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ABSTRACT

Connectivity with large coverage area; and an increase in spectral efficiency of com­

munications are highly desired features for any wireless network. The presented research 

work addresses these two feature improvements. First, the work analyzed mesh networks 

to enhance connectivity for wireless networks. The work analyzed both homogeneous and 

heterogeneous mesh networks. The work includes the development of an Android applica­

tion to enable smartphones with multiple interfaces, such as Wi-Fi, Bluetooth, and cellular 

services, to become convergence devices. These convergence devices are then used to build 

a heterogeneous mesh network improving connectivity and coverage area. Second, the 

work explored full-duplex communications, which can achieve twice the spectral efficiency 

achieved by existing half-duplex communications. A novel method was proposed to address 

the estimation of self-interference, besides the estimation of the communication channel. A 

system model was proposed and the performance limits of the estimators was determined. 

Both flat fading and frequency selective channels are used in this analysis. An experimental 

analysis was performed on the USRP family of devices in full-duplex communication. The 

internal leakage which manifests as internal self-interference in full-duplex operation was 

characterized across the operating frequencies of each device. Finally, the work analyzed 

the usage of learning techniques to improve channel estimations. The work explored two 

potential applications. First, the selection of a channel model from a poll of existing models; 

to match the dynamic channel conditions. The target learner was proposed for this dynamic 

selection. Second, to estimate the data which are missed not at random at the reception, 

and proposed to estimate these missed data using simple random imputation.
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SECTION

1. INTRODUCTION

1.1. MOTIVATION

In the present digital way of living, wireless devices play an integral role in con­

necting us with others in and around the world. Their penetration in our life extends to 

our home, office, transportation, etc. shows how much we are dependent to these devices. 

They help us connect with each other, navigate us to our destination, property surveillance, 

and effectively managing different systems in our home improving power efficiency. One 

key attribute of these devices’ success is their ability to connect to each other and form a 

network. Earlier these networks are wired with a physical link between them, but these 

days more and more devices connect to each other wirelessly with no need for a physical 

link between them. This migration to wireless networking brings many advantages and 

challenges. Since there is no need for a physical link, there is less infrastructure required to 

establish these networks. Thus, enabling the network to scale rapidly. The wireless network 

plays a key role in bringing high-speed Internet connections to rural areas where the invest­

ment in physical infrastructure is not economical. With the ease in scalability, the network 

faces a challenge in reliability and resilience. The physical link provides reliability and 

resilience to the network under multiple adverse conditions such as weather, cyber-attack. 

In contrast, the wireless network communicates in the open environment vulnerable to all 

kinds of attacks from outside such as a denial of service, man in the middle attacks.
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The scalability of the network puts forth a key challenge which is supporting all the 

devices with enough bandwidth with no interruption. A network successfully scales when 

no device in the network waits for more than a standard time to communicate with others. 

The wait duration is dictated by the protocol standard of the interface used by these devices.

1.2. OBJECTIVE

The presented research work focuses on these challenges, to build a scalable network 

with the efficient use of the limited spectrum available across devices in the network. 

Most existing networks or homogeneous where all the devices in the network using a 

single interface to communicate with each other such as Wi-Fi, Bluetooth, Zigbee, cellular 

data service (LTE). These interfaces operate independently, and most commonly they are 

proprietary. For example, the home and office network uses Wi-Fi or Bluetooth, the most 

personal network uses Wi-Fi or cellular data service. Since they operate independently, 

communication across these devices does not occur, limiting only to the devices with the 

common interface. Mesh networking is one of the solutions to improve the scalability 

of the wireless network. The present home and office network is scalable using mesh 

networking. Most existing mesh networks are all also homogeneous using a single interface 

such as Wi-Fi, Bluetooth, Zigbee, cellular data services (LTE). As the number of devices 

increases in a homogeneous mesh network, the scalability is limited by the protocol standard 

of the interface used. A heterogeneous mesh network can address this hard limit with 

multiple interfaces seamlessly interacting with others across the network. The convergence 

devices are key to a heterogeneous mesh network. These convergence devices have multiple 

interfaces capable of transferring information from one interface to another.

In the presented research work, the analysis was performed on a homogeneous Wi­

Fi mesh network and the development of convergence devices to build a heterogeneous 

mesh network. These analyses are useful in building a desired wireless network. A mesh 

network on itself does not address all the desired properties. In a mesh network, the nodes
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split the bandwidth over multiple devices and hops, and suffers interference, such as a 

hidden terminal, among the nodes while operating on a longer range. The deployment 

of full-duplex communication which potentially doubles the available bandwidth and also 

addressing interference among the nodes in the network. The performance of the proposed 

full-duplex method depends on the particular channel model and not effective for a more 

dynamic channel. The last sections of the present works explored the usage of the target 

learner as a middle ground between a fixed channel model and a deep neural network.

Connectivity
Wireless Mesh Networking

Paper 1: Performance of IEEE 802.11s for Wireless Mesh Telemetry Network 
Paper 2 : Convergence Communication over Heterogeneous Mesh Network for 

Disaster and Underserved Areas

Spectral Efficiency
Full-Duplex Communication

Paper 3 : Measurement of Internal Self-Interference of USRP Family of Devices 
in Full-Duplex Operations

Paper 4 : Transmitter Leakage Analysis When Operating USRP (N210) in 
Duplex mode

Paper 5 : Channel Estimators for Full-Duplex Communication using Orthogonal 
Pilot Sequences

Learning
Channel Estimation Improvement

Paper 6 : Targeted Learning for the Dynamic Selection of Channel Estimation 
Methodology

Figure 1.1. Categories and organization of the publications presented.
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The target learner samples the incoming signal and chooses a channel model from 

a pool of channel models to match the dynamic channel. Besides, the presented work 

modeled the targeted interference channel as a response to missing data not at random. 

Thus, combing a mesh network with full-duplex communication aided by the target learner 

yields a most desirable wireless network.

The publications are categorized and organized as shown in the Figure 1.1 for the 

presented work. The works in each contributes to different features such as connectivity, 

coverage area, scalability and high bandwidth for the envisioned wireless network.
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PAPER

I. PERFORMANCE OF IEEE 802.11S FOR WIRELESS MESH TELEMETRY
NETWORKS

I. Nathan D. Price, II. Aral Mathi Maran Chandran, III. Kurt Kosbar, IV. Maciej

Zawodniok

Department of Electrical & Computer Engineering 

Missouri University of Science and Technology 

Rolla, Missouri 65409

Email: ndp43@mst.edu, ac62f@mst.edu, kosbar@mst.edu, mjzx9c@mst.edu

ABSTRACT

Wide area sensor networks have numerous agricultural, industrial, scientific, medi­

cal, and military applications. For many years now, such networks have been implemented 

through wireless mesh networks. As wireless mesh networks have come to maturity, several 

network standards have become readily available. The WiFi mesh extension 802.11s was 

finalized in 2008 and officially adopted into the 802.11 standard in 2012, is extremely inter­

esting thanks to the wide spread adoption of WiFi and low cost. In this paper, we evaluate 

the performance of a small 802.11s network implemented on low-cost, off-the-shelf single 

board computers for the purpose of building a telemetry sensor network.

Keywords: IEEE 802.11s

mailto:ndp43@mst.edu
mailto:ac62f@mst.edu
mailto:kosbar@mst.edu
mailto:mjzx9c@mst.edu
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1. INTRODUCTION

A number of developments have lead to the realization of cost effective wireless 

mesh networks. A tremendous amount of wireless mesh research Sarangapani (2007) over 

the last 20 years has culminated in a number of standardized wireless mesh protocols. The 

cost of computing has declined to the pint that requirements required for this project can be 

had for as little as $5. The widespread adoption of wireless computing such as WiFi has 

allowed for commodity pricing of the necessary wireless hardware. Additionally, the open 

source community generously provided an implementation built into the Linux operating 

system.

Despite those advancements, the adoption of mesh networking is slow. The main 

challenge is the understanding of limitations and practical constraints that a multi-hop, 

mesh network faces in realistic deployment. Some researchers Alam et al. (2012); Elahi 

et al. (2012); Imboden et al. (2012); Rethfeldt et al. (2016); Wang et al. (2010) have 

evaluated WiFi based mesh test beds and identified some weaknesses including effects of 

TCP algorithms, network topology, and payload length. However, many of these findings 

are limited in that the performance data is only applicable to that test environment. For 

example, a loss of 1 Mbps in performance is significant if the maximum throughput of the 

channel is 11 Mbps but is insignificant if the maximum throughput is 300 Mbps. In contrast, 

this paper presents analysis of the performance from an experimental setup and compares 

them to benchmarks made in the same environment. Wireless mesh networks (WMNs) 

have several advantages over traditional infrastructure based 1 wireless networks. The 

most notable advantage that a WMN has over a traditional wireless network like a cellular 

network or traditional infrastructure-mode WiFi is that it requires no central infrastructure 

to manage and relay communications. Each wireless device communicates directly in an 

ad-hoc or peer-to-peer fashion and can forward traffic on behalf of another device when
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no direct route is present. This makes WMNs cheap to operate as they don’t require extra 

infrastructure beyond the client devices themselves. Should an individual route or neighbor 

device fail.

WMNs generally possess the ability to re-route traffic. This makes WMNs extremely 

robust as they generally don’t have a single point of failure.

2. BACKGROUND

One of the distinguishing features of WMNs is the ability to relay and route traffic. 

WMN routing schemes fall somewhere between two paradigms of routing: proactive routing 

and reactive routing Sarangapani (2007). In proactive routing each STA proactively creates 

and maintains routes. The benefit of proactive routing is that there is no time wasted setting 

up a route prior to its use, however there is the constant overhead of maintaining routes that 

scales with the size of the network. On the other hand, reactive (on-demand) routing creates 

routes as required. By contrast, reactive routing has the benefit of low overhead, but incurs 

a setup time penalty before a route is used.

3. IEEE 802.11S

802.11s adds new type of network, a Mesh Basic Service Set (MBSS), to the 

WiFi standard. Both the MBSS and Basic Service Set (BSS) commonly referred to as an 

ad-hoc mode WiFi network posses no central access point unlike traditional infrastructure- 

BSS networks. STAs in a BSS can communicate only with other STAs in range of direct 

communication. An MBSS network distinguishes itself from a BSS network in that its STAs 

posses the ability to route and forward traffic in the data link layer (i.e. layer 2 of the OSI 

model) 802.11s (2011); Carrano etal. (2011). In the past, multi-hop routing schemes such 

as AODV, OLSR, DSDV, DSR, B.A.T.M.A.N., etc BATMAN (2017); RFC3561 (2017);
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RFC3626 (2017); RFC4728 (2017). have been designed and implemented for BSS networks 

though only through the use of network layer (i.e. layer 3 of the OSI model) routing and by 

violating the principal of strict layer separation Kawadia et al. (2002).

MBSS networks contain three different types of STAs: mesh stations (mesh STAs), 

mesh access points (MAPs), and mesh gates. A mesh STA differs from a normal STA in 

that it has the ability to forward traffic to and from other STAs and perform path discovery. 

A MAP is a mesh STA and acts as a WiFi access point that can bridge standard STAs into 

the mesh network. A mesh gate is an STA that provides access to an external network (i.e. 

Internet access). None of the three new types of STAs are mutually exclusive meaning a 

mesh STA can serve multiple roles simultaneously.

3.1. MAC LAYER

Like traditional WiFi, 802.11s uses the distributed coordination function (DCF) 

mechanism for channel contention but adds a its own unique extension called mesh coor­

dination function (MCF).Recall from 802.11 that DCF is a carrier sense multiple access 

with collision avoidance (CSMA/CA) based MAC layer. The MCF extension to DCF can 

operate operate in both a contention mode using the enhanced distributed channel access 

(EDCA) and a contention free mode called MCF controlled channel access (MCCA). In 

this contention free mode, mesh STAs use EDCA to bid for time slots. Then the mesh STAs 

can operate in a contention free mode similar to an infrastructure BSS.

3.2. HYBRID WIRELESS MESH PROTOCOL

For routing, 802.11s uses a routing scheme that is a combination of proactive 

and reactive routing techniques aptly named the hybrid wireless mesh protocol (HWMP). 

HWMP is most similar to the reactive routing scheme called the ad-hoc distance vector 

(AODV) protocol 802.11s (2011); Carrano et al. (2011); RFC3561 (2017), however it also
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incorporates proactive techniques. The process of path discovery in AODV takes place 

via path requests (PREQ) and path replies (PREP) messages. To establish a route from a 

source STA to a destination STA, a source begins by broadcasting a PREQ. This PREQ 

contains the address of the original source and destination as well as a hop counter. When 

a PREQ is received by an STA that a is not the destination the hop count is incremented 

and the PREQ is rebroadcasted. Each forwarding STA records a reverse route (destination 

to original source) via the previous, PREQ-forwarding STA. In this way, a reverse route is 

created in steps from the destination to the original source as the PREQ is relayed forward.

Once the PREQ is received by the destination a reply process begins. The destination 

first responds with a path reply (PREP) message. The PREP gets relayed along the reverse 

route established by the PREQ. As the PREP propagates back toward the original source, 

a forward route (original source to destination) is established via the previous, PREP- 

forwarding STA. In an identical fashion to the PREQ, each STA increments a hop counter 

contained in the PREP message until it reaches the original source. Since a PREQ is 

broadcasted, it is likely that a destination STA will receive multiple copies of the PREQ 

each having traveled a different route to the destination. The destination STA replies to the 

PREQ with the lowest hop count. Each STA tracks its routes via a timer to detect breaks. 

When a route is used the timer is reset. Should a route timer expire (a route break), a 

path error (PERR) message is sent backward to all STAs on the route before break. Path 

discovery must take place again before further communication with the destination STA of 

a broken route. HWMP differs from AODV in the use of the Airtime Link Metric (ALM). 

The ALM takes the place of the hop counter in PREQ and PREP messages. The ALM is 

an estimation of amount of time required to send one frame between two STAs. Before 

forwarding a PREQ or a PREP, an STA will calculate the ALM between itself and the 

previous STA and add this number to accumulated sum in PREQ or PREP. The destination 

STA is likely to receive several copies of the same PREQ hence it will reply only to PREQs 

with the lowest accumulated ALM.



10

HWMP introduces three proactive routing modes and three types of proactive routing 

messages respectively. The new types of routing messages are the root announcement 

(RANN) message, the gateway announcement message (GANN), and proactive PREQ. 

STAs serving as a gateway can be configured to send a GANN on a periodic basis. The 

GANN is processed like a PREQ to create a route from a STAs to the mesh gate, but GANNs 

are not replied to. This allows STAs in the mesh to maintain an active route to external 

networks via gateway STAs and keep ALMs up to date. Alternatively, STAs (including 

gateways) can be configured as a root. Root STAs periodically broadcast RANNs to all 

STAs to maintain an active routes between themselves and all other STAs in the mesh. If an 

STA receives a RANN and the ALM contained in a received RANN is better than its stored 

metric, the STA will initiate path discovery with RANN-sending, root STA. Any STA, for 

example an STA with an important network resource, can be made a root STA. Finally, 

root nodes can be configured to send proactive PREQs periodically. Proactive PREQs are 

the same as PREQs except the destination address is set to all ones. STAs may optionally 

reply with a PREP, or they may be compelled to reply depending on configurable flags in 

the proactive PREQ.

3.3. AIRTIME LINK METRIC

The ALM uses frame error rate ef to weight the estimated time needed to transmit 

each frame. If the success or failure of each transmission is thought of as a sequence of 

Bernoulli trials, Equation (1) resembles the expected value for a geometric distribution.

1 _ 1 _ 1
1 — ef 1 — q p

(1)

Ca
Bt+

1
1 — ef (2)r
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Thus the ALM seen in Equation (2) is simply the expected number of transmissions times 

the time needed for each transmission. The value O is the overhead time generated from 

frame headers, error checking, etc. relative the current configuration of the physical layer 

(e.g. bits per symbol, coding rate, etc.). The second term ^  is simply the maximum frame 

size Bt (i.e. 8192 bits) divided by the current data rate r.

M I N _ i  E I , j  E Jca (i , j ) x l3 (3)

Equation (3) represents the total ALM seen by an STA for a particular route. The Xj  is a 

boolean value indicating if the route made a single hop from from STA i to STA j  thus the 

final ALM is the of the summation of ALMs across all single hops taken. HWMP keeps the 

route with lowest ALM for any particular destination. Since the ALM is calculated in units 

of time and since HWMP uses the route with the total ALM, ALM is therefore an attempt 

at a latency optimized routing.

4. TESTING METHODOLOGY AND EXPERIMENTAL SETUP

Our network consisted of inexpensive single board computers (SBC) and inexpen- 

siveWiFi adapters. Our single board computers consisted of 4 Raspberry Pi 2s and 2 

Raspberry Pi 1s running the Raspbian Linux distribution (kernel version 4.4). Our WiFi 

adapters were USB connected and based on the Atheros AR9271 chipset. Choice of WiFi 

adapter was made carefully as not all adapters currently support 802.11s mode. The adapters 

were configured for 20 MHz channels in high throughput mode allowing for up to 75 Mbps 

of throughput theorpacetically. A summary can be found in Table 1.

The presented work focuses on experimental performance evaluation ofWiFi-based 

mesh networking. A set of end-to-end metrics were gathered on our demo network for TCP 

and UDP performance using the open-source tool IPerf3.
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Table 1. Hardware and software configurations.

Hardware Setup

SBC Raspberry Pi 1 & 2

WiFi Adapter Atheros AR9271 chipset

Channel Ch1 - 2.412 GHz

Bandwidth 20 MHz

Mode High Throughput (802.11n)

MIMO Configuration 1 x 1

Distribution Raspbian Jessie

Kernel Version v4.4

IPerf3 v3.0.7

For TCP, throughput and retry count were recorded, and for UDP, throughput, jitter, 

and packet loss were recorded.

