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ABSTRACT 

Manufactured nano-/micro-materials (MNMs) have been widely used and their 

interactions with niche biological environment are highly concerned for both of their 

biohazardous and bioactive effects, whereas no available comprehensive evaluations or 

regulations have been provided yet. This dissertation thus focuses on three major aspects: 

1) fundamental toxicity understandings of a typical MNMs (zinc oxide nanoparticles), 2) 

bioactivity evaluations of representative bioactive MNMs, and 3) development of novel 

micro-probes for high spatial resolution monitoring. Firstly, the NP’s concentration, 

irradiation, hydrodynamic size, and the localized pH, ionic strength, NP zeta-potential as 

well as dissolved oxygen levels were found correlated with the production of hydroxyl 

radicals (•OH). Thus a novel physicochemical mechanism was hypothesized on •OH 

generation from ZnO NPs to cast light on cytotoxic mechanisms of MNMs. Secondly, 

silicate-/borate-based nano-/micro-sized glass fibers showed good rehabilitation 

capability and the underlying mechanisms were revealed as that quicker ion releasing and 

glass conversion (into hydroxyapatite (HA)) are the key to promote cell proliferation and 

migration, thus the wound-healing effect. Thirdly, several types of fiber-optic-based 

probes were developed to better cope with high spatial resolution, niche biological 

environmental detection. Up to date the best probe is able to acquire a pH resolution of 

up to ~0.02 pH unit within biologically relevant pH range of 6.17 – 8.11 with fast sensing 

time of ~5 seconds. Real-time monitoring of single live human cells were also 

demonstrated and validated in cytotoxic studies to detect early-onset of cell deterioration 

on different stages, indicating its powerful potent on studies that focusing on MNMs and 

single cells.  
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SECTION 

1. INTRODUCTION 

1.1 NANOMATERIALS AND THEIR APPLICATIONS  

Many physicochemical properties of materials when comes down to the 

nanometer scale become extremely unique, which have greatly improved or created 

fundamental researches as well as industrial applications that ranging from 

structural/strength enhancement, fluorescent dye/probe development, nanoscale device 

fabrication and manipulation, to energy collection and conservation, micro-laser 

construction as well as antimicrobial/sterilization products. These manufactured 

nanomaterials (MNMs) have also been widely used in infrastructure construction and 

agriculture related products. Thus, a variety of research and industrial fields that related 

to MNMs need to be reviewed to screen out possible environmental leakage and releasing 

circumstances, so that better conclusions could be drawn on how to rationally evaluate 

adverse effect of MNMs on a toxicology point of view, and  to support the idea of 

developing regulatory guidelines for the fabrication, transportation, application, disposal 

and even recycling, in order to better protect our society and environment health.[1] 

The fabricated MNMs embrace unique properties that their bulk counterpart do 

not have, such as high volume/surface ratio, surface tailorability, improved solubility, and 

multi-functionality, which in all opened numerous new possibilities for biomedicine 

research and application. Further, the intrinsic properties of nanomaterials, such like 

optical, magnetic and biological related properties provide splendid opportunities for 

future studying and regulating complicated biological process in an unprecedented 
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manner. After all, even life itself is fundamentally a handful of processes down to a 

nanoscale level with each cells.[2]  

MNMs have been used for medical/clinical purposes, semiconductor 

manufacturing, as well as food processing, which are successful and yet, have no 

apparent safety issue appeared. However, recent applications in personal products and 

agriculture, especially when used for skin-contacting or crop protection and production, 

draw significant amount of public concerns, and intensive research efforts have already 

been conducted within these fields. For example, substantially large groups of studies 

have shown that some nanomaterials that composed of semiconductor metal oxides or 

non-metal oxides, such as SiO2, CeO2, ZnO, Al2O3, etc., can pose high amount of 

cytotoxic risks on different in vitro cultured cell lines.[3-7] Recent studies found that 

irradiation (from UV to visible spectral wavelength) can greatly enhance the cytotoxic 

effect caused by ZnO nanoparticles.[8] Another example showing that the nanomaterials 

can potentially improve seed germination and whole plant growth through providing 

multiple protections for plant in detecting pathogens, as well as pesticide and herbicide 

residues.[9] Intrinsic abilities of these MNMs to interact with biological systems 

triggered synthesis of more nanowires, nanofibers, nanotubes, etc., and a variety of 

biological applications. 

1.2 NANOTOXICITY CONCERNS 

The bio-compatibility, cellular/sub-sellular distribution/localization and functional 

interferences are some key factors of these MNMs that determine their toxicities and, 

therefore, the extent to which they could be used. Recent studies indicated that 

engineered nanostructures may get in active contact with living organisms at realistic 
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doses; however, we may ignore their prolonged interaction with the niche tissues or cells 

that may ultimately disrupt normal activities and lead to malfunction or diseases, 

especially those nanomaterials that could be used for healing damaged organs. In this 

case, a possible long-term environmental and human health hazards need to be strictly 

supervised, and how those nanostructures entering and distributing inside the cell and 

body is critical.[10]  

The interactions between nanoparticles and the cells have certain principles as 

those between colloidal particles and cells. The Van Der Waals forces (VDW), 

electrostatic, solvation as well as depletion forces are still applicable, but they need 

special requirements when considering events that occurred at nanoscale.[11-13] For 

instance, since nanoparticles contain relatively much less atoms, their VDW forces are 

highly dependent on the positioning of their surface atoms and their standard bulk 

permittivity functions. This sophisticated phenomenon may greatly influence the 

interactions between nanomaterials and biological systems. A simple example would be: 

the interaction between two silica particles, while compared with that between a SiO2 

particle and a fibroblast cell.[14]  

1.3 CURRENT UNDERSTANDING OF NANOTOXICITY MECHANISM 

Engineered nanomaterials mostly have structures with at least one dimension of 

100 nanometers or less. Material size ranges may approach the scale at which some 

specific physical or chemical interactions can occur. Substantial property changes will 

discriminate them from their bulk materials, and this would allow them to perform 

exceptional feats of conductivity, reactivity, and optical sensitivity. MNMs with these 

extra capabilities can negatively interact with biological systems and the environment, 
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with the potential to generate toxicity. Possible nanotoxicity mechanisms may be related 

with physicochemical properties of the materials, Fenton chemistry, dissolution as well as 

irradiation induced radical formation, which will induce a series of toxic bio-effects such 

as: reactive oxygen species (ROS) production, proinflammatory effects, granulomatous 

inflammation, interstitial pulmonary fibrosis, membrane 

disruption/damage/thinning/leakage, damage to the acidifying endosomal compartment, 

DNA damage and broader oxidative stress, etc.[14] However, there are currently no 

conclusive data or scenarios that convincingly indicate these effects. Thus, complete and 

comprehensive safety evaluations on MNMs should be established immediately. 

Moreover, fundamental research and comprehensive understanding of such nanotoxicity 

as well as their possible correlation with any existing pathophysiological or 

carcinogenesis pathways should also be fully addressed.  

The major problem in assessing the hazardous effects of MNMs is currently 

limited by the lack of empirical data as well as feasible devices. In addition, questionable 

data also exist from previous studies that did not use realistic evaluation condition or 

protocols in determining the dose/time/environmental-response parameters, which will 

greatly affect estimation accuracy of health risks associated with the MNMs. A number 

of open questions have been suggested and here we quote: (i) developing a combination 

of different analytical methods for determining MNMs concentration, size, shape, surface 

properties, and morphology in different environmental media, (ii) conducting toxicity 

studies using environmentally relevant exposure conditions and obtaining data relevant to 

developing quantitative nanostructure-toxicity relationships (QNTR), and (iii) developing 

guidelines for regulating exposure of engineered nanomaterials in the environment.[15] 
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Besides, a considerable effort is also needed to study the physiological effects of acute 

and chronic MNMs exposures. A profound illustration and full understanding of the 

biological interactions between NPs and proteins, cells and tissues, is vital for the future 

design of safe nanotechnologies. Prior to their wider adoption in everyday products and 

their clinical use, NP-products must be shown to have a high degree of biocompatibility, 

with minimal negative effects on blood components, genetic material, and cell viability.  

In this regard, this dissertation tries to cover three major aspects that correlated 

with MNMs biofunctionality through providing: 1) phenomenon to mechanism 

illustration of nanotoxicity, 2) a case study of bioactive nano-/micro-glass fibers on 

wound-healing effects and 3) systematic developments of novel series of high resolution 

sensors, together to render a handful of knowledge and feasible new tools to pioneeringly 

pave the way to the fundamental research on the bioafunctionality of MNMs.    

1.4 CELL HETEROGENEITY AND THE EMPHASIS ON SINGLE CELL 
ANALYSIS 

Although many efforts have been conducted in dealing with the MNMs toxicity as 

well as bioactivity on both phenomenon and mechanism levels, there is another important 

factor that greatly attenuates previously achieved knowledge and principles: cellular 

heterogeneity. Actually, cellular heterogeneity has been acknowledged as the major 

obstacle in understanding many real mechanisms of biological system functioning.[16-

20] This is because that either cells or tissues are complex dynamic systems and the 

compon ents change with time and depending on environment. For example, even under 

seemingly identical culturing conditions, cells often display certain types of 

heterogeneous behaviors due to the lack of synchronization among cells, which cannot be 
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easily detected using conventional techniques. Unfortunately, most of our current 

biological database and knowledge were acquired based on obscure, population-averaged 

experiments and measurements, and this becomes specifically questionable when we are 

trying to answer fundamental questions that related to individual cell heterogeneity. Thus, 

the lack of true mechanistic interpretation at the single-cell level has considerably 

hindered the progress of many key research areas, such as cell fate determination, 

cytotoxicity, drug discovery, stem cell differentiation, and carcinogenesis etc. 

Therefore, it is crucial to firstly be able to monitor individual cell functioning 

under specific niche environmental condition by measuring particular extra-/intra-cellular 

parameters. Among all intracellular parameters, cytosolic proton concentration (or pH) 

(as well as temperature), serves as a universal indicator for fundamental cellular events, 

such as serving as a heterogeneity biomarker for early-stage cellular dynamics.  However, 

the in situ intracellular pH (and temperature) measurement in a single cell with high 

spatiotemporal resolution, while the cell is fully functioning, is extremely challenging. 

Accurate measurements of intracellular pH (and temperature) are crucial because many 

biological processes are temperature and pH sensitive.[21-28] For instance, living cells 

change their temperature during cell activities such as division, gene expression, enzyme 

reaction, and metabolism.[24] The ratios between the extracellular temperature (Te) and 

intracellular temperature (Ti) were different in disease or cancer cells when compared to 

normal healthy cells [29, 30]. In a similar study, cancerous cells have shown 

extraordinary heat generation.[31] Under external stimuli such as drug or toxic materials, 

cells may quickly change their metabolic activities, leading to acute variations in 

intracellular temperature, pH, and even structures from their normal states. Therefore, 
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reliable instrument to measure these parameters in a single cell is of utmost importance. 

Besides, cell signaling events such as pH changes, temperature oscillations, and signaling 

molecules, can trigger substantial responses including cell division, differentiation and 

death.[32]  

1.5 SINGLE CELL PH 

It has been noticed that cellular pH imbalance in carcinogenesis may represent 

novel therapeutic target and potentially has wide applicability. However, it requires better 

understandings of how individual cells respond to altered pHs. The intracellular pH (pHi) 

of healthy adult cell is normally maintained near 7.2, which is lower than the extracellular 

environment. However, cancer cells maintain a higher pHi (>7.4) but have 

characteristically lower extracellular pH (pHe) (6.7 – 7.1) [33-35]. On one hand, 

increased pHi has been shown to assist cell proliferation and evasion of apoptosis, to 

facilitate metabolic adaptation, as well as to improve cancer cell motility. Decreased pHe, 

on the other hand, can stimulate acid-activated proteases to help tumor cells invasion and 

dissemination [36]. Moreover, a Na+/H+ exchanger, named NHE1, similar to those that 

exist in human melanoma cells (MV3), can generate a well-defined cell surface pH 

gradient at the outer leaflet of the plasma membrane to assist cell body polarity and 

migration [37]. In addition, the temporal pH change and spatial pH difference of 

individual cells may also play important roles during many cellular processes and disease 

development [36, 38-42]. Thus, accurate and in situ, real-time pH measurment in a 

individual living cell are important for understanding the cell biology and related 

processes. 
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1.6 TRENDS IN THE DEVELOPMENT OF SINGLE CELL RESEARCH TOOL 
KIT  

While increasing evidences show that pHi and pHe playing critical roles for many 

biological processes (cell migration, proliferation, differentiation, carcinogenesis, etc.) 

[43-50], relevant techniques capable of monitoring microenvironment pH remain 

underdeveloped. 1H based magnetic resonance spectroscopic (MRS) imaging has been 

used for pHe mapping in rat brain gliomas [51] and on solid tumors of human breast 

cancer xenografts [52]. The low spatial resolution of MRS at the mm3 scale makes it 

almost impossible to dynamically monitor a single cell.  Dye-based pH sensing is not 

suitable for long-term pHe measurement due to the potential carcinogenic risks [53, 54]. 

The recently reported approaches of near-IR fluorescent graphene oxide nano-sheet can 

response reversibly to extracellular pH and ionic strength [55].  A novel electrochemical 

probe for real-time detecting of extracellular pH with high spatial sensitivity has also 

been used to investigate fiber cells [56]. However, these matrix-based techniques need to 

be pre-planted in a confined area of cell growth and thus do not have the desired ability to 

measure a specific single cell target. As such, the major challenges tackle the cellular 

heterogeneity is the real time in situ measurement of the behavioral parameters of a single 

cell, which requires dedicated micro/nano size sensors that can be inserted into the cell 

for in situ measurement, yet without introducing significant damages or influences to the 

living cell. In this case, single cell analysis tools, especially the instrument for 

simultaneous multi-parametric measurement, are still in urgent need for both basic 

biomedical research and clinical applications. 
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A number of techniques have recently been explored for monitoring real single 

cell behaviors [57-64].  However, most of the reported techniques have been targeting 

one specific parameter. Comprehensive physical, chemical and biological analyses of a 

single cell, still present great challenges to the research community due to the small scale 

targets as well as the complicated processes of a single cell responding to its local 

environment and stimuli. Tramendous efforts on single cell pH have been attamptted, 

[42, 65-68] including the mainstream labelling method, using artificially-modified 

fluorophores to stain subcellular compartments.[69-80] However, the applications of 

these methods are still limited because the chemicals used may alter the intercellular 

conditions and cell beheiviors. The inevitably long and reinforced maintenance of the 

reagents within cytosol ruins the representativeness of derived signals. Potential 

cytotoxicity of excessive dye-usage, fluorescence attenuation, as well as non-continuous 

reagent passage to the offspring cells, can further deteriorate the accountability of 

staining-based assays. Last but not the least, another major weakness of cell 

staining/labelling methodology is that it cannot be used for continuous single-cell pH 

measurements when the cellular exposure environment changes.     

1.7 UP-TO-DATE ACHIEVEMENTS AND FUTURE EXPECTATION 

Optical fiber based sensors such as fiber gratings [81-83], optical interferometers 

[84, 85] and optical micro resonators [86, 87] are emerging for micro-/nano-meter scale 

measurements, and supposed to be a promising methodology for accurate, remote 

measurements with a  real-time manner. The only problem is that most of the developed 

fiber sensors are still too large when compared with the size of a single cell. To overcome 

these limitation and challenges, we developed a µ-pH sensing probe [88, 89] in 
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combination with a homebuilt cell manipulation system. The experimental results 

demonstrated that these µ-probes are capable to measure real-time response in a singe 

live cell with high sensitivety and spatial resolution.  

Finally, our future plan include the development of an integrated µ-pH and µ-

temperature dual functional probe to enable simultaneous measurements of pHi/pHe and 

Ti/Te with minimum invasiveness to single living cell. This further development will 

ultimately result in an innovative single cell analyzer with enhanced functions, stability, 

robustness, resolution, and flexibility to fulfill the urgent needs for in situ multi-

parametric measurements at the single cell level. We are looking forward to greatly 

benefit a wide range of biomedical and clinical researches by using this device and 

contribute to the next generation precise biomedical practices. 
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Abstract 

Zinc oxide (ZnO) nanoparticles (NPs) have been widely utilized in industry due to their 

versatile properties; this has drawn considerable public health concerns on their acute and 

chronic toxicity to humans. Although recent studies have shown cytotoxic effects of these 

nanoparticles, including oxidative stress, apoptosis and necrosis induction, genotoxicity, 

and others, irradiation-induced cytotoxicity, however, has not been studied. The goal of 

this study was to determine whether irradiation in the forms of visible light 

(approximately 400 – 600 nm), UVA (366 nm), and UVC (254 nm) would affect the 

cytotoxicity caused by ZnO NPs. The results of this study demonstrated that the 

cytotoxicity of 50-70 nm ZnO NPs to A549 cells is dosage-, time-, and wavelength-

dependent. Nuclear decomposition by ZnO NPs, prior to membrane deformation, was 

found to be enhanced when exposed to irradiation. This study suggests that this 

phenomenon may be attributed to the irradiation-induced formation of positively charged 

sites on the ZnO NPs which enhances nuclear affinity and generation of reactive oxygen 

species (ROS). Finally, the data demonstrated that while ZnO NPs act preferentially 

toward nuclear regions, destructions of cell membrane and the cytosol have also been 

observed. Indeed, the photocatalytic properties of ZnO NPs play a critical role during the 

early stages of cell death, and their effects were reduced through the use of an 

antioxidant, N-acetylcysteine (NAC). In conclusion, irradiation has been found to 

enhance the cytotoxic effects of ZnO NPs, prompting the need for more thorough safety 

evaluations in the application of these particles. 

Keywords: ZnO NPs, oxidative stress, cytotoxicity, A549 cells, irradiation, nuclear 

decomposition 
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Introduction 

As one of the most widely used nanoparticles, ZnO nanoparticles (NPs) can be found in 

many skin care products, such as sunscreen lotions, creams, and cosmetics, as well as in 

pigments, tire compounds, nano-sensors, nano-cantilevers, field effect transistors, nano-

resonators, and other industrial and medical applications 1. Despite the positive impacts 

of ZnO NPs in human society, the adverse effects of ZnO NPs have drawn considerable 

public concerns 2 because of the various routes of administration into human body 

including inhalation (respiratory tract), ingestion (gastrointestinal tract) and injection 

(blood circulation) 3,4. In vitro studies using various cell lines demonstrated that ZnO NPs 

can cause cyto- and geno-toxicities, including elevated reactive oxygen species (ROS) 

levels, intracellular oxidative stress, lipid peroxidation, cell membrane leakage, oxidative 

DNA damage, among others 5,6. Moreover, cosmetic products containing ZnO NPs are 

supposed to provide protection against ultraviolet (UV) irradiation. In support of this, it 

has been reported that the TiO2 and/or ZnO NPs in sunscreen lotions cannot penetrate the 

skin barrier, and have been therefore labeled non-toxic 7. Furthermore, prolonged 

exposure to these products has also been reported to slow the development of squamous 

or basal cell carcinoma 8. Despite this in vivo support of ZnO NP-containing products, a 

number of in vitro studies have demonstrated a strong cytotoxicity. 

Preliminary data demonstrated that the cellular uptake of ZnO NPs by human 

epidermal keratinocytes (HEK) cells and the destructive effects were both time- (6-24 

hours) and dose- (8-20 μg/mL) dependent, especially toward mitochondrial activity and 

DNA integrity 9. Investigation of ZnO uptake, using human liver cells (HepG2), revealed 
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significant cytotoxic and genotoxic effects caused by intracellular ROS generation 10. 

Another study using primary human nasal mucosa cells indicated distinctive cyto- and 

genotoxicities, as well as the pro-inflammatory potential of ZnO-NPs 11. Indeed, an 

earlier study showed that inflammation was related to sensitivity toward cytotoxic NPs, 

while the oxidative status of cells and tissues may further accentuate this effect 12. This 

may explain the typical cascade decreasing pattern of cell viability observed under 

constant exposure to toxic NPs. A comprehensive study reported that both remarkable 

cellular toxicity and increased intracellular calcium levels ([Ca2+] in) were observed when 

cells were treated with 20 nm ZnO NPs. Four genes related to apoptosis and oxidative 

stress responses were also found to be correlated with the NP cytotoxicity and calcium 

level variations13, these results provided a potential genetic risk even when cells were 

exposed to a sub-lethal concentration of ZnO NPs. A further study on the photo-cytotoxic 

effects of ZnO NPs under UVA irradiation with human head and neck squamous 

carcinoma (HNSCC) cell line reported a sharp reduction in cell viability, even when NPs 

were applied at low dosages and with a short illumination time14. A phytotoxicity study 

on Allium cepa with ZnO NPs treatment also demonstrated clastogenic/genotoxic and 

cytotoxic effects, thus stressing an environmental concern about widely used ZnO 

nanomaterials15.  

Mechanism studies of ZnO NPs cytotoxicity have drawn increasing attention in 

recent years; however, several controversial conclusions have been reached from these 

studies. Our previous study of ZnO NPs cytotoxicity in human lung epithelial cells 

concluded that the free Zn2+ ions in ZnO NPs suspension were not responsible for the 

observed cytotoxicity 2. Nevertheless, another report on ZnO NPs attributed the 
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cytotoxicity of ZnO NPs to particle dissolution and Zn2+ release 16. Other studies 

suggested that ZnO NP cytotoxicity was explained by a combination of effects, including 

labile zinc complexes, physicochemical properties, metal composition, particle scale, as 

well as metal solubility 1,17. In light of the inconclusive nature of this problem, it becomes 

clear that further investigation is required to reach a solid conclusion on the basis of the 

irradiation-induced cytotoxicity of ZnO NPs. 

  The inconclusive nature of the problem has led to a call for increased study of the 

photocatalytic properties of ZnO NPs under various irradiation conditions (Rasmussen et 

al., 2010). Therefore, this study sought to elucidate the cytotoxicity of 50-70 nm ZnO 

NPs under various illumination conditions in order to uncover the underlying cytotoxic 

mechanisms. Since several of the aforementioned studies, including ours 2, were carried 

out on human lung epithelial cancer cell line A549, this cell line was chosen as a model 

paradigm for the study. It should be stated, however, that the further investigation of 

more diverse cell lines, such as keratinocytes that offer a more realistic exposure 

scenario, is required in order to provide a more representative sampling of the irradiation-

induced cytotoxic effects of ZnO NPs. Visible light, UVA, and UVC irradiation have 

been chosen to provide a variety of irradiation types; the prior investigation of UVB 

irradiation excluded it from this study. As a control, dark incubation conditions were also 

employed in the design of this study.  
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Materials and Methods 

Reagents and Chemicals 

Fetal bovine serum was purchased from American Type Culture Collection (ATCC) 

(Manassas, VA, USA). Ham’s F-12K medium with L-glutamine, was purchased from 

Fisher Scientific (Pittsburgh, PA, USA). Trypsin-EDTA (1×) and Hank’s balanced salt 

solution (HBSS) were purchased from Invitrogen Inc. (Carlsbad, CA, USA). Penicillin–

streptomycin, 2’, 7’-dichlorofluorescin diacetate, (DCFH-DA) and N-acetylcysteine 

(NAC) were obtained from Sigma–Aldrich (Saint Louis, MO, USA). Lactate 

dehydrogenase (LDH) assay kits were purchased from Pointe Scientific (Lincoln Park, 

MI, USA). Ultra-pure DI-water (MQ water) was prepared using a Milli-Q system 

(Millipore, Bedford, MA, USA). 

Characterization of ZnO NPs  

ZnO NPs (50-70 nm) were purchased from Sigma–Aldrich (Saint Louis, MO, USA) at 

99.0% purity. Particle size distributions were determined using a Philips EM430 

transmission electron microscope (TEM) (Philips Electron Optics, Eindhoven, 

Netherlands). Crystal structure was characterized using a Scintag XDS 2000 

diffractometer (Scintag, Inc., Cupertino, CA, USA). Scanning electron microscopy 

(SEM) images of ZnO NPs were taken by a Hitachi S-4700 field emission scanning 

electron microscope at 5 kV.  

Suspensions of ZnO NPs were prepared in the cell culture medium and dispersed 

using a Fisher ultra-sonicator FS-60H (Fisher Scientific, Pittsburg, PA, USA) for 5 
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minutes. The suspension was freshly prepared, diluted to desired concentrations in 

serum-containing medium, and then immediately applied to the human bronchoalveolar 

carcinoma-derived cells (A549). 

Lamp Information 

UVGL-58 (UVA, irradiation peak at 366 nm) and UVGL-25 (UVC, irradiation peak at 

254 nm) (115 volts and 60 Hz AC power supply) lamps were used as UVA and UVC 

irradiation sources. Visible light was generated using a phosphor-converted LED white 

light with broad band emission distributed from 400 to 700 nm. Two fluorescent tubes in 

each UV lamps, and multiple (2 to 4, depend on tested cell volume and area) LED white 

light sources, were used to provide evenly distributed surface irradiation intensity. Lamps 

were positioned above the cell culture area such that a final illumination output of 5 watts 

was achieved at the culture surface.  

Cell Culture and Treatment With ZnO NPs Under Various Irradiation Conditions 

The human bronchoalveolar carcinoma-derived cell line (A549) was purchased from 

ATCC (Manassas, VA, USA). This cell line has been widely used in in vitro particulate 

matter-related pulmonary toxicity studies18,19, so the same cell line was used in this study 

for data comparison and data correlation. Cells were maintained in phenol red-free Ham’s 

F-12 nutrient mixture purchased from Caisson Laboratories, Inc. (North Logan, UT, 

USA) that supplemented with L-glutamine, 5% fetal bovine serum, 100 units/ml 

penicillin, 100 μg/mL streptomycin, and grown at 37Ԩ in a 5% CO2 humidified 

environment. Freshly dispersed ZnO NPs suspensions in Ham’s F-12 medium after 15 

minutes ultra-sonication were then diluted to desired concentrations and immediately 
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applied to the cells. After proper proliferation conditions were achieved, cells were 

trypsinized and seeded into 96 well plates or 12 well plates (Corning Inc., NY, USA) at 

densities of 5×104 or 3×105 cells per well, respectively. Cells were then permitted to 

grow as a monolayer, with 75% surface area coverage, for 16-18 hours prior to any ZnO 

NPs treatment and irradiation exposure. The study was designed with four irradiation 

modes: (1) No light; (2) Visible light; (3) UVA; (4) UVC. Intra-control groups, lacking 

exposure to ZnO NPs, were included at each mode. The control group lacking exposure 

to both ZnO NPs and an irradiation source was treated as the inter-control group.A stock 

suspension of 100 μg/mL ZnO NPs in serum-free Ham’s 12-K medium was prepared 

from which a series of working ZnO NPs suspensions (5, 10, 15, 20, and 25 ug/ml) were 

prepared. Upon removal of culture medium from the normal groups and a subsequent 12-

hour waiting period, 150 or 2000μl freshly prepared ZnO NPs suspension was added into 

each well (96- and 12-well plates, respectively). Time-dependent responses were 

measured at 6, 12, and 24 hours upon treatment with the NPs. Two concentrations of ZnO 

NPs (15 and 25μg/mL), representing high doses, were then used to examine cytotoxic 

biomarkers, oxidative stress, and membrane damage. Upon 6 hour incubation under the 

various irradiation modes, the cells and cell culture medium then examined for the above 

indicators. In order to validate the induced generation of reactive oxygen species, a side 

study involving co-treatment with the antioxidant, NAC, was performed. NAC was 

loaded into the wells and allowed to incubate for 24 hours followed by a cell viability 

assay.  
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Cytotoxicity Assessment of ZnO NPs and Irradiation 

To determine the cytotoxicity of 50-70 nm ZnO NPs under different irradiations sources, 

the WST-1 assay (Cell Titer 96 Aqueous One Solution Assay, Promega) and Calcein-AM 

assay (Life Technologies Inc., Carlsbad, CA, USA) were used according to the 

manufacturers’ instructions. Absorbance at 450 nm using WST-1, and fluorescent 

emission at 425 nm were measured using a micro-plate reader (FLOURstar, BMG 

Labtechnonogies, Durham, NC, USA).  

