Note 

that throughout this work the pdf argument is often omitted with the understanding that the 

expectation is taken with respect to the pdf of the argument unless otherwise specified.

The variance-covariance matrix (herein denoted simply as the covariance matrix) is 

another useful piece in characterizing the behavior of the random vector, x , as it contains 

not only the variances for the nx individual components of x (located on the diagonal of the 

covariance matrix), but also the covariances between the components (located on the off- 

diagonals of the covariance matrix). The covariance matrix of a random vector is defined 

to be the second central moment of the distribution, or more explicitly as

It is important to note that a covariance matrix, n ,  is necessarily symmetric, positive
Tsemi-definite (denoted n  > 0), i.e. n  = n  and

x Tn x  > 0 .

For a scalar random variable, the standard deviation is the square root of the variance, or

Higher-order central moments for the random variable can also be computed to more

Cov {x } = E {(x -  E {x }) (x -  E {x })T} .

a  = {(x -  E {x})2} .

completely characterize the pdf. For these higher-order moments, it is typical to normalize 

them by the standard deviation, a .  For a scalar random variable x, the kth standardized 

central moment is computed according to
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where k = 3 produces the skewness and k = 4 gives the kurtosis. Higher order moments 

can be computed indefinitely, yielding more information on the behavior of the random 

event. This may be useful in data analysis when working with experimental data, but in 

many filtering applications it is often beneficial to model the sources of stochasticity (e.g. 

target state, measurement noise, process noise) through the selection of an analytic pdf. 

Different random events warrant different pdf models, but perhaps the most commonly 

employed model for a pdf is the Gaussian distribution due to its prevalence in nature and its 

usefulness in modeling events such as measurement noise.

Given random vector x e X, let p  e X denote the mean of the distribution, and let 

n e {X x X} be the covariance. The Gaussian distribution is then defined as

Pg(x ; p , n ) = |2nn |-1/2 exp j - 1 (x -  p )Tn -1(x -  p )J  , (2.2)

where | • | denotes the matrix determinant. Note that the Gaussian distribution is entirely 

characterized by its first two moments, that is to say that all that is needed to fully define 

the pdf is the mean and the covariance. This, as well as a handful of other useful properties 

exhibited by the Gaussian distribution, motivates its employment throughout this work. 

Note that the assumption ofGaussianity is not necessary for the approaches presented here; 

its selection is simply a function of its simplicity in implementation and analysis. Due to 

this fact as well as the prevalence of Gaussian densities in literature and application, the 

assumption is taken on throughout the duration of this dissertation.

The collection of these probability concepts lay the foundation for a probabilistic 

modeling of a random state or event, facilitating the modeling of the state of a single RSO 

through an expected state and associating an uncertainty in that state with a covariance 

matrix. Additionally, a similar treatment can be executed in modeling noisy sensors and
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the uncertainties brought on by the imperfect dynamic and measurement models. However, 

in order to perform this modeling for a multitarget state, new facets must be considered; a 

more appropriate choice lies in FISST.

2.1.2. Finite Set Statistics. The probability theory concepts from the previous 

section can be extended to the multitarget domain in the case that the target labels are 

known with absolute confidence. For example, consider two scalar states labeled as states 

1 and 2, x1 and x2, that are modeled as Gaussian random variables with means p 1 = 2 

and p 2 = 1, respectively, with associated variances = 4 and o |  = 1. The resulting 

multitarget pdf can be modeled simply as the joint p d f  of x1 and x2, illustrated in Figure 2.1 

with the stated labeling scheme depicted in the left plot. However, if the labels are flipped, 

the statistics would swap labels as well (i.e. p 1 = 1, p 2 = 2, = 1 and o |  = 4), and the

corresponding multitarget pdf is given on the right. What if the target labels are not known 

with any level of confidence? Rather, what if the problem is not concerned with target 

labels, but rather just the presence of targets in the space of interest? Some combination of 

the two pdfs in Figure 2.1 would have to be considered.

It is apparent from the previous example that when considering the multitarget 

problem, modeling the multiple states via random vectors is no longer appropriate if there 

is no method of maintaining awareness of the individual target identities. However, the field 

of finite set statistics (FISST) provides the framework to handle multitarget distributions 

without requiring the maintenance of target labels. Suppose L targets simultaneously exist 

in the state space X with states x (1), x (2), . . . ,  and x (L). Define an unordered set, X , such 

that

X = {x (1),x (2), . . . , x (L)J ,

where there is no explicit order, the elements simply exist within the set, and permuting 

them does not change the set. This is referred to as a random finite set (RFS), which provides 

a mathematically rigorous approach to modeling a multitarget state in which the number of 

targets is not deterministic and target labels are not necessarily pertinent to the problem at
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X1 X\

Figure 2.1. The 1-, 2-, and 3- a  intervals for a multitarget pdf. (left) The multitarget pdf 
with the correct label association. (right) The multitarget pdf with the labels exchanged.

hand. More formally, an RFS, Y, is a random variable that is realized as instantiations in 

the hyperspace of all finite subsets (including the null set) of some underlying space [57]. 

Casting the multitarget state (as well as the multitarget observations) as an RFS enables 

the target labels to be removed from the problem, allowing their collective existence in 

the state space to be maintained. This provides an option to either expend computational 

effort carrying the labels of the individual targets or to reserve computational resources by 

omitting them.

An RFS can also be described statistically with a density in a similar manner to the 

single-target problem, providing a solution to the situation in Figure 2.1 in which the labels 

of the targets are not known. Consider L single-target states, each with a corresponding 

single-target pdf s(x (k)). If these targets are said to be statistically independent (or just 

simply independent), the joint pdf is simply the product of the single-target (or marginal) 

pdfs, as

p( x <‘), x (2), . . . ,  x (L)) = n  s( xw ) .
k= 1

(2.3)
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Consequently, if it is assumed that the RFS, X , is an independent and identically distributed 

(i.i.d.) cluster process, the multitarget pdf can be represented as [57]

L
f  (X ) = L !p(L) n  s(x (k)) , (2.4)

k=1

where L is the cardinality of the RFS (e.g. the number of targets in the multitarget tracking 

example), and p(-) is the cardinality density. In contrast to p(x ) in Eq. (2.3), by operating 

on an RFS, f  (X ) in Eq. (2.4) does not directly consider the specific labels for the individual 

targets.

The factorial present in Eq. (2.4) accounts for all of the potential labeling events. 

Considering the example illustrated in Figure 2.1, it is clear to see that the multitarget pdf 

for the RFS consisting of the two targets is simply the sum of the two pdfs in Figure 2.1, 

multiplied by the cardinality as well as the cardinality density. A common choice is to 

model the cardinality density as a Poisson distribution with the corresponding pmf given as

p (L ) = L j ALe-A, (2.5)

where A is the mean and the variance of the distribution, which is commonly referred to as 

the rate parameter. Substituting Eq. (2.5) into Eq. (2.4) yields

L
f  (X ) = ALe-A n  s(x (k)) . (2.6)

k=l

Equation (2.6) is the multitarget pdf for an i.i.d. cluster process that exhibits a cardinality 

following a Poisson distribution, referred to as a Poisson RFS.

In following the development of the RFS, it becomes clear that this is an elegant 

approach to the multitarget problem, providing generalizations to several statistical tools, 

e.g. probability generating functionals as opposed to probability generating functions. 

Consequently, the first moment of the multitarget density in Eq. (2.4) for an i.i.d. cluster
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process can be generated similarly to the first moment of a single-target density via

v(x) = /  f  ({x}U  X)6X , (2.7)

where 6X  denotes a set integral, which is defined as

f  f  (x)6 X = g  . . .  S( x)d x (1) • • • d x (L). (2.8)

Equation (2.7) is the statistical first moment of the multitarget density and is referred to as 

the probability hypothesis density (PHD), the intensity function, or just simply the intensity 

of the RFS. Note that the intensity is not a pdf, as it is defined such that integrating over the 

entire support of the intensity function resolves to the expected cardinality of the set, or

A = I v (x)dx . (2.9)
JX

That is, integrating the intensity function over its support does not integrate to unity. 

Nonetheless, it is a useful representation of the multitarget state, as it provides a relative 

measure of the likelihood of a target inhabiting a particular space and provides a means 

of collecting estimates for the individual target states. For example, let n be the nearest 

integer to A, and let p (1\  p ((2), . . . ,  p ((n) be the n highest peaks in the intensity function. The 

collection of these vectors X  = {p (1), p (2), . . . , p (n)} is then a multitarget state estimate.

For the i.i.d. Poisson cluster process in Eq. (2.6), the intensity function can be found

to be

v(x) = As(x). (2.10)
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Similar to the single-target scenario, there are several advantages to leveraging the Gaussian 

distribution in modeling or approximating the intensity function for a multitarget state 

density. This is achieved via the Gaussian mixture (GM) model, as [57, 84]

n
v(x ) = ^  WkPg (x (k); p {k\ n(k)) , (2.11)

k=1

where ^ (k) and n(k) are the mean and covariance of the kth component, respectively, and 

wk > 0 is a weighting term for each Gaussian component. It is important to note that 

the mixture in Eq. (2.11) is slightly different than its employment in [4, 78] and other 

subsequent works in GM filtering methods. The difference is in the restrictions on the 

function being modeled; conventional GM representations are employed to approximate a 

non-Gaussian pdf, and as such the weights of the individual Gaussian components must 

sum to unity. However, it follows from Eqs. (2.9) and (2.11) that the weights will, in fact, 

sum to the cardinality of the set.

It is important to note, however, that the approaches detailed in this work do not 

preclude the use of GMs in approximating non-Gaussian densities. In the presented devel­

opments, each Gaussian corresponds to a single target, and consequently each of the weight 

coefficients are unity. However, the presence of the wk term enables non-Gaussian densities 

to be modeled with multiple Gaussian functions, affording a means of extending the tasking 

methodologies to non-Gaussian problems. This is not the only means of considering den­

sities outside the normal pdf, but in the developments to follow, it is straightforward to see 

how one might apply this work to a Gaussian mixture model, simply providing an avenue 

of thought. Regardless, in order to preserve a concise presentation of results, throughout 

the multitarget developments in this work, the single-target state densities are modeled with 

a single Gaussian, and all of the weights in the mixture are set to unity.
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2.2. ENTROPIES AND INFORMATION

The probability theory and FISST concepts laid out in the previous section provide 

a means of associating a level of uncertainty with a state estimate through a probabilistic 

treatment. This section details select information theoretic concepts that can be leveraged 

with these probabilistic representations and provides a reference for the developments in 

the sensor tasking sections.

2.2.1. Shannon Entropy. The field of information theory was conceived in re­

sponse to advances in communication methods, specifically in an attempt to generate a set 

of mathematical tools to appropriately handle signal processing. The field was first posited 

by Claude Shannon in his seminal work “A Mathematical Theory of Communication,” 

posing the fundamental problem of communication as one “of reproducing at one point 

either exactly or approximately a message selected at another point” [75]. This work was 

later expounded upon by Warren Weaver, unifying Shannon’s theory with previous works 

by esteemed individuals such as Ralph Hartley and Harry Nyquist and establishing the new 

field of mathematics known as information theory.

Shannon’s work approached the problem of communication by acknowledging that 

communication signals are stochastic in nature, and, as such, it is imperative to handle 

these signals as random events with some knowledge of the language or the alphabet that 

is employed in the communication. Consequently, endeavors in the field resulted in an 

array of tools capable of analyzing random events and their underlying distributions. The 

work began with a simple, fundamental element, namely the concept of information. This 

building block was derived with three intuitive properties in mind; for a random event x 

with n potential realizations x\, x2, . . . ,  xn occurring with corresponding probabilities p 1, 

p 2, . . . ,  p n, this notion of information should exhibit the following:

1. information should be a continuous function of the probability mass function (pmf; 

that is, the discrete equivalent to a pdf);
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2. if each event is equally probable, i.e. p i = n , the information should be a monotoni- 

cally increasing function of n; and

3. if a sequence of events can be decomposed into successive events, this decomposition 

should not affect the amount of information available.

The quantification of information that obeys these properties can be shown to be

n
H[p] = - k ^  pi log p i , (2.12)

i= 1

where k is a positive constant that dictates units and p i denotes the probability of event i. In 

this work, k will be taken to be unity, and the natural logarithm will be employed resulting 

in units of nats (though other options are available, such as using a base two logarithm to 

yield units of bits). Due to the similarity to thermodynamic entropy, H [•] is referred to as 

information entropy in the sense of Shannon, or just simply Shannon entropy. This concept 

is extended to the continuous domain, yielding

H[p] = -  /* p (x ) logp (x )d x , (2.13)
JX

where p(x ) is the pdf of x . To differentiate between the discrete and continuous quantities 

in Eq. (2.12) and Eq. (2.13), the latter is sometimes referred to as differential entropy. The 

terms differential entropy and entropy will be used interchangeably throughout this work 

where there is no risk of ambiguity.

Equation (2.13) provides a means of mapping the full distribution of a random 

variable to a single scalar quantity that is representative of the spread of the distribution, a 

value that can be considered as the amount of information there is to gain on the random 

quantity or the amount of uncertainty in its outcome. In the context of communication and 

signal processing, this can be interpreted as a quantification of the amount of information 

communicated or a measure of certainty in a transmitted or received message. For instance,
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when an alphabet consisting of two symbols is employed and a single symbol is transmitted, 

if the two symbols are equally likely to be transmitted, then a single bit of uncertainty is 

present, or a single bit of information has been communicated. The latter mentality is 

perhaps a more intuitive and straightforward line of reasoning, and upon first glance, the 

two perspectives may seem incompatible. It is useful to think of these as two sides of the 

same coin, with one paradigm applicable to a transmitter and the other to a receiver, or one 

frame of mind concerned with the amount of information communicated versus another 

concerned with how much information there is left to gain on an event. Once the event is 

known deterministically (i.e. the pmf or pdf is the Kronecker or Dirac delta), there is no 

longer any information to be gained on the subject, and the corresponding entropy is at its 

minimum (zero for discrete random variables or - to for continuous random variables).

When x is a target state and the pdf p (x ) describes the state density, the entropy 

indicates the volume of uncertainty (realized as a quantity proportional to the determinant 

of the covariance) associated with the target state estimate. This is an attractive measure 

to consider in the context of target tracking, as it gives a rough idea as to how useful an 

observation may be at a moment in time. Further, if the target state estimate is assumed 

Gaussian, a compact, analytic, closed-form solution is available, as

H[p] = ^ lo g  |2ne n  | ,

where n  is the covariance matrix of the pdf p(-). It is important to note that unlike the 

entropy for discrete probability spaces that quantify the randomness of a variable in an 

absolute way, differential entropy is not scale invariant. This means that the measure is 

relative to the selected coordinate system and thus computing the differential entropy in 

different coordinate systems can result in disparate quantifications [75]. For instance, given 

the linear transformation

y  =  A x ,
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where X follows any arbitrary pdf p(x) and A is an invertible matrix, the resulting difference 

in entropy is [90]

H [q] -  H[p] = log | A |,

where q(y ) is the pdf for random variable y . This implies that, regardless of the distribution, 

a linear mapping of a random variable into any other coordinate system results in a constant 

difference in entropy, namely the log of the determinant of the transformation matrix. This 

lack of scale invariance is sometimes addressed with the inclusion of a multiplication of a 

unit hypersphere as

H [p(x)] = -  /  p(x ) log (up(x)) d x ,
JX

where the density p(x) has units of u-1 and u nullifies the units so as to avoid taking the 

logarithm of a unit [71]. However, this multiplication is usually implied, and will be herein.

Shannon entropy, as defined in Eq. (2.13), cannot be used directly to describe the 

uncertainty in a multitarget system, as it is the entropy obtained from a pdf representing 

the uncertainty of a single object. When the multitarget state is modeled as an RFS X, 

Eq. (2.13) can be recast via the set integral, such that

H [ f  ] = - J  f  (X ) log (uLf  (X )) SX , (2.14)

where u-L are the units of the RFS density f  (X) and L is the cardinality of the RFS X ; 

again, the inclusion of u is for mathematical completeness, but will be implied herein. In 

the event that the RFS is assumed to be a Poisson RFS, the Shannon entropy can be shown 

to be [16, 19]

H [f] = X -  f  v(x) log {v(x)}dx 
X

(2.15)

The derivation of Eq. (2.15) is provided in Appendix A.



26

Equation (2.15) is the Shannon entropy for an RFS under the assumption that it 

is distributed according to an i.i.d. cluster process, with the further stipulation that the 

cardinality distribution is Poisson. The result shows that the entropy is composed of a 

cardinality entropy term and a spatial entropy term, though it should be noted that the spatial 

entropy term in Eq. (2.15) still contains cardinality elements through the representation of 

the intensity function. The spatial entropy term is of the exact form of the single-target 

entropy given by Eq. (2.13), but with the multitarget intensity function in place of the single­

target pdf. Thus, the spatial term will tend to exhibit the same characteristics observed with 

the single-target entropy, lending intuition to the analysis of multitarget entropy, and the 

cardinality term will cause the entropy to rise as the number of targets in the multitarget 

state increases.

Except in special cases of the intensity, such as an intensity that is Gaussian, the 

Shannon entropy of Eq. (2.15) cannot be found in closed-form. For instance, when the 

intensity is represented as a Gaussian mixture, no closed-form solution to the entropy of 

Eq. (2.15) can be found. In such situations, numerical solutions to the integral, such as 

those obtained through Monte Carlo integration, must be used.

2.2.2. Renyi Entropy. Shannon’s notion of information entropy provides a useful 

scalar quantification of the amount of uncertainty or the amount of information there is 

to be gained on the target state(s). However, it is not the only option available for such a 

measure. The definition of entropy in Eq. (2.13) was later generalized by Alfred Renyi to 

produce a family of entropy measures [15, 69]. These measures, referred to as a  entropies 

or Renyi entropy, are defined as

H (a)[p] = 1 - a l0g ( X P a(x)dx j , (2.16)
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where a  ^  1 is a parameter defined by the user. In the limit as a  approaches unity the 

Shannon entropy is recovered [69]. In addition to the Shannon entropy, other conventional 

entropy measures can be recovered [64], such as the Hartley entropy (a ^  0), the min- 

entropy (a ^  to), or a measure that is referred to as the collision entropy (a  ^  2).

Similar to the concept of extending the Shannon entropy into the multitarget domain, 

the Renyi entropy can be applied to multitarget densities by employing the set integral in 

Eq. (2.8) to Eq. (2.16), yielding

H (a)[f] = 1 — a  l0g { X -  / a  (X) ^* } • (2.17)

Just as in the single-target case, the multitarget Renyi can be shown to approach the multitar­

get Shannon entropy in Eq. (2.14) in the limit as a  approaches unity; that is, the multitarget 

Renyi entropy is a generalization of the multitarget Shannon entropy. For the sake of math­

ematical completeness, it should be noted that the naive form given in Eq. (2.17) implies 

taking the logarithm of a unit; similar to the Shannon entropy in Eq. (2.14), Eq. (2.17) 

implies the multiplication of a unit hypersphere to address this issue. If X is taken to be a 

Poisson RFS, Eq. (2.17) becomes [19]

H (a)[/ ]  = - - ^ t -  + - ^  f  va (x )dx • (2.18)
1 -  a  1 -  a  J x

The derivation of Eq. (2.18) is detailed in Appendix B.

Equation (2.18) is the Renyi entropy of order a  for an RFS under the assumption 

that it is distributed according to an i.i.d. cluster process, with the further stipulation that 

the cardinality distribution is Poisson. The result, much like the Shannon entropy, shows 

that the Renyi entropy is composed of a cardinality entropy term and a spatial entropy term, 

where it is worth noting that the spatial entropy term in Eq. (2.18) contains cardinality
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elements through the representation of the intensity function. Unlike the Shannon entropy, 

however, the spatial element of the Renyi entropy does not take on the same form as the 

single-target Renyi entropy, which can be seen by comparing Eq. (2.16) and Eq. (2.18).

In contrast to the Shannon entropy of Eq. (2.15), the Renyi entropy of Eq. (2.18) can 

be found in closed-form for certain choices of the control parameter, a, when the intensity 

function is given by Eq. (2.11). For instance, in the case of collision entropy (a  = 2), the 

Renyi entropy for a Gaussian mixture is given as [32]

H (2)[ f  ] = 2A -  f  v2(x )dx ,
JX

= 2 1  w ° - I I I  w(i)w (j )r  (̂ (i) -  v (j\  n(i) + n (j )) ] ,
i = 1 i= 1 j= 1 L

(2.19)

where

r (a, A) = |2nA| 1/2e x ^  - 1 a T A  1 a

The first term in Eq. (2.19) is the cardinality entropy and is simply given as the sum of the 

weights of the GM representation of the intensity; for a fixed number of targets, this term 

is constant. The latter term describes the spatial entropy of the multitarget state, yielding 

a relative quantification of the concentration of entropy within the multitarget state; as the 

targets come in close proximity to one another, this term gets larger, and decreases as the 

targets move apart. In this sense, the spatial Renyi entropy can be considered a relative 

measure of the level of pdf coalescence between the single-target states, or the level of 

interaction between the state estimates. This is a fact that will be leveraged in Section 5.
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2.3. INFORMATION DIVERGENCES

Generally speaking, an information divergence is a measure of the similarity (or 

dissimilarity) between two given pdfs [70]. A generic information divergence describes the 

directed distance between two pdfs p (x ) and q(x ) is denoted D[p | |q], and this “distance” is 

called a metric if [5]:

1. the quantity is non-negative, D[p||q] > 0;

2. D[p||q] = 0 necessitates p  = q;

3. the function exhibits the triangle inequality, D[p||q] < D [p ||r] + D[r ||q ]; and

4. the function is symmetric, D[p||q] = D[q||p].

Information divergences that only satisfy the first two conditions are not metrics and are 

referred to as asymmetric divergences. Satisfaction of the fourth condition necessarily 

removes the restriction of referring to the divergence as asymmetric.

This mapping of pdf distance to scalar values has proven to be useful in several 

different applications in the field of estimation, ranging from the characterization of collision 

events as in [19] to the minimization objective in the development of filters, such as 

the minimum divergence filter in [17]. The information divergence measure has been 

formulated in a variety of ways, each definition generally falling under the class of either 

f  -divergences or Bregman divergences when working with probability spaces [5]. One 

unique formulation of information divergence solely inhabits the intersection of these two 

families of discriminations -  the Kullback-Leibler divergence.

The Kullback-Leibler divergence came out of the work of Solomon Kullback and 

Richard Leibler in their efforts to expand upon the foundation of information theory set 

forth by Shannon and is a fundamental measure for describing a directed distance between 

two pdfs [51]. This measure provides a means of comparing two statistical populations in a 

mathematically rigorous manner, as it can be derived directly from the entropy definitions



30

laid out by Shannon. It is defined in term s o f the inform ation content (in the sense of 

Shannon) o f two arbitrary pdfs that exhibit absolute continuity w ith respect to one another 

(or m ore specifically are defined over the same support) [52]. Just as before x is taken to 

be the nx-dim ensional random  target state vector w hose elem ents belong to the target state 

space X . The K ullback-Leibler divergence from  q(x) to p(x) is defined as the expected 

value o f the log ratio o f the two distributions taken w ith respect to q (x ); specifically, the 

K ullback-Leibler divergence from  q(x) to p (x ) is defined as [51]

Dk l [q 11p] = j f  q(x) log P x )dx . (2.20)

D ue to the fact that this divergence m easure does not satisfy the triangle inequality nor does 

it exhibit symmetry, the K ullback-Leibler divergence is frequently referred to as a directed 

distance, even though it is not a proper distance m etric.