Figure 1. Mesh network in the campus.
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A random cluster topology was used for the primary experiment. The cluster 

features 5 data generating STAs running the IPerf3 client that were placed placed at various 

angles and distances relative to a gateway STA running the IPerf3 server. Depending on 

the application each STA potentially could contain a sensor platform gathering multiple 

channels of data. In this scenario, multiple flows of data (i.e. one per STA) were relayed 

to the gateway STA that could represent a local server, a connection to a cloud-server, etc. 

This experiment was conducted on our campus green with STAs placed directly on the 

ground.

Figure 2. Placement of nodes in the park to test individual hop metrics.

A secondary, linear topology was used to gather performance figures that could be 

used as a benchmark. STAs were arranged in a line with equal spacings. Routing was 

set statically so that each node could communicate only with its one-hop neighbor(s). A
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single data flow was generated and relayed across varying numbers of hops. Testing was 

repeated with 10 m, 15 m, 20 m spacing. Results from this test can be used a relative ceiling 

for performance. This experiment was run once on the same campus green and once in a 

nearby park both with STAs placed directly on the ground.

5. RESULTS

This section presents the results of the experiments namely the cluster topography 

and the staticrouting, multi-hop benchmark at both locations. Table 2 and Figures 3 through 

6 show the results from the mentioned experiments.

Table 2. Iperf3 TCP results.

STA Distance from the Gateway 

(m)

Throughput

(bits/s)

Retries

2 27.5 1.10 M 202

3 25 966 K 159

4 15 902 K 141

5 19 756 K 142

6 12 748 K 179

The performance observed in the cluster topography are reasonable despite low 

numbers. Figure 3a shows the maximum single-hop single-flow performance to be about 

4.1 Mbps. After review routing tables on each STA, we observed that all STAs were 

using a single hop route to connect to the gateway. With that in mind the best expected 

performance for each STA is roughly 1/5^ of the maximum single-hop, single-flow speed 

(i.e. 0.82 Mbps). The throughput values in Table 2 are near 0.82 Mbps.
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Plots from Figures 3 through 6 show similar trends across multiple hops. Maximum 

throughput was achieved in the park scenario in contrast to the campus scenario. The 

primary difference between these two scenarios was that there was noWiFi activity on
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channel 1 in the park whereas there was a campus network active on channel 1. The campus 

network likely introduced additional channel contention that reduced performance of the
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mesh. The number of retires in both scenarios show a peak at two hops. There are multiple 

factors that may have contributed to this trend including but no limited to the distance 

covered, the hop number, the topography, and/or WiFi’s physical layer configuration.

During our testing, we found IPerf3 to be an unreliable tool for measuring UDP 

performance in a wireless mesh network. IPerf3 does not throttle UDP data generation 

automatically like TCP. This would require the user to manually identify the throughput 

maximum throughput by trialand-error. An overestimation resulted in IPerf3 crashing 

whereas a underestimated value did not result in the maximum throughput. The trial-and- 

error result was not reliable across multiple trials. Additionally, IPerf3 failed to establish a 

link with the server when throughputs dipped below approximately 200 Kbps which is why 

in Figure 4 there are data points missing.

6. CONCLUSION

In this paper we evaluated the performance of a small demo mesh network built 

using 802.11s. Our goal for this paper was to provide context for such performance figures. 

The maximum throughput in our multi-flow scenario comprised of five flows of data was 

1.10 Mbps and the minimum was 745 Kbps. The maximum throughput achieved in a 

single-flow, single-hop, activity-free, WiFi channel was 12.2 Mbps whereas 4.2 Mbps was 

achieved in an active WiFi channel. When compared against our single flow metric we 

found the multi-flow results to be reasonable. We believe 802.11s a network has place in 

telemetry systems.

In our paper we found IPerf3 to be an inadequate tool for measuring UDP perfor­

mance in a mesh network. In future work, we hope to incorporate better tools. Due to the 

small size of our network, we did not observe any multi-hop routing. We would also like to 

increase the scale of the network so that we may make observations related to routing and 

routing techniques.
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ABSTRACT

The existing data service providers have gaps in their connectivity, especially in 

disaster and remote underserved areas. A mesh network can address this shortcoming by 

providing Internet access to devices outside the coverage area with the help of other nearby 

devices. Mesh networks are homogeneous using a single interface across the network and 

require large-scale deployment of proprietary devices. We propose to build a heterogeneous 

mesh network using various interfaces such as Wi-Fi, Bluetooth, and cellular data services to 

connect devices. These interfaces are available in devices such as smartphones, laptops, and 

home automation devices and have the potential to be a convergence device. We present an 

Android application enabling devices with various interfaces to become convergence devices 

and build heterogeneous mesh networks to address the shortcoming of the existing wireless 

ISP services. We target this prototype implementation to provide a tactical communication

mailto:ac62f@mst.edu
mailto:mjzx9c@mst.edu
mailto:aphillips@sitepro.com
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link in disaster zones, enabling the public to build the network and send a life-critical distress 

signal calling for help. The proposed implementation achieved an average throughput of 

1 Mbps with multiple hops and through Wi-Fi, Bluetooth, and cellular data service. 

Keywords: Heterogeneous Mesh Network, Wi-Fi, Bluetooth, Cellular data services, Con­

vergence devices, Tactical communication

1. INTRODUCTION

The Internet has become a part of our daily lives, providing the latest news, weather 

forecast, commute information, and keeping people connected. The public accesses the 

Internet through Internet service providers (ISPs) either by a physical link or a wireless 

connection. In general, people use a physical link when they are in home and a wireless 

cellular link when they are out. The deployment of cellular data services is not uniform 

across any given geographical area. There are gaps in the network where there is no 

connectivity to the Internet. These shortcomings are due to the lack of infrastructure, 

which requires the deployment of base stations to provide data services. In urban areas, 

the lack of infrastructure can be due to commercial interests and strategies by the data 

service provider(s). In contrast, in rural areas, it is due to economic feasibility to build the 

infrastructure and get returns from it. Despite an area being urban or rural, during emergency 

events such as natural calamities, power outages can cripple existing infrastructure leaving 

the affected area disconnected from relief efforts. A mesh network can address this 

shortcoming by restoring connectivity across the disaster area.

A mesh network establishes a link to the Internet through multiple hops/links using 

nearby devices. These multi-hops use a single interface and form a homogeneous mesh 

network. However, it is difficult to find nearby devices with a common interface to establish 

a link to the Internet. The realistic approach in finding nearby devices and getting access 

to the Internet is by using different interfaces across the network. It requires a framework
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Figure 1. Heterogeneous mesh network connecting the disaster zone to emergency services.

to integrate different interfaces and communicate with each other becoming a convergence 

device. Convergence devices are important in building the proposed heterogeneous mesh 

network.

A convergence device has different interfaces that seamlessly communicate with 

each other passing the messages from one to other(s). Most devices have different interfaces 

which operate independently and do not interact with each other. For example, Bluetooth 

streaming music to headphones or transfer files while Wi-Fi and cellular data service 

providing Internet access. These devices have the potential to become a convergence device 

to harness their capability to build a heterogeneous mesh network and bridge connectivity 

to gain Internet access. For example, Figure 1 shows a disaster zone where cellular data
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service is down. The devices in the disaster zone communicate through different interfaces 

and do not have access to the Internet since the data service has been knocked down. 

They built a heterogeneous mesh network using these devices to reach the first responder’s 

station to call for help. The data traffic from different users in the disaster zone reached the 

destination (emergency services) by hopping through different interfaces in the network. 

Other application sites suitable for heterogeneous mesh networks are campsites, RV parks 

where Internet access is available at one spot, typically in the visitor center.

The proposed implementation is an application developed in the Android platform 

that enables smartphones to become convergence devices and use them to build a hetero­

geneous mesh network. The server receives the messages from different users that hops 

across the network through multiple different interfaces.

2. RELATED WORKS

There are various proposals and demonstrations available to provide and extend 

coverage to remote underserved areas using high-altitude balloons, solar-powered drone, 

satellite, power lines, high range Wi-Fi antennas, mesh network. Project Loon flies high- 

altitude balloons to create a network in the sky and provides access to anyone on the ground 

by establishing a connection to anyone of their balloons Loon LLC. (2017). Similarly, 

project Aquila uses a fleet of solar-powered drones and provides communication within a 

60-mile diameter under each drone Mark Zuckerberg (2016). Broadband over Power Line 

(BPL) uses the existing power line to provide broadband services to remote areas Mah- 

mood et al. (2019). All these proposals require the deployment of proprietary equipment 

and require investment for both initial deployment and maintenance of the infrastructure 

supporting the network.

Recently, mesh network has gained interest in both research and commercial areas, 

due to its ease in bridging network gaps in terms of connectivity. There are different methods 

proposed to build a temporary mesh network and evaluate their performance for disaster
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area Dey et al. (2017); Ferranti et al. (2019); Miura et al. (2013); Ngo et al. (2013); Sugita 

et al. (2015). IBM/Weather Channel partnership demonstrating a weather alert system 

using a homogeneous mesh network built using smartphones The Weather Company - 

IBM (2017). Meanwhile, proprietary consumer products are available, which builds a 

proprietary mesh network providing connectivity goTennaMESH (2008). In contrast, the 

presented application does not require any new devices and not limited to a single interface 

for transmission. It can be installed to existing smartphones and harness the benefits of 

their various interfaces to build a heterogeneous mesh network.

3. OVERVIEW

The objective of the presented application/implementation is to enable the devices 

with different interfaces to become a convergence device, and aid in the formation of a 

heterogeneous mesh network to establish access to the Internet. The current prototype 

is limited to sending messages with other critical information of the user, such as name, 

location coordinates, and timestamp. The application is tailored to aid victims in a disaster 

zone, enabling the victims to call for help even when all data services are down. The network 

built by the application is called “NEED” (Network for Emergencies, Evacuation, and 

Disaster). The NEED consists of smartphones with our application and a web server. The 

web server is the destination for all the messages sent by the users. The message packets 

hop across the network through multiple different interfaces until it finds the devices with 

Internet access and then sent to the server. In case there is no Internet access to any device 

in the network, the application acts as a chat application allowing users connected to the 

network to communicate by text.

The first step of the application is to enable the smartphone to become a convergence 

device such that it can communicate through different interfaces. The application uses 

Android APIs to access Wi-Fi and Bluetooth adapters. The Wi-Fi connections can be 

operated in both infrastructure mode and Wi-Fi direct.
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The design and implementation of the application to build a heterogeneous mesh 

network posed several challenges. First is enabling smartphones to be convergence de­

vices. To achieve convergence, different interfaces should be able to seamlessly relay their 

packets. Each interface has its wireless protocol posing a unique challenge since these 

protocols are not designed to interact across different interfaces. The application acts as a 

middleman to route messages across different interfaces available as shown in Figure 2 and 

maintains compliance with different wireless protocols.

Application Layer - Em ergency Services (ES) App

l i
, MAC/Physical layers

Figure 2. Interaction of different interfaces at the application layer.

Second is the bottleneck created due to the nature of the mesh network. For 

example, consider the heterogeneous mesh network shown in Figure 1. The capacity of 

each link in the network is not the same. For example, the capacity of Bluetooth and IoT 

links is less than the capacity of the Wi-Fi, and this can create a bottleneck affecting data 

traffic. Routing algorithms can address this bottleneck by finding alternative routes without 

affecting existing traffic. In disaster scenarios, communication is more tactical where the 

delivery of the message is more valued than the size of the message.
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Finally, the implementation of the envisioned application in the Android operating 

system as its challenges. APIs of different interfaces, services should work fully compliant 

with each other. The restriction from the existing APIs limited the application feature and 

the mode of its operation. For example, the Bluetooth APIs from the Android library does 

not allow the application to establish a secure connection with other devices without the 

user’s approval each time when it finds a peer which is not compatible with the feature of 

the application. The application should not continuously be prompting the user’s approval 

while establishing the connections, which inhibits the flow of the process and potentially 

annoy the user who is already in distress. The trade-off was achieved by configuring the 

Bluetooth adapter to the insecure mode, which does not prompt user approval for each link 

established. The user data can be protected from being compromised due to the insecure 

mode by adding encryption to the user data.

4. RESULTS

In this section, we discuss briefly the application usage and different interfaces, in 

addition to the test environment and results.

The application begins with the registration. During registration, the application 

prompts the user’s information, which is stored for identification when they are connected to 

the network. After successful registration, the user can start the service anytime to join and 

assist the traffic through the network. The users are not obligated to run service, and there 

is an option available to turn on and off the service to participate in the network whenever 

he/she desires.

Figure 3 shows the home page from which messages are sent. All the messages 

from the users in the network are sent to the server. The messages from different users 

are displayed on a map pinned to their location through a web interface. This comes handy
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for the first responders to locate the victims and have more knowledge about the victim’s 

condition from their distress messages. Figure 4 AmpliSine Labs LLC (2018) shows the 

web interface indicating the user’s location with his/her distress message.

Figure 3. Message sent to server in device with the Internet access.

Figure 4. Received message displayed by NEED website AmpliSine Labs LLC (2018).
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The messages from the network reach the server when at least one user in the network 

has Internet access. When none of the users has a connection to the Internet, the messages 

do not reach the server and the web interface does not help in the relief mission. However, 

the first responders can connect to the network and receive the messages which are being 

relayed and start communicating similar to a chat application. Figure 5 shows how two 

users, Tom and Ryan (First responder) can communicate without the Internet.

(a) User Tom Page. (b) User Ryan Page.

Figure 5. NEED chat between users when there is no Internet available.

The selection of various interfaces is performed without any notification to the user. 

The application turns on all available interfaces (Wi-Fi, Bluetooth) with initial approval 

from the user when launched.
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The messages are sent to the interface with Internet access. If none of the interfaces 

have Internet access, then the messages are sent through both Wi-Fi and Bluetooth.

Figure 6. Topology of the test environment (placement of devices are not to the scale).

Figure 6 shows the topology of the test environment comprising five smartphones 

and a Wi-Fi router (IEEE 802.11g, AP mode, 2.4 GHz - channel 6) without Internet access. 

The smartphones used are from different manufactures with varying specifications (low- 

end to high-end). The devices form a heterogeneous mesh network where the messages are 

relayed to the server through Wi-Fi, Bluetooth, and cellular data service.

Table 1 lists the performance metrics measured at the terminal node of the network 

for the considered topology. The network traffic is measured when relaying to the server. 

The network traffic was measured using the Profiler from Android Studio. The traffic was
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Table 1. Performance metrics measured for the considered topology.

Number of hops (tested) 5

Average distance between the devices 30 feet

Network traffic at the terminal device 1 Mbps

monitored at the final link, which has the link to the Internet. The maximum length of the 

message is 120 characters. The network achieved a throughput of 1 Mbps on average over 

different trials. The network bottleneck was observed at smartphones with low specifications 

and Bluetooth links.

Table 2. Comparison of average throughput achieved by homogeneous and heterogeneous 
links in the network.

Only Wi-Fi links 1.24 Mbps

a Wi-Fi and a Bluetooth link 1.53 Mbps

The average network traffic was measured with only Wi-Fi links and a combination 

of Wi-Fi and Bluetooth across two hops involving three devices. Table 2 shows the average 

throughput achieved by both the configurations and shows that the heterogeneous links 

achieve throughput greater than the homogeneous links in the network. The results from 

Price and Chandran (2017) show that in a Wi-Fi mesh network, throughput decreases as 

the number of hops increases since the bandwidth is split equally among the devices. Both 

Wi-Fi infrastructure and peer-to-peer modes require an access point or a group owner, which 

limits the number of hops. This limitation inhibits a homogeneous Wi-Fi mesh network to 

expand and provide coverage to more devices. A heterogeneous mesh network addresses 

this by allowing multiple Wi-Fi mesh networks connected by Bluetooth or Zigbee and also 

allowing the devices to operate in different Wi-Fi channels.
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5. CONCLUSION

We implemented an Android application enabling smartphones to become conver­

gence devices to build a heterogeneous mesh network. The messages from different devices 

hopped through Wi-Fi, and Bluetooth across the network. The network achieved an average 

throughput of 1 Mbps. We also developed a web server application to collect the messages 

and plotted on the map based on the location coordinates from the messages. Any device 

with access to the Internet could forward the messages from the network to the server. The 

app provides a chat functionality among members of the mesh when there is no Internet 

access. We planned to add more features such as caching, routing, and authentication to 

improve the performance and security of the network.
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ABSTRACT

It is always been desirable to operate radios in full-duplex (FDX) mode to harness 

the maximum spectral efficiency despite the challenges it puts forth. Before validating 

any FDX schemes using a radio, we should know the characteristics of the radio in FDX 

operation. In this paper, the results from the measurement are presented for a set of widely 

used software-defined radio (SDR) platform, universal serial radio peripheral (USRP) such 

as N210, B210, and E310. The measurements includes the measurement of internal leakage 

suffered by these radios, operational range of transmitter gain to operate in FDX mode and 

their limitations. The internal leakage suffered by the USRPs is not uniform and varies 

across the family of devices.

Keywords: Full-Duplex (FDX), Self Interference (SI), Software defined radio (SDR), 

Universal Serial Radio Peripheral (USRP), N210, B210, E310, GNU Radio

1. INTRODUCTION

In the field of telecommunications, new methodologies and techniques are proposed 

to address the increasing demand in bandwidth and support the growing number of users. 