Intracellular ROS Measurement 

ROS generation was measured by using oxidation of 2', 7'-dichlorofluorescin (DCFH) 

and its diacetate form (2'-, 7'-DCFH-DA) 20. DCFH-DA is hydrolyzed by esterase to 

DCFH, a compound unable to cross the cellular membrane. This initially non-fluorescent 

molecule is oxidized by cellular oxidants to a highly fluorescent product, DCF. A DCFH-

DA stock solution (in methanol) of 10 mM was diluted 500-fold in Hank’s Balanced Salt 

Solution (HBSS) (Life Technology Inc., Carlsbad, CA, USA) without serum or other 

additive to yield a 20 μM working solution. Cells were washed twice with HBSS, and 

then incubated with DCFH-DA working solution for 1 hour under a dark environment 

(37 Ԩ incubator) followed by treatment with ZnO NPs for 24 hrs. After exposure, 

fluorescence was determined at 485 nm excitation and 520 nm emission using a micro-

plate reader (FLOUR star, BMG Lab technologies, Durham, NC, USA). 
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LDH Measurement 

Lactate dehydrogenase (LDH) activity in the cell culture medium was determined by an 

LDH Kit (Pointe Scientific, Lincoln Park, MI, USA) 21,22. The analysis required 100 µL 

of culture. LDH catalyzed the oxidation of lactate to pyruvate with simultaneous 

reduction of NAD+ to NADH. The rate of NAD+ reduction was directly proportional to 

LDH activity in the cell medium. Absorption was measured using a Beckman DU-640B 

UV/Vis Spectrophotometer at 340 nm. 

Cellular Staining With Fluorescent Probes 

A549 cells seeded for 24 hrs were treated with 50-70 nm ZnO NPs under dark, visible 

light, UVA, and UVC irradiation conditions for 6 hrs. Cells were then treated with 

DCFH-DA for 1 hr without light, followed by 4',6-diamidino-2-phenylindole (DAPI) 

staining for 10 min. Cells were then imaged using an epifluorescence Olympus IX 51 

microscope (Olympus America, Center Valley, PA, USA) equipped with a fluorescein 

filter. Fluorescent images were captured and analyzed using SlideBook 4.1 software 

(Intelligent Imaging Innovations, Denver, CO, USA). The final 3-D fluorescent images of 

cells were acquired by ImageJ software.  

Tunneling Electron Microscopy Imaging  

A TEM-specific thin layer carbon/nickel grid was seeded with A549 cells and allowed to 

rest for 24 hours. Upon resting, the grid was treated with with 50-70 nm ZnO NPs (25 

μg/mL) with or without visible light exposure for 6 hours. Non-irradiated grids lacking 

ZnO NPs were used as a control. Following irradiation, treated cells were washed with 
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0.1 M phosphate buffer, fixed with 2.5% glutaraldehyde in serum-free F12-K cell culture 

medium at room temperature for 12 hours. Then the cells were washed again with 0.1 M 

phosphate buffer, dehydrated in ascending grades of ethanol solutions of 50%, 70%, 

80%, 90% and 100%, each for 15 minutes, and subsequently soaked in 

hexamethyldisilazane (HMDS)/ethanol ascending solutions of 1:2, 2:1 and total HMDS. 

The cells were then imaged on a Tecnai F20 STEM platform. 

Statistical Analysis  

Each component of the study was run in triplicate for statistical validation purposes. Data 

has been expressed as the mean ± standard deviation. Statistical analyses were performed 

using Prism 5 (Graph-pad software, San Diego, CA) including a one-way ANOVA test 

followed by a post-hoc Turkeys test to determine statistical significance.  

Results 

Characterization of ZnO NPs 

The size distribution of ZnO NPs was found to be 60 ± 10 nm by tunneling electron 

microscopy (TEM). X-ray diffraction (XRD) analysis revealed the ZnO NPs assumed a 

hexagonal structure. The surface area of ZnO NPs, which was measured by the Brunauer, 

Emmett and Teller (BET) method, was determined to be 12.16 m2/g. Scanning electron 

microscopy (SEM) was used to provide an overview of particle shape and diameter. 

Since sonication affects the hydrodynamic size of the particles, sonicated and non-

sonicated ZnO NPs were characterized by field emission scanning electron microscope 

(FESEM) (Figure 1). Bulk aggregation was present in non-sonicated particles (Figure 1A 
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and 1D), with sizes ranging up to 10 μm (Figure 1B) in diameter. The diameters of 

sonicated ZnO NPs were appreciably smaller than non-sonicated particles; nevertheless, 

aggregation was still found in aqueous phase solutions (as shown in Figure 1C, 1E, and 

1F).   

 

 

Figure 1. SEM images of 50-70 nm ZnO NP aggregations with or without 
ultrasonication. All NPs were prepared as described in the Materials and Methods 
section. Images C, E, and F were ZnO NPs that were sonicated.  Images were taken with 
a Hitachi S-4700 field emission scanning electron microscope at 5 kV and varied scale 
bars of 10 μm (B), 5 μm (A, C) and 500 nm (D, E, F).  
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Effects of Visible Light Exposure on Cytotoxicity of ZnO NPs  

Comparisons between cell viabilities under visible light and dark environments are 

shown in Figure 2. Earlier work by our group 2,23 demonstrated that ZnO NPs are 

cytotoxic under dark conditions as a function of ZnO NPs concentrations. To revalidate 

this, the current study found that cell cultures under dark conditions treated withZnO NP 

doses of 5 μg/mL, 10 μg/mL, 15 μg/mL, 20 μg/mL, and 25 μg/mL after 32 hours resulted 

in decreasing cell viabilities, specifically, 78.5%, 70.4%, 26.6%, 5.5% and 3.4%, 

respectively, (Figure  2A).  The untreated control group failed to participate in this 

phenomenon (ps﹤0.05), thereby corroborates the previous study. Similarly, the 

cytotoxicity of equivalent ZnO NPs doses under visible light irradiation has been reported 

in Figure 2B. While both groups (with or without irradiation) have experienced marked 

decreases in cell viability within the first eight hours, the cell viabilities of the higher 

doses (with 15, 20 and 25 μg/mL ZnO NPs dosages) under visible light irradiation are 

substantially lower (Figure 2B).A cell viability reduction of roughly 10% was found 

overall for cells treated with ZnO NPs and visible light than those treated with ZnO NPs 

and dark conditions. Given the sharp reductions at the higher concentrations, doses of 15 

μg/mL and 25 μg/mL were chosen for analysis in the time- and dose-dependent studies as 

well as the mechanistic studies.  
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Figure 2.  Cytotoxic effects of 50-70 nm ZnO NPs under visible light illumination on 
A549 cells.  ZnO NP suspension was prepared in serum-free cell culture medium and 
ultrasonicated before dosing. (A) Cell viability after exposure to ZnO NPs under normal 
dark incubate condition; (B) Cell viability after exposure to both ZnO NPs and visible 
light at the same time. Each bar represents the mean ± SD of three independent 
experiments. *Significantly different from the control at P﹤0.05. 

 

Effects of ZnO NP Dosages, Exposure Time and Irradiation Wavelengths on the 

Cytotoxicity of ZnO NPs 

A549 cells were exposed to ZnO NPs at 15 μg/mL and 25 μg/mL dosage levels under 

various modes of irradiation, including dark, visible light, UVA, and UVC for 3, 6, 9, 12, 
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and 15 hours. All three variables of exposure time, dose level, and irradiation source have 

been implicated as cytotoxicity factors (Figure 3). Cells irradiated with visible light, 

UVA, and UVC sources experienced higher cytotoxicity under equivalent dose and time 

conditions when compared with the untreated, dark control group. Indeed, at the 15 

μg/mL and 25 μg/mL levels after three hours exposure, cell viability decreased to 85.9% 

and 80.3%, respectively, under visible light, 77.7% and 53.5% under UVA light, and 

45.9% and 49.1% under UVC light when compared with the control groups (ps﹤0.05). 

In contrast, non-irradiated cells only experienced a cell viability decrease to 85.6% and 

85.9% compared with the control group (ps﹤0.05) under similar experimental 

conditions. This effect was even more accentuated after 12 hours of exposure. At the 15 

μg/mL and 25 μg/mL ZnO NP levels, the non-irradiated cell viabilities dropped to 62.8% 

and 61.1%, respectively, 40.2% and 51.5% under visible light, 11.3% and 9.8% under 

UVA light, 15.2% and 17.7% under UVC light when compared with the control groups 

(ps﹤0.05). Control groups under different irradiation conditions while without ZnO NPs 

exposure only showed slightly differences (less than 12%) of cell viabilities, as a result of 

irradiation caused cytotoxicity. All controls were normalized as 100% cell viability in 

each group for clearer illustration.     
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Figure 3.  Cytotoxicity effects of ZnO NP dosages, exposure time, and differed 
irradiation conditions on A549 cells. Cells were seeded for 24 hours and then treated with 
ZnO NPs at dosages of 15 μg/mL and 25 μg/mL combined with: (A) normal dark culture, 
(B) visible light illumination for up to 12 hours; (C) UVA irradiation for up to 15 hours; 
(D) UVC irradiation for up to 15 hours. Calcein AM was used for cell viability 
evaluation. Each bar represents for the mean ± SD of three independent experiments. 
*Significantly different from the control at P﹤0.05.  

 

 Cellular ROS Generation Induced by Exposure to ZnO Nanoparticles and Different 

Wavelengths of Irradiations 

DCFH-DA was used to assess the intracellular ROS generation after cells were 

exposed to ZnO NPs at concentrations of 15 μg/mL and 25 μg/mL and various irradiation 

conditions (Figure 4). Compared with the control group, DCF intensities of non-

irradiation, visible light, UVA, and UVC treated groups increased by 12.8% and 74.5%, 
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33.9% and 78.9%, 148.1% and 172.3%, 155.8% and 162.9%, respectively, after four 

hours exposure. After six hours exposure, the DCF intensities has increased still, by 

39.17% and 96.6%, 145.9% and 254.1%, 288.9% and 408.5%, 329.5% and 357.4%, 

respectively (ps﹤0.05).  

 

 

Figure 4.  Effect of ZnO NPs on intracellular ROS generation under varied irradiation 
conditions. Seeded A549 cells were treated with ZnO NPs at dosages of 15 and 25 μg/mL 
for 6 hours under following differed conditions: (A) normal dark culture condition, (B) 
visible light illumination, (C) UVA irradiation, and (D) UVC irradiation. DCFH-DA for 
ROS generation assay was added immediately after all irradiation treatments and the 
fluorescent intensities were measured. Each bar represents the mean ± SD of three 
independent experiments. *Significantly different from the control at P﹤0.05.  
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Cellular LDH Release after exposure to ZnO NPs at different irradiation conditions 

Release of lactate dehydrogenase (LDH) to the cell culture medium has been widely used 

as an indicator for cellular membrane damage. Cells were exposed to ZnO NPs at 

concentrations of 15 μg/mL and 25 μg/mL under various irradiation conditions (Figure 

5). LDH levels from the non-irradiated groups at 15 μg/mL and 25 μg/mL ZnO NP doses 

gradually increased to 72.51 and 79.10 IU/L within six hours. In comparison, the control 

group acquired a six hour LDH level of only 13.18 IU/L. The LDH levels of all three 

irradiated cell groups initially increased, but ultimately decreased with prolonged 

exposure time. The highest levels of LDH in visible light and UVA irradiated groups 

reached 92.3 and 105.5 IU/L (visible light) and 118.7 and 125.2 IU/L (UVA) after four 

hours treatment. Meanwhile, LDH levels peaked at 125.2 and 118.7 IU/L under UVC 

exposure group after two hours treatment. The LDH levels of the control groups 

remained within the range of 6.59 to 13.18 IU/L (ps﹤0.05).  
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Figure 5.  LDH levels in cell culture medium after 6 hours of exposure to ZnO NPs 
under various irradiation conditions. All A549 cells were treated with ZnO NPs at 
dosages of 15 μg/mL and 25 μg/mL combined with: (A) normal dark culture condition, 
(B) visible light illumination, (C) UVA irradiation, and (D) UVC irradiation, 
respectively. LDH correlated NAD+ levels were measured by UV/Vis photometer at 340 
nm. Each bar represents the mean ± SD of three independent experiments. *Significantly 
different from the control at P﹤0.05. 

 

Intracellular Damages Induced by ZnO NP Exposure and Irradiation 

To assess the levels of cell nucleus damage at different exposure conditions, fluorescent 

dyes and imaging technique were used to acquire semi-quantitative results. DCFH-DA 

combined with cell nuclei marker 4, 6-diamidino-2-phenylindole (DAPI) was used to 

conduct this portion of the study. A549 cells were exposed to 0 μg/mL, 15 μg/mL and 

25μg/mL ZnO NPs for six hours under varied irradiation conditions. Images of FITC, 
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DAPI, white (visible) light phase contrast, as well as fluorescent merging channels were 

taken and categorized for each irradiation condition (Figure 6). FITC channel intensities, 

which were analyzed using ImageJ software, indicated that intracellular DCF intensity 

was correlated with the generation of ROS. The data illustrates that signal intensity 

increases with increasing ZnO NP concentration under each irradiation condition (Figure 

6, FITC channel). Control cells exposed to visible light, UVA, and UVC irradiations 

increased DCF intensity by 60.7%, 23.3%, and 30.7% compared with the non-irradiated 

cells. For the cells that were treated with a 15 μg/mL dose of ZnO NPs, the DCF 

intensities under non-exposure, visible light, UVA, and UVC irradiation conditions 

increased by 58.8%, 108.9%, 94.4%, and 119.0%, respectively; for the cells that were 

treated with 25 μg/mL dosage ZnO NPs, the DCF intensities increased by 88.5%, 

114.8%, 127.9%, and 128.8%, respectively under the same conditions.    
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Figure 6.  Fluorescent and phase contrast microscopic images of A549 cells that were 
treated with 15 μg/mL and 25 μg/mL of ZnO nanoparticles under different irradiation 
conditions for 6 hours. FITC, DAPI, phase contrast channels, as well as merged 
fluorescent images of were captured. DCF intensity in cell groups was quantified by 
ImageJ software. 

 

A549 cell nuclei stained with DAPI exhibited a shrinking pattern with enhanced FL 

intensity, a typical phenomenon of cell damage. The images indicated that the DAPI 

fluorescence intensities increased with ZnO NP doses for all four groups. Greater damage 

occurred in irradiated groups compared with non-irradiated group (Figure 6, DAPI 

channel). The levels of cellular damage, represented by cell shape shrinkage and nuclear 

morphological transformation, became increasingly severe under the following order of 
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exposure conditions: dark < visible light < UVA < UVC, as is shown in the phase 

contrast channel (Figure 6, Phase channel). ZnO NP agglomerates can be seen in the 15 

μg/mL to 25 μg/mL doses in each irradiation treatment; however, smaller sized 

agglomerates were observed in UVA and UVC irradiated groups.  

An overlap of FITC and DAPI fluorescence signal in merged images was also 

arranged to show the status of nuclear damage and in this way, cell death. The 

overlapping percentage of these two fluorescent signals in 0, 15, and 25 μg/mL ZnO NPs 

treated cells gradually increased in all four illumination groups (Figure 6, Merge 

channel). Steep peaks of FITC and DAPI merged fluorescent signals in the 3-

Dimensional surface plot images indicate severe cell shrinkage as well as cellular damage 

(Figure 7). Moreover, higher and sharper peaks were observed in an increasing order 

from non-irradiated to UVC exposed groups (left to right) as well as from 0 μg/mL to 25 

μg/mL dose levels (up to down) This indicated that cell shrinkage occurred as a function 

of both illumination and ZnO dosages (Figure 7). 
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Figure 7.  Three-dimensional surface plots of FITC and DAPI merged images of A549 cells that 
were treated with ZnO NPs under varied irradiation conditions. The merged images were 
processed and plotted using imageJ software. 

 

Remediation of Cytotoxicity Induced by ZnO NPs and Varied Irradiations Using NAC 

Remediation effects of an antioxidant NAC was further used as a cell viability recovery 

test. A549 cells that were exposed to ZnO NPs combined with different irradiation 

conditions and different dosages of NAC were used to examine changes in cell viabilities. 

The doses of NAC were 0, 0.1, 0.3, and 0.5 mM, and exposure time was 24 hours (Figure 

8 Cell viability levels without addition of NAC were measured as 80%, 50%, 37% and 

36% of control after 24 hour exposure to 25 μg/mL ZnO NPs under non-irradiation, 

visible light, UVA, and UVC exposure conditions, respectively. At 0.1, 0.3, and 0.5 mM  

NAC levels, cell viabilities increased to 83%, 87%, and 95% in the non-irradiation group, 

respectively, 62%, 81%, and 89% in the visible light exposure group, 43%, 57%, and 

74% in the UVA exposure group, and 40%, 54% and 71% in the UVC exposure group.  
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Figure 8.  Remediation effect of anti-oxidant NAC on A549 cells against cytotoxicity 
induced by ZnO NPs and varied irradiations. ZnO NP concentration was 25 μg/mL and 
the irradiation exposure time was 24 hours.  NAC concentrations added: 0, 0.1, 0.3, and 
0.5 mM. (A), normal dark culture condition; (B), visible light illumination; (C), UVA 
irradiation; (D) UVC irradiation. Calcein AM was used for cell viability measurement. 
Each bar represents the mean ± SD of three independent experiments. *Significantly 
different from the control at P﹤0.05. 

 

Tunneling Electron Microscopy Images of Intracellular ZnO NPs  

In order to evaluate the cytotoxic effects of ZnO NPs on the intracellular structure and 

cell organization, TEM images were taken of cells that were exposed to ZnO NPs. A549 

cells were pre-seeded onto thin layer carbon membranes followed by treatments with 

ZnO NPs under dark culture conditions, ZnO NPs under visible light irradiation, and with 
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normal dark incubated cells serving as a control. After six hours of treatment, all samples 

were fixed with 2.5% glutaradehyde solution in serum free F12-K cell culture medium 

overnight, and then dehydrated using ascending ethanol solutions of 50%, 70%, 80%, 

90% and 100% concentrations. Samples were finally soaked in gradient HMDS/ethanol 

solutions and imaged by TECNAI F20 TEM. Intracellular structure damage was observed 

in the non-irradiated ZnO NP group and ZnO NP group exposed to visible light, while the 

intracellular structures of the control group cells remained well organized (Figure 9A). 

Gray or black randomly distributed intracellular agglomerates were observed in cell 

debris in both ZnO NP treated groups; however, more agglomerates with diverse shapes 

and sizes were observed in the irradiated cells than those of non-irradiated ones. The 

details of cellular destruction by ZnO NPs without irradiation are shown in Figure 9B. 

Aggregates were observed attached to or embedded in cellular cavity edges, indicating 

severe necrosis and cellular mass loss that the cells were undergone. 
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Figure 9.  TEM images of cellular destructions by ZnO NPs and irradiation treatment. 
A549 cells were pre-seeded onto thin layer TEM carbon-nickel grid followed by 
treatments with 25 μg/mL ZnO NPs only or 25 μg/mL ZnO NPs plus visible light 
illumination. Normal dark incubated cells were set as control. After 6 hours treatment, 
cells were fixed overnight, followed by ethanol assisted dehydration and HMDS soaking. 
(A) Comparisons of cellular destruction in cells among control, ZnO NPs only, and ZnO 
NPs plus visible light illumination ; (B) Detailed structure destruction and NPs 
distribution. Pictures were taken with a Tecnai F20 STEM with varied scale bars of (A) 
1μm, 5μm, and 5μm (left to right), (B) 5μm, 1μm, 500 nm, and 50 nm (up left to bottom 
right).  
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Discussion 

ZnO NPs have been widely implicated in both scientific research and industrial 

applications. Toxicity studies on micro- or nano-scaled ZnO materials, both in vitro and 

in vivo, have been conducted and have shown the potential toxic effects to humans. In our 

previous studies, we demonstrated a specific, dosage-dependent cytotoxicity of 50-70 nm 

and 420 nm ZnO on A549 cells 2,23. However, there is no published data regarding the 

cytotoxicity of ZnO NPs under different irradiation conditions. In this study, the 

cytotoxicity of 50-70 nm ZnO NPs under different irradiation conditions was investigated 

on the A549 cell line. 

In summary, this study suggests that 50-70 nm ZnO NPs carry cytotoxicity effects at 

dose levels of 15 - 25 μg/mL, occurring in a dose-, time-, and irradiation-dependent 

manner. Investigations into cellular ROS generation demonstrated higher oxidative stress 

levels in irradiated groups as given by the following order: dark  visible light﹤UVA ≈ 

UVC. LDH activities appeared attenuated under prolonged irradiation; however, cell 

membrane damage was observed, verifying worsening cellular conditions.  A strong 

inverse relationship between decreasing cell viability and increasing ROS levels after 12 

– 15 hours suggested that oxidative stress is the primary cause of cell death under the 

exposure conditions. These findings are partially in agreement with an in vivo study by 

Xiong 24 insofar as irradiation induced higher cytotoxicity caused by ZnO NPs. The 

authors showed acute toxicity, oxidative stress, and oxidative damage in zebrafish after 

treatment with ZnO NPs with more pronounced effects under visible light irradiation. 

Despite this, similar toxic effects of ZnO NPs, bulk ZnO suspension, and Zn2+ solution 
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were reported in their study, which at the time, was different from our prior conclusions. 

This discrepancy prompted the need for a more comprehensive mechanism study, as 

embodied by this study, to elucidate the toxic effects of nanoparticles under varied 

irradiation sources. 

Throughout the study, the actual or effective size of the nanomaterial must be known 

and maintained. Failure for doing so may ruin subsequent particle size related data 

analysis, and hence, may render false conclusions. Indeed, it has been perceived that 

smaller particles have a greater toxicity25-27. Our previous study 28 suggested that 

hydrodynamic size, rather than manufactured particle size, dictated the physicochemical 

properties and thereby, the cytotoxic effects of the nanoparticles. Detailed SEM images 

(Figure 1) provide coincident evidences of this size discrepancy due to their 

hydrodynamic property. In preparation of this study’s nanoparticles, ZnO NPs were 

initially mixed with ultra-pure water, followed by 15 minutes of either vortexing or ultra-

sonication. Droplets of these freshly prepared ZnO NPs suspensions were immediately 

dehydrated in vacuum and analyzed with SEM. Particle aggregates with diverse 

diameters ranging from 10 um to 100 nm were observed. Given this breadth of size, all 

subsequent data was based on the hydrodynamic aggregates. Furthermore, aggregate 

scales (diameter, thickness, etc.) seemed to vary significantly with and without ultra-

sonication pretreatment (Figure 1 A-C). A closer view revealed more complicated surface 

structures with “deep” grooves in those samples lacking ultra-sonication (Figure 1 D-E), 

even though there were no significant size differences between groups. This study then 

suggests that aggregation occurred primarily due to two factors: particle surface charge 

and solvent surface tension. Ultra-sonication treatment removes fine air bubbles attached 
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to the surface of the nanoparticles, thereby weakening the surface tension induced 

hydrophobicity, and ultimately maintaining smaller aggregation size. Given the size 

range of the aggregates (Figure 1F), it was hypothesized that a dynamic nucleation and 

precipitation process may occur. Due to this, chronic cytotoxic or genotoxic effects on 

cells may be present, depending on the equilibrium of the dynamic process. Particularly, 

if the stability of the whole system is high enough, then a colloidal system should further 

be considered, as few cytotoxic studies have dealt with colloidal systems. Therefore, the 

interactions between cells and the NPs may not be significantly influenced by the 

manufactured particle size; rather, it will be highly affected by the NPs hydrodynamic 

size as well as the nucleation-precipitation dynamic equilibrium. This is a topic that 

requires further investigation. 

ZnO NPs are widely used in daily care products such as cosmetics, sunscreen lotions, 

and facial creams. Even though the cytotoxic effects have been thoroughly studied under 

normal dark incubation conditions, the cytotoxic effects of ZnO NPs under different 

irradiation conditions have not been thoroughly addressed. In this study, our findings 

demonstrate that the cytotoxic effects of ZnO NPs are significantly enhanced under 

irradiation. Our previous studies showed that ZnO NPs were cytotoxic within the narrow 

dose range of 15 – 20 μg/mL. To revalidate this, A similar dose range (0 – 25 μg/mL) 

was used for 32 hours under visible light in comparison to the dark incubation control 

group (Figure 2). The cell viability results in Figure 2A are in agreement with the 

previous data, showing strong cytotoxic effects at concentrations equal to or higher than 

15 μg/mL. The higher dosing levels (15, 20, and 25 μg/mL ZnO NPs) however, exerted a 

10% higher cytotoxicity than compared with the non-irradiated cell group. In this way, 
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visible light irradiation enhances the cytotoxic effects of ZnO NPs. It has been well 

acknowledged that ZnO has characteristic photocatalytic properties. A strong conjecture 

toward this phenomenon is that visible light irradiation can promote electrons from 

valence bands to conductive bands, which can enhance greater levels of free radical 

generation (Figure 4). It was noted that more drastic cell viability changes occurred 

within the first nine hours in both groups, suggesting quick destructive processes. 

Consequently, a more detailed viability study was conducted within the first 15 hours of 

treatment of ZnO NPs (Figure 3). In this study, two more irradiation sources were added, 

either with emission peaks at 375 nm (UVA) or 254 nm (UVC). Similar cell viability 

decreases were obtained in non-irradiated and visible light irradiated groups (Figure 3A, 

3B) compared with the results in Figure 2, whereas those groups treated with UVA and 

UVC irradiation (Figure 3C, 3D) had higher death rates. Since UV irradiation itself is 

harmful to cells, cell viability would suffer even when there are no ZnO NPs being 

added. Therefore, all control groups in each irradiation test were treated with the same 

irradiation to eliminate the inherent cytotoxicity of UV light.. A separate test (data not 

shown) conducted within the same time scale, with different irradiations but without ZnO 

NPs, revealed minor viability variations (<10%) when compared with the dark incubated 

cell group. This indicated that irradiation alone was negligible (Figure 3) in relation to the 

viability changes associated with the coupling of ZnO NP treatment and irradiation. This 

conclusion was found to be valid in a subsequent imaging trial with fluorescent dyes 

(Figure 6). The data in Figure 3 also shows that shorter wavelengths caused greater cell 

losses than the visible light. The possible reason for this phenomenon has been attributed 

to the chemico-physical properties of ZnO NPs. When the excitation photons have energy 
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higher than ZnO band gap (~3.6 eV, 375 nm), outer electrons will be promoted and 

thereby favor free radical generation, which is highly cytotoxic. The data quantitatively 

demonstrated that the cytotoxicity of ZnO NPs was dose-, time-, as well as irradiation 

wavelength-dependent. Furthermore, irradiation enhanced the cytotoxicity of ZnO NPs 

significantly, especially within the first 8 - 16 hours, further indicating that photocatalytic 

reactions were dominant during this early stage of cell destruction.  

Two additional studies were conducted to examine ROS generation as well as cell 

membrane disturbances (Figure 4 and Figure 5). The first six hours were chosen for these 

two tests because cells can undergo severe destructive processes before a dominant cell 

death period occurred within 8 – 16 hours treatment. It was found that ROS generation 

occurred as the function of all three factors: NPs dose, duration time, and irradiation 

wavelengths (Figure 4). Addition of an ROS-specific fluorescent dye, DCFH-DA, prior 

to, or shortly after the irradiation exposure period was done to assess the amount of ROS 

present. Although only a slight difference was observed for these two methods when cells 

were incubated in the dark condition, totally different results were acquired when 

irradiation was included (data not shown). This was attributed to photo-bleaching and 

photo-degradation when the dye was added prior to irradiation. Therefore, dye was added 

after exposure, and a more representative result was acquired as shown in Figure 4. The 

authors acknowledge that this approach is not entirely representative, as the dye would 

not be able to capture transiently generated-and-consumed free radicals prior to the dye 

addition. Nevertheless, strong correlations were shown between the ROS generation and 

all three factors (Figure 4). Additional supplementary experiments were conducted to 

show the cell oxidative condition s through the release of lactate dehydrogenase (LDH) 
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from the cell membrane (Figure 5). Likewise, the results in the non-irradiated cell group 

corroborated our previous study (Figure 5A), while all three irradiation treated cell 

groups suffered signal loss after prolonged irradiation (Figure 5B-D). This study suspects 

that this phenomenon may be associated with inactivation of the enzymatic reactions 

caused by the accumulating free radicals.  