Equation (2.20) gives the K ullback-Leibler divergence in its m ost general form, 

though it is useful to substitute analytic densities w hen they are known. As illustrated 

previously, the differential entropy for a G aussian density has a closed-form  analytic solution, 

and so similarly does the K ullback-Leibler divergence between two G aussian densities. Let 

p(x) and q(x) be m ultivariate G aussian distributions, defined as

p(x) = pg (x ; m, P ) (2.21a)

q(x) = p g(x ; p , n ) . (2.21b)

Substitution o f p(x) and q(x) from  Eq. (2.21) into the general K ullback-Leibler divergence 

in Eq. (2.20) yields

Dk l [q ||p] = 1  [log |Pn-11 + tr {P-1 n } + (p  -  m)TP-1(p  -  m) -  nx] , (2.22)

w here tr {•} denotes the trace operator.
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A point worth noting is the composition of the divergence in Eq. (2.22). The quantity 

consists of two different components: statistical distance due to the differences in size and 

shape of the covariances, and translational statistical distance due to differences in the first 

moment of the distributions (scaled by a covariance). The translational statistical distance 

measures how far the first moment of q(x) is with respect to p (x ) (which is in the form of 

the squared Mahalanobis distance). This result enables some intuition to be established on 

the measure. For instance, given two identical covariances (P = n ) , the Kullback-Leibler 

divergence increases monotonically with the squared Mahalanobis distance (i.e. with the 

distance between the first moments m and u); conversely, if the first moments between the 

two distributions are identical (m = u), the Kullback-Leibler divergence characterizes the 

differences in the uncertainty present in the two systems. The result is a scalar measure 

that indicates how dissimilar two statistical populations or densities are, a task that can be 

difficult in spaces even as simple as three-dimensional Euclidean space and that only gets 

more difficult as spaces of higher dimensionality are considered.

One drawback to the Kullback-Leibler divergence is that it is an asymmetric di­

vergence. This does not prevent its employment in characterizing the difference between 

two pdfs, but it does imply the direction in which it is computed impacts the resulting 

quantification, as D[p ||q] might be quantifying something entirely different than D[q ||p]. 

For instance, the reverse Kullback-Leibler divergence, given by

Dk l [p||q] = 1 [log |n P -11 + tr { n -1 P } + (m -  u )Tn -1(m -  u) -  nx] , (2.23)

is clearly not equivalent to the expression in Eq. (2.22). This issue can be circumvented via 

the symmetrized Kullback-Leibler divergence, which is defined as

D s [q||p] = 2 (Dkl[q||p] + Dkl[p||q]) . (2.24)
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Substitution of the Kullback-Leibler divergence between two Gaussians in Eq. (2.22) and 

the reverse Kullback-Leibler in Eq. (2.23) into Eq. (2.24) yields

d s [q 11 p ] = 4 tr {p n -1 + n p -1} + (m -  p )T ( p -1 + n -1 (m -  p) -  2nx (2.25)

An interesting case for the symmetric Kullback-Leibler divergence is in the instance when 

the two covariances are identical. Let P  = n  = S; then, it can be shown that the symmetric 

Kullback-Leibler divergence in Eq. (2.25) becomes

Ds[p\\q] = 1 (m -  p )TS 1(m -  p ) .

Interestingly, this is one half of the squared Mahalanobis distance between either mean with 

respect to the other distribution. This is a very specialized case, and will not occur when 

using this measure as a sensor tasking objective (as the a priori and a posteriori covariances 

will never be equivalent); however, it is an illustrative case that provides some insight into 

the nature of the symmetrized Kullback-Leibler divergence.
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3. DYNAMICS AND MEASUREMENT MODELING

The previous section provides the tools for appropriately modeling a stochastic 

event, such as the position and velocity of an RSO, probabilistically. By modeling the 

target state with a pdf, the uncertainty in the true state is captured through the spread of the 

distribution, or through the covariance in a Gaussian distribution. The information entropy 

enables this spread to be quantified with a scalar measure, and the divergences enable the 

difference between different stochastic events to be measured. This section describes the 

dynamics model that govern the temporal evolution of the state estimate densities, as well 

as the sensor models used to observe the process.

3.1. DYNAMICAL MODELING

This work considers the determination of sensor tasking policies to estimate the 

state of an object that evolves according to the continuous-time dynamical system

X(i)(tk) = f  (x (i)(tk)), (3.1)

where i e { 1 ,2 ,... ,  L } are the indices for the L targets, x (i)(tk) e X c  Rnx is the state (i.e. 

position rki) and velocity v ^ ) of the ith target at time tk, and f  : X ^  X represents the 

(potentially) nonlinear dynamics of the system and is assumed to describe the dynamics 

accurately, i.e. the equation does not account for mismodeling effects. Consequently, 

Eq. (3.1) omits process noise. While this is not an appropriate assumption for every 

application, its impact on RSO tracking is relatively small. For instance, when considering 

state independent process noise, targets over common time intervals accumulate the same
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amount of process noise, affecting tasking decisions minimally. As a result, it is assumed 

that sufficient knowledge of the system dynamics is possessed and Eq. (3.1) is employed to 

consider their effects.

For conciseness, a simplification of notation will be utilized such that x ̂  = x (i)(tk). 

The following subsections give the dynamic models leveraged in this work, but it is important 

to note that the sensor tasking policies developed in Sections 4 and 5 are not limited to these 

dynamics; the following discussions are given primarily for reference for later developments 

presented in Sections 4 and 5 and for the simulations presented in Section 6.

3.1.1. Clohessy-Wiltshire Model. In the event that the sensor to be tasked is a 

space-based sensor monitoring RSOs residing in similar orbits, the relative motion of the 

targets can be tracked as opposed to their inertial positions directly. This enables relative 

motion models to be employed in the tasking scheme. When the orbit of the space- 

based sensor is circular, a commonly employed relative motion model is the Clohessy- 

Wiltshire equations [88]. For a state defined as the relative position and velocity of the form 

x Xj = [(rj!))T, ( v ^ Y ] T, the dynamics of the state are given by the linear, discrete-time, 

noiseless system

x f  = 0 ( tk, tk- 1) x j - 1, (3.2)

where 0 ( tk, tk-1) is the state transition matrix of the Clohessy-Wiltshire model, which is 

given as

^ (tk , tk- 1)
®rr <&rv

<&vr <&vv
(3.3a)

where

4 -  3 costy 0 0

®rr = 6(sin ty -  ty) 1 0 (3.3b)

0 0 cos ty
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^ r  v

<&vr

^vv

n sin n(1 -  cos ^ ) 0

n(cos ^  - 1) n(4 sin ^ -  3^ ) 0

0 0 n sin

3n sin ̂  0 0

6n(cos ^ -  1) 0 0

0 0 -n  sin ^

cos ^ 2 sin ̂  0

-2  sin ̂  -3  + 4 cos ^ 0

0 0 cos ^

(3.3c)

(3.3d)

(3.3e)

and ̂  = n(tk- tk-1), where n is the mean motion of the sensor’s orbit. Note that the Clohessy- 

Wiltshire model is only one of many available relative motion models, and is only selected 

for its linear nature, enabling simple state propagation and facilitating faster generation of 

results and thus affording accessible analysis across more optimization solutions. Other 

options for relative motion propagation are available [28, 41, 53, 79] and would apply in 

this work as well.

3.1.2. Two-Body Problem. The Clohessy-Wiltshire relative motion model pro­

vides a simple set of linear dynamics that assist in evaluating the performance of the 

proposed tasking methods; the linearity enables high-dimensional optimization problems 

(e.g. numerous targets and/or sensors) to be explored to not only assist in analyzing the 

performance of the generated sensor schedules, but also in determining the computational 

feasibility of the developed solutions. However, the more common (and more applicable) 

scenario is in generating sensor schedules for ground-based observer stations to acquire 

data on RSOs in orbit about the Earth. As such, it is necessary to consider the motion of 

the targets with respect to the Earth. For the purposes of this work, the two-body model is
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considered here, with the equations of motion given as

f  (*k")
(i)

r k)
(i)

Vk)
„ (i) K "

\Vk J . llr^ll3.

with the corresponding Jacobian

F k- i =
03x3 ^3x3

Gk-i 03x3

where I 3x3 is a 3 x 3 identity matrix, 03x3 is a 3 x 3 matrix of zeros, and

Gk-1 = -
l l r f l l 3

3(x«)2 3r« y® 3r(i) z(i) i3rk zk
ll r^ll2 ll rk°ll2 ll rk?!)ll2

,<■> 1 3(yk!))2 3y® z(l)yk k̂
ll r^ll2 ll r® ll2 ll r^ll2
3r© z(i) 3rk zk 3y(i) z(i) ^yk zk 1 3(zk!))2
ll rfll2 ll rfll2 llrfll2 J

and the scalar r ^ , (i)
yk) and z(ki)

(3.4)

position components for the ith target at time tk. Higher fidelity models can and have 

been leveraged with this work; however, employing the two-body model enables the use of 

analytic state transition matrices, such as those developed by Goodyear [30], Battin [9], and 

Der [21].

1

3.2. OBSERVER MODELING

In addition to modeling the dynamics, the process of generating measurements 

must be defined and the different facets of the measurement space, Z  Q Rnz, need to be 

considered. In this work, a measurement of target i at time tk is generated according to the 

discrete-time process

z (i)
k = *( x ?’) + vk°, (3.5)
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w here vj^ e Z  represents additive m easurem ent noise, w hich is assum ed to be zero mean, 

uncorrelated w ith the target state, and w hite w ith positive definite covariance Rk; and 

h(-) : X  ^  Z  is the (potentially) nonlinear m easurem ent function.

3.2.1. Field of View, Field of Regard, and Probability of Detection. In m any 

cases, the space in w hich a sensor can actually observe is a subset o f the m easurem ent 

space due to the geom etry of the problem ; this observable region is constrained further 

w hen considering lim itations o f the sensor. For instance, consider a ground-based observer 

station. The m easurem ent space for the sensor is likely defined on the nz-dim ensional set of 

all num bers, but only a subset that correspond to states that can be observed by the sensor, 

defined as the sensor’s fie ld o f regard. A n even sm aller portion o f the field o f regard is 

going to be observed at any given point in time, dictated by w hat the sensor can “see” at 

once, denoted as the sensor’s fie ld o f view. In this ground-based observer scenario, the 

space above the horizon is referred to as the field o f regard, w ith the field o f view being 

the portion o f the field o f regard that the sensor covers in a single observation. Since this 

w ork is focused on scheduling and anticipating sensor actions, it is assum ed that the field 

o f regard and field o f view are equivalent. This is an appropriate assum ption so long as 

constraints are placed on the sensor schedule optim ization that account for this, such as 

requiring enough tim e in betw een m easurem ents that the sensor can be redirected in the 

correct pointing direction or allow ing am ple tim e for a long exposure to be taken.

In addition to the field o f view and field o f regard, there are other aspects o f the 

actual m easurem ent acquisition to address. Sensors are inherently im perfect and operate in 

environm ents that can im pact the sensor’s ability to detect a target or fail to guarantee that 

all m easurem ents are target-generated. These issues are m odeled by defining a probability 

of detection that indicates the probability a target w ill be observed in its current state, and 

a clutter m odel that accounts for spurious m easurem ents that are not target generated. A 

com m on approach to m odeling the probability o f detection is to em ploy the “cookie cutter”
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field of view model as [58]

P d (x k ) =
0

1 target is within field of view 

otherwise

or in other words the target is detectable with unity probability when it lies within the field 

of view of the sensor and is undetectable otherwise. Measurement clutter is frequently 

modeled as uniformly distributed across the sensor field of view, with the number of returns 

following a Poisson distribution. However, for the purposes of this work, the clutter model 

does not add much in terms of the analysis of a sensor tasking policy; if one assumes a 

uniform clutter model, it has no impact on the tasking decision as each potential task is 

subject to the same clutter characteristics, and the influence other clutter model selections 

is entirely a function of the chosen model. As the focus of this work is on the objective 

measures themselves and not an exploration of modeling clutter, a clutter-free predicted 

ideal measurement set (PIMS) is assumed to be returned by the sensor. Lastly, this work 

also takes on the common assumption that at an instant in time each target can only generate 

a single measurement for a given observer, and that each measurement is generated by a 

single target.

3.2.2. Sensor Types. The aim of the analyses presented in Section 6 is not to 

only observe the decisions the sensor tasking policies make, but to determine if they are 

appropriately utilizing the measurement models and dynamics in executing the schedule 

optimization. In an effort to provide some semblance of intuition to the results, two different 

measurement models are employed in this work and are defined here for reference. Note 

that in these definitions, the target state xj  ̂ is assumed to be the target state relative to the 

observer.

3.2.2.I. Range and range rate observations. Range and range rate data can be 

acquired on a target from a variety of ways, one of the more common being through two-way 

radar range-Doppler measurements. In this implementation, a known signal is transmitted
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and reflected off of an object back to the transmitter, enabling the range to be computed 

from round-trip light-time and the range-rate determined by the frequency shift present in 

the received signal [62]. This provides range data with a level of precision dependent upon 

the size of the smallest detectable phase differences in the signal, e.g. two clock cycles if a 

code-ranging technique is implemented. The measurement model is defined as

h (x =

1

__
__

1 11____

P(i)
/ (i)\T (i)(vk))T rk)

[p k \ _ p \

with the corresponding Jacobian

H ,(i) =
(rkl))r
p(i)

pk'VlV "-Pk (rf)r )
(i)

Pk)

03
(i)T

rk_(i)
Pk

(3.6)

(3.7)

3.2.2.2. Right ascension and declination observations. Right ascension and dec­

lination data can be acquired from optical sensors, with a precision dependent upon the 

accuracy of the pointing direction of the sensor and the applied image processing techniques. 

The measurement model is defined as

h( x l0)
„ (i)
a k

1 1__
__

atan2

d*)

(i) (i)
yk ,x()

atan21 (xk,|)2 + (yki))2d'
with corresponding Jacobian

Hk(i) =
_yk_ xk_ 0 0r21 xy(i) (i)

r2xy
xk zk yk) zk) xk  yk 0

1-- 1

i? V (p 'k’f rxy (pk!))2rxy

0 0

0 0

where

(3.8)

(3.9)

rx y = xki))2 + (y(i))2.
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3.3. LINEARIZATION

In this work, the ubiquitous extended Kalman filter is employed when executing the 

sensor tasking policies [43]. This filter requires that the nonlinear models be expanded via 

a first order Taylor series in order to perform the prediction and correction stages, requiring 

the Jacobians of the nonlinear dynamics and nonlinear measurement models. In particular, 

let

F®  = F  (x ®)

H® = H  (x ®)

d f (x)
d x

d h( x)
d x

J()

JO

(3.10a)

(3.10b)

where F () is the Jacobian of the dynamics model evaluated at the target state, xk), and H® 

is the measurement model Jacobian evaluated at the target state relative to the observer. 

The Jacobians for the dynamics and measurement models in the preceding sections are 

necessary for this work. It is worth noting that the work presented in this dissertation 

does not preclude the use of other linearization methods; the choice of utilizing the first 

order Taylor series expansion is in the interest of computational burden as well the compact 

analytic solutions the approach affords.
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4. SINGLE TARGET SENSOR TASKING

The preceding section has laid out some of the basic principles to approach the 

problem of sensor tasking. The probability theory provides a framework in which states 

can be probabilistically represented, while the information theory developments provide an 

array of tools for analyzing the state estimate densities in a filter and, as it will be shown 

in this section, assist in quantifying the potential information contribution of candidate 

observation times. Before the full multitarget sensor tasking problem is considered, it 

behooves one to study the single-target scenario.

On the surface, sensor tasking when attempting to track a single target may seem 

unnecessary. If there is only a single object to observe, there is not much else for a sensor 

to be tasked with. There are a few reasons that make this problem pertinent. First, in 

handling the single-target sensor tasking problem appropriately, the object can be tracked 

sufficiently with the fewest number of measurements possible, freeing up the sensor(s) to 

perform other tasks, such as searching for new, uncatalogued objects. Additionally, from 

an academic perspective, studying a sensor tasking policy in the presence of one target 

allows the methodology to be developed more completely and enables the behavior of a 

particular approach or objective to be evaluated, providing insight as to what segments 

of the observable trajectory the solution deems information-rich and warrants occupation 

of the limited sensor resources. However, in order to begin examining this measure, it is 

necessary to have an understanding of how the measurements are processed.

In the interest of providing context to the use of information theory in sensor tasking, 

this section opens with the celebrated Kalman filter in Section 4.1, as well as a few of its 

variants that are leveraged in the subsequent developments. Section 4.2 goes on to detail 

the use of the Kullback-Leibler (KL) divergence in sensor tasking. The conventional 

employment is discussed first in Section 4.2.1, presented with a statistical analysis of the
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true KL divergence to investigate the assumptions that conventional KL sensor tasking 

requires, as well as the construction and analysis of an objective function that enables its 

use in considering sets of measurements. This is followed by the novel generalization of 

the myopic measure to a forecasted KL divergence in Section 4.2.2 along with a simple 

example illustrating the connection between the myopic and forecasted KL divergences as 

well as the differences in their performance. The section concludes with some comments 

on the optimization of the measures as well as their computation in other vector spaces.

4.1. SINGLE TARGET FILTERING APPROACHES

Consider a stochastic target state x k e X  Q Rnx composed of a position vector r k 

and a velocity vector vk defined on the state space with temporal evolution governed by the 

linear dynamical system in Eq. (3.2). In addition to the dynamical process, measurements 

are generated according to Eq. (3.5). As this section is focused on the single-target scenario, 

the superscripts denoting the target index that were maintained in the previous section are 

dropped here to simplify notation. In order to initialize the filter, it is assumed that the 

target state is given an initial mean and covariance as

mo = E {xo} , (4.1a)

Po = E {(xo -  mo)(xo -  mo)T} . (4.1b)

4.1.1. The Kalman Filter. The minimum mean square error (MMSE) filter can 

be divided into two stages: a prediction stage in which the first two moments of the state 

density are propagated through time according to the dynamics, and a correction stage in 

which a noisy measurement is processed and the first two moments of the state density are 

updated accordingly. In the case of linear dynamics and a linear measurement model, the 

resulting predictor/corrector framework is the Kalman filter [42, 43].
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4.1.1.1. Predictor. The first two moments of the target state density can be prop­

agated forward in time without the processing of observation data to generate an a priori 

or a prior state estimate density. These two moments are generated by simply taking the 

expected value of Eq. (3.2) and by computing the second central moment, as

mk = E {xk } (4.2a)

Pk = E {(xk -  m k)(xk -  m k)T} . (4.2b)

Due to the linear dynamics, the transition matrix 0 ( tk, tk_i) is deterministic; the computation 

of the a priori mean yields

m k = E {0 (tk, tk _i) xk _ i}

= ^(tk, tk _i)p k_ 1, (4.3)

where p k_1 is the a posteriori mean at the previous time step. In order to determine the a 

priori covariance, it is useful to define the state error at time tk to be

ek = x k m k , (4.4)

= 0 (tk , tk_i)xk_1 _ 0 (tk , tk_i)mk_1.

Again the linear system dynamics enables a useful simplification that allows the error at 

time tk to be represented as a propagated error from the previous time step, as

ek = ® (tk,tk_i)ek _ i. (4.5)
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Equation (4.5) can be substituted into Eq. (4.2b)

Pk = E { ekeTk} ,

= E {0(tk , tk -1)ek -iek- i ^ r (tk, tk-i)} .

Let n k-1 be the a posteriori covariance at time tk-1; the covariance propagation becomes

P k = ^ (tk, tk- i ) n k -i^ T(tk, tk -i) . (4.6)

Equations (4.3) and (4.6) together comprise the prediction stage of the Kalman filter, 

enabling the propagation of the first two moments of the state density according to the linear 

system dynamics.

4.1.1.2. Corrector. The prediction stage can be used recursively to continuously 

propagate the mean and covariance in the absence of new information. In order to process 

observations to refine the state estimate, a corrector stage must be implemented. Given an 

a priori state density with mean m k and covariance P k, consider an update that is a linear 

function of the measurement data z k, as

p k = ak + K kzk , (4.7)

where p k is defined to be the a posteriori mean, a k is a vector to be computed, and Kk is a 

matrix to be computed. Define the posterior state estimation error to be

A£k _ x k p  k .
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In the presence of linear dynamics and additive process and measurement noise, minimiza­

tion of the mean square error of the posterior state estimate is achieved via the Kalman 

update equations, given as

P k = mk + K k(zk -  z k) (4.8a)

n k = (Inx -  K kH k)Pk (4.8b)

where z k is the expected measurement, defined as

z k = h(m  k);

K k is the deterministic Kalman gain, which is defined to be

Kk = P kH Tk ( H kP kH T +  R k)- 1

= PkH Tk ( W k)- 1 ; (4.9)

and Wk is the innovation (or residual) covariance. The linear gain given in Eq. (4.9) is 

optimal in the sense of minimizing the mean square error of the state estimate. Note that 

Eq. (4.8b) requires the optimal gain; as this work employs the optimal gain, this form of 

the covariance update is used in certain developments as it provides compact, simplified 

expressions. However, this does not preclude other forms of computing the update, so long 

as the optimal gain is used.

4.1.2. The Extended Kalman Filter. Due to the nonlinear dynamics, the Kalman 

filter is not directly applicable to the problem at hand when considering two-body motion. It 

is necessary to linearize the system dynamics and employ an extended Kalman filter (EKF) 

in much of this work. The predictor of the Kalman filter in Eq. (4.8) can then be extended
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to the EKF predictor as [42]

mk = f  (u k- 1) (4.10a)

P k = 0 (tk, tk- i )n  k- 1® T (tk, tk- 1) , (4.10b)

where ^ (tk, tk- 1) is the state transition matrix that can be either approximated analytically 

if an approximation exists or propagated numerically via

^ (t,tk- 1) = r  F (x *(t))0 (t,tk- 1)d t , (4.11)
Jtk-1

where F (•) is the Jacobian of the dynamics as defined in Eq. (3.10a), x *(t) is a variable 

denoting a priori mean propagated to time t , and with the initial condition

^ (tk- 1, i-k-1) = ! nx xnx .

Similar to the prediction stage, the update stage in Eq. (4.8) becomes [42]

Uk = mk + Kk(zk -  zk ) (4.12a)

nk = Pk - PkHT(mk)KT - KkH k(mk)Pk + Kk WkK{ , (4.12b)

where zk is the expected measurement, H (•) is the Jacobian of the measurement model 

as defined in Eq. (3.10b), and Kk is the (now random) Kalman gain, defined similarly to 

Eq. (4.9) as

Kk = Pk H  (mk )T (Wk )-1. (4.13)
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The update given in Eq. (4.12b) is the covariance update for any linear gain, with the 

Kalman gain being the linear gain that (approximately) minimizes the mean square error of 

the posterior state estimate. As alluded to previously, other forms of the covariance update 

exist and afford different ways of representing the correction stage. Due to their usefulness 

in later developments, a brief discussion of some alternatives is warranted.

4.1.2.1. The information update. In the developments to follow, it is useful to 

consider the accumulation of candidate observation times and the information that they 

provide. A form of the Kalman update that is more conducive to this accumulation comes 

from the information filter and is referred to as the information form of the covariance 

update. This update is given as [81]

n - 1 = P - 1 + H  R - 1H  . (4 .14)

Note that the argument for the Jacobian Hk(•) has been dropped here to simplify notation, 

and its inclusion will be implied herein. For reasons that will be evident later in this section, 

this form of the covariance update is particularly useful when considering measurements 

from multiple sources, be it from different sensors or different points in time.

