
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2019 

Deep neural network learning-based classifier design for big-data Deep neural network learning-based classifier design for big-data 

analytics analytics 

Krishnan Raghavan 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Raghavan, Krishnan, "Deep neural network learning-based classifier design for big-data analytics" (2019). 
Doctoral Dissertations. 2895. 
https://scholarsmine.mst.edu/doctoral_dissertations/2895 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2895?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


DEEP NEURAL NETWORK LEARNING-BASED CLASSIFIER DESIGN FOR

BIG-DATA ANALYTICS

by

KRISHNAN RAGHAVAN

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2019

Approved by

Dr. Jagannathan Sarangapani, Advisor
Dr. Donald C. Wunsch
Dr. Maciej J. Zawodniok
Dr. Ronald J. Stanley

Dr. V. A. Samaranayake



Copyright 2019

KRISHNAN RAGHAVAN

All Rights Reserved



iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared using the publication option and is composed of

five papers. Paper I, covers pages 15-51 and the title is AHierarchical Dimension Reduction

Approach for Big Data with Applications to Fault Diagnostics. This paper is under second

revision with Big Data Research. Paper II covers pages 52-94 and the title is A Multi-Step

Nonlinear Dimension-Reduction Approach with Applications to Big Data. This paper is

published in IEEE Transactions on Knowledge and Data Engineering.

Paper III covers pages 95-122 and the title is Direct Error Driven Learning for

Deep Neural Networks in Applications Generating Big Data. This paper is accepted with

minor revision in IEEE Transactions on Neural Networks and Learning Systems. Paper IV

covers pages 123-162 and the title is A Game Theoretic Approach for Addressing Domain-

shift with Applications to Big-Data Classification. This paper is under review with IEEE

Transactions on Knowledge Data and Engineering. Finally, Paper V covers pages 163-201

and the title isDistributed Min-max Learning Scheme for Neural Network with Applications

to High Dimensional Classification. This paper is in review with IEEE Transactions on

Neural Networks and Learning Systems.



iv

ABSTRACT

In this digital age, big-data sets are commonly found in the field of healthcare, man-

ufacturing and others where sustainable analysis is necessary to create useful information.

Big-data sets are often characterized by high-dimensionality and massive sample size. High

dimensionality refers to the presence of unwanted dimensions in the data where challenges

such as noise, spurious correlation and incidental endogeneity are observed. Massive sam-

ple size, on the other hand, introduces the problem of heterogeneity because complex and

unstructured data types must analyzed. To mitigate the impact of these challenges while

considering the application of classification, a two step analysis approach is introduced

where the first step is that of dimension-reduction and the second step is classification using

deep neural networks(DNN).

First, multi-step dimension-reduction approaches are developed where both linear

and nonlinear relationships among dimensions are considered. The dimensions are first

grouped, and each group is then transformed. These two stages are repeated for multiple

steps to achieve sufficient dimension-reduction. Novel singular value-based criterions are

defined to create groupings, determine the number of steps, and control information loss.

Mitigation of noisy dimensions with reduced computational complexity is demonstrated.

Subsequently in the second part of the dissertation, it is shown that heterogeneity

can increase generalization error in DNN-based classification. To mitigate this effect,

novel learning frameworks are developed where generalization cost is approximated and

then minimized during learning. Direct error-driven learning scheme and an additional

variables-based distributed learning regime are introduced to train the DNN in the presence

of big-data challenges. Efficient DNN learning is demonstrated while mitigating vanishing

gradients and challenges due to sparse non-convex optimization. Simulation results using

several big-data sets validate theoretical results.
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SECTION

1. INTRODUCTION

Digital data is ubiquitous. Applications such as computer vision, health-care and

manufacturing systems generate considerable amounts of data. For instance, a Boeing

jumbo jet generates about 650 TB of data over one Atlantic crossing (Figure 1.1). Such

data-sets are typically called big data.

Figure 1.1. Big data generated by various fields.

Big data refers to data-sets whose size is beyond the ability of typical database

software tools to capture, store, manage, and analyze. This definition is intentionally

subjective. For instance, the advancement in computing technology might change the

definition of how big a data-set must be before it can be classified as big data.
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Figure 1.2. Characteristics of big data [1].

The term big data does not capture the quantity of data alone but is also characterized

by the 5Vs, which include volume, velocity, veracity, value and variety. Volume refers to

the amount of data available whereas velocity refers the fast moving nature of data. Variety

indicates that the data is collected from various sources. Veracity represents the uncertainty

presented by the data. Finally, value refers to the amount of actionable insight provided

by the data . These 5 Vs can be used to loosely define big data. See Figure 1.2 for an

illustration.
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Through efficient analysis, a multitude of important information can be extracted

from big data to drive key decision making. Because the 5Vs of big data distinguish it from

traditional data sources, a dramatic paradigm shift must occur in analysis strategies. Such

a paradigm shift highlights the fact that strategies required for sustainable analysis in big

data scenarios are fundamentally different from traditional methodologies [2].

Analysis strategies in big data can be categorized into techniques and technologies.

Technologies refer to software solutions that focus on developing infrastructures to store,

retrieve and enable analysis of big data [3]. These methodologies [3] are primarily focused

on developing computationally friendly solutions to the problem of analyzing big data. In

this process, the data is usually broken down into smaller manageable chunks. A distributed

processing environment such as Hadoop or Apache spark [5, 6] is then used to analyze them.

The analysis of these independent sections of data is usually performed with traditional data

analysis methods [3] such as principal component analysis (PCA), K-nearest neighbors, etc.

This field is not the focus of this dissertation.

On the other hand, the techniques required for the sustainable extraction of actionable

insights from big data are dedicated to understanding and addressing the unique statistical

challenges introduced by large dimensionality and the volume of big data. Typically, the

challenges to be addressed depend on the application in hand. In this dissertation, we

consider the problem of classification where the objective is to determine which category

does a data-point belongs to. To predict these categories, the main idea is to estimate a map

φ(.), referred to as classifier, that transforms the data-point x into a probability space where

the magnitude of φ(x) indicates the membership of x to different categories. Membership

values signify the probability of x belonging to any particular category. To learn φ(.)

one usually assumes that a data-set X with labels Y is available and it represents all the

necessary information. The overall learning then involves approximating φ(.) through a

parametric map such as neural networks, spline functions, etc.
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While classifying high dimensional data-sets, challenges such as noise accumula-

tion, spurious correlation and incidental endogeneity can be observed [3, 2]. In addition,

large volume of data also introduces heterogeneity and statistical bias. High dimensionality

combined with large volume introduces high computational cost.

Figure 1.3. Big data classification pipeline.

The problem of classification can be solved using two step. Each step in the process

is a map as described in Figure 1.3 such that feature extraction map is denoted by f̂ and

probability map is denoted by ĥ. The composition of the two maps is referred to as a

"classifier." Specifically, feature extraction involves obtaining a subset of features from

the data-set, where this subset is intended to be informative and non-redundant. These

extracted features can subsequently facilitate the efficient design of the probability map

[4]. The probability map can involve a variety of applications such as fault diagnostics

and classification [3]. In a traditional setup, one would design a feature extraction map

and a probability map independently whereas with deep neural network-based designs, one

usually combines the two steps into a single map and learn it efficiently through optimization

approaches. Typically, challenges such as noise, spurious correlations and heterogeneity are

observed in the feature extraction process whereas the problem of incidental endogeneity

and heterogeneity arises in the probability map.

Noise can be of two types: noisy dimensions - dimensions in the data that do not

contribute to analysis, and noisy data - the presence of distortions in the data. The accumu-

lation of noisy dimensions and noisy data can result in severe degradation of performance

of the prediction model [3].
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Spurious correlation refers to the case, when two dimensions exhibit high values of

sample correlations but there is no causal relationships between these dimensions. Critical

problems may arise with spurious correlation in scenarios where the number of dimensions

far exceeds the number of data-points [2]. In such cases, it has been shown [3, 7] that only

a few dimensions contribute positively to analysis whereas the other dimensions introduce

errors and contribute to spurious correlation [7].

Big data-sets are often created by aggregating different data sources. Each data

source can exhibit unique characteristics not shared by other sources which results in the

problem of heterogeneity. Remarkable insights can be derived if unique characteristics

from different sources are considered during analysis. Another unique challenge introduced

in high dimensional regression problems is incidental endogeneity which is the scenario

when the regression parameters are directly correlated to the residual errors. Incidental

endogeneity causes inconsistency in model selection [2, 8].

In spite of these complications, sustainable classification is possible if, careful

attention is paid to these challenges. This becomes the motivation of this work. An

overview of current literature is discussed next.

1.1. OVERVIEW OF CURRENT BIG DATA ANALYSIS METHODOLOGIES

A common solution to the issue of noise accumulation and spurious correlations is to

extract features using dimension-reduction methodologies; see Figure 1.3 for an illustration.

In the current literature, PCA [11], factor analysis [12], etc. are commonly used for

dimension-reduction. In these methodologies [11, 12], a linear projection of the data

is performed using eigen-decomposition of the correlation matrices. However, efficient

projection requires accurate estimation of dependence relationships.

Two problems that are observed when evaluating dependence relationships in big

data. First, when Pearson correlation/covariance matrices are used, imperfect estimation

of dependencies is common due to the presence of nonlinear relationships, [7]. Second,
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when the number of dimensions in the data far exceeds the number of sample points, a non-

singular Pearson correlation/covariance matrix cannot be guaranteed [7, 11, 12]. Due to

insufficient information about dependencies, efficient feature extraction cannot be ensured.

In the literature, several dimension-reduction techniques such as isomap [13], locally

linear embedding (LLE) [14], Hessian LLE [15], Laplacian eigenmaps [16] and kernel PCA

[17] have been introduced for addressing nonlinear relationships. These methodologies

[13, 14, 15, 16, 17] ascertain the intrinsic geometric structure of high dimensional data.

However, high dimensional spaces are sparse and suffer from distance concentration [7]

which makes the discovery of intrinsic geometric structure challenging.

Recently divide-and-conquer mechanisms for dimension-reduction were proposed

in [18, 19, 20, 21] that use known application-specific relationships and natural groupings

to perform group-wise organizaton. Prior information about natural grouping structure is

required to enable such organization in these approaches [18, 19, 20, 21] which is not always

available in big data scenarios.

One step mapping from a higher to a lower dimensional space is the underlying

principle in the approaches mentioned earlier [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Such approaches [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] are computationally unfriendly

and susceptible to improper estimation because of noise and redundancies. A multi-step

dimension-reduction approach is therefore desirable in big data scenarios [2]. This concept

forms one of the fundamental ideas for the first two papers in this dissertation.