By using two fluorescent dyes, more detailed examinations of the cytotoxic effects 

can be made (Figure 6). Specifically, cells uniformly stained with DCF and DAPI 

fluorescent dyes provide the following five conditions of the cells: 1) cellular ROS 

generation, through the increase of DCF fluorescence intensity at the FITC channel, 2) 

deterioration of cell health, through the morphological shrinkage of DCF-labeled cell 

body; 3) health of the cell nucleus, through the increase of DAPI fluorescence intensity at 

the DAPI channel, 4) cell viability decrease, through the morphological shrinkage of 

DAPI-labeled cell nucleus, and 5) deformation or decomposition of nuclear membrane, 

through overlapped fluorescence intensity of both DCF and DAPI dyes. Figure 6 shows 

increased cytotoxicity with increased ZnO NP doses and at short irradiation wavelengths. 

Both intensified fluorescence emissions and drastic morphological shrinkages were 

observed in the cell groups that were treated with high levels of ZnO NPs and irradiated 

with short wavelengths. It is important to mention that with the increase of ZnO NPs dose 

in each group, more cells stained with cyan colored fluorescence were observed in 

merged images, indicating a possible decomposition of the nucleus before the cell 

membrane was destructed. This phenomenon is also expressed in a 3-D diagram (Figure 

7), which was based on merged images from Figure 6. The peak circumference represents 

the cell shape, and the peak height represents fluorescence intensity. Images from the up-
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left to the down-right corner show the changes of following key parameters as higher 

doses of ZnO NPs and shorter wavelength irradiations were applied: 1) reduced 

circumference of each peak, 2) higher and steeper peak shapes, 3) brighter fluorescence 

signals, and 4) gradual change of color distribution pattern of each peak; in other words, 

more cyan colored peaks were seen in groups with higher doses of ZnO NPs and shorter 

wavelength irradiations. These signal changes are clear signs of cell shrinkage, cellular 

ROS generation, and nuclear decomposition. Despite the severe cytotoxic effects 

observed due to the exposure to ZnO NPs and irradiations with varied wavelengths, 

relatively higher cell viability, thus lower cytotoxicity, was achieved when NAC was 

applied in all cell groups (Figure 8). This is logical, as NAC is a strong antioxidant. The 

data indicates that the remediation effect of NAC is concentration-dependent and a 

greater viability recovery was achieved when a higher concentration of NAC was 

applied. Nevertheless, the antioxidant effects of NAC varied among irradiation sources, 

with lower remediation effects in the UVA and UVC irradiation cell groups. This 

suggests that an excessive amount of generated free radicals can surpass the antioxidant 

abilities of NAC. 

A previous study on cytotoxicity of iron oxide NPs showed that the toxicity was 

generated through endocytosis via cytoplasm-bound vesicles in A549 cells 29. A separate 

study on silver NP uptakes and intracellular distribution in human mesenchymal stem 

cells also showed a specific endo-lysosomal localization of silver NPs, and the primary 

uptake mechanisms were reported to be the clathrin-dependent endocytosis and 

macropinocytosis 30. Although there were contrasting results showed that cell type and 

the mechanism of interactions play important roles in the cytotoxicity of NPs, the authors 
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suggested that a case-by-case basis would be favored on the investigation of NP 

aggregates behavior with cells 31. Another study on the cytotoxicity of Monodisperse 

polypyrrole (PPy) NPs also showed endocytosis through transportation via endosomal 

networks to lysosomes32. Thus, it is reasonable to infer that most of the cellular uptake of 

nano-scale particles may go through a lysosomal-targeted endocytosis pathway. Our 

findings in this study are in agreement with these studies. Results reveal that ZnO NP 

agglomerates render small sizes and more amount of sub-cellular localization in 

irradiation cell groups (Figure 6-7) with worse cell viability compared with normal dark 

incubated cell group, suggesting that irradiation treatment can assist ZnO NPs to gain 

better dispersion conditions which may promote the uptake of ZnO NPs into cells, and 

thus elicit a higher cell death rate.  

When considering the above results, it is worth mentioning that the appearance of 

cyan colored peaks shown in Figure 6 and Figure 7 indicate nuclear decomposition 

before the disintegration of the cell membrane. ZnO NPs that enter cells will generate 

intracellular ROS and induce nuclear decomposition prior to cell membrane 

disintegration. Such destructive effect depends on ZnO NPs dosages, duration time, as 

well as irradiation wavelengths. A separate experiment on intracellular calcium levels 

(data not shown) produced a similar result. When a lethal dose of ZnO NPs were applied 

to cells, increased intracellular calcium was observed. Moreover, fluorescent dye-labeled 

Ca2+ was observed transiently entering into cell nucleus and induced whole cell 

decomposition later on. This phenomenon, again, demonstrated a unique way of cell 

death induced by ZnO NPs, which has not been clearly reported yet. Nevertheless, few 

studies have showed correlations between nanotoxicity and priorities of destruction to 
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different cellular organelles, especially with respect to the cell nucleus. Since the super-

active free radicals can react with many bioactive macromolecules swiftly and 

unselectively, we hypothesize that the unclear priority of destruction on cell nucleus can 

be attributed to specific chemico-physical properties of ZnO NPs. Moreover, considering 

the basic environment within the cell nucleus, due to the presence of a large amount of 

negatively-charged DNA molecules, we hypothesize that this basic environment in the 

nucleus would selectively attract positively charged “holes” generated on the ZnO NPs 

surface by irradiation, thus favoring the subsequent free radicals production specifically. 

Because both culture medium and cytoplasm were maintained at pH values close to 7.2 – 

7.4, it follows that a basic environment would not be present elsewhere. Therefore, it may 

be the case that once ZnO NPs enter the A549 cells, these NPs preferentially destroys the 

cell nucleus rather than the cell membrane. For this reason, we attribute the observed 

decomposition of the nuclei prior to cellular membranes. Having said that, the detailed 

mechanisms are not clear yet and further studies are necessary to confirm this hypothesis.  

Free radicals are very active species and can interact with many intracellular 

molecules. Reductive molecules (GSH, NADPH, etc.), sources (mitochondria) within 

cytoplasm, and other molecules distributed throughout the cytoplasm can all consume 

free radicals. Therefore, ZnO NPs will not only preferably destroy nuclei, but also 

contribute to whole cell degradation, unselectively. The TEM images (Figure 9) seem to 

support this. Cells treated with 25μg/mL 50-70 nm ZnO NPs in dark exhibited severe 

cytoplasmic destruction after six hours when compared with controls and an even more 

pronounced effect was observed when visible light irradiation was applied (Figure 9A). A 

partial view of a cell that was only treated with ZnO NPs provided closer details, showing 
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that membranes were being torn off while the cytosol was being depleted (Figure 9B). 

Since most cytoskeleton and microfilament structure can still be seen, we believe that this 

is due to their resilience and relatively lacking of reductive function groups.      

The increased cytotoxic effects of ZnO nanoparticles under visible and UV 

irradiation may be attributed to their photo-catalytic reactivity. ZnO has been widely 

reported to have antibacterial activity, although the mechanism has not yet been clarified 

until only recently. UV-stimulated hydroxylation was observed at the surface reactive 

defective sites of ZnO crystals with atmospheric water molecules33. Another electron 

paramagnetic resonance (EPR) study on visible light-induced ROS generation by ZnO 

NPs revealed that ZnO NPs in aqueous suspensions can produce increased levels 

hydroxyl radicals and singlet oxygen34. Moreover, ZnO suspension can generate a greater 

amount of oxy radicals when irradiated with visible light at the range of 400-500 nm. 

Even though the detailed mechanism of the cytotoxicity of ZnO NPs is not totally 

clear, there is evidence showing that ZnO NP-induced toxicity may be due to its 

dissolution in culture medium and endosomes. ZnO NPs were observed entering caveolae 

undissolved, or entering lysosomes in which smaller particle remnants dissolved in 

different cell types 16. Muller et al. 35 indicated that ZnO NPs, which are comparatively 

stable at extracellular pH environment, can cause cell viability reduction through 

dissolution in lysosomes, intracellular release of ionic Zn2+, and combined with severe 

structural changes of mitochondria. It was also found that intracellular Zn2+ toxicity was 

associated with mitochondrial dysfunction and mitochondria depolarization by Ca2+ and 

Zn2+ through considerably different mechanisms36. Further, it has been reported that ZnO 
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NP exposure can increase the intracellular calcium levels in a concentration- and time-

dependent manner13. Our calcium imaging tests are in agreement with this study, too. 

While in this case, the transient receptor potential melastatin 7 (TRPM7), a novel Ca2+ 

permeable non-selective cation channels, were found important in Zn2+- mediated cellular 

injury 37. In conclusion, the studies above suggest the cytotoxic effects of ZnO NPs are 

attributed to ZnO dissolution. However, none of these studies can explain cell death 

through early-stage cell nucleus decomposition as shown in this study. Thus, more 

thorough studies are needed to elucidate a possible multi-pathway mechanism of ZnO 

NPs induced cytotoxicity.     

In summary, we quantitatively demonstrated that the cytotoxicity of 50-70 nm ZnO 

NPs to A549 cells was dose-, time-, as well as irradiation wavelength-dependent, and 

these cytotoxic effects was due primarily to the presence of ZnO NPs, not irradiation. The 

NP-cell interactions were based on the hydrodynamic sizes of the ZnO NPs, not the 

manufactured size. It was found that the photo-catalytic properties of ZnO significantly 

enhanced the generation of ROS, which enhanced the cytotoxic effect of ZnO NPs. This 

cytotoxic effect, however, can be reduced through treatment with the antioxidant, NAC. 

Our detailed study also discovered a unique route of death: nuclear decomposition prior 

to cell membrane deformation. This phenomenon has not been previously reported. 

Based on this phenomenon, we suggest that the basic nuclear environment selectively 

attracts the positively charged “holes” on ZnO NP surfaces caused by irradiation. Finally, 

the study demonstrates that ZnO NPs unselectively contributes to whole cell degradation 

in addition to preferentially destroying cellular nuclei. 
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Abstract 

The widespread use of zinc oxide nanoparticles (ZnO NPs) has raised environmental and 

human health concerns owing to their significant cytotoxicity. Although their cytotoxic 

effects have been associated with reactive oxygen species (ROS), the physicochemical 

mechanism underlying this phenomenon remain poorly understood. In this study, the 

physicochemical properties of ZnO NPs were systematically investigated in relation to 

their effect on ROS generation. Factors that were found to affect hydroxyl radical (•OH) 

generation included: NP concentration, irradiation, NP hydrodynamic size, localized pH, 

ionic strength, NP zeta-potential, and dissolved oxygen levels. The mechanism by which 

•OH was generated under alkaline conditions was found to obey first-order reaction 

kinetics that followed the conversion of OH- anions and dissolved O2 to •OH. Based on 

these findings, we propose that ZnO NP cytotoxicity involves •OH adsorption to the 

nanoparticle surface, creating a highly localized source of ROS capable of potentiating 

oxidative damage to cellular structures. This hypothesis was evaluated with time-resolved 

intracellular calcium [Ca]i imaging that irradiated ZnO NPs triggered cytoplasmic 

calcium influxes and facilitated nuclear degradation. Together these findings present a 

novel physicochemical mechanism for •OH generation from ZnO NPs with significant 

implications for nanoparticle cytotoxicity and their relation to human health. 

 

Keywords 

ZnO NPs; irradiation-induced ROS generation; free hydroxyl radical (•OH); electron spin 
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Introduction 

Zinc oxide nanoparticles (ZnO NPs) remain one of the most widely used nanomaterials 

with applications spanning research and industrial fields such as semiconductors, 

cosmetics, drug delivery agents, and more.1 However, a growing body of literature has 

indicated ZnO NPs possess unique physicochemical properties that may lead to adverse 

biological effects.2, 3  For example, ZnO NPs adversely affect cells through membrane 

disruption,4 increased lipid peroxidation,5 reactive oxygen species (ROS) generation,6 and 

destruction of important organelles including mitochondria,6 lysosomes,6 and even 

nuclear degradation.7 Prior research has attributed ZnO NP cytotoxicity to the release of 

intracellular zinc ions8, 9 that contribute to oxidative stress, dysregulated calcium [Ca2+],10 

mitochondrial malfunction,11 as well as interleukin (IL)-8 production.12, 13 Further efforts 

have attempted to correlate NP cytotoxicity with hydrodynamic size,14 dosage,5 and 

exposure conditions.5, 12 However, these factors alone overlook many of the unique 

physicochemical properties of ZnO. For example, ZnO is a semiconductor with 

remarkable photo-catalytic properties,15 especially at micro- and nano-sized levels. For 

this reason, ZnO NPs have been widely used for microorganism sterilization and 

wastewater treatment.16  

Photocatalytic ROS generation from nanomaterials represents another potential mode 

of cytotoxicity.17 Jaeger and Bard demonstrated as early as the 1970s that irradiated TiO2 

generates hydroxyl radicals (•OH) and perhydroxyl radicals (HO2
•).18 Similarly, our 

group and others have successfully demonstrated the formation of reactive •OH from 

irradiated ZnO NPs.19, 20 To this end, electron spin resonance (ESR) spectroscopy has 

proved an invaluable technique for studying the formation of free hydroxyl radical 
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generation and irradiated ZnO NPs.12, 20, 21 The underlying mechanism is thought to arise 

from the transfer of absorbed photon energy through electron-hole pairs on the 

nanoparticle surface, although the extent to which this process generates ROS remains 

unclear. Current research in understanding this mechanism has not yet considered 

secondary interactions that arise from the surrounding environment.22 For example, ZnO 

NP suspensions behave as pseudo-colloidal system,23 which has important biological 

ramifications including nanoparticle stability, dispersivity, surface charge, and 

aggregation and precipitation potentials in biological matrices.  This potential for 

aggregation results in a net loss of reactive surface area and will consequently limit ROS 

generation by the nanoparticles. 

We hypothesize that •OH generated from irradiated ZnO NPs is the causative agent 

for ZnO NP cytotoxicity. The lack of a comprehensive understanding of the effects of 

physicochemical properties on •OH formation inspired us to investigate these salient 

features in this study. This study was designed to monitor •OH formation using ESR 

spectroscopy combined with spin-trapping techniques, which have been recognized as 

powerful techniques for identifying and quantifying transient free radicals.24 The ESR 

spin-trapping reagent 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) is particularly useful 

for sensitive and highly selective •OH quantification.25 The systematic study of 

physicochemical factors including NP dosage, irradiation time, NP hydrodynamic size as 

well as buffer pH, ionic strength, and oxygen abundance by this technique enabled a 

comprehensive examination of the mechanisms underlying ROS generation from ZnO 

NPs. These new insights will lead to improved understanding of ZnO NP cytotoxicity and 

its relation to human health.  
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Experimental  

Chemicals and reagents 

ZnO NPs of 10 nm size were purchased from NanoScale Materials (Manhattan, Kansas, 

USA), while ZnO NPs of 50 - 70 nm size in addition to micro-sized ZnO powder (420 

nm) and titanium (IV) oxide (TiO2; 40 nm), cerium (IV) oxide (CeO2; 20 nm) and silicon 

dioxide (SiO2; 46 nm) nanoparticles were purchased from Sigma-Aldrich (Saint Louis, 

MO, USA) at 99.0% purity. The 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) spin-

trapping agent and penicillin-streptomycin reagents were purchased from Sigma-Aldrich 

Chemical (St. Louis, MO, USA). Fetal bovine serum was purchased from American Type 

Culture Collection (ATCC) (Manassas, VA, USA). Ham's F-12K medium with added L-

glutamine was purchased from Fisher Scientific (Pittsburgh, PA, USA). Fura-2 AM 

intracellular Calcium fluorescent dye, Trypsin–EDTA (0.25%), and 0.1 M phosphate 

buffered saline (PBS) were purchased from Life Technology Co. (Carlsbad, CA, USA). 

Ultra-pure water was generated with a Milli-Q system (Millipore, Bedford, MA, USA). 

ZnO particles characterization and suspension preparation  

The ZnO NPs used in this study have previously been characterized.5, 19 ZnO NP 

suspensions were freshly prepared in PBS buffer solution, ultra-pure (MQ) water, or 

serum-free culture medium based on experimental design. The selection of PBS buffer 

solution, despite its detrimental effects on photocatalytic oxidation by TiO2, ZnO as well 

as FeOx, was premised on its biological relevance.26 Nanoparticles were dispersed using 

an ultrasonicator (FS-60H, Fisher Scientific, Pittsburg, PA, USA) for 15 minutes. 

Because ZnO NPs tend to aggregate or precipitate in suspensions, hydrodynamic sizes 

and zeta potentials of ZnO NPs in various dispersants (e.g. cell medium, ultra-pure water, 
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PBS buffer) at various concentrations were examined using dynamic light scattering 

(nano series Malvern Zetasizer ZEN 3690, Malvern Instruments Ltd., Worcestershire, 

UK). The UV–Vis spectra were recorded over the range of 350–900 nm with a Cary 50 

UV–Vis spectrophotometer (Agilent Technologies, Santa Clara, CA). All pH 

measurements were conducted using an Accumet AB15 Plus pH meter (Thermo Fisher 

Scientific Inc., Waltham, MA, USA). 

Electron spin resonance (ESR) experiments 

DMPO spin adducts are stable nitroxides with unique ESR spectral patterns for each free 

radical (R•) added to the 2-position (β-carbon) of DMPO (Reaction 1) with particular 

sensitivity for •OH.20, 27, 28 Here, a 100 µL addition of 100 mM DMPO was added to 

freshly prepared and ultrasonicated ZnO NPs in either ultra-pure water or PBS. The 

resulting mixture was introduced immediately into a tip-sealed disposal long tip pipette 

(OD = 1.2 mm, Pyrex, Fisher Scientific, Pittsburgh, PA, USA). The pipette was then 

inserted into the cavity of an X-band ESR spectrometer (Model JES-FA 100, JEOL Inc., 

Peabody, MA, USA). The JEOL rectangular resonator has a 0.5 inch hole in the front for 

light access. Spectrometer parameters included: microwave frequency: 8.8 - 9.0 GHz, 

power: 2 - 5 mW and modulation width: 0.01 - 0.05 mT. Single measurements were 

taken, as opposed to signal averaging, owing to the high sensitivity of the measurements. 

Moreover, daily standards were freshly prepared and examined as reference values with 

inter-daily precision less than 5% relative standard deviation (RSD). A combination of 

100 W tungsten/halogen and 150 W Xenon/mercury lamps were used as irradiation 

sources. ESR signals were recorded before, during, and after irradiation to examine the 

effect of radiation on free radical generation, and all experiments were performed at room 
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temperature. The ESR experiments were confined to approximately 10 minutes in order 

to minimize heat generation caused by the irradiation. Control samples were additionally 

analyzed to consider the presence of interfering ESR artifacts such as oxaziranes that 

isomerized from spin trap nitrones.25 

Since dissolved oxygen in aqueous solutions may affect free radical generation, 

solutions purged at 50 mL gas/min with either nitrogen or oxygen were examined to 

study this effect. The sample tube was capped with a rubber septum with two hypodermic 

needles inserted (inlet and outlet) during the gas purging. Following purging, the needles 

were removed and the samples remained sealed with septa under a N2 atmosphere during 

the ESR measurements.  

Another interfering reaction involves the non-radical, nucleophilic reaction through the 

so-called Forrester-Hepburn mechanism29. This reaction entails the formation of 

DMPO/•SO3
- artifacts from bisulfite that is typically present under real biological 

conditions. In this study, cell extracts were not investigated with ESR spectroscopy, so 

this potential interference was not anticipated. 

Inductively-Coupled Plasma-Mass Spectrometry (ICP-MS) measurements  

An Elan DRCe ICP-MS (PerkinElmer, Waltham, MA, USA) was used to quantify zinc 

ions released from ZnO NPs. Zinc dissolution was measured in ZnO NP suspensions (500 

µg/mL) prepared in 0.1 M PBS that were pH adjusted (1-14). Solutions were 

ultrasonicated for 15 minutes followed by vortex mixing for 3 minutes. Samples were 

then centrifuged at 12,000 g-force (5810 R Centrifuge, Eppendorf, Germany) and the 

supernatants were immediately filtered twice using disposable 0.22 μm nylon filters 

(Fisher Scientific, Pittsburgh, PA, USA). Samples were finally diluted using 1% nitric 
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acid (trace metal grade, Fisher Scientific, Pittsburgh, PA, USA) prior to HPLC-ICP-MS 

analysis. 

Cell culture and treatment with ZnO NPs 

The human alveolar carcinoma-derived cell line (A549) was purchased from ATCC 

(Manassas, VA, USA) and used as an in vitro cytotoxicity model in this study. This cell 

line has been widely used in particulate matter-related pulmonary toxicity studies,30-32 

and was used in our previous work to demonstrate irradiation-enhanced ZnO NP 

cytotoxicity.19 Cells were maintained in Ham’s F-12K medium supplemented with 5% 

fetal bovine serum, 100 units/mL penicillin, 100 μg/mL streptomycin, and grown at 37 

°C in a 5% CO2 humidified environment. In each test, cells were seeded and allowed to 

attach for 48 hours prior to nanoparticle exposure. Cell densities between 5 × 104 to 1 × 

105 cells per milliliter were used for analysis. Cells without ZnO NP exposure were used 

as the control group in each experiment. 

Calcium imaging and three-dimensional (3-D) images plot  

Calcium imaging was performed using Fura-2 dye labels for intracellular calcium in 

A549 cells. Cells were pre-seeded onto confocal petri dishes in whole culture medium 

(with serum) 24 hours prior to ZnO NP exposure (serum free). A series of calcium 

images that displayed Fura-2 fluorescence intensity were continuously taken for up to 6 

hours. Ratiometric data analysis was conducted to identify cells with intracellular calcium 

levels that exceeded a preselected threshold (100 nM [Ca2+]i). 3-D plots that represented 

dynamic changes in intracellular Ca2+ spatial distributions were drawn using ImageJ 

(National Institutes of Health, USA). 
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Results and discussion 

The effect of irradiation on •OH generation  

Free hydroxyl radicals have extremely short life spans and are therefore ill-suited for 

conventional quantitation techniques.33 In this study, the highly sensitive and selective 

spin-trapping reagent, 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) was used to trap the 

transient •OH as stable DMPO-spin adducts (Reaction 1).  

 

     Reaction (1) 

 

The spin-trapping spectrum of aqueous ZnO NPs using 150 W Xe/Hg lamp for 

irradiation has been shown in Fig. 1. Briefly, the 4-line spectrum characterized by its 

1:2:2:1 pattern (Fig. 1a) is attributed to DMPO/•OH spin adducts with the following 

parameters: g = 2.0046, aN = aHβ = 1.49 mT, which agrees with literature values for 

DMPO/•OH spin adducts.34, 35 A time profile of the third peak before and during 

irradiation was then recorded for eight minutes (Fig. 1b). The stabilization of the ESR 

signal during irradiation implied limited free radical formation that decreased linearly 

following cessation of irradiation. This gradual, linear decrease was attributed to the 

relative stability of the DMPO/•OH spin adducts which have a lifetime of several hours. 

A secondary explanation for this decrease is ZnO NP aggregation and precipitation,36 

which is a phenomenon that has been previously observed.19  
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Figure 1. ESR recording of •OH radical generation by 50-70 nm ZnO NPs in aqueous 
solution. (a) Representative spectrum after 2 minutes irradiation, and (b) A time profile of 
ESR recording of the third peak for eight minutes. Instrumentation settings: frequency = 
8905.758 MHz, field center = 317.500 mT, width (±) = 4.000 mT, MOD: Fq = 100.00 
kHz, width = 0.1000 mT, power = 2 mW, sweep time = 2.0 min, mod amplitude: CH1 = 
1000.0, CH2 = 2.0. 
 

The effect of nanoparticle concentration on •OH generation  

ESR measurements were performed on 50-70 nm ZnO NPs with doses ranging from 0.1 

to 30 mg/mL (Fig. 2, Fig. S1). Our results demonstrated a non-linear relationship 

between •OH generation and ZnO NP concentration during the initial six minute 

irradiation period. Curiously, an inflection point was observed for 1 mg/mL ZnO NP 

doses (Fig. 2a, 1st irradiation), which suggested an equilibrium process between: 1) 

internal exciton formation and 2) interfacial electron transfer. The irradiation-induced 

electron-hole pairs will either combine together to form an exciton internally or are 
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charge transferred by interfacial reactions. Higher concentrations of nanoparticles will 

effectively shield inner nanoparticles, leading to decreased interfacial reactions and 

higher rates of internal exciton formation. This understanding has been attributed to the 

inflection point observed during this experiment.  

ZnO NPs were then irradiated for six minutes followed by dark conditions (Fig. 2a, 

lamp off). Notably, the ESR signals under dark conditions failed to correlate with NP 

dosage. This could be readily explained by the nitroxide decomposition on the NP 

surface. A second irradiation period was then studied to determine whether NP 

aggregation would affect the result during the first dark cycle. Indeed, our hypothesis was 

supported by the observation in lower concentrated NPs (upper plot) in Fig. 2b, that the 

aggregation/precipitation did not significantly affect the •OH generation because a 

similar •OH generation was observed. However, this was not the case with higher NPs 

concentration (bottom plot in Fig. 2b). The observed inflecting effect (Fig. 2a) of NP 

dosage to the radical generation though, may also have an alternative explanation: higher 

NP concentration will induce stronger light scattering and weaker light absorption by 

DMPO. This will yield lower amount of the isomerized nitrone, and thus lower adduct 

concentration.  
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Figure 2. Continuous ESR recording of •OH by 50-70 nm ZnO NPs. (a) 1st irradiation 
and dark (lamp off) periods recording at NPs doses of 0.1, 0.5, 1, 3, 10 and 30 mg/mL; 
(b) 2nd irradiation at ZnO NPs doses of 0.5 and 3 mg/mL. Raw ESR data was normalized 
to (1) the temporal linear propagation rate for the first and fourth ESR peaks, (2) ESR 
instrumental parameters, and (3) a daily calibration standard using 1 mg/mL 50 – 70 nm 
ZnO NPs MQ water suspension, and the solid trend lines were drawn based on a 5th order 
of polynomial function.  

 

The effect of hydrodynamic size on •OH generation  

Previous NP toxicity studies have primarily focused on the relationship between 

nanoparticle size and cytotoxicity;37, 38 however, recent efforts have proposed that 

hydrodynamic size more accurately reflects nanoparticle cytotoxicity.39 In this study, 

hydrodynamic size was measured using a real-time light scattering method coupled with 

ESR detection under irradiation (Fig. 3). Non-linear decreases in hydrodynamic size, as 

indicated by weight-averaged distribution peaks (1600 nm to 1200 nm) and relative peak 

intensities (7.5 to 4.7), suggested nanoparticle aggregation processes (Fig. 3 a, b) This 

trend continued until a critical size for precipitation was reached.  Notably, this 

observation would imply that only small ZnO NPs were present at sufficiently long time 

periods (>80 min.) during the experiment described above. This aggregative process was 

characterized using UV/Vis spectrophotometry, wherein time-based decreases in 
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absorbance and band gap energy shift (from 3.36 to 3.29 eV) were observed (Fig. S2). 

This phenomenon, according to H. Weller, was a quantization effect, and the 

physicochemical properties are largely corresponding to the nature of the particle size and 

surface.40 Together these results suggest that spontaneous aggregation of nanoparticles 

must be considered in the evaluation of their hydrodynamic size. 