4.1.2.2. The batch update. The aforementioned forms of the Kalman filter are 

successful in recursively updating the mean and covariance as new information is acquired 

and consequently, in the presence of ample data, is robust against changes in trajectory due 

to maneuvers or perturbations as the estimate is updated in real-time. However, in order to 

better consider the impact of multiple measurements, a batch processor must be considered.

Given an observation at time tk, define a mapped measurement model Jacobian to 

be

H k = H k ̂ (tk, tref) ,
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where tref is a reference time at which a measurement taken at time tk is processed, H k 

denotes that H k is mapped in time for a single measurement, and ®(tk, tref) is the state 

transition matrix from time tref to time tk that is defined either analytically or numerically 

propagated similar to Eq. (4.11). This allows an observation at any time to be processed at an 

arbitrary time of interest, providing a means of accounting for the influence measurements 

at different points in time have on a state estimate at time tref. Further, it enables these 

influences to be considered simultaneously. Given mz measurements at times ti, t2, . . . ,  tmz, 

construct concatenated H  and R matrices as

H i HiO(ti, tref) R i 0 • • 0

H  =
H i = H20(t2, tref)

and R  =
0 Ri  • • 0

. H mz Hmz ̂ (tmz, tref) 0 0 • • Rmz

(4.15)

where R is simply a block diagonal consisting of the mz individual measurement noise 

covariance matrices; note that it is block diagonal since the measurement noise is taken 

to be uncorrelated in time. Additionally, note that this formulation does not require H ; to 

originate from the same measurement model, nor the measurement noise covariances R; to 

be constant or identical, allowing different observation sources and observation times to be 

jointly considered. The batch update for the covariance is given as [81]

n -i
ref = p ref + H  T R -1H , (4.16)

where P ref is the a priori covariance propagated to the reference time tref.
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4.2. INFORMATION DIVERGENCE AS A TASKING OBJECTIVE

With a filtering framework established, the information theoretic measures pre­

sented in Section 2 can be leveraged in developing a sensor tasking methodology. A typical 

information-based sensor tasking approach evaluates candidate observation times by con­

sidering the potential information divergence a measurement would induce between the a 

priori state estimate density and an approximate a posteriori state estimate density, provid­

ing a relative measure of the impact an observation may generate. A common selection in 

these tasking policies is the Kullback-Leibler (KL) divergence.

4.2.1. Myopic Kullback-Leibler Divergence. The KL divergence in Eq. (2.22) 

provides the most general form of the KL divergence between two Gaussians, yielding 

a directed distance between the two densities. In a filtering framework, it is common 

to employ information divergences in quantifying the distance between the a priori and 

a posteriori state densities; in doing so, the amount of information ingested by the filter 

can be quantified. Assumptions are generally made in order to employ tractable filters to 

specific target tracking problems, specifically that the measurement noise is white, zero- 

mean, additive, and is not correlated with the state. Additionally, the prior covariance and 

the measurement model Jacobian are taken to be deterministic, enabling the use of the EKF 

update given in Eqs. (4.10) and (4.12). Taking on these assumptions and relating the two 

distributions through the EKF update can provide further simplifications to Eq. (2.22) and 

provide more insight to the divergence measure as a tasking objective.

Consider the case of an object with true state at time tk defined as

Xk
rk

Vk
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where rk and vk are nf-dimensional vectors describing the target’s position and velocity, 

respectively. The target state density is taken to be Gaussian, and let p(x ) and q(x ) denote 

the a priori and a posteriori densities, defined as

p (xk ) = Pg (x k; m k, Pk) and q(xk) = Pg (x k; Pk, n k). (4.17)

The a priori mean and covariance can be partitioned as

mk =
rk

and Pk =
Prr P1 r v

i---
- ??- i__
_ P vr P1 vv

where the • notation indicates the estimated position (rk) and velocity (vk) at time tk, P rr is 

the estimated position covariance, Pvv is the estimated velocity covariance, and P rv = P^  

is the estimated position-velocity cross-covariance. Similarly, the a posteriori state density 

is also taken to be Gaussian with mean p k and covariance n k, constructed similarly as mk 

and Pk. The aforementioned assumptions enable the use of an EKF, relating the parameters 

of the two distributions in Eqs. (4.17) through the Kalman update equations in Eqs. (4.12).

Substitution of the densities in Eq. (4.17) and utilizing the EKF update equations in 

Eqs. (4.12), the KL divergence describing the strength of an update can be expressed in the 

form

d kl [q11 P] = 2 log | Pk (n k )-11 + tr{ (Pk )-1n k}

+ (zk -  h(m k))TKT(Pk) 1 Kk(zk -  h(m k)) -  nx (4.18)

This compact expression allows the impact of an observation on the state estimate density 

to be computed, simultaneously considering the measurement model and the uncertainty 

in the state estimate itself. Note that the first two terms are entirely concerned with the 

uncertainties present in both state estimate densities.
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Consider the logarithmic term in Eq. (4.18); this term can be expressed instead as 

the difference of the logarithm of their respective determinants, as

2 log | P k (n k )-11 = 2 log | P k | - 1 log | n k | ,

or equivalently,

2 log |Pk(nk) 11 = 2 log |2nePk | -  1 log |2neU k | ,

H [ p \-  H [q\ .

Evidently, the first term in Eq. (4.18) accounts for the entropy reduction from the a priori 

density to the a posteriori density, a primary element of concern for the sensor tasking 

scheme. However, from Eq. (2.20), the KL divergence is constructed of more than the 

volumetric uncertainty reduction.

Consider the second term of Eq. (4.18) coupled with the subtraction of the dimension 

of the state; utilizing Eq. (4.12b) and the cyclic permutation property of the trace operator, 

this can be represented as

2 (ir {P - 1n k} -  »., ) = 1  (tr {P - 1 ( /»,  -  KkHk) P k} -  « ,)

= -  2  tr {Kk H k} . (4.19)

While the exact interpretation of Eq. (4.19) may be difficult to decipher, there are some 

observations to be made. By the definition of the KL divergence, this must be a portion 

of the cross-entropy between the two state estimate densities, specifically the portion that 

is independent of the translational shift induced by the observation z k (i.e. the third term 

in Eq. (4.18)). It is evident that the matrix remaining in the trace operator in Eq. (4.19) 

is the matrix responsible for manipulating the a priori uncertainty. This trace results in a 

non-negative value, as it is the sum of the eigenvalues of the product of the Kalman gain
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and the measurement model Jacobian; these eigenvalues are necessarily non-negative, as 

the product of two matrices is positive semi-definite. Specifically, through the definition of 

the Kalman gain given in Eq. (4.9), this product can be expressed as

KkHk = PkH f  (Wk)-1 H k ,

where Wk is the innovation (or residual) covariance as in Eq. (4.9). If R k is assumed to be 

positive definite, then Wk > 0 as is its inverse, and Hf ( Wk)-1 Hk is positive semi-definite 

(denoted Hf  (Wk)-1 Hk > 0). Since Pk is taken to be positive definite, the product Kk Hk 

will consist of non-negative eigenvalues and tr {KkHk } > 0.

At this point it is useful to consider two reductive schematic scenarios for illustrative 

purposes: (i) the case in which the mean remains stationary after processing z k and no 

uncertainty contraction occurs and (ii) the case in which the mean remains stationary and 

the uncertainty is morphed or altered in some way other than a pure rotation that preserves 

its volume but changes its container. Case (i) is a very limited case, as

Inx -  Kk Hk = n k P-1 ,

and since the two covariance matrices are real positive definite matrices, their product is 

also be real positive definite [40]. If a rotation matrix is real and positive definite, it must 

correspond to a rotation that is an integer multiple of a complete rotation. Consequently, 

the trace is simply equal to the dimension nx , which will result in a zero net contribution 

to the divergence, an intuitive result, as rotations of this nature will effectively leave the 

uncertainty unchanged.

As for Case (ii), a volume preserving transformation necessarily has a determinant 

equal to unity, but has no such constraint on the trace. As previously mentioned, the matrix 

within the trace in Eq. (4.19) has non-negative eigenvalues; consequently, Eq. (4.19) is less 

than or equal to zero, with equality only when the sum of the eigenvalues is zero. Since the
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eigenvalues of the product of the Kalman gain and the measurement model Jacobian has non­

negative eigenvalues, the equality case corresponds to the scenario in which KkH k = 0. This 

implies that, by the formal definition of information, in the absence of translational motion 

of the first moment of the densities any volume-preserving alterations to the uncertainty 

will result this term reducing the divergence.

4.2.1.1. Statistical analysis. The expression in Eq. (4.18) produces a quantification 

of the strength of an update, providing a complete and mathematically rigorous character­

ization of the information absorbed through the acquisition of an observation under the 

stated assumptions. By relating the a priori and a posteriori densities through a Kalman 

update, much of the KL divergence definition in Eq. (4.18) is deterministic, resulting in a 

term dealing explicitly with the covariance reduction and a leaving a single stochastic term, 

namely the translational element of the update that moves the mean. This statistical distance 

is quadratic in the measurement residual, defined as

y k = z k -  h (m k) . (4.20)

Considering the a priori pdf is taken to be Gaussian and the measurement is assumed to be 

Gaussian distributed about the truth, the measurement residual is also Gaussian distributed 

as

jk  -  Pg(yk ; °  Wk) .

This is a useful result, as it is well-known that the quadratic form of an n-dimensional 

zero-mean normal random variable a is chi-square distributed, i.e.

aTA-1 a -  p x2 (aTA-1 a; n ) ,

where A is the covariance matrix of a and the tilde notation denotes the quantity is distributed 

according to a chi-square density of n degrees of freedom. While the stochastic term in 

Eq. (4.18) is nearly in this form, the matrix KTP-1 Kk is not the residual covariance.
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However, it is possible to apply a generalization of the theorem that a quadratic form of a 

set of normal random variables is distributed according to a chi-square distribution [7, 76]. 

To accomplish this, first define the stochastic quantity ^k as

f t  = A  K  p -  Kk y k . (4.21)

Consider a nz x  nz non-singular matrix M k that satisfies the conditions

m T Wk Mk = Inz and M Tk K Tk P -1 K  M k = A k,

where Ak is a diagonal matrix consisting of the eigenvalues corresponding to the eigen­

vectors of M k; more specifically, M k and Ak are constructed from the s distinct solutions 

(namely, the eigenvalues Aj and the associated eigenvectors vj) of the equation

KT P -1 Kk Wk vj = Ai vj for i = 1 ,2 ,. . . ,  s . (4.22)

By the definition of covariance matrices and the update provided by the EKF, it is 

guaranteed that the covariance matrices P k and Wk are symmetric, positive definite; thus 

the matrix K jP -1 Kk is symmetric, positive semi-definite. Leveraging this fact, the product 

of the two matrices K ^P-1 Kk and Wk has the eigendecomposition

s
K f P -1 Kk Wk = £  AjEj, 0 < Aj e R , (4.23)

i=1

where the Ai are the s distinct solutions to Eq. (4.22),

Ej = M -tBj M Tt ,
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and B i is the nz x  nz matrix consisting of a single nonzero entry of 1 where Ak has element 

Ai. Using this eigendecomposition, the distribution of the stochastic quantity in Eq. (4.21) 

can be expressed as a sum of chi-square distributed random variables as [7]

P(^k) = p
s

n (4.24)

where y i follows a chi-square distribution with ri degrees of freedom and ri is the rank 

of matrix E i. Specifically, the quantity £k is distributed identically to a weighted sum of 

central chi-square random variables. It is important to note that the zero-mean measurement 

residual produces these central chi-square components; if the mean is nonzero (i.e. if there 

is a bias present in the measurement residuals), the y i are non-central chi-square distributed. 

Substituting Eq. (4.21) into Eq. (4.18) and leveraging the covariance update in Eq. (4.12b), 

it can be shown that

d kl [q 11 P] = 2 [& log |Inx -  KkHk | -  tr {KkHk } ] (4.25)

i.e. the KL divergence is distributed as a mean-shifted weighted sum of chi-square random 

variables.

If the chi-square distributed random variables on the right-hand side of Eq. (4.24) 

are independent, their sum is also chi-square distributed. This requires the matrix on the 

left-hand side of Eq. (4.23) to be idempotent [31], which can be easily shown to be false 

by contradiction when Kk is the Kalman gain; assume the a priori covariance and the 

measurement model to be identity (Pk = H k = I nx). The left-hand side of Eq. (4.23)

becomes

K l  P -1 Kk Wk = (Wk )- 1 . (4.26)
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For the matrix in Eq. (4.26) to be idempotent, it must be case that multiplication with itself 

does not change the matrix, i.e. the product of the inverse innovation covariance matrix 

with itself yields the inverse innovation covariance. Clearly this is not the case, and while 

this is a contrived example, it is straightforward to verify numerically in other instances in 

which Pk, H k ^  I nx that this holds true. Even if the y  are assumed independent, an analytic 

closed-form solution for the distribution of a weighted sum of chi-square random variables 

is not available, though if desirable, different numerical approaches exist for solving for the 

distribution [11, 13, 26, 63, 77]. However, in many instances, it may be desirable or 

more appropriate to instead approximate the value of the KL divergence in the Kalman filter 

rather than the full distribution itself. This is frequently done through expectation hedging, 

or computing the first moment of the divergence [58].

4.2.I.2. Conventional employment. The result in Eq. (4.25) illustrates that the 

directed distance between a priori and a posteriori pdfs can be decomposed into a sum of 

at most nz chi-square random variables plus a constant offset [33], implying that for scalar 

measurements the quantity is necessarily non-central chi-square distributed. Further analy­

sis illustrates utilization of the first moment of Eq. (4.18) can be sufficient in approximating 

the KL divergence for vector measurements in a Kalman filter [33]; use of this first moment 

has been accepted as the conventional approach when utilizing information divergences, 

and has been shown to be effective in sensor tasking applications [20, 27, 49, 50]. This first 

moment, oftentimes referred to as the information gain, can be computed from Eq. (4.18) 

by taking its expected value with respect to the measurement pdf, p (zk), giving

Mkl (tk) = J  Dkl [q ||p]p(zk )dz k

= 1 lo g  |Pk( n k)-11, (4.27)
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where Z  c  Rnz is the nz-dimensional measurement domain and the argument tk denotes the 

time at which measurement z k is acquired and processed to update the prior covariance P k 

to obtain the posterior covariance n k; note that while the time argument does not explicitly 

appear in Eq. (4.27), the notation is employed to clarify the mathematical developments in 

this work. Notice that this is identical to the first term in Eq. (4.18); specifically, Eq. (4.27) 

is exactly the difference in the entropies of the two densities. Additionally, note that this is 

equivalent to the mutual information [3].

Equation (4.27) gives the expected KL divergence between the a priori and a 

posteriori state densities in a Kalman filter assuming the state densities are modeled as 

Gaussians, providing a scalar measure of the impact an observation has on the target 

state estimate at the measurement time. Note that the first moment of the KL divergence 

in Eq. (4.18) averages out the information contribution brought on by the cross-entropy 

between the two distributions and leaves just a quantification of the entropic differences, 

a facet that increases its attractiveness as a sensor tasking objective. Due to the emphasis 

on uncertainty reduction at the observation time, this approach is referred to here as a 

“myopic” sensor tasking objective; however, the use of the word “myopic” is not intended 

to imply poor performance, but to signify the quantification of the uncertainty reduction at 

one moment in time rather than a downstream (or upstream) time. Use of the first moment of 

the KL divergence has been studied and shown to perform well as a maximization objective 

in sensor tasking routines [20, 33].

Similar to Eq. (4.18), the expression in Eq. (4.27) illustrates the benefits of utiliza­

tion of the first moment of the KL divergence. The measure encapsulates the effects due to 

the employed measurement model of processing an observation at time tk while remaining 

focused on uncertainty reduction, as it is defined based on the ratio of the a priori and 

a posteriori covariances. Consequently, larger reductions in the determinant of the state 

estimate covariance are realized as larger values of expected information divergence mea­

sures between the two pdfs. This formulation is particularly useful, as it is not necessary



58

to task a sensor and generate a measurement for its computation, enabling measurements 

of potentially differing type and quality to be compared on equal footing, even if they are 

acquired from different observer locations, without the need to actually task a sensor. This 

comparison is valid so long as the potential observations being compared occur at a common 

time tk.

As previously stated, the first moment of the KL divergence has been utilized in 

many applications and has proven to be a successful sensor tasking objective. However, in 

the current formulation, there is no straightforward way to consider the impact of multiple 

measurements on the expected divergence; the individual contributions of mz measurements 

can be accumulated, but this is an ad hoc approach -  the information is not necessarily 

additive in that way, suggesting that the resulting quantity is a step removed from what 

it is intending to portray. Furthermore, there are instances of undesirable behavior or 

characteristics that should be addressed.

For instance, consider the case where the measurement noise covariance is inde­

pendent of the target state and constant through time. For a non-conservative dynamical 

system in which the state estimate uncertainty grows in time, the result is that a larger KL 

divergence first moment is obtained the longer an observation acquisition is delayed. This 

tendency is referred to here as the “wait and see” mentality, and while it is not necessarily 

an incorrect policy under which to operate, it is undesirable for autonomous scheduling, as 

it will always suggest to delay tasking decisions until the final possible observation time. 

Similarly, in conservative systems, the entropy is preserved as the determinant of the co­

variance remains constant [83]. In some instances this results in the uncertainties present 

to move into different channels of the state in a periodic manner, yielding periodic optimal 

observation times. Again, while not necessarily incorrect, these times are maximizing the 

information expected to be gained at the instant of the observation and do not necessarily 

reflect how the observation might impact the uncertainty at a later time. This does not assist 

in scheduling other observations either before or after the fact. It is of interest to develop an
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approach that avoids this trivial scheduling solution of waiting in some non-conservative 

systems, and enable the scheduling in both non-conservative and conservative systems in 

such a way that the impact each measurement in a set will have on one another is considered.

Additionally, computation of the first moment of the KL divergence at each potential 

measurement time prevents even-keeled comparisons between different observation options. 

Consider the scenario in which two observers have the ability to take measurements of an 

object; the first observer provides higher quality data (i.e. has a lower measurement noise 

covariance), but the second observer is can afford an additional measurement and can take 

these observations later in the trajectory, as is illustrated in Figure 4.1. If it is desirable to 

keep one of the observers tasked with the acquisition of other target observations, which 

sensor should be tasked with observing the current target? The former generally provides 

a better state estimate due to the preferable measurement noise characteristics, while the 

latter allows the uncertainties to propagate longer, potentially resulting in the aforementioned 

“wait and see” behavior. In short, comparing the potential strength of the updates provided 

by each sensor results in the divergences being computed at different observation times, 

thus the comparison does not accurately portray the relative impact each update has. In 

scenarios like these, previous work has suggested that selecting a reference time at which 

to compare information gains can help mitigate this while more explicitly considering the 

dynamics at play in the tasking problem [35].

4.2.I.3. Objective function formulation. Equation (4.27) provides a relative mea­

sure of the expected uncertainty reduction achieved in ingesting a measurement without the 

need to task the sensor, enabling its use as a sensor tasking objective for a single mea­

surement time. In order to leverage this measure for observation sets, rather than consider 

the individual contributions of each measurement sequentially, the first moment of the KL 

divergence must be accumulated over time. Consider again a single-target tracking scenario 

and let Z = (h i , . . . ,  hm} be a set of m strictly increasing measurement time indices (i.e. z hk 

is the measurement acquired of the target state at time thk). A sensor tasking optimization
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t3

Figure 4.1. A target following along its nominal trajectory (dashed black line) with two 
observation sets originating from two (potentially) different sensor locations; one consisting 
of three measurements (green) generated according to measurement model Ha(x ), the other 
consisting of four measurements (gold) and generated according to measurement model 
He (x ).

leveraging the expected KL divergence given in Eq. (4.27) is defined as

max J(Z) = max ^  Mkl (tg)
Z Z Set

= mtax 1 y  lo g 1 Pg ng11, (4.28)
Z 2 Set

where J(-) is the objective function to be maximized through the selection of the decision 

variables in Z d

xNote that in treating this as a conventional continuous optimization problem, this would be achieved 
through optimizing the individual measurement times tgt . Representing these decision variables as measure­
ment time indices aids in providing a consistent notation, as this formulation is leveraged in some mathematical 
developments in Section 5.
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It is beneficial from both an analysis perspective as well as for developments pre­

sented in Section 5 to further analyze the myopic KL objective. From the properties of 

logarithms and determinants, the cost function appearing in Eq. (4.28) can be expressed as

J  (Z) = 2 log n-'i\ SeZ

= 2 log ( |PS' |  • in * '|- ' • |P s2| • |n s 21-' • • • IPsmI • in sm|- (4.29)'

Expanding Eq. (4.28) as in Eq. (4.29) is useful in a couple of different ways. For instance, 

if state transition matrices are leveraged in the covariance propagation as in Eq. (4.10b) and 

assuming no process noise, each of the inner a posteriori and a priori covariance pairs in 

Eq. (4.29) can be represented as

| n *k | ' • |P *k+'| = | n *k| ' • \®(t*k+', t*k) n *k (t*k+' , t*k)|

= |0(t*k+', t*k)|2 . (4.30)

Equation (4.30) and the properties of state transition matrices can be used to simplify 

Eq. (4.29) as

J(Z) = ' l o g  ( |P*| | • | n*m |- ' • |0 (t*m, t*' ) |^  . (4.31)

Furthermore, if the dynamics governing the temporal evolution of the system are conserva­

tive, the volume of uncertainty is preserved as it propagates forward in time; this is due to 

the fact that state transition matrices for conservative dynamics are volume preserving or, 

more explicitly, exhibit a unity determinant as

|0 (a, b)| = ' , (4.32)
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for all times a and b. Consequently, the determinant of two covariance matrices are 

equivalent so long as an update has not occurred. Since the set of observation time 

indices are monotonically increasing, it must be the case that | n k | = | P k+i | (and similarly 

|Po| = |Ps11). This implies the objective given in Eq. (4.31) can be simplified even further 

to

J  (Z) = 2 log K  n-11 . (4.33)

Under the assumptions of noiseless, conservative dynamics, and assuming the Kalman 

update in Eq. (4.12b) is employed, it can be shown that

|n | = | Po \ Y [ \  Inx -  H SK S | . (4.34)
SeZ

Utilizing the constant volume of uncertainty in the propagation and Eq. (4.34), Eq. (4.33) 

can be expressed as

J(Z) = -  2 log n  \ Inx -  H K  \
SeZ

=  - 1  V  log \Inx -  H 5K 5\ . (4.35)
2 SeZ

Equation (4.35) provides some insight as to what the original objective function is 

quantifying; the original definition in Eq. (4.28) indicates that the measure is simply a sum 

of expected information divergences computed at different times (from potentially different 

observers), whereas Eq. (4.35) illustrates that it is in fact a sum of the log-determinants of 

the reduction matrices obtained from processing the observations taken at the times dictated 

by the indices in Z. Unfortunately, Eq. (4.35) still depends on the intermediate a priori 

covariances P S to compute the corresponding Kalman gains KS. This can be alleviated 

and a more practical form is obtained if the information form of the covariance update in 

Eq. (4.14) is utilized.
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Recursively substituting the information update of Eq. (4.14), the a posteriori co­

variance in Eq. (4.34) can be shown to be

n -i
Sm to)Po®T (tSm, to)) 1 + Y j (t* {Sm )H j R - 1H S 0 ( tS, tSm )

SeZ

® (tSm’ to)Po^T (tSm ’ t0)) + Y  S(tS’ tSm ) >
SeZ

(4.36)

where S(tS, tSm) is a matrix mapping the information provided at time tS to the final mea­

surement time tSm. Equation (4.36) allows Eq. (4.33) to be represented as a function of 

the measurement noise covariance, measurement model Jacobian, state transition matrices 

evaluated along a nominal trajectory, and an initial covariance as

J  (Z) d  log1 P o \

+ log ^ (tSm> t0)P0 ^ T(tSm> t0)j + Y  S(tS’ tSm)
SeZ

(4.37)

It is worth noting that the latter determinant in Eq. (4.37) is simply the inverse of 

the a posteriori covariance if a batch update is applied, processing the entire measurement 

set at the final measurement time. This shows the objective function in Eq. (4.37) is the 

difference in the volume of uncertainty at the initial time t0 and the volume of uncertainty 

after the measurement set has been processed. As such, the accumulated myopic KL 

divergence approach provides an appropriate quantification of the information provided by 

the full observation set, since it is comprised of the overall reduction in uncertainty in 

the state density when processing all of the measurements as compared to just unobserved 

propagation. Lastly, leveraging the conservative dynamics enables the covariance in the 

first logarithmic term to be mapped to the final measurement time tSm. Execution of this
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mapping and through the properties of logarithms, Eq. (4.37) is simplified to

J  (Z) = 2 log !nx + P6m^  * (tS, tSm )
SeZ

(4.38)

where PSm is the initial covariance propagated to the final measurement time tSm.