One of the parameters of interest that can be improved to address the demands is the

mailto:ac62f@mst.edu
mailto:mjzx9c@mst.edu
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spectral efficiency of the radio. The spectral efficiency of the existing half-duplex (HDX) 

mode of operation is less than fifty percent since the radios take turns to transmit and 

receive. The spectral efficiency can be doubled by operating the radios in full-duplex 

(FDX) mode. In FDX, the transmission and the reception occur simultaneously. However, 

FDX presents a set of challenges. Self-interference (SI) is a key challenge that inhibits the 

radios to operate in FDX. During FDX communication, the transmitter signal overwhelms 

the highly sensitive receiver due to a significant difference in power levels. For example, 

the maximum signal strength that USRP N210 can transmit is +20 dBm (100 mW), which 

is large compared to its typical receiver sensitivity of -100 dBm (10-10 mW). SI occurs at 

two levels: external and internal to radio electronics. The direct feedback and reflections 

from the environment contribute to the external SI, whereas the internal SI is due to the 

leakage or RF coupling across internal components including printed circuit board (PCB), 

cables, circulators, switches, etc. as shown in Figure 1. The internal SI is prevalent in 

radios which multiplex its antennas or employing any switching interconnection between 

the transmitter (TX) chain and receiver (RX) chain. It occurs due to the lower isolation 

offered by multiplexing components such as couplers, switches. The internal SI is commonly 

observed in most SDR since they use multiplexing switches on their RF ports.

Figure 1. Radio suffering external SI during FDX operation.
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SDR popularity is due to the ease in the development and reconfiguration of the 

radio modules Dominicis etal. (2012); Ghannouchi and Kwan (2015); Lahouli etal. (2014); 

Muradi et al. (2018); Shahin et al. (2013); Voet and Moer (2011). It is used in research 

for the rapid development and evaluation of new schemes and approaches. It is suitable for 

applications that demand flexibility and radio reconfiguration. There are different varieties 

of SDRs available in the market. USRP Ett (2018) is one such SDR platform. USRPs 

find their application in different fields such as research, monitoring, networking, cognitive 

radios, etc.

There are families of USRP products such as N210, E310, B210, etc. These devices 

have different capabilities, performance, and features. USRPs have at least two RF ports; one 

for transmission and other for the reception, allowing USRPs to operate in FDX mode. Table 

1 tabulates the operating range of frequencies and available RF ports for different USRPs. 

These USRPs uses RF switches to multiplex their RF ports for transmission and reception. 

The metrics consider for the self-interference characterization are receiver leakage power, 

the cross-correlation between the transmitted and received signal. Understanding USRPs' 

capabilities and limitations for its FDX operation is a prerequisite for employing these radios 

to validate different schemes.

Table 1. Specification of different USRPs.

USRP Frequency Range RF ports RF Switch

N210 50MHz to 2.2GHz TX/RX & RX2 HMC174MS8

B210 70MHz to 6GHz
A: TX/RX & RX1 
B: TX/RX & RX2 SKY13335-381LF

E310 70MHz to 6GHZ
A: TX/RX & RX1 
B: TX/RX & RX2 SKY13373-460LF
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USRPs are used as testbed to evaluate different schemes related to telecommunica­

tion Alexandris et al. (2014); Dobre et al. (2016); Guo et al. (2018); Hussain et al. (2016); 

Ridwan et al. (2016); Saafan and El-Badawy (2017); Tong et al. (2015); Yoon et al. (2016); 

Zitouni et al. (2015). They are used in the evaluation of spectrum access Saafan and El- 

Badawy (2017) and implementation of power estimation Dobre et al. (2016). They are also 

used in the development of fiber wireless testbed to simulate passive optical network Rid­

wan et al. (2016). USRPs were used in the performance analysis of cooperative protocols 

for MIMO systems Hussain et al. (2016) and also used in MIMO systems evaluation Yoon 

et al. (2016). These works used USRP in half duplex mode.

The specification of individual components of USRPs are available, but it is always 

a good practice to validate as a whole before it is used as a testbed to validate any schemes. 

On such validation of USRP N210 with SBX radio daughter card was performed in HDX 

mode Zitouni et al. (2015). The results revealed there was a deviation from the specification. 

The output power of the transmitter decreases with the increase in operating frequency, and 

an increase in transmitter gain increases the total harmonic distortion (THD) in addition 

to out-of-bound emissions. These results provided insight into the operation of the USRP 

N210, where it can be used reliably to validate different schemes. USRPs are been used to 

validate or demonstrate the full-duplex communication Guo etal. (2018); Tong etal. (2015). 

There is a lack of information on the performance of the USRPs in full-duplex operations, 

especially the internal self-interference over the operating frequencies. The knowledge of 

USRP in FDX operation enables us to test and evaluate different suppression techniques to 

overcome SI. USRPs are not built for FDX operation, but before it being used to validate 

different FDX schemes it has to be validated. These validations will be useful in the design 

of customized hardware platform for the final target.

The preliminary results have been presented Chandran and Zawodniok (2015) fo­

cusing only on USRP N210 and measurement of internal SI in a single radio scenario. In 

contrast, the paper contributions are: (a) measured and characterized internal SI for three
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different radios as shown in Table 1, (b) characterized the capabilities and limitations in 

FDX mode. This allows the employment of USRPs for evaluation and to select the suitable 

frequency band for FDX operation.

2. OVERVIEW

The paper is organized as follows. First, we discuss the internal self-interference 

suffered by the USRPs due to the switches used to multiplex the transmitter and the receiver 

chains among the RF ports. Second, the experimental setup to determine the optimal 

transmitter gain such that the USRPs can be operated in FDX mode. Finally, we discuss the 

results which include the measured internal SI over the operating frequencies of the USRPs, 

and the correlation results to related the received signal at the RUT with its own signal and 

the far-end signal.

2.1. SELF-INTERFERENCE IN USRPS

In this section, we discuss the experimental setup and how internal SI of the USRPs 

N210, B210, and E310 are measured. The RF ports of USRP devices are in pairs, TX/RX 

and RX2. The TX/RX port can be used to transmit as well as receive, whereas RX2 can 

only be used to receive. The internal SI occurs due to the multiplexing transmitter and 

receiver chain between these two RF ports. USRP B210 and E310 have two pairs of a 

similar arrangement of RF ports.

Figure 2 shows the isolation plot across the RF ports of Single Pole Double Throw 

(SPDT) switch used in USRP N210. The maximum isolation offered by the SPDT switch 

over different operating frequencies of USRP N210 is -27 dB. The total isolation between 

the transmitter and receiver offered by two SPDT switches is -64 dB.
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Figure 3. Isolation plot of SKY13335-381LF switch used in USRP B210-RFswitch (2014).
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Figure 4. Isolation plot of SKY13373-460LF switch used in USRP E310-RFswitch (2016).

In the case of USRP B210 and E310 which have two pairs of RF ports as mentioned 

in Table 1. The measurements were done at both the receive-only ports (A: RX1 and B: 

RX1) while transmitting through one of the TX/RX port. All the RF ports other than the 

transmitting RF port was terminated using 50 O terminators. The SPDT switch (SKY13335- 

381LF) is used in USRP B210, and Figure 3 shows its isolation plot across its RF ports. 

The Single Pole Three Throw (SP3T) switch (SKY13373-460LF) is used in USRP E310, 

and Figure 4 shows its isolation plot across its RF ports.

The TX chain was configured to TX/RX port and RX chain to RX2 port. The RX2 

port was terminated with 50 O, to stop feedback or reflections (external SI) reaching the 

receive chain. The power level at the receiver chain was monitored during transmission, and 

thus measuring internal SI. A similar experiment setup was used to measure the internal SI 

occurring in USRP B210 and E310.
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The cross-correlation between the transmitted signal and received signal relates 

these two signals and confirms there is a leakage of the transmitter signal to the receiver 

chain. The transmitted signal leaked to the receiver chain suffers power loss due to the 

isolation offered by the SPDT switches. This loss has to be considered while comparing the 

autocorrelation of the transmitted signal with cross-correlation results. The measurements 

were done with different transmitter gain across respective radio’s operating frequencies.

GNU Radio application was used to build the radio blocks and measurements were 

done on the IQ samples received by this application. The IQ samples received by the 

application are the baseband samples for the received signal.

2.2. FULL-DUPLEX OPERATION OF USRPS

This subsection discusses the experimental setup to determine the operational range 

of the USRPs in FDX mode. A pair of USRPs were used and each connected to GNU 

Radio application via Universal Hardware Driver (UHD). Typically the USRP devices are 

networked to computer with GNU Radio through interfaces such as ethernet and USB3. 

USRPs N210, B210, and E310 were used as the radio under test (RUT) and a USRP N210 

was used as a far-end emulator. The experiment was performed in two parts, (a) determine 

the TX gain bound for FDX operation, and (b) determine the maximum coverage range 

using the determined TX gain bound. The TX gain range was determined since the internal 

SI is directly proportional to the transmitted signal strength. By varying the TX gain, the 

internal SI can be varied. This variation in TX gain also impact the coverage area of the 

radio, lower the TX gain lesser the coverage area. So, the experiment aims to determine the 

trade-off point such that the USRPs can be operated in FDX mode which can be deployed 

for short-range communication.

During the determination of TX gain bound, the RUT and the far-end emulator 

USRPs are physically connected with an attenuator. To avoid the external SI the USRPs are 

physically connected and the attenuator was introduced to emulate real-world attenuation
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suffered by the far-end desired signal. Once, the TX gain bound was determined, the 

physical link with the attenuator was removed and the range experiment was performed 

under lab conditions with controlled external SI.

Figure 5. Experimental setup to operate USRPs in FDX mode.

The experimental setup to determine the transmitter gain threshold to operate the 

radios in FDX mode is shown in Figure 5. At RUT, the TX/RX port is configured to 

transmit and RX2 port to receive. The RX2 port of RUT was connected to the TX/RX port 

of the radio emulating the far-end signal via RF cable with 50 dB attenuation. The 50 dB 

attenuation emulates real-world attenuation suffered by the far-end signal. This ensures the 

RUT listens only to the far signal emulator and external SI can be avoided. The MIMO 

cable can be connected if the RUT is USRP N210, which allows sharing the clock between
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RUT and the far-end signal emulator. This helps correlate signals between the USRPs. 

The connection between the radios is removed and measured the coverage distance with the 

identified optimum TX gain.

2.3. SUMMARY

In summary, the following steps can be followed before operating a radio in FDX

mode.

1: Identify whether TX and RX chains of the given radio are independent of its specification 

or schematics

2: if TX and RX chains of the radio are multiplexed then 

3: Internal SI exists and influences the radio performance

4: Perform experiments as discussed in Section 2.1

5: Characterize internal SI over the entire operating frequency range of the radio

6: if internal SI of operating frequency is above the desired threshold then

7: Tune TX gain such that internal SI is minimal. Reduces coverage area.

8: Employ suppression techniques for better coverage

9: end if

10: else

11: The radio can be operated in full-duplex mode for the chosen operating frequency

12: end if

3. MEASUREMENTS & RESULTS

In this section, internal SI measurements are presented for USRPs N210, B210, and 

E310. These radios operated in FDX mode and discussed their capability and limitations.
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3.1. SELF-INTERFERENCE IN USRPS

Before the measurement of transmitter leakage, the signal strength of the transmitter 

was measured and repeated the same for different transmitter gains. The transmitter gain 

for USRP N210 ranges from 0 dB to 30 dB.

Figure 6. Measured transmitter power for different transmitter gain and multiplication 
constant using USRP N210.

The signal strength measured using a signal analyzer from USRP N210 for different 

transmitter gain with its center frequency configured to 650 MHz is shown in Figure 6. In 

addition to transmitter gain, a constant is multiplied before the baseband signal passed to 

passband which is also considered during the measurement. The operating range is from 0.1 

to 0.6, above 0.6 the signal gets saturated at the passband. There is a non-linear relationship 

between the TX signal strength and TX gain.
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The SI measurements for USRP N210 was discussed in Chandran and Zawodniok 

(2015). The SI measurements for USRP B210 and E310 are captured, observing the 

transmitter leakage (internal SI) at the receiver (RX1) of both pairs while transmitting at 

one (TX/RX). Figure 7 illustrates the observed power at the receivers of B210, and Figure 

8 illustrates the observed power at the receivers of E310. It can be observed that internal SI 

is at its maximum between 1 GHz to 2.5 GHz for USRP B210 and a similar trend for USRP 

E310 with maximum leakage of -45 dBm.

Figure 7. Internal SI observed in USRP B210 across its operating frequencies 70 MHz to 
6 GHz with TX gain = 90.

The relationship between the transmitted signal and the received signal was deter­

mined by performing cross-correlation on samples captured by the GNU Radio application.
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Figure 8. Internal SI observed in USRP E310 across its operating frequencies 70 MHz to 6 
GHz with TX gain = 90.

The autocorrelation of the transmitted signal and the cross-correlation of the trans­

mitted signal with the internal leakage (SI) signal is illustrated in Figure 9 . The difference in 

the maximum value of the cross-correlation to the autocorrelation of the transmitter’s signal 

is due to the reduction of power through the SPDT switches. Thus using the correlation 

results the received signal can be related to the transmitted signal which leaked through the 

multiplexing switches. The internal leakage was observed without any external feedback 

since the RX2 port is terminated with 50 Q terminator. The offset between the peaks varies 

due to offset introduced by the switches and also the application capturing the samples. In 

addition to cross-correlation, the received signal was demodulated and the decoded data. 

The decoded data is then compared with the transmitted data.
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Figure 9. Relationship between the transmitter and received leakage signal.

3.2. FULL-DUPLEX OPERATION OF USRPs

In this subsection, we analyze the results and determine the configuration which 

enables USRPs to operate in full-duplex mode. The measurements were done using the 

experimental setup shown in Figure 5, and the operating frequency was 650 MHz. The noise 

floor was measured to be -95 dBm when the experiment was performed. The transmitter 

gain was varied from 0 dB to 30 dB, incremented in steps of 1 dB. Figures 9 to 11 shows 

the cross-correlation between the transmitter signal with the received signal at RUT for 

different TX gain at the RUT. The TX gain for the far-end signal emulator was fixed and the 

TX gain of RUT was varied to observe the impact of internal SI suffered by the USRPs.

The IQ samples of the transmitter and receiver at the baseband are captured by the 

GNURadio application and offline correlation analysis was performed. The correlations are 

performed on the raw IQ samples before demodulation. The lags in the correlation result 

are due to the random offset introduced by UHD and also during IQ sample capture. The
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Figure 10. Relationship between the received signal with transmitter signals (TX1 and 
TX2) with TX1 gain = 1 dB.

lag of the cross-correlations are relative and the zero corresponds to the peak correlation 

with the tranmitted signal from the RUT. The networking interfaces such as ethernet, 

USB3 between the USRP devices and GNU Radio also contribute to the offset between 

the transmitter and receiver samples. The objective of illustrating correlation results is to 

show the close relationship of which signal dominating at the receiver. The lag/offset can 

be removed during frame synchronization after demodulation. Besides, the USRPs are not 

synchronized to a single clock for operation and they are independent.
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Figure 11. Relationship between the received signal with transmitter signals (TX1 and 
TX2) with TX1 gain = 30 dB.

When the RUT was operated at minimum TX gain (1 dB), the cross-correlation 

between the received signal at RUT and the far-end desired signal is greater than its signal 

as shown in Figure 10. When the TX gain of the RUT was increased (30 dB), the cross­

correlation of the received signal at RUT and its signal increase, and greater than that of the 

far-end desired signal as shown in Figure 11. This correlation results reflected in the data 

when the received IQ samples were demodulated and decoded. In the first case, the data 

from the far-end emulator was decoded at the RUT, whereas in the latter case the data from
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RUT was decoded overwhelming the far-end data. Though the cross-correlation between 

the RUT received signal and the far-end desired signal was the same, the decoded data 

showed the impact of the internal SI.

These observations help us to understand the impact of the internal SI suffered by 

the USRPs and can be used in FDX operation tailored to operate in the identified frequency 

range and TX gain.

4. CONCLUSION

The internal self-interference varied between USRPs N210, B210, and E310. USRP 

B210 has the least internal SI, whereas USRP N210 suffers the most. Table 2 tabulates the 

frequency bands where internal SI is maximum and minimum for USRPs N210, B210, and 

E310, and provides a choice where the respective USRPs can be operated in full-duplex 

mode.

Table 2. Minmum and maximum internal SI frequency bands for different USRPs.

USRP
Frequency Range

Minimum SI Maximum SI

N210 600 MHz, 850 MHz 
1.9 GHz to 2.2 GHz

600 MHz to 800 MHz

B210 50 MHz to 1 GHz 
3 GHz to 6 GHz

1 GHz to 2.5 GHz

E310

50 MHz to 1 GHz 

3 GHz to 3.5 GHz 

5 GHZ to 5.75 GHz

1.2 GHz to 2.2GHz



50

The full-duplex operation was successfully performed between two USRP devices 

with limitations on the transmitter gain and the testing environment. USRP N210 achieved 

a coverage range of about 10 feet, in contrast, USRP B210 achieved 22 feet under lab 

conditions.
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ABSTRACT

The main challenge of operating a radio in full duplex mode, is the direct feedback 

from its transmission to its reception which is the self interference. However, the internal 

leakage within the radio has the potential to distort the received signal. This paper presents 

the measured leakage observed in N210 one of the Universal Serial Radio Peripheral (USRP) 

family of devices. Also, suppression mechanism has been evaluated in both in hardware 

and software.

Keywords: Transmitter leakage, self interference, Software Defined Radio (SDR), Univer­

sal Serial Radio Peripheral (USRP), Single Pole Double Throw (SPDT), GNU Radio.

1. INTRODUCTION

Radios in full duplex mode establish bidirectional communication link operating 

simultaneously, in other words the transmitter and the receiver are operated in the same 

time. Generally, separate antennas are used by the transmitter and the receiver. In addition, 

the RF carriers can be same frequency or different frequencies for the transmitter and receiver
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Choi et al. (2010). There is a ongoing interest to operate a single antenna in full duplex 

mode with single RF carrier frequency especially in the field of Radar communication 

Beasley et al. (1990); Li and Murch (2011).