To determine the effect of hydrodynamic size on •OH generation, •OH generation was 

measured as a function of ZnO NP hydrodynamic size using bulk-form ZnO powder (420 

nm) as a control (Fig. 3c) in which •OH generation from ZnO NPs greatly exceeded that 

of bulk ZnO. Ultrasonication of ZnO NPs similarly elicited greater •OH generation 

compared with NPs that were allowed to spontaneously aggregate (Fig. S3). Three groups 

of ZnO NPs prepared at 1 mg/mL (50-70 nm), 10 mg/mL (10 nm), and 10 mg/mL (50-70 

nm) were then studied to determine the extent to which hydrodynamic size influenced 

•OH generation relative to ZnO NP concentration (Fig. 3d, S4). Hence, hydrodynamic 

size has a sizeable effect on •OH generation from ZnO NPs.  
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Figure 3. Correlation of •OH generation and ZnO NPs hydrodynamic sizes. First, time-
lapsed measurement of 1 mg/mL 50-70 nm ZnO NPs hydrodynamic size were shown as 
(a) full spectrum distribution and (b) peak analysis. Inset plot in (b) indicates weighed-
averaged particle size distribution. (c) Comparison of •OH generation by nano- (50 – 70 
nm) and micro- (420 nm) sized ZnO NPs. (d) Comparison of •OH generation by 10 nm 
and 50-70 nm ZnO NPs at 1 mg/mL or 10 mg/mL dosage. 

 

The effect of pH on •OH generation  

We further evaluated the correlation between •OH formation and environmental 

physicochemical factors including radical quenching capacity, pH, matrix effect and ionic 

strength (IS).41, 42 The colloidal stability of ZnO NP suspension under a wide pH range 

was initially studied (Fig. 4). Fresh suspensions in PBS under varied pH conditions (from 

1 to 14) were ultrasonicated followed by zeta (ζ)-potential measurements (Fig. 4a). 



74 

 

Ultrasonication minimally affected suspension pH, where only a 0.3 pH unit basic shift 

following ultrasonication was observed (Fig. S5). A typical colloidal ζ-potential 

stabilization range between pH 5 and 11 for both 10 nm and 50-70 nm ZnO NPs that was 

maintained between -15 and -25 mV was observed. These measurements also indicated 

that ZnO NPs dissolve beyond this pH range, which supported the ICP-MS analysis 

results (Fig. 4b). Orthogonal UV/Vis absorption analysis (Fig. S5-b) showed a strong 

positive correlation between pH and ZnO NP absorption. Note that a good linear 

correlation can be found under the basic pH conditions. Correspondingly, basic pH 

conditions resulted in increased hydroxyl radical generation as indicated by ESR analysis 

(Fig. 4c). A first-order reaction kinetics between hydroxide anions and free hydroxyl 

radical formation was similarly observed under alkaline conditions (Fig. 4d), which was 

plotted based on the first four-minute’s irradiation generated ESR signal intensity. This 

finding indicates a direct pH-dependent process of hydroxyl radical generation by the 

ZnO NPs. 
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Figure 4. Physicochemical properties of ZnO NPs as functions of pH environment that 
presented through: a) ζ-potential, b) released zinc ions, and c) •OH generation. d) Plot of 
initial four-minute irradiation hydroxyl radical production rate (as accumulated ESR 
signal intensity per minutes) vs. hydroxide anion concentration in varied pH buffers. A 
linear fitting was drawn to see if it falls into a first-order reaction kinetics. Data show in 
(a) to (c) are presented as mean ± standard deviation after triplicate (or at least duplicate) 
measurements.  

 

Effect of ionic strength and oxygen content on •OH generation 

Total ionic strength (IS)42 and the effective oxygen vacancy sites on ZnO NP surfaces43 

have also been reported to modulate ROS generation. This understanding was explored 
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using ultra-pure water (IS = 0.01 mM), tap water (IS = 2 mM), and PBS buffer (pH = 7, 

IS = 70 mM). Results shows that ionic strength generally exhibited an inverse 

relationship with •OH generation (Fig. 5a) that displayed non-linear complexities that 

were later attributed to radical quenching by inorganic anions.44, 45 Specifically, inorganic 

anions will compete for the photocatalytic oxidizing sites on the nanoparticle surface to 

form inorganic anion radicals that will not contribute to the ESR signal shown (Fig. 5a) 

per the Langmuir-Hinshelwood kinetic mode.26 

 

 

Figure 5. Influences of radical production from (a) variable ionic strengths (IS) of ultra-
pure water, tap water and a phosphate buffer solution (PBS), (b) varied oxygen 
abundances of non-aerated control (normal), N2 de-oxygenation, and O2 oxygenation 
treatments, and (c) non-centrifuged, centrifuged supernatant clear solution and re-
suspended centrifugation-precipitation. 

 

Surface defects and oxygen vacancies on ZnO NP surfaces46 further correlated with 

•OH formation.47 In this study, ZnO NP suspensions underwent a five-minute pre-

treatment of either 1) N2 de-oxygenation, 2) O2 oxygenation, or 3) no pre-treatment. Then 

DMPO was immediately added followed by ESR analysis for 10 minutes (Fig. 5b). 

Heightened •OH formation within the oxygenated group indicated dissolved oxygen 

facilitates •OH generation. This finding supported experimental evidence related to 

mitochondrial dysfunctions following ZnO NP exposure.48 Finally, the non-aerated 
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control group contributed to the greatest •OH formation, although this occurrence is 

attributed to the poor stability of the NP suspension following aeration.  

It was still unclear whether the newly formed •OH bind to ZnO NP active sites or are 

released into the surrounding environment, a distinction with substantial cytotoxic 

implications that merited additional study. To address this critical question, centrifuged, 

suspended, and control ZnO NP suspensions were compared by using ESR to determine 

the localization of the radicals. One mg/mL 50-70 nm ZnO NPs in PBS (pH = 7) were 

freshly prepared and divided into three groups before ESR analysis: (1) the original 

suspension, (2) the supernatant after centrifugation at 5,000 rpm for 15 seconds, and (3) 

the re-suspended precipitate following centrifugation (Fig. 5c). Decreased •OH formation 

was observed in the centrifuged group which was attributed to ZnO NP precipitation 

from the centrifugation process. This observation would imply that DMPO/•OH adducts 

form on the nanoparticle surface, which was supported by the resuspended group having 

higher initial DMPO/•OH levels than the control group. Moreover, the trends in the 

resuspended group closely paralleled those in the control group following additional 

irradiation. These findings suggest that •OH preferentially binds to the nanoparticle 

surface rather than being released into the surrounding environment. We further 

evaluated this hypothesis by adding DMPO before and after centrifugation to locate the 

•OH. Similar ESR results were acquired in both setups, strongly indicating surface 

localization of the newly formed •OH. Similar conclusions were suggested in a recent 

study, where ROS generation was inversely proportional to nanoparticle diameter, which 

demonstrated surface-catalyzed ROS generation.49 This new •OH formation mechanism 

poses serious concerns for ZnO NP nanotoxicity under biologically relevant conditions.50 
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The effects of organic solvent and NP composition on •OH generation  

In an extended ESR test, glycerol and ethanol were used to suspend ZnO NPs instead of 

water (Fig. S6). A six-peak signal was observed in both groups that were different from 

the typical four-peak signal of DMPO-trapped •OH adducts in water. We infer that it may 

correlate with carbon-centered radicals produced in organic environments.51, 52 Moreover, 

we found that the chemical composition of the ZnO NPs also play an important role in 

ESR spectra. Nanoparticles of differing composition, but similar concentration and size, 

namely TiO2 (40 nm), SiO2 (46 nm) and CeO2 (20 nm) NPs produced remarkably 

different ESR spectra (Fig. S7). Weak or no •OH signals were observed with irradiated 

TiO2 and SiO2 NP while •OH formation occurred in irradiated CeO2. Both four-peak 

(typical DMPO-trapped •OH) and six-peak signals were also shown in CeO2 NP 

suspension (Fig. S7), suggesting •OH formation by CeO2 proceeds via unique process.  

 

Proposed cytotoxic mechanism  

ZnO NPs can have several types of defects, such as interstitial atoms or vacancies, that 

are characterized as either anionic or cationic.53 Singly ionized O vacancy site (VO
•), and 

(2) doubly ionized O vacancy site (VO
••) exist in ZnO NPs, which give rise to an overall 

positive charge on ZnO NP surfaces alongside excess amounts of Zn2+, which have 

several key implications for •OH formation. First, VO
• is an ESR-active defect that has an 

effective monovalent positive charge with respect to regular O2- sites. It lies 

approximately 2 eV below the ZnO conduction band and acts as a recombination center 

under irradiation. Second, VO
•• is a vacancy containing no electrons, having an effective 

divalent positive charge with respect to the normal O2- sites, and can be formed when a 
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hole is trapped at a VO
• center. Emitted photons were mostly assigned to a shallowly 

trapped electron with a deeply trapped hole in a VO
•• center. The VO

• and VO
•• vacancy 

sites can chemo-adsorb negatively charged, polar molecules like OH-, H2O, and O2. 

Photon absorption (>3.6 eV) promotes an electron (ecb
-)/hole (hvb

+) pair, which may 

further react with adsorbed species, such as OH- ions to form •OH free radicals (Reaction 

2). The observed four-fold increase in •OH ESR signal intensity as solution pH was 

increased from 8.0 to 10.0 supported this understanding. Hence, locally adsorbed OH- 

ions at vacancy sites have important roles in •OH photogeneration.  

             Reaction (2) 

             Reaction (3) 
 

Furthermore, the ecb
- can also react with locally adsorbed O2 molecules to form 

superoxide anions (Reaction 3), which was observed by the weak set of ESR signals that 

were attributed to superoxide anions (Fig. 1a). These anions may be generated by nearby 

photo/Auger electron charge transfer.49 Although superoxide anion radicals are cytotoxic, 

their highly transient nature limits their capacity to directly present cytotoxic effects. 

Biologically, O2
•- is rapidly converted to H2O2 by superoxide dismutase (SOD) and 

further transformed to •OH via Fenton reaction assisted by trace amounts of transition 

metal ions (e.g. Cu+, Fe2+, Mn2+). Our ICP-MS analysis indicated the presence of these 

and other Fenton metals in both the 10 nm and 50 – 70 nm ZnO NPs (Fig. S8). Special 

attention is given here to trace metal contamination across different batches and vendors 

of nanoparticles that may lead to confounding results. These subtle variations in 
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nanoparticle compositions will not dramatically alter cytotoxic effects, but may lead to 

unique ROS generation properties. On the other hand, the trapping of “excited” electrons, 

ecb
-, by O2 at the vacancy sites, and their conversion to O2

•- can further decelerate the 

recombination of ecb
- with hvb

+, and thereby enhance •OH formation. These pathways can 

favorably proceed as long as the surface defects are localized to the irradiated sites that 

trap hvb
+ and ecb

- so as to prevent exciton emission. Hence, irradiated ZnO NPs may 

generate •OH from multiple, distinct pathways (Scheme 1), which leads us to posit that 

•OH formation by intact NPs is a more likely route for cytotoxicity than dissolved zinc 

ions which is minimally released under biologically relevant conditions.  

 

 
Scheme 1 Proposed mechanism of •OH generation by ZnO NPs mainly with assistance 
of irradiation and basic pH environment. SOD: superoxide dismutase.  
 
Extracellular calcium influx imaging  

To support this hypothesis, we conducted an in vitro study to model ZnO NP cytotoxicity 

using extracellular calium influx imaging. This approach is premised on the idea that 

divalent calcium (Ca2+) is an important secondary messenger for cell signaling that can 
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be used to accurately monitor cytotoxic processes in a real-time manner.54, 55 Since 

calcium influxes can be activated by •OH, its use in monitoring •OH cytotoxicity is 

particularly advantageous for studying ZnO NP cytotoxicity (Fig. 6).56 Four ZnO NP 

concentrations (7.5, 15, 25 and 50 μg/mL) were used to induce extracellular ionic 

calcium ([Ca2+]i) influx in A549 epithelial lung cancer cells. A 100 nM intracellular Ca2+ 

level54 was selected as the triggering threshold since [Ca2+]i is physiologically maintained 

at or below this level. Extracellular Ca2+ influxes and subsequent cell nucleus 

decomposition were observed following exposure to ZnO NPs (Fig. 6a-c, three featured 

calcium imaging animations are also available in the electronic supplementary 

information (ESI)). Our findings indicated that ZnO NP exposure quickly induced Ca2+ 

influxes that were best modeled by a linear correlation between logarithmic NP centration 

and the influx triggering time (Fig. 6d), indicating a first-order reaction kinetics as well. 

These findings also indicated that nuclear membrane damage occurred simultaneously 

with calcium influxes, which are tell-tale signs of cell apoptosis or autophagy. 19, 57 This 

result revealed a unique way of ZnO NP cytotoxicity through nuclear deformation. This 

finding supports previously observed irradiation-enhanced nuclear decomposition by 

ZnO NPs.19, 57  

This is coincidentally supported by a recent study that high hydroxyl radical 

production was observed due to the formation of a structured water layer in the vicinity 

of the nanoparticle which possibly through the interaction between NP’s charge and the 

water dipoles.22 Moreover, our results indicate ZnO NP •OH generation is accelerated 

under high oxygen and basic pH environments, which impart significant ZnO NP 

cytotoxicity implications as detailed visualized in Fig. S9. Together these findings will 
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likely impact toxicology research, chemical enhancement58 and nanomedicine,22 such as 

by presenting novel therapeutic targets to limit ZnO NP cytotoxicity following exposure. 

 

 
 
Figure 6 The correlation between ZnO NP uptake and intracellular calcium homeostasis; 
3-D plot of intracellular calcium kinetics were established based on featured-cell’s 2-D 
fluorescent intensity under three ZnO NP dosages of (a) 7.5, (b) 15, and (c) 25 μg/mL. (d) 
Linear correlation between the natural logarithmic concentration of ZnO NPs and the 
calcium influx triggering time. Pseudo-colored regions are selected cells that are stained 
with Fura-2 AM to show real-time variation of the intracellular calcium concentration. 
Blue-purple regions represent resting status with low [Ca2+]i, while red-yellow regions 
represent highly increased intracellular [Ca2+]i. Each point represents 20 averaged 
measurements and error bars represent standard deviations. 
 

Conclusions 

In summary, the physicochemical properties of ZnO NPs were systematically studied for 

their effects on ROS generation. ESR analysis demonstrated that •OH generation is 

influenced by irradiation time, hydrodynamic size, dosage, and local pH. Decreases in 

time-lapsed ESR measurements under dark conditions were attributed to nanoparticle 

aggregation and precipitation, which resulted in concentration-dependent inflection 

points in the ESR data. Preferential •OH generation was observed under the following 

conditions: irradiation, basic pH, high dissolved oxygen, and low ionic strength. Finally, 

the discovery of bound •OH to ZnO NP surfaces suggested highly concentrated, localized 
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ROS regions that may present a novel mechanism of cytotoxicity. Future work should 

aim to quantify NP surface vacancy sites and impurities to substantiate this proposed 

mechanism. 
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ABSTRACT 

Because of the promising wound-healing capability, bioactive glasses have been 

considered as one of the next generation hard- and soft-tissue regeneration materials. The 

lack of understanding of the substantial mechanisms, however, indicates the need for 

further study on cell-glass interactions to better interpret the rehabilitation capability. In 

the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-

based 13-93B3 and 1605 (additionally doped with copper and zinc), were firstly 

compared for their in vitro soaking/conversion rate. The results of elemental monitoring 

and electron microscopic characterization demonstrated that quicker ion releasing and 

glass conversion occurred in borate-based fibers than that of silicate-based one. This 

result was also reflected by the formation speed of hydroxyapatite (HA). This process 

was further correlated with original boron content and surrounding rheological condition. 

We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should 

exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 

1605 fibers showed different glass conversion and biocompatibility properties as well, 

indicating that trace amount variation in composition can also influence fiber’s 

bioactivity.  In sum, our in vitro rheological module closely simulated in vivo niche 

environment and proved a potentially improved wound-healing effect by borate-based 

glass fibers, and the results shall cast light on future improvement in bioactive glass 

fabrication. 

Keywords: silicate-/borate-based bioactive glass fibers; glass conversion; hydroxyapatite 

formation; dynamic flow module; cell proliferation/migration; soft tissue wound-healing. 
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1. Introduction 

Silicate-based bioactive glass has received considerable interest since the early 

1970s 1-3  for its putative wound healing capabilities. Known mechanism involves the 

dissolution of the bioactive glass in body fluid and the subsequent conversion of the 

released ions to the important bone mineral, hydroxyapatite (HA).4,5 Clinical applications 

of silicate-based bioactive glasses, such as the well-established 45S5 formulation, have 

nevertheless been hindered by practical concerns including uncontrollable dissolution as 

well as slow, incomplete HA conversions, and thus insufficient bioactivity.6 Borate- 7-9 

and phosphate- 10 based bioactive glasses have recently been reported to have improved 

bioactivity and more complete HA conversions.11-13 These practical differences were 

highlighted in an in vivo study that demonstrated markedly improved bone growth in rat 

calvarias with borate-based bioactive glass scaffolds as opposed to silicate-based 

glasses.14 

Further studies showed that HA conversion is not the only mechanism that 

responsible for bone tissue regeneration. Multiple studies showed inorganic ions that 

released from bioactive glasses, including silicon (Si),15-17 calcium (Ca),18-21 phosphorous 

(P),22 magnesium (Mg),23-28 and boron (B),29,30 were involved in many processes which 

include bone metabolism, growth, and mineralization. Many trace metal elements though, 

like strontium (Sr), copper (Cu), zinc (Zn), and cobalt (Co), etc., were also showed to 

participate in bone tissue regeneration and formation.31-34 Besides, bioactive glasses have 

been reported to stimulate angiogenesis, the formation of new blood vessels,35-37 which is 

a crucial process for both hard and soft tissue regeneration.14,38 Actually, more attentions 

have been drawn within the area of soft tissue repair because recent study demonstrated 
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encouraging regeneration capabilities of skin tissues with promoted angiogenesis.39 

Although adequately reports and mechanisms have been proposed for the bone tissue 

healing effect of these glass materials, no convincible hypothesis is available yet to 

address the function mechanism of these materials on soft tissue healing effect. 

Moreover, the stimulating effect on fibroblast cells and granulation tissues has also been 

correlated with the induction of vascular endothelial growth factor (VEGF) and basic 

fibroblast growth factor (bFGF), which were evidently proved by increased numbers of 

rough endoplasmic reticula and newly formed micro-vessels.40 These findings, 

nevertheless, greatly expanded the vision of both hard and soft tissue stimulating effect 

by bioactive glass materials.    

However, two major aspects currently are hindering the way of further 

understanding the glass-cell interactions mechanisms, especially in the case of in vitro 

evaluation. On one hand, not well-simulated in vivo environment during in vitro study of 

cell-glass interactions. Most previous bioactivity studies were carried out with standard 

protocols for in vitro toxicity evaluation, like those that has been used for drug screening. 

A major problem in using the standard procedure is its requirement of static experimental 

condition which ignored the rheological influences within human body. Thus, a closer 

simulation to the in-body environment is the key issue when carrying on in vitro tests in 

order to better understand the actual functionality of these bioactive glass materials. 

Exceptional effort has been made by R. F. Brown et al., who designed his tests using a 

slowly-swaying platform, which successfully lower the in-situ boron dosage and had 

acquired meaningful results under a dynamic culturing condition.6 On the other hand, the 

cytotoxic effect that comes from released metal ions was mostly been simplified or 



95 

 

ignored. Studies showed that HA conversion in borosilicate and borate-based bioactive 

glasses was positively correlated with boron trioxide (B2O3),
11,41 which was reported to 

have negative effect on cell proliferation and thus raising many concerns and doubts in 

their practical use. Besides, it has been shown that most of these bioactive glass materials 

will cause surrounding pH increasing onto a pretty harmful level (pH unit ranging from 8 

to 11) in simulated body fluid (SBF),11,13,42,43 which again indicated a potential cytotoxic 

effect in long-term co-culturing with cell or tissues. 

The objective of the present work is to therefore conduct a comprehensive 

evaluation of the HA conversion and glass-cell interactions under both static and 

dynamic-flow modes. Three nano- or micro- glass fibers, including silicate-based 45S5 

(24.5% Na2O, 24.5% CaO, 45% SiO2, 6% P2O5 (wt%)), borate-based 13-93B3 (5.5% 

Na2O, 11.1% K2O, 4.6% MgO, 18.5% CaO, 3.7% P2O5, 56.6% B2O3 (wt%)), and borate-

based 1605 (6% Na2O, 12% K2O, 5% MgO, 20% CaO, 4% P2O5, 51.6% B2O3 , 0.4% 

CuO, 1% ZnO (wt%)) were used for comparison of their bioactive effect on a human 

fibroblast skin cell line (CCL-110). A dynamic-flow module with a continuous supply of 

fresh media was established for a close study of rheological evaluation. A combination of 

scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and 

inductively coupled plasma optical emission spectrometry (ICP-OES) were used to 

quantitatively measure the glass dissolution within the medium and ion deposition onto 

the entire fibers, respectively. Fiber bioactivity was assessed through cell viability, 

migration, and morphological assays. Finally, comprehensive evaluations of the 

employed three bioactive nano-/micro-glass fibers were thoroughly discussed for their 

bioactive effects.  
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2. Experimental section 

2.1. Starting materials 

The nano-/micro-fibrous bioactive glasses used in this study were provided by 

Mo-Sci (Rolla, Missouri). The overall appearance of these glass materials looked like 

cotton wool. Three formulations of glass were used (as shown in Table 1): two borate-

based glass fibers designated as 13-93B3 and 1605, and one well-known silicate-based 

45S5 glass fibers. The as-received glass microfibers have been thoroughly sterilized by γ-

ray and vacuum sealed for shipment, thus all fibers were being freshly measured and used 

as-received for the following tests. 

Table 1  

Original weight-percentage compositions of the bioactive glass nano-/micro-fiber that 
used in this study. 

Chemical composition (wt%) 

Fiber name Na2O K2O MgO CaO SiO2 P2O5 B2O3 CuO ZnO 

45S5 24.5 0 0 24.5 45 6 0 0 0 

13-93B3 5.5 11.1 4.6 18.5 0 3.7 56.6 0 0 

1605 6 12 5 20 0 4 51.6 0.4 1 

 
 

2.2. In vitro fiber immersion, degradation, and conversion 

            Assessment of the in vitro degradation and conversion of the microfibrous glasses 

was performed by immersing the materials in serum-free cell culture Eagle's Minimum 

Essential  Medium (EMEM) (American type culture collection (ATCC), Manassas, 

Virginia), and characterizing the structural and compositional changes as a function of 
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immersion time. Briefly, each type of microfibrous glass was accurately weighed and 

mixed with the EMEM medium, and the final mixture had a fiber dosage ranging from 5 

to 2000 µg/mL according to different experimental designs, with 0 µg/mL dosage (no 

fiber, only medium) served as a control for each test. After being mixed, the fiber 

suspension was used for the experiment immediately in order to maintain a constant 

starting-point condition and to avoid compositional changes due to possible dissolving 

and reactions. Both static and dynamic-flow modes were used for fiber immersion in this 

study, and fiber degradation and conversion rate were then compared through 

microscopic imaging as well as chemical analyses. In detail, fibers were firstly analyzed 

for their interactions with cell culture medium. The 1 mg/mL starting fiber dosage was 

soaked in medium for the exposure time study ranged from 0 to 5 days. In both static and 

dynamic-flow treatments, all fibers were filtered out, heat dried, and imaged/examined by 

a field emission scanning electron microscopy (FESEM) (Hitachi 4700, Tokyo, Japan) 

with associated energy-dispersive X-ray spectroscopy (EDS) analyses (EDAX, Phoenix, 

Arizona) to analyze the morphological changes and reaction products that formed on both 

the outer and inner surfaces of the fiber. In addition, the media after fiber soaking were 

also collected through filtration by 0.22 µm filters, and were analyzed by using 

inductively coupled plasma - optical emission spectrometry (ICP-OES) (Perkin Elmer 

2000D series, Waltham, Massachusetts) to quantify the released elements.  In the fiber-

cell interaction section, both fresh glass fibers and pre-soaked fibers were also used and 

compared for their stimulation effects on cell proliferation. The static and dynamic-flow 

conditions were not only tested and compared for their direct influences on fiber 

degradation and conversion, but also on their influences on fiber-cell interactions. 
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Finally, the specific borate fiber 1605 that was doped with copper and zinc were picked 

and studied for its influences on cell morphology and migration during its degradation 

and conversion process when it was co-cultured with cells. All experiments for each glass 

fibers at each time point were at least triplicated to acquire statistically meaningful data.    

2.3. Elemental analysis of ion releasing 

           The concentration of ions that released from the fiber into culture medium was 

measured using ICP-OES. The initial fiber dosage of 1 mg/mL was applied in each 

testing group, and 120 hours or 72 hours total testing periods were used in static or 

dynamic-flow modes, respectively. The length of testing periods was decided when no 

further significant increasing/decreasing of signals was observed. For static mode, 

sterilized fibers of each composition were immersed in serum-free EMEM statically and 

incubated for up to 120 hours at constant 37 °C cell culturing environment.  For dynamic-

flow mode, a home-built dynamic-flow system was used to maintain a continuous flow of 

fresh serum-free culture medium through the fiber-containing chamber, and the flowing-

by medium at the outlet vent was collected each time point and used for elemental 

analysis by using ICP-OES. Collected medium was filtered through 0.22 µm nylon filter 

membrane (Sigma-Aldrich, St. Louis, MO) and freshly diluted 10- to 20-fold with MQ 

water (EMD Millipore Corp., MA) (contains 1% HNO3) in capped 10-mL conical tubes, 

and used for ICP-OES analysis. All data were normalized to the control and calculated 

back as the original concentrations.  
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2.4. Cell culture conditions and fiber dosing  

The established human fibroblast cell line (CCL-110) was obtained from ATCC 

(Manassas, Virginia). The cells were grown in EMEM medium supplemented with 10% 

fetal bovine serum (FBS) (Life technology, Grand Island, New York), penicillin (100 

I.U./mL) and streptomycin sulfate (100 µg/mL), plus 25 mM HEPES (pH 5 - 7.3). All 

incubations were performed at 37°C in a humidified atmosphere with 5% CO2. In 

preparation for testing of cell responses to glass fibers, cells were pre-seeded with an 

initial confluence of 50,000 cells/cm2 density and incubated for 48 hours to permit cell 

attachment and reach a good proliferation status. Glass fibers were then added, followed 

by either static or dynamic-flow incubation mode for varied durations. In addition to 

examine the cell-fiber interactions using freshly prepared fiber suspension, a setup of pre-

immersed fibers was also tested for their stimulation effect on cell growth. After 

immersion in EMEM for different times, fibers and the soaked medium were collected 

separately. The soaked fibers were gently and briefly rinsed twice with fresh medium, 

heat dried, weighed, and immediately used for cell dosing. Separated soaking 

supernatants were further filtered through 0.22 µm filter, and also used for cell dosing. 

2.5. In vitro cell proliferation and migration assay and confocal microscopic cell imaging 

Human skin fibroblast cells CCL-110 were allowed to grow to 80% confluence in 

48 hours prior to each cell test. Cells were then co-cultured either with (a) freshly 

weighed bioactive glass fibers, or (b) pre-soaked fibers, or (c) fiber pre-soaked 

supernatants, under static condition and for varied testing time periods, to induce 

differentiated proliferation and migration patterns.  For cell viability assay, the WST-1 



100 

 

assay (Cell Titer 96 Aqueous One Solution Assay, Promega) was used according to the 

manufacturers’ instructions. Absorbance at 450 nm using WST-1 was measured using a 

microplate reader (FLOURstar; BMG Labtechnologies, Durham, North Carolina). In cell 

viability test that used freshly prepared bioactive fiber suspension, the fiber dosages 

ranged from 0 to 2000 µg/mL, and were tested for 48 hours. A ten-day long cell viability 

assay was also carried out to evaluate the low fiber dosage influence on cell proliferation, 

where only 100 µg/mL fiber concentrations were used. In addition, a pre-soaking process 

of the fibers was carried out to test the impact of after-soaking fibers and medium on cell 

proliferation, where a median fiber dosage of 250 µg/mL was used before soaking. Pre-

soaked fibers and after-soaking supernatant were separately collected and tested in cell 

viability assays for 72 hours and 10 days exposures, respectively. For the dynamic-flow 

mode experiments, considering the faster fiber-medium interaction efficiency, a higher 

fiber dosage of 500 µg/mL was used and a 72 hours exposure was monitored for cell 

viability assay. Two control groups, one under static mode and another under dynamic-

flow mode, were applied in this study to make statistical comparisons with the fiber-

dosed cell groups under these two separate exposure modes. Because of the different flow 

rate of the dynamically controlled culture medium, the total medium replacement within 

the chamber was at different rate. In this study, we use the “total medium replacement 

time” (TMRT) to standardize all cell viability data, e.g. a 10-hour TMRT means it takes 

10 hours to fully replace the medium within the chamber with the fresh medium. Thus the 

total medium flow rates (Ftotal) (assume the medium flow-in and flow-out at the same rate 

as designed) can be calculated and converted as TMRT since the total medium volume in 

the chamber (Vchamber) maintained the same (Ftotal × TMRT = Vchamber). Here the concept 
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TMRT was used because it not only interprets and normalizes all actual flow rates, but 

also correlates flow rate with the whole chamber volume.      