A small subset of features is traditionally created in the previously mentioned

approaches [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] . These subsets can also be

created by generate-and-test methods [22, 24]. The main drawback for these methods

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24] stems from the fact that the performance

of the detection methodology is not taken into account during feature extraction. It has been
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shown in [30] that the inclusion of such a feedback would assist the feature extraction pro-

cess, especially in complicated data-sets, where traditional dimension-reduction approaches

do not perform well.

Deep neural networks (deep NN) have gained prominence recently for learning-

based feature extraction [25] in classification problems. In a typical deep NN, feature

extraction is performed using compositions of parametric maps that involve linear and non-

linear transformations. A performancemeasure is generallyminimized to learn themapping

parameters [26]. The inclusion of the performance measure allows the feature extractors

to receive feedback on their performance from the detection methodology. The procedure

involves evaluating the gradient of the performance measure with respect to the parameters,

which forms the premise for training deep NN, popularly known as backpropagation [27].

However, the presence of big data-challenges introduces a shift in the data-distribution of

the data under analysis. This shift can be observed due to a number of reasons such as

data-noise and statistical heterogeneity [2] and it introduces errors, known as generalization

errors, in the data analytics including prediction. Furthermore, additional challenges such

as incidental endogeneity and vanishing gradients [28] are also observed.

Authors in [30] addressed the issue of generalization error by proposing an ensemble

of classifiers. In contrast, the authors in [31] introduced an additional adaptation layer to

explicitly model faulty labels. A bounded term in the cost function was proposed in [32]

to compensate for the impact of noisy dimensions. In applications involving big-data, the

method in [30] is not feasible due to the amount of resources required. Likewise, due to

the large number of noisy dimensions in big data, the bounds introduced by [32] may not

exist. Moreover, these approaches [32, 30, 31] ignore the effects of noise and only focus

on faulty labels. In the literature, regularization techniques such as L2 norm, dropouts

[33] and adversarial regularization [34] are used to improve generalization error. Yet, these

methods[33, 34] are not systematic. Furthermore, several DNN based approaches have been

proposed to compensate for such shift in the data-distribution [40, 41]. These approaches
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suffer from critical drawbacks in big data environmentswhich can be summarized as follows:

(1) the performance depends on the good use of heuristics [37, 38, 39], which is difficult to

obtain in the big data environments: and (2) they work well under a general assumption: the

distribution shift is exactly known [41, 40], an impractical assumption in many engineering

environments.

The issue of vanishing gradients are typically mitigated in the literature using alter-

nate activation functions such as leaky relu, drelu, etc [43, 28]; or learning rate schedules

[28] are common ways of addressing this issue. However, it has been shown that these ap-

proaches [28] do not mitigate the vanishing gradient problem completely and only provide

a workaround for satisfactory performance [43].

These drawbacks have motivated further research in alternate non-gradient-based

learning frameworks [46, 47]. Target propagation was introduced in [46] where difficult

to define targets are introduced at each layer with great computational cost to break the

learning process across layers. In addition, error-driven learning approaches were proposed

in [47] which suffer from inefficiency while optimizing convolutional neural networks

(CNN) as is shown in [47]. The presence of high dimensional data-sets also introduces

additional challenges into the learning procedure [2]. As the number of parameters in the

DNN scales quickly with dimensionality of data estimating parameters of DNN mapping

is intractable because enough data-points are not available. Additionally challenges such

as spurious correlation and incidental endogeneity introduces estimation errors into the

learning problem.

All of these challenges reflect the need for mitigating the impact of big data chal-

lenges on the traditional data-analysis methodologies and thus motivated by these facts,

a suite of methodologies are presented in this dissertation for the analysis of big data.

The techniques proposed in this dissertation can be broadly categorized into dimension-

reduction-based approaches and learning-based methodologies. The organization of this

dissertation is presented next.
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Figure 1.4. Organization of the dissertation.

1.2. ORGANIZATION

This dissertation will be covered in five papers. The relation of one paper to another

is illustrated in Figures. 1.4 and 1.5. As a common theme, the problem of classification

is considered in this dissertation. In the first two papers, the focus is on the design of the

feature extraction map whereas deep NN-based approaches are presented in the last three

papers.

In the first paper, a hierarchical dimension-reduction approach is presented for

distancemeasure based faults diagnostics inmanufacturing systems. This approach assumes

that linear relationships are present in the data. Specifically, a generalized distance measure

is proposed in conjunction with a novel hierarchical dimension-reduction (HDR) approach

is presented. Redundant dimensions and non-invertible correlation matrices are addressed.
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Figure 1.5. Organization of the dissertation with reference to the big data analysis pipeline.

The task of isolation and detection of faults is performed using a probabilistic methodology

developed in this paper. To approximate the density function of the data in the presence of

high dimensions, Edgeworth expansion-based expressions are derived.

In the second paper, the assumption of linearity from the first paper is relaxed.

Challenges such as heterogeneity and noisy dimensions are addressed in the context of

dimension-reduction. In the proposed approach, dimensions in the data are reduced while

considering the data in batches. Nonlinear relationships are captured using distance corre-

lation matrices. Redundant and noisy dimensions are systematically removed by dividing

the attributes in the data into groups and using a parametric map in each group for transfor-

mation into a low dimensional space. The magnitude of singular values of the respective

attributes is used to enable group-wise organization. The organization and subsequent

reduction process is performed until a user-defined criterion on singular values is satisfied.

The problem of heterogeneity is addressed by introducing matrix factorization-based ag-
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gregation methods. Data in the reduced dimensions are utilized for fault diagnostics and

classification. Due to the lack of any feedback from the detection model, NDR and HDR

underperformed in complicated data-sets such as CiFar-10.

To enable this feedback, and to minimize the impact of noisy data, heterogeneity

while learning to classify data points, direct error-driven learning scheme is proposed in

the third paper. First, to reduce the impact of heterogeneity and data-noise, the concept of

a neighborhood is introduced. The neighborhood is generated by introducing perturbations

into the training data and generating additional samples. Using these additional samples, an

approximation of generalization error is obtained and an overall error, comprised of learning

and the approximate generalization errors, is defined. A novel NN weight-tuning law is

obtained through a layer-wise performance measure that enables the direct use of overall

error for learning. Through a comprehensive simulation study, the proposed approach is

shown to mitigate the vanishing gradient problem while improving generalization by 6%.

In the previous paper, the extent of perturbations that must be introduced to generate

an approximation of generalization error was chosen by the practitioner. To mitigate this

issue, in the fourth paper, we introduce a distortion model that introduces these perturba-

tions(domain shift) into the training data. Then, through a two player zero sum game that

involves a deepNN-based classifier, we solve for optimal shift and its compensation through

the classifier. In the proposed game, the distortion model is viewed as the maximizing

player which increases the domain shift while the classifier becomes the minimizing player

that improves classification accuracy. The Nash solution of the game provides the domain

shift and its optimal adaptation through the classifier. To solve the proposed game for the

Nash solution, the direct error-driven learning scheme that was introduced in the last paper

is modified. A comprehensive simulation study and mathematical analysis is presented to

demonstrate the efficiency.
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In the last paper of the dissertation, an alternative learningmethodology is introduced

to address challenges due to high dimensional data-sets. Here, a novel distributed learning

methodology is introduced for deep NN while considering a L1 regularized optimization.

Here, optimal sparsity in the deep NN is estimated by designing a two player zero-sum game

between the penalty coefficients/sparsity parameters and the DNN weights. To solve this

game, a novel learning scheme is introduced where layer wise cost functions are derived

at each DNN layer by introducing additional variables. As a result, the output at a given

DNN layer depends on the additional variables instead of the previous layer. An alternating-

minimization optimization procedure is designed to optimize these layer-wise cost functions.

The obtained Nash solution of the game provides optimal sparsity and its compensation

through the classifier. The proposed approach is finally implemented in a parallel and

distributed environment through a novel computational algorithm and demonstrated both

theoretically and using nine data-sets.

1.3. CONTRIBUTIONS

The techniques presented in this dissertation can be broadly categorized into dimension-

reduction-based approaches as presented in Papers 1-2 and learning-based approaches are

presented in Papers 3-5. The contributions for Paper 1 include the: (1) development of

a revised distance measure based on a novel hierarchical dimension-reduction approach

(GDM-HDR) for efficiently calculating distances in large dimensional cases; (2) investiga-

tion of GDM-HDR-based statistical test procedures for fault detection; (3) introduction of

a generalized distance-based classification scheme for big data diagnostics where bootstrap

sampling is used and Edgeworth expansion-based expressions are derived to approximate

the density function for each fault; and (4) demonstration of the analytical efficiency with

the computational benefits of the GDM-HDR-based approach in a big data scenario.
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Paper 2 alleviates the assumption of linearity from Paper 1. The contributions

include the (1) development of an multi-step, group-wise dimension-reduction approach

using distance covariance (NDR) to handle nonlinear relationships and noisy dimensions;

(2) design of a matrix factorization-based mechanism to update distance covariance and

the corresponding SVD using the data in batches to address heterogeneity; (3) introduction

of a generic group-wise organization procedure with explicit stopping criterion to control

information loss; and (4) demonstration of the efficacy of NDR using nine data-sets covering

the problem of classification and fault diagnostics.

Paper 3 introduces a learning-based framework for analyzing big data. The con-

tributions include (1) development of a novel cost formulation for optimization of deep

NN-based classification to reduce the impact of heterogeneity and data-noise; (2) design

of a direct error-driven learning scheme is defined to minimize the cost function to address

heterogeneity and data-noise while mitigating the vanishing gradient problem; (3) devel-

opment of a systematic approach to mitigate the impact of noisy dimensions to learning

for the EDL scheme and (4) demonstration of the efficacy of the proposed approach with

simulation analysis.

Paper 4 addresses the problem of unknown neighborhood size where the contribu-

tions are (1) generic distortion model for DA in the presence of big data challenges such

as heterogeneity and noise; (2) design of a two player zero-sum game for classification;

(3) direct error driven alternating minimization approach for solving the zero-sum game;

(4) simulation and mathematical analysis of the proposed approach involving a total of ten

data-sets.