Most of the radios today are generally half duplex, which means there is no simul­

taneous operation of transmitter and receiver. One main challenging factor which prohibits 

us to achieve full duplex is transmitter feedback to the receiver Sta (2010). There are many 

cancellation technique put forth to cancel out the feedback from the transmitter. The solution 

to achieve full duplex can redefine the entire schematic for building the radio. Nowadays the 

radios are supporting MIMO where there multiple antennas for transmission and reception, 

which increased the complexity to achieve full-duplex because the self interference is not 

from a single antenna but from multiple antennas Duarte and Sabharwal (2010); Jain et al. 

(2011).

The advantage of full duplex wireless radio has a large scope to increase the efficiency 

by utilizing the transition period between transmission to reception. There are three main 

benefits which can be achieved by full duplex namely, timing efficiency, nodes no more wait 

for the other node to response (no handshake to avoid collision), both the entity transmitter 

and receiver enjoy full bandwidth.

In addition to the self interference, most radio suffer transmitter leakage due to 

the design and inability to isolate the transmitter and receiver path significantly. Due 

to the design constraint, transmitter and receiver paths are multiplexed, thus yielding to 

internal transmission bleed to the receiver path distorting the weak received signal. It also 

occur when a duplexer is used when a single antenna is deployed for transmission and 

reception. Though there are many cancellation technique to overcome the self interference, 

the transmitter leakage can be avoided by better design and choice of better isolators between 

transmitter and receiver path.
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Tx Tx

Figure 1. Radio A and B operating in full-duplex mode using separate antennas for 
transmitter and receiver.

In case of full duplex radio with single antenna, where the transmitter and receiver 

path shares the same antenna, the transmission leak from the transmitter to receiver path 

can be avoided by deploying isolator providing high isolation between them. Recently, the 

signal cancellation based on electrical balance using hybrid transformers has been proposed 

to improve isolation between transmitter and receiver path Abdelhalem et al. (2013).

2. USRP N210 RADIO

The USRPs are general purpose the Software Defined Radios (SDA), which are 

mostly used in academic and research field. The USRP N210 version provides high- 

bandwidth, high-dynamic range processing capability with modular design supporting it to 

operate from DC to 6GHz. The radio typically used in N210 is WBX, which operates in 

wide frequencies ranging from 50 MHz to 2.2 GHz and provides 40 MHz of bandwidth 

capability.

The radio offers two antenna ports TX/RX and RX2. TX/RX port one can be 

operated both as transmitter and receiver, whereas RX2 can be operated only as receiver. 

Both the antenna ports can be used simultaneously enabling radio to support full duplex
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mode. The selection of the antenna ports for transmission and reception are controlled 

by application like GNURadio which is supported by USRP Hardware Driver (UHD), 

providing the host driver and APIs. The Gigabit Ethernet connectivity is available to stream 

data to and from the host system.

3. TRANSMITTER LEAKAGE CANCELLATION

Transmitter Leakage is a key challenge as discussed before, since the adverse effect 

caused at the receiver end brings down the performance of the radio. In general the common 

cancellation technique is to cancel or suppress by mixing the phase shifted version of the 

known transmitted signal to the received signal. This is the most adopted method to suppress 

the transmitter signal in the receiver path.

The phase shift can be fixed or computed dynamically on the fly and then applied 

to the transmitter signal. The dynamic estimation can be achieved by deploying a micro­

controller Jung et al. (2008) which processes the received signal and estimate the phase to 

be applied to the transmitted signal for mixing. These cancellation techniques hold good 

for single tone transmission but for real-time data transmission, the micro-controller will 

face hard to estimate and counter the leakage in a timely manner.

There are implementations of transmitter leakage estimation and cancellation in the 

digital front end which is independent of the RF front-end used. Though these cancellation 

techniques are capable of cancelling the leakage, they fail when the transmitter leakage is 

significant such that the Low Noise Amplifier (LNA) gets saturated and there is no room 

to retrieve the information from its output Frotzscher and Fettweis (2008); Frotzscher and 

Fettweis (2012). Even if the transmitter leakage is not enough to saturate the LNA, they 

will be amplified and still increase the difficulty in retrieving the information. Even in case 

of Frequency Division Duplexing (FDD) systems where the transmitter and receiver use
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different frequency, the transmitter leakage still prevail key issue which has to be mitigated 

since high power transmitter signal leaked to receiver path can saturate the receiver or 

interfere the weak received signal Kiayani et al. (2013).

Current CMOS technology is exploited to nullify the transmitter leakage. In some 

application like CDMA, a transmitter leakage canceller circuit Kim et al. (2013) was 

proposed and implemented in 0.18-^m CMOS technology. This circuitry is a feed-forward 

canceller sampling the reference transmitter signal and injects its amplitude-adjusted and 

phase-rotated signal in the receiver path.

4. TRANSMITTER LEAKAGE IN WBX

The WBX radio supports operating the transmitter and receiver port simultaneously. 

Besides the self interference is caused by the transmitter distorting the received signal, there 

is another factor in the WBX radio which significantly affects the received signal due to 

the internal bleed of transmitter signal to the receiver path. This is by the design, since the 

transmitter antenna which can perform the reception shares the receiver path of the other 

antenna which does only reception.

This leakage issue was earlier noticed and hardware workaround was proposed. 

However, these do not address the underlying issue Rub (2012).

Table 1. Specification of USRP N210.

USRP Frequency Range RF ports RF Switch

N210 50MHz to 2.2GHz TX/RX & RX2 HMC174MS8

The WBX daughter card uses two Single Pole Doupbe Throw (SPDT) switches

(HMC174MS8 N210-RFswitch (2012)).
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One of the switches switch transmitter adn receiver path feeding to/from TX/RX 

port as indicated in Table 1. The second switch switches between the receive path from 

TX/RX and RX2 port to the receiver. The transmitter leakage is observed because of the 

second SPDT switch where the transmitter chain TX/RX leaks to the receiver chain of RX2.

Figure 2. Functional diagram of HMC174MS8 SPDT switch N210-RFswitch (2012).

Figure 2 shows the functional diagram the deployed SPDT switch in WBX radio 

card. The port RFC selects signal between RF1 and RF2.

Figure 3 and Figure 4 illustrates the schematics TX/RX and RX2 ports of the WBX 

granddaughter card. The common connection between the SPDT switches TX_RX got 

encircled in the Figure 3 and Figure 4.

Figure 5 illustrates more clear representation of the two SPDT switches and their 

respective connections with the transmitter and receiver path.

When operating simultaneously the TX/RX port as transmitter and the RX2 port 

as receiver, the RF port of TX/RX SPDT switch receives a portion of energy from the 

transmitter chain and a portion from the transmitted signal port. This is then propagated
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Figure 3. Schematic of WBX granddaughter card TX/RX antenna port, based on WBX 
(2012).
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Figure 4. Schematic of WBX granddaughter card RX2 antenna port, based on WBX (2012).

to the receiver chain’s SPDT switch and affects the received signal. This is due to SPDT 

switch providing lower the isolation between the two RF input ports, and between input and 

output ports of SPDT switch.
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Figure 5. Block diagram of transmitter and receiver path connections between SPDT 
switches.

The isolation between the two RF ports RF1 and RF2 of HMC174MS8 is in the 

range of -25 dB to -30 dB for the frequency range of 500 MHz to 1 GHz. For the same 

frequency range, the isolation between RF ports RF1/RF2 to RFC is -26 dB. Typically, the 

desired isolation is more than -60 dB.

4.1. HARDWARE FIX

As mentioned the primary cause of transmitter leakage across the SPDT switches 

in the RF board is due to the common connection. Hence, the better option is to remove 

the common connections between the switches and physically isolating them. This was 

achieved by removing the coupling capacitor C1 which is encircled in Figure 3.

Figure 6a shows the WBX granddaughter card with the coupling capacitor and 

Figure 6b shows the WBX granddaughter card without the coupling capacitor between the 

SPDT switches.
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(a) W ithCl. (b) Without Cl.

Figure 6. WBX granddaughter card with hardware fix.

4.2. DIGITAL FILTERING APPROACH

Beyond the hardware fix provided to the RF board, there can be transmitter leakage 

because of the existence of the open circuit between the switches. Irrespective of hardware 

fix, we can perform adaptive cancellation technique to suppress the transmitter leakage. 

The output of this block to suppress the transmitter leakage, if the LNA is not saturated by 

the leakage.

Recursive Least Squares (RLS) filter is a FIR of length M  with coefficients bk ,k  = 

0,1, 2 ,.. .M  — 1. The input stream f  (n) is passed through the filter to produce the sequence 

y (n). At each time-step the filter coefficients are updated using an error e (n) = d(n) —y (n), 

where d (n) is the desired response (usually based on f  (n)) Rowell (2008).

y (n) = 2 jf=-1bkf  (n — k) (1)

Filter Coefficients, b{n) = b (n — 1) + k (n) e (n) where, A is weighting factor.

R  1 (n — 1) f  (n)
KalmanGain, k (n) =

A + f T n  R - 1 (n — U f  (n)

R (n) = " A"-  f  (i) f T (i)i=0
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ein) = d in) — y in) (2)

RLS Rowell (2008) adaptive filtering can be used to suppress the transmitter leakage. 

Since the transmitter signal is known, the RLS adaptive filter algorithm rapidly converges 

in estimating the filter coefficients.

5. RESULTS AND ANALYSIS

The measurements were collected using two USRPs (N210), one with original WBX 

and other with coupling capacitor C1 removed as shown in the Figure 7. A 10 dB attenuator 

was connected to the RX2 port to prohibit any reception of transmitter power. Addition of 

attenuators to the RX2 port did not affected the received power and hence 10 dB attenuator 

was connected for the experiment. The TX/RX port was connected to an antenna such that 

the reflection power is nominal. GNU Radio GNU (2018) application was used to perform

USRP (N210)

>  S P D T  1 4-1Transmitter

A tte n u a to rReceiver S P D T  2  4-

J  S w itch

USRP (N210)

Transmitter >  S P D T  1

A tte n u a to r

t.M
R a d io

<->u

Receiver 4 S P D T  2  4

Figure 7. Block diagram of the experiment setup.

the analysis which connects to the radio via UHD drivers. The project was set up to monitor 

the power level of received signal without connecting an antenna to the RX2 port such that
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there is no received signal. Both the radios are fed with the same signal for transmission. 

The received signal from the radios have been captured and analysed for frequencies ranging 

from 50 MHz to 2.2 GHz.
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Figure 8. GNURadio project for the analysis of transmitter leakage.

Figure 8 shows the GNURadio project which was developed to record the transmitter 

power leakage to the receiver path for different transmitter gain with the receiver gain being 

zero.

Figure 9 shows the power of the generated signal fed to the USRPs for transmission. 

The parameter which control the transmitter gain provides 1 dB for every increment by one.

The maximum power output by the transmitter can be achieved by the lower fre­

quencies and drops when proceeding with higher frequencies.
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Figure 9. FFT plot of signal fed to the transmitter (f = 750 MHz).

Figure 10. FFT plot of received power with connection between TX/RX and RX2 (f = 750 
MHz, TX gain = 30).

As shown in Figure 9, the generated signal strength is equal to -20 dBm. Hence, the 

transmitter gains 0, 10, 20 and 30 corresponds to transmit output power equal to -20 dBm, 

-10 dBm, 0 dBm and +10 dBm respectively.

Figures 10 and 11 are the received power of the receivers when operated with 

maximum transmitter gain, 30 dB. Receiver gain set to 0 dB in GNU Radio project and the
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Figure 11. FFT plot of received power without connection between TX/RX and RX2 
(f = 750 MHz, TX gain = 30).

Figure 12. Received power for different TX gain with the connection between TX/RX and 
RX2 path.

Figure 10 and 11 show the reduction in leakage power when the transmitter and receiver 

path between the SPDT switches was open.
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Figure 13. Received power for different TX gain without the connection between TX/RX 
and RX2 path.

Figures 12 and 13 show the received signal power for different transmitter gain 

across the frequencies ranging from 50 MHz to 2.2 GHz.

Comparing the received power from Figures 12 and 13, the difference was calculated 

and plotted for different transmitter gains as shown in Figure 14. It was observed that the 

best range of frequencies with maximum isolation between the transmitter and receiver was 

achieved in the range from 650 MHz to 950 MHz (UHF band). For frequencies between 

550 MHz and 1.05 GHz the performance got degraded where the isolation was reduced. 

There was no improvement for other frequencies. The transmitted and received signals from 

the radio are saved into files and performed adaptive filtering using MATLAB RLS (2013). 

The RLS algorithm was employed to perform adaptive filtering to remove the transmitted 

signal leaked to the receiver block.
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Figure 14. Power difference observed for different TX gains with and without the coupling 
capacitor.

T X

R X

Figure 15. Block diagram of adaptive filter using RLS algorithm.

The transmitted signal was fed to the RLS algorithm to estimate the filter coefficients 

which was later applied to the received signal. Figure 15 shows the block diagram on the 

deployment of adaptive filter between the transmitter and receiver.
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Figure 16. Received signal and the signal after suppression at the receiver.

Figure16 shows the transmitter leakage observed at the receiver and the output of 

the adaptive filter using RLS algorithm. Figure 17 shows the difference in the recieved 

power using adaptive filtering using the radios with and without coupling capacitor. As 

observed from Figure 14 the maximum isolation was achieved in range between 650 MHz 

to 950 MHz.

Figure 18 shows the received power difference for different transmitter gains between 

the received powers from radio with and without adaptive filtering using RLS algorithm, in 

addition to the removal of the coupling capacitor.

Figure 19 shows the received power difference for different transmitter gains between 

the received powers from radio with and without adaptive filtering using RLS algorithm, 

with the coupling capacitor intact on WBX. It is observed that from Figures 19 and 18 the 

adaptive filtering was effective in the suppression of the transmitter leakage irrespective of 

the hardware fix.
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Figure 17. Power difference observed for different TX gains with and without coupling 
capacitor, and with adaptive filtering.

Figure 18. Power difference observed for different TX gains with and without adaptive 
filtering, and coupling capacitor removed.
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Figure 19. Power difference observed for different TX gains with and without adaptive 
filtering, and coupling capacitor intact.

6. CONCLUSION

Hardware solution of physically removing the coupling capacitor, C1 isolating trans­

mitter and receiver has mixed outcome. The removal of the coupling capacitor selectively 

improved the isolation between the transmitter and the receiver for the frequency ranging 

from 650 MHz to 950 MHz. Maximum isolation of -30dB was achieved in the mentioned 

frequency range. The performance was degraded for lower frequencies between 50 and 

500 MHz, where there was 15 dB decrease in isolation. There was no improvement across 

frequencies from 950 MHz to 2.2 GHz.

The inclusion of adaptive filter at the reception improved the performance by sup­

pressing the transmitter leakage signal irrespective of the hardware fix. But, this suppression 

technique holds good until the leakage from the transmitter does not saturated the LNA in 

the initial stage of the receiver. Saturation of initial blocks of the receiver can be avoided by 

deploying SPDT switch which offers higher isolation more than -50 dB between its throw
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ports. Thus enhancing the performance of the digital cancellation using adaptive filtering. 

The adaptive filtering using RLS algorithm achieved maximum isolation of -35 dB between 

the transmitter and receiver blocks of WBX radio used in USRP N210.
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ABSTRACT

Full-duplex communication is desirable to maximize the spectral efficiency, despite 

the challenges it puts forth. The key challenge inhibiting the operation of radios in full- 

duplex mode is self-interference. In this paper, we propose a pilot-based channel estimation 

to estimate both self-interference and communication channels simultaneously at both 

ends of a full-duplex link using orthogonal sequences. The Cramer-Rao Lower Bound for 

estimators of both the channels were determined and compared with the half-duplex channel 

estimator. We performed simulations varying sequence length and channel taps and studied 

the performance of the estimators. We also studied the effect of synchronization between 

the sequences on the performance of the estimators. Thus, providing a solution to balance 

the trade-off between the accuracy of the channel estimation and the overhead added to the 

transmissions for full-duplex communication.
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1. INTRODUCTION

Rapid evolution in telecommunication and increasing population penetration de­

mands more bandwidth to support new users in addition to the existing users with reliable 

high-speed data services. Most existing technologies operate in half-duplex (HDX) mode 

by performing only transmission or reception at any instance of time, achieving only fifty 

percent of the spectral efficiency. The full-duplex (FDX) mode of operation where the 

transmission and reception are performed simultaneously which can potentially achieve 

double the spectral efficiency of the existing mode of operation. Thus, FDX mode proves 

to be a promising solution for future wireless systems. FDX also provide solutions faced 

by the existing HDX operations such as a hidden terminal, throughput bottlenecks due to 

congestion, large end-to-end delays Choi et al. (2010). There are existing applications 

that deploy FDX operations, especially in relay systems. The use of FDX in relay systems 

increases the coverage and throughput. FDX is been considered a potential solution in 

the next-generation telecommunication technologies such as 5G Xiang et al. (2016), Non­

orthogonal multiple access (NOMA) Chu and Zepernick (2018); Ding et al. (2018); Makled 

et al. (2019); Mohammadi et al. (2019); Zheng et al. (2018).

The major challenge of FDX operation is rooted in its operation. Since transmission 

and reception occur simultaneously, the transmitted signal interferes with its own receiver's 

operation. This is called self-interference (SI) which affects the throughput and potentially 

degrading the communication. In addition to the reflection of the transmitted signal, SI also 

occurs across the transmitter and receiver chain within the radio. To harness the benefits 

of FDX, suppression/cancellation of SI is necessary. Since the SI signal strength is high 

compared to the weak desired signal, multiple stages of SI cancellation both in analog and 

digital has been proposed in the literature. Though full-duplex is considered a potential
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methodology in the next-generation systems, the lack of a feasible solution to estimate 

and mitigate self-interference lost its appeal to adopt in commercial mobile applications. 