For the migration assay, scratching created “wounded” area of cell monolayers 

was performed using the tip of a 1,000 µl pipette tip. A homemade bioactive glass fiber 

bridge composed of two stand posts and a thin straight line (single optical fiber with an 

outer diameter of 150 µm) was applied to assist cells attachment and migration. Proper 

amount of bioactive glass fibers (total 100 μg) were then uniformly and fully glued onto 

the thin optical fiber using PDMS. Once bioactive glass fibers were all attached onto the 

PDMS-rinsed optical fiber surface, a follow up 60 °C heating and curing process was 

used for 1 hour until all PDMS solidified. Cell migration rates within the distance of ± 50 

µm to the fiber bridge were quantified and compared with those cultured without the 

bioactive fiber bridge influencing, through using software ImageJ (NIH, Bethesda, MD). 

The distance coved by cells in between the scratch-wound area was quantified as 

decreases of gap widths, and about 15 measurements were taken for each experimental 

condition. Three images were analyzed per condition, per time point, and averages and 

standard deviations were then calculated. Confocal cell images were also taken with a 

prior staining process with fluorescent dyes. Cell nucleus staining dye DAPI (Life 

technology, Grand Island, New York) and a mitochondria specific dye JC-1 (Life 

technology, Grand Island, NY) were used in this study; three fluorescent channels of 

DAPI, FITC and Cy5 were separately taken under the confocal inverted microscope 

(Eclipse Ti confocal microscope, Nikon, Japan).   
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2.6. Statistical analysis 

Experimental data acquired from triplicated assays was normalized against each 

control group, and One-way ANOVA followed by Post Hoc test (if necessary) was taken 

for most statistical analysis. The results were expressed as mean ± standard deviation 

(SD). The level of statistical significance for the comparison was set as p-value < 0.05 

(*). Statistical analysis was also partially performed by MinitabTM software (State 

College, Pennsylvania). 

3. Results 

3.1. Changes of fiber morphology under static mode 

Three formulations of bioactive glass fibers, silicate-based 45S5, borate-based 13-

93B3, and borate-based 1605, were used in this study (Table 1). The portray field 

emission scanning electron microscopic (FESEM) images of original fibers and fibers 

immersed in the cell culture media for five days without any disturbance are shown in 

Fig. 1 - 3. 
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Fig. 1. SEM images of silicate-based 45S5 glass fibers before (a, b) and after (c, d, e) 5 
days soaking in cell culture medium under static mode. Scale bar: 10 µm (a, c) and 1 µm 
(b, d, e). 

 

High magnification (Fig. 1b) reveals uneven surfaces on the 45S5 fiber with 

papillary bulges resulting from trace crystals21, while the 13-93B3 and 1605 glass fibers 

are generally smooth (Fig. 2b, 3b). Notably, after five days immersion, all fibers are 

markedly roughed (Fig. 1c, 2c, 3c) and have umbilicated or hollowed fiber ends (Fig. 4). 

These physical changes suggest that ion release and chemical deposition occurred within 

and on the fibers. Ovate-shaped spherulites (400 – 600 nm diameters) and formation of 

small porous-network granules (50 – 200 nm diameters) were also observed on 45S5 

fiber surfaces (Fig. 1d, 1e).  
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Fig. 2. SEM images of borate-based 13-93B3 glass fibers before (a, b) and after (c, d) 5 
days soaking in cell culture medium under static mode. Scale bar: 10 µm (a, c) and 1 µm 
(b, d). 

 

Similar spherulites (20 – 200 nm diameters) covered borate 13-93B3 fiber surface 

(Fig. 2c), while whisker- or flake-like fine structures were observed under high 

magnification (Fig. 2d). The borate 1605 glass fibers were highly fractured with lamellar 

surface structures (Fig. 3c, 3d) as well as partially dissolved fiber-fiber intersections (Fig. 

3c).  
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Fig. 3. SEM images of borate-based 1605 glass fibers before (a, b) and after (c, d) 5 days 
soaking in cell culture medium under static mode. Scale bar: 10 µm (a, c) and 1 µm (b, 
d). 

 

Fig. 4 provides specific cross-section view of the three fibers before and after 

immersion. The original solid-and-smooth end faces (Fig. 4a - 4c) were roughened-and-

eroded (Fig. 4d – 4f) after immersion. Silicate 45S5 fiber showed a core-shell fiber 

structure, where the core was still solid and less eroded (Fig. 4d). However, the borate 

13-93B3 and 1605 fibers showed highly eroded fiber cores, and even became tubular 

shape in some cases (Fig. 4e, 4f).     
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Fig. 4. SEM images of bioactive fiber end-faces before and after static-mode soaking in 
cell culture medium. Particularly, 45S5 fibers were shown in (a) (before soaking) and (d) 
(after soaking), 13-93B3 fibers were shown in (b) (before soaking) and (e) (after 
soaking), as well as 1605 fiber were shown in (c) (before soaking) and (f) (after soaking). 
Scale bar: 5 µm (a, b, c) and 3 µm (d, e, f). 

 

3.2. Changes of fiber morphology under dynamic-flow mode 

Morphological changes of three selected fibers were also studied under a 

dynamic-flow condition (or: dynamic mode) with a continuous supply of fresh media. 

The dynamic nature was expected to exert greater hydrodynamic forces on the fibers and 

therefore expected to considerably alter the morphological structure of the fibers. Indeed, 

as shown in Fig. 5, these fibers exhibited smooth surfaces with significantly fewer fine 
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structures (e.g. flakes and whiskers). High magnification images revealed eroded and 

porous inner structures under the lamellar surface in 45S5 fibers (Fig. 5a, 5b). A similar 

“polished” surface morphology (Fig. 5c) was observed in 13-93B3 fibers with a porous 

granule network underlying the surface layers (Fig. 5d). The borate-based 1605 fibers 

showed highly roughened surfaces and protruded spherical-shape structures (Fig. 5e). 

High magnification images revealed eroded fiber surfaces and hollowed cross sections 

(Fig. 5f). 

 

 

Fig. 5. SEM images of bioactive fiber surface and end-face after dynamic-mode soaking 
in cell culture medium for 5 days. The fibers shown are 45S5 (a, b), 13-93B3 (c, d), and 
1605 (e, f), respectively. Scale bar: 5 µm (a, b, c), 500 nm (d) and 2 µm (e, f). 
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3.3. Chemical characterization under static and dynamic modes.  

The energy-dispersive X-ray spectroscopy (EDS) scanning was used to 

characterize the fiber surface elemental compositions (as shown in Fig. 6). The intensities 

were normalized to calcium for clarity purpose. Fig. 6a showed the elemental surface 

changes in the silicate-based 45S5 fibers after five days immersion. Three specific 

surface morphologies were selected (see Fig. 1c, 1e) for analysis including: the “naked” 

fiber area (a), granule-shape area (b) and orbicular-shape area (c). The elemental 

compositions on the fiber surface of original and immersed fibers were also provided as 

atomic percentages (Fig. S1). Carbon content increased in all analyses, by approximately 

50% in borate-based fibers and nearly 100% in silicate-based fibers (area a) under static 

modes, and by about 500%, 200%, and 800% in the 45S5, 13-93B3 and 1605 fibers, 

respectively, under dynamic mode. Oxygen content slightly decreased in all samples 

under static mode except at particular morphological sites (area b and c) in the silicate-

based 45S5 fiber.  Silicon and boron were released under both modes from respective 

fibers. Finally, phosphorous content increased under both modes, while calcium 

increased under static mode but not dynamic mode.  The calcium contents in the plot 

were normalized as the same intensity (height) here, but calcium content in atomic ratio 

was actually increased under dynamic flow conditions as shown in Fig. S1. 
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Fig. 6. EDS scanning of elemental composition pattern of the as-received and post-
soaking (5 days) bioactive glass micro-/nano-fibers (scanned areas are shown as red-
squares that labelled in Fig. 1).  

 

3.4. Elemental release pattern 

Inductively coupled plasma - optical emission spectrometry (ICP-OES) was used 

to quantitatively determine the elemental release from each fiber under each mode for a 

period of 72 hours (dynamic mode) and 120 hours (static mode) (as shown in Fig. 7). 

Data points were normalized to the elemental concentrations in control groups where no 

fibers were used. 
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Fig. 7.  Plot interpretation of ICP-OES data in comparison between fiber-released ion 
concentration and the soaking time, under either static (a - c) or dynamic (d - f) modes. 
Moving average trend lines were plotted to illustrate possible ion-releasing patterns. 

 

The calcium content went through an increasing-decreasing process which 

occurred earlier (5 – 6 hours) in the fibers of borate-based than that of silicate-based. 

However, the total phosphorous content started to decrease readily after initial period of 

several hours in all three fibers, and negative values were shown after they were 

normalized to the control. Boron and magnesium that were only used in the formulation 

of borate-based fibers showed steep releasing patterns within 10 hours. Then copper and 
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zinc, though only slightly doped, were also detected. By comparing the measured and the 

theoretically calculated (result from complete fiber dissolution, see Table S1) ionic 

concentrations under static mode, a total percentage of elemental releasing has been 

provided in Table 2. The time needed for reaching each peak value was presented as 

consuming time in the bracket. Calcium and phosphorous contents in borate-based fibers 

reached to the positive peak values faster than those in the silicate-based fibers 

(statistically significant, p < 0.05). It was also noticed that slightly higher percentages of 

magnesium, calcium, phosphorous and boron were released from the copper/zinc 

containing fiber 1605 than fiber 13-93B3. A negatively labelled phosphorous shown in 

the table was representative of a final “withdrawing” effect by the chemical deposition 

process, which induced a slow but constant decreasing of phosphorous concentration in 

the solution. To some point a lower phosphorous concentration than control would be 

observed during the process. The longer consuming time, then the higher withdrawing 

percentage of phosphorous was observed in the borate-based fibers than the silicate-based 

fibers.  

Under the dynamic mode, however, much lower elemental concentrations were 

detected mainly because of a faster diluting rate (Fig. 7d – 7f).  The peak contents of 

calcium and boron appeared within 6 hours; meanwhile a negative peak of phosphorous 

was also shown for the same reason discussed above. According to the plotted trend, a 

further withdrawal of phosphorous might still be taken place in the borate fibers.  
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Table 2  

Elemental releasing peak as percentage of theoretical total amount that would occur 
under ideal static condition.  

Elemental releasing peaka (bracket: time in hrs.) 

 Mg Ca P - P B Cu Zn 

45S5 _ 19.29% 
(6) 

16.40% 
(9) 

-54.52% 
(72) 

_ _ _ 

13-93B3 56.82% 
(48) 

24.64% 
(1) 

32.77% 
(1) 

-72.71% 
(96) 

63.38% 
(48) 

_ _ 

1605 62.26% 
(48) 

26.15% 
(1) 

42.32% 
(1) 

-78.93% 
(96) 

72.16% 
(9) 

64.93% 
(36) 

25.02% 
(120) 

        a Elemental releasing peaks are presented as percentage of theoretical total amount. 

 

3.5. Cell viability variation as function of fiber dosages and dosing time  

Cell viability assays were firstly carried out using as-received (original) bioactive 

fibers at different dosages and varied testing times. Varied fiber dosages, from 5 to 2000 

µg/mL, were used to evaluate their effects on cell viability at a 48-hour exposure time 

(Fig. S2). Since fibers showed a negative effect on the cell viability at high dosages, the 

x-axis was plotted in logarithmic scale to illustrate the impact of low fiber dosages on the 

cell proliferation (Fig. 8). Positive effects have been demonstrated to stimulate 20 – 40% 

higher cell proliferation than control with lower dosages of both 45S5 (≤ 750 µg/mL) and 

1605 (≤250 µg/mL) fibers. Out of which, the 45S5 fibers showed a wider dosage range 

(up until 750 µg/mL) that was able to stimulate higher cell viability than the control. 

However, the borate-based 13-93B3 fibers did not show any significant stimulating effect 

on cell proliferation. 
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Fig. 8.  Forty-eight hours recording of viability when cells co-cultured with varied fiber 
dosages under static mode. X-axis was plotted in logarithmic scale for clearer 
demonstration of cell performance within low fiber dosage range. Each data points 
represent mean + SD, n ≥ 3.  

 

A ten-day cell viability assay was also carried out to evaluate the influence of 

low-dosage fibers (100 µg/mL) on cell proliferation (Fig. 9). No significant decrease in 

cell viabilities was observed compared to the control until the fifth day, but further co-

treatment with fibers under static mode greatly decreased cell viabilities.  

3.6. Impact of pre-soaking of fibers on cell proliferation 

In order to differentiate the influence on cell proliferation from fibers with their 

released ions, a separate mode cell viability assay has also been taken place with both 

pre-soaked fibers and fiber pre-soaked supernatants (Fig. 10). Fibers and serum-free cell 

culture medium were pre-soaked together (at initial dosage 250 µg/mL), filtered,  
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Fig. 9.  Viability assay using WST-1 when cells co-cultured with 100 µg/mL fresh fibers 
for 10 days under static mode. Each data points represent mean + SD, n ≥ 3. 

 

separated, and employed in cell culture. Viability of cells was tested and showed as 

percentage of control (fiber-free medium cultured cells). Fig. 10(a) showed the pre-

soaked fibers influence on cell viability, where both 45S5 and 13-93B3 fibers stimulated 

cell proliferation by 35 – 40% more than control after one hour soaking. After a peak 

increase with all three fibers that were pre-soaked for 12 hours, cell viabilities were either 

kept increasing (with 1605), maintained (with 13-93B3) or substantially decreased (with 

45S5) with fibers that were pre-soaked for longer time, among which, statistically higher 

(p < 0.05) cell viability was stimulated by 13-93B3 at 36 hours, and by 13-93B3 and 

1605 at 72 hours, over 45S5 fibers. Finally, all fibers that pre-soaked for more than 48 

hours showed much less stimulating effect on cell proliferation. In addition, cell viability 

was also tested with supernatants that derived from fiber pre-soaking (Fig. 10b). 
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Experimentally, supernatants were collected one aliquot per day for ten days since fibers 

were soaked, and were used for a 48-hour cell culture. Sharp decreasing of cell viability 

was observed with day-one borate-based fiber pre-soaked supernatants, while no further 

decreases were shown with the longer pre-soaked supernatants.  

 

Fig. 10. WST-1 cell viability assay when co-cultured with (a) pre-soaked bioactive fibers 
for 72 hours, and (b) fiber-pre-soaked supernatants for 10 days, both under static mode. 
Each data points represent mean + SD, n ≥ 3. *p < 0.05 vs. control glass 45S5. 
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3.7. Impact of dynamic mode on fiber-cell interaction 

A simulated refreshing system (dynamic mode) was developed with capability of 

continually refreshing the medium without changing the total volume nor heavily 

disturbing the environment (Fig. 11). Original fibers at a dosage of 500 µg/mL were used 

and various refreshing rate were tested and designated as total medium replacement time 

(TMRT). The concept TMRT was used because it not only interprets and normalizes all 

actual flow rates, but also correlates flow rate with the whole chamber volume. Cells 

without fiber co-culturing were used as controls under either static or dynamic modes for 

data normalization. Results showed steep increases of cell viability in all four groups 

when compared with static control, and peak values (~200% higher than static control) 

were shown within a range of 24 to 36 hours of TMRT. It was notice that both borate-

based fibers stimulated higher cell viability than the other two, while 1605 fiber exerted a 

cell viability enhancement earlier (24 hrs.) than the other three (36 hrs.). The inset plot 

specifically showed the comparison of three fibers with dynamic control, where 

significant increases of cell viability (25 – 30%) were observed with both borate-based 

fibers.   
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Fig. 11.  WST-1 cell viability assay when cells co-cultured with 500 µg/mL fresh fibers 
for 72 hours under dynamic mode. The x-axis in unit of hours is designated as the total 
medium replacement time (TMRT) of the chamber during dynamic flow. Data was firstly 
normalized to the static control data, and secondly to the dynamic control data (inset 
plot). Each data points represent mean + SD, n ≥ 3. *p < 0.05 vs. dynamic control. 

 

3.8. Impact of borate-based 1605 fibers on cell morphology and migration  

The impact of bioactive fibers on cell migration ability was further evaluated on a 

well-defined cell-culture based “wound” model, where a “wound” gap was created 

through scraping across the diameter of a cell monolayer. Cell migration rate was 

recorded for at most 96 hours within an effective distance (± 50 µm) along a fiber-

containing bridge under static mode, and the results are shown in Fig 12.  Impaired 

wound closure ability was observed in cell groups that treated by each type of fibers and 

compared with control. Cells between the “wound” gap are then expected to proliferate to 

fill in the “wound” area with assistance of the fiber-attached bridge. Cell proliferation 

distance (migration rate) was measured to calculate influence to cell migration due to the 
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bioactive fiber bridge. However, cells that close to the bridge (± 5 µm) were not counted 

in to avoid false conclusion due to cell-fiber direct contact. Substantially lower recovery 

rates were observed with borate-based fibers, and even enlarged “wound” gaps were 

observed with fiber 1605. For comparison purpose, we further specifically evaluated the 

stimulating effect of fiber 1605 on cell migration under dynamic mode (24 hours medium 

replacing time) as shown in the inset plot of Fig. 12. Healthier cellular mobility was 

observed and thus indicating an improved stimulating effect from fiber 1605 under 

dynamic mode.  

 

 

Fig. 12.  Bioactive fiber influenced cell migration statistics under static/dynamic (inset) 
modes. Each data points represent mean ± SD, n ≥ 10 measurements.  

 

Finally, a brief investigation has also been done focusing on the impact of such 

changed environment onto sub-cellular level infrastructure and behavior. Cell nucleus 

were pre-stained with DAPI  followed by staining with a mitochondrial specific 
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fluorescent dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide 

(JC-1) and a 72-hour co-culturing with 200 μg/mL borate-based 1605 fibers under 

dynamic mode. High resolution cell images were taken by using Nikon Eclipse Ti 

confocal microscope (Fig. 13a). Three channels (DAPI, FITC and Cy5) of fluorescent 

images were captured, and subcellular structures were compared between 1605 fiber 

treated or non-treated cells. 10% higher cell number was confirmed in 1605 fiber treated 

group than control, while no statistical differences were shown in terms of morphological 

changes and chromosome condensation. An averaged ratio of fluorescence intensity of 

Cy5/FITC channels in the cytoplasmic region of both control (Fig. 13b) and 1605 (Fig. 

13c) fiber treated cells showed slightly, while not significantly, higher percentage (Fig. 

13d) of mitochondrial membrane depolarization in borate 1605 fiber treated (0.533) than 

the control cells (0.701), indicating a moderately decreased mitochondrial activity level 

when the borate-based fiber 1605 was used.        
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Fig. 13. Confocal microscopic images (a) and statistical analysis (b - d) of nucleus and 
mitochondrial staining of control and 1605 fiber co-cultured cells after a 72-hour 
dynamic mode treatment. Scale bar: 10 μm. 

 

4. Discussion 

A systematic degradation assay of three bioactive glass fibers was investigated in 

vitro. Scanning Electronic Microscopic imaging showed changed surface morphology in 

all fibers after five days immersion in serum free cell culture medium. Drastic changes 

occurred both outside and inside these fibers during the immersion (Fig. 1 - 5). Under the 

dynamic mode, smoother and porous fiber surface was mostly observed and less delicate 
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nano-structures appeared on the outmost layer, indicating the role played by hydro-

mechanical forces during the conversion process. Unprecedented view (Fig. 4) indicated 

how ion-exchange influences the fiber interior region even when no significant outer-

surface variation was observed. Further, highly carbonized surface was particularly seen 

under dynamic mode (Fig. 6, S1), indicating a highly increased conversion rate of 

carbonate-substituted hydroxyapatite (c-HA).      

Bioactive glass conversion is attributed to multiple reactions,4,5 including rapid 

ion exchange, condensation and polymerization of previously resulted silanol groups, and 

formation of silica-rich layer on surface. Further dissolution and reaction with calcium 

and phosphorous would lead to a type of amorphous calcium phosphate (ACP) layer and 

would be finalized as crystallized HA.44,45 Borate-based glasses go through a similar 

process while without the formation of silica-rich layer which would slow down the 

crystallization of ACP layer on borate-based fibers.46 ACP is prone to be substituted by 

cations and anions such as CO3
2-, Mg2+ and (P2O7)

4- even in small concentrations.47 The 

presence of magnesium ions has also been reported to reduce the crystallization rate of 

HA product on 45S5 glass48 and high content of magnesium ion concentration could even 

prevent formation of HA. EDS analysis results showed that a higher percentage of 

localized magnesium (normalized to the calcium concentration) was determined on fiber 

surface, and even higher percentages were determined under the dynamic conditions (Fig. 

6, S1), thus a less concentrated Mg2+ could be contained in the medium so that a more 

efficient HA formation process would be expected. 

Degradation of bioactive glass fibers and their conversion to HA is a rapid 

process that the major process will only take about 3 – 7 days.46 Similar phenomenon was 
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observed in this study when under static condition. Particularly, the degradation of 

bioactive silicate or borosilicate glass materials would be slower than borate-based ones. 

However, the silicate 45S5 fiber showed much quicker releasing rate of calcium under 

dynamic conditions which even close to the rate of borate-based ones. This could 

attribute to faster ion exchange reactions between the network-modifying ions in the fiber 

(such as calcium and sodium ions) with hydrogen ions within the medium, thus supported 

the formation of a silica-rich layer on fiber surface in early stage.49 The ICP-OES results 

indicated that a rapid elemental releasing process occurred during early stage of 

immersion, which turned out to be even faster under dynamic mode that mostly occurred 

within the first 10 hours. Phosphorous showed slow or rapid depletion patterns, under 

static and dynamic conditions, respectively. This phenomenon also indicate that a faster 

HA layer formation rate would be expected under dynamic mode. Such rapid releasing 

pattern may happen in vivo as well under a constant body fluid circulating system, thus 

future bioactive evaluation of these materials need more representative model for both in 

vitro and in vivo trials. The pH variation of the fiber-immersed medium is another 

practical concern during the HA formation process, because dissolution and consumption 

of sodium, boron, silica and phosphorous will highly influence the pH of the medium. A 

pH increase would be expected under static mode for the formation of weak acids 

(B(OH)3, Si(OH)4, etc.) as well as consumption of PO4
3- ions.6 Accordingly, due to the 

increased boron content in borate-based fibers and faster ion releasing and elemental 

conversion (Fig. 7), steeper increase of pH would be expected within shorter period. 

While under the dynamic mode, despite of a faster ion releasing rate, relatively lower 
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boron (about 9 folds lower) and calcium (about 3-6 folds lower) concentrations were 

seen. In this case, system pH will not be influenced significantly. 

Wound healing is a dynamic interaction process which includes soluble 

mediators, blood cells, extracellular matrix and parenchymal cells, etc..40 The 

proliferative phase, that marked by fibroblasts proliferation, accumulation and 

granulation tissue formation,50 is the key procedure for tissue formation and wound 

closure. Our results showed that the cell viability is function of both fiber dosage and 

treatment time (Fig. 8, S2, 9). Overall, fiber dosage that less than 200 µg/mL provided 

moderately better cell viability than the control or equivalent as control. Among which 

the silicate-based 45S5 fiber has a wider dosage range to positively stimulate cell 

proliferation (below 1000 µg/mL, Fig. 8), while the borate-based fibers can potentially 

stimulate higher cell viability (Fig. 10a) with appropriate pre-soaking procedures. 

Quantitative measurement showed that an optimized pre-soaking period could be 

acquired for higher cell proliferations. Meanwhile, it has also been found that a 

prerequisite partial conversion of the fibers would highly reduce the cytotoxicity, mainly 

due to the rapid refreshing rate of dissolved boron and calcium, as well as improved 

surface elemental deposition. On the contrary, cells that have been co-cultured with fiber-

pre-soaked medium showed mostly impaired viability (Fig. 10b), which indicated 

complicated roles of converted fiber surface and released ions in supporting cell 

proliferation. We thus highly recommend that the chemical, mechanical, and physical 

properties of bioactive fibers should all be taken into consideration for better bio-

compatible evaluation. Under dynamic mode, higher cell viabilities were observed in all 

fiber groups and dynamic control group when compared with the static control (Fig. 11). 
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In addition, borate-based fiber can potentially stimulate higher cell viabilities than 

silicate-based glass fibers as well as the dynamic control (Fig. 11, inset).  

Negative impact on the cell migration under static mode was observed in all fiber-

treated groups, while borate-based fibers rendered higher impairment effects than the 

silicate ones (Fig. 12). However, cell migration performances was shown being inverted 

under dynamic mode as seen in the 1605 fiber (most toxic one under static condition) co-

cultured group (Fig. 12, inset), indicating a high sensitivity of cell migration ability to 

fibers co-culturing. Such impairment can potentially be reversed through a moderate 

dynamic medium refreshing rate. New tissue formation during continuous wound healing 

processes is characterized by both cell migration and proliferation of the keratinocytes 

and fibroblast cells. Our results suggest a possible tissue repairing mechanism with 

fiber’s stimulating effects on both cell proliferation and migration abilities. A confocal 

microscopic imaging assay (Fig. 13), showed a relatively higher percentage of 

mitochondrial membrane depolarization, indicating a slightly decreased mitochondrial 

activity level in fiber 1605 treated cells under dynamic mode, which is a representative 

sign for migration ability impairment and rescue. 

A reliable strategy to carry out in vitro wound-healing studies should be 

conducted in a highly simulated niche-environment that would reach to similar results as 

the in vivo study. There hasn’t been enough attention putting into this research field until 

Brown and his colleagues’ work,6 where they indicated that a moderate dynamic 

condition may improve cell density when compared with that under static condition. Our 

results in this study comprehensively illustrate the fundamental impact of dynamically 

controlled environment (in terms of total medium replacing time, namely, TMRT) on 
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fiber surface morphology (Fig. 1 - 5), elemental deposition (Fig. 6, S1), ion concentration 

(Fig. 7), cell viability (Fig. 10, 11) and migration ability (Fig. 12). Thus, a combined 

procedure of well-controlled dynamic flow and appropriate fiber pre-soaking would thus 

provide an optimal cell proliferation as well as cell migration capability.      

It is suggested that closer attention should also be paid to the original composition 

of the fiber. In particular, calcium can also activate Ca-sensing receptors in specific cell 

types and thus increase growth factor expression,20,21 which is crucial for cell 

proliferation. Calcium is also needed for epidermal cell migration and regeneration in late 

stage of wound healing,51 thus it is essential to finely adjust calcium concentration and 

doping ratio for optimizing wound healing effect of bioactive glasses.52 In addition, 

unforeseen complicated effect of trace metal ions may play a key role in bioactive glasses 

as well. Trivial difference of the original composition (Table 1) between two borate fibers 

showed either minor or major variations during tests. Copper ion, that appeared in human 

endothelial cells, was deemed as one of the key stimulation factors,53 and it was 

considered as synergetic stimulator for angiogenesis54 when combined with angiogenic 

growth factor FGF-2.55 Zinc ions also need be further investigated on its cellular effects 

because of the multiple intra- and extra-cellular roles that it may play,56 e.g., anti-

inflammatory effect, bone tissue formation stimulation, protein synthesis activation57 as 

well as transcriptional-level regulation of differentiation-related genes,58 and so on.            