Finally, Paper 5 presents a distributed learning approach. (1) novel distributed

learning approach of DNN is proposed. (2) a two player game is developed for mitigating

the impact of high dimensionality of data in the model. (2) theoretical results demonstrating

the validity of the proposed approach. (3) efficiency of the approach is demonstrated
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with simulation results involving the use of benchmarking data-sets. (4) development of

a parallelized implementation algorithm for the proposed approach. Each paper in the

dissertation is individually presented next.
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ABSTRACT

About four zetta bytes of data, which falls into the category of big data, is generated

by complex manufacturing systems annually. Big data can be utilized to improve the

efficiency of an aging manufacturing system, provided, several challenges are handled. In
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this paper, a novel methodology is presented to detect faults in manufacturing systems

while overcoming some of these challenges. Specifically, a generalized distance measure

is proposed in conjunction with a novel hierarchical dimension-reduction (HDR) approach.

It is shown that the HDR can tackle challenges that are frequently observed during distance

calculation in big data scenarios, such as norm concentration, redundant dimensions, and a

non-invertible correlationmatrices. Subsequently, a probabilisticmethodology is developed

for isolation and detection of faults. Here, Edgeworth expansion based expressions are

derived to approximate the density function of the data. The performance of the dimension-

reduction methodology is demonstrated to be efficient both theoretically and empirically

with simulation results involving the use of big data sets. It is shown that HDR is able

to explain almost 90% of the total information. Furthermore, the proposed dimension-

reduction methodology is seen to outperform standard dimension-reduction approaches

and is able to improve the performance of standard classification methodologies in high

dimensional scenarios.

1. INTRODUCTION

With the explosion of digital data, a dramatic paradigm shift has taken place in the

field of data analysis. Such a dramatic shift has highlighted the fact that strategies required

for sustainable analysis in big data scenarios are fundamentally different from traditional

methodologies [1].

Big data is characterized by unwanted, incomplete and redundant dimensions [2, 3]

where complications such as spurious correlations and incidental endogeneity may be ob-

served. Spurious correlation is seen when completely uncorrelated dimensions indicate

sample correlation [1], whereas incidental endogeneity is the presence of a relationship be-

tween unwanted dimensions and the predictor. These complications lead to false estimation

of dependencies in the data that result in erroneous fault detection.
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When high dimensionality is mixed with massive data, there is a need for distributed

storage solutions [4]. As a consequence, one must rely on samples for analysis, necessi-

tating the effective aggregation of parameters. In the absence of such a process, several

complications, including heterogeneity, experimental variation and statistical bias can be

seen [1].

In spite of the serious complications discussed earlier, sustainable analysis in several

fields, including statistics [5], machine learning [5], security [5] and fault diagnostics [6, 7]

is possible if serious attention is paid to the aforementioned challenges. The remedies to

the above problems are discussed through the setting of a fault diagnostics application.

There are typically two aspects to fault diagnostics. The first is fault detection

where an abnormal behavior is observed in an aging manufacturing system. The second is

identification of the fault type that is in progress. A logical way to address these problems

is to use a distance measure to analyze the deviation from healthy case while using a

classification methodology for recognizing them.

Several approaches have been proposed in the literature [8, 6, 7], that incorporate a

similarity measure for the problem of diagnostics. In these efforts, Mahalanobis distance

(MD) [9] has been demonstrated as a capable distance measure for multi-dimensional

scenarios.

However, in a big data scenario, two problems arise. First, when the sample size is

close to the number of dimensions or when there are redundant, unwanted dimensions in

the data, the covariance/correlation matrix becomes singular or non-invertible [2, 3]. As a

consequence, correlationmatrix cannot provide enough information and distance calculation

becomes meaningless. Second, distance values concentrate and lose discriminative power

in high dimensional spaces [10, 3, 11].
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A popular solution to address these issues is to reduce the number of dimensions

prior to distance calculation. Recently, several researchers [6, 12, 8, 7] have introduced

such techniques for fault diagnostics. In these efforts, popular dimension reduction methods

such as principal component analysis (PCA) [6, 13], factor analysis are frequently used for

reducing dimensions.

However, these methods [6, 12, 8, 7] rely on correlation or covariance matrices for

dimension reduction. Due to the challenges posed by high dimensional spaces discussed

before, it is not possible to estimate these matrices correctly. Moreover, the process is

computationally infeasible.

To address the problem of computational disadvantages and imperfect estimation

in large dimensional scenarios, divide-and-conquer mechanisms for dimension reduction

were proposed in [15, 16, 17, 18], where the authors have shown that in many cases,

known application-specific relationships and natural groupings can be exploited for efficient

dimension reduction. However, such approaches [15, 16, 17, 18], require prior knowledge of

these relationships to enable organization, which may not be available in big data scenarios.

Furthermore, in all of these dimension reduction approaches [6, 12, 8, 7, 19, 14,

13, 15, 16, 17, 18], the underlying principle is to perform one-step mapping from a higher

dimensional space to a lower dimensional space. First, such an approach is computationally

unfriendly when the dimension of the original data is very large. Moreover, it is also

susceptible to improper estimation due to the presence of large amounts of noise and

redundancies [29]. In light of these complications, a generalized distance measure based on

a novel hierarchical dimension reduction approach (GDM-HDR) is presented in this paper.

In the proposed split and merge approach, dimensions in the data are reduced prior

to distance calculation. Specifically, the dimensions in the data are organized into groups

and dimension are reduced in each group using the eigen-decomposition of the correlation

matrix.
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First, by grouping the dimensions and by controlling the size of the group, One can

avoid the estimation of a very large correlation matrix and at the same time fulfill the rank

condition for correlation/ covariance matrices. Second, systematic removal of unwanted

dimensions is performed in the proposed methodology. Third, a step-by-step process

of evaluation enables a distributed estimation of dependence relationships thus enabling

parallelization. Lastly, using a fractional-norm to induce distance instead of the classical

L2 norm reduces concentration of distances. As a side benefit, the overall computational

overhead of the calculation is linear with the number of dimensions in the data, making the

methodology favorable in large scale applications.

Similar to others [14, 12, 6, 7], a divide and conquer strategy is incorporated in this

paper. However, this work is fundamentally different from that in [14, 12, 6, 7]. Here,

the problem is solved by dividing the data across dimensions rather than along data-points,

which results in important advantages in big data scenarios. In contrast with [6, 12, 8, 7, 19,

14, 13, 15, 16, 17, 18], a multi-step dimension-reduction approach is introduced in HDR

to reduce inconsistencies and redundancies. It is shown that the complexity of dimension

reduction is reduced from a quadratic complexity to linear complexity.

To test the efficiency of the proposed distance measure, a comprehensive method-

ology is developed for diagnostics. Here, bootstrap sampling-based statistical tests are

utilized for detecting faults. Further, a bootstrap distribution based Bayesian methodology

is proposed to isolate faults. Here, Edgeworth expansion based approximations are derived

for distribution estimation, which allows for uncertainty modeling even for non-Gaussian

distributions.

The overall methodology is shown to be very effective for diagnostics in complex

manufacturing systems generating big data with thorough theoretical and simulation analy-

sis. Although HDR and the proposed fault isolation methodology are designed specifically

for the application of fault diagnostics, they are applicable to a larger class of problems

such as classification. A comprehensive study is therefore presented to compare the pro-
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Table 1. Notations

Notation Meaning
X0,Y Healthy sample, Test sample
F Number of faults in the system.
Xk : k = 1,2, · · · ,F Samples corresponding to the faults.
n Number of attributes in the data.

M0, My, M = ∪
F
k=0Mk

Number of samples in the healthy sample, number
of samples in the test sample, Total number of
samples.

p : p = 1,2, · · ·M0 p′ : p′ =
1,2, · · ·My

Index for the healthy sample and the test sample.

(i) : i = 1,2, · · · I Level index in the dimension reduction process.
t : 1,2,3, · · ·T (i) Group index at any particular level (i).
r : r = 1,2,3, · · · η(i)t Node index at group t and level (i).
C(i)t Correlation matrix at group t and level (i).
e(i)t Eigenvector at group t and level (i).
H(i)t Standardization matrix at group t and level (i).

Q(c |y)
Posterior probability that a data-point y belongs to
class c : c = 1,2, · · · ,F .

πc
Prior probability that a data-point y belongs to
classc : c = 1,2, · · · ,W.

δ(X0,Y) GDM-HDR between two samples.

posed methodology with other dimension reduction approaches such as PCA, FA, KPCA,

etc. Furthermore, the performance of HDR in conjunction with standard classification

methodologies is also studied here. From the analysis the proposed methodology is seen to

outperform standard dimension reduction approaches in high dimensional cases.

The contributions of this paper therefore include (1.) the development of a revised

distance measure based on a novel hierarchical dimension reduction approach (GDM-HDR)

for big data, (2.) the development of GDM-HDR-based statistical test procedures for fault

detection, (3.) the introduction of a generalized distance-based classification scheme for big

data diagnostics, (4.) mathematical analysis for GDM-HDR and (5.) demonstration of the

analytical efficiency along with the computational benefits of GDM-HDR-based approach

in a big data scenario.
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The rest of the paper is organized as follows. Section II describes Mahalanobis

distance and establishes motivations for the paper. Section III describes the proposed

approach. Section IV outlines the fault diagnostics methodology. Sections V and VI detail

the simulation results. Section VII provides conclusions for the paper. Required notations

and preliminaries are discussed in the following section.

2. NOTATIONS AND PRELIMINARIES

To establish notation, let R be the set of real numbers and N the set of natural

numbers. Matrices and vectors are represented in bold by uppercase and lowercase symbols

respectively. Data is sampled from one of many populations gathered from n attributes. All

the notations are summarized in Table 1

LetX0 contain a random sample of sizeM0 obtained from a population of n-variate

random vectors with mean and covariance given as µ0 and Σ0 respectively. Without the

loss of generality, X0 = {xp : p = 1,2,3,4, · · · ,M0, xp ∈ R
n}, whereM0 ∈ N. Let Xk

contain a random sample of size Mk from a n-variate random populations. Further let

M = ∪Fk=0Mk be the total number of sample points in the dataset.

Sample mean vector and covariance matrix for any population

k : k = 0,1,2,3, · · · ,F

, are denoted as xk and Σ̂k respectively. Data vectors in Xk are assumed to be collected

when fault k is introduced into the manufacturing system intentionally. Consider X0 to

contain data vectors collected when the system is healthy. Vectors in Xk are assumed

to be independent of Xk∗ for k , k∗, k, k∗ = 0,1,2, · · · F . The following assumption is

considered:

Assumption 1 Whenever the data sample Xk, k = 0,1,2,3, · · · ,F is collected, only one

fault is considered present.
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Let Y = {yp : p = 1,2,3,4, · · · ,My, yp ∈ R
n} be another random sample of data,

obtained when the system is operating freely without intervention but under one of the

possible "fault" conditions k = 0,1,2,3, · · · ,F . The data vectors in Y can be seen to

constitute a random sample with the sample mean and covariance given respectively as y

and Σ̂.