Instead, the industry sought to move towards higher frequencies of operation to meet the 

demand. There is an increased interest to operate in a non-licensed band such as LTE-U, 

LTE-LAA. Unfortunately, operating in high-frequency bands such as millimeter operations 

also pose challenges such as shorter range, limited mobility, channel modeling Hemadeh 

etal. (2018).

The estimation of SI channel coefficients plays a vital role in the mitigation of 

self-interference. To achieve the best estimation possible, we should able to separate 

the SI and communication channel components at the reception. This separation can be 

achieved by orthogonality which already used in code-division multiple access (CDMA) 

and orthogonal frequency division multiplexing (OFDM) which operates in HDX mode. 

The signals orthogonal to each other do not interfere with each other and can be evaluated 

separately without the influence of the other. Generally, the channels are estimated using 

known pilot sequences, and the orthogonal sequences are proposed to be used as a pilot 

sequence to estimate SI and communication channel.
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The contribution of this paper is as follows. We proposed the system model and 

defined the correlation properties of both autocorrelation and cross-correlation requirements 

for the sequences to be used as pilot sequences in the proposed method. We proposed to 

use a set of selected orthogonal m-sequences which are closely compliant with the expected 

correlation properties as orthogonal pilot sequences to achieve separation and estimation 

of SI and communication channels. We also determined the Cramer-Rao Bound of the 

estimators for full-duplex operations and compared them with the half-duplex operations.

The paper is organized as follows. Section 2 discuss the various existing works to 

achieve full-duplex operation. Section 3 describes briefly the system model proposed and 

the proposed method to use the orthogonal m-sequence as pilots to estimate both the SI 

and communication channels. We also briefly discussed the effect of synchronization offset 

in the performance of the estimators. The CRLB of the proposed method is formulated 

in Section 2.2. Finally, Section 4 discuss the simulation and results of the proposed 

methodology.

Notations. The matrices are denoted by upper-case letters and the vectors by lower­

case letter with a macron. (•) , (•) , and E  (•) denotes transpose, hermitian, expectation 

operations respectively. C N  a 2) denotes complex Gaussian distribution with mean ^

and variance a 2.

2. RELATED WORKS

In this section, we discuss the related works from the literature on the solutions to 

suppress and mitigate self-interference during FDX operation. The proposed work improves 

on the existing works by optimizing the accuracy of the channel estimation while minimizing 

the overhead.

The majority of the works in the literature consider relay systems L. Weizheng 

(2017); Senol et al. (2018) for FDX operations. In the relay systems, only the relaying 

nodes operate in FDX mode forwarding the received signal to the next communication link
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and all other nodes operate in HDX mode. FDX operation finds its application in relay nodes 

since they are stationary and physically able to isolate transmitter and receiver. Therefore, 

the effects of self-interference are considered negligible. In more general scenarios, the 

effects of SI are significant in FDX operation and must be addressed. The target solution 

for an effective FDX operation is to estimate and mitigate the self-interference caused by 

the transmitter. A theoretical analysis was performed and showed that for a bidirectional 

communication system with multiple antennas, FDX can be more efficient than HDX even 

with channel estimation error Kim et al. (2013).

The critical step to mitigate the effects of SI channel from the received signal is to 

estimate the SI channel coefficients. Different estimators are proposed for FDX systems 

to estimate the SI channel and perform cancellation at different stages of data recovery. 

The suppression of self-interference is addressed at different stages of processing both in 

analog Beamforming et al. (2018); Bojja Venkatakrishnan et al. (2018); Keating et al. 

(2016); Khaledian et al. (2018); Korpi et al. (2014); Lee and Byung-Wook (2017); Liu 

et al. (2017), and digital domains Bharadia et al. (2013); Chandran and Zawodniok (2015); 

Duarte et al. (2012); Figwer et al. (2017); Korpi et al. (2017); Li et al. (2015); Luan et al. 

(2016); Masmoudi and Le-Ngoc (2016); Tian et al. (2016). An additional receiver chain 

was proposed Korpi et al. (2014) to obtain a reference signal for digital SI cancellation. 

The analog cancellation techniques do not remove 100% of the SI signal. However, analog 

cancellation techniques are necessary to reduce the SI signal strength down to an acceptable 

range of the transceiver to continue further cancellation in the digital domain. The proposed 

method in this paper is performed in the digital domain after the received signal strength is 

reduced to the operational level of the digital domain by analog cancellation using one of 

the solutions listed above.

The residual SI signal reaching the digital domain is significant enough to affect 

the performance of decoding the signal of interest. Hence, the residual SI cancellation 

must be performed in the digital domain to improve the performance of the FDX operation.
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The characterization of the distribution of the SI before and after cancellation mechanisms 

and the effect of performing digital cancellation after analog cancellation is discussed in 

Duarte et al. (2012). A design prototype and implementation of full-duplex operation using 

WiFi radios were presented in a constrained indoor environment, presenting the throughput 

values closer to the expected theoretical doubling of spectral efficiency in Bharadia et al. 

(2013); Choi et al. (2010).

There are different methods proposed in the literature to estimate the self-interference. 

The use of an auxiliary receiver is one of the common approaches towards the estimation 

of the SI channel. A Kalman filter is used to estimate the SI channel from a copy of the 

transmitted signal via an auxiliary receiver in Shammaa et al. (2019). The joint estimation 

of the SI channel and communication channel using the ML criterion was presented in 

Masmoudi and Le-Ngoc (2016). The estimation exploits the known transmitted signal from 

the auxiliary receiver and second-order statistics of the unknown signal for the identification 

of respective channels. These techniques focus on the SI cancellation but lack the effect of 

SI cancellation on the signal-of-interest and the dynamicity of the channels. Recently, there 

is a proposed work in the literature to separate pilots from different nodes by placing the 

pilots in non-overlapping time slots Hua and Chang (2019).

The solution we propose improves the channel estimation for both SI and com­

munication channels by employing known orthogonal sequences as pilots which can be 

transmitted simultaneously. These sequences remove the uncertainty to distinguish pilots 

from the received signal using the orthogonality property. The orthogonality property of 

these sequences is already being used in various applications such as MIMO Wang et al. 

(2017); Wu et al. (2018); Xing et al. (2010) for channel estimation, to reduce pilot con­

tamination in cellular cells Wang et al. (2017); Wu et al. (2018), in detection algorithms 

to provide robustness against eavesdroppers Hou et al. (2016), scramble and accommodate 

multiple users transmission simultaneously.
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3. FULL-DUPLEX OPERATION

In this section, we discuss the proposed method to operate an OFDM system in 

full-duplex mode and discussed the desired correlation properties of the sequences for 

the proposed method. In the following discussions, we considered two nodes A and B 

communicating in full-duplex mode. The discussion of the proposed method considers the 

reception at node A, which is also applicable to node B.

3.1. PROPOSED METHOD

The block diagram of the OFDM operating in FDX mode considered for the proposed 

method is shown in Figure 2. Both the nodes A and B operate in FDX mode and at the 

reception of node A signals from both node A and node B are received. The channel 

effect on these signals is independent. The proposed method is performed in the digital 

domain after analog cancellation which reduces the received signal to operational range of 

the digital domain.

Figure 2. Block diagram of OFDM system with the proposed method for full-duplex 
operation.



80

The analog cancellations techniques in the literature as listed in earlier section shows 

potential suppression to perform digital cancellation to remove the residual self-interference 

and shown it is efficitive by performing digital cancellation after analog cancellation Duarte 

etal. (2012).

Considering an OFDM system with L equispaced subcarrier and cyclic prefix of 

length L Cp forming an OFDM block of length, N . The symbol sequence contains both the 

data and pilot symbols. In general, the receivers may use the pilot symbols for synchroniza­

tion in time and frequency, offset correction, estimate the channel, etc. The OFDM block 

transmitted in the kth block is given by

s [k] = A cp  W Hx  [k] , (1)

where, x  [k] is the symbols of length L to be transmitted containing the data and pilot 

symbols. A CP is the N  x L matrix which insert the cyclic prefix of length L CP and W  

is the L x L unitary discrete Fourier transform (DFT) matrix whose elements are given by 

Wmn = (1/L) exp (—j2nm n/L), 0 >  (m, n) < L — 1.

Then, the received symbols at the reception of node A is given by

fa [k] = Haa [k] fa [k] + Hba [k] j  [k] + fj [k] , (2)

where, sa and sb are the symbol vectors transmitted by the nodes A and B respectively. Haa 

and Hba are the SI and communication channels at the receiver of node A. After removing 

the cyclic prefix for pilot slot,

V a = R cp  (r a)

= RCPHaaAcPW H (WXpa) + RcPHbaAcPW H (WXpb) + fj 

= RCPHaaACP ( W HW)  Xpa + R cPHbaAcP ( W HW )  Xpb + fj
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Ua = HafXpa + Hbtxpb + T] 

= X pahat + X pbhbt + b]. (3)

To remove the SI channel component from (3), multiply X Jb on both sides of the 

equation as shown in (4), where 0L is zero matrix and I L is identity matrix of size L.

T t t t 1
X pb Va = X pbX pahat + X pbX pbhbt + X pbn]

= 0L + ILhbt + X^bV 

= hbt + XppbVj

• X pbX pa = 0L; X pbX pb = I L

(4)

(5)

(6)

Similarly, the SI channel component can be extracted from (3), multiply X Ja on 

both sides of the equation as shown in (7)

T t t t 1
X paV a = X paX pa hat + X paX pbhbt + X paV

= ILhat + 0L + X lon • X paX pb = °Lj X paX pa = IL

= hat + X pan.

(7)

(8) 

(9)

From Equations (6) and (9), the maximum likelihood estimate of the communication 

and SI channel estimates can be written as

hbt = X pb Va, (10)

hat = X pa Va. (11)

3.2. SYNCHRONIZATION

In addition to self-interference, synchronization between the two channels is another 

key issue to be considered in full-duplex communication. The SI signal and the signal of
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interest is not necessarily aligned at the reception. The offset between the SI signal and 

the signal of interest at the reception, depends on the propagation delay between the nodes 

and the reflections from the environment. The effect of propagation delay is propositional 

to the distance between the nodes. For short range communication, this effect is minimum 

to negligible well below the tolerance of the system. For example, OFDM suffers from 

inter-Carrier-interference when timing variance of the channel during one OFDM symbol 

interval affects the orthogonality and results in power leakage among the subcarriers.

In the proposed method, this offset can be measured from the correlation peaks of 

the orthogonal sequences. The correlation yields two peaks aligned to respective orthogonal 

sequences of the nodes. This offset can be tracked and used to compensate at the mitigation 

of the channel effects at the equalization for both SI and communication channel. The 

tolerance depends on the correlation property once it overlaps with data signal in the other 

channel. The scope of this paper does not include the synchronization and all results 

discussed are with synchronized SI signal and signal of interest at the reception.

3.3. SELECTION OF PSEUDORANDOM SEQUENCES

The desired correlation properties of the orthogonal sequence are (a) the autocorre­

lation of the sequence should have its peak only with its zero shifted version and zero for all 

other linear shifts, (b) the cross-correlation of the sequence with any other sequence should 

be zero as shown in Equation (12) and Equation (13).

rxx T
2n  , if r  = 0, 

0, if r  * 0
(12)

rx y  T  = 0, Vr. (13)
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The orthogonal sequence with the correlation properties as mention in Equation (12) 

and Equation (13) is not available in the literature. The cross-correlation of the orthogonal 

sequences are by definition is zero, but their autocorrelation varies with one or more peaks 

with non-zero values for different shifts. These variations in the autocorrelation of the 

sequences introduce error to the estimation. The sequences with the correlation properties 

closed to the requirements are orthogonal m-sequence. The Gold and Kasami sequences 

are not suitable candidates because their autocorrelation is not two-valued and not as good 

as that of m-sequences. The orthogonal Walsh sequence does not match the requirement 

since the autocorrelation swings between positive peak (+1) and negative peak (-1) across 

even and odd shifts respectively.

The autocorrelation of the m-sequence of length N  is given by

Txx{j)
N, if j  = 0,

- 1 ,  if 1 <  j  > N  -  1
(14)

and the cross-correlation in general may have large peaks which can be exhibited as three­

valued cross-correlation with values { -1 , - t ( n ) , t ( n )  — 2}, where

t(n)
2

( n + l )

2

2
n + 2

'~ T ~

+ ^, 

+ ^,

if n is odd 

if n is even
(15)

The preferred orthogonal m-sequences are the ones with the closest correlation prop­

erties for the proposed method to separate and estimation individual channel coefficients.

The m-sequence defined in Buracas and Boynton (2002) whose properties are closer 

to the desired properties is chosen for the proposed method. The orthogonal m-sequence 

is derived from the m-sequence whose length is 2M — 1, where M  is a positive integer. 

The length of the orthogonal m-sequence is 2M and the sequences are binary sequences 

G [- 1 ,  +1] .
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4. CRLB FOR THE PROPOSED METHOD

In this section, we derive the Cramer-Rao Lower Bound (CRLB) of the channel 

estimators both SI and communication channels for the proposed method. For the defined 

system model,

Ua = X pahat + X phhht + '̂ |, (16)

where, hat and hht are channel coefficient of the SI and the communication channel. 

These two parameters are the parameters of interest to be estimated which is indicated by
r- - iT
hat hht .

The probability density function of the received slot with N  symbols is given by

P ( v a ,0
1

--------- w .exp
(2na2) 2

- 1
2^2 Va X pahat + X phhht

2
(17)

To determine the CRLB of the estimator, the Fisher information matrix I0 has to be 

evaluated which is given by

I 0
- E

—E

- E

- E

(18)

— t
Recall that for the estimation of vector parameter, 0 = [0\ 02 . . .  0n] . If 0i is 

an unbiased estimator, then the CRLB of $i is iith element of the inverse of the Fisher 

information matrix Kay (1993), I (0)

var > r-1
. ii (19)

Now, we evaluate the individual element of the Fisher information matrix. The logarithm
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of the probability density function of the reception is

ln P{ya,0) = —N  ln (2n a 2Î j +
- 1

ya X pahat + X pbhbt2 “ V ) ■ 2a2I  

and expanding the contents within the norm square yields

(20)

yaHya -  2hHtX Hya -  2hHX bya  + 2 h ^ X HXbhbt + hHX ^ X 0hat + hHX b X b h t .

(21)

Then, the partial derivatives of Equation (20) using Equation (21) to build the Fisher 

information matrix are given by

d ln P [ y a ,0 ) - 1

dhat a2I
d ln P (y a, d) - 1

dhbt = a2I
d2 ln P (ya,e) - 1

dh(t = a2I

d2 ln P (yjaj) - 1

dh(t = a2I

d2 ln P (yja,d) - 1
dhbt dhat = a2I

d2 ln P ( y a j ) - 1
dhbtdhat = a2I

- 2 X H  ya + 2XH Xbhbt + X H  Xahat

— 2X h ya + 2X h X bhbt + x H X bhbt

X H Xa

X H  Xb

2XH Xb

2XH Xb

(22)

(23)

(24)

(25)

Now using Equations (22), (24), (25), and (23) in Equation (2.6), then the Fisher information 

matrix can written as

a 2I

E

E

X H  X a E

2XHXb E  XH Xb

2XH Xa

H

(26)

2

1
I
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Inverting the Fisher information matrix from Equation (26) yields

a2I
D

E x H x b

E 2XH Xb

E 2 X H  x a

E X H  Xa

where, D is the determinant of the Fisher information matrix given by

D = E X H  Xa .E X H  Xb E X  Xb .E 2XH Xa

(27)

(28)

The variance of the parameter also the CRLB of the hat and hbt are the diagonal 

elements of the inverse Fisher information matrix Equation (2.7) using Equation (27) are:

var {hat 

var {hbt

>  °—I E

>

D
a 2I
D

E

X H  Xb

X H  Xa

(29)

(30)

Furthermore (29) and (30) can be simplified for the orthogonal sequence whose 

cross-correlation is zero a

N I , the variance of the estimators can be written as

X H X b = X HX a = 0 and assuming perfect autocorrelation where

E X H  Xa E X H  Xb

var X )  -  E \X H X , j

var (hbt) ^
E

a 2I  a 2
-  N ’

a2I  a2>  — .
-  NX H  Xb

(31)

(32)

From (31) and (32), the bound depend on the autocorrelation of the orthogonal 

sequence. Lower the autocorrelation, the variance of the estimators’ increases which yields 

lower performance in the estimation of the channel parameters. The results also matches 

the variance of the channel estimator in a half-duplex communication.
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5. RESULTS

In this section, we discuss and analyze different simulation resuts for the proposed 

method.

The autocorrelation and cross-correlation of the orthogonal sequence are shown 

in Figure 3. The cross-correlation of the selected orthogonal m-sequence is zero with 

any other sequence. The autocorrelation is non-zero with most of its linear shifts. The 

maximum peak occurs only when correlated with itself without any linear shift. The non­

zero autocorrelation of the orthogonal sequence will introduce error since it does not yield 

an identity matrix in (5) and (8). For a given number of channel taps and sequence length 

only certain linear shifts yield a better result than the other. As the number of channel taps 

increases there is fewer sequence are suitable for the FDX operation. 1

CD
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Oo
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CDN
a
a
o
£
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<D

0 200 400 600 800 1000 1200 1400 1600 1800 2000
lag /  sequence

Figure 3. Autocorrelation and cross-correlation of the selected orthogonal m-sequence.