Finally, vascular endothelial growth factor (VEGF), as a potential therapy reagent 

for improving wound-healing, is confronting some major problems in its application such 

as high diffusion ability and very short half-life during in vivo delivery.59,60 Thus the 
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potential capability of bioactive glass fibers in inducing angiogenesis could potentially 

provide robust alternative choices for the troublesome growth factors.  

 

5. Conclusion 

The present study showed a comprehensive material analysis and biocompatibility 

evaluation of a silicate-based (45S5) and two borate-based (13-93B3 and 1605) nano-

/micro-scale bioactive glass fibers. Results showed substantial glass-conversion occurred 

during fiber immersion. An active ion-exchanging process exist between medium and 

fibers (both inside and outside), which will be highly influenced by original boron 

content as well as static/dynamic flow. In this case, HA formation efficiency would be 

determined mainly by the rate of glass decomposition and dynamic flow. Evaluation on 

human skin cell line demonstrated that borate-based fibers, though more toxic than 

silicate-based glass fiber under static condition, can significantly stimulate cell growth 

with higher cell proliferation rate and migration ability when appropriate pre-soaking 

time and dynamic flow rate were acquired. Moreover, the trace amount doping of metal 

species within the glass composition, such as copper and zinc, are also potentially 

important in glass conversion, biocompatibility as well as bioactivity. These results 

provided qualitative and quantitative basis not only for the biocompatible mechanism 

study but also for better guidance of bioactive glass materials fabrication in the future.  
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ABSTRACT 

pH sensing at the single-cell level without negatively affecting living cells remains an 

important issue facing biomedical studies. A 70 µm reflection-mode fiber-optic micro-pH 

sensor is designed and fabricated by dip-coating thin layer of organically modified 

aerogel onto the tapered spherical probe head. A pH sensitive fluorescent dye 2’, 7’-Bis 

(2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently 

bonded within the aerogel networks. By tuning the alkoxides mixing ratio and adjusting 

hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have 

high stability and pH sensing ability. The in vitro real-time sensing capability was then 

demonstrated in a simple colorimetric way, and shows linear measurement responses 

with a pH resolution up to 0.049 pH unit within a narrow, but biological meaningful pH 

range of 6.12 – 7.81.     

Keywords: pH sensing, tapered optical fiber spherical sensor, ORMOSILs ultra-thin 

layer coating, single-cell level detection.   
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Highlights 

A 70 µm reflection mode fiber-optic micro-pH sensor was fabricated; 

Spherical-headed probe shows high pH detecting spatial resolution; 

ORMOSILs thin layer for covalent bonding with pH sensitive dye was employed;  

This probe shows superior real-time pH sensing ability and repeatability; 

A pH resolution up to 0.049 per pH unit was acquired within pH range of 6.12 – 7.81. 

 

Abbreviations 

BCECF: 2’, 7’-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein; 

CTAB: hexadecyltrimethylammonium bromide; 

DIAMO: n-(3-(trimethoxysilyl) propyl)-ethylenediamine; 

DMSO: Dimethyl sulfoxide; 

EDS: energy-dispersive X-ray spectroscopy; 

FL: fluorescent; 

FT-IR: fourier transform infrared spectroscopy; 

FWHM: full width at half maximum; 

HMDS: hexamethyldisilazane; 
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HMDS: hexamethyldisilazane; 

HMDSO: hexamethyldisiloxane; 

Hünigs base: N-ethyldiisopropylamine; 

MTES: methyltriethoxysilane; 

ORMOSILs: ORganically MOdified SILicates; 

PBS: phosphate buffer solution; 

S/N: signal-to-noise ratio; 

SDS: Sodium dodecyl sulfate; 

SEM/FIBs: scanning electronic microscope/focused ion beams; 

TEOS: tetraethoxysilane; 

TGA: thermal gravimetric analysis; 

TMCS: trimethylchlorosilane; 

TSTU: 2-succinimido-1, 1, 3, 3 tetramethyluronium tetrafluoroborate. 
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1. Introduction 

Localized, real-time sensing of extra- or intra-cellular pH remains a pressing issue 

for the optical sensing research field [1-5]. Intracellular pH indictor has been greatly 

developed in recent years[6, 7] with higher signal-to-noise ratio (S/N), long term stability 

and specific capability of subcellular localization[8]. However, all these dye based pH 

sensing products can hardly get out of the cell or be properly degraded by cells once 

applied, which makes it almost impossible to maintain a long-term investigation of a 

representative cell condition without intervene, plus leaves a potentially carcinogenesis 

risk for either in vitro and/or in vivo application. Moreover, the necessity of equipment 

with high quality inverted microscopic device such as confocal system would further 

prevent such labelling techniques from being readily used for real-time and/or remote 

monitoring of the pH variation on a target system, and thus highly limited their 

application potentiality.  

Sol-gel derived materials have been widely used in optical sensing areas [9-11]. 

The relatively fast and easy steps in either acidic or basic catalysis of alkoxides under 

room temperature, combined with multiple choices of lately introduced[12, 13] 

ORganically MOdified SILicates (ORMOSILs) in sol-gel formula provide very good 

optical transparency, stability, adjustable hydrophobicity and porosity[14-19], which 

made it easy to impart desired chemicals or properties in sensor fabrication. Thus, the 

introduction and entrapment of a specific sensing material into it would then be the key 

issue[20]. A vast majority of sol-gel based pH sensor are derived from tetraethoxysilane 

(TEOS) based aerogel but mostly suffer from long response time and limited long-term 
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stability [21-23]. Later development focused on covalent immobilization of the indicator 

molecules[24-26] and surface hydrophobicity modification with reagents with organic 

end-groups such as trimethylchlorosilane (TMCS), methyltriethoxysilane (MTES) or 

hexamethyldisiloxane (HMDSO), lead to appropriate replacement of –OH with –CH3[27, 

28], and thus a better performance was achieved with improved reproducibility, shorter 

response time and enhanced chemical stability. Surfactants such as Sodium dodecyl 

sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB) have also been 

introduced in recent years to form mesoporous structure of silica matrix to obtain 

efficient host of the sensing molecules[29, 30]. Together, initiation of these ORMOSILs-

based sol-gel thin films appeared to be a promising structure in developing compact 

micro- or nano-scale sensing probes, which can well be integrated with many types of 

lab-on-chip-based devices[20, 31, 32].   

The ORMOSILs based aerogel thin layer coating can be well fit fiber with fiber 

optic devices in small or remote sample sensing. Ultra-thin layer sol-gel could directly be 

dip-coated onto the end face of either as-synthesized or surface modified optical fiber 

probes.  Sub-micron thickness pH sensing films have been developed on platforms like 

microfluidic device [33-35], and fiber-optics based pH sensor has appeared as well in 

recent years [36-38]. However, most of the reported devices were operated in relatively 

large scale (hundred micrometers to centimeter level), and could not provide sufficient 

spatial resolution, pH detection sensitivity or real-time monitoring ability. Other 

problems, such as fabrication difficulties, high cost and relatively poor repeatability and 

reproducibility, etc., were also seen in previous fiber-optic based pH sensors. 
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In this study, a reflection mode tapered fiber-optic pH probe was fabricated by 

carbon dioxide (CO2) laser stretching system combined with fusion splicer device, and 

was functionalized by amide covalently bonding of a pH specific dye BCECF within a 

sol-gel dip-coated ultra-thin layer on a specific spherical probing head. The surface 

hydrophobicity has been modified and evaluated. The newly fabricated probes have been 

investigated in vitro with high spatial and pH resolutions as a real-time detecting manner, 

the reflection mode operation of the probe combined with fiber-optic remote sensing 

capability, provide promising way of chemical/biological sensing in many research and 

application fields, especially in cases of both in vitro and in vivo single-cell level non-

invasive remote detecting applications.  

2. Experiments 

The spherical-headed tapered fiber-optic pH probe was fabricated from a single 

mode optical fiber (Corning SMF-28, USA) by using a homemade CO2 laser fiber-

stretching system combined with optical fiber fusion splicer (Fujikura, Japan). A sol-gel 

dip-coating method was employed in this study to form an ultra-thin aerogel layer onto 

the probe head surface, covalently bond with molecules of a specific pH-sensitive 

fluorescent dye 2’, 7’-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) (Life 

technologies, New York) through amide bonds (Fig. 1, 2).     

A homemade CO2 laser fiber-stretching system was employed to programmably 

control the taper length and waist diameter. Normally a length of 1.3 ± 0.2 cm “V” shape 

tapered optical fiber tip was firstly acquired with a waist diameter of around 50 ± 8 µm 

and tip size around 2 – 5 µm. A spherical head was specifically designed for maximizing 
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the contacting surface as well as signal reflection. It was fabricated using a distance-

melting method on a fusion splicer device with a final diameter of around 70 ± 10 µm.  

For ultrathin aerogel coating and BCECF dye covalent bonding, the silanol groups 

on the surface of the spherical probing head were activated through treatments with a) 

concentrated nitric acid for 12 hours and b) copious amounts of distilled water and 

ethanol, followed by drying at 100°C for 3 hours. Fluorescent dye BCECF (1 mg/mL) in 

Dimethyl sulfoxide (DMSO) was added with excess molar amount of 2-succinimido-1, 1, 

3, 3 tetramethyluronium tetrafluoroborate (TSTU) that pre-dissolved in ethanol and small 

amount of N-ethyldiisopropylamine (Hünigs  base), and stir for 10 minutes. Let the 

reaction proceed for one hour at room temperature. Then the amino-functionalized n-(3-

(trimethoxysilyl) propyl)-ethylenediamine (DIAMO) in ethanol was added into the 

succinimidyl-ester activated dye solution (BCECF: DIAMO = 1:10). Stir it for 10 min to 

generate amide bonds between dye and DIAMO. Then a mixture of alkoxides, which include 

tetraethoxysilane (TEOS), DIAMO and methyltrimethoxysilane (MTES) dissolved in 

methanol (TEOS:DIAMO:MTES = 4:1:1, v/v) and hydrochloric acid (0.1M), were 

combined with the BCECF - DIAMO - ethanol solution at a v/v ratio of 5:3 and 

magnetically stirred for 30 minutes, followed by stewing at room temperature in closed 

vial for 12 hours. Pre-heated tapered probe head were then cooled and dip-coated with 

the sol-gel solution with a drawing rate of 1 mm/s. Curing process was divided into two 

steps for gradual heating. Dip-coated probes were set in 50°C for 6 hours and then in 

80°C for 24 hours. A surface hydrophobicity modification was finally carried out with a 

homemade hexamethyldisilazane (HMDS) priming chamber. A 100°C priming 

temperature was acquired in vacuum and an optimized 3 hours priming time was 
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employed in this study. All BCECF dye related procedure was done in dark condition. 

Chemicals were purchased from Sigma-Aldrich (St. Louis, Missouri) unless otherwise 

specified.  

The whole probe head area that coated with dye doped aerogel was observed 

under inverted fluorescent microscope (Fig. 1). Both in-general and zoom-in view of the 

aerogel coated surface were shown in Fig. 1(a, b), characterized a uniform mesoporous 

network with protrude nano-scale sensing tails. Correspondingly, the energy-dispersive 

X-ray spectroscopy (EDS) scanning shows typical peaks of carbon, oxygen and silica 

within the aerogel surface, which represented successful fabrication of the dye-doped 

ORMOSILs thin layer onto the probe endface with uniform distribution (Fig. 1(c, d)). 

Further investigation of the aerogel layer thickness was also done through cross-section 

cutting by using a focused ion beam system (SEM/FIBs) (FEI, Hillsboro, Oregon) of the 

coated probe head as shown in Fig. 1(e) acquired an averaged coating layer thickness of ~ 

400 nm.   

A sol-gel thin layer coating as well as BCECF dye covalent bonding principle is 

shown in Figure 2(a). Together a brief schematic diagram of the optical setup combined 

with probe head image is also shown in Figure 2(b - d). The pH probe was excited using 

a solid-state 488 nm laser source to obtain the best excitation wavelength of the BCECF 

dye molecules. Laser intensity has been adjusted to acquire an optimized fluorescent 

signal while eliminating dye molecule photo bleaching. A colorimetric method was 

employed to acquire a normalized fluorescent signal ratio between the peak intensity (560 

± 5 nm) and a constant irrelevant background at 640 nm. A USB2000 spectrometer 

(Ocean optics, Dunedin, Florida) was also used to collect sufficient reflected fluorescent  
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Fig. 1 SEM images and EDS characterization of fabricated spherical head fiber-optic pH 
probe. Overview of the pH sensor probe structure was shown in low (a) and high (b) 
magnification. Probe surface elemental characterization of carbon, oxygen, silica and 
chlorine was done by EDS scanning and showed both in chart (c) and energy distribution 
plot (d). Scale bar showed in SEM images are 30 µm (a) and 500 nm (b).  
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signals. In order to acquire a remote sensing capability as well as label free detection 

under real circumstance, a reflection based sensing method has been proposed and used 

in this study as the configuration shown in Fig. 2(d). During spectrum measurement, 

fabricated probe was backward fuse-connected with the sensor branch SMF optical fiber 

cleaved end, so that the  using and changing of different probes did not influence the 

connector and detector interfaces during measurement.  

3. Results and discussions 

An aerogel based pH sensing ultra-thin film has been fabricated and its 

fluorescent spectrum is shown in Fig. 3. A bathochromic shift of the fluorescent peak up 

to 560 nm was observed when compared with the original 535 nm emission peak of 

BCECF dye in solution. This may due to an increased dielectric constant compared to a 

solution environment, and thus a changed polarity of the microenvironment of the dye 

molecules after covalent bonding with the aerogel macromolecule network[25]. A series 

of 0.1M PBS buffer solutions after pH calibration were freshly prepared probe 

calibration. Similar with original dye molecule, the probe responds to pH values as a 

function of peak intensity change, while maintained a relatively constant peak 

wavelength. This intensity change closely correlates with the probing sensitivity and 

resolution, and theoretically it can be influenced by testing time and surface property, due 

to a kinetic saturation rate of the aerogel thin film.       
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Fig. 2 Configuration and microscopic images of BCECF dye covalent-bonded aerogel 
thin-layer on probing head with schematic diagram of whole system setup.  (a) Brief 
configuration of BCECF dye molecules covalently bond onto the ultrathin ORMOSILs 
network thin-layer, followed by HMDS priming for hydrophobicity modification; 
Tapered spherical head pH probe images under inverted fluorescent microscope with (b) 
white light and (c) 488 nm (FITC channel) illumination; and (d) Schematic diagram of 
the optical spectrum measurement setup.  
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Fig. 3 Reflection spectrum (fluorescent emission) from a pH sensitive thin film covered 
by BCECF dye doped ORMOSILs ultrathin layer.    

 

The pH sensing capability of the dye doped aerogel thin film is closely correlated with 

dye concentration and surface properties. Higher dye concentrations are assumed to boost 

increased signal intensity, however, a large excess of the dye would induce enhanced 

self-quenching as well as possible leaching of unbound dye molecules. Aerogel surface 

hydrophobicity is another key factor determining pH sensing capability of the probe. 

Because of abundant  –OH and –NH2 groups stretching out, TEOS/DIAMO derived 

aerogel thin layer without further hydrophobic modification is vulnerable to water based 

solution, even when pH values were around neutral conditions. Whereas an appropriate 

mixing of MTES and an extra HMDS priming process would highly reduce the risk, due 

to the compensation of sufficient methylsilyl or trimethylsilyl groups.  
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A thermal gravimetric analysis (TGA) (Q50, TA instruments, New Castle, 

Delaware) was shown carried out then, for the ORMOSILs thin layer under nitrogen 

atmosphere with different surface modification (Fig. 4(a)). First main weight loss (0.2% 

in blue, 0.38% in red and 0.46% in green) around 70-160°C is attributed to evaporation 

of residual solvent and water molecules adsorbed by exposed OH groups. With BCECF 

dye doped in the sol-gel formula, about 0.25% more weight loss downfall was observed 

through comparison between the blue and green lines, indicating a successful 

immobilization of the dye molecules. It is notably that there was not a significant weight 

loss at temperature less than 200°C indicates a high degree of silanol poly-condensation 

in the sensor material[39, 40]. The second weight loss (1.62% in blue, 1.37% in red and 

1.64%) at 300-600°C was believed to be attributed to the combustion of organic species, 

and the wide range of degradation line was due to the pore size distribution[41]. Further, 

these enhanced mesoporous silica networks is highly due to the introduction of  SDS for 

its ability to host sensing molecules more efficiently[42].  
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Fig. 4 Chemical characterization of optimized fabrication procedure of the ultrathin 
BCECF dye doped ORMOSILs layer by (a) TGA and (b) FT-IR.  

 

The FT-IR spectrum of optimized representative sample is shown in Fig. 4(b). A 

characteristic feature of the spectrum is the presence of CH2 related aliphatic chains of 

TEOS, MTES and DIAMO, indicated by a broad band in the region of 2882-2937 cm-1, 

which is attributed to stretching modes of CH2 and partially CH3 groups. A wide band 

covers the region from 3100 to 3600 cm-1 arises from the stretching OH mode of the 
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physically adsorbed water and/or residual silanol groups[43]. The representative primary 

amino groups that exist in DIAMO to form amide bond also showed characteristic peaks 

between 3500-3300 cm-1 as well as 1650-1550 cm-1 [25]. Despite peaks are mostly 

overlapped by other peaks, a peak at 1592 cm-1 explicitly shows the presence of primary 

amino groups[25]. Moreover, the containing of carboxylates or amino acid zwitterion 

was also proved as a C═O stretching at 1550-1610 cm-1 region.  

In addition, ionic strength can influence the protonation/deprotonation processes 

of pH sensors. Excessive ionic strength can also impact the osmotic pressure applied on a 

porous sensing network[44, 45]. Negative effect of ionic strength in pH measuring has 

been reported with a sensing material shrunken accompanied by marginal sensitivity[46]. 

Biosensors for both in vitro and in vivo environment detections will be confronted to lots 

of variation of ionic strength change and thus the influences need to be evaluated 

carefully. Fig. 5(a) shows a drastic impact of pH variation in pH sensing capability. The 

appeared square box labels a normal extra- / intra-cellular ionic strength range which 

normally varies from 0.08 to 0.2 M[47]. Below or above this range, it is not 

recommended to measure pH with currently proposed probe, otherwise poor sensitivity 

and huge error would be highly expected. Also important is the proper storage of unused 

probe, prior immersion with solutions of high ionic strength can induce/form complexes 

that would hardly be dissolved and thus may irreversibly destroy the probe[46].      

pH sensing capability would further be influenced by temperature. An actual 

temperature impact on pH sensing ability was observed within a relatively wider 

temperature range from 10 to 50°C. Fig. 5(b) shows the measured pH signal variations at 
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five different temperature conditions, each with a 10°C interval. Four pH buffer solutions 

with pH values of 6.07, 6.60, 6.96 and 7.82 were used. Temperature variation was found 

exponentially correlated with pH values, and an averaged 21.5% pH decreasing would be 

seen with every 10°C temperature increasing. This result is in accordance with previously 

claimed similar phenomenon[48]. However, since our ultimate goal was to monitor single 

cell level pH conditions where a drastic change of temperature would not be appeared, 

such thermal influence will not be a big issue in practical use, e.g., within the range of 37 

± 0.5°C, which is the upper limitation of our incubating system, a pH measurement 

variation would be expected around 0.047 (with buffer pH of 7.82, green region) to 0.012 

(with buffer pH of 6.07, blue region) in normalized fluorescent (FL) ratio of 560nm / 

640nm. This variation is way smaller than the standard deviation of each pH 

measurement and thus would have much less impact on the final pH measurement 

resolution.   
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 Fig. 5 Evaluation of environmental interference to the fabricated pH sensor by (a) ionic 
strength and (b) ambient temperature, respectively from 0.01 to 1 M and from 10 to 
50°C.     
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A series of pH measurement with gradient buffer solutions are shown in Fig. 6(a). 

An average equilibrating time would be expected around 40 – 60 seconds. Measurement 

in each pH buffer solutions were kept still until a plateau of signal had been achieved. 

Normally, a period of 100 seconds is sufficient to acquire such plateau status and thus 

was used under all tested conditions.   

Fig. 6(b) plots the fluorescent signal ratio of 560 nm / 640 nm as a function of 

buffer pH values, where a linear correlation within the pH ranges from 6.12 to 7.81 (R2 = 

0.9874). The linearity fitting of the experimental data indicates a pH sensing resolution of 

~ 1.13 fluorescent ratio value (560 nm/640 nm) per pH unit. In addition, for each pH 

buffer solutions, the standard deviation based on triplicate measurements was distributed 

between 0.038 and 0.084 in FL ratio of 560 nm/640 nm, thus any two measured signals 

that have a higher intervals should be well differentiated. In this case, theoretically a pH 

resolution could come up with a range of 0.031 to 0.068 pH unit. This good linearity 

within such a focused pH working range can not only allow wide applications of a simple 

two-point calibration method[49], but also provide a sensitive and practical measurement 

capability of monitoring subtle pH change of ~0.049 (on average) pH units.    
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Fig. 6 Reflection mode detected fluorescent ratio (560/640 nm) spectra from fabricated 
fiber-optic pH sensor. A real-time manner measurement from ~pH 6 to ~pH 8 was show 
(a) combined with a pH sensitive region as well as linearity calculation of fluorescent 
ratio changes as a function of buffer pH values (b).  
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Fig. 7 Repeatability and signal stability of the fabricated pH probe in a cycling 
measurement of pH6 (bottom), pH7 (middle) and pH8 (upper) buffer solutions for 35 
minutes.   

 

The nominally 70 μm probe was then evaluated for its reproducibility in 

measurement under real circumstance. Cell culture grade 0.1 M PBS buffer solutions 

were prepared in three pH condition ranging from pH 6 to pH 8. The pH probes were 

continually inserted into three buffer solutions in the order of pH7 – pH8 – pH7 – pH6 – 

pH7 (and so force). 100 seconds interval between two pH buffers was set to acquire 

equilibration. Fig. 7 shows a partial record that lasts for about half an hour. An acceptable 

quality for repeating measurement (with signal intensity decreasing less than 2%) has 

been acquired. Besides, probes that were similarly fabricated showed satisfactory 

reproducibility as well (with less than 5 % variations). In addition, long term storage 

(three months) in sealed desiccator did not change the sensing capability of accordingly 

fabricated probes. However, after each measurement, the fiber probe need to be carefully 

rinsed in ethanol, followed by heat-drying right after rinsing. Fully removal of attached 

ions and vapor molecules from the surface aerogel networks is highly recommended to 

maintain its sensing ability and reusability.  
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In sum, with relatively low peak intensity and wide full width at half maximum 

(FWHM), the sensitivity of the proposed fiber optic based pH sensor is sufficient and 

comparable with other developed or commercialized pH sensors. The good point 

provided by this pH sensor is a smaller size (~70 μm) and simplified sensing principle 

and procedure. Thus high spatial resolution (close to single cell level) could be easily 

equipped with considerably low cost. Its high sensitivity (~0.049 pH unit) that focused 

only on bio-sample related pH region (pH 6 to pH 8) paves its way to detect single-cell 

level extra-cellular pH variations. Together, the fast sensing rate (within 40 – 60 seconds) 

and continuous sensing ability, the reflection-based remote-sensing capability (several 

meters) combined with significantly simplified calibration process (due to the linear 

correlation of FL ratio and pH), provide promising application potentials of such probe in 

many fields.  

4. Conclusions 

We report a fiber-optic reflection-mode probe based on dye-doped ultra-thin 

aerogel dip-coating technique for pH sensing. The fabrication of tapered optical fiber 

with spherical head was assisted by carbon dioxide laser stretching system and optical 

fiber fusion splicer device. The aerogel ultra-thin layer coating was implemented by sol-

gel dip-coating technique combined with pH sensitive dye covalent-bonding through 

introduction of ORMOSILs. The pH sensing capability could be modified through 

adjusting the sol-gel formula with different ratio of alkoxides as well as surface 

hydrophobicity through HMDS priming. In this study, an optimized fabricating procedure 

was developed, and the synthesized pH probe was evaluated and demonstrated to have in 
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vitro pH sensing capability in a real-time manner. A colorimetric method was employed 

and showed a fine linear response to pH variations, with a resolution down to ~0.049 pH 

unit, within a biological meaningful pH range of 6.12 – 7.81. Such ability could be 

further influenced by extremely changed ionic strength and temperature, but no 

significant interference would be seen within a confined circumstance. In all, its micron-

scale size with high spatial resolution, reflection mode operation, fast and repeatable 

recording, specific linear response within pH 6 to 8 region and a high pH resolution, 

make it a very cost-effective tool for chemical/biological sensing, especially within the 

single cell level research field.    
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ABSTRACT 

Single cell research is essential for understanding cell heterogeneity, cell differentiation, 

and carcinogenesis, among other important cellular processes. New techniques for 

intracellular pH monitoring are urgently needed to gain new insights into single cell 

responses to external stimuli. In this study, fiber-optic reflection-based pH micro (μ)-

probes (tip diameter: 500 nm - 3,000 nm) were designed and fabricated using a novel 

hexagonal 1-in-6 fiber configuration. An organic-modified silicate (OrMoSils) sol-gel 

doped with a pH sensitive dye, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein 

(BCECF), were coated onto the probe sensing tip for pH detection. These probes enabled 

neutral pH monitoring and quasi-real-time data acquisition (response time: 20±5 

seconds). The fluorescence signals of the newly developed probes were found to correlate 

linearly with pH (R2 = 0.9869 when coupling laser power was at 8.2 mW) within a 

biologically relevant pH range (6.18 – 7.80). The pH resolution was 0.038 pH unit. The 

miniaturized probes were validated in single human lung cancer A549 cells to 

demonstrate applicability in single cell experiments. In summary, novel pH μ-probes with 

excellent resolution and response times within a biologically relevant pH range were 

developed and they can be used for measuring pH changes in single cells. 

 

Keywords: pH μ-probe; Hexagonal 1-in-6 fiber configuration; organically modified 

silicates (OrMoSils); Niche environment sensing; Single cell.  
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INTRODUCTION 

Cell heterogeneity plays an important role in determining cell plasticity and fate. For this 

reason, the ability to monitor subtle changes in a cell’s microenvironment is highly 

desirable for understanding the individual responses of single cells to a niche 

environment. Cell signaling events such as pH changes, temperature oscillations, and 

signaling molecules, can trigger substantial responses including cell division, 

differentiation and death.1 Unlike signaling molecules that are highly regulated, pH is a 

relatively macroscopic factor that can have broad impacts on cell fate.  For example, low 

pH exposure can reprogram cells to induce pluripotency. A successful cell 

dedifferentiation was achieved by simply exposing to a low pH environment. The 

transformed cells were reported to acquire improved pluripotency to re-differentiate into 

somatic cells, germ cells, as well as extra-embryonic lineages.2 Similarly, cellular pH 

imbalances in carcinogenesis may represent novel therapeutic targets that require a 

clearer understanding of how individual cells respond to altered pHs. The intracellular pH 

(pHi) of healthy adult cell is normally maintained near 7.2, which is lower than the 

extracellular environment. However, cancer cells maintain a higher pHi (>7.4) but have 

characteristically lower extracellular pH (pHe) (6.7 – 7.1).3-5 Increased pHi has been 

shown to assist cell proliferation and evasion of apoptosis, to facilitate metabolic 

adaptation, as well as to improve cancer cell motility; While decreased pHe can stimulate 

acid-activated proteases to help tumor cells invasion and dissemination.6 Moreover, a 

Na+/H+ exchanger, named NHE1, similar to those that exist in human melanoma cells 

(MV3), can generate a well-defined cell surface pH gradient at the outer leaflet of the 

plasma membrane to assist cell body polarity and migration.7 These and more findings8-11 
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highlight the importance of microenvironmental pH in understanding cell fate and 

disease. However, relevant techniques capable of monitoring microenvironment pH 

remain underdeveloped. 