Remark 1 Note that data vectors in Y are observed when the system is either operating

under the healthy condition or when the system is encountering exactly one of the F faults.

It is of practical importance is to determine whether the observations in Y are

obtained under the healthy scenario (k = 0) or under one of the faults k such that k =

1,2,3, · · · ,F . One way to accomplish this is by observing the difference between the

sample mean y, obtained from the observations in Y, and the mean x0 of the sample,

obtained when the system is under the healthy condition. An example of a traditional

squared measure for observing this deviation is discussed next.

In [30], the MD between y and x0 is defined as

d(y, x0) = (y − x0)
TΣ−1(y − x0). (1)

It follows that

d(y, x0) = ‖Σ
−1/2(y − x0)‖. (2)

where Σ−1/2 denotes the Cholesky decomposition [13] of the covariance matrix and ‖.‖ is

the 2-norm. In practice, Σ is replaced by its sample estimate Σ̂.

Remark 2 Note that the attributes are standardized prior to distance calculation, as a

result, the estimate of covariance is equal to that of correlation for the sample. In

other words, Σ̂ in (2) can be replaced by R̂ such that R̂ is the estimate of the the-

oretical correlation matrix corresponding to the covariance matrix Σ. One can write
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R = [diag(Σ)]−1/2 Σ [diag(Σ)]−1/2 , where diag(Σ) is a diagonal matrix, whose diag-

onal elements are that of Σ̂. Similarly, R̂ = [diag(Σ̂)]−1/2 Σ̂ [diag(Σ̂)]−1/2. From this

point forward, R̂ will be denoted by C for simplicity.

Encountering large dimensions in big-data applications is a major issue faced by

data analysts. To mitigate this challenge, in the proposed approach, the vectors x̄0 and ȳ are

transformed into smaller dimensions. The process is structured in such a way that there are

only two steps. In the first step, the attributes are split into groups, facilitating an efficient

dependency estimation. Secondly, a merge process is then used as a second step to select

projections of attributes that maximize group-wise variability. This is done in an iterative

fashion to ensure all dependencies is taken into account.

By performing the above steps, one can extract a revised set of attributes from the

data that are linear combinations of the original dimensions. Furthermore, the process

ensures that redundant dimensions are removed where they will not impact the distance

calculation. Once the vectors are transformed into, say x̄0
∗ and ȳ∗, a Lp norm is used to

induce the final distance value. The proposed distance measure is explained with all details

in the following section.

3. GENERALIZED DISTANCE MEASURE: A HIERARCHICAL DIMENSION
REDUCTION APPROACH

For a simple illustration of the proposed procedure, consider the case where each

data-point is p−dimensional. Given a data-point x, let these p attributes be denoted by

x1, · · · , xp. In the context of fault diagnosis, assume that the training data belongs to a

healthy scenario with sample X and the results of the fault diagnostics will be evaluated on

a test sample that is Y.

The proposed HDR method would build a fault diagnosis tool or a generic classi-

fication tool through a series of steps. In each step, the dimensions of each data points

are reduced comprising of two stages: a grouping stage where the attributes are grouped,
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and a transformation stage where attributes in each group are linearly transformed through

principal component analysis (PCA). In this process, only the first few principal components

are kept, thus dimensions in each group are reduced. These principal components become

the new attributes and are grouped and transformed again in the next step. This step-wise

hierarchical approach to dimension reduction, which is the main contribution of this paper,

avoids the rank deficiency problem, one would encounter if PCA is applied to all attributes

at once.

To highlight the fact that the step-wise procedure described above is a process where

transformed attributes become the dimensions at the next step in a hierarchical manner. The

steps will be refereed to as levels and the features at each level are referred to as nodes. This

provides a visual image of a hierarchical pyramid with higher level having less nodes than

the preceding levels as illustrated in Figure 1. Further details of the proposed methodology

are provided next.

3.1. STAGE 1: GROUPINGS

For illustration of the proposed procedure, consider first a case, where the healthy

sample X0 and the test sample Y consists of p = 8 dimensional vectors. Suppose ȳ

is the mean vector from sample Y and x0 is the mean from X0. Without loss of gen-

erality, let us assume that the first two attributes are grouped together, then the next

two and so on. Thus, the four attribute groups for the eight dimensional case would

be (x1,1, x1,2), (x2,3, x2,4), (x2,5, x2,6) and (x2,7, x2,8). Note that (xt,r, xt,r+1) denote the tth

group containing attributes r,r + 1, with xt,r signifying the value associated with attribute

r .

Since the groupings will be carried out recursively through a hierarchical process,

a symbol that denotes the hierarchical level would be needed. Thus, we rewrite the groups

as (x(1)t,r , x
(1)
t,r+1), where (1) denotes level one and t = 1,2,3,4 and r = 1,3,5,7. For any level

i, the groups then will be denoted by (x(i)t,r, x
(i)
t,r+1) with t and r defined accordingly.
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Next X (1)t = [x(1)t,r x(1)t,r+1]
T be the vector of attribute values in group t and let

C(1)t be the sample correlation matrix estimated from data-samples in X0. Compute e(i)1 ,

the eigenvector of C(1)t corresponding to the largest eigenvalue of C(1)t and let H(t)1 be the

diagonal matrix with the diagonal element representing the estimated standard deviation for

every attribute in group t.

Since we are computing individual correlation matrices for attributes within each

group, and not across all attributes, one can avoid the rank deficiency of the correlation

matrix as long as group sizes are controlled. The estimation process is therefore a very

effective procedure in high dimensional cases. Moreover, it is possible to remove noisy

dimensions in the data systematically. With this information, the second stage of HDR is

initiated.

Remark 3 As the data is standardized, the covariancematrix used to calculate the principal

components is actually the correlation matrix associated with the attributes. See Remark 2

for details

3.2. STAGE 2: TRANSFORMATION

Once, groupings are determined for each group, attributes at any particular level,

each group is transformed. The "Group Transformation" can be expressed as

X (i+1)
t = X (i)t H

(i)
t e(i)t , (3)

where X (i)t represents the vector of attribute values for group t at level i corresponding

to the reference data X0. Note that while X (i)t is a multi-dimensional (two dimensional for

this example) vector, X (i+1)
t will be one dimensional. Therefore, once all the groups at this

level are transformed, the number of dimensions in the data have been reduced from eight

to four.
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In a general case, every group need not have only two attributes. In such a case, the

data points in a group are given as X (i)t = [x
(i)
t,r , x

(i)
t,r+1, x

(i)
t,r+2, · · · , x

(i)
t,r+η(i,t)] where η(i, t) is the

total number of attributes in group t at level i. Note that i = 1,2,3, · · · , I where I is the total

number of levels in the procedure and t = 1,2,3, · · · ,T (i), where T (i) is the total number of

groups at level i. Also note that
∑T (i)

t=1 η(i, t) = η
(i), which is the total number of attributes at

level i.With these notations, the group transformation for a general case is as demonstrated

in Eq. (3). However, the dimensions ofH(i)t , e
(i)
t , change toH

(i)
t ∈ R

η(i,t)×η(i,t), e(i)t ∈ R
η(i,t)×1.

At any particular level i, let there be a total of T (i) groups that when transformed

result in T (i) nodes at level i + 1. A closed form expression can be obtained for a one step

transformation from level i → i + 1 as

X (i+1) = X (i)diag(H(i)1 e(i)1 , · · · ,H
(i)
T (i)

e(i)
T (i)
). (4)

Derivation: See Appendix.

Eq. (4) is a generalized expression for the level transformation from [i → i + 1].

Note that given a correlation matrix C(i)t with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λη(i,t) ≥ 0, the

eigenvector e(i)t corresponding to the largest eigenvalue λ1 can be obtained as a solution

of e(i)t = C
(i)
t
−1
λ1C(i)t . The correlation matrix is obtained as, C(i)t = N(X (i)t )

T N(X (i)t ). The

standardized normalization, N(X (i)t ) is given as

N(X (i)t ) = [X
(i)
t − X

(i)
t ]H

(i)
t . (5)

In Eq. (5), X (i)t,r is the mean vector andH(i)t = [diag(σ(i)t,r+1, · · ·σ
(i)
t,r+η(i,t))]

−1 with σ(i)t,r being

the standard deviation corresponding to the r th node in the tth group at the ith level with

t = 1,2, · · · ,T (i). If τ(i) = diag(H(i)1 e(i)1 , · · · ,H
(i)
T (i)

e(i)
T (i)
), in Eq. (4), the transformation for

any observation p from level [i → i+1] (called a "Level Transformation") can be expressed

as

X (i+1) = X (i)τ(i). (6)
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Figure 1. Illustration of the tree

The equation in (6) suggests a transformation from [i → i + 1] for nodes obtained

from the reference sample. Note that in the proposed methodology, groups wise reduction is

performed considering the dependencies across groups to be null. However, by performing

another step of reduction, these cross-dependencies that were ignored in the previous step

can be captured. The main advantage of doing this is that it allows for a methodical process

of estimation.

The above introduced steps of grouping and transformation is repeated for a pre-

defined number of iterations. A level transformation, as expressed in (6) and (8), can be

further reduced to result in a closed-form expression for the HDR transformation such that

x̄∗0 = φ(X
(1)) = X (1)K, (7)

Derivation: See Appendix. The overall HDR procedure is illustrated in Figure 1 for an

example.

Remark 4 The proposed dimension reducing transformation φ is completely determined

by K . Moreover, K is computed from the sample data in X0 and is a function of R̂ because

matrices such as C(i)t can be shown to be functions of R̂. In other words, K is a random

matrix that depends on the sample X0 through R̂ [13]. On the other hand, the results given

in Eq. (7) are derived assuming K is non-stochastic matrix. Note that R̂ is a consistent
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estimator of the true population correlation matrix R and for sufficiently largeM0, R̂ ' R

by law of large numbers. Therefore, K asymptotically achieves a non-stochastic limit. Thus,

the result given in Eq. (7) can be taken as an asymptotic result, which well approximates

the distributions of (x̄0 − ȳ)K for large samples.