4.2.2. Forecasted Kullback-Leibler Divergence. As alluded to previously, one 

common issue that arises in the use of information divergences to measure the strength of 

measurements is that they tend to prioritize large prior uncertainties. Given observations 

of the same quality over time, the measurement with the largest strength tends to occur 

when the prior uncertainty is the largest. When the uncertainty grows over time, this leads 

to a “wait and see” structure that prioritizes measurements late in the trajectory that can 

possibly permit loss of track custody [33]. Additionally, this measure does not allow for 

a straightforward comparison when considering two potential observation sets. Consider 

again the simple schematic scenario in Figure 4.1, in which two sensor schedules are 

considered. One observer (Sensor A) generates measurements according to measurement 

model hA( )  and is located at position rA, while the other (Sensor B) is located at rA and 

generates measurements according to a (potentially) different measurement model hB(-). 

Sensor A can observe the target over the first half of the trajectory and can afford to take 

three observations (labeled in green) at the beginning, middle, and end of the first half of 

the plotted trajectory, while Sensor B can afford an additional measurement, but can only 

allocate them to the second half of the trajectory (labeled in gold). When employing the 

myopic KL divergence as an objective, how do these two sets compare? Is it fair to compare 

potential information gained at two different times? Is it worth considering that the sets 

consist of different numbers of measurements?

These questions are addressed and the “wait and see” structure is ameliorated 

by extending the information divergence approach to a set of multiple observations that 

can also be processed at a common, and more instructive, time [35]. In contrast to the
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accumulated myopic measure in Eq. (4.28) in which a “reference time” is dictated by 

the final measurement time, an extension is carried out by selecting a time at which it is 

desirable to have a robust state estimate as a reference point at which to determine the 

impact a particular observation may have, e.g. before a target leaves the field of view or 

prior to the next maneuver in a trajectory.

4.2.2.I. Development. For the schematic toy problem illustrated in Figure 4.1, 

consider mapping the information contributions from Sensor A to a common reference time 

as in Figure 4.2. Computing the measure in this way provides a more direct comparison 

when considering measurement sets of differing qualities or different lengths. Recall the 

concatenated matrices constructed in Eq. (4.15) for use in the batch form of the covariance 

update in Eq. (4.16). By utilizing this form, it is possible to accumulate the potential infor­

mation contribution from a set of measurements, which facilitates a means of “forecasting” 

the information to a time of interest. Leveraging this update, the expected KL divergence 

between the a  p r io r i  and a  p o s te r io r i densities at the reference time tref is found to be

MkL(t ) = 2 log |Prefn- f | , (4.39)

where the argument (t ) denotes the set of times in which the measurements that are processed 

in the update are acquired, P ref is the a  p r io r i  state estimate covariance propagated to 

reference time tref in accordance with Eq. (4.10b), and n ref is the a  p o s te r io r i state estimate 

covariance given the batch covariance update of Eq. (4.16). Note that the overbar notation 

in Eq. (4.39) denotes that the first moment of the KL divergence is mapped or “forecasted” 

to the reference time. An alternative for computing the a  p o s te r io r i covariance is to use a 

form akin to the update in Eq. (4.8) as

nref = (Inx ~ K H  )Pref , (4.40)
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Figure 4.2. An illustration of mapping the measurement set information to a reference 
time t f  for the Sensor A measurement set; note the arcs accompanying the state transition 
matrices illustrate their mappings from time tk to their respective measurement times.

where K is the Kalman gain for the collected set of measurements, i.e.

K  = PrefHT (H PrefHT + R )-1 .

This proposed method is the exact formulation for batch processing measurements 

at a fixed time [81], but by taking this approach, the concatenated matrices in Eq. (4.15) can 

be used to evaluate the selected objective function for an arbitrary number of measurements, 

taken at arbitrary times, with any number of observation types exhibiting potentially different 

qualities or characteristics. Further, in the case of a single measurement, it is straightforward 

to show that in the absence of process noise the covariance in Eq. (4.40) can be expressed 

as a mapping of an a posteriori covariance computed at time tk mapped to the reference 

time, i.e.

n ref _ ^ (tk, tref)n k^ (tk, tref) . (4.41)
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Substitution of Eq. (4.41) into Eq. (4.39) yields

Mkl (tk) = ^  log I Pref(nref) 11

2 log ^ (tref, tk)Pk ^  (tref, tk) [ ^ (tref, tk) n k ^  (tref, tk^ (4.42)

which collapses down to the myopic approach given in Eq. (4.27). This implies that given 

Eq. (4.40), the forecasted KL divergence for a single measurement in a linear (or linearized) 

system is essentially the mapping of the uncertainties at the measurement time to a reference 

time, an intuitive and comforting result, even though it implies the “wait and see” behavior 

persists in this “forecasted” approach in the case of single observation tasking. As a 

result, the forecasted objective in this scenario can be thought of as a generalization of 

the myopic approach and justifies the utilization of the first moment of the KL divergence 

when comparing single measurements, as it shows comparing two MKL scores at different 

times is identical to comparing their corresponding MKL scores. However, the bulk of this 

formulation’s power lies in its ability to handle sets of observation.

The expression in Eq. (4.39) yields a tractable solution for the proposed sensor 

tasking objective; however, it requires the construction of the measurement model Jacobian, 

the reference a priori covariance, and the computation of the Kalman gain. Alternatively, 

a more implementation-friendly approach utilizes the information form of the update, as in 

Eq. (4.14), yielding a first moment of the KL divergence of

M k l (t) = 2 log IInx + PrefHTR - 1H I . (4.43)
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4.2.2.2. Objective function formulation. Similar to the myopic objective, the 

forecasted KL divergence objective function can be defined for the set of measurement time 

indices Z = {S1, . . . , 6 m} to be [34, 35]

max J(Z) = max Mk l (Z) = max 2 log |Prefn-J | , (4.44)
Z Z Z 2

where the overbar notation indicates the measure is forecasted to a reference time tref; Pref 

is the a priori covariance propagated to the reference time, which is computed as

Pref = ^(tref> t0)P0^ (/ref, t0) ; (4.45)

and nref is the a posteriori state estimate covariance computed at time tref, with a batch 

information update as in Eq. (4.16).

The forecasted KL divergence objective function describes the expected KL diver­

gence between the a priori and a posteriori state densities at an arbitrary reference time. The 

primary benefits of this formulation are natural support for multiple observations through 

simple concatenations of the matrices in Eq. (4.15) and the ability for a user to select the 

reference time of interest. Interestingly, by substituting Eqs. (4.16), (4.15), and (4.45) into 

Eq. (4.44), it can be shown that the forecasted KL measure becomes

J(Z) = 2 log |Inx + PrefHTR -1 H | , (4.46)

which is equivalent to the myopic KL divergence objective when tref = tgm, connecting the 

forecasted KL to the conventional myopic KL objective and justifying the accumulation of 

the expected divergence measures over time.

4.2.2.3. Comparison to myopic. In order to observe the similarities and differences 

between the myopic and forecasted divergence objective functions, consider the scenario 

in which a ground-based observer is tasked with observing a single object in a circular
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Figure 4.3. The myopic and forecasted KL divergence objective when scheduling a single 
measurement for a ground-based sensor, with the optimal measurement time denoted with 
an x.

orbit. This sensor is capable of acquiring a range and range-rate measurement according 
to Eq. (3.6) at any point over an hour-long time interval. As shown previously, the myopic 
and forecasted measures are equivalent when considering a single measurement time, and 
consequently will agree on the optimal measurement time. This is observed in Figure
4.3, which depicts the objective functions (both the myopic and forecasted expected KL 
divergence in Eq. (4.38) and Eq. (4.46)) evaluated over the hour-long time interval (plotted 
in blue) with the optimal measurement time at approximately 500 seconds marked with an 
x.

When a second measurement is considered, the purely myopic approach still high­
lights the same portion of the trajectory, scheduling the second observation immediately 
following the first. When defining the final observable time as the reference time, however, 
the forecasted measure determines that an observation at the beginning of the trajectory 
coupled with a measurement at roughly 1700 seconds yields a far more confident (i.e. less



70

-15

-20
,c

O h

g
cw -25

-30

------  Myopic
------  Forecasted

500 1000 1500 2000
Time [sec]

2500 3000 3500

Figure 4.4. The entropy of the state estimate pdf when the myopic and forecasted schedules 
are processed by an EKF.

0

uncertain) state estimate at the end of the time interval. To evaluate the differences between 

the two schedules, an EKF is employed in tracking the target over the course of the hour; 

the filter is run once executing the myopic schedule, and a second time with the forecasted 

schedule. The resulting entropy in the state estimate density for the two schedules is shown 

in Figure 4.4. Note that the two successive measurements in the myopic schedule occur 

around 505 seconds and are successful in minimizing the uncertainty at that time step when 

compared to the forecasted schedule. However, the initial reduction in uncertainty brought 

on by the first measurement in the forecasted schedule enables a much more significant 

entropy reduction when the second measurement is processed as compared to the second 

myopic measurement, providing a much more confident (i.e. less uncertain) state estimate 

at the end of the time interval.

It may seem counterintuitive that mapping the information to the final reference 

time results in neglecting the measurement times that are suggested by the myopic measure. 

However this is the benefit of utilizing the forecasted measure; naturally accounting for the
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Figure 4.5. The entropy of the state estimate pdf with the optimal forecasted schedule and 
the two mixed schedules.

two measurement times simultaneously enables their respective information contributions 

to be coordinated, providing the state estimate with the smallest uncertainty at the final 

reference time. To better illustrate this, two new schedules are considered; one is composed 

of the first measurement time from the myopic schedule and the second measurement time 

of the forecasted, and the other composed of the first measurement time from the forecasted 

schedule and the second from the myopic schedule. These new schedules are constructed 

with the idea that if the trajectory is particularly information-rich around the 500 second 

mark, perhaps there are benefits to observing the target here along with a measurement time 

from the forecasted schedule. However, as illustrated by Figure 4.5, this is not the case; 

since the two non-optimal schedules do not benefit from coordinating the selection of the 

two measurement times simultaneously, the resulting entropy for the state estimate pdf falls 

short of matching the performance of the optimal forecasted schedule.
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4.2.3. Optimization Considerations. The optimization of Eqs. (4.28) and (4.44) 

will be discussed in further detail in Section 5.6; however, it is useful at this point to address 

the obvious fact that the schedules generated from the optimization are heavily dependent 

upon the initialization of the optimization method, as several local maxima can exist on the 

surface (as can be see, for example, in Figure 4.3). Different initialization approaches are 

available based on the desired performance, such as a multi-start approach performing mstart 

random initializations and further refining the best performing set, yielding a fast but not 

necessarily robust solution for small mstart or for a large number of measurements. A more 

robust (and more computationally taxing) approach can be achieved by computing a coarse 

approximation of the hypersurface generated by the objective function by constructing a 

collection of candidate observation sets that is representative of the different geometries an 

observation set can possess. Each of these candidate sets are then evaluated to determine 

which candidate provides the most information, and that set is then further refined through 

a more appropriate optimization technique.

This coarse approach better avoids lower quality solutions as opposed to generating 

random observation sets. Of course, this requires solving for the target state at a discrete set 

of candidate observation times (as well as the state transition matrix from these observation 

times to the reference times in the case of the forecasted measure) and evaluating the 

objective for each measurement combination, a task that can be very demanding from a 

computational standpoint. For instance, the optimization of a set of mz measurements can 

be initialized using mz,c candidate observation times, but requires mz,c-choose-mz function 

evaluations to determine the highest performing initialization. The number of candidate 

times can be increased in an effort to improve the initial candidate set; however, it is 

clear that the number of function evaluations increases combinatorially as more candidate 

observation times are considered. As such, it behooves a user to take steps to generate 

candidate observation sets in an appropriate manner such that they provide good coverage 

over the mz-dimensional hypersurface. In many problems, this could be as simple as
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generating mz,c candidate observation times that are evenly spaced over a time interval and 

then taking all possible combinations of the candidate times, subject to the constraints that 

t\ < t2 < ••• < tmz. The problem at hand, however, considers orbit tracking, resulting in 

dynamics that do not necessarily provide evenly-spaced target states when spacing them 

evenly in time and thus generating candidate times that will not yield a very representative 

set.

This issue of sampling points in time that are spaced by a constant time interval of 

At becomes apparent when the eccentricity of an orbit increases, as the object spends more 

time at apogee and generates more observation times, and conversely at perigee. To address 

this, it is useful to perform a Sundman transformation to enable integration with respect to 

an anomaly angle as opposed to time, given as [72]

dt = rdO,

where ^  is the gravitational parameter, r  is the distance of the object from the central body, 

and O is referred to as a universal anomaly. Note that this is not the only form of the Sundman 

transformation, and in literature the gravitational parameter is often omitted to allow support 

for repulsive forces as well [73]. Since it is of interest here to have the universal anomaly 

be only a function of orbit geometry, this term is included here. This provides a simple 

way to generate a set of states separated by fixed angles on the ecliptic plane for an object 

undergoing Keplerian motion, resulting in a set much more representative of the geometry 

of the overall orbit. The Sundman based sampling is compared to the constant At sampling 

in Figure 4.6; note that the oversampling at apogee present with the constant At is reduced 

by applying the Sundman transformation and sampling with a constant AO.

If the trajectory to be observed is sampled mz,c times (i.e. the target state and state 

transition matrix for mz,c times are computed) and mz measurements are to be allocated over 

the observation window, there are mz,c-choose-mz objective function evaluations performed



74

Figure 4.6. An eccentric orbit sampled evenly across time (left) or across the universal 
anomaly (right) with units of Earth radii (ER).

to obtain the coarse solution. From the resulting objective evaluations, the set that produces 

the maximal forecasted KL divergence measure is used to initialize a fast optimization 

routine in optimizing Eq. (4.44). Constraints on the individual measurements can also be 

specified (e.g. if the j th element of the observation set t is selected to be initialized as 

tj = Tk, then the search region in that dimension can be limited to the interval between its 

neighboring candidate times (i.e. Tk-1 < tjj < Tk+1) if the user chooses.

4.2.4. Computation in Other Spaces. A final note on the divergence measure in 

question concerns the vector space in which it is computed. All of the developments up 

to this point have defined the state space as simply position and velocity space, as the 

estimated state has thus been an estimated position and velocity. However, computation 

of the divergence-based cost function (both the myopic and forecasted implementations) 

is not limited to position and velocity estimates; applications in which updates provide 

information on other estimated parameters (e.g. sensor biases, misalignments, or other 

corruption parameters) can also benefit from these tasking policies. Further, although the 

form in Eq. (4.43) is defined on the a priori and a posteriori pdfs as they exist in the state
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space, nothing is limiting its application to that space. It can easily be computed in any 

space deemed appropriate and of interest by the user. For instance, covariance scaling can 

be utilized to address condition number issues [12]; or the divergence can be computed in a 

different space such as the measurement domain, focusing more on the target’s uncertainty 

in the measurement domain rather than the estimate as it exists in the state space.

This divergence can be computed in the measurement domain by revisiting Eq. (2.22) 

and utilizing the a priori and a posteriori measurement pdfs, as

p(z k ) = Pg(z k ; h (m k ), Wk) and q(zk) = Pg(z k ; h (p k),Hk), (4.47)

where Wk and H k are the a priori innovation and a posteriori residual covariances. Com­

puting the KL divergence between the pdfs in Eq. (4.47) yields

zd kl [q || p] = ^  log |Wk (Hk )-11 + tr {(Wk )-1Hk } •••

+ (h (p k) -  h (m k ))T(Wk)-1(h (p k) -  h (m k )) -  nz j , (4.48)

where the z pre-subscript on the left hand side of Eq. (4.48) indicates that the KL divergence 

is computed in the measurement space Z .  Recalling H k is the measurement model Jacobian 

evaluated at the mean m k allows h (p k) to be expanded in a first order Taylor series expansion 

as

h (p k) ^  h(m k) + Hk(p k -  m k ) . (4.49)

Substitution of Eq. (4.49) into Eq. (4.48) yields

zDkl [q || p] = ^ |lo g  |Wk (Hk )-11 + tr {(Wk )-1Hk } ••• (4.50)

+ (p k -  mk)TH t (Wk) 1 Hk(p k -  mk) -  n j  , (4.51)
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The mean update of the EKF in Eq. (4.12a) can be used to substitute for the a posteriori 

mean p k in Eq. (4.51), as

zDkl [q || p] = 2 log \W k (H )- 11 + tr {(Wk )- 1Hk } •••

+ tr {(zk -  h (m k ))TKjH j (Wk)- 1 H kK k(zk -  h (m k ))} -  nz

where the trace operator is introduced to leverage the fact that it remains constant under 

cyclic permutations; note that the term within the trace is a scalar, enabling the trace operator 

to be applied.

Just as before, taking the expected value with respect to the prior measurement 

likelihood p (zk) will give the desired objective; assuming the prior covariance P k and the 

measurement model Jacobian Hk are deterministic, this expectation can be expressed as

zMkl = log\Wk (Hk )-1 \ + tr {(Wk )-1H k } + tr j Kj H j (Wk )-1 Hk Kk •••

J ^ (zk -  h(m k)) (zk -  h(m k))Tp(zk )dzkj -  n ^  . (4.52)

Realizing the remaining integral is the a priori innovation covariance and leveraging the 

Kalman gain in Eq. (4.9), the third term in the expression can be manipulated to be

trj Kj Hj (Wk )-1 Hk Kk (z  k - h (m  k)) (z k - h( mk ))T p(z  k )dzk

= tr {K j Hj(Wk)-1 HkPkHj} . (4.53)

Similarly, the second trace term of Eq. (4.52) can be simplified through the definition of the 

a posteriori residual covariance H k and the covariance update in Eq. (4.12b), as

tr{ (Wk )-1 n k }  = tr{ (Wk )-1(Hk n k Hj + R  k)}
= tr {(Wk )-1(Hk [Inx - Kk Hk ]Pk Hj + Rk)} . (4.54)
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Substituting the definition of the Kalman gain from Eq. (4.9) into Eq. (4.54) yields

trj(W k)-1(Hk [Inx -  K kH k] P kHj +  R k)J
= tr {(Wk)-1 HkPkHT -  (Wk)-1 HkPkHT(Wk)-1 HkPkHj + (Wk)-1 Rk} . (4.55)

Further, from the definition of the a priori  residual covariance, HkPkHj = Wk -  R k. 

Leveraging this fact and the Kalman gain in Eq. (4.9) once again in Eq. (4.55) gives

trj (Wk )-1 Hk Pk Hj -  (Wk )-1 Hk Pk Hj (Wk )-1 Hk Pk Hj + (Wk )-1 R kj

= tr {I -  Kj Hj (Wk )-1 Hk Pk Hj }
= nz -  tr {Kj Hj (Wk )-1 Hk Pk Hj } . (4.56)

Finally, substitution of Eqs. (4.53) and (4.56) into Eq. (4.52) results in

zMkl = 1log |Wk (Hk )-1| ,  (4.57)

a form akin to Eq. (4.27). This enables a new perspective on the utilization of information 

divergence by computing it in a different space and also permits the use of state transition 

matrices to generate an analogous forecasted measure zMKL.
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5. MULTITARGET SENSOR TASKING

In maximizing the expected KL divergence, either via the myopic or the forecasted 

approach, an information-rich measurement set is likely to be returned when optimizing over 

the objective function so long as appropriate constraints are defined and the initialization 

is handled in an appropriate manner (e.g. leveraging a multistart algorithm). The concepts 

from the previous section can be extended to the multitarget domain in a straightforward 

manner when the targets are independent and not coordinating, with most of the effort 

involved in handling the optimization (a process that is detailed further in Section 5.6). 

However, in approaching the problem of sensor tasking in the presence of multiple targets, 

other facets must be considered when arriving at a solution. One of the more glaring 

problems introduced in the multitarget tracking domain is that of data association, or the 

task of discerning the target from which a particular measurement originated. Failure to 

properly associate data prior to processing measurements can lead to a variety of behaviors 

that are detrimental to filter performance and can result in filter divergence, for example 

track coalescence or label swapping.

This section begins with a brief extension of the information divergence objectives 

given in Section 4 into the multitarget domain in Section 5.1 with a submodular analysis 

presented subsequently in Section 5.2. This is followed by a discussion of the problem of 

data association in Section 5.3 and a simple approach to performing data association when 

processing measurements. Section 5.4 concludes the section with a detailed employment of 

information entropies in characterizing potential collisions in the measurement space, illus­

trating their connection to difficult data association scenarios and enabling such situations 

to be avoided when the collision entropy is considered as a minimization objective.
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5.1. MULTITARGET DIVERGENCE EXTENSION

Application of the divergence-based measures in Section 4 in a multitarget environ­

ment is straightforward when the observer(s) under consideration is (are) being tasked with 

maintaining i.i.d. target state estimates. Due to their independence, the observation of one 

target does not impact the estimate of another, and thus the divergences can be computed 

independently [36]. To be more explicit, the resulting multitarget extension of the myopic 

KL for L targets is defined as an accumulation of the single-target evaluations of Eq. (4.28) 

as L
J ( Z ) * £  J (Z<0) ' (5-1)

i=1

where the script notation J ( - )  denotes the objective is computed for a multitarget state, 

Z(i) is the vector of measurement time indices for the ith target, and the argument Z is the 

collection of the L measurement time index vectors for each target.

A similar treatment can be given to the forecasted KL divergence. Leveraging the 

single-target objective in Eq. (4.44), the multitarget extension is defined as

L
J ( Z ) * X  J<Z(i)) . (5.2)

i= 1

Equations (5.1) and (5.2) provide myopic and forecasted approaches that can be used to 

maximizing the information provided by a set of observations over multiple targets. Max­

imization of these functions yields sensor schedules that exploit the advantages of the 

prescribed divergence measure and provides an appropriate objective when the targets are 

sufficiently separated. As the dimension of the input arguments increases (e.g. with the 

number of observers to consider, the number of targets to track, or the number of measure­

ments to schedule), the optimization becomes cumbersome, warranting an exploration into 

how the optimization is approached.
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5.2. SUBMODULAR FUNCTION ANALYSIS

The optimization of an arbitrary function is, in general, NP-hard [65], though certain 

classes of objective functions admit polynomial-time solutions, such as many classes of con­

vex objective functions [68]. Unfortunately, objective measures based on the expectation- 

hedged KL divergence as continuous functions of time are not convex functions, in general. 