88

The simulation is built in MATLAB using the system model as shown in Figure

2. The channel coefficients are generated using improved Jake’s model Xiao et al. (2006). 

Due to a lack of actual model representing the self-interference available in the literature, 

we used the channel model used for the communication channel with different parameters. 

Both the channels introduce frequency selective fading. The average error of the estimators 

of both the channels is evaluated from 50 000 frames in the simulation over different noise 

levels in the communication link. The performance of the channel estimators was evaluated 

for different scenarios listed in Table 1.

Table 1. Different scenarios evaluating the proposed method.

Scenarios

Different channel sequences 

Different channel taps 

Impact of synchronization

The channel estimation for the SI and communication channels are performed for 

different sequence length. Figure 4 shows the mean square error (MSE) of the channel 

estimate with five channel taps each for different sequence length. It can be observed the 

estimation error decreases with the increase in the sequence lengths since more information 

are available from usage of longer sequences. As the length of the pilot sequences increases, 

the performance of the estimation increases but saturates to the minimum error introduced 

by the sequence while performing the extraction and estimation.

The channel estimation for both SI and communication channels is performed for 

a different number of channel taps. Figure 5 shows the MSE of the channel estimate for 

a different number of channel taps. Figure 6 shows a close up look on the MSE plots 

for different channel taps for a given noise level (15 dB). There is a noticable increase in 

estimation error with the increase in channel taps resulting in more inter-symbol interference.
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Figure 4. MSE of the channel estimates using different sequence length.

The use of OFDM in the proposed method allowed mitigation of frequency selective fading 

to a set of parallel flat fading across the sub-carriers. This mitigation is limited to slow 

fading and the revision to handle fast fading is planned in the future works.

In addition to the channel estimation error for different channel taps with sequence 

length is 2048 (M = 11), the CRLB of the estimators is also plotted. The MSE of the estimate 

can get closer to the CRLB plot shown in Figure 5, when the orthogonal sequence used can 

achieve the desired correlation property as discussed in Section 3.3. The autocorrelation of 

the selected orthogonal m-sequence used is not zero for all its shifts. This deviation in the 

autocorrelation for certain shifts introduces error in addition to the noise which moves the 

MSE plots away from the CRLB. In addition, to both the channel estimator’s CRLB being 

the same, it is also the CRLB for the channel estimator operated in half-duplex. Though
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Figure 5. MSE of the channel estimation with CRLB for different channel taps and M = 11.

both the FDX and HDX communication have the same bound and HDX achieving better 

performance, FDX excels in the bandwidth efficiency. The channel estimators of the HDX 

performs better than the FDX due to the absence of the SI but the bandwidth utilization of 

FDX is doubled compared to HDX.

The comparison of channel performance between HDX operation with FDX for 

different sequence alignments is shown in Figure 7. The pilot-based channel estimator was 

used in HDX same as that used in FDX operation. The FDX plots comprise of sequences 

with offsets reducing the cross-correlation between the pilot sequences. The offsets are 

introduced only to the far-end signal which is the signal of interest to be decoded. The plot 

comprises of three sets of channel estimation with no offset and two different offsets and 

compared with the HDX operation. The channel estimation performance of HDX and FDX
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x10"3

Figure 6. MSE of the channel estimation with CRLB for different channel taps and M = 11 
(zoomed).

with no offset aligns with each other since channels in FDX are orthogonal resulting HDX 

performance. In contrast, when the offsets get introduced the channel estimation of FDX 

degrades due to the loss of orthogonality and the performance saturates quickly with to the 

errors introduced. The estimation of SI channel suffers more due to error introduced by the 

poor cross-correlation with sequence from the far-end node. This implies the maximum 

channel estimation performance can be obtained only by maintaining the alignment of the 

sequence and preserving orthogonality.



92

Eb/NO (dB)

Figure 7. Comparison of channel estimation error between half-duplex and full-duplex with 
different sequence alignments.

6. CONCLUSION

We demonstrated the separation and estimation of both self-interference and com­

munication channels in full-duplex communication using the proposed method. The per­

formance of the channel estimators depends on the correlation properties preserving the or­

thogonality and synchronization between the seqeunces. The deviation in cross-correlation 

affects performance of both the channel estimators. The effect on the performance depends 

on the which sequences not synchronized at the reception. The results of the theoretical 

limits of both the full-duplex estimators equal to half-duplex estimators shows the potential 

doubling of the spectral efficiency. Since the sequences are assigned to individual users,
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it can be reused in adjacent non-interfering cells. The proposed method can benefit the 

upcoming next-generation 5G and future generations of wireless communication where 

full-duplex operation considered to play a key role.
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ABSTRACT

The explosive expansion of collected data - in terms of dimensionality, diversity, 

volume - increases more rapidly than we can analyze to draw useful conclusions, make 

informed decisions, and provide specific recommendations. Various fields such as medical, 

healthcare, aviation, telecommunication require new tools to process the data which they 

collect to process effectively and economically and benefit from the estimated quantities that 

were learned from the data itself. In particular, there are different methodologies proposed 

and used in telecommunications to estimate the channel coefficients of different types of 

channels. All these methodologies are grounded based on the assumption of the statistical 

property of the channel. However, a flexible solution that can dynamically deploy different 

methods based on the received signal yields higher performance and maintained over time.
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In this paper, we propose to apply targeted learning and explore the suitable parameters for 

a communication system. The initial results demonstrate it is possible to distinguish and 

identify the best methodology to fit the current channel conditions.

Keywords: Channel estimation, targeted learning, target parameters, targeted maximum 

likelihood estimator (TMLE)

1. INTRODUCTION

The notion of data has dramatically changed in recent decades in its nature, scope, 

and magnitude. In many fields, one is interested in collecting data and extracting infor­

mation and knowledge from it. For examples electronic health records in medical studies, 

passengers biometric information when entering a country, sociology, the DNA sequence 

of a population, consumer information over a period of many years. Another potential 

application of autonomous data analysis is in signal processing such as identification of 

a human voice for authentication, channel estimation for radio frequency (RF) communi­

cation. Storage and processing of a large amount of collected data become cheaper thus 

allowing the collection of even more data. However, effective processing and reasoning 

based on such data at ever-increasing velocities remain a challenge due to a bottleneck of 

manual interpretation of these data. A more desired approach is to formulate a question of 

interest about the data and let the data speak. Such a question would quantify a casual or 

non-casual relationship within the data. In telecommunications, there is no single method 

that can estimate any channel model. These methods vary significantly with assumptions to 

the statistical property of the channel. Each new methods addressing a particular channel 

model or improving the estimation accuracy. There is a need in telecommunication where 

the channel estimation be performed by dynamically selecting a methodology with respect 

to the current channel condition.
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Traditional statistical approaches towards the data required aprior knowledge of spe­

cific, parametric statistical model Cao etal. (2004). These may work in small-dimensionality 

problems with existing expert knowledge, i.e. these need often flawed human input. More­

over, many techniques are not well suited to process large datasets in a reasonable time due 

to slow convergence and computational complexity. Hence, to process large datasets and 

quickly discover the unknown knowledge from the data and automatically formulate appro­

priate predictive models with minimal humans input, machine/deep learning is preferred 

and deployed.

Machine Learning, a subset of artificial intelligence in the field of computer science, 

arose in the sixties as a way of dealing with such complex data. It focuses on prediction, 

based on known properties learned from the training data to give computers the ability to 

learn from the data without being explicitly programmed. It is closely related to computa­

tional statistics and is in sharp contrast to using misspecified parametric statistical models 

van der Laan and Rose (2010). However, the goal is often a whole prediction function, and 

the machines are tailored to fit this whole prediction function.

The statistical inference in terms of assessment of variability (for instance confidence 

intervals) is typically lacking in this field. Moreover, the algorithms developed via machine 

learning are not targeted, which is adapted to the availability of new information especially 

in longitudinal studies. Also, choosing the right algorithm for prediction turns out to be 

difficult. Besides, both approaches use irrelevant information from the data to estimate 

target quantities thereby injecting bias and variability in the estimation. Existing machine 

learning approaches often employ techniques that do not statistically sound and are based 

on strong assumptions about the underlying statistical model. If the assumptions are not 

correct, the estimator will have a large bias, low accuracy, or may diverge from the true 

value. In contrast, the super learning technique estimates the targeted parameter (TP) over a 

set of potential statistical models via the super learner algorithm. Recent works have begun



100

employing such super learners to learn from the data but these (a) are not applicable to 

complex models such as surface, nonsmooth and unbounded TP, and (b) assumes complete 

dataset without dealing with the possibility of missing observations.

Recently deep learning-based approaches are employed for the channel estimation 

Jiang et al. (2019); Joo et al. (2019); Liu et al. (2019); Ye et al. (2018). It is been shown 

that a deep learning-based approach is robust compared to the traditional methods when 

fewer pilots are used, omitting the cyclic prefix, and nonlinear clipping noise exists Ye 

et al. (2018). The future channel state information (CSI) was predicted using deep learning 

from the measurement campaign to obtain and analyze the real-world channel estimates Joo 

et al. (2019). These approaches require high computational complex deep neural networks 

and a channel model based offline training from the real-world measurement campaign. 

With the advent of millimeter-wave (mmWave) and 5G communication, the knowledge 

of its channels are being explored and constantly updated through different measurement 

campaigns Deng et al. (2015); Samimi et al. (2016); Samimi and Rappaport (2016). The 

complex deep learning algorithms have to evolve with the updates and also its training sets. 

In contrast, these updates or models can be added to the model set of the targeted learning 

and update the criteria of selection.

Targeted Statistical Learning (TSL) has been established as a reliable framework 

for constructing effect estimators and prediction functions and focuses on efficient machine 

learning-based substitution estimators of targeted parameters that are defined as features of 

the distribution of the relevant part of the data while providing inference mainly via the 

influence curve. It is a broad framework that includes Targeted Maximum Likelihood Esti­

mator (TMLE) for effect estimation questions and Super Learning technique for prediction, 

and the efficient Influence Curve for inference van der Laan and Rose (2010, 2018). TMLE 

is the usual maximum likelihood, however, targeted toward the relevant parts of the data 

generating distribution instead of the overall distribution. It is tailored to handle difficult 

questions that standard statistical inferences and machine learning approaches can not solve.
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The contributions of this paper are as follows. We provided the initial results show 

variation in error performance of channel estimation with respect to the selection of the 

model. We identify and propose the targeted learning to determine the best methodology 

which fits the current channel conditions from the observations at the receiver.

The paper is organized as follows. Section 2 introduces the general formulation of 

the targeted learning algorithm and the targeted maximum likelihood estimator. Section 3 

discusses the proposed use of targeted learning for channel estimation in telecommunica­

tions. Finally, Section 4 discusses the results to show how the targeted learning algorithm 

can be used to address the estimation of coefficient(s) of a dynamic channel.

2. TARGETED LEARNING

In this section, we discuss the general formulation of a targeted learner and yhe 

targeted maximum likelihood estimator. The discussion includes the telecommunication 

model and how targeted learning can benefit the channel estimation.

2.1. GENERAL FORMULATION

Consider n units on which data is collected. Let t  = (t1, t2, . . .  , t k) be a k —dimensional 

vector of variables collection times. x  (t) = (x1 (t) , x 2 (t) , . . .  ,xp (t)), a p —dimensional 

vector of covariates, some of which are time dependent. I t = (Iti ,I t2 , . . .  ,Itj) is the 

sequence of interventions performed or recommendations that the unit was exposed to (or 

given to) at each time t j . Y t is a vector of expected outcome at each time tj given recom­

mendation at time t j -1 . One may also have censoring which often occurs in biomedical 

studies in the form of h (xt, Y t) , where h ( ,  .) is some smooth function. Another very 

important generalization for example is the possible spatial aspect measured but a spatial 

correlation p (lj, j  between units locations, where : i = 1 , . . .  ,n  and each being a 2­

dimensional vector describing longitude and latitude of the location. Environmental factors
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usually induce a spatial correlation, and often occurs in epidemiology, communication, war 

zone, and climate. Therefore, depending on the situation, a data structure may be of the 

form O = (O1, . . . ,  On) with Oi being

Oi = (x fa) , If., Y t i ,h  (x i fa) , Y fJ  ,p (li, 1^ I{* * j })

In traditional approach to data analysis, one usually assumes that O ~  P0, where 

P0 has a known form. Clearly no model exists that can fit such a complex data structure.

2.2. TARGETED MAXIMUM LIKELIHOOD ESTIMATOR

The behavior of O say P0 is completely unknown, but belongs to a family of 

semi-parametric or fully non-parametric models M . Let ^  be a function that maps M  to 

R d, d > 1 such that for any P0 e  M , one is interested in learning from a d—dimensional 

feature -0PO, so called target parameter. In communication systems, modeling wireless 

channel as sequence of received symbols Cao et al. (2004),

y (n) = 2 L=0h (k) x  (n — k) + n (n) ,

where h is a finite discrete channel coefficients, x  is the transmitted sequence and n is the 

noise term. The existing works assume the noise vector to follow a specific distribution and 

formulate the probability density function of y n conditioned on the knowledge of h k 

and x (n) as P (y |X, h ) . The channel estimation and equalization can be then formulated 

as a maximization problem, for example, arg m in-  ̂2^="01P  (yjlx,Ji'j.

In contrast to existing works Cao et al. (2004); Ghavami and Naraghi-Pour (2018); 

Necker and Stuber (2004); Saci et al. (2017); Yu et al. (2014); Zhang et al. (2015) which 

assume specific distribution model, the proposed framework will learn from data what is 

the best model.
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TMLE builds on the literature of loss-based estimation for an infinite-dimensional 

parameter in order to target lower-dimensional parameters. The goal is to target the outcome 

parameter by making an optional bias-variance tradeoff for the parameter instead of the 

overall probability P0. Specifically, what are the relevant part of P0 say Q0 that is useful 

to optimize knowledge of ^ P 0. The name is coined because the estimator is targeted 

towards the parameter via the super learner algorithm that estimates the relevant portion 

of the distribution P0 Rubin (1976); van der Laan (2010a,b); van der Laan and Rubin 

(2006). The ideas are rooted in the theory of semiparametric-efficient estimating equations 

Bickel (1998). It targets outcome parameters by making an optimal bias-variance trade 

off for the parameter of interest instead of the overall probability P0. It is double robust 

and asymptotically efficient. The standard error of the TMLE is obtained upon estimating 

the influence curve. However, the influence curve, which is one of the most important 

components of successful learning from TSL and TMLE of a given parameter can only 

be estimated when ^ P 0 is smooth. If not, convergence issues may arise. Existing work 

approximates the target parameter using a kernel with a constant bandwidth for all training 

data. Accurate information cannot be extracted from the nonsmooth parameter in case 

the bandwidth varies from one training to another. That remains an open problem for 

researchers.

3. DYNAMIC CHANNEL ESTIMATION

This section discusses different available methods to address the channel estimation 

and how the targeted learning algorithm can be deployed to achieve a dynamic selection of 

methodology to estimate any given channel.

In traditional communication approaches to channel estimation and equalization 

assume a particular statistical model such as Gaussian, Weibull Gaeddert and Annamalai 

(2005); Tzeremes and Christodoulou (2002). In such a scenario two issues arise. First, 

the channel model has to be known a priori, which is a strong assumption as wireless
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channel varies significantly with the environment. Second, often these approaches focus on 

improving the accuracy of channel parameters estimation without consideration for the true 

target parameter, i.e., improved accuracy of data decoding.

A better approach would be to target estimation with two key benefits. First, the 

targeted statistical learning will identify the most suitable statistical model for the current 

channel conditions. Second, the decoding accuracy can be maximized by selecting a 

corresponding targeted parameter for TMLE. The block diagram of how the targeted learner 

deployed in the selection of the estimator for the received samples is shown in Figure 1.

Received
samples Targeted Learning Channel

Algorithm Estimation /
B e s t  F i t Equalization

4

C h a n n e l  m o d e l

Equalized 
samples

Channel estimation 
Methodologies Set, M

Figure 1. Block diagram of the targeted learner used in dynamic selection of channel 
estimator.

We evaluate how different methods to estimate the channel coefficients perform 

for different channel models as shown in Table 1. Three-channel estimators are analyzed 

for two different channel conditions where one of them is the channel for which they are 

designed and the other is different from the desired channel. The estimators are evaluated 

using the loss function which is given by

Emo L h, h Var h + Bias h
i2

(1)
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where h is the estimated channel coefficient vector and h is the true channel coefficient 

vector. M  is the set of the statistical models.

Table 1. Different channel fading model and distributions.

Channel fading
Flat-fading

Frequency selective

Distributions

Rayleigh

Racian

Nakagami

Let us consider two-channel models. The first model considers the channel with 

a single tap coefficient, whereas in the second model the channel with two taps. There 

are two different channel estimators to estimate the channel coefficient(s) for the respective 

channel model. To show how targeted learning can be applied, the performance of these 

estimators are compared for both the channel models. Typically single-tap channel model 

can be associated with flat fading where are all reflection arriving the receiver during the 

symbol period can be summed up as one tap channel and channel model with more than 

one-tap which incur inter-symbol interference (ISI) is associated with frequency selective 

fading.