If the test sample at the ith level and the tth group is denoted as

Y (i)t = [y
(i)
t,r , y

(i)
t,r+1, · · · , y

(i)
t,r+η(i,t)−1]

, the transformation for the test data can be written as

Y (i+1) = Y (i)τ(i). (8)

The transformation parameters, that is the correlation matrix and the related quan-

tities, are obtained from the reference sample X0. These parameters are used to transform

both the reference sample and the test sample. Similarly, when the data from the test sample

is transformed, the final HDR transformation can be written as

ȳ∗ = φ(Y (1)) = Y (1)K (9)

The next step in the procedure is to obtain the distance value. This is done by

applying an Lρ : ρ > 0 norm given as

δ(X0,Y) = ‖(C(I−1)
1 )−1/2(x̄∗0 − ȳ∗)‖ρρ . (10)

Eq. (10) is a closed form expression for GDM-HDR, similar to the expression in

Eq. (2). One can also note the similarity where the decorrelation step is performed by HDR

and the norm is used to induce distance value. From a big data perspective, it is important

to analyze the computational requirements in the worst case scenario as shown in Lemma

1.
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Lemma 1 The worst case computational complexity of calculating GDM-HDR between

the mean of the reference sample and the test sample is in the order of

n
( (ηI−1 − 1)
(η − 1)ηI−1O[η

3 + η2]
)
+ O[η3],

where η is the number of attributes in a group.

3.2.0.1. Proof:. See Appendix. �

Note 1 Note that in the above given analysis we assume constant group sizes. Furthermore,

since η represents a constant group size and η << n, the overall computational complexity

would converge to O[n].

Remark 5 There is always a concern of grouping all the important attributes in the same

group, leading to premature information loss. To mitigate this, two options can be consid-

ered: keep those attributes that are known to be important in separate groups or, if no such

information is available, randomize the order of attributes to mitigate the effect.

The generic methodology presented here can be extended to any size of data with

significant computational benefits. Further, a wide variety of applications that generate big

data like clustering, medical diagnostics can be addressed in a very effective manner using

the proposed methodology. In the following section, a methodology for the application of

GDM-HDR to diagnostics and the problem of classification is presented.

4. GDM-HDR-BASED FAULT DIAGNOSTICS

To handle complications associated with big data while reducing dimensions and

calculating distance values, GDM-HDR was introduced in this paper. In this section, a

methodology is outlined to perform real-time detection and isolation of faults using GDM-

HDR. This methodology is divided into a total of three stages as shown in Figure 2.
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Figure 2. Overview of the proposed methodology

4.1. STAGE 1: DISTANCE CALCULATION

First, a sample from the healthy data-setX0 = {X
(1)
p : p = 1,2,3, · · · ,M0} is chosen.

According to the total number of attributes, a tree, as shown in Figure 1, is constructed.

Once a tree is constructed, the distance between any sample Y and the healthy

sample can be calculated by following the hierarchical dimension-reduction procedure as

explained in the previous sections. Operational details for this process are provided in

Algorithm 1.

Remark 6 Note that the fault detection can be performed on a sample if, and only if,

Assumption 1 is not violated. Otherwise, it is possible that the proposed technique will not

be able to detect the fault. Therefore, in the scenario that Assumption 1 is violated, it is

desirable to perform the analysis using only one data point instead of a sample.

From this point forward, Assumption 1 is relaxed. Analysis is performed on one

data point at a time denoted as y. In the next section, a methodology is detailed to detect

and isolate faults depending on the distance measure.
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Algorithm 1 Generalized Distance Measure; A Hierarchical Dimension Reduction Ap-
proach (GDM-HDR)
1: Standardize X (1) and Y (1).
2: Randomize the order of the attributes.
3: Generate a tree by grouping attributes (Number of groups can vary at every level)
4: for Level from i = 1→ I do
5: for Groups from t = 1→ T (i) do

Calculate Correlation matrix for X (i)t
6: Calculate e(i)t
7: if i is Not Equal to I then
8: Transform x(i+1)

t = X (i)t H
(i)
t e(i)t , y

(i+1)
t = Y (i)t H

(i)
t e(i)t .

9: else
10: Calculate Distance value
11: end if
12: end for
13: end for

Note that the objective in this paper is to first separate all the faulty and healthy

data-points based on the distance measure and then classify the faulty points into different

faults. In this paper, bootstrap statistical tests are proposed to separate faulty and healthy

data-points. Finally a Bootstrap Bayesian classification methodology is proposed to classify

these faulty data-points into respective faults.

4.2. STAGE 2: FAULT DETECTION

To separate out the faulty data-points from healthy, the idea is to construct two

statistical hypotheses. One is the null hypothesis which states that the data is derived from a

healthy system. The other is the alternate hypothesis which indicates that the data is derived

from a faulty system.

The easiest way to determine a fault is to determine a threshold for δ(X0, y) for any

healthy data point. The αth percentile value distribution obtained by the healthy-condition

sample can be considered as such a threshold, where α is chosen by the user. In such
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scenarios, the distribution of the samples can be accurately determined by sampling with

replacement from the data sample. The procedure is known as bootstrap estimation of the

distribution and this methodology is formalized next

Let the null hypothesis be given as H0 : δy ∼ P∗0. The alternate hypothesis is given

as Ha : δy ∼ Pk
∗, k = 1,2,3, · · · ,F , where Pk

∗ is the bootstrap estimate of the underlying

distribution. δy is the GDM-HDR value corresponding to the data point y with respect to

X0. If the null hypotheses is rejected, then the data point is obtained from faulty system.

On the other hand, if the null hypotheses is not rejected, the system is healthy.

Formally, the first step is to calculate the distance statistic given as shown in Eq.

(10). Based on this distance value, H0 at any significance level α is rejected, if

δy ≥ c∗0, (11)

where c∗0 is the bootstrap critical point or the threshold distance for the healthy

scenario. The critical threshold can be computed as

P(δ∗ ≤ c∗0 |L0
∗) = 1 − α, (12)

where δ∗ ∈ L∗0 and L∗0 is the bootstrap sample corresponding to all the distance values

belonging to the healthy case. To evaluate this critical threshold, one needs to have an

approximation of the conditional distribution of the data notationally written as P(d ≤

δ∗ |L∗0),∀d ∈ R.

The distribution is approximated by writing a edge-worth expansions around stan-

dard normal given by the following lemma.

Lemma 2 Consider a bootstrap sample Lk
∗. Let this be identically and independently

sampled from the distance values δ(x,Xk) : ∀x ∈ Xk), k = 0,1, · · · F . The cumulative

distribution function (cdf) for the underlying distance distribution for any δ∗ ∈ L∗k can be
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written as
P∗k = P(d ≤ δ∗ |L∗k) = Φ(δ

∗) − φ(δ∗)(1 +
γH2(δ

∗)

6
√

B

+
(Γ − 3)H3(δ

∗)

24B
+
γ2H5(δ

∗)

72B2 ).

(13)

The corresponding probability density function (pdf) is given as

fk(δ∗) = φ(δ∗)(1 +
γH2(δ

∗)

6
√

B

+
(Γ − 3)H3(δ

∗)

24B
+
(γ2)H5(δ

∗)

72B2 ),

(14)

where H1 = δ
∗, H2 = δ

∗2 − 1, H3 = δ
∗3 − 3δ∗ and H5 = δ

∗5 − 10δ∗3 + 15δ∗ . In the above

equation, H1,H2,H3 and H5 are the Hermite polynomials. Here, φ(x) is the density for

the standard normal distribution. And, Φ(x) being the cumulative distribution for standard

normal.

4.2.0.1. Proof:. See Appendix. � The above approximation is applicable to any

sampling distribution but is not universal. It imposes certain restrictions on the underlying

probability distribution. These restrictions are given by the following assumptions.

Assumption 2 E(‖δx ‖
4) < ∞,∀x ∈ Xk

Assumption 3 The distribution of the distance values have an absolute continuous compo-

nent.

Assumption 4 The transformation is continuous, differentiable and has achieved a non

stochastic limit.

The above stated assumptions are acceptable because the amount of data available is

large. All these assumptions are satisfied by a normally distributed data. It can be seen here

that the proposed approximation considered takes into account fourth order moments. This

is very beneficial for capturing any uncertainties in the data. In other words, any deviation

from normality can be taken into account, if that is desired.
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Remark 7 In the case where the distribution is completely symmetric, the first order ex-

pansion would be accurate enough for any prediction required.

The bootstrap sample gives an estimate about the underlying distribution of the

distance values. The corresponding approximation of the distribution is given in Lemma 2.

Another important aspect is to determine when this approximation converges with the true

distribution of the underlying sample as shown in Theorem 1.

Theorem 1 Let Lk
∗ be a bootstrap sample and the cdf approximation be given by Lemma

5. The distribution of the sum statistics asymptotically converges with the underlying

distribution of the distance values.

4.2.0.2. Proof:. See Appendix �

Remark 8 Note that for practical purposes, bootstrap estimation of parameters must be

obtained from the sample belonging to each of the faults.

Once the distribution belonging to the distance sample is known, one can efficiently isolate

the faults based on the approximated distribution. This methodology is outlined next.

Algorithm 2 Classification of faults
1: Assign prior probabilities for each of the class
2: for any data point y do
3: if thenδ(X0, y) ≤ c∗0,
4: The system is healthy
5: else
6: for T = 1→ F do
7: Calculate Q(T |y)
8: if Q(T |y) is maximum then
9: r = T
10: Assign y to class Fr
11: end if
12: end for
13: end if
14: end for
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4.3. STAGE 3: BOOTSTRAP-BASED FAULT ISOLATION

The Isolation of a fault is performed based on a Bootstrap Bayesian classification

methodology detailed below.

Let πk, k = 1,2,3, · · ·W be the prior probabilities for each of the fault classes such

that
∑W

k=0 πk = 1. Let Xk be the data sample for each of the fault classes with the mean

vector of the fault classes given as xk for all k = 1,2,3, · · · ,W. Also let the probability

distribution functions for each fault class be defined by the bootstrap sample of distances

of each class and be notationally given by fk(δy,k) such that fk(δy,k) is defined as shown

in Lemma 5, where δ(y, xk) is notationally written as δy,k . The idea is to maximize the

probability that y belongs to class Tgiven by the law of total probability as

Q(T |y) =
πT fT (δy,T )∑F

k=1 πk fk(δy,k)
, (15)

where T = 1,2,3, · · · ,F . And, δy,T is the distance for the data-point y with respect

to XT . Evaluating the maximum probability results in the prediction of a fault.