Intracellular pH labeling reagents have been broadly used to describe cellular pH and 

its spatiotemporal variations. Since their first introduction in the early 1980s by Roger 

Tsien et al.,12 several types of pH-sensitive fluorescent dyes derived primarily from 

fluorescein have been developed, such as benzoxanthene, rhodol, cyanine, pyrene and 

miscellaneous small molecules.  Some representative dyes, like 2',7'-bis(3-

carboxypropyl)-5(6)-carboxyfluorescein (BCPCF),13 Benzenedicarboxylic acid formed 2-

(4)-[10-(dimethylamino)-3-oxo-3H-benzo[c]xanthene-7-yl] (SNARFs),14 fluorescent 

norcarbocyanines indocyanine green (H-ICG),15 8-hydroxypyrene-1,3,6-trisulfonic acid 

(HPTS),16 and others, were also introduced and widely used. Because of its neutral pKa of 

6.98 and linear correlation between fluorescence intensity and pH within the range of 6.1-

7.8, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and its derivatives 

have been used for intracellular pH measurements.16,17 However, due to the inherited 

drawbacks during endocytosis (hydrophobic modification) and long-term immobilization 

(leaking and degradation) within cells, many dye molecules have been considered as 

cytotoxic18 or carcinogenic19-21 and thus may not be able to represent the actual cellular 

pH status. 

Other methods have also been developed to measure both extra- and intracellular pH.  

For example, quantum dots (QDs) have been used for intracellular sensing as an 

alternative approach based on superior quantum yield efficiencies and optical 

stability.22,23 When combined with fluorescence resonance energy transfer (FRET)24,25 
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and specific modifications,26-28 QDs offer powerful sensing performance. However, the 

toxic concerns of heavy metals in many QD formulations limit their application to long-

term monitoring. pH sensing probes have been developed in response to minimize the 

potentially harmful effects of free dyes and QDs. Principles and techniques employed to 

construct such pH sensing probes include field effect transistor,29 microelectric probing,30 

fiber-optic pH sensing,31 and others.32-34 Among these proposed probes, optical fiber-

based pH probes have shown the advantages of simple ratiometric working principle and 

easy-handling.35,36 In a basic fiber optic probe configuration, the excitation source is 

introduced into the optical fiber core and light is transmitted to the sensing tip. Sensing 

molecules bound to the tip of the probe emit signal back to the detector. The pH sensing 

capability of the probes varies greatly depending on the sensing materials being used. A 

porous molecular matrix and a pH sensitive reagent are typical strategies to maximize the 

interactions between the fluorescent reagent and external analyte. Malins et al. have 

successfully demonstrated a workable platform for pH sensing using such a strategy.37 

Recent attempts have also been made to extend the applicability of the ratiometric pH 

sensing approaches.38,39 We recently reported a micro-size (50 – 70 µm) reflection-based 

optical fiber pH sensor. With a pH resolution of 0.049 pH unit at neutral pH range (pH 

6.2-8.0), the pH probe can potentially be used for real-time inter-cellular pH 

measurement at a quasi-single-cell level.40 

 Some non-invasive sensing approaches for single cell pH measurement have also 

been reported, such as the Raman or magnetic resonance imaging (MRI) based sensing 

platforms.41,42 However, the limited selection of sensing molecules that are both pH 

sensitive and Raman active, the inevitable involvement of intracellular contrast agents in 
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MRI imaging, and cumbersome instrumentation, have limited development and 

application of non-invasive single-cell or quasi-single-cell level pH sensors.  

In this study, a fiber optic reflection-based pH micro (μ)-probe was designed and 

fabricated with a hexagonal 1-in-6 fiber configuration. A coaxial-twisting and 

gravitational-stretching procedure was utilized for optimal signal collection and minimal 

interference. The pH sensing capability was enabled by sol-gel dip coating of an 

OrMoSils layer on the probe tip. The newly developed pH μ-probes were calibrated in the 

biologically relevant pH ranges (6 - 8), and were finally validated using human lung 

cancer A549 cells.  

EXPERIMENTAL SECTION 

Fabrication of Tapered Hexagonal Fiber Probe. The hexagonal-shaped 1-in-6 

optical fiber tip was fabricated as the probe’s sensing head, with 1 - 1.5 cm taper length, 

500 - 3,000 nm tip diameter and 2° - 8° tapering angle. A bundle of seven multimode 

optical fibers with core and cladding diameters of 62.5 and 125 m (Corning, USA), 

respectively, were aligned into a six-surrounding-one pattern to ensure a hexagonal cross-

section. As shown in Figure 1, a homemade coaxial-twisting and gravitational-stretching 

system was employed to fabricate the probe, with assistance of a butane-fueled pencil 

torch (Blazer PT-4000). Four plates (from I to IV) with 7 through holes arranged in a 

hexagonal pattern were used in the fabrication system to align the 7 fibers. Plate I worked 

as a holding clamp to maintain all fibers position without relative displacement. Plate II 

and III both have hexagonal apertures to allow each fiber pass through freely, while plate 

IV clamped all fibers and worked as a plummet to enable gravitational stretching. Upon 

twisting of plate III and IV together, all six peripheral fibers converged around the central 



165 

 

fiber. After multiple twisting revolutions, a coaxial pattern fiber alignment was achieved. 

The use of coaxial-twisting procedure was aimed to provide extra tenacity during heat 

stretching and cell sensing.  

To make the hexagonal 1-in-6 tapered fiber tip (Figure 1), a pencil flame torch was 

positioned perpendicularly to the fiber twisting area. Butane was used as fuel, and the 

torch temperature reached approximately 1,400 °C. Once the polymer jackets were 

removed by the torch, the exposed bare fiber twisting area was gradually melted by torch 

heating and tapered by gravitational pulling by plate IV. The tapered tip was found to be 

appreciably fragile and optimal strength performance was noted for tip lengths fewer than 

2 cm. In order to make the probe tip straight, a vertical, gravitational stretching force was 

applied rather than a horizontal stretching configuration. The fabrication parameters such 

as twisting angle (4 to 6 revolutions), hexagonal fiber alignment, tapering length (1 – 1.5 

cm), tip diameter (500 – 3,000 nm) and tapering angle (2° - 8°), etc., were finely 

optimized and controlled to assure the performance of the probe (Table 1).   
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Figure 1. Detail coaxial-twisting/gravitational-stretching process in fabricating 
hexagonal pH μ-probe tip. Sub-figures a to d Show four-step procedures in coaxial 
twisting and gravitational stretching, and sub-figures e to h show the status quo of fiber 
cross-section twisting steps. Along with the process going, hexagonally, loosely aligned 
fibers were tightly twisted, burned by 1,400 °C to remove the fiber jacket layers, and 
finally melted/stretched as one intact tip. It is noted that the diameter of each intersection 
scheme (e - h) is not drawn according to actual size.  
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Table 1. Variation Ranges of Several Key Factors of a Fully Fabricated Hexagonal 
1-in-6 pH Probe.  

 

 

 

 

 

pH Sensing Layer Creation.  A pH sensitive fluorescent dye BCECF was 

covalently embedded into an ultra-thin aerogel network layer created via amide bonding 

at the tip surface under dark conditions (Scheme 1). A modified sol-gel dip-coating 

procedure described elsewhere was used in this study.40 Briefly, the surface silanol 

groups of the freshly tapered hexagonal optical fiber probe were activated through three 

steps: 1) acidic activation by concentrated nitric acid for 12 hours, 2) washing with 

copious amounts of ultra-pure water followed by pure ethanol, and 3) drying at 100 °C 

for 3 hours. An amino-functionalization procedure was then applied to the heated probe 

surface using previously aged (12 hours) alkoxides mixture (sol) in methanol, including 

tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (APTES) and 

methyltrimethoxysilane (MTES) at a mixing ratio of 4:1:1 (v/v) with catalytic amount 

(2% of total volume) of hydrochloric acid (0.1 M). A dip-coating process was used for 

the 100 °C dried tapers with a drawing rate of 1 mm/s. The dip-coating step was repeated 

for about 8 - 10 rounds, depending on the required thickness (400 – 600 nm) of final 

* Revolution indicates the plate III and IV turn coaxially to the plate II and I. One 
revolution equals to 360°. 



168 

 

aerogel networks after curing. BCECF sodium salt was prepared in MQ water (18.2 MΩ, 

EMD Millipore Corp., MA, USA) at concentration of 1 mg/mL and further mixed with 

excess 2-succinimido-1, 1, 3, 3 tetramethyluronium tetrafluoroborate (TSTU) prepared in 

ethanol (1 mg/mL). Small catalytic amount (1-2% of total volume) of N-

ethyldiisopropylamine (Hünig’s base) was added to promote the activation of carboxyls 

to succinimidyl-ester groups. The reaction was allowed to proceed for at least one hour at 

room temperature. The cured tips were then dipped into this activated succinimidyl-ester 

dye solution (final BCECF concentration at ~10 – 20 µg/mL) for 10 – 30 minutes with 

constant stirring for amide bond formation. The probe was then fully dehydrated and 

cured at 50 °C for 6 hours and then at 80 °C for 24 hours. Finally, a quick hydrophobic 

modification was introduced to the probe tip surface using a home-built 

hexamethyldisilazane (HMDS, purity > 99%) (Ted Pella Inc., Redding, CA, USA) 

priming chamber. Briefly, the treated probe was placed into a small (7.5 cm × 7.5 cm × 

25 cm) chamber and heated to 100 °C. Upon heating, 5 mL HDMS was placed into the 

now evacuated chamber and allowed to sit for 3 hours at 100 °C. This final step enabled 

hydrophobic HDMS vapors to react with the exposed hydroxyl groups on the aerogel 

surface.  Notice that all BCECF dye-related reactions were taken place under dark 

conditions. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) 

unless otherwise specified.  
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Scheme 1. Major procedures that applied OrMoSils sol-gel dip-coating and HMDS 
vacuum priming for pH sensing layer fabrication.  

 

pH Sensing Principles and Optical Setups. The BCECF dye has been used as a 

ratiometric pH indicator (either excitation/emission or dual excitation methods) since the 

emission peak intensity change significantly with pH.16,43 In this study, we adopted the 

ratiometric principle for pH detection using the excitation wavelength of λ = 488 nm and 

two fluorescent emissions of λ = 550 nm and λ = 640 nm and the ratio of these two 

wavelengths’ fluorescence intensity was correlated to standard pH via ex vivo calibration 

using Thomas’ method.44 The optical fiber in the center of hexagonal probe’s 

configuration was connected to the excitation laser, while the peripheral six optical fibers 

were combined together for collecting and transmitting emission light to a USB2000 

spectrometer (Ocean optics, Dunedin, FL, USA). A continuous-wave (CW) Argon ion 

laser source (Spectra-Physics Lasers, Mountain view, California, USA) was used to 

excite BCECF dye molecules (Figure 4). The laser power was adjusted to achieve 

optimal fluorescence intensity. A laser beam shutter with a maximum switching speed of 

1 millisecond was used to control the irradiation time. A 20× objective was used to focus 

the laser beam into the center fiber. A fiber-coupling syringe was immobilized onto a 
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three-dimensional (3-D) manipulation μ-stage with stepping accuracy of 0.05 μm. The 

probe’s sensing head was protected using a stainless steel probe guide to ensure that the 

probe head is exposed only when it was applied. In an actual measurement, the probe tip 

was immersed into an analyte solution for a few seconds (20 ± 5 s) for equilibration 

purposes. The fluorescence signal was transmitted by the peripheral six fiber-cores 

around the central fiber to the spectrometer using a SMA type fiber connector. The ratio 

between the peak fluorescent intensity (Ipeak) at 550 nm and the reference intensity 

(Ireference) at the wavelength of 640 nm (Ipeak/Ireference) was calculated and correlated with 

the pH value. A 100 ms integration time was used for data collection and processing. A 

boxcar function with the factor of 20 was used for spectral smoothing.  

Characterization and Calibration of Sensor Probes. Fabricated probes were 

imaged using an inverted fluorescent microscope (Olympus IX51, Olympus, Center 

Valley, PA, USA) as well as scanning electron microscopy (SEM) and experimentally 

characterized by energy-dispersive X-ray spectroscopy (EDS) (FEI, Hillsboro, OR, 

USA). Both white light field and fluorescein isothiocyanate (FITC) fluorescent channel 

(for examination of the BCECF dye embedded coating) images were taken under the 

inverted microscope. Six major elements were scanned using EDS including carbon (C), 

nitrogen (N), oxygen (O), silicon (Si), silver (Ag) and gold (Au). A focused ion beam 

system (FIBs) was used to cut the probe tip at its very end to expose the cross section. 

Calibration standards were prepared with 0.1M phosphate buffer solutions that were 

prepared using 1 M sodium hydroxide or 1 M hydrochloric acid. Buffer solutions ranged 

from pH 6 to pH 8 at 0.2±0.1 increments and measured with an Accumet AB15+ pH 

meter (Fisher scientific, Pittsburgh, PA, USA). After dipping the sensing probe into the 
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standard pH buffer solutions, the acquired fluorescent intensity ratio of 550 nm and 640 

nm was correlated with the calibrated pH values. Normally, the sensing period of each 

probe lasted for about 20 ± 5 seconds until a plateau was achieved, and all measurements 

were triplicated. Fabricated probes were also subjected to post-measurement testing using 

standard pH solution buffers through a simplified procedure that was similar to probe 

calibration, to assure the reproducibility of the measurements. 

Cell Culture and Proof-of-Concept Single Cell pH Measurements. Human 

bronchoalveolar carcinoma-derived A549 cell line was used in this study and was 

purchased from the American Type Culture Collection (Manassas, VA, USA). Briefly, 

the A549 cell line has been widely used in in vitro culture and cytotoxicity evaluations 

and was deemed appropriate for evaluation of the newly developed pH probes in this 

study.45,46 Cells were cultured in a phenol red free Ham’s F-12K nutrient mixture from 

Caisson Laboratories Inc. (North Logan, UT, USA), supplemented with L-glutamine. A 

complete culture medium was made using F-12K with 5% fetal bovine serum (FBS) 

(Gibco/Life technology, New York, USA), 100 units/mL penicillin and 100 mg/mL 

streptomycin (Life technology, New York, USA). The cells were seeded and proliferated 

at 37 °C in a home-built humidifying chamber at 5% CO2. The chamber was mounted on 

the stage of an Olympus IX51 inverted fluorescent microscope to enable long-term cell 

observation, manipulation, and measurement. A single cell suspension was prepared 

using trypsin-EDTA (Life technology, New York, USA) followed by single cell 

measurements using a microscope to guide insertion of the probe. The probe was inserted 

3 – 8 µm into the cytosol to measure intracellular pH. All measurements were triplicated 

for probe validation purposes. 
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RESULTS AND DISCUSSION 

Probe Fabrication. The extra- or intra-cellular pH sensing for a single cell 

requires a miniaturized probe sensor with high stability, high sensitivity, and high pH 

resolution. This was achieved through a specially designed hexagonal 1-in-6 fiber-optic 

probe tip (Figure 1). Figure 2 shows different tip regions of a representative probe. All 

parameters can be optimized as listed in Table 1.. Figure 2a is a schematic configuration 

of the coaxially twisted tip, while the figures below (2b - 2d) show the actual microscopic 

images of a probe in different regions from upper stem to its tip. A finished probe tip was 

also imaged under either white light or FITC channel (Figure 2e, 2f). A series of SEM 

images of the tip configuration were also shown in Figure S-1. As expected, the seven 

highly twisted fibers were gradually stretched in parallel toward the tip. Thus all fiber 

diameters were decreased uniformly, and the tip diameter of all seven fibers was 

measured in the range of 500 to 3,000 nm. This probe configuration was optimized to 

reduce scattered excitation light and maximize emission signals. Briefly, this is different 

from our previous work, where a 2-in-1 fiber coupler was used and both excitation and 

emission light passed through the same sensing shaft.40 The earlier approach suffered 

from considerable background noise, difficulty in controlling the transmission ratio, and 

substantial signal losses due to ~50% of the signal being lost at the coupler.  In 

comparison, the new hexagonal configuration was designed to overcome the challenges 

by complete separation of the excitation and emission light. Specifically, the core fiber 

transmitted excitation light while the peripheral fiber optics transmitted the emission 

signal.  This separation was necessary to enhance sensitivity and enable probe 

miniaturization for single cell analyses. While additional fiber configurations such as 1-
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in-4 design or non-twisted probes were also evaluated, the hexagonal 1-in-6 configuration 

provided optimal probe durability and sensitivity.  

 

 

Figure 2.  Finished hexagonal fiber taper probe configuration (a) and different imaging 
of twisting patterned area (b - d) under inverted microscope. A fully fabricated probe 
with fluorescent sensing layer coated and cured is shown under either white light (e) or 
fluorescein isothiocyanate (FITC) channel excitation light (f). 
 

Probe Characterization. The pH sensing molecules were covalently bound to the 

aerogel via amide bonding for improved structural durability and minimization of dye 

leakage from the probe. A succinimidyl-ester activation reaction was used to enable the 

covalent amide bond formation between BCECF molecules and one of the aerogel back-

bone molecules (APTES) (Scheme 1). The hexagonal fiber alignment images at the probe 

tip were shown in Figure 3A and 3B before and after FIBs cutting. The hexagonal 

configuration was maintained throughout the probe including the tip. The sealed 
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triangular spaces between fibers (Figure 3B) indicated incomplete fusing during heating 

and stretching. These structural flaws may prevent light coupling due to their variable 

refractive indices. 

The OrMoSils coated area yielded a roughened surface which indicated the area was 

successfully modified with a hydrophobic character (Figure 3C, D). A peeled off layer of 

the coating at the tip area was also imaged and the thickness of the coating was measured 

to be 441 nm (Figure 3C, E). A corresponding EDS scan was taken with peak intensities 

(in atomic percentage) of carbon (43.8%), nitrogen (20.0%), oxygen (18.1%) and silica 

(6.8%). High amounts of carbon indicated BCECF and HDMS bonding to the tip surface 

while the presence of nitrogen indicated success of the amide bonding procedure. Finally, 

trace surface silica indicated high coating efficiency of the original tip (Figure 3G). 

Hydroxyl and amine groups prevalent on the aerogel surface were derivatized with 

MTES and HMDS priming processes, so the new methylsilyl and trimethylsilyl 

modalities provided a hydrophobic character to the sensor surface.47-49 This modification 

will limit adverse effects caused by water penetration into the sensor. The water 

penetration has deleterious impact of the response times and reproducibility.  

In addition, thermal gravimetric analysis and Infrared spectral measurements of the 

same aerogel coating were acquired in our previous report.40 Briefly, peaks from 2882 - 

2937 cm-1 showed the -CH2 stretching which is attributed to aliphatic chains in TEOS, 

APTES and MTES. Peaks between 3500 - 3300 cm-1 and 1650 - 1550 cm-1 were 

representative signs of amino groups in APTES and the formed amide bonds. The 

carbonyl (C=O) stretching peak between 1550 - 1610 cm-1 was also shown as proof of the 

existence of carboxylates or amino acid zwitterions.40 
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Figure 3. Electron microscopic imaging and characterization of the newly developed pH 
probe. (A) SEM image of the tip area; (B) SEM image of an intersection cut by using 
FIBs at the yellow line labelled area that showed in (A). (C) A schematic of the new 
hexagonal probe configuration detailing areas imaged with SEM in (D) and (E); (F) EDS 
scans on elemental intensity; (G) atomic abundance. Scale bars: (A) 50 µm, (B) 3 µm, 
(D, E) 500 nm. 

 

System Setup and Laser Adjustment. The final system set up for the intra-

cellular pH measurement is shown in Figure 4A. The excitation at 488 nm was achieved 

by splitting the laser with a prism module.  A programmable beam shutter was used to 

control laser application time. The beam was focused onto the flat end of the central fiber 

and transmitted to the pH sensitive tip. The fluorescence signal was collected using the 

peripheral fibers and transmitted to the detector.  This approach successfully complete 

separation of excitation and emission signals within a single, coherent probe. An 

additional silver mirror coating (by using the silver mirror reaction) on the bare, 
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unmodified probe surface was further minimized signal leakage and exterior light 

interferences. Although dichroic mirrors are commonly used to minimize Rayleigh 

scatting, it was not used in this approach due to the excellent spectral splitting observed 

by the triangular prism and split mode of fiber alignment. 

 

 

Figure 4. (A) Schematic diagram of the optical arrangement of the pH μ-probe; (B – C) 
Spectroscopic suppression of multiple laser peaks with power adjustment. Full spectra 
(450 nm to 800 nm) signals were monitored either (B) before or (C) after multi-peak 
suppression. Inset figures are enlarged portions of the laser peak area (450 – 520 nm, blue 
box). A wide range of laser power has been applied (from 55.1 mW to 603.0 mW) and 
was labeled in different color.   

 

Sensitive pH measurements by using this µ-pH probe require optimization of peak 

signals and reduction of background noise. This was complicated by laser source defects 

that resulted in multiple, often broad laser lines that can excite fluorescent molecules. 

This was overcome in part by actively selecting 488 nm light by filtering the adverse 

peaks using a triangular prism module.  Figure 4 displays unfiltered and filtered laser line 

spectra as observed without any probe coatings.  The triangular prism afforded a single 
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peak centered at 488 ± 3 nm and effectively removed the adverse peaks centered at 457 

nm, 476 nm, and 496 nm. Moreover, the spectral baseline was considerably improved 

using the prism module (41.6 counts vs 137.6 counts). Laser output power at 488 nm was 

linearly correlated with observed laser power at the fiber coupling site from 55.1 mW to 

603 mW (Figure S-2A). Notably, the spectral baseline did not vary significantly as laser 

output power was modulated. Absorption spectra of the BCECF dye in phosphate buffer 

(0.1 M) at pH values between 4.63 (isosbestic point) and 9.20 appeared as an increasing 

trend (non-linear) with dual absorption peak at 450 nm and 500 nm,43 thus a poor control 

in selecting single wavelength excitation source will compromise emission spectra 

accuracy in differentiating minor changes of pH values. Our result in wavelength 

selection and baseline suppression is thus of great importance when considering the tip 

size is at μ-scale, since a highly purified single-wavelength excitation source and 

suppressed background noise are necessary in order to obtain small changes of 

fluorescence signals. 

Calibration and Linear Detection Range of the pH μ-Probe. Calibration of the 

pH μ-probe was conducted using a series of freshly standardized phosphate buffer 

solutions prepared at a pH range from 6 to 8 with 0.2 pH unit increments (Figure 5A). As 

the pH increased, higher fluorescent spectra peak intensities at 550 nm were observed. 

Tested buffer pH values and corresponding fluorescent intensity ratios of 550 nm/640 nm 

were found linearly correlated throughout this biologically relevant pH range (Figure 

5B). In this study, three levels of laser coupling power (8.2, 22, and 39.8 mW) were used 

for pH measurements. The experimental results showed that improved linear correlation 

between fluorescent intensity ratio of 550 nm/640 nm and buffer pHs was observed as 
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laser power increased (from R2
 (8.2 mW) = 0.9869 to R2

 (39.8 mW) = 0.9995). Sensitivity in 

terms of fluorescent intensity ratio of I550 nm/I640 nm per pH unit was also found increased 

(from 0.558 to 2.519). For each pH measurement, the standard deviation in triplicate 

measurements ranged between 0.0126 and 0.0836 pH units when 39.8 mW laser coupling 

power was used. Therefore, the pH resolution can theoretically be in the range of 0.010 - 

0.066 pH units. Similarly, a theoretical pH resolution range of 0.0196 – 0.1236 pH units 

can be achieved when low coupling laser power of 5.8 mW was applied. Figure 5C 

provides a full interpretation of the pH detection resolution as functions of laser power 

used as well as the pH values of analytes. It shows that an optimal pH detection 

resolution can be obtained within the pH region of ~ 6.9 – 7.2, and increased laser power 

can further improve pH resolution below and above this region. This good linearity and 

sensitivity within the focused biological pH range not only provides a simple two-point 

calibration method, but also enables measurement for subtle environmental pH changes 

(0.038 ± 0.028 pH units). Besides, since the laser coupling power was linearly correlated 

with the original laser output power, and the laser power loss was also correlated with 

original output power as a natural logarithm function (Figure S-2A), then, higher pH 

detection sensitivity would be expected when a higher laser power is used (Figure S-2B). 

Strategic enhancement of the sensor’s sensitivity may also be realized through 

incorporating a higher concentration of the pH sensitive dye to increase the total emitted 

photons. However, excessive dye molecules may compromise probe efficiency due to 

possible self-quenching and dye leaching. Thus, fine adjustment of laser power is 

potentially a convenient way to improve μ-probe performance, though over-heating and 

photo-bleaching effects should be considered accordingly.                           
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Figure 5. (A) Fluorescence spectra of pH measurements under three different laser 
coupling powers (8.2 mW, 22 mW, and 39.8 mW); (B) Linear correlation curves between 
standard pHs and different laser powers. (C) pH detection resolution as functions of 
power laser as well as pH values. The excitation wavelength applied was at 488 nm, the 
fluorescence wavelength at 550 nm, and the reference wavelength at 640 nm. The signal 
collecting integration time was 100 ms. “FL” is an abbreviation of fluorescence. 

 

A bathochromic shift of the fluorescent peak near 550 nm was observed when 

comparing with the original 535 nm emission peak of BCECF dye in solution which was 

also observed in our prior work.40 This phenomenon may be attributed to the increased 

dielectric constant of the bound dye molecules relative to aqueous, unbound conditions.50 

Similarly, localized ionic strength and temperature may influence pH measurements. 

Probe stability was measured to evaluate these influences by monitoring pH 

measurements over an extended time frame. The probes provided stable pH 

measurements for up to 30 minutes with minimal variance (2% relative standard 

deviation) and up to one month when stored in a sealed desiccator. The sol-gel 
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formulation was also highly stable under biologically important conditions with good 

performance under normal intracellular ionic strengths ranging from 0.08 – 0.20 M and 

cell culturing temperature range between 36.5 and 37.5 °C. These findings were in 

accordance with our prior work.40 

Intracellular pH Measurement in Single A549 Cells. The applicability of the newly 

developed pH μ-probes was preliminarily demonstrated in single A549 cell pH 

measurements (Figure 6). The probe was inserted 2-8 µm into the single cell cytosol by 

demobilizing the cell against a hollow capillary tube (Figure 6A). The pH probe was 

inserted into each cell three different times for statistical data acquisition. Probe 

excitation occurred for 20 ± 5 seconds using an automated beam shutter and the signal 

integration was 100 ms. Representative spectra from the single cells are shown in Figure 

6B. Variance among the intracellular pH measurements was subjected to statistical group 

comparison analyses using a two-tailed Student’s t-Test, although the limited sample size 

limits useful conclusions from being drawn (Figure 6C). Significant differences were 

observed among the three cells (P-value < 0.01) although no speculation about these 

differences and the underlying biological mechanisms responsible for these observations 

were made yet due to the small sampling number. After intracellular testing, all probes 

were subjected to immediate accuracy testing using standard pH buffers to confirmation 

probe’s capability for repeatable measurements.  

Hence, we have successfully demonstrated the newly developed probes which can 

measure intracellular or localized pH with minimal invasiveness and dye leakage. We 

anticipate these probes may be used in a range of fields for remote sensing or large-scale 
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matrix sensor integration, in vivo measurements, as well as ultra-small sample detection 

at nano-liter level. 

 

Figure 6. Preliminary measurement of intracellular pHs in single A549 cells using 
fabricated hexagonal pH μ-probe. (A) Randomly picked three single cells were separately 
manipulated and measured in a real-time manner. (B) Fluorescent spectra were acquired 
for each cell assay and (C) calculated pH values of each cell were established based on at 
least triplicate measurements and previously created calibration curve.  