The system equation of the received symbols y of a given slot of length N  at the 

receiver is given by

y = x h  + n, (2)

where h is channel coefficient vector of length LL  ^  N . L = 1 for single-tap channel and 

L = 2 for double-tap channel. X  is L concatenated columns of transmitted symbol vector 

of length N . n is the noise vector of length N .
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The system equation (2) for the two channel models can be written as

y0 h 0 ■ ■ 0 x0 n0

y i =
0 h x i

+
ni

, (3)

y N  — i 0 0 ■ ■ h x N  — 1 nN  — i

In the single-tap channel model, only one channel coefficient h is estimated whereas, 

in the double-tap channel model, two-channel coefficients h0 and hi are estimated. The 

two methodologies are designed specifically to estimate the coefficients of their respective 

channel models.

y0 ho 0 0 ■■■ 0 x 0 n0

y i h i ho 0 x i ni

= 0 h i ho + • (4)

y N  — i 0 0 i
oT—

1 x N  — i nN  — i

As discussed earlier in real-life scenarios, the channel is dynamic constantly varying 

with respect to the environment. For the evaluation of these methods in different channel 

models, we assume the true channel coefficients are known. The bias of the estimator 

demonstrates the deviation of the estimated channel coefficients from the true value and 

shows how the targeted learning can be a potential solution to dynamically select the 

methods based on the observation from received symbols. This evaluation is not limited to 

a simpler system model in Equation (2) and can be scaled to advanced system models such 

as OFDM, and MIMO systems.
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Bias is introduced when the estimators are used for different channel models which 

they are not designed for. The target parameter for the learner is the bias of the estimators. 

From Equation (1), the loss function is equal to the variance of the estimator if the right 

estimator was selected to estimate the channel coefficients.

Bias of the estimator is given by

Bias (h) = E,'Jy\h h h

where h and h are the estimated and true channel coefficients respectively.

The steps to estimate the channel coefficients differ for different methods and max­

imum likelihood is generally used. The simplest of all is the estimation of a single tap 

channel where only one coefficient is estimated by dividing the received symbol with the 

know transmitted symbol. This is possible in pilot slots where a known sequence is trans­

mitted between the nodes. In the case of the multi-tap channel, the estimation of channel 

coefficients is difficult in the time domain and mostly performed in the frequency domain 

and transform the results back to the time domain. These are widely used in modern wireless 

communication technologies such as OFDM, MIMO systems. The channel coefficient(s) 

estimated by the respective estimators are:

hh = h

ho
h =

hi

(5)

(6)

Typically for an unbiased estimator, the expectation of the estimated value is equal 

to the true value. From Equation (3), for an unbiased estimator, the bias is equal to zero. 

The estimators which are considered for evaluation are unbiased while using the respective 

channel model. This difference can be used to determine which estimator(methodology) 

and an appropriate candidate for the target parameter of the targeted learning algorithm.
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4. RESULTS

In section, we discuss the simulation results to show the performance of different 

methodologies to estimate the channel coefficients and demonstrate the feasibility of the 

targeted learner.

The simulation comprises three-channel estimators, one modeled to address the 

single-tap channel whereas the other to address the two-tap channel. The simulation 

was performed using MATLAB over 100000 pilot slots. The noise vector j  used in the 

simulation is additive white Gaussian noise (AWGN) with mean 0 and variance a2. For the 

Bayesian model, both the true mean, and true variance ah are assumed to be known. The

pilots are the known sequences between the transmitter and the receiver. The simulation 

was performed for two different channel conditions. First, the channel was set to a single-tap 

channel and second, the channel was set to a two-tap channel. Both the scenarios were 

run over different SNR conditions and the estimators are deployed to estimate the channel 

coefficients. Figure 2 compares the variance of the estimated channel coefficients by the two 

methods with the true variance of the channel coefficients (single-tap channel) used in the 

simulation. From Figure 2, the true variance of the channel coefficients over the duration 

of the simulation is compared with the variance of the channel coefficients estimated by the 

two estimators. It can be observed the variance of the single-tap estimator is closer to the 

true variance than the double-tap estimator. This indicates the variance can be used as a 

parameter of interest to determine the best method which fits the current channel condition.

The estimated channel coefficients by the estimators are used to evaluate the error 

performance and plotted as shown in Figures 3 and 4.

The error performance plots of the single-tap and double-tap estimators used to 

estimate a single-tap channel (flat fading) are shown in Figure 3. It can be observed that the 

bayesian and single-tap estimators perform better than the double-tap estimator. The error
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Figure 2. Comparison of variance of the estimated channel coefficients by the two methods 
with the true variance.

plot of the double-tap estimator follows the similar trend of the single-tap estimator and 

incurred error in its estimation of the h0 and hi. Here, hi should be zero but the estimated 

value is not equal to zero and has a similar error difference of h0.

Similarly, in Figure 4 illustrates the error performance plots of the single-tap and 

double-tap estimators used to estimate a channel with two taps. In this case, the transmitted 

symbols suffer ISI and their impact can be observed on the poor performance of the single­

tap estimator. By design, multi-tap estimators, in general, are built to overcome ISI to 

estimate the channel coefficients which is reflected in the error performance plot of the 

double-tap estimator. The Bayesian model performed better than the other two models with 

prior knowledge of the channel. If the prior knowledge of the channel is not available or 

not accurate then the error performance will be close to the other ML estimators.
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Error Performance

Figure 3. Mean square error of the channel estimators when applied to the single-tap 
channel.

From the above results, the estimators tailored to respective channel model per­

formance best. There is no single solution that addresses any channel and estimates its 

coefficients. Deep learning is promising to address but with a huge cost on the complexity 

and offline training for learning. A deep learning algorithm can estimate a dynamic channel 

but they are complex with high computations which is not a suitable solution for compact 

mobile applications. However, a targeted learning algorithm can dynamically select the 

best methodology from its collection of models to estimate the channel coefficients using 

the received samples. There are many estimators available in the literature proposed to 

address channels of different environments. These methodologies can be considered as a 

set of estimators that can be selected dynamically with respect to the channel conditions 

observed from the samples.



111

Error Performance

Figure 4. Mean square error of the channel estimators when applied to the multi-tap (2-taps) 
channel.

5. CONCLUSION

Different methodologies were used to estimate different channel conditions and 

evaluated their respective error performance. The results show that a single methodology 

to estimate the channel coefficients cannot maintain its performance for a dynamic channel. 

The targeted learning algorithm can perform the selection of methodology to estimate 

the channel coefficients based on the target parameter such as bias, bit error rate, speed 

of convergence, computation overhead. The formulation and regression model with the 

explored target parameters for different channel distributions such as Rayleigh, Racian, 

Nakagami are planned for OFDM, MIMO systems and evaluate the performance of the 

targeted learning.
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SECTION

2. FULL-DUPLEX CHANNEL ESTIMATORS FOR FLAT FADING CHANNEL

The following contents are the initial works prior to the publications which are 

included for the method proposed to use the orthogonal sequences for the pilots in case of 

flat fading channel. The Cramer-Rao Lower bound of the estimators in terms of symbols. 

The Walsh sequence was used as pilots for the flat fading channel but not suitable for 

frequency selective fading. An orthogonal m-sequence was used and discussed in Paper 

V. In FDX operations, the pilots can be used to estimate the SI channel in addition to the 

communication channel. However, the challenge at the receiver is to distinguish the pilots 

from the received signal to estimate respective channels such as SI and communication 

channel. Different approaches enable the receiver to overcome this challenge.

2.1. METHODOLOGY

The conventional approach is different slots (DS) are chosen across the radios for 

transmitting their respective pilots such that they do not overlap with each other. However, 

the more efficient approach is to use the same slot (SS) for the pilot transmissions across 

the radios. This increases the spectral efficiency and also the complexity at the receiver to 

separate the pilots from different radios. The accuracy of the channel estimation depends 

on the receiver's ability to distinguish the pilots and estimate their respective channels. 

Especially in FDX communication link, receivers should be able to distinguish its pilot 

from others for the estimation of both SI and communication channels. We propose a 

solution to aid the receiver in distinguishing the pilots from different radios transmitted in 

a given slot by using orthogonal sequences as pilots.
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2.1.1. System Model. In this section, we briefly discuss the proposed method, the 

system model, and how the orthogonality property was used to separate and estimate the SI 

and communication channel.

fj (AWGN)

Figure 2.1. Block diagram of FDX system model

Consider a full-duplex system as shown in Figure 2.1, and the received symbol 

vector of length N  for any given slot at node A is given by

ya = Xahaa + Xbhba + f ,  (2 .1)

where, X a is the transmitted symbol matrix containing M  columns of the transmitted 

symbol vector, xa of length N  from the node A. Similarly X b is transmitted symbol matrix 

containing M  columns of the transmitted symbol vector, Xb of length N  from node B to 

node A. haa and hba are self-inteference and communication channel coefficient vectors of 

length M  (N >> M ) respectively. f  is the AWGN vector of length N . fj ~  C N  (0, a 2) . 

In this article, to evaluate the proposed method, flat fading channel is considered for both 

SI and communication channels.



116

2.1.2. Orthogonal Pilot Sequence. As discussed earlier the known pilot sequences 

are used to estimate the channel of a communication link. In the proposed method, we use 

the orthogonal sequences as pilots to separate pilots from different radios by receivers in 

FDX operation.

The pilot symbols are extracted from the known pilot slots received by the receiver 

and the property of orthogonality of the pilot symbols is used to separate and estimate the 

SI channel and the communication channel. Let node A and node B use the orthogonal 

pilot sequences xpa and xpb respectively such that • xpb = xTb • xpa = 0 and • xpa =

x T  • xpb = 1. Thus, by multiplying transpose of its pilot sequence, the communication 

channel component from the received symbol can be removed to estimate the SI channel 

and vice-versa. For a flat fading channel with M  taps, multiplying X'Ta on both sides of the 

system equation (2 .1) yields

X paya = X paX pahaa + X paX pbhba + X panl

= 1MxM haa + 0MxM + X Parl

= 1m xM haa + Xp̂ aV, (2.2)

where, 1MxM and 0MxM are all ones and all zeros matrices with dimension M  x M  

respectively. Similarly, multiplying X ^  on both sides of the system equation (2.1) yields

T t t t 1
X pbya = X pbX pahaa + X pbX pbhba + X pby

l T= 0MxM + 1MxM hba + X pbV

= 1m xM hba + XpjaV. (2.3)

Solving the results from Equations (2.2) and (2.3), the SI channel and communication 

channel coefficients haa and hba can be estimated respectively. Though the nodes A and 

B are synchronized to establish a reliable communication link, the reflections of node A to
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itself likely have an offset. The orthogonal sequence tolerates this offset until the occurrence 

of a significant ISI which is avoided by considering both the SI and the communication 

channels being flat fading channels.

The channel coefficients of respective channels for the entire frame can be estimated 

from the knowledge of the channel coefficients at the pilot locations by using any of the 

existing interpolation techniques Aghamohammadi et al. (1991); Cavers (1991); Sampei 

et al. (1993); Wu et al. (2004).

2.2. CRLB FOR THE PROPOSED METHOD

In this section, we derive the Cramer-Rao Lower Bound (CRLB) for the proposed 

system. In the case of flat fading channel, different reflection arriving at the receiver does 

not cause inter-symbol interference (ISI) and these reflections sum up to one filter coefficient 

of the channel. Then, the system equation (2.1) for the kth symbol in a given slot can be 

written as

ya (k) = Xa (k) haa + Xb (k) hba + T] (k) , (2.4)

where, haa and hba are channel coefficient of the SI and the communication channel and 

these two parameters are the parameters of interest to be estimated which is indicated by

<9 = [haa hba]T .

The probability density function of the received slot with N  symbols is given by

P[ya ,e
i

(2na 
- 1

N 
2 )  NT

exp 2 ^ 2 ̂ k=01 (ya (k) -  Xa (k) haa -  Xb (k) hba
2 (2.5)

To determine the CRLB of the estimator, the Fisher information matrix I  [9] has to

be evaluated which is given by,
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E

E

d2 ln P ( y a,e)

dh(a
d2 ln P (ya,0)

dhbadhaa

E

E

'd 2 ln P ya,
dhaadhba

d2 l n P [y a,
(2.6)

— t
Recall that for the estimation of vector parameter, 9 = [91 02 . . .  0n] . If 9i is 

an unbiased estimator, then the CRLB of 9i is iith element of the inverse of the Fisher 

information matrix Kay (1993), I  (9)

var % > r - l
%% (2.7)

Now, we evaluate the individual elements in the Fisher information matrix. The 

logarithm of the probability density function and the partial derivatives of the equation.

ln p (yja, 9) = - ^ 2  ln (2^ a 2) + 2 — S ^ - 1 y  (k) -  Xa (k) haa -  Xb (k) hba) , (2 .8)

d ln P[Va,9  J

dhaa
d ln P{yja,9)

dhba
d2 ln P  (ya,9)

dh(a
d2 ln P (ya,9)

dha
d2 ln P (ya,9)

dhaadhba
d2 ln P (ya,9)

dhba dhaa

~2 Sfê O1 (ya (k) -  Xa (k) haa -  Xb (k) hba) Xa (k)

~2 S /Io 1 (ya (k) -  Xa (k) haa -  Xb (k) hba) Xb (k)

- ~2 SN=~01 (Xa (k))2

-  ~2 s £=o1 (Xb (k))2

~~TSN=~01 (Xa (k) Xb (k))

~~TSN=~01 (Xb (k) Xa (k)) .

(2.9)

(2 .10)

(2 .1 1 )

(2 .12)
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Since, the Walsh codes are used in the analysis, the results from Equations (2.9), 

(2 .10), (2 .1 1 ), and (2 .12) becomes,

d2 ln P(ya,d) N

dh(a = a2
(2.13)

d2 ln P (ya,e) N

dhba = a2
(2.14)

82 ln P (y-a,e)

dhaadhba
= 0 (2.15)

o2 ln P (y-a,e)

dhbadhaa
= 0. (2.16)

The expectation of the results from Equations (2.13), (2.14), (2.15), and (2.16) yields

E

E

'3 2 ln P[ya ,e ) '
= E

d2 ln p (y-a,-)

_ dh2aa _ _ dh2a _

'32 ln P y , - ) -
= E

d2 ln p (y-a,-)

dhaadhba dhbadhaa

N
- - 2  (2.17)a 2

(2.18)

Using the results from Equations (2.17) and (2.18) in (2.6), the Fisher information 

matrix, I  (-)  can be constructed

0

N
-2  0a*

N
0 “ I

N  1 0 

a2 0 1

(2.19)

(2 .20)

The variance of the parameters haa and hba can be determined using (2.7) and the 

inverse of the Fisher information matrix I - 1  (-)  is

I - 1
a 2
N

1 0

0 1
(2 .2 1)
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Therefore, the Cramer-Rao lower bound SI and communication channel estimators 

are given by

var (haa 

var (hba

a 2> —

-  N
a 2>  — .

-  N

(2 .22)

(2.23)

— haa, @2 — hba

[ I - l {«.

The CRLB of the channel estimator for HDX operations matches while estimating 

the communication channel. The usage of orthogonal sequences in FDX operations enables 

the receiver to separate and estimate SI and communication channels.

— I - 1 ,it  v y 22
a 2
N J

2.3. SIMULATION ANALYSIS

In this section, we discuss the simulation results illustrating the performance of the 

estimators using the proposed method in terms of estimation error. The simulation is built 

using the system model.

The Walsh orthogonal sequences are used as pilot sequences in the simulation. The 

orthogonality property was tested for different sample offsets within a symbol period. Figure 

2.2 shows the sequence product for different sample offsets where samples per symbol is 

equal to 10. As observed in Figure 2.2, the cross-correlation is almost equal to zero 

for different sample offsets, whereas the auto-correlation varies over different offsets. The 

Walsh sequence product yield negative value for odd offset and positive value for even offset 

and this transition from a positive one to negative one can be observed from Figure 2.2. 

In FDX operation, the receiver synchronizes with the communication channel and self­
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interference shall have sample offset less than one symbol period (flat fading channel), the 

orthogonality property can be deployed to separate and estimate both the communication 

and the SI channels.

Figure 2.2. Orthogonal sequence product result for different lags across a symbol duration 
(10 samples/symbol).

The orthogonal pilot sequences of length N  = 1024 are spread across different slots 

in a frame in the simulation. The channel coefficients are generated using improved Jake’s 

model Xiao et al. (2006). Due to a lack of actual model representing the self-interference 

available in the literature, we used the channel model used for the communication channel 

with different parameter. Both the channels are flat fading and the Doppler frequency of 

the SI channel was set higher than the communication channel. The average error of the 

estimators of both the channels is evaluated from 100000 frames in the simulation over

different noise levels in the communication link.
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haa channel estimator

Figure 2.3. Cramer-Rao lower bound of haa and the estimation error using MLE for different 
methods.

The three cases discussed are simulated and their respective performance is com­

pared using MSE curves. In the DS method, the pilots from different radios are transmitted 

in different slots, whereas in the SS method, the pilots from different nodes are transmitted 

in the same slot. In the SS method, offline training was performed to estimate the SI channel 

in the absence of other signals. The offline SI channel estimation is used in addition to the 

knowledge of pilots from both the nodes to separate the channels and performed channel 

estimation of the communication channel. In the proposed method, the orthogonal pilots 

are transmitted by radios in the same slot. Using the property of orthogonality, the channels 

are separated and performed the channel estimation of both SI and communication chan-
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hba channel estimator

Figure 2.4. Cramer-Rao lower bound of hba and the estimation error using MLE for different 
methods.

nels. The simulation results illustrating the performance of the estimators to estimate SI 

and communication channels in addition to their respective CRLB are shown in Figures 2.3 

and 2.4 respectively.