Remark 9 It is important to note that the prior probabilities for the fault classes can be

decided based on prior expertise on the data generated by the system under consideration.

Evaluating Q(T |y) for every sample results in a prediction but an approximation of

the probability distribution for each of the faults is required and is given by Lemma 2. A

step-by-step procedure for fault detection and isolation is detailed in Algorithm 2. In the

next section, the result of the proposed methodology on diagnostics and classification are

detailed.

5. RESULTS AND DISCUSSIONS

All the data-sets used in this study are tabulated first
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Table 2. Statistics of the different data-sets used in this paper [31].

Data-set Dimensions Datapoints Classes
Rolling 11 35000 4
Sensorless 48 78000 11
Madelon 500 1000 2
MNIST 784 72000 10
NotMnist 784 81000 10
CIFAR-10 2072 50000 10
Gisette 5000 200 2
Arcene 10000 100 2
Dexter 20000 300 2

Table 3. Hyper-parameters for different methodologies in this paper.

Method Hyper-parameters
KNearest Neighbors (KNN) 3 neighbors
Support Vector Machine (SVM) C = 0.025
Kernel SVM RBF kernel, gamma = 2, C=1
Desicion Trees (DT) max depth =5
Random Forest (RF) max depth=5 estimators=10, max features=1
Shallow Neural Network (SNN) lr = 0.01, 1 hidden layer, 500 neurons
AdaBoost number of estimators=50, learning rate=1.0
Naive Bayes No Priors
Quadratic Discriminant Analysis (QDA) No Priors
Proposed Bootstrapped Bayesian Classification(BBC) Equal Priors, bootstrap sample size = 10000

5.1. DATA-SET

A total of 10 data-sets are used for analysis in this study. The statistics for these

data-sets are tabulated in Table 2. A collection of data-sets covering the spectrum of large

n, smallM and small n largeM are used in this study for evaluation. From Table 2, it can

be seen that the first seven data-sets belong to the category of largeM and small n with the

last three namely Gisette, Arcene and Dexter data composed of more number of dimension

relative to the number of data-points.

All results are averaged over 100 iterations. Furthermore, the corresponding simu-

lations are performed on a computer with 76GB of RAM and a xeon processor.
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5.2. RESULTS AND DISCUSSIONS- FAULT DIAGNOSTICS

In this section, fault diagnostics performance of the methodology is proposed

methodology is demonstrated on the Rolling element bearing dataset and the sensorless

diagnostics dataset. In the experiments run below ρ = 2 is used for rolling element data-set

and ρ = 0.5 is used for sensorless drive diagnostics data-sets.

There are a total of 11 attributes in rolling element bearing data-set. Three types

of faults are analyzed. Ten thousand data points are randomly sampled from the dataset to

constitute the healthy sample and for each of the three fault conditions.

Remark 10 The choice of the number 10000 is completely arbitrary here. Also, larger

sample size will allow the estimation of transformation parameters to be closer to their true

values.

Remark 11 Note that the total number of dimension in rolling element bearing and sen-

sorless drive data-sets are reduced to 5 and 24 respectively.

Assumption 5 At any sampling instant, a complex system generates only one data point

and the objective is to determine whether the complex system is at fault or not at that

sampling instant. The assumption follows as a consequence of Remark 6.

The power of the statistical test and the corresponding Type-I error rate is tabulated

in Table 4. As expected, the power of the test is high and the corresponding error rates are

seen to be low.

To compare the performance of a traditional distance measure like MD and GDM-

HDR, statistical tests proposed in this paper are used to detect the faulty data points using

the MD values using PCA as the dimension reduction scheme. It is observed in this case

that the detection results for GDM-HDR are very close to those obtained by usingMD-PCA,

which can be verified by comparing column two and three in Table 5.
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Table 4. Statistical efficiency of the methodology for the two datasets

Dataset significance Level Threshold Type I Error Power
Rolling Element 0.01 3.54 0.009 0.92

0.05 3.01 0.045 0.97
0.1 2.69 0.099 1.0

Sensorless 0.01 5.42 0.010 0.91
0.05 4.84 0.049 0.93
0.1 4.55 0.097 0.94

Table 5. Detection results for GDM-HDRandMD+PCA for rolling element bearing data-set
and sensorless drive dataset with Bootstrap Bayesian Classification

Fault % Correctly Classified
MD+PCA GDM-HDR

Rolling Element 99.77 99.80
Sensorless Drive Diagnostics 86.34 94.35

Remark 12 Data used for this test are independent of the samples collected previously

indicating that important information suggesting a faulty system is not lost while using

HDR.

Sensorless drive data-set is significantly larger than the previously considered data-

set with 78000 data points. First, it must be observed that MD fails to measure distance

values for this data. It is seen that while calculating MD, one encounters a singular

correlation matrix. However, when PCA is used for evaluating distances, one can calculate

distance values. On the other hand, when the proposed distance measure along with HDR

is used for distance evaluation, such an error is not encountered. The reason is the presence

of redundant dimensions in the data. It is seen that GDM-HDR is able to detect faulty

data-points as well as MD+PCA in rolling element bearing data-set. On the other hand, the

proposed approach outperforms MD+PCA in Sensorless datasets.



39

Average detection results for the bootstrap test is given in Table 4, whereas the fault

isolation results are tabulated in Table 5. One can note from Table 4 that the detection

results are acceptable with large values of power and low values of type I error rates. An

important aspect of the proposed methodology is to note that GDM-HDR resulted in sub-

par results with the rolling element data-set and is optimal with sensorless drive data-set as

seen from Table 5. This indicates the ability of GDM-HDR to perform much better in large

dimensional cases.

In the next section, relative performance of the proposed dimension reduction

methodology is studied on several data-sets including analytical and computational per-

formance for the problem of classification.

5.3. RESULTS AND DISCUSSIONS- CLASSIFICATION

All results in this section are averaged over 1000 iterations. Furthermore, the

corresponding simulations are performed on a computer with 8GB of RAM and an i7

processor. In this section, the performance of the proposed dimension reduction approach

HDR and Bootstrap Bayesian classification is studied without the distance measure.

5.3.1. Performance Analysis. All results in this section are summarized using

accuracy and Type I error. Accuracy measures the prediction power whereas Type I error

error measures the susceptibility of the methodology to noise. Note that high accuracy

indicates better results and lower Type-I error indicates better performance. In Table 3,

the choice of hyper-parameters corresponding to all the classification methodologies used

here are given. Most of the choice of parameters is very standard. First the results of this

methodology on all the data-sets is tabulated in Table 6. In this table, the resulting accuracy

of BBC with HDR is compared with the case with no HDR.

Note, from the table that the difference in accuracy with and without HDR increases

steadily as the dimensions in the corresponding to the data-points increase.
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Table 6. Accuracies for the different data-sets with the proposed classification method with
or without HDR

Data-set Accuracy (HDR) Accuracy (w/o HDR)
Rolling 0.97 0.97

Sensorless 0.90 0.90
MNIST 0.93 0.89
NotMnist 0.93 0.80
CIFAR-10 0.45 0.40
Madelon 0.91 0.79
Arcene 0.83 0.73
Gisette 0.87 0.71
Dexter 0.82 0.69

Table 7. Mean accuracies for the various data-sets with different methods using HDR as the
dimension reduction methodology with mean false positive rate in parenthesis. The best
case result for each row are indicated in bold

Data-sets ↓ KNN SVM LDA DT RF SNN AdaBoost Naive-Bayes QDA BBC
Rolling 0.99(0.00) 0.90(0.02) 0.97(0.013) 0.91(0.03) 0.925(0.012) 0.70(0.00) 0.84(0.03) 0.86 (0.01) 0.79(0.00) 0.97(0.01)

Sensorless 0.89(0.00) 0.91(0.01) 0.84 (0.01) 0.70(0.01) 0.65 (0.02) 0.93(0.00) 0.25 (0) 0.73 (0.05) 0.86(0.06) 0.93(0.00)
MNIST 0. 94(0.03) 0.93 (0) 0.86 (0.02) 0.67(0.08) 0.64 (0.02) 0.96 (0) 0.73(0.03) 0.78 (0.20) 0.61(0.07) 0.94(0.08)
NotMnist 0.90(0.01) 0.87(0.01) 0.83 (0.03) 0.72(0.02) 0.71 (0.03) 0.90(0.01) 0.79(0.02) 0.76 (0.05) 0.86(0.01) 0.94(0.01)
CIFAR-10 0.33(0.08) 0.38(0.04) 0.37 (0.05) 0.26(0.04) 0.29 (0.09) 0.50(0.03) 0.31(0.07) 0.29 (0.07) 0.36(0.02) 0.64(0.03)
Madelon 0.49(0.28) 0.57(0.21) 0.57 (0.21) 0.79(0.08) 0.55 (0.18) 0.59(0.20) 0.59(0.19) 0.59 (0.23) 0.51(0.24) 0.55(0.08)
Arcene 0.70 (0) 0.83 (0) 0.79 (0) 0.60 (0) 0.69 (0) 0.79 (0) 0.63 (0) 0.45 (0) 0.61 (0) 0.86 (0)
Dexter 0.49 (0) 0.57 (0) 0.57 (0) 0.79 (0) 0.52 (0) 0.53 (0) 0.59 (0) 0.59 (0) 0.51 (0) 0.99(0.01)
Gisette 0.94(0.03) 0.98(0.01) 0.90 (0.05) 0.91(0.04) 0.73 (0.07) 0.97(0.01) 0.96(0.01) 0.73 (0.25) 0.63(0.12) 0.99(0.01)

Table 8. Average classification accuracy (Avg. Class. Acc.) rates for various dimensions
reduction techniques (Dim-Red) and classifiers using Sensorless Drive Diagnostics data
set.[32]

Dim-Red ↓ KNN SVM DT RF LDA SNN AdaBoost Naive-Bayes QDA
PCA 0.52 0.52 0.52 0.45 0.45 0.52 0.18 0.45 0.53

ISOMAP 0.67 0.46 0.43 0.32 0.39 0.58 0.18 0.42 0.49
LLE 0.25 0.08 0.15 0.18 0.18 0.08 0.18 0.19 0.19

FastICA 0.54 0.53 0.52 0.48 0.44 0.58 0.28 0.45 0.53
FA 0.592 0.91 0.66 0.48 0.41 0.94 0.18 0.75 0.86

HDR 0.90 0.90 0.94 0.65 0.59 0.95 0.18 0.76 0.87

.
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The main observation to make here is the fact that the proposed methodology is

optimal in the case where the total number of data-points are significantly less than the total

dimensions in the data as seen by the results from Arcene, Gisette and dexter data-set. Next,

the proposed classification methodology along with HDR is compared for accuracies with

the most traditional classification methods and the results are tabulated in Table 7. It can be

again observed that the proposed methodology performs optimally for data-sets with large

dimensions, again bolstering the observation that was made before.