Alternatively, if the function is redefined as a set function that operates on a discrete set of 

observations, the measures exhibit diminishing returns, a property of submodular set func­

tions (or simply submodular functions). A function f  (Z), Z C Z, is said to be submodular 

if either of the following equivalent conditions holds true [67]:

f(Z i) + f(Z 2) > f(Z i U Z2) + f(Z i n  Z2) VZ1,Z2 c  Z

f  (Zi U {T}) -  f  (Zi) > f  (Z2 U {T}) -  f  (Z2) VZi C Z2 C Z, Vt e Z\Z2 . (5.3)

Similar to convex optimization, submodular optimization presents several useful properties 

that can be leveraged when selecting an optimizer [55].

5.2.1. Myopic Kullback-Leibler. In order to prove the single-target myopic objec­

tive in Eq. (4.28) is a submodular set function, it must be true that it exhibits the property 

of diminishing returns, as defined in Eq. (5.3). To illustrate this, define two measurement 

sets Zi and Z2 consisting of monotonically increasing measurement time indices, such that 

Zi C Z2 C Z. Define t as a measurement time index not contained in either measurement 

set, i.e. t e Z\Z2. The objective can be computed for the union of the measurement set Zi 

and the additional measurement t according to Eq. (4.37) as

J(Zi U {t }) =
1
2

/
log | P o | + log P-ifziU{T} + “0̂  tfZiu{T}) + ^  a ( t S, tfZiu{t}) I 

SeZi )
(5.4)
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where f a u{T} = max(Zi U {t }) is the index corresponding to the last observation time. 

Solving the objective for solely the set Z1 as in Eq. (4.37) and subtracting from Eq. (5.4) 

yields the left hand side of Eq. (5.3) as

J  (Z1 u {t } ) -  j  (Z i) = -  log Pf u{t } + a(tT’ tfi u {t }) + S  “(ts’ tfZi u {t })
SeZi

-  log f  + S  S(ts’ tfzi)
SeZi

(5.5)

where fZi is the greatest measurement time index in set Zi . The right hand side of Eq. (5.3) 

can be computed following the same procedure for measurement set Z-. It is immediately 

apparent that Eq. (5.5) is dependent upon when the additional measurement occurs relative 

to the end of the measurement set, as the propagation of the a priori covariance in the first 

determinant depends on this time. As a result, there are three cases to consider in order 

prove that the function is submodular: i) tT < tSf , ii) tSf > tT > tSf , and iii) tT > tSf .fai fa2 f i fZ2
In Case i (i.e. the additional measurement tT occurs prior to the final measurement 

of the smaller observation set, tT < tSf ), Eq. (5.5) becomesJCi l

J(Zi U{t } ) -  J(Zi) = 2 log Inx + a(tT, tfzi ) P5 -1f(i + Y j S(tS’ tfzi)
SeZi

(5.6)

l

and similarly for observation set Z2. Assuming R k > 0, then it must be the case that 

S(ts, tf(i), S(ts, tfz2) > 0. It follows that

Y  S(ts’ tfzi)
SeZ1

<
Y  S(tS’ f  2 )
SeZ-

(5.7)
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since the summation over Z2 will have at least as many elements as Z1, and adding additional 

positive semi-definite matrices cannot lower the determinant of the resulting matrix. More 

rigorously, if matrices A, B  > 0, then by Minkowski’s inequality [59]

| A + B | > |  A| + | B | > |  A |,

and since Z1 C Z2, Eq. (5.7) must be true. Following this same logic, it is easy to show that

Pf(i a (tT, tf( 1 M I nx + Pfzi ^  a(t5, )]
1

SeZ 1
> • • •

PfZ2 a ( t r , tfz2 M Inx + Pff2 X  “ (ts, tf(2)
' SeZ2 '

1
(5.8)

By Eq. (5.6), it is clear that to prove submodularity for Case i) it must be the case that

Inx + PfZ1 a(tr , tf(1 ) (Inx + Pf(1 ^  “ fe, tf(1 )
-1

SeZ1
>

I nx + P fZ2 “(tT, tfZ2 ̂  I nx + P fZ2 X  “(tS, t f 2 )' SeZ2 '
(5.9)

1

Unfortunately, Minkowski’s inequality is not applicable to Eq. (5.9). Instead, let 

d (1),i = 1 , . . . , nx be the nx eigenvalues of the matrix within the determinant on the left 

hand side of Eq. (5.8), and d (2),i = 1 , . . . , nx be the nx eigenvalues of matrix in the 

determinant on the right hand side of Eq. (5.9). For a matrix A, if A is an eigenvalue of 

A and f  (x) is a polynomial, then f  (A) is an eigenvalue of f  (A) [40]. As a result, it can 

be shown that A(1) + 1, i = 1 , . . . , nx are the eigenvalues of the left hand side matrix of 

Eq. (5.9), and similarly A( ) + 1, i = 1 , . . . , nx are the eigenvalues of the right hand side 

matrix. Consequently, Eq. (5.9) can be shown to be true by representing the determinants
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in Eq. (5.8) as the product of their respective eigenvalues, or

n^n 4
j =i

(2) (5.10)
i= 1

where Eq. (5.10) is Eq. (5.9) represented as eigenvalue products. A similar representation 

of Eq. (5.10) is

+ 1)^  f t ( ^ f  + 1), (5.11)
i=1 j=1

Since Eq. (5.10) is true, Eq. (5.11) must also be true. Thus, the property of diminishing 

returns is true for the case in which the additional measurement occurs prior to the end of 

the observation set consisting of fewer measurements (i.e. before the end of set Zi).

In Case ii (i.e. the additional measurement tT occurs prior to the final measurement 

of the larger observation set but following the final measurement of the observation set 

consisting of fewer measurements Z1 such that tSf < tT < tSf ), it is the case thatJ i J2

/ZiU{r} = T and fZ2U{r} = fZ2 . (5.12)

Reflecting the relationships in Eq. (5.12), Eq. (5.5) can be expressed as

J (Zi u {t } ) -  J (Zi) = 2  log P t +  0(tT, tT) +  ̂̂  ^‘(t5, tT)
SeZi

log
f  + Z S(ts, / )

SeZi
(5.13)

for the set consisting of fewer measurements Zi and

J(Z2 U {t } ) -  J(Z2) = 2  log
t  \ - i

Inx + a ( t T, t/z2 ) P t 2 + Z  S(ts, t/Z2 ) l
 ̂ SeZ2 /
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for the set consisting of more measurements Z2- The differences in Eq. (5.13) that prevent 

the expression from being simplified to Eq. (5.6) are subtle, but prevent the proof from 

being executed similarly to Case i. Due to the volume-preserving properties of conservative 

dynamics given in Eq. (4.32), time mappings can be employed to show that the property of 

diminishing returns holds for this case (as well as for Case iii), but the necessary application 

is not immediately apparent. To complete this proof, it is useful to consider the forecasted 

objective measure, as it reveals the mappings that must occur to prove the inequality.

5.2.2. Forecasted Kullback-Leibler. To prove the submodularity of the forecasted 

objective, it must be shown that the objective exhibits the property of diminishing returns, 

as defined in Eq. (5.3). As before, define two measurement sets Zi and Z2 consisting 

of monotonically increasing measurement time indices, such that Z1 Q Z2 £  Z, define 

t as a measurement time index not contained in either measurement set, i.e. t e Z\Z2, 

and additionally select a reference time tref that occurs after all possible measurements, 

effectively dictating a finite time horizon. The objective can be computed for the union of 

the measurement set Z1 and the additional measurement t according to Eq. (4.46) as

J(Zi u  {t }) = 2  log

2 iog

nx

Inx

+ Pref ^   ̂ a (ts, tref)
SeZiU{t}

+ P refa(tT, tref) + P ref ^   ̂ a (ts, tref) .
SeZi

(5.14)

Just as in the myopic case, Eq. (4.46) can be solved for the measurement set Z1 and subtracted 

from Eq. (5.14) to yield the left hand side of Eq. (5.3) to be

J(Zi u {t } ) -  J (Zi) = 2  log Inx + P ref^(tT, trefM Inx + P ref ^   ̂ ^ (tS, tref) I
SeZi

(5.15)
i

and the right hand side of Eq. (5.3) can be solved similarly for Z2. By selecting a refer­

ence time after all of the candidate observation times, the ambiguity present in the myopic 

objective function is lifted, and the only necessary condition to prove to ensure submod­
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ularity is that Eq. (5.15) is greater than the same quantity evaluated for measurement set 

Z2. Further, note that Eq. (5.15) is of the exact same form as Eq. (5.6) with a different time 

mapping. As a result, the same procedure as in Eqs. (5.7)-(5.11) can be followed to show 

that the forecasted objective and consequently its multitarget extension are submodular. 

Additionally, this same approach can be used to show that Cases ii and iii for the myopic 

objective function also hold true, and thus the myopic single- and multitarget formulations 

are submodular as well.

The fact that the objective functions in Eqs. (4.28), (4.44), (5.1), and (5.2) all belong 

to the class of submodular set functions makes several different submodular optimization 

schemes available when generating optimal schedules. These schemes afford approximate 

optimal results to be attained in feasible runtimes when considering problems of higher 

dimension, providing appropriate schedules in the event that the targets to be tracked are 

sufficiently separated. However, as the targets come into close proximity of one another, 

associating the acquired measurements becomes a more pressing issue. As such, the 

problem of data association warrants consideration in the sensor tasking policy.

5.3. DATA ASSOCIATION

The problem of data association in itself is a field of a substantial quantity of 

research, with methods ranging in complexity from solutions as simple as global nearest 

neighbors [8] to something as sophisticated as multi-hypothesis tracking [10]. In order to 

illustrate the issues that can arise when considering potentially imperfect data association, 

consider the simple scenario in which two targets are approaching each other in some space. 

It is of interest to be able to mathematically approximate when a conjunction may occur, 

as the sensor schedule should depend on it; for instance, in some applications it may be 

desirable to take observations of conjunction events if they occur in the state space, or it 

may be best to avoid the conjunction time if it is occurring in the measurement space to 

avoid misassociations. The 1-^ uncertainty intervals of two targets are plotted at each time



86

Figure 5.1. The 1 - a  intervals for the two targets centered on their respective means and 
plotted at each time step in the state space.

step in the space of interest in Figure 5.1. Clearly, the two targets come into close proximity 

of one another, but when does the conjunction occur exactly? At what point do the two 

state estimate densities “collide,” and when does this “collision” cease?

A multitude of solutions is available in the field of conjunction analysis, and again 

these solutions exhibit an array of differing complexities. One approach in particular that 

has received some attention recently in conjunction analysis and has been frequently used in 

data association solutions is via gating the squared Mahalanobis distance [19]. The squared 

Mahalanobis distance of a target xj^ with respect to its state estimate density p(xj^) is then 

defined to be [56]

d2 (5.16)

where and P (i) are the mean and covariance of the ith target state estimate density.
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It is well known that when the distribution at hand is Gaussian, the squared Ma- 

halanobis distance follows a chi-square distribution, characterized by a single parameter 

known as the degree-of-freedom. The degree-of-freedom in the squared Mahalanobis dis­

tance distribution is simply the dimension of the random vector. As such, it follows that the 

distribution of Eq. (5.16) is

p (d2) = p x2(d2; nx).

Possession of the true density for this distance is particularly useful in data association, as 

it enables a probability gate to be defined, or a threshold with some statistical meaning. 

If a filter should accept P  percent of measurements it receives on a particular target, an 

associated threshold y  can be determined and employed to either accept or reject processing 

a measurement.

For example, for the case of 2 degrees-of-freedom, a P  = 99.99% acceptance 

probability would result in a squared Mahalanobis distance threshold of y  « 18.421. This 

threshold can be applied with a few different objectives in mind. If evaluating potential state 

space collisions is of interest, a new random variable can be defined to be the difference in 

the Cartesian position between the two states, enabling the squared Mahalanobis distance 

threshold to be applied to that random variable [19]. Employing this thresholding in 

data association applications requires the computation of the statistical distance between a 

received measurement and the distribution of a target projected into the measurement space; 

this statistical distance is then used to determine if the measurement should be associated 

to the target. In assessing scenarios in which data association might be difficult, it is 

useful to examine the statistical distance between the expected measurement of one target 

and the distribution of another target, or for the example given in Figure 5.1, the squared 

Mahalanobis distance between the expected measurement of Target 2 with respect to the 

distribution of Target 1.
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Figure 5.2. The squared Mahalanobis distance of the expected measurement generated by 
Target 2 with respect to the measurement density for Target 1.

This can be seen for the two targets depicted in Figure 5.2, with the squared Ma- 
halanobis distance of the expected measurement generated by Target 2 with respect to the 
measurement density of Target 1 computed and shown in blue and the 99.99% threshold 
denoted by the black dashed line. The result illustrates that if an observation of Target 2 
is taken around roughly 300 seconds, the data association is at risk of misassociating the 
observation, potentially processing the generated measurement as an observation of Target 
1. While this visually illustrates when a measurement should be avoided, the measure 
becomes more difficult to employ in the presence of more targets without the necessity of 
considering each pairwise Mahalanobis distance. Fortunately, information entropies can 
provide an alternative approach to evaluating conjunctions.
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5.4. ENTROPY CONSIDERATION

As illustrated by Figure 5.2, the use of a statistical distance in addressing the problem 

of data association becomes difficult in the presence of multiple targets, and issues can arise 

when the targets come in close proximity to one another. This section details the employment 

of information entropies in considering these issues when generating a sensor schedule.

5.4.1. Shannon Entropy. Recall the notion of entropy in the sense of Shannon 

presented in Section 2. Equation (2.13) provides a means of mapping the full distribution of 

a random vector to a single scalar quantity that is representative of the spread of the density, 

a value that can be considered the amount of information there is to gain on the random 

quantity or the volume of uncertainty in its outcome. In the context of communication and 

signal processing, entropy is interpreted as a quantification of the amount of information 

communicated or a measure of certainty in a transmitted or received message.

Another mentality for entropy measures is to think of it as a relative concentration of 

uncertainty for different target arrangements. More specifically, smaller entropies indicate 

a more highly concentrated or more highly localized uncertainty. To illustrate this, consider 

the schematic representation given in Figure 5.3, where the time history for one-, two- 

and three-sigma intervals for three objects are depicted as ellipses. Initially at time t\, the 

three objects are distinctly separated. As time progresses, differing levels of interactions 

occur between different combinations of the three objects. During these interactions, the 

concentration of uncertainty is increasing at these points of interaction, illustrating that the 

points of high concentration indicate pdf coalescence.

Revisiting the example given in Figure 5.1, the entropy of the entire multitarget 

system is at a minimum when the two object densities are at a maximal coalescence, 

providing a relative measure of a “level” of conjunction in their vector space. Unfortunately, 

Shannon entropy, as defined in Eq. (2.13), cannot be used to describe the level of interaction 

between multiple objects, as it is the entropy obtained from a pdf representing the uncertainty 

of a single object. Augmenting the state as a concatenation of the individual target states
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also does not work; when the objects are independent, it is straightforward to show that the 
entropy of the distribution for the augmented state is equal to the sum of the entropies of the 
distribution of the individual objects. In essence, this extension to the multitarget domain 
omits the interactions between individual objects, entirely neglecting collisions.

Object #1 Object #2 Object #3

Figure 5.3. A simple example of the interaction of three targets.

When the multitarget state is taken to be an i.i.d. Poisson RFS X, with the intensity 
function modeled as a Gaussian mixture, Eq. (2.15) provides the multitarget differential 
entropy, realized as the difference between the expected number of targets and a spatial 
entropy term that is a function of its intensity function. As mentioned previously, this spatial 
entropy is identical to that of the single-target Shannon entropy but with the multitarget 
intensity in place of the single-target pdf, lending a sense of intuition for its behavior, 
whereas the cardinality term provides an offset for the entropy based on the expected 
number of targets in the system.

5.4.2. Renyi Entropy. The measure given in Eq. (2.15) cannot be computed in 
closed form when the system is modeled as a Gaussian mixture, but it can be approximated 
by omitting multitarget interactions and simply considering the entropy introduced by the 
cardinality of the system and the individual spatial entropies. This is useful for analyzing
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performance in tracking multiple targets, but cannot be directly leveraged when analyzing 

collisions. Fortunately, this is not the case for the Shannon entropy generalization, namely 

the Renyi entropy.

Again, taking on the assumption that the multitarget system is an i.i.d. Poisson 

cluster process, the Renyi entropy can be expressed as a function of the rate parameter, X, 

and the intensity function, v(x), as in Eq. (2.17). Just as with the Shannon entropy computed 

under identical assumptions, the Renyi entropy in Eq. (2.17) exhibits a cardinality term and 

a spatial entropy term that is a function of the RFS intensity. Unlike the Shannon entropy, 

however, the spatial element of the Renyi entropy does not take on the same form as the 

single-target Renyi entropy, which can be seen by comparing Eq. (2.16) and Eq. (2.17).

Recall that, for an i.i.d. Poisson RFS with its intensity modeled as a Gaussian 

mixture, the collision entropy (i.e. a  = 2) affords the closed-form solution in Eq. (2.19). 

This expression illustrates that the collision entropy of the Gaussian mixture model is 

comprised of a cardinality entropy and a spatial component, much like the multitarget 

Shannon entropy. The cardinality term is given simply as the sum of the weights of 

the Gaussian components within the mixture; thus, for a known and constant number 

of targets, this portion of the entropy is constant. The spatial component, or the double 

summation in Eq. (2.19), contains information that describes the level of interaction between 

multiple targets, a facet of interest when attempting to avoid observing collisions in the 

measurement space. From Eq. (2.19), the spatial element of the Renyi entropy computed 

in the measurement space is given as [19]

HS(®> - I I
=t j =1

r (z f - m 't), Wf + W k ))-,(j)
l k (5.17)
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where 0 is the collection of parameters that defines the GM representation of the intensity

Equation (5.17) provides a relative measure of pdf coalescence between all targets 
within the multitarget state. This quantity facilitates a comparison of different observation 
times from a data association standpoint, mitigating risky association scenarios by avoiding 
observations at times in which it is difficult to distinguish between targets. Equation (5.17) 
has been employed previously in analyzing potential conjunction events in the state space in 
an attempt to detect time intervals of physical collisions [19] and is used in a similar fashion 
here to avoid observation times that exhibit relatively difficult data association scenarios.

A further specialization to Eq. (5.17) can be made at a computational expense in the 
form of an increase in the number of optimizations required to obtain an optimal schedule. 
The coalescence between each individual target and the multitarget state can be represented 
through L function evaluations and omitting the outer sum in Eq. (5.17). Specifically, the 
interaction of target i with the rest of the multitarget state at time tk can be computed as

The single-target spatial entropy given in Eq. (5.18) is attractive as it avoids the scenario in 
which a measurement time for target i is rescheduled (or not considered) due to collisions 
happening elsewhere in the multitarget state, though the appropriateness of its use is depen­
dent upon the architecture of the sensor tasking framework. If one intends to simultaneously 
maximize the expected information gain and minimize collisions in the measurement do­
main, Eq. (5.18) is not applicable, as it would result in multiple outputs for the objective

for which the spatial entropy is computed (i.e. 0 = {w(i), z(i), W (i)}iL1) and recall

L
(5.18)
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function. However, if other solutions are considered that enable each of the L single-target 

spatial entropies to be considered, the measurement schedules for each individual target can 

be optimized against its own collision measure.

5.5. OBJECTIVE FUNCTION FORMULATION

The preceding sections have outlined two different measures that 1) quantify the 

expected amount of information provided by a measurement set and 2) provide a relative 

measure indicating measurement times that could (potentially) generate risks in data as­

sociation. When used in tandem, special considerations must be taken since the two are 

measuring different facets of the tasking problem in different units. In order to simultane­

ously consider them in an optimizer, some attention must be given to formulating a formal 

objective function in a way such that the two measures are relatively evenly weighted.

Define an objective function as

O(t) = l i t) + n(t), (5.19)

where i(-) is a term related to the expected information gain and n(•) is related to the spatial 

entropy. An intuitive means of making sure neither the expected information gain nor the 

spatial entropy consistently dominates the other is to bound each of their contributions by 

0 and 1. If upper and lower bounds on the terms can be acquired, this sort of normalization 

can be attained. With regard to the expected KL divergence, it is clear from Eq. (4.18) that 

the lower bound for the myopic KL divergence for a single target is

D- = 1 (log |Pkn - 11 + tr {P -1 n k} -  n*) , (5.20)



94

with the lower bound for the forecasted KL divergence being a straightforward extension. 

Additionally, as discussed in Section 4.2.1.1, a statistical distribution for the KL diver­

gence can be acquired if the individual channels of the measurement are assumed to be 

uncorrelated, or alternatively if they are made to be independent [12] the measure can be 

expressed as the sum of a deterministic bias and a chi-square distributed random variable 

as in Eq. (4.25).

Equation (4.25) demonstrates that the KL divergence does not have a finite upper 

bound. Since the stochastic contributor to the quantity is chi-square distributed, it is possible 

to account for a P-quantile event to be the “upper bound” on the measure. For instance, 

similar to gating the squared Mahalanobis distance, if a measurement event resulting in 

99.99% of the information that can be gained (i.e. continuously sampling the chi-square 

distribution would result in a smaller update 99.99% of the time), then the “upper bound” on 

the expected information gain on a two-dimensional measurement is dictated by a threshold 

of y  « 18.421, and the resulting threshold for the KL divergence is computed as

D+ = 2 (log |Pkn - 11 + tr {P - 1n k} + Y -  «*) . (5.21)

The “bounds” in Eqs. (5.20) and (5.21) can then be used to “normalize” the expected 

information gain terms and accumulate them over the measurement set to yield

i(z) = £
m kl its) -  D- 

D+ -  D -
(5.22)

Unfortunately, for the forecasted divergence measure the stochastic contributor to the mea­

sure is not, in general, exactly chi-square distributed; correlations are accumulated within 

this quantity as entire measurement sets are examined simultaneously. These correlations
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tend to have small effect, and thus assuming independence between measurements and 

following a similar approach yields a fair approximation as

T(Z) =
Mkl (Z) -  D-ef

D +  -  D~frei rei

where D “ f and Dr"ef are computed according to Eqs. (5.20) and (5.21) but with the prior 

covariance propagated to the reference time according to Eq. (4.6) and posterior covariance 

updated at the reference time updated according to Eq. (4.16).

Fortunately, the coalescence, or collision entropy term, can be similarly bounded, 

except with definitive bounds. In the event that zero interaction is occurring between targets 

(i.e. the targets are separated by an infinite distance in the measurement domain), the 

interactions between different targets in Eq. (5.17) result in no contribution to the spatial 

entropy. Recall that larger collision entropies indicate a lower concentration of localized 

uncertainty. As a result, the upper bound on the collision entropy is

n+ = 2 Y j wf  -  Z (wk° )2|4nWf |-1/2 .
1=1 i=1

Conversely, if the targets are all collocated, the minimum collision entropy is computed as

n - = 2 Y  w<« -  Y y  [ w f w f  |4n(Wf  + W f  )i"1/2 .
e=i i=1 j =1

These bounds enable a coalescence term bounded by zero and one to be defined as

n(Z) = Z  nk (z k)
k eZ

=
Hk2)[ f  ] -  n-

-  n-
(5.23)
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Substitution of Eqs. (5.22) and (5.23) into Eq. (5.19) yields an objective that attempts 
to evenly weight potential risk of misassociating data against the potential information gained 
for a particular measurement set. Simultaneously considering both of these terms theoreti­
cally enables the optimal sensor schedule with regard to this objective to be generated. In 
selecting an optimization scheme, a couple of factors should be taken into consideration. 
As the collection of targets increases, the number of available sensor resources increases, 
and/or the number of candidate measurement times considered grows, this objective func­
tion becomes increasingly burdensome from a computational standpoint. Additionally, the 
weighting of the two terms becomes more influential, as local extrema exist at points in 
which one of the terms is essentially “neglected” if the other is dominant in the resulting 
objective evaluation. If, however, the two terms are considered separately and a two-phase 
optimization solution is applied, the computational effort required is substantially reduced.