 

CONCLUSIONS 

In the present study, a fiber-optic reflection-based pH μ-probe was developed for 

intracellular pH measurements. A coaxial-twisting and gravitational-stretching method 

was utilized to fabricate a unique hexagonal 1-in-6 fiber configuration. An OrMoSils-

based dye-doping technique was used to covalently bind the dye molecules to the sensor 

tip. Additional surface modification using MTES and HDMS was used to provide a 

hydrophobic character to the surface to limit water penetration into the probe. The newly 

developed probed (tip diameter: 500 nm – 3 µm) was evaluated in terms of resolution, 

stability, and sensitivity, all of which can be fine-tuned by the thickness of the surface 

coating, dye molecule concentration, and excitation light intensity. Under optimized 

conditions, the newly developed probe was found to correlate well with standardized pH 

under biologically relevant pH values (6.18-7.80) with excellent sensitivity (0.038 ± 
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0.028 pH units). The newly developed probe was finally validated by application to 

single lung cancer A549 cells. Our results indicate that this novel pH probe may be 

applied to sensitive pH measurements at the single cell level and may have considerable 

impact for advancing understanding of important cellular processes such as cell 

differentiation and carcinogenesis. 
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Abstract 

Intracellular pH has long been recognized as an important indicator of dynamic cellular 

events as well as a universal marker of cell response and fate during its interaction with 

surrounding environments. To monitor the in situ pH in a single live cell, a micro-fiber-

optic probe (~3m in length) was developed and demonstrated for in situ intracellular pH 

monitoring with high spatiotemporal resolutions. The probe had a resolution of ~0.02 pH 

unit in the biologically relevant pH range of 6.17 to 8.11, with a fast response time of ~5 

seconds. The probe examined by monitoring the pH changes in a single cell that  caused 

by carbonyl cyanide m-chlorophenyl hydrazine (CCCP) and TiO2 nanoparticles (NPs) 

exposure, showing an excellent capability in detecting early-stage cell deteriorations. 

Because of its high spatiotemporal resolution, this micro pH probe provides a powerful 

technique for researchers who are conduct single-cell-relevant researches. 

Introduction 

Cellular heterogeneity has been acknowledged as the major obstacle in understanding 

mechanisms of biological system functioning.1 Therefore, it is crucial to monitor how 

each cell function individually under different environmental conditions by measuring the 

key intracellular parameters. Among all intracellular parameters, cytosolic proton 

concentration (or pH) serves as a universal indicator for fundamental cellular events, such 

as serving as a heterogeneity biomarker for early-stage cellular dynamics.  However, the 

in situ intracellular pH measurement in a single cell with high spatiotemporal resolution, 

while the cell is fully functioning, is very challenge. The current intracellular pH 

detection mainly relies on artificially-modified fluorophores as cell staining/labelling 
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reagents.17-28  The inevitably long and reinforced maintenance of the reagents within 

cytosol ruins the representativeness of derived signals. Potential cytotoxicity of excessive 

dye-usage, fluorescence attenuation, and non-continuous reagent passage to offspring 

cells, further deteriorate the accountability of staining-based assays. The major weakness 

of cell staining/labelling methodology is that it cannot be used for continuous single-cell 

pH measurements when the cellular exposure environment changes.     

  Recently, novel µ-probes with hexagonal 1-in-6 fiber configuration have been 

developed for fast intracellular pH measurement in a single cell. This novel single-cell 

pH probe has minimum invasiveness and negligible negative effect on the target cell.46-50  

An organic modified silicates (OrMoSils) sensing layer was applied by embedding a pH 

sensitive dye, 2′,7′-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF).48 The pH 

sensing probe has a good linear response (R2 = 0.9869) in the pH range of 6.18 – 7.80 

and a pH resolution of ~0.038 pH unit.  However, the major limitation of the existing 

single-cell pH probes is their relatively low spatial-resolution for smaller cells.   

 In this study, a novel in situ μ-pH-probe featured with a “tip-cut” high-spatial-

resolution single-cell pH probe has been developed and a modified OrMoSil-dye coating 

using 8-hydroxypyrene-1, 3, 6-trisulfonate (HPTS) dye was used for pH sensing.  . This 

probe was used to monitor the pH status of a single A549 cell under both normal-

culturing and toxicant-exposure conditions. The probe was demonstrated to be able to 

differentiate heterogeneity from similar cells, and has the ability of sensing early-stage 

cell deteriorating process during toxicant-exposure, suggesting a great potentiality of this 

probe for broad applications in real-time single cell level researches.  
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Results 

Design of the micro-fiber-optic based pH sensing system. A novel single-cell pH 

monitoring system was developed for high-spatiotemporal resolution pH measurement 

with minimal cellular invasiveness (Scheme 1a). A 488 nm laser beam was used for 

excitation48 and free-space-coupled into the central fiber using a focusing lens and 

controlled by a programmable beam shutter. The fluorescent signalwas collected and 

transmitted by the peripheral six fibers to a spectrometer. Due to the unique design of this 

novel probe, only the fluorescent signal at the tip (~3-microns)  was collected so that the 

excitation and emission photons can  be separated to minimize any signal leakage and 

avoid interferences from exterior light,  which significantly enhance the sensitivity. A 

zoom-in schematic (Scheme 1b) illustrates how the probe was inserted into the 

cytoplasmic region of a single cell for pH sensing. An oil-pressure controlled hollow cell 

holding probe was used for cell micromanipulation and immobilization and to assist 

steady probe insertion. This probe can not only be used on trypsinized (detached) cells, 

but also for attaching-cultured cells.  Scheme 1c shows a zoom-in view of the probe tip. 

The exposed inner structures clearly indicate a four-hierarchy configuration of the probe 

head, which composed of: 1) the central layer excitation beam introducing-fiber, 2) the 

peripheral six fluorescence signal-collection fibers, 3) the gold (Au)/palladium (Pd) 

sputtered shielding layer, and 4) the outmost OrMoSil-dye coating layer. The Au/Pd 

shielding layer was specifically designed to be trimmed off at the very tip region so that 

the exposed short length (less than 5 microns) of the probe tip can be the only effective 

shaft for signal production. In this case, although the upper part of the probe was also dip-

coated with OrMoSil-dye layer and can be sensitive to pH changes, the fluorescence  
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Scheme 1. Schematics of system setup and single cell µ-pH probe design. (a) Schematic 
illustration of the single cell pH probing system assisted with an inverted epifluorescence 
microscope. A continuous wave Ar-ion laser was used as excitation source and was 
optically coupled into the central fiber for excitation, and the surrounding six fibers were 
fixed onto a portable spectrometer (USB2000, Ocean Optics). Accurate single cell 
insertion was achieved by an oil-pressured single cell capturing device and a 3-D micro-
probe manipulation platform. (b) A schematic zoom-in view of a single cell probing 
devise. A cell holding probe assists single cell capturing and probe insertion.  (c) 
Schematic of The pH probe head structure and the sensing principle. The probe was 
consisted of a bundle of highly tapered, seven hexagonally configured optical multimode 
fibers using a coaxial-twisting and gravitational-stretching system. A gold 
(Au)/palladium (Pd) shielding layer is deposited onto the peripheral six fibers with a tip 
trimming-off region (≤ 5 μm), which was finally covered by the OrMoSil-dye sensing 
layer. The excitation laser was introduced through the central fiber and the peripheral six 
fibers collected fluorescent signals only at the non-shielded region.  
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generated from this part will not be collected due to the shielding effect of the coated 

Au/Pd underneath. Another advantage of the Au/Pd coating is that the background noise 

from the environment can be eliminated to enhance the sensitivity.  Overall, this novel 

pH probe can provide higher sensing accuracy and selectivity up to several folds in 

decoding subcellular signals to help us better understand cellular heterogeneity between 

each single cells.     

The μ-pH probe was fabricated by utilizing our home-built coaxial-twisting and 

gravitational-stretching method48 (Supplementary Fig. 1, a - c) and a novel tapered 

hexagonal 1-in-6 fiber configuration was created to enhance the sensitivity significantly 

(Fig. 1 and Supplementary Fig. 1). The macroscopic (Supplementary Fig. 1d), schematic 

(Fig. 1a) and microscopic (Fig. 1b) view of the fabricated taper-shaft were demonstrated, 

respectively. The shaft was subjected to a Au/Pd sputter coating under a maximum 50 

mA current for about 15 minutes (Fig. 1d, Supplementary 1i), followed by trimming off 

the very tip-region sputtered Au/Pd layer using focused ion beams (FIBs, Helios Nanolab 

600, FEI) milling under scanning electron microscope (SEM)(Fig. 1e, Supplementary 1j). 

Approximately 250 – 300 nm Au/Pd was uniformly deposited onto the surface, of which 

only the tip part (less than 5 micron length) was milled. Dispersive X-ray spectroscopic 

(EDS) mapping (Fig. 1f and Supplementary Fig. 2) indicated a successful removing of 

the sputtered metal layer at the tip without damaging the underlying fibers. Immediate 

sol-gel dip-coating and aging, curing was conducted (Supplementary Fig. 1h), to form 

rigid bonds between exposed silica surface and the dye-doped hybrid sol-gel. The 

resulted probe was finally achieved with a typical “tip-cut” configuration that only the 

fluorescence emission at the tip (Fig. g, h, Supplementary Fig. k) was collected. The 
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novelty of this configuration is that it confines the fluorescent signal-collecting area at the 

3 µm tip to avoid massive interfering lights from other areas of the sensor tip, which 

significantly enhanced the spatial resolution of the probe when only the proton 

concentrations inside the cell is interested.    Technically, the fiber pre-alignment 

(Supplementary Fig. 1b) and tensile strength balancing should be properly conducted in 

order to produce rigid tapering. The twisted shaft stem is further demonstrated 

(Supplementary fig. 1e – g) and the detailed tip imaging showed that each single fiber 

diameter within the tip fiber bundle has gone down to ~ 100 nm width.  

The pH-sensing ability of the probe was realized by utilizing a pH sensitive HPTS 

dye51-53 and a hybrid sol gel method (Fig. 1, l). The pH sensitive HPTS dye was mixed 

(1:2 in molar ratio) with cetyl-trimethyl ammonium bromide (CTAB) to form the HPTS-

CTAB ion pair complex, followed by mixing with the prepared ethyltriethoxysilane 

(ETEOS) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) based sols, and the 

complete entrapment within the ultimate nano-structured aerogel networks was formed 

after curing.  The microstructure of the thin OrMoSil film was tailored to ensure 

completely encapsulation of the dye-containing ion-pairs without leaching. The detailed 

procedures can be found in the method section.  

The HPTS dye has superior photo-stability at the  pKa of ~7.30, and its 

conjugation with CTAB through ion-pairing strengthened the dye immobilization to 

avoid unnecessary disorder of molecular resonance and bathochromic shift that may 

occur by covalent bond. The polar GPTMS precursor was used to provide a hydrophilic 

matrix to promote proton permeability and the ETEOS precursor was used to provide 

mechanical stability and inner hydrophobic backbone (Fig. 1l).54 The molar ratio of 
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reactants and catalyst were adjusted to obtain optimized dye loading capability, sensing 

ability and film stability.54 A 488 nm  wavelength was used for excitation and the 

fluorescent signals were collected at ~510 nm in response to the varied pHs in a single 

cell, though other choices may also be applied.54 With this novel design, no dye leaking 

was observed during the protonation and deprotonation process (Fig. 1m).   

 

-pH probe characterization and validation. The fabricated probe was characterized 

through SEM/FIBs/EDS scanning and validated by pH measurements under 

physiologically-relevant conditions. Fig. 1i clearly shows the cross-section view of the 

probe tip (~15 m away from the tip end), where seven fibers were hexagonally aligned. 

All of the seven fiber cores are still well-separated, which can avoid direct light passing-

through between central and peripheral fibers. Fig. 1j and 1k are zoom-in views of the 

porous nano-networks as well as the depth (~450 nm) of the OrMoSil-dye coating layer 

as yellow square boxes labelled in Fig. 1i. An enriched level of carbon (C) with lower 

levels of O and Si from EDS results clearly demonstrates a uniform deposition of the 

OrMoSil-dye layer.  

Photonic simulation was conducted in parallel to better understand the photon 

behaviors at the probe tip, thus optimize the fabrication process and prove the sensing 

capability at such a small probe tip (Supplementary Fig. 3, a - d). The central fiber wave-

guided 488 nm laser beam was found to start weakly oscillate between the central and 

peripheral fibers in the tapering tip at < 4 m (Supplementary Fig. 3e). This is mainly 

because of the changed permeability of the cladding after tapering. Once the diameter 
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becomes small, it allows the evanescent wave to pass through in-and-out of the central 

fiber substantially, which ultimately can be coupled out of the probe at the last 15 m 

length region of the probe tip (Supplementary Fig. 3, f - i). The additional confinement of 

the “tip-cut” region by the sputtered Au/Pd shielding layer is thus necessary to prevent 

any lights from outside of the cell being collected by the probe and only so that the 510 

nm fluorescence inside the cell can well be collected by the probe tip.     

The µ-pH probe was calibrated using standardized pH buffers under constant 

conditions (Fig. 1n), and a good linear correlation (R2 = 0.9827) between applied pHs and 

spectra peak area (Fig. 1o) was demonstrated. A higher coefficient can be obtained (R2 = 

0.9895) in a narrower pH range from 6.17 to 8.11. It was found that using peak area 

provided a better linearity than the double-wavelength ratiometric method 

(560nm/640nm) because the spectra fluctuation can be mostly eliminated 48 

(Supplementary Fig. 4, a - i). Therefore, the entire data in this study were collected by 

using the peak area and the pH sensitivity was calculated in terms of change in 

fluorescent peak area per pH unit. An average of 14,867 unit change in peak area was 

found corresponding to one pH unit variation within the biologically-relevant pH range. 

The pH resolution was calculated with an average of 0.0657 pH unit. An iteration-based 

curve-fitting process (OriginLab) was used to smooth the curves (Supplementary fig. 4j) 

and the optimize pH resolution can reach to ~ 0.02 pH unit.  

To evaluate the probe under realistic biological conditions and exclude 

cytoplasmic matrix influences, the -pH probe was further evaluated by using an 

intracellular pH calibration kit through measuring the same series of cells under a fixed 

pH buffer condition and clamped intracellular pH using valinomycin and nigericin (Fig. 
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1p).55,56 A 95% measuring accuracy was confirmed by comparing the measured pH 

results between using the kit and using the probe. Afterwards, four key parameters were 

examined on how each of the parameters affect the accuracy of pH measurement (Fig. 1, 

q - t). it was found that there was significant change of ionic strength with temperature 

within the physiologically-relevant pH range (Fig. 1, q and r),57 and neither the glucose 

nor the bovine serum albumin (BSA) interfers the  probe performances (Fig. 1, s and t). 

These evaluations demonstrated that the sensing feasibility of the probe under in vitro 

physiological circumstances. The potential photo-bleaching was also evaluated by 

irradiating a glass cover slip that coated with the same aerogel layer (Supplementary Fig. 

5). Gradual fluorescence attenuation of ~10% and 20% intensity-drop between 900 and 

1500 seconds were observed respectively, which is appreciably acceptable, since the laser 

beam was permitted to transmit to the probe tip for merely ~ 5 seconds in real pH 

measurement.      
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Figure 1 Fabrication and validation of the -pH probe. (a) Schematic representation 
of the coaxially twisted probe tip. The squared green box was shown in (b), indicating the 
actual tip configuration imaged in bright-field channel under inverted microscope. The 
red squared box was then shown in (c) under SEM, with a tip diameter around 500 nm – 
1 m. (d) Enlarged area of the squared orange box in c, to show the tip after a thick 
sputter coating of Au and Pd. (e) An exemplary probe tip after FIBs milling (cutting) of 
the first 5 m sputter-coated Au/Pd layer to expose the underneath SiO2 surface. (f) EDS 
mapping of the “tip-cut” area to show the exposed underneath Si after sputter-coated Au 
being milled off by FIBs. A fully fabricated probe with OrMoSil-dye coating is then 
shown under inverted microscope in (g) bright-field, and (h) FITC channels. (i) SEM 
image of the cross-section of the probe (positioned 15 m away from the tip-end) 
indicates a well-maintained hexagonal configuration until the very end of the probe. (j) A 
zoom-in view of the porous nanostructure of the OrMoSil-dye coated probe surface (the 
right yellow square box in i). The comparison of EDS elemental scanning between i and j 
illustrate a substantial distribution of carbon on the outer probe layer, demonstrating a 
successful aerogel deposition. (k) A zoom-in view of the left yellow square box in i 
shows an averaged ~450 nm thickness of the coated OrMoSil-dye sensing layer. (l) 
Sketch showing the ion pair (IP) formation of the HPTS-CTAB conjugates, as well as the 
basic formula of the hybrid OrMoSil sol-gel for probe dip-coating. (m) Schematic 
representation of the pH-sensing principle of the porous OrMoSil sensing layer with 
entrapped HPTS-IP complex. (n) Detected fluorescent spectra by the probe using 
standardized gradient pH buffer solutions. (o) Linear correlation between standardized 
pHs and signal peak-area covers a wavelength range from 492 nm to 640 nm. The 
measurement of the pH probe was further confirmed by using an intracellular pH 
calibration kit (p), and validated using varied (q) ionic strength (sodium chloride), (r) 
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temperature, (s) glucose concentration as well as (t) BSA concentration, under the same 
pH and physiological-relevant conditions. Objects are not drawn to scale. Scale bars: c, g, 
h, 50 m; d, 6 m; e, 10 m; I, 5 m and j, k, 1 m. 

 

Intracellular pH measurement in a single live cell. The capability of the developed -

probe to measure intracellular pH in a single cell was tested using freshly-trypsinized 

single A549 cells (Fig. 3). Three exemplary probe insertion and in situ pH measurements 

were demonstrated with randomly selected cells (Fig. 2, a-f). Bright-filed channel images 

(Fig. 2, a, c, e) show a shallow cytoplasmic insertion of the probe in each measurement, 

while the merged fluorescent images (Fig. 2, b, d, f) show DAPI stained cell nucleus and 

the lightening spot (FITC channel) of the inserted probe tip. Inserts are zoom-in view of 

each lightening spots which only occupy an average of ~500 nm3 volume. The total 

insertion-equilibrating and signal-acquisition time was less than 5 seconds. Therefore, 

this novel probe can be used for in situ pH measurements with high spatiotemporal 

resolution. The whole process for cell capturing, inserting, and releasing process was 

shown in the supplementary figure and video (Supplementary Fig. 6, Supplementary 

video clip #1). The unique advantage of this probe is that the whole probe insertion 

process maintains a minimum invasiveness to the cell membrane, and the cell viability 

was not shown significant differences between probed and non-probed cells for at least 

24 hours. Additional twelve individual cells were also captured and tested using this 

probe and the results were summarized in a bar graph (Fig. 2g). Even two possible 

outliers (green dots) were excluded, an overall larger than one pH unit differentiation was 

found between the cell with the highest pH (pH 7.78) and the cells with the lowest pH 

(pH 6.72) unprecedentedly exhibits a distinctive heterogeneity among the seemingly 

identical cells under the same culturing environment. 
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Monitoring of cell deterioration process by using this novel probe. The probe was 

applied for dynamic cell sensing under two different cytotoxicating conditions using 

carbonyl cyanide m-chlorophenyl hydrazine (CCCP) and a 40 nm titanium dioxide 

(TiO2) nanoparticles (NPs). Mitochondria are known for their energy metabolism 

controlling and are crucial organelle involves in many cellular events and responses to 

surrounding environment.58 Interrupted mitochondrial function will directly damage 

cellular energy consumption and even cause cell death.59-62 We applied a mild dose (50 

M) of CCCP in cells to purposely cause negative effect on the mitochondrial inner 

membrane potential (Δψm) through depolarization.63 Then the cellular  statuses were 

closely monitored by using the novel µ-pH probe and a Δψm sensitive dye J-aggregate-

forming lipophilic cation (JC-1).64,65 JC-1-stained cell images (Fig. 2h) were quantified 

and plotted based on the fluorescent intensity ratio of Cy3/FITC (Fig. 2i), and compared 

with measured pHs with the developed µ-pH probe measured from 10 individual cells 

(Fig. 2j). Results show  a quick pH decreasing within 40 minutes (Fig. 2j) from averaged 

pH level ~ 7.5 down to ~ 5.3, meanwhile no apparent cell deterioration trend was 

observed in the JC-1-stained group (Fig. 3i). A longer time of monitoring did not show 

apparent Δψm damaging by using JC-1 staining until 3 hours after CCCP-dosing, which 

demonstrated  the sensitivity of the this novel probe that has  great potential in detecting 

early-stage intracellular dynamic events.66-69 The result obtained from our study is 

consistent with the previously reported stringent connection between intracellular pH and 

mitochondria,66-69 and suggests that the intracellular pH change can potentially serve as 

an alternative indicator for mitochondria dysfunction and cell deterioration. We further 

conducted a twelve-hour single cell pH measurements with and without exposure to 100 
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g/mL, 40 nm TiO2 NPs. Fundamental heterogeneity was clearly observed through 

significantly varied single cell responses (n total = 23) to the same NP-exposure condition 

(Fig. 2k), and a statistically significant difference (p < 0.05) between control and NP-

exposed cells were observed after the first two hours NP-exposure. 

Discussion 

A novel ratiometric-free, fiber-optic -pH probe that can be feasibly applied in 

biophysiological niche environmental pH measurements was developed and 

demonstrated. The pH sensitive dye molecules are well-confined within the OrMoSils 

aerogel thin layer, and a featured “tip-cut” design enables its high spatial-resolution 

sensing ability. The linear pH sensing range of the probe perfectly fits the 

physiologically-relevant condition from ~6.0 – 8.0, and an optimized pH resolution up to 

~0.02 pH unit significantly enhances its applicability in tracking subtle cellular pH 

variations. The effective sensing surface area can further be tailored by simply modifying 

the “tip-cut” region into desired tip length. The unique advantages of this novel probe are 

that its high-spatial-resolution was not compromised by sacrificing its extraordinary 

temporal resolution, and a real-time sensing can be achieved because of its fast 

equilibrating process. Moreover, the steady signal acquisition of the probe can be 

maintained for hours, thus it is very useful for intracellular macromolecular kinetics 

sensing (e.g. endoplasmic reticulum and mitochondria). The high-spatiotemporal 

resolution character of the probe provides biomedical researchers opportunity to study 

early-stage cell events in one single cell.  
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Figure 2 Early-stage cell deterioration illustrations by in situ single cell pH sensing. 
Three exemplary single A549 cell capturing and intracellular probing are shown under 
bright-field (a, c, e) and fluorescent channels (b, d, f). Merged fluorescent images were 
taken under DAPI (cell nucleus) and FITC (HPTS dye fluorescence) channels. The inset 
zoom-in views of the probe tip lightening area demonstrate a tiny sensing spot within the 
cytoplasmic region. (g) Quantification summary of intracellular pH measurements from 
15 randomly chosen single cells. Each data points stand for signals from one cell and the 
bar graph shows the averaged median values ± standard deviation. Green dots with 
measured pH of 6.34 and 8.10 are two suspected outliers. (h) Images of mitochondria 
membrane potential variation during CCCP toxicating, indicated by JC-1 dye staining. 
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90% confluent A549 cells were exposed to 50 M CCCP for one hour, and epifluorescent 
images were taken under FITC/Cy3 channels and compared with control. (i) Images were 
calculated and 3-D plotted based on the fluorescent intensity ratio of Cy3/FITC, and were 
finally averaged and plotted vs. time. (j) Intracellular pH real-time measurement for five 
single A549 cells treated by the same CCCP-toxicating condition as was in i, and 
compared with non-treated cells. (k) Single cell real-time monitoring of intracellular pH 
during cell exposure to 100 g/mL, 40 nm TiO2 NPs for 12 hours. Red lines are tested 
cells while blue lines represent controls. (l) Bar graph shows the analyzed data from k. 
Statistical significance is indicated by the asterisk, where * means p < 0.05, ** means p < 
0.01 and *** means p < 0.001. Scale bars: a - f, 10 m; h, 20 m. 

 

This novel probe can provide widespread biological applications.  In addition to 

monitor pH changes in a single cell, it can also monitor pHs outside of a cell surface and 

other niche environment that other pH devise may not be applicable. These unique 

features may unprecedentedly leverage biomedical and biological researches in single-

cell heterogeneity-related areas, such as cell differentiation processes in stem cells and 

developmental biology studies, cell plasticity and cell fate determination, early-stage 

carcinogenesis studies, cytotoxicity studies, as well as development and evaluation of 

pH-responding drug delivery. For all these applications, ultimate multi-parametric 

probing of targeted micro-bio-sample through simultaneous, constant, optical monitoring, 

with minimum invasiveness, as would be promptly implemented by using our developed 

single cell sensing system, is of fundamental interest in the future precise medicine 

practices. Finally, a high-throughput single-cell-resolution analyzing workstation can be 

established based on this novel system, combining with automatic control of cell 

manipulation, microfluidic-devices, advanced imaging and multifunctional sensing 

probes.        
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SECTION 

2. CONCLUSIONS 

In summary, three major aspects were covered in a series of internally-correlated 

studies that aimed not only to provide phenomenon to mechanism insights into MNMs 

related cytotoxicity as well as a special case on bioactive glass fibers, but also to develop 

a successive levels of optical fiber-based probes for quasi- to single cell level 

measurements, where the pH has been a constant emphasis. The ultimate expectations 

were to provide a feasible hint to pave the way of fabricating next generation single cell 

resolution sensors and thus, profoundly solve the cellular heterogeneity problem for the 

future precise biomedical practice.  

We first quantitatively demonstrated that the cytotoxicity of 50-70 nm ZnO NPs to 

A549 cells was dose-, time-, hydrodynamic size, as well as irradiation wavelength-

dependent. We found that the photo-catalytic properties of ZnO NPs can significantly 

enhance their cytotoxicity, and we discovered a unique nuclear decomposition process 

prior to membrane deformation during cell exposure to NPs. We thus hypothesize that the 

basic nuclear environment selectively attracts the positively charged electron-“holes” on 

ZnO NP surfaces generated by irradiation. Bearing this hypothesis, we looked deep into 

the physicochemical properties of ZnO NPs on ROS generation. ESR analysis clearly 

demonstrated that •OH generation is the function of irradiation time, hydrodynamic size, 

dosage, and local pH. Preferential •OH generation was actually correlated with 

irradiation, alkaline pH, high dissolved oxygen, and low ionic strength. We found the 

transiently generated •OH prefer to bound to the NP surface thus suggested high 



209 

 

concentration, localized ROS production region, which indicative of a novel, alternative 

mechanism for nanocytotoxicity.  

Then, a special case of bioactive MNMs: borate- and silicon-based nano-/micro-glass 

fibers were comprehensively evaluated for their biocompatibility. Substantial glass-

conversion was observed during fiber immersion, indicating an active ion-exchanging 

process between medium and fibers under dynamic flow conditions. These processes 

were lately proved good for cell growth and migration through appropriate adjustments. 

Moreover, the trace amount doping of metal species within the glass composition (such 

as copper and zinc) also demonstrate their potential importance in biocompatibility and 

bioactivity. These results for the first time provide quantitative basis for the 

biocompatible mechanism of such material, and widened our view of different MNMs 

that may interact with bio-systems.  

Thirdly, we continuously developed a series of fiber-optic reflection-mode probes 

based on dye-doped ultra-thin aerogel dip-coating technique for pH sensing. Starting 

from a one-fiber spherical head probe, which can only measure maximally 50 – 70 m 

range, then upgraded to a unique hexagonal 1-in-6 fiber configuration, and finally 

established a novel ratiometric-free, fiber-optic -pH probe with a featured “tip-cut” 

region, for single cell subcellular measurement. Many state-of-the-art techniques have 

been used during the progress that including sol-gel dip-coating, covalently bond 

OrMoSils, HMDS priming, aerogel formation, coaxial-twisting and gravitational-

stretching, nano-/micro-fabrications use FIBs under SEM, as well as miscellaneous laser 

and fiber optic techniques. An ultimate linear pH sensing range of the probe is from ~6.0 

– 8.0 and an optimized pH resolution up to ~0.02 pH unit can well be achieved with high-
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spatiotemporal-resolution. These series of developed probes are especially useful for both 

extra-and intra-cellular macromolecular kinetics sensing, and their high-spatiotemporal 

resolution character of the probe provide unprecedentedly opportunities to study the 

cellular heterogeneity with single, live cells.  
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