It can be noted that, for the CIFAR-10 and Madelon data-set, the proposed method-

ology does not performs very well. The lack of performance on CIFAR-10 data-set may

be attributed to the complicated nature of the data-set. Furthermore, random forests and

decision tree fail with complicated data-sets.

It has been observed from the results that the proposed methodology performs very

well in across data-sets and across classification approaches. In the next section relative

performance of the proposed dimension reduction on big data relative to other traditional

dimension reduction approaches is studied.

5.4. SCALABILITY ANALYSIS OF HDR

First, synthetic data is generated with increasing number of attributes and the com-

putational overhead of different dimension reduction approaches are compared. It is seen

that, with the proposed methodology that is HDR, the computational overhead is least in

Figure 3. In fact we note that in places where methods such as PCA, LLE and ISOMAP

does not provide reasonable level of efficiency the proposed methodology is able to perform

efficiently as seen from the results in Table 8 and Figure 3.

Note fromTable 8, that the proposed dimension reduction approach achieved highest

performance when compared with traditional dimension reduction approaches. Moreover,

note that tests are performed on a 48 dimensional data.
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Figure 3. Trends of computational time with respect to the attribute number for different
dimension reduction methodologies

This is because, most of the methods such as PCA, LLE, ISOMAP fail due to

computational overload in data-sets such as arcene, dexter and gisette. However, the

proposed approach can allow for reasonable detection for these data-sets which is highly

satisfactory in case of big data situations. As a consequence, a fair comparison could not

be shown on data-sets such as Arcene, dexter and gisette and a 48 dimensional dataset was

chosen.

A reasonable question that arises here is whether the proposed dimension reduction

approach suffers from a relatively large information loss when compared with standard

approaches such as PCA. In other words, we want to understand would each step in HDR

contributes to information loss in a cumulative manner? Amitigating factor in the proposed

approach is that after the first step, principal components from groups are combined, thereby

bringing in information about their correlations. These correlations can be treated as a proxy

for the correlations between variables across the adjoining groups, which were ignored in

the previous step.
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Table 9. Averaged R2values obtained by regressing the components from HDR against the
components derived from PCA by sample size based on 1000 simulation runs.

# of sample points → 4096 2048 1024 512 256 128 56 10 5
Average R2 value 0.8607 0.8623 0.8646 0.8697 0.8778 0.8907 0.9172 0.9957 1

Table 10. Averaged R2 values obtained by regressing the components from HDR against
the components derived from PCA by sample size and the number of PCA components.

# of Components↓ # of sample points
4096 2048 1024 512 256 128 56 10 5

5 0.8914 0.8884 0.9011 0.9067 0.9147 0.8811 0.9447 1 1
10 0.8499 0.8503 0.8588 0.8578 0.8570 0.8710 0.9096 1 1
15 0.8404 0.8412 0.8439 0.8651 0.8637 0.8813 0.9302 1 1
20 0.8806 0.8870 0.8849 0.8927 0.8899 0.9114 0.9330 1 1

In order to understand how much information is lost by the HDR relative to a

single step PCA, a regression approach that regresses the first k principal components of

PCA against k components selected by HDR is performed. The average R2 value for k

components from HDR and PCA over 1000 simulation run is tabulated in Table 9. Note

that in Table 9, the value of k is chosen at random. Furthermore, it must be observed that if

HDR retains most of the information then the R2 value obtained from the regressors should

be close to one.

Next, in Table 10, these averaged R2 values are broken down by the number of

components such that k = 5,10,15,20. Results from Table 9 and 10 indicate that almost

90% of the information contained in the k set of components are explained by components

derived from HDR.

6. CONCLUSION

In this paper, generalized distance measure with a novel hierarchical dimension

reduction approach (GDM-HDR) was proposed. The proposed methodology was applied

to the problem of diagnostics.
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The performance of the proposed distance measure is acceptable in cases where a

standard distance measure such as MD does not perform well. It is seen from the results

that GDM-HDR is more optimal in large dimensional scenarios compared to the small

scale cases. It was shown that the proposed measure, when paired with classification, can

effectively perform fault detection and isolation for big data.

It is observed, both from the approach and the case study, that expert domain

knowledge is required to make informative decisions in the preprocessing stage. A certain

amount of data is required for establishing reference and samples for fault classes. The

proposed classification methodology takes into account uncertainties in the data which

allows for better estimation of data with a non-normal distribution.

It has been shown both empirically and theoretically that the worst case complexity

for the proposed distance evaluation is orders of magnitude less than that of MD.

Admirable performance is observed when the HDR is compared with popular di-

mension reductionmethodologies. In fact, it is seen that HDR is able to outperform standard

dimension reduction approaches in the high dimensional cases. Looking ahead, we aim to

extend the proposed methodology for nonlinear dependencies.
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APPENDIX

6.0.0.1. Proof:. [Derivation of the level transformation] To derive this transforma-

tion, first, express the largest principle component corresponding to the first group at level

i consisting of η(i,1) nodes (which is also the first node at level (i + 1)) as

x(i+1)
1 = X (i)1 H

(i)
1 e(i)1 . (16)

The largest principal component corresponding to the last group at level i consisting of

η(i,T (i)) nodes can be expressed as

x(i+1)
T (i)
= X (i)

T (i)
H(i)

T (i)
.e(i)

T (i)
(17)

The overall transformation from the level i to level i + 1 can be written in vector form as

=

[X (i)1 H
(i)
1 e(i)1 X (i)2 H

(i)
2 e(i)2 · · · X (i)

T (i)
H(i)

T (i)
e(i)

T (i)
],

(18)

Relabel [x(i+1)
1 x(i+1)

2 · · · x(i+1)
T (i)
] as X (i+1) and [X (i)1 X (i)

p,2 · · · X (i)
p,T (i)
] as X (i)p ,

where X (i)p and X (i+1)
p represent all nodes at level i and i + 1, respectively. As a result of

some rearranging, it follows that

X (i+1)
p = X (i)p [diag(H(i)1 e(i)1 ,H

(i)
2 e(i)2 , · · · ,H

(i)
T (i)

e(i)
T (i)
)]. (19)

which is the level transformation as shown in Eq. (4) �
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6.0.0.2. Proof:. [Derivation of the closed form solution] To achieve this, let the

transformation from level one to two be expressed as,

X (2) = X (1)τ(1),

Y (2) = Y (1)τ(1).
(20)

Similarly the transformations from the second to the third level are given as

X (3) = X (2)τ(2),

Y (3) = Y (2)τ(2).
(21)

From (20), (21), one can write
X (3) = X (1)τ(1)τ(2),

Y (3) = Y (1)τ(1)τ(2).
(22)

Generalizing this for I levels, the transformed data at the penultimate level can be written

as
X (I−1) = X (1)τ(1)τ(2) · · · τ(I−2)

Y (I−1) = Y (1)τ(1)τ(2) · · · τ(I−2).

(23)

where the transformation matrix τ(i) : i = 1,2,3, · · · (I − 2) is given as a block diagonal

matrix. Let the tree based transformation be designated as φ, one can conclude that the

transformation from level 1 to level I − 1 is given as

φ(X (1)) = X (1)K, (24)

such that K = τ(1)τ(2) · · · τ(I−2). The result in Eq. (10) directly follows from this. �

6.0.0.3. Proof:. [Computational Complexity Lemma]
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At the first step in GDM-HDR, the total number of attributes in the tree are paired

into groups of η. As a result there are a total of n/η groups at the bottom most level. Let

there be I levels in the tree. The total number of groups until the penultimate level of the

tree assuming equal group sizes can be counted as

n
I−1∑
i=1

1
ηi = n

( (ηI−1 − 1)
(η − 1)ηI−1

)
. (25)

Eigen-decomposition is performed in each of these groups. The most computationally ex-

pensive operation is that of calculating the covariancematrix and eigenvalue decomposition.

This process has a complexity of O[p3 + p2], where p is the number of dimension involved.

As a result the worst case upper bound for dimension reduction in one group can be counted

as O[η3 + η2]. We can therefore write the total approximate asymptotic complexity from

the lowest level until the penultimate level for one data-point as

n
(ηI−1 − 1)
(η − 1)ηI−1O[η

3 + η2] (26)

At the penultimate level, the most expensive operation during norm calculation is that of

the inversion of the covariance matrix which has the complexity of O[p3]. Since, p = η,

the complexity can be written as O[η3]. If we add the operations in Eq. (26) and (25) then

the total asymptotic computational complexity of GDM-HDR can be achieved and this is

given as,

n
( (ηI−1 − 1)
(η − 1)ηI−1O[η

3 + η2]
)
+ O[η3]. (27)

This completes our proof �

6.0.0.4. Proof:. [Approximate distribution of GDM-HDR] Define a sum statistic

from L∗k such that SB = σ
−1√B(δx − δx) : ∀δx ∈ L

∗
k , where δx is the empirical mean and

σB is the sample standard deviation for the bootstrap sample. Next, write the empirical
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characteristic function as

ΨB(t) = E{expitSB },∀t ∈ R. (28)

Write the power series expansion of the exponential function, simplify and rearrange to

achieve

ΨB(t) = e−t2/2{1 + B−1/2p1(it) + B−1p2(it) + B−2p3(it) + · · · } (29)

where p1(it) = (it)3γ/6, p2(it) = (it)4(Γ−3)/24, p3(it) = (it)6(γ2)/72with γ = E{δ(x,Xk)}
3

and Γ = E{δ(x,Xk)}
4 being the third and fourth order moments.