This computational requirement is reduced further when considering some of the 
underlying properties of the objective functions at hand. The expected information gain 
term exhibits diminishing returns and thus falls into the classification of a submodular 
set function, as was illustrated in Section 5.2. Leveraging this fact enables submodular 
optimization techniques to be applied to the term in Eq. (5.22) to generate solutions in a 
timely manner with some level of freedom with regard to emphasizing optimization run 
time or the quality of the resulting schedule. Due to the relatively inexpensive optimization 
of Eq. (5.23), performing two sequential optimizations results in a drastically lower runtime 
when compared to the simultaneous optimization of the two measures. Both the simulta­
neous optimization as well as the submodular optimization schemes are detailed further in 
the following section.
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5.6. OPTIMIZATION

The simultaneous optimization of both the expected information gain and the colli­

sion entropy given in Eq. (5.19) can be constrained in an attempt to make the optimization 

more feasible; however, its formulation warrants discussion to illustrate its implementation. 

Consider the scenario in which a schedule is to be generated for mo observers, with each 

schedule consisting of mz,s observations (s = 1,2, . . . ,  mo). In this scenario, L targets are 

considered during the sensor tasking generation. In order to simultaneously consider the 

expected information gain acquired by the resulting schedules as well as the measurement 

spatial coalescence “accumulated” by executing these schedules, a single time vector con­

sisting of the schedules for the mo observers be considered as the optimization parameters; 

to be explicit, the time vector can be defined as t = [t j , t j , . . . ,  t 1mo]T, where each t s is the 

schedule of mz,s measurement times for sensor s. For simplicity, each sensor is assumed 

to take a fixed number of measurements of each target, mz,t, such that in total it is taking 

L x mz,t measurements. The complete schedule is then defined to be t = [ t j 1, t j 2, . . . ,  t TsL ]T, 

where each t s,j is a schedule of mz,t measurements of target i for sensor s. The result is a 

d = mo x  L x  mz,t-dimensional optimization problem, defined as

t * = argmax {t( t ) + n (t)} (5.24a)
t

subject to

C+1 > Odxi (5.24b)

to < t < t f , (5.24c)

where C+ is a matrix enforcing monotonically increasing time steps comprised of L x mo 
forward difference matrices of dimension mz,t on the diagonal, and t0 and tf set lower and 

upper bounds on the search region, respectively.
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Equations (5.24a)-(5.24c) provide the framework for an optimization problem that 
can be executed for a small number of observers/targets/measurements-per-target, but which 
quickly becomes intractable as the dimension of the problem grows. For many optimization 
problems, the desire for a near-globally optimal solution does not outweigh the computa­
tional burden required to achieve such a solution. This is no different in the problem of 
sensor tasking; due to the limited number of sensor resources, it is of interest to get the most 
out of a sensor schedule; unfortunately, considering the vast number of objects to track and 
the indefinite time interval that must be scheduled, finding the globally optimal schedule 
is not always feasible. Recall that, as per Section 5.2, both the myopic and forecasted for­
mulation of the expected KL divergence fall into the class of submodular functions. If the 
optimization is broken into two phases, the KL divergence-based portion of the objective 
can be optimized utilizing submodular optimization strategies. Furthermore, if this phase 
of the optimization is executed first and the expected KL divergence maximized, the second 
stage can be cast as a series of d independent scalar optimizations in which the individual 
measurement times are altered slightly in a way that minimizes the coalescence term and 
avoids risky association events. As a result, a two-phase optimization scheme exhibits a 
second phase that is significantly less complex than the first, generating an optimization 
problem that requires far fewer computational resources and is less sensitive to the em­
ployed optimizer. That is, selection of any appropriate optimizer (i.e. one for continuous, 
constrained, and non-convex problems) will be sufficient in handling the second phase. 
The following subsections proceed under this mentality and present differing submodular 
optimization strategies that can be employed in phase one of the optimization.

5.6.1. Convex Closure. One approach for submodular optimization is to relax 
the need for a robust global or local maximum and instead expedite the optimization by 
discretizing the search region. This route still enables the schedules for multiple targets and 
observers to be optimized simultaneously, meaning each measurement is scheduled with 
knowledge of past and future observations and multiple observers are able to collaborate



99

their efforts in maintaining estimates of a multitarget system. Much like the simultaneous 

optimization presented in Eqs. (5.24a)-(5.24c), this high-dimensional problem becomes 

prohibitively expensive for larger schedules, but still maintains the ability to consider all 

the facets of the sensor tasking problem simultaneously from an expected information gain 

perspective; further, the computational complexity, as well as the quality of the resulting 

sensor schedule, can be controlled through the discretization of the search region and the 

number of iterations performed in the optimizer. In the case in which the mz,t highest- 

weighted candidate observation times are taken for each target, a relatively low convergence 

tolerance usually suffices in generating an optimal schedule, as the more information-rich 

candidate times are quickly discovered when compared to other, lower-quality measurement 

opportunities.

This search space discretization is achieved by generating candidate observation 

times and assigning an indicator variable to each of them. For the sake of development, 

recall the optimization variable t in Eqs. (5.24a)-(5.24c); however, consider the individual 

schedules for each sensor/target pair to be fixed, e.g. t sj consists of candidate observation 

times from t0 = 0 seconds to t f  = 3600 seconds in increments of 30 seconds for each 

sensor/target pair. Assign to each candidate observation time an indicator variable, defined 

as

Ts,i,k
1 sensor s observes target i at time tk, 

0 otherwise.
(5.25)

Let Ys,i be the set of all indicator variables for the sensor s/target i pair, y s be the set of all 

of the vectors y ^  for sensor s, and lastly y  be the set of every indicator vector. This enables 

a new objective function to be defined as the convex closure of the previously proposed 

objectives, as f  (y) : {0,1}d2 ^  R (where d2 is the number of candidate observation times) 

[22]. To be explicit, this new convex function is defined similarly to the previous objectives, 

except that the measurement model is redefined as the product of the measurement model
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and the indicator variable y sj,k, or [82]

cs(x ^ )  A y sikh ( x k )  + v t . (5.26)

When Eq. (5.26) and its Jacobian are used in the Kalman update in Eqs. (4.8a)-(4.9), it 

is clear that the measurement model Jacobian as well as the measurement residual is zero 

when ys,i,k is equal to zero, leading to no update, as if the measurement is not processed.

While the dimension of this optimization is larger (as more candidate observations 

are required than the number of measurements to be scheduled in order to provide a degree of 

“choice” as to when to schedule measurements), this new function is convex over the boolean 

hypercube [22]. If the indicator variables are treated as continuous over the interval [0, 1], 

the convexity can be deduced if one considers the fact that any additional measurements 

will increase the amount of information gained; more specifically, moving in a particular 

direction over the boolean hyper cube will result in either a net increase or a net decrease 

in information, and the function will exhibit either a non-decreasing or non-increasing 

behavior along that direction, respectively. As a result, the resulting function is convex in 

y, with the global max located at the point in which each indicator variable is unity. If the 

indicator variables are treated as continuous in the optimizer, the convexity can be leveraged 

and continuous optimizers employed to generate schedules that simultaneously consider 

every sensor task to be scheduled with relatively reasonable computational demands when 

compared to the direct continuous optimization of the measurement times. The resulting 

optimization becomes

y* = argmax i ( y ) ,
Y

(5.27a)
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subject to

7s,i,k 6 [0, 1] (5.27b)

Cmz,t y  — mz,t 1 (Lmo) 
CtY — 1(d2/Lmo) , (5.27d)

(5.27c)

where Cmz t enforces a maximum number of measurements each sensor takes of a particular 

target, Ct limits each sensor to taking at most one observation per time step, and 1a denotes 

an A-dimensional column vector of ones. Equations 5.27 provides a robust means of 

generating a sensor schedule that intelligently tasks all measurements with knowledge of 

one another. It is important to note, however, that the result almost definitely contains many 

values between zero and one, representing “partial” measurements of the target. These can 

be addressed as deemed appropriate for the application. For instance, it may be of use 

to define a threshold ythresh to determine which values should be rounded up to one and 

which should be set to zero, generating a new one-dimensional optimization problem, if 

so desired [82]. When setting a hard limit on the number of tasks to be generated, the 

top weighted values are taken, e.g. the top mz,t-weighted indicator variables are taken for 

each sensor/target pair such that the constraints in Eqs. (5.27c) and (5.27d) are met. The 

result is a polynomial-time solution for the multisensor/multitarget sensor tasking problem 

that simultaneously considers the schedules for all observers present when generating an 

optimal schedule.

5.6.2. Greedy Approaches. The convex closure approach to submodular opti­

mization enables the sensor schedule to consider all future and past measurements when 

generating each individual sensor task, providing a schedule that is coordinated between 

different observers. The approach is highly dependent on how the optimization search space 

(i.e. the time interval over which a schedule is to be generated) is discretized; the finer
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the time step, the more computationally complex the optimization is but the more robust 

the solution. In many applications, however, speed is of greater concern than getting every 

possible bit of information out of a sensor schedule.

In scenarios in which optimization time is of highest concern, greedy optimizers are 

appealing, as they approach a d-dimensional optimization in which each of the d channels 

may be dependent upon one another as d scalar optimizations. Individually optimizing 

each of the d decision variables results in a much faster optimization, as the potential 

dependencies between each of the decision variables are ignored, effectively limiting the 

optimization search area to find a locally optimal decision before moving forward [14]. 

Greedy solutions are particularly attractive in submodular optimization, as the topology of 

the underlying objective function provides guarantees on the level of optimality with regard 

to the generated solution. Specifically speaking, if Z * is a set of k measurement times 

obtained via greedy optimization, it is guaranteed that [47, 48, 67]

f  ( Z* ) >( 1  -  e-k/d) max f  (Z), (5.28)

where d is the cardinality of the globally optimal measurement set, providing not only a lower 

bound on the performance of the greedily-generated sensor schedule but also suggesting 

that to approximate the performance of an optimal measurement set of d measurements, 

additional measurements may be added to the greedy schedule to increase this lower bound. 

It is important to note, however, that continuing to add additional measurements tends to 

result in a “wait-and-see” schedule structure if the remaining portion of the time interval 

becomes shorter with each additional measurement. Due to the nature of the problem, 

greedily selected optimization solutions can be structured in a variety of ways [1]. This 

section seeks to briefly describe some of the intuitive approaches to greedy sensor tasking 

in the multitarget/multiobserver sensor tasking problem.
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5.6.2.I. Greedy selection via observer. Recall t s =  [t TsV t T,,..., tTsL]T is the set of

times to observe each of the L targets for sensor s. The set of s optimal sensor schedules 

t0:s is obtained in a greedy-in-observer fashion through concatenation of the previous to:s- i 

schedules with a newly optimized schedule, as

to:s
argmax {i(t s | to:s-i)}ts

to:s-i
(5.29)

where t s is subject to the monotonically increasing constraint and the bounds given in 

Eqs. (5.24b) and (5.24c), respectively, but the dimension of the optimization problem is 

reduced to d = L x  mz,t as a result of optimizing each observer schedule independently; 

note that i(-| t0:s-1) indicates the KL-based objective function evaluated given the previously 

optimized s - 1 observer schedules, and the greedy optimization is initialized on the empty set 

(i.e. t0 = 0). This formulation provides schedules that are optimal for each sensor (given 

previously optimized schedules), breaking down the optimization into more manageable 

problems while managing to maintain the consideration of observation placement with 

respect to other measurements that will be taken with that same model from the exact same 

position with respect to that observer. Additionally, this formulation enables particular 

observers to be emphasized through the order in which the schedules are optimized; if, 

for example, two observers are in need of a schedule, in selecting one of the schedules to 

optimize first, this schedule is generated without any influence from the other schedule. In 

this way, observations for the first observer can be prioritized by being scheduled first.

5.6.2.2. Greedy selection via target. Let t 1:mo,i be a set of monotonically increas­

ing measurement times of target i across all observers and time steps. Just as with the 

previous approach, optimization by greedy selection per target is achieved by appending 

the previously optimized schedules t 1:mo,0:i-1 (for targets 1 to i -  1, with the zeroth schedule 

representing the initialization of the optimization scheme on the empty set, i.e. t 1:mo,0 = 0)



104

to the optimal schedule t i:mo,j for target i given the previous schedules and subject to the 

monotonically increasing constraints and the bounds in Eqs. (5.24b) and (5.24c), respec­

tively. To be explicit, this approach is mathematically expressed as the concatenation of the 

t i :mo,0:i- i previously optimized schedules and a newly generated schedule, as

t *t 1:mo,1:i
argmax {i ( t i ^ i Iti:mo,0:i-i)}

t1:mo ,i

t i:mo,0:i-i

(5.30)

subject to the monotonically increasing constraint and the bounds given in Eqs. (5.24b) and 

(5.24c), respectively. Note that the dimension of the optimization is reduced d = mo x mz,t 

as a result of considering each target schedule independently, and should be reflected 

accordingly in the constraints.

Similar to before, this approach benefits from the ability to prioritize other targets 

by optimizing their schedules first, ensuring that when their generation occurs they are not 

held to any constraint infractions caused by previously generated schedules. Further, in the 

case in which the targets being tracked are independent of one another, this style of greedy 

approach is a good approximation of the optimal schedule, as the schedule of observations 

of target i does not impact the information-rich portions of the trajectory of target j  (j ^  i), 

and consequently, the schedule for target i only influences the schedule for target j  by 

dictating when sensor resources are unavailable. The fidelity of this approximation is 

apparent in the optimization runtime, as it still requires the coordination between multiple 

observers in generating a schedule; regardless, reducing the dimension of the optimization 

by considering each target independently results in a substantial decrease in computational 

expense.

5.6.2.3. Greedy selection via time. An interesting facet to the particular problem 

at hand arises when considering the myopic and forecasted formulations of the normalized 

expected KL divergence with respect to a greedy-in-time optimizer solution. When a single 

measurement is considered, the myopic and forecasted expected KL divergence objective
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measures are equivalent in their evaluations, and thus result in equivalent optimal scheduled 

measurements in the presence of a single observation (or in a collection of observations 

of differing targets). Additional constraints should be placed on this particular solution; 

otherwise, the most direct approach is to consider the curve of the objective function for 

each sensor/target pair and take the global sensor/target maximum, set that particular time 

as the lower bound of the optimization, and repeat. Previous studies have shown that myopic 

implementations of the KL divergence tend to exhibit a “wait-and-see” structure in which 

sensors wait longer to take an observation [33], which, in this instance, leaves a smaller 

time interval over which to optimize the remaining measurement times. In this instance, it 

is useful to again discretize the time interval and optimize each individual time step.

Recall the convex closure formulation, and let p k be the vector of the indicator 

variables associated with each candidate sensor action at time tk. A greedy-in-time step 

approach sequentially progresses through each time step, selecting the observations that 

yield the most information as

P* _
0:k =

argmax {i(fik I Po:k-1)}
Pk

p 0:k -1
(5.31)

subject to the same constraints as the convex closure given in Eqs. (5.27b)-(5.27d) and 

initialized on the empty set (P0 = 0). By forcing decisions to be made at each of these 

discrete time steps, the wait-and-see structure is avoided, and the overall sensor schedule is 

developed in an intuitive and pragmatic manner. This approach typically exhibits the lightest 

computational load, but does not permit measurements at future times to be considered when 

making tasking decisions and simply coordinates efforts across multiple sensors and the 

multiple targets at each single instant.

5.6.2.4. Further consideration. As another consideration, it is important to note 

that the selection of one of the aforementioned greedy optimization solutions does not 

preclude the use of other solutions in tandem with the selected approach. For instance,
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when a tasking policy is determined to be executed observer-by-observer, in generating 
the schedule for each observer, the objective function can be optimized normally without 
employing a submodular optimization technique. Alternatively, the optimization can be 
approximated via convex closure or generated greedily, i.e. target-by-target or time step-by­
time step. Optimization of the original objective function with no approximations clearly 
gives the most robust schedules; however, the differing levels of approximation enable a 
sensor policy to be established with the desired level of robustness while considering the 
execution runtime when selecting an optimizer.
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6. RESULTS

To fully evaluate the performance of the proposed sensor tasking policies derived in 
this work, two scenarios in which RSOs are tracked and maintained are considered. The first 
provides an analysis of the behavior of the forecasted approach as well as the divergence- 
based objectives computed in different spaces, applying brute-force optimization. This same 
optimization is applied to two conventional information-based tasking objectives to provide 
a benchmark against which to compare the proposed objectives. The second scenario 
emphasizes the developments in multitarget considerations and leverages the two-phase 
optimization strategy defined in Section 5.6. To test the different optimization schemes, a 
twelve target scenario is considered first with a space-based sensor being tasked. A relative 
motion model is utilized to leverage the linear dynamic model in an initial evaluation of 
the optimization strategies. Finally, the need of the submodular optimization techniques is 
illustrated by moving into nonlinear dynamics in the presence of multiple observers, where 
one of the observers is ground-based.

6.1. SINGLE-TARGET SCENARIO

The single-target tasking scenario is explored in an effort to illustrate the behavior of 
the proposed forecasting approach in the absence of other targets. This is investigated in this 
section in two orbital scenarios, namely an eccentric orbit to provide geometric diversity in 
the potential measurement sets and a circular orbit to remove this diversity.

6.1.1. Eccentric Orbit. In attempting to determine what facets a forecasted ap­
proach might emphasize in a satellite trajectory, a single target in an orbit with an eccentric­
ity of roughly 0.68 is selected to provide some stark differences in the measurement profile 
geometry between different observation windows. The initial conditions for the elliptical 
orbit are generated from Keplerian orbital elements obtained from the North American
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Aerospace Defense Command (NORAD) SO catalog1 that are converted into the J2000 

coordinate system [18], with the approximate position and velocity given as

xo
r o

vo

-232 km 

10106 km 

14 km 

-3 .2  km/s 

3.5 km/s 

6.2 km/s

(6.1)

The temporal evolution of the target states is governed by classical two-body mechanics, 

with the equations of motion given in Eq. (3.4). The state in Eq. (6.1) is used to generate 

the nominal trajectory for the sensor tasking routine as well as to initialize the mean of the 

target state estimate maintained in the extended Kalman filter, with associated uncertainties 

of 50 m (3^) in each position channel and 0.2 m/s (3^) in each velocity channel.

The satellite is propagated until two distinct observation windows (i.e. windows of 

time in which the satellite is in the field of regard of one of the observers) are generated. 

In the interest of providing a clear and concise analysis of the behavior of the forecasted 

measure, in the case of observation window overlap, the difference is split such that a 

clean hand-off occurs (i.e. only one observer can detect the satellite at a given instant); 

however, field of view overlap can be handled in any way deemed appropriate by the user, 

as the optimization for observation window overlap is not limited to the consideration of a 

single observer. The two observers considered here are located at the Canberra Deep Space 

Communication Complex (CDSCC; 35° 24' 05" S, 148° 58' 54" E) in Australia (denoted as 

Site A) and the Goldstone Deep Space Communications Complex DSN site (GDSCC; 35° 

25' 36'' N, 116° 53' 24'' W) in California (denoted as Site B); the necessary transformation 

matrices required to rotate the fixed locations of these sites into the J2000 frame are obtained

iSource: https://celestrak.com/NORAD/

https://celestrak.com/NORAD/
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via the NASA JPL NAIF SPICE toolkit2 [6]. It is assumed that both of these stations are 

able to detect the satellite when it is at least 10° above the horizon, acquiring range and 

range-rate measurements via the incoming radio telemetry data according to Eq. (3.6). 

These measurements are corrupted with zero-mean uncorrelated Gaussian white noise with 

standard deviations of <rp = 15 m for range and <rp = 4 mm/s for range-rate.

For the initial analysis, mz measurement times are randomly sampled, drawn from 

a uniform distribution that spans the two observation windows; this is repeated 1000 times 

to generate sets of mz measurements. The reference time is selected to be the final time the 

target is observable (i.e. tref ^  9.2 hours), and each set is processed to generate an associated 

xMKL score (where the x pre-subscript denotes its computation in the state space). The set 

with the largest measure is then used to initialize the trust-region constrained optimization 

solver provided by the SciPy Python library. This is performed for mz = 5 to mz = 40 

measurements in increments of 5 measurements with the constraint that all measurements 

must be within one of the observation window time intervals in an attempt to glean insight 

into the topology generated by the forecasted KL divergence computed in the state space 

and how that topology morphs when different observation geometries are considered (or 

more specifically, when the dimension of the optimization problem changes). The resulting 

sensor schedules are shown in Figure 6.1 alongside the measurement profile.

The most apparent trend in the different sensor schedules is the obvious emphasis 

near the end of the second observation window, aligning with a rapid change in both the 

range and range-rate profiles. The rest of the trajectory in this observation window seems 

to be relatively ignored until enough observation times are available, with the optimization 

scheme choosing to spread a majority of the rest of the measurement acquisition times 

over the first observation window. During this portion of the trajectory, the range-rate 

profile is nearly linear, while the range profile reflects this and decreases uniformly over the 

duration of the interval. As such, the geometric diversity in the measurement profile over

2Information for the SPICE toolkit can be found at https://naif.jpl.nasa.gov

https://naif.jpl.nasa.gov
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Figure 6.1. The resulting optimal schedules of varying sizes utilizing the forecasted objective 
(top) and the range and range-rate measurement profiles (bottom).

the observation window is scarce, producing an emphasis on acquiring observations before 
and after the maximum range until more observation times are available, at which point the 
observations are spread relatively uniformly over the interval. The collection of schedules 
suggests that the approach prioritizes rapid changes in the measurement profile, followed 
by regularly received observations, providing some insight into the underlying hypersurface 
the optimization is navigating. However, to observe the performance of this optimization 
criteria, it is best to compare estimation results against other, more conventional sensor 
tasking approaches.

A second simulation is performed, utilizing the same observation windows consid­
ered in the first simulation. However, as the point of interest in this instance is a performance 
comparison between differing optimization objective functions, the optimization initializa­
tion is instead executed as described in Section 4.2.3. That is, the state undergoes a Sundman
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Figure 6.2. The sample states used in generating the initial guess for the optimizer.

transformation in order to generate sample states evenly dispersed over the trajectory of the 

orbit; the resulting trajectory and the sampled states are shown in the perifocal frame in 

Figure 6.2, with the different symbols indicating differing fields of view. Note that the 

roughly 63° inclination of this orbit prevents the Sundman transformation from generating 

evenly spaced states in this frame, but the sample states are much more uniformly distributed 

than they would be with a constant At.