We showed that the proposed method using orthogonal sequences as pilots can 

successfully separate and estimate both SI and communication channel. The proposed 

method yields around 6 dB on average compared to the SS method. When applied to Wi-Fi 

operated in full-duplex, there is ^  10% increase in peak throughput because of lower pilot 

overhead than DS method. We derived and showed the CRLB of the proposed method 

and it matches with the estimator when performed separately. Thus, the use of orthogonal
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sequences as pilots in FDX operation reduce the pilot overhead and improve the spectral 

efficiency. The proposed method can benefit the upcoming next-generation 5G mobile 

communication where full-duplex operation considered to play a vital role.
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3. MISSING DATA NOT AT RANDOM: CHARACTERIZATION OF TARGETED 
INTERFERENCE IN WIRELESS NETWORKS

Communication systems include data collection and estimation during their oper­

ations. At the receiver, the data can be missed due to various reasons such as channel 

conditions, malicious attack, failure at the receiver. Some of these conditions occur at 

random, but sometimes, their occurrences are not random. These occurrences can be due to 

the precise placement of interference to impede communication between the devices. There 

are different mechanisms proposed in the literature to address this data loss, by requesting 

retransmission, spreading the signal, etc. A different approach from the statistical analysis 

used in processing data from the survey, to estimate the data which are missed not at random. 

In the statistical study, data that are missed not at random manifest during data collection 

when one or more subjects involved in the survey skip their responses for one or more 

data fields due to social, economic and health reasons. These missed responses are filled 

by imputation from the responses collected from other subjects. Similarly, in a wireless 

network, data lost from a particular node that is under attack can be considered as data 

missed not at random and can be estimated from the data collected from the surrounding 

nodes.

3.1. MOTIVATION

One of the challenges in wireless networks that gets the least attention is the oc­

currence of the data miss for various reasons such as the condition of the channel, nearby 

interference, malicious attack on the targeted nodes, etc. This data loss is generally ignored 

since there are back up mechanisms with requesting multiple retransmissions to retrieve 

the missed data. When focused on these missed data, they can provide insight into the 

prevailing conditions of the communication link and potential issues with it such as the
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rapid fluctuation in the channel, external interference. This improves the estimation of the 

channel by reducing any bias in the data processing, thus enhance the performance of data 

decoding at the receiver. The missed data due to these conditions in the communication 

link can be classified into two groups from a statistical perspective that is missed data at 

random (MAR), and missed data not at random (MNAR). This classification is used in the 

statistical analysis of data processing when one or more fields of data collection go missing.

During data collection, MAR occurs when the probability of missing does not 

depend on the observed data, whereas MNAR occurs when the probability of missing 

depends on the value itself. Most of the works in the literature consider the data missing 

at random. This assumption has shown a less impact on the parameter estimates Collins 

et al. (2001). Earlier the missed data in statistical analysis are dealt with by two methods 

such as listwise deletion and pairwise deletion. Listwise deletion completely drops the 

entire data set when one or more fields are missing data, whereas pairwise deletion reduces 

the dropping of the data set and attempts to maximize the use of data for the analysis. In 

both methods, the estimation tends to have a bias on the estimation by overestimation or 

underestimation Dong and Peng (2013).

The data missing in the statistical analysis directly relates to the statistical inter­

ference occurring during data collection which can be translated to data missing at the 

reception of the communication link.

3.2. METHODOLOGY

The pattern of the missing data is classified into univariate, monotone and arbitrary. 

While considering the pattern of the missing data at the reception of a communication 

link is considered as univariate for a single receiver stream and monotone for multiple 

receiver streams. We start with a univariate pattern of the current discussion and explore 

monotone in the future study. We propose to use imputation in the process of replacing data
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missed by more probable value using the information from the observed values. Imputation 

is employed in data mining using machine learning while analyzing incomplete data set 

Chhabra etal. (2019).

Two methods used while imputing missing values with a univariate pattern, the 

regression method Rubin (1987) and the predictive mean matching method Heitjan and 

Little (1991); Schenker and Taylor (1996). In our discussion, the regression method is used 

and common approaches deployed for the regression model are linear regression Healy and 

Westmacott (1956), non-parametric kernel regression Cheng (1994); Wang and Rao (2002), 

and semi-parametric regression Wang and Sun (2007).

Considering n nodes in a given network and dataset of the individual reception 

denoted as X \ , X 2, ■ ■ ■, X n. Assuming ith reception in missing the data, then one can 

construct a regression model from the observed data and given by:

X , = + f tX i  + ■■■ + f t_ iX i_ i 1 <  i <  n. (3.1)

where P are the regression coefficients estimated which is estimated using the model. From 

the resulting coefficient set P , the values of the missing data can be imputed.

Using formulation defined in Bindele and Adekpedjou (2018); Kim and Yu (2011), 

(3.1) can be rewritten as two random vectors with one x  being fully observable and other y 

subject to missing data not at random. These two vectors are related in a regression model 

as

yi = g X  Po) + Zi, 1 <  i < n. (3.2)

The estimation of regression parameters can be performed using the method of 

moments, least squares, least absolute deviation, maximum likelihood, and rank-based. 

The model should relate the missed observation as the function of the other observations
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taking into account the model error, Z. For the MNAR the observation of interest can be 

written as a convex combination of estimation for observation response missed and not 

missed.

Consider a communication system, whose received signal at the reception written

as,

vi = h.Xi + n (3.3)

where, (xi,vi) are the transmitted and received signal over n time instance. h is the channel 

coefficient and n  is the AWGN ~  (0, a2) . Assuming (xi ,yi) over random sample of size n 

of the random vectors (X, Y)  with distribution F  (x i ,y0 where x i is always observed and 

vi observation subject to missingness. The missingness in the observation is assumed to be 

MNAR considering a targeted interference where the missing observation depends on the 

yi value.

Let Si is missingness indicator for yi , where

0, if yi is missing,
Si = <

I 1 , if yi is observed,

and response of the missingness indication follows Bernoulli distribution with probability 

of observation n which depend on the value of yi (MNAR), S ~  Bernoulli (w) . The 

missingness indicator is indepedent across all instances, Si is independent or Sj, Vi ^  j .

For the missing and observed instances of yi ,

P (Vi \xi, Si = 0) for yi missing

P (Vi\xi,Si = 1) for yi observed
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The estimator under the MNAR condition can be obtained by

E  (Y ) = nsn=1 { S y  + (1 -  Si) mo (xi)} (3.4)

where m 0 (x0 is a consistent estimator of m 0 (x0 = E  {yi\xi, Si = 0}. m 1 (x0 can be 

estimated using the observation, where as it is difficult to estimate with no (missed) obser­

vations.

To determine the conditional distribution for the missed observation, the following 

relationship is used:

P {yi\xi,Si = 0  = P {yi\xi,Si
1) P S  = 0\xj,yi) /P (Si = 1|xj,yi) 

' P (Si = 0\xi) /P  (Si = 1\xi)
(3.5)

Assuming logistic regression model, Kim and Yu (2011)

P (Si = 1\xi,yi)
exp{g (x;j) + 0yi}

1 + exp{g (xi) + 0yi}
(3.6)

for some function g (•) and parameter 0 .

Using 3.6, the conditional distribution of the missing observation can be written as

P (yi\xi,Si = 0)

f 0 (yi\x i)

P (yi\xi,Si = 1)

f i (yi\x

exp (jyi
'E[expfoyi) \xi,Si = 1 } 

exp (jy-i)
E{exp (jyi) \x%,Si = 1 }

(3.7)

(3.8)

where 7 = —0, and f 0 (yi \x0 , f 1 (yi \x0 are the probability density function of yi given 

xi, Si = 0 and 1 respectively.

3.3. RESULTS

In this section, we discussing preliminary results analyzing MNAR in communica­

tion system.
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Figure 3.1. Comparison of MNAR and noise interference impact (SNR = -10 dB).

Figure 3.2. Comparison of MNAR and noise interference impact (SNR = 0 dB).

The distribution of the estimation channel coefficients was compared with the true 

value and the estimation of same the channel coefficients while suffering MNAR. Figures 

3.1 to 3.3 show the distribution of the estimated channel coefficients approaches the MNAR
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Figure 3.3. Comparison of MNAR and noise interference impact (SNR = 10 dB).

model with the increase in noise interference and provides a motivation towards correlat­

ing targeted interference to the response for missing observation occuring not at random 

(MNAR).

Figure 3.4. Degradation of channel estimate for different levels of interference.



132

The bias in the estimation with MNAR prevailing negatively impacts the perfor­

mance of the estimator and cannot be ignored rather as to be mitigated.Figure 3.4 shows 

the degredation of the channel estimation as the threshold of the missingness increases and 

potentially affects the decoding of the data if the missingness ignored.

In the current work, the data missed during communication due to an external tar­

geted interference to impede the communication can be treated as missing data not at 

random. The statistical tools used in statistical analysis responding to missing data not at 

random is proposed to estimate the lost data or extract information about the interference.
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4. UPDATES

In this chapter, the updates beyond the publications to compare with other existing 

works. The updates include both for the presented heterogeneous mesh network and the 

proposed full-duplex methodology using orthogonal pilot sequences.

4.1. HETEROGENEOUS MESH NETWORK

The HetMeshNet Al-Saadi et al. (2016) comprises of Wi-Fi and LTE networks 

with cognitive framework employing cognitive heterogeneous routing (CHR) to forward 

the traffic from one congested cell to other noncongested cells to work as a single network. 

The routing protocol based on Q-learning dynamically selects the transmission interface 

(LTE, Wi-Fi) to increase and enhance the average throughput. Both the networks form a 

grid and distances are equivalent when scaled considering the coverage area of the nodes. 

The learning rate and discount value estimate the best action in the selection of interfaces 

for HetMeshNet. In addition to routing the HetMeshNet utilizes the unlicensed Wi-Fi 

frequencies.

The simulation results for 19 nodes in 4 x 5 grid with five LTE base stations with 

one at the center and four distributed around the grid. The simulation results of the average 

throughput of the network are compared excluding the utilization of unlicensed Wi-Fi 

frequencies by LTE. The results are tabulated and compared in Table 1.

The average throughput of the CHR with 50 RB (resource blocks) achieved is about 

1.7 Mbps compared to the LTE network with 50 RB achieves 1.3 Mbps Al-Saadi et al. 

(2016). An improvement of about 26% whereas the proposed work without a routing 

algorithm achieves 23%. The results show the presented work with Wi-Fi and Bluetooth
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Table 4.1. Comparison of the parameters and results of the presented network.

Parameter HetMeshNet Presented network

Number of hops 2 to 5 5

Maximum throughput 5 Mbps (LTE 50) 5.5 Mbps (Wi-Fi 802.11a)

Homogeneous avg. 
throughput

1.3 Mbps (LTE 50) 1.24 Mbps (Wi-Fi 802.11a)

Heterogeneous avg. 
throughput

1.7 Mbps (LTE 50 + Wi-Fi 
802.11a+ CHR)

1.53 Mbps (Wi-Fi 802.11a + 
Bluetooth + no routing)

% improvement 26% 23%

in smartphones achieves almost the same performance of HetMeshNet with fast LTE links. 

The Bluetooth links in the presented network present bottlenecks due to the lower capacity 

than that of Wi-Fi links.

4.2. FULL-DUPLEX COMMUNICATION

The frequency-domain least squares (FD-LS) estimator Shu et al. (2017) estimates 

both communication and self-interference (SI) channels and an estimator based on the 

expectation-maximization algorithm for relay systems Xiong et al. (2016). The results 

from the initial work using ML estimator Masmoudi and Le-Ngoc (2016) was also used to 

compare its performance with frequency selective fading channel.

Figure 4.1 shows the results of different methods with the proposed method. The 

proposed method and FD-LS estimator Shu et al. (2017) uses the orthogonal frequency 

division multiplexing (OFDM) system and exploits the time-domain property of the channel. 

It can be observed that the proposed method better with lower SNR, and both the methods 

converge as that SNR increases. The FD-LS estimator performs better for higher SNR 

due to increase channel information optimizing its pilot matrix. The result from the EM 

estimator Xiong et al. (2016) does not perform well compared to the proposed and FD-LS
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Figure 4.1. MSE of the channel estimates with different existing works.

estimator since it performs time-domain processing with time division duplexing (TDD). In 

addition, the results from the initial version for the proposed methodology is also presented 

for the same channel condition performed in time-domain.

The time-domain processing of a multitap channel are complex and it gets simple 

when performed in the frequency domain. The usage of OFDM, in particular, mitigates 

the multitap channel as a set of the flat-fading channel across each subcarrier. The or­

thogonal sequence is the key to the proposed method such that both self-interference and 

communication channels can be separated and estimated independently.

The results from Figure 4.1 also indicates the performance of the estimators depend 

on the channel model where the deployment of targeted learning to choose appropriate 

channel model that fits the data will improve the performance of the channel estimators.
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The improvement of the full-duplex communication is illustrated using a Wi-Fi 

network as an example. The maximum peak throughput achieved for a Wi-Fi system 

operated in SISO 64 QAM with code rate 5/6 in half duplex is 55.6 Mbps whereas in full- 

duplex it is 118.1 Mbps. The maximum throughput achieved by full-duplex is nearly twice 

that of half-duplex. Though full-duplex communication resolves collision, still it suffers 

suffer self-interference and depends on the methodology to mitigate self-interference Song 

etal. (2017).

2 0  M H z 4 0  M H z
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Figure 4.2. Throughput comparison of the different methods (SNR = 15 dB).

Figure 4.2 illustrates the throughput estimated using the channel estimation per­

formance Li et al. (2018); Proakis (2008) of different channel estimators for fixed power 

constraint, SNR (15 dB), modulation, and fading environment (frequency selective chan­

nel).
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The nodes in half-duplex operation take turns to communicate and wait for feedback 

from the neighboring nodes results in one-way data traffic. However, full-duplex operation 

allows simultaneous two-way data traffic where the nodes receives feedback while transmit­

ting the data. In addition to two-way traffic, it mitigates the interference between the nodes 

in the network. The heterogeneous networks already shows the benefits of decoupling the 

channels minimizing the bandwidth split among the surrounding nodes. The full-duplex 

operation adds additional bandwidth to each of the link in the heterogeneous network im­

proves the overall performance of the network. The proposed full-duplex methodology 

contribute 18% more bandwidth compared to the other listed methods and 62% more band­

width compared to maximum throughput achieved by half-duplex operation for individual 

links with 15 dB SNR.
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5. SUMMARY AND CONCLUSIONS

The presented research work aimed to build a wireless network that is well- 

connected covers a large area, easily scalable, and accommodate the growing number 

of users. Based on the analysis performed, a mesh network in full-duplex communication 

supported by the target learner in sync with the channel yields a desired wireless network. 

Each system contributes to the features of the envisioned wireless network. A heteroge­

neous mesh network can connect more devices with different interfaces compared to the 

homogeneous mesh network, and convergence devices are at the keys component of the 

network. The limitation of bandwidth resulting due to the increase in devices and the num­

ber of hops can be addressed by the full-duplex communication. The full-duplex doubles 

the spectral efficiency and potentially address interference among the nodes in the network. 

The existing platform such as USRPs can be used with the knowledge of their internal 

leakage provides a potential operation in full-duplex mode. The results from the proposed 

full-duplex model show the self-interference and communication channels can be estimated 

and can be used in the mitigation of self-interference. Finally, the channel model plays a 

critical role in determining the performance of the proposed full-duplex model which can 

be addressed using the target learner which identifies the best channel model from the pool 

of channel models.

The results show heterogeneous mesh network is more suitable for connecting more 

devices and extend the coverage over multiple hops whereas homogeneous mesh network 

is more suitable for a localized network such as a home network. The identification of 

bottlenecks in a heterogeneous mesh is very critical and might degrade the performance of 

the network. The increase in the number of devices with diverse interfaces increases the 

robustness of a heterogeneous mesh network which allows multiple contingency routes for 

a dynamic network.
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The measurement results of the USRP family of devices shows the operating fre­

quency range in which USRPs can be potentially deployed to operate in full-duplex mode. 

The limited range can be achieved without any additional schemes. The adaptive filtering 

shows promising results in mitigation of internal self-interference but more analysis to be 

performed to evaluate with both internal and external self-interference. The proposed use of 

the orthogonal pilot sequence enables both the separation and estimation of self-interference 

and communication channels. The performance of the channel estimator depends not only 

on the orthogonality of the sequences used but also on their correlation properties.

The preliminary analysis compares the performance of different channel models 

for different channel conditions. Based on the results of the parameters such as variance, 

bit-error rate can be used to evaluate the risk by the target learner. Also, the initial results 

show the correlation between the targeted interference with the response to the missing data 

not at random.

5.1. CONTRIBUTIONS

The contributions of the presented research work are as follows:

• The integration of different wireless interface/technologies resulting in convergence 

devices. This is achieved by the development of an Android application enabling the 

smartphone devices to become convergence devices. Then, a heterogeneous mesh 

network was built using these convergence devices.

• Characterized the internal self-interference suffered by family of USRP devices across 

their operating frequencies. Performed full-duplex operation and analyzed the impact 

of the internal self-interference on the performance of data decoding at the reception.

• Proposed a pilot-based channel estimation method using orthogonal sequences to 

separate and estimate the self-interference channel and the communication channel 

in a full-duplex communication.
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• Derived the Cramer-Rao Lower Bound of the full-duplex channel estimators of the 

proposed method.

• Deployment of Targeted learning to identify and select the channel model from a set 

of methodologies that fits the current state of the channel.

5.2. FUTURE WORKS

In each section of the present research work, there is room for improvement in 

achieving the most desired wireless network. The addition of routing protocol to the 

current implementation of a heterogeneous mesh network enables to identify bottleneck 

links and have multiple contingency routes addressing route failure due to mobility. The 

implementation extended to multiple platforms such as iOS, Windows, Linux expanding 

the scope to include more devices to build a robust network. Next, is the implementation 

of the proposed full-duplex model in hardware platform using USRPs to evaluate the full- 

duplex operation. The formulation of the target learner with the identified parameters and 

also exploring other parameters for risk assessment to identify with the channel model best 

suited for the current channel condition. The evaluation of the proposed missing data not at 

random in response to the targeted interference and evaluation of the different estimators. 

Finally, integrating all the individual components, aiding each other to build the envisioned 

wireless network.
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