Using the samples in Figure 6.2, candidate measurement sets consisting of three 

measurements are constructed for each sensor and evaluated against one another, with the 

highest scoring sets used to initialize the optimizer. These scores are computed for five 

different objective functions, namely the forecasted expected KL divergence computed in 

both the measurement and state space (zMKL and xMKL, respectively), the accumulation 

of the myopic expected KL divergence computed in both the measurement and state space 

(zMKL and xMKL, respectively), and the accumulated Fisher information gain (FIG). The
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FIG objective is defined on the vector of measurement time indices £ as

FIG(Z) = Y j H R-1H .

The trust-region constrained optimization solver is again leveraged, optimizing the objective 
functions subject to bounds based on the “coarse” optimization solution (i.e. the solution’s 
neighboring candidate observation times) and the constraint that observation times must 
be within the observation window time intervals and in ascending order, i.e. for two 
observations Zi and z j , it must hold true for the associated measurement times that ti > tj

if i > j.
The resulting schedules are depicted in Figure 6.3. Immediately apparent are the 

differences between the myopic and forecasted approaches; while perhaps intuitive, it might 
be easy to assume due to Eq. (4.42) that since the myopic and forecasted approaches should 
generate identical results for single measurement considerations, that this would extend to 
multi-observation sets. Clearly that is not the case here. However, note that there is a general 
consensus on taking observations during the end of the latter observation window when 
the measurement profile is changing rapidly. However, with regard to the first observation 
window, the myopic approaches agree that the earlier portion of the trajectory warrants 
attention, while the forecasted measures split their observations during the beginning and 
during the end of the interval. This spreading of the optimal data acquisition times il­
lustrated in Figure 6.3 highlights the positive results that rigorously formulated forecasted 
information theoretic measures are capable of autonomously spreading observations across 
a long interval rather than succumbing to the “wait and see” mentality and bunching the 
measurements in a smaller portion of the trajectory as is exhibited by the myopic expected 
KL and FIG objectives.



113

zMkl 

xMkl 
FIG 

zMkl 

xMkL

Piw
<5.

5 6 7
Time [hours]

10
5
0
-5

M
• P k

10
10

2 3 4 8 9

Figure 6.3. The differing sensor tasking schedules (top) plotted alongside the range and 
range-rate measurement profiles (bottom).

A simulation is then run for each objective function, executing the corresponding 
schedule and processing the resulting measurement sets in an extended Kalman filter, and 
the root-sum-square (RSS) values for the state estimate in both position and velocity are 
computed and tabulated. The RSS values corresponding to the moment before the object 
leaves the field of regard of a sensor, specifically the final observable time for the first 
observation window (t1,/) and the reference time (i.e. the final observable time for the 
second observation window, t2,/) are tabulated in Tables 6.1 and 6.2. Recall the pre­
subscript notation indicates the space in which the measure is computed (x corresponding 
to the state space, z corresponding to the measurement space), the overbar notation indicates 
that the forecasted objective is employed, and the lack of an overbar indicates the myopic 
objective.
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Table 6.1. The position RSS values (in meters) at the end of the two observation windows 
for the eccentric orbit scenario.

zMkl xMKL FIG zMkl xMkl

t1,f 263.07 251.84 323.56 332.16 335.02

t2,f 19.42 18.13 21.73 24.37 22.45

Table 6.2. The velocity RSS values (in millimeters per second) at the end of the two 
observation windows for the eccentric orbit scenario.

zMkl xMKL FIG zMkl xMkl

t1,f 15.49 14.56 20.39 21.43 21.36

t2,f 15.79 15.61 16.34 16.73 16.50

Immediately apparent is the obvious margin by which the forecasted methods outper­

form the FIG and conventional myopic KL in both position and velocity; this performance 

gain at the selected reference time t2,f is unsurprising, as that is how the approach is de­

signed to operate. However, a noteworthy result is that the forecasted methods also yield 

an improvement over the myopic approaches at the end of the first observation window, 

suggesting that the reference time mapping is resulting in more efficient selection of ob­

servations over the first field of regard as well. However, as these approaches are designed 

to yield the best possible state estimate at the selected reference time from an information 

theoretic standpoint, it can be argued that measures computed at this reference time lead to 

a biased representation of the results. Considering the speculation on how the forecasted 

methods are performing over the first observation window with a reference time selected 

in the second, an interesting measure is the average entropy exhibited by the state estimate 

over the duration of the simulation. These results are presented in Figure 6.4.
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Figure 6.4. Average entropy over the simulation for each sensor tasking objective for the 
eccentric orbit scenario.

Recall that differential entropy can be negative and that the differential entropy for 
a continuous deterministic event approaches negative infinity. Thus, the more negative the 
differential entropy, the less uncertainty there is associated with the event. As such, the 
average differential entropy in Figure 6.4 is plotted in decreasing entropy so that values 
further to the right are associated with a more certain event, or there is, on average, more 
confidence in the target state estimate over the duration of the periods in which the target is 
detectable. Interestingly, not only do the forecasted methods perform well with respect to 
the reference time, but also seem to gain some benefit in their sensor schedule generation that 
enables them to exhibit overall more confidence in the target state estimate over the entire 
duration of the simulation. The FIG and conventional myopic KL approaches come close to 
performing similarly to the forecasted objectives; however, it is clear that in this instance that 
mapping the estimate densities to a single reference time and into a common information 
space provides more context to the sensor scheduling process, yielding noticeable benefits 
in the overall performance of the tracking solution.

The results here are encouraging, even when stepping away from the original design 
intent of this methodology and looking at the performance outside of the reference time 
for the forecasted methods. However, the orbit under analysis currently is highly eccentric
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and highly inclined, providing some information-rich portions of the measurement profile 

that perhaps allow these methods to generate their optimal sensor schedules at low cost. It 

could be argued that the rapid changes in the measurement profile create pitfalls for myopic 

approaches with the intense geometric diversity present in the orbital trajectory. Performing 

an analysis in the absence of these geometric diversities may provide more insight into the 

performance of the forecasted approaches.

6.1.2. Nearly Circular Orbit. The previous example illustrates the different pri­

orities exhibited by several sensor tasking objectives, as well as the differences between 

the myopic and forecasted approaches to KL-based sensor tasking. However, how do these 

different objectives compare when the measurement profiles between observation windows 

are nearly identical? More specifically, how are the measurements allocated if the geomet­

ric diversity in the two observation windows is relatively sparse? To explore this, a nearly 

circular orbit is investigated to provide similar measurement profiles from the two observers 

in the previous simulation. The initial conditions are again generated from Keplerian orbital 

elements obtained from the SO catalog3 and converted into the J2000 coordinate system 

[18], with the inertial position and velocity given approximately as

xo
r o

Vo

14525 km 

-9479 km 

18713 km 

3.25 km/s 

0.90 km/s 

-2 .06  km/s

(6.2)

Once again the object is propagated until two observation windows are generated, 

one from the CDSCC DSN site (Site A) and another from the GDSCC DSN site (Site 

B). For this simulation, these sites are assumed to be able to generate right ascension

3Source: https://celestrak.com/NORAD/

https://celestrak.com/NORAD/
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and declination measurements of the satellite whenever it is at least 10° above the horizon 

(ignoring the effects of the sun to provide similar observation window durations, providing 

more similar observation arcs) according to Eq. (3.5), with the right ascension and decli­

nation measurement model defined in Eq. (3.8). These measurements are corrupted with 

zero-mean Gaussian white noise with standard deviations of of a a = <r§ = 3".

Just as before, an initial analysis is performed using the forecasted KL divergence 

in the state space (xMKL), defining the final time prior to the object leaving the second 

observation window as the reference time. The first study utilizes a random initialization 

approach for the optimizer in an attempt to determine the topology generated by the objective 

function and to observe how the topology evolves as the dimension of the surface grows (i.e. 

as more observation times are simultaneously considered). The optimization is performed 

on measurement sets consisting of 5 to 40 measurements in increments of 5; the resulting 

observation sets are depicted in Figure 6.5 alongside the measurement profile. First note that 

the measurement profiles are very similar, implying that one arc should not provide more 

context over the other. Thus, these results illustrate how the forecasted approach performs 

in the absence of extreme geometric diversity present in the two observation windows.

Note that in both observation windows, each measurement set is taking observations 

during the portions in which the right ascension is changing most rapidly and when the 

magnitude of the declination is at its peak for the observation window. This is likely due 

to the information gained from the out-of-plane motion exhibited by the target, providing 

much more information than at lower declination points in the trajectory. Outside of these 

maximal (or minimal) declination points, the observation times for a given observation 

arc appear to be more or less uniformly distributed over the remainder of the trajectory. 

However, the latter observation window attracts many more observations than the former. 

There are a few different factors that could be at play here: the point of maximum declination
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Time [hours]
Figure 6.5. The resulting optimal schedules of varying sizes utilizing the forecasted objective 
(top) and the right ascension and declination measurement profiles (bottom).

magnitude here is marginally higher than in the first observation window, which could play 
a factor, or this could be a manifestation of wait-and-see behavior exhibited by myopic 
approaches. To investigate the latter claim, a comparison to myopic approaches is useful.

A second simulation is considered, utilizing the Sundman transformation for sam­
pling the trajectory and generating a “coarse” initial schedule of three measurement times 
for each observer just as was done in the eccentric orbit simulation; the states used to gener­
ate the “coarse” initialization are shown in the perifocal frame in Figure 6.6. These sampled 
states are used to initialize the optimization for the same set of sensor tasking objectives 
in the eccentric orbit simulation; the optimized schedules are shown in Figure 6.7. The 
information divergence measures all seem to agree to some extent on observation times in 
the first arc with a few subtle differences, all generating substantially different schedules 
from the FIG-based approach. However, outside of the forecasted KL divergence computed
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Figure 6.6. The sample states used in generating the initial guess for the interior-point 
optimization.
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Figure 6.7. The differing sensor tasking schedules (top) and the right ascension and 
declination measurement profiles (bottom).
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Figure 6.8. The average entropy over the simulation for each sensor tasking objective for 
the nearly circular orbit scenario.

in the measurement space, each objective ensures to take an observation near the lowest 
point in the trajectory, again favoring the out of plane motion, a trend that is exhibited by 
each of the schedules for the second observation window as well.

The resulting RSS values for each sensor schedule are given in Tables 6.3 and 6.4 at 
the final time of the first observation window as well as at the reference time (i.e. the final 
time of the latter window). The results across the different sensor tasking objectives are 
very similar, exhibiting almost negligible differences. This result is unsurprising, for while 
the peak declination points may provide slightly more information, the slow gradations of 
the measurement profile suggest that differing measurement times provide similar quantities 
of information. However, it is encouraging to see the slight gains in performance when 
considering the forecasted KL divergence in the state space while generating different 
schedules for each arc, moving away from the FIG strategy, which results in nearly identical 
measurement times for both arcs. Furthermore, as illustrated by Figure 6.8, it is evident 
that the average entropies in all of the information theoretic approaches outperform that 
of the FIG objective. The myopic divergences provide the best average entropy, while the 
forecasted approaches yield a compromise between average entropy and final RSS values.
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Table 6.3. The position RSS values (in meters) at the end of the two observation windows 
for the nearly circular orbit scenario.

zMk l xM KL FIG zMk l xMkl

K f 7.8984 7.8984 7.8993 7.8984 7.8984
to f 8.4852 8.4798 8.4834 8.4848 8.4813

Table 6.4. The velocity RSS values (in millimeters per second) at the end of the two 
observation windows for the nearly circular orbit scenario.

zMk l xMKL FIG zMk l xMKL

ti,f 1.0848 1.0848 1.0849 1.0848 1.0848
tor 1.4406 1.4396 1.4402 1.4405 1.4399

6.2. MULTITARGET SCENARIO

The previous study emphasizes the behavior of the forecasted objective function, 
illustrating the emphasis on the uncertainty in a target state estimate at the reference time 
when compared to other, more conventional approaches. Moving into the multitarget 
tasking domain presents new challenges that must be considered. In the single-target study, 
brute force optimization forewarned of potential problems with optimization runtimes as 
the number of targets increases. Additionally, it is of interest to consider potential data 
association conflicts when generating these schedules.

To evaluate the proposed tasking policy presented in Section 5, a single space-based 
observer is taken to inhabit a circular orbit at an altitude of 400 km with an inclination of 
75°. Twelve targets are represented in the Hill frame and propagated for one hour; during 
this time span, a sensor schedule consisting of ten measurements for each target is generated 
according to the policies outlined in Section 5.5. The initial conditions for the targets are
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Table 6.5. The initial states for the 12 targets, given in the Hill frame.

Object x [m] y [m] z [m] x [m/s] y [m/s] z [m/s]

x a > •*0 -16.150 18.15 0.0 -1.1110 x10-3 32.290 x10-3 0.0

x (2> 0 4.960 38.32 0.0 4.4160 x10-3 -11.240 x10-3 0.0

x (3> x0 5.396 18.64 0.0 -7.1510 x10-3 -7.732 x10-3 0.0

x (4> x0 -11.340 36.88 0.0 5.3270 x10-3 22.310 x10-3 0.0
(5>

x0> -8.869 23.99 0.0 -4.3620 x10-3 18.920 x10-3 0.0

x (6> 0 -14.300 27.12 0.0 -0.7016 x10-3 28.940 x10-3 0.0

x (7> x0 -3.075 14.79 0.0 -4.5900 x10-3 9.951 x10-3 0.0

x (8> 0 -0.1675 18.95 0.0 -5.9170 x10-3 3.203 x10-3 0.0

x (9> 0 -6.249 39.16 0.0 7.5100 x10-3 7.478 x10-3 0.0
x (10> 
x 0 12.000 -7.00 19.0 9.3460 x10-3 -3.438 x10-3 2.550 x10-3
x (11>
x 0 -2.000 2.00 1.0 78.3000 x10-3 -2.566 x10-3 6.444 x10-3
x (12>
•*0 -22.5000 17.700 -23.3 20.8300 x10-3 44.230 x10-3 19.070 x10-3

listed in Table 6.5. Nine of the targets exhibit planar motion in order to generate several 

collision events in the measurement space, while the targets exhibiting out-of-plane motion 

exhibit measurement space collisions with either each other, the planar targets, or both.

The Clohessy-Wiltshire model is used to model the dynamics of the objects, 

such that, for a state defined as the relative position and velocity of the form xj*> = 

[{r('k'>)T, (v(jk'>)T]T, the dynamics of the state are given by the linear, discrete-time, noiseless 

system given in Eq. (3.2) where the motion is governed by the Clohessy-Wiltshire equations 

in Eq. (3.3). Note that this model is only one of many available relative motion models, 

and is only selected for its linear nature, enabling simple state propagation and facilitating 

faster generation of results and thus affording accessible analysis across more optimization 

solutions. Other options for relative motion propagation are available [28, 41, 53, 79] and 

would apply to this approach as well.
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Measurement Profiles

Figure 6.9. The measurement profiles of the twelve targets.

It is assumed that during this hour long time period, right-ascension and declination 

measurements are available, generated according to Eq. (3.5) and Eq. (3.8). These mea­

surements are corrupted with zero-mean Gaussian white noise with standard deviations of 

<ra = = 3". In order to illustrate the occurrence of collisions in the measurement space,

the measurement profiles for each nominal target trajectory are plotted in the measurement 

space and can be observed in Figure 6.9. Note that the horizontal trajectory contains the 

nine targets in planar motion.

6.2.1. Continuous Optimizer Configurations. Five different optimizer architec­

tures are applied to the time interval, and the resulting schedules are compared with one 

another for both the myopic and forecasted KL divergence objective functions as well as 

the spatial entropy. The two are simultaneously optimized as in Eqs. (5.24a)-(5.24c) with 

an “upper-bound” on the expected information gains set to 99.99% to determine the effi­

cacy and effectiveness of handling the full optimization and to give a baseline comparison 

for the two-phase optimizations. For the two-phase solutions, the KL divergences as in 

Eqs. (5.1) and (5.2) are maximized in the first phase. A continuous optimization is per­
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formed to provide a comparison to the submodular solutions, which include convex closure 

of the objective function and two greedy-in-target solutions (one performing a continuous 

optimization and another utilizing the convex closure form of the objective). These opti­

mizations are then followed by a second phase in which the collision entropy in Eq. (5.17) 

is minimized at each measurement time.

For each optimization, a sequential least squares programming (SLSQP) optimizer 

is employed,4 with the convergence criteria based on a function tolerance of 1 x 10-16 

for each objective function aside from the convex closure formulation. For the convex 

objectives, candidate observation times are considered every 30 seconds for each target over 

the span of the hour, resulting in 120 indicators to consider for each target and a 1440­

dimensional optimization problem. The large dimensionality of the objective can make the 

optimization relatively burdensome. Fortunately, due to the geometry of the objective and 

the nature of the approach, a conventionally “strict” convergence criteria is not necessary, 

as the highest weighted measurement times are apparent as the optimizer enters the vicinity 

of the local extremum and do not change as the function tolerance decreases. As a result, 

the convergence criteria for the convex closure approaches is set to 1 x 10-6, and the ten 

highest weighted measurement times are taken to generate schedules of ten measurements 

per target.

6.2.2. Optimization Runtimes. The normalized runtimes for each solution, namely 

the simultaneous optimization of the expected KL divergence and the coalescence term (de­

noted Simult.), the two-phase solution in which both terms are optimized via the SLSQP 

optimizer (denoted 2-P Cont.), the two-phase solution leveraging the convex closure of 

the expected KL divergence (denoted 2-P Conv.), the two-phase greedy-in-target solution 

in which both terms are optimized via the SLSQP optimizer (denoted 2-P G.I.T. Cont.), 

and the two-phase greedy-in-target solution leveraging the convex closure of the expected

4Initial implementations compared the trust-region constrained optimizer (used in the single-target simu­
lation) against the SLSQP optimizer. The resulting schedules were similar in quality, but the SLSQP solver 
converged with faster runtimes. As a result, it was selected for use in the analysis



125

Table 6.6. The myopic objective function runtimes for each of the optimization schemes 
normalized by the simultaneous optimization.

Simult. 2-P Cont. 2-P Conv. 2-P G.I.T. Cont. 2-P G.I.T. Conv.

Phase I 1.000 0.113 0.037 9.18 x10-4 46.1x10-3
Phase II - 3.531 x10-4 0.012 1.45 x10-4 1.38 x10-4
Total 1.000 0.113 0.048 1.063 x10-3 46.1x10-3

Table 6.7. The forecasted objective function runtimes for each of the optimization schemes 
normalized by the simultaneous optimization.

Simult. 2-P Cont. 2-P Conv. 2-P G.I.T. Cont. 2-P G.I.T. Conv.

Phase I 1.000 0.056 0.348 4.309 x10-3 0.123
Phase II - 0.005 0.356 4.689 x10-3 0.005
Total 1.000 0.062 0.703 8.997 x10-3 0.128

KL divergence (denoted 2-P G.I.T. Conv.), are tabulated in Tables 6.6 and 6.7 for both the 

myopic and forecasted objective functions employed in the different optimization solutions, 

respectively. The overall runtime is broken down into the respective phases of the opti­

mization, with each entry normalized against the simultaneous optimization runtime; it is 

worth noting that the simultaneous optimization consisting of the myopic KL divergence 

takes over thirty times longer than that of the forecasted approach to generate a schedule, 

a trend that is consistent across all solutions when comparing the myopic and forecasted 

measures. The rest of the table details the runtimes of the two-phase optimization. For 

this particular scenario, the two-phase continuous optimization scheme seems feasible, ex­

hibiting substantial benefits when compared to the simultaneous optimization. However, 

this is largely due to the linear dynamics of the system and the (relatively) low number 

of targets to track. In the presence of nonlinear dynamics and/or when the dimension of 

the optimization argument is sufficiently large (e.g. additional measurements, targets, or 

observers), this approach proves to be far more computationally demanding.
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The final four columns in Table 6.6 and 6.7 summarize the results obtained by 
applying the same measurement-by-measurement continuous optimization for the second 
phase, but leverage the submodularity in the first phase. As expected, as more submodular 
optimization techniques are utilized, the runtimes tend to decrease, with a few exceptions. 
The benefits of the linear dynamics are once again present in the continuous approach 
when optimizing target schedules independently, and while it may not hold under nonlinear 
dynamics or higher dimensional optimizations, this is useful as the only loss of fidelity is 
the fact that each subsequent target simply cannot be observed at previously tasked times. 
This is not a particularly detrimental constraint, considering that if a target can produce a 
lot of information at a previously tasked time, then the measurement can be placed some 
small amount of time before or after that action. The second exception to the decreasing 
trend is the first phase of the myopic greedy-in-target convex closure approach; the overall 
runtime is faster than that of the convex closure when optimizing all of the target schedules 
simultaneously. However, the speed benefits in each individual iteration of the optimizer 
do not outweigh the fact that the optimization must be performed 12 times (once for each 
target).

In short, the two phase optimization is clearly more practical than simultaneously 
attempting to maximize the information available while also avoiding measurement space 
collisions. Additionally, while the continuous optimization solutions exploit the linear 
dynamics and exhibit relatively low runtimes, it is possible to see how the submodular 
approaches can be selected to reduce the runtime by decomposing the optimization into 
different, less demanding optimization problems. It is important to remember that while 
every attempt is made to provide an even comparison across these methods, the convex 
optimization is extremely dependent upon how the time vector is discretized; more samples 
across the time interval result in a longer runtime, but better consider all points along the
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trajectory. Regardless, the runtimes presented in Tables 6.6 and 6.7 provide a data point in 
analyzing the different sensor tasking solutions. In order to draw further conclusions, the 
performance of the resulting schedules must be examined.

6.2.3. Collision Avoidance. Considering the dimension of the optimization, it is 
difficult to visualize the expected information gain objective function surface and exactly 
how the schedule is being generated in phase one. Phase two is marginally easier, as the 
objective can be plotted as a function of time. An attempt to illustrate this is provided 
in Figures 6.10 and 6.11, where the phase one and two schedules (with measurement 
times denoted by x) are plotted along with the collision avoidance objective (that is to be 
minimized) computed in the absence of any measurement updates (plotted in gray). The 
collision avoidance objective, n, indicates that in the absence of updates, the overall pdf 
coalescence generally increases as the targets are propagated, peaking at 1500 seconds 
and then separating until roughly 2800 seconds before coalescence increases again. Some 
movements can be detected in response to these collisions when comparing the phase two 
schedules to their phase one counterpart; both the myopic and forecasted schedules place 
more measurements at the minimum near the beginning of the simulation, while also moving 
some measurements away from the increase at the end of the time interval.

This gives a rough idea of how the second phase refines the sensor schedules, as the 
objective, n, indicates a measure of relative proximity of the targets, but this plot does not 
indicate the “updated” collision measure as the previous measurements are processed. It 
is useful evidence that the objective function provides times in which other tasks could be 
allocated (i.e. the relatively long stretches in which the sensor is not tasked), a trend that 
is exhibited across all other schedules (aside from the simultaneously optimized myopic 
divergence); however, aside from this, Figures 6.10 and 6.11 do not communicate much.

Since the optimization is performed on each measurement sequentially, each mea­
surement time necessarily maintains or reduces the collision level it is observing. Con­
sequently, it may be of more use to see, on average, how much this objective is reduced.
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Figure 6.10. The phase one and two schedules generated via the myopic convex closure 
objective function optimized target-by-target, plotted with the collision avoidance measure.
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Figure 6.11. The phase one and two schedules generated via the forecasted convex closure 
objective function optimized target-by-target, plotted with the collision avoidance measure.
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The average value over each measurement time is shown for both phase one and phase two 
in Figures 6.12 and 6.13. In each instance, the two phase optimization results in a lower 
collision measure after the second phase, with each second phase schedule exhibiting a 
lower measure when compared against the simultaneous optimization solution aside from 
the second phase of the continuously optimized forecasted measure.

While it may be tempting to draw conclusions from the magnitudes of these measures 
across the different objective types (myopic versus forecasted) as well as the different 
optimization solutions, it is important to note that this measure is independent of the first 
phase, so a particular trend cannot be guaranteed (i.e. it is coincidental that the continuous 
optimization of the myopic objective ends up with a relatively low collision measure in 
phase one). The main results exhibited by Figures 6.12 and 6.13 is that the objective 
is successful in reducing these potentially difficult data association scenarios as well as 
the fact that optimizing the two terms separately does not preclude similar performance 
with respect to this collision avoidance when compared to a solution that optimizes both 
objectives simultaneously. The results are still encouraging, however, considering that this 
optimization is performed second and thus is subject to most of the performance degradation 
due to the constraints placed on the optimization by the phase one schedule.

6.2.4. Schedule Performance. In order to better evaluate the performance of these 
objective functions, it is necessary to observe the tracking performance as the resulting sen­
sor schedules are executed. Given that the objective measures are developed in information 
space, and in the interest of concise analysis, the sum of the individual target entropies is 
used to quantify the uncertainty present in the multitarget state. This is directly a function 
of the expected information gain objective, and since this is optimized prior to considering 
measurement space collisions in the two-phase approaches, one would expect that perform­
ing a continuous optimization with respect to solely the information gain term should exhibit 
the same if not better results as the simultaneous optimization. To verify this, each schedule 
is processed in an EKF separately, and the sum of the individual target entropies is logged
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Figure 6.12. The average collision measures at each measurement time for the different 
myopic schedules.

Simult. Cont. Conv. G.I.T. Cont. G.I.T. Conv.
Optimization Scheme

Figure 6.13. The average collision measures at each measurement time for the different 
forecasted schedules.
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over the duration of the simulation. The results for both of the simultaneously optimized 
schedules are plotted alongside their continuously optimized first-phase counterparts in the 
two plots in the top left of Figure 6.14, with the simultaneous optimization plotted in blue 
and the continuous plotted in orange. What these curves specifically show is the sum of the 
Shannon entropy for the individual targets at each measurement index before and after a 
measurement is processed, enabling the contribution of each individual measurement to be 
observed more clearly than if it were plotted against time. Both of the schedules perform 
similarly across the time interval, with the continuously optimized myopic schedule just 
barely outperforming the simultaneous schedule at the end of the simulation. The two fore­
casted schedules perform similarly, but with the continuous optimization of the objective 
function maintaining a lower system entropy throughout most of the time interval.

Figure 6.14 goes on to illustrate the differences in performance when different sub­
modular optimization strategies are applied. The two plots in the top right show the convex 
closure forms of the objective functions and their performance in approximating the solu­
tion in the continuous optimization. The forecasted approach achieves this approximation 
closely, whereas the myopic suffers somewhat noticeably over the hour long interval. This 
performance is absolutely impacted by local minima that exist within the objective function, 
but recall that the convex closure is also extremely sensitive to the discretization of the time 
vector; without enough candidate observation times, information-rich portions of a target 
trajectory are missed.

In an attempt to reduce the computational burden of optimizing the convex closure 
and marginally improve the initialization of the optimization, target independence can 
be leveraged and each target schedule can be initialized and optimized independently. 
This greedy approach is first applied with the expected information gain optimized as a 
continuous objective function in the bottom left two plots of Figure 6.14. Note that the 
performances match much closer here, though this could also be a benefit brought on by 
the continuous optimization which, recall, exhibits fast performance due to the linearity of
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Figure 6.14. The resulting myopic and forecasted phase one schedules for each of the 
different submodular optimization schemes as compared to the continuous optimization of 
the first phase as well as the simultaneous optimization.

0

the dynamics. A more practical approach is to optimize each target schedule independently 
with the convex closure form of the objective function, as is shown in the bottom right 
of Figure 6.14. Once again, both optimization strategies perform relatively similarly, with 
some minor information loss brought on by missed measurement opportunities resulting 
from the target-by-target optimization. However, the end result is an optimization scheme 
that affords relatively fast runtimes when compared to other solutions.
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Table 6.8. The system entropy (in nats) at the end of the hour long time interval and the 
different phase two sensor schedules have been processed.

Simult. Cont. Conv. G.I.T Cont. G.I.T. Conv.

Myopic -376.91 -384.47 -351.95 -385.08 -374.97

Forecasted -384.13 -387.13 -374.79 -393.40 -382.89

The final question to address regarding these schedules is the impact phase two 

optimization has on the schedule performance. Since the second phase is only capable of 

shifting individual measurement times, due to the constraints, these times are not altered 

drastically, and thus the performance over the duration of the simulation appears very 

similar. For conciseness and to provide a side-to-side comparison of the schedules, the 

system entropy at the end of the time interval is tabulated for each schedule in Table 

6.8. As expected, the continuous optimization schemes perform the best from an entropic 

perspective. However, the submodular strategies provide a good approximation to this 

performance, and illustrate that further reduction of the dimension of the optimization 

problem (namely, when performing greedy optimization) can actually be beneficial from 

an entropic perspective in addition to reducing runtime.

6.2.5. Comments on Multiple Observers. Lastly, the effectiveness of the sub­

modular optimization strategies is investigated in a higher-dimension problem. To achieve 

this, the previous simulation is extended to include a ground-based observer to coordinate 

with the space-based sensor in maintaining the target state estimates in the Earth-centered 

inertial frame. This ground-based observer is taken again to be the GDSCC site in Califor­

nia from the single-target study, generating range and range-rate measurements corrupted 

with zero-mean uncorrelated Gaussian white noise with standard deviations of <rp = 15 m 

and <Tp = 4 m/s for range and range-rate, respectively. Recall that the space-based sensor is 

capable of generating right-ascension and declination measurements corrupted with zero- 

mean Gaussian white noise with standard deviation a a = <r§ = 3". The initial relative states
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for the targets remain the same from the previous example, and the space-based observer is 
initialized at the beginning of the hour-long time interval with Cartesian state

-6416 km 
-122 km

XssOo) ^
2182 km 

1.13 km/sec 
-6.99 km/sec 
2.93 km/sec

where the SS superscript denotes the state is that of the space sensor. This results in a 
period of roughly five minutes for each target in which the objects are visible from the 
ground-based sensor, occurring right at the beginning of the simulation.

Initial simulations made it immediately apparent that the nonlinear dynamics and 
the overlapping observation windows for both of the sensors rendered the simultaneous 
optimization, as well as the continuous optimization of the expected information gain, 
impractical, taking an exorbitant amount of time and failing to converge when relaxing 
the convergence criteria. In order to generate schedules to determine some idea of the 
multi-observer performance, the two-phase optimization is necessary. The convex closure 
form of the expected information gain is utilized, both in optimizing each observer schedule 
independently (in this instance, optimizing the space-based schedule first, followed by 
the ground-based schedule) in a greedy-in-observer (denoted G.I.O.) approach as well as 
performing this optimization target-by-target (denoted G.I.T.).

Through leveraging the submodular optimization strategies, the SLSQP solver is 
able to converge to solutions for both the myopic and forecasted divergences, yielding 
schedules in reasonable runtimes. Independently optimizing the convex closure of the 
expected information gain provides a tractable solution, as compared to the simultaneous 
optimization. Further, an additional reduction in runtime is achieved when optimizing each
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Table 6.9. The phase one optimization runtimes for the greedy-in-observer (G.I.O.) and the 
greedy-in-observer and greedy-in-target (G.I.O. G.I.T.) convex closure objective functions, 
normalized against the G.I.O. convex closure runtime.

Myopic Forecasted
G.I.O. Conv. G.I.O. G.I.T. Conv. G.I.O. Conv. G.I.O. G.I.T. Conv.

SS
GDSCC
Total

0.34 0.21 
0.66 0.03 
2703 0.24

0.19 0.16 
0.18 0.17 
0.37 0.33

Table 6.10. The system entropy (in nats) at the end of the hour long time interval for each 
convex closure optimization, optimizing the space-based sensor schedule first followed by
the GDSCC.

G.I.O. Conv. G.I.O G.I.T. Conv.
Myopic -568.7 -523.7
Forecasted -574.7 -568.4

target schedule independently, with nearly a 76% reduction for the myopic measure and a 
roughly 12% reduction for the forecasted; the specific optimization runtimes are tabulated in 
Table 6.9. While some scheduling decisions are made differently when each target schedule 
is generated, the end result is still relatively similar as illustrated by Table 6.10.

The introduction of the second observer, aside from introducing new measurements 
and new information, largely does not impact the sensor tasking procedure. The schedules 
are coordinated to some extent, as a previously optimized observer schedule must be 
considered when generating additional observer schedules, but the construction of the 
objective and the execution of the optimization remains constant otherwise. However, 
much like the greedy-in-target approach, a sort of prioritization occurs when selecting the 
order of the sensor schedule optimizations in a greedy-in-observer approach. Though this 
prioritization is much less influential when compared to the greedy-in-target approach, as
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Table 6.11. The system entropy (in nats) at the end of the hour long time interval for 
each convex closure optimization, optimizing the GDSCC schedule first followed by the 
space-based sensor.

G.I.O. Conv. G.I.O G.I.T. Conv.
Myopic -568.7 -547.2
Forecasted -578.3 -574.5

one observer’s schedule does not prevent another from making tasking decisions. This idea 
is illustrated in Table 6.11, in which the order of the observer schedule optimizations is 
switched and the GDSCC schedule is generated prior to the space-based observer.

While some differences exist between Tables 6.10 and 6.11, they are minor. This 
is not to suggest that order does not matter in every circumstance. In this scenario, the 
two observers are acquiring different types of data, and thus find different facets of the 
target trajectories more informative. Due to these differences, one schedule should not 
significantly impact the other. When performing the optimizations on observers with 
similar measurement types, the results may indicate otherwise, though this question is left 
to future investigations.

The results of both the single- and multiobserver multitarget studies expand upon 
the single-target investigation. The forecasted objective maintains the same benefits from 
a target tracking perspective, specifically with regard to emphasizing the uncertainty at 
the reference time, while also exhibiting faster runtimes when compared to the myopic 
objective. Additionally, the coalescence term results in tasking decisions that are less likely 
to observe coalescence in the measurement space, reducing the risk when performing data 
association. While optimization of the proposed objective in Eq. (5.19) is costly from a 
computational standpoint, the cost is mitigated when leveraging the two phase optimization. 
This two phase optimization allows for submodular optimization strategies to be employed, 
providing more feasible runtimes for practical application. The different strategies allow
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for an optimization solution to be dictated by the constraints of the available computational 
resources, however the results indicate the significant speed benefits exhibited by the greedy 
strategies with a relatively low loss of information.
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7. CONCLUSIONS

7.1. RESEARCH SUMMARY

The work presented in this dissertation has focused on the problem of sensor tasking 
under the context of resident space object catalog maintenance. Due to the stochastic 
nature of the problem of target tracking, Section 2 laid the foundation for a probabilistic 
treatment of the target states and measurement model while also providing a background in 
information theory for context in the later developments. In the interest of completeness, 
Section 3 detailed the specific considerations taken when modeling the dynamics of the 
problem and the measurement models employed in the work.

Section 4 provided a thorough analysis of a conventional sensor tasking approach in 
a single-target tracking scenario, deriving the full distribution for the Kullback-Leibler (KL) 
divergence when used to describe the directed distance between a p r io r i and a p o s te r io r i  

densities as they are maintained in an extended Kalman filter (EKF). This distribution 
allowed for a better understanding of the approximations made when the first moment of 
the KL divergence is employed as a sensor tasking objective. The section continued to then 
generalize the consideration of the first moment through a forecasted approach, providing 
a means of emphasizing uncertainty precision at an arbitrary reference time. Following 
the development of the forecasted divergence, the differences between the forecasted KL 
measure and its myopic counterpart were examined in a brief tasking scenario, illustrating 
their connection when considering a single measurement time and the advantages the 
forecasted measure provides when considering sets of multiple measurements. In the 
interest of addressing the initialization for a single target in optimizing the tasking objective, 
the Sundman transformation was presented and applied to provide a coarse sensor schedule
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to be refined by an optimization solver. The section concluded with some discussions of 
the versatility of the measure, specifically its computation in different spaces and in the 
presence of other estimated parameters.

The sensor tasking problem was then lifted into the multitarget domain in Section 5. 
The assumption of independent targets was taken, enabling the myopic and forecasted KL 
objectives in Section 4 to be detailed in a straightforward manner. This was followed by a 
proof illustrating that the objectives are both submodular set functions, enabling submodular 
optimization strategies to be applied when generating schedules.

Section 5 went on to discuss the issue of data association to provide more context to 
the sensor tasking problem in the presence of multiple targets, illustrating that filters may 
be vulnerable if optimized schedules dictate that observations be taken during “collisions” 
between targets in the measurement space. One common solution to data association was 
presented, namely gating the squared Mahalanobis distance for acquired measurements. 
The section proposed an additional tasking objective that avoids these scenarios through 
the use of information entropies, specifically the Renyi entropy. A brief scenario was given 
to illustrate the use of information entropies in characterizing events in which coalescence 
between target state estimates in the measurement space is high. In order to avoid observing 
these events and thus providing a filter data in which it may be difficult to discern the origin of 
the measurements, an objective was constructed that accounted for the expected information 
gain provided by a measurement set as well as the potential for observing a collision in the 
measurement space. A detailed investigation into the optimization of this joint objective 
was given, including a two-phase approach in which the divergence-based objective can be 
optimized prior to the entropic objective, enabling submodular optimization strategies to 
be employed. A selection of submodular optimization schemes was presented to conclude 
the section.
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Lastly, the theoretical discussions and developments were investigated through nu­
merical simulations in Section 6. The first set of simulations sought to investigate the 
behavior and performance of the proposed forecasted measures in the presence of a single 
target. This was achieved by generating sensor schedules for two ground-based observers, 
applying brute-force optimization over an observation window consisting of a single pass 
of a resident space object (RSO) pulled from a catalog. The forecasted KL-based objective 
was compared to the more traditional myopic approach as well as the Fisher information 
gain (FIG), another commonly used tasking objective. Two different orbits were evaluated 
for the RSO, the first being an eccentric orbit that provided a geometrically interesting 
measurement profile to observe the objectives' behaviors when a clear information-rich 
portion of the trajectory is available, followed by a circular orbit which lacked this geomet­
ric diversity in the measurement profiles. The results indicated that the forecasted measures 
not only operated as designed, minimizing the volume of uncertainty at the reference time, 
but also exhibited several other benefits in their performance. The resulting schedules 
took measurements at information rich points in time while also autonomously spreading 
the measurements over the rest of the time interval. Additionally, when data taken at the 
scheduled times were processed in an EKF, the average entropy of the target state estimate 
over the observation window was lower than the more traditional methods, indicating that 
guaranteeing a minimal uncertainty volume at a reference time does not necessarily sacrifice 
performance with respect to other measurement times.

Section 6 concluded with a multitarget simulation in which the focus of the inves­
tigation was placed on the two phase optimization. A linear example was given with a 
space-based observer tracking a dozen targets in the Hill frame. This scenario facilitated 
the analysis of several different optimization strategies and provided a comparison of the 
runtimes and the performances of the submodular optimization strategies to their contin­
uous counterparts. The results illustrated the reduction in the time required to achieve 
optimization convergence as well as an idea of the loss of schedule quality that can be
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expected, which was shown to be minimal. The simulation also illustrated the contribution 
of the entropy collision term in the optimization process, reducing the average coalescence 
present in the observations acquired when executing the resulting sensor schedules. A 
final case demonstrated the advantages of the two phase optimization in the presence of 
multiple observers by introducing a ground-based observer and maintaining the target state 
estimates in the Earth-centered inertial frame. As expected, coordination of the observers 
when performing a simultaneous optimization of the two objective measures, as well as 
the continuous optimization in the two phase approach, proved to be infeasible from a 
computational standpoint, while the submodular strategies afforded an achievable solution 
with small losses in performance when independently optimizing each target/observer pair 
schedule.

Ultimately, the end result was a sensor tasking policy that provides a minimal un­
certainty volume solution at an arbitrary time along with an optimization methodology that 
enables schedule robustness and optimization runtime to be tuned based on the constraints of 
the application. While the most appropriate selection of an optimization solution is problem 
specific, the prioritization of information content exhibited by the two phase optimization 
provides advantages over the simultaneous optimization of the expected KL divergence and 
target coalescence terms. When considering independent targets, the submodular strate­
gies, namely the greedy-in-observer and greedy-in-target optimization schemes, enable an 
optimizer to better navigate the objective function by reducing the dimension of the opti­
mization problem, providing better performance from both a runtime and schedule quality 
perspective.

7.2. FUTURE RESEARCH DIRECTIONS

The work presented in this dissertation explored the solutions to the questions 
posed in the introduction, though inevitably more questions were raised in the pursuit of 
the answers. This research investigated the performance of forecasting the expected KL
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divergence, but does not limit its application to this sole information divergence measure. 
Other divergences are of interest (e.g. the Cauchy-Schwarz divergence in the multitarget 
tasking problem) as other measures may be better-suited to the multitarget problem and 
may benefit from the approaches from either a tracking performance or runtime perspective. 
Additionally, the work presented here assumed sufficient a p r io r i knowledge of the targets 
to be maintained, providing relatively small uncertainties and enabling the EKF to be 
utilized in the presence of nonlinear dynamics. Future work could consider handling 
nonlinearities in other ways to make the forecasting approach accessible in applications 
with larger uncertainties. Considering different divergences or different filters may result 
in computationally expensive optimizations, but the presented optimization strategies may 
alleviate some of the computational demand if the objective remains submodular.

Further, the two phase objective function and the submodular optimization strategies 
make other investigations more accessible and enable other questions to be explored. For 
instance, in the multiobserver scenario presented in Section 6, the order in which the observer 
schedules were generated had little impact on the overall target tracking performance. Are 
there scenarios in which the problem geometry or the differences in the available sensor 
resources increase the effect of the order of a greedy-in-observer optimization? The faster 
optimization runtimes afforded by the presented schemes provide a more feasible approach 
to this and similar explorations.
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If the multitarget RFS is assumed to be an i.i.d. cluster process, Eq. (2.7) is 

substituted into Eq. (2.14) and the set integral definition in Eq. (2.8) applied to yield the 

Shannon entropy for an i.i.d. cluster RFS, which is given by

“  1 r \ n  1 n \
H [f] = — n!p(n) ^~[ s(x(k)) log n!p(n) s(x(i)) dx(1) • • • dx(n) ,

n = 0 n J X n V k =1 \ i= 1 )

where X n is the Cartesian product of n copies of the state space. Fortunately, the product 

rule of logarithms enables the decomposition of the logarithm into terms dependent upon the 

single-target spatial densities and terms dependent on the cardinality n. Thus, the entropy 

may be expressed as

H[ f  ] = -  £  jp(n) L  n  s( x (k)) log {n!p(n)}dx(1) • • • dx(n) 
n=0  ̂ JX n L k=i J i

to { * r n n n \
- Y  p(n) /  F [ s ( x  (k)) Y  log {s(x (i))} dx (1) — dx(n) .

n=o y J x n t t =1 i i = 1  >

The product of the single-target spatial densities applies a sifting-like effect; since 

each logarithm term is only dependent upon x (i), the remaining n -  1 integrals can be 

evaluated over each spatial density. The result of each of the n -  1 evaluations is unity, 

as the single-target spatial densities are taken to be valid pdfs. Therefore, only a sum of 

integrals over the target state space, X, remains, and the result is that the entropy is given 

by

H  [ f  ] = Z
n=0

p(n) log n! p(n) £n=0
p(n) s(x(i)) log {s(x(i))}dx(i) .

While the variable x(i) has been maintained up to this point to distinguish between 

the multiple integration dimensions, it is recognized that the i.i.d. assumption can now be 

used to simplify the expression by replacing x(i) with a non-indexed x since each n-tuple 

integral has been reduced to a single integral over the state space X . The result of dropping
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the index is a sum of n identical integrals, or

OO r n OO
H[f] = P(n) log {n!P(n)} [nP(n)W  s(x) log {s ( x )}dlx.

The summation in the second term is simply the definition of the mean of the cardinality 

distribution. Denoting this mean by u, it follows that

Equation (A.1) is the Shannon entropy for an RFS under the assumption that it is distributed 

according to an i.i.d. cluster process.

The expression for the Shannon entropy of an i.i.d. cluster process given in Eq. (A.1) 

can be specialized by making an assumption on the cardinality distribution. Substituting the 

Poisson cardinality distribution given by Eq. (2.5) into the entropy relationship of Eq. (A.1), 

while noting that u  = X, a closed-form solution for the infinite summation can be obtained,

(A.1)

as

OO - »n -X OO - »n

OO
(A.2)

Note that the summation can be reindexed to begin at n = 1 (as the term for n = 0 has no 

contribution), and the infinite summation converges to eX. Leveraging this in Eq. (A.2) and 

substituting into Eq. (A.1) yields

H [f  ] = X -  X log X -  X I s ( x ) log {s ( x )} d.x . (A.3)
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Solving for the spatial density in terms of the intensity function from Eq. (2.10) and 

substituting the result into Eq. (A.3), it follows that the Shannon entropy may be expressed 

solely in terms of the rate parameter, X, and the intensity function, v(x), as

H [ f ]  = X -  X log X -  I v(x) log {v(x)}dx + f  v(x)dx log X.
JX JX

The integral in the final term is replaced by recalling from Eq. (2.9) that it is simply the rate 

parameter, X; therefore,

H [f] = X -  f  v(x) log {v(x)}dx . X
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The multitarget Renyi divergence is defined to be

H (a)[p] = l o ^ T n p a (X ) 8x j  .

When X is assumed to be a Poisson RFS, the multitarget pdf in Eq. (2.4) and the set integral 

definition in Eq. (2.8) are applied to yield

H “"[ f  ] T —  log I y  -1 f  [n! p (n)s (x (1))- --  s (x ,n,)f  dx(1)--- dx ,n)
1 - a  in = 0 n ' Jx

The indices on the x (i) distinguish between the individual target integrations. However, due 

to the independence of the individual targets, these integrations can be separated and the 

indices can be dropped and replaced with a product of n integrals as

H (a)[f] = —^ l o g j  y  1  (n!)ap a(n) f  sa(x (1))dx(1) ■ ■ ■ [  sa(x (n))dx(n)j  
1 — a  l „_n n - JX JX )

l o ^  y  n! (n!)ap a(n) f  sa (x
1 — a  ln = 0 n! [Jx

sa(x)dx (B.1)

Substituting Eq. (2.5) for the cardinality distribution in Eq. (B.1) and reducing yields

H (a)[ f  ] = - ^  log {e aA y  1  f  (As(x ))adx
1 — a  l n=0 n ! LJX

(B.2)

Note that the terms under the summation are in the form of an exponential, namely

= y  -  .n !n=0

Leveraging this fact, the summation can be replaced with its closed-form solution, yielding

H(a)[f ] = —-  lo g j e 
1 -  a

1 - I —aA+fx (As(x))adx

n n

n n

ze
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As stated previously, this work utilizes the natural logarithm when computing information 

theoretic measures. Consequently, the Poisson RFS Renyi entropy becomes

H<a>[ f  ]
1

1 -  a
-  aA + {As<x))

JX
d x

From the definition of the intensity function for a Poisson RFS in Eq. (2.10), the Renyi en­

tropy is given in terms of the rate parameter, A, and the intensity function, v(x>, to be

H <a>[f] = - / E  + _ E  f  va<x)dx .
1 -  a  1 -  a  X
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