Under the assumption that the fourth order moment (Assumption 2) is finite, the den-

sity of the underlying distribution can be obtained using inversion formula of characteristic

function [33]. It follows that

g(δx) =
1

2π

∫ ∞

−∞

e−itδx (e−t2/2{1 + B−1/2p1(it)3 + B−1p2(it) + B−2p3(it)

+ · · · })dt
(30)

Since SB is asymptotically normal by CLT, the characteristic function would converge to

normality [33], it follows that

fk(δx) = g(δx) = φ(δx)

(
1 +

γH2

6
√

B
+
(Γ − 3)H3

24B
+
γ2H5

72B2

)
(31)

Integrating the above equation and simplifying on the similar lines as [34] reveals

G(δx) = Φ(δx) − φ(δx)

(
1 +

γH2

6
√

B
+
(Γ − 3)H3

24B
+
γ2H5

72B2

)
(32)

In the two equations mentioned above, H1 = E[δx], H2 = E[δx]
2−1, H3 = E[δx]

3−3E[δx]

and H5 = E[δx]
5 − 10E[δx]

3 + 15E[δx] are the Hermite polynomial. And φ(δx) is the

density for the standard normal distribution withΦ(δx) being the conditional density for the

standard normal distribution. �
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6.0.0.5. Proof:. [Bootstrap Convergence Proof] Let the distance statistic be repre-

sented as δ(Xk, x) and the corresponding sample and its bootstrap counterpart be given as

L∗ and L respectively. Let the size of the sample be B and the bootstrap distribution be

represented as P∗. By Lemma 2, the approximations of P can be written as

P(δy) = Φ(δy) − φ(δy)

(
1 +

γH2

6
√

B
+
(Γ − 3)H3

24B
+
γ2H5

72B2

)
. (33)

The Edgeworth expansion of the bootstrap counterpart can be written as

P∗(δy) = Φ(δ
∗
y) − φ(δ

∗
y)

(
1 +

γH2∗

6
√

B
+
(Γ − 3)H3∗

24B
+
γ2H5∗

72B2

)
, (34)

where δy ∈ L, δ∗y ∈ L∗. H1 = E[δx], H2 = E[δx]
2 − 1, H3 = E[δx]

3 − 3E[δx] and

H5 = E[δx]
5 − 10E[δx]

3 + 15E[δx] in the above two equations such that E[.] represents the

expected value. By subtracting Eq. (33) from (34) and rearranging

P(δy) − P
∗(δy) = φ(δy)

[(
γ(H2 − H2∗)

6
√

B
+
(Γ − 3)(H3 − H3∗)

24B
+
γ2(H5 − H5∗)

72B2

)]
(35)

Asymptotically and under the finiteness of four moments, it is easy to see that

P(δy)−P
∗(δy) tends to zero at the rate ofO[ 1

n
1
2
]. which proves that, the bootstrap distribution

of the sample asymptotically converges with the true distribution in probability. �
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ABSTRACT

In this paper, a novel dimension-reduction approach is presented to overcome

challenges such as nonlinear relationships, heterogeneity, and noisy dimensions typical with

big data. In the proposed approach, dimensions in the data are reduced while considering

the data in batches. For each batch, the p attributes are organized into groups at random.

Next, to systematically remove redundant and noisy dimensions from the data, each group is
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independently mapped into a low dimensional space via a parametric mapping. The group-

wise mapping parameters are then estimated using the power method, where the distance

covariance is approximated with a low rank singular value decomposition (SVD). The

transformed attributes are reorganized into groups based on themagnitude of their respective

singular values. The singular value based group-wise organization and subsequent reduction

process is performed until a user-defined criterion on singular values is satisfied. The process

of dimension reduction is repeated for all batches. To address the problem of heterogeneity,

a novel approach is utilized to aggregate the batch-wise transformation parameter estimates.

Overall performance is demonstrated with extensive simulation analysis on classification

by employing nine big data-sets. The proposed approach is shown to outperform other

standard dimension-reduction methods with a 24 % improvement.

1. INTRODUCTION

Big data-sets have become increasingly common in fields such as statistics, machine

learning, security, and fault diagnostics [1]. These data-sets are characterized by large p,

the number of attributes, and/or large n, the number of datapoints. Unlike in small n, small

p scenarios, where it is easy to analyze the whole data-set at once, in most practical big-data

situations, all the data is not available at once. Furthermore, when these new samples

become available, they may differ from the available samples, which represents the problem

of statistical heterogeneity. Big data-sets are also accompanied by incomplete and redundant

dimensions where complications such as noise and spurious correlations commonly exists

[2, 3]. More importantly, several data-sets such as CiFAR-10 [4], MNIST[5], and others,

display nonlinear relationships among dimensions.

The accumulation of these challenges deteriorates performance during analysis

which necessitating the development of new techniques [6]. One way to mitigate the

redundancy in dimensions and spurious correlations is to extract relevant attributes from

the data.
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In light of this, a multi-step nonlinear dimension-reduction approach (NDR) is

proposed in this paper. Here, a dependence measure known as distance covariance [7] is

used to incorporate nonlinear relationships among attributes while reducing dimensions to

filter noisy dimensions frombig-data. The use of distance covariance [8] enables the efficient

capture of nonlinear dependencies. However, when p >> n,matrices quantifying pairwise

dependencies through distance covariance can be rank-deficient due to concentration of

norm in high-dimensional spaces [3]. To handle this, a group-wise dimension-reduction

procedure is proposed where the distance covariance matrix is computed for each group

separately.

In NDR, the p attributes from a sample of data are first organized into random

groups at the initial stage. Next, each group is considered independently and dependencies

among the attributes are measured using distance covariance [7]. Then, attributes in each

group are transformed into a low-dimensional space via a parametric mapping using the

singular value decomposition (SVD) of distance covariance. Based on a user-defined

parameter determining the amount of variation, these transformation parameters are tuned

to approximate a low rank SVD. Once, each group of attributes is transformed, the new

attributes are reorganized into groups and transformed again. However, to ensure that the

transformed attributes with maximum variation are kept in separate groups, the group-wise

organization is performed using the magnitude of the singular values of distance covariance

instead of at-random.

Since the number of dimensions required to capture a specific proportion of in-

formation is unknown beforehand, an adhoc process is required to specify the number of

dimensions to be extracted. To address the problem, a singular value-based user criterion

is introduced here to determine the number of dimensions to be extracted. Therefore, the

group-wise organization and transformation process described above is repeated until the

criterion, controlling the degree of information loss is satisfied. To update the transfor-
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mation parameters when new data is observed, a matrix factorization-based, batch-wise

updates are proposed to refine the estimates of distance covariance and the corresponding

SVD.

The general performance of NDR is demonstrated on ten data-sets, some of which

fall into the category of big data, using standard classification methods. One of the data-sets

involves two million datapoints with twenty thousand dimensions. A logistic regression

scheme using Hamilton Monte Carlo (HMC) optimization for tuning the regression param-

eters is one of the methods utilized for diagnostics and/or classification.

The contributions of this paper therefore include (1) development of a multi-step,

group-wise, dimension-reduction approach using distance covariance to handle nonlinear

relationships and noisy dimensions; (2) design of amatrix-factorization basedmechanism to

update distance covariance and the corresponding SVD in situations where data is available

in batches; (3) design of a generic group-wise organization procedure and explicit stopping

criterion to control information loss; (4) demonstration of the efficacy of NDR using ten

data-sets covering the problem of classification and fault diagnostics.

The rest of the paper is organized as follows. Section 2 describes preliminaries

and establishes motivations for the paper. Section 3 describes the proposed dimension-

reduction methodology with the algorithms and methodology for fault diagnostics and/or

classification. Section 4 outlines simulation results for the paper while Section 5 provides

conclusions for the paper.

2. PRELIMINARIES AND RELATEDWORKS

In this section, the notations for the paper are discussed then the problem under

consideration is formulated. For general notations, consider R to represent the set of real

numbers and let the set of natural numbers be written as N. Throughout the paper, matrices
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and vectors are denoted by boldface with lowercase symbols used for vectors and uppercase

symbols for denoting matrices. These notations are also summarized in Table 1. Squared

Euclidean norm for vectors and squared Frobenius norm for matrices are denoted by | |.| |.

Table 1. Notations

Notation Meaning
X Data-set
F Number of faults/classes in the system.

(n, p)
Number of sample points in the training set,
the dimensionality of data

k Index for faults/classes
m, l Indexes throughout the paper
g(.) Characteristic function

A,B, Ã, B̃
Distance matrices and their double-centered
counterpart

νa,b
n Sample distance covariance

ra,b
n Sample distance correlation
C Distance correlation matrix
λ Eigenvalues
J Batch update of distance correlation matrix

K
Updated transformation matrix for batch up-
dates

M Number of batches in the data

(i) : i = 1,2, · · · I Step index in the dimension-reduction pro-
cess represented by the superscript

j Index for attributes at each step

t : 1,2,3, · · ·T (i) Group index at any particular step (i) while
T (i) is the total number of groups at step (i)

κ
(i)
t , η(i)t

Estimated cardinality of the low dimensional
space for group t and step i and η(i)t is the
number of attributes in each group

P(i) Transformation matrix at every step
Q(i) Shuffling matrix at every step
α Amount of variation to be captured in a group
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2.1. PROBLEM FORMULATION

Consider a scenario where data can arise under one of the F categories. Suppose y

is a datapoints, with p attributes, obtained under one of these categories. In classification

problems, we want to determine the probability of a particular datapoints y belonging to

category k, k = 1,2, · · · ,F given a knowledge base (training data-set) X. Thus, we are

interested in

p(y ∈ Ψk |X), (1)

where Ψk with k = 1,2,3, · · · ,F denotes the population representing category k. Note

that a generalized regression problem that can be used to evaluate these probabilities can

be defined as

p(y ∈ Ψk |X) = f (θ; y), (2)

where the training data-set be denoted by X with {X} = ∪Fk=1Xk, where Xk is the sample

points belonging to category k. Each datapoints in X is collected across p attributes.

Furthermore, the parameters of the regression are denoted by θ.

Remark 13 Since the classification problem described in Eq. (2) is generic, all method-

ologies that use some form of a parametric map can be considered for analysis. Examples

of such methods include neural networks and logistic regressions [9].

While classifying datapoints in big data scenarios using the problem formulation in

Eq. (2), the number of dimensions in the data adversely affects the classification efficiency.

To observe this effect, consider classification with the MNIST data-set. A three-layer neural

network is used for classification with the MNIST digits-recognition data-set [10] where

redundant dimensions are introduced synthetically into the data. When the number of

redundant dimensions in the data increases, the accuracy falls drastically, as observed from

Figure 1.
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Figure 1. Accuracy with respect to an increase in the number of noisy dimensions in the
data.

To mitigate this effect, it is desirable to reduce the number of dimensions prior to

classification [6]. However, due to the challenges posed by the high dimensional space, the

process of dimension reduction is nontrivial. In traditional dimension-reduction approaches

such as principal component analysis (PCA) [11] and factor analysis [12] are frequently used

for feature extraction. In these methodologies [11], [12], the data is linearly projected into a

lower dimensional space using the eigen-decomposition of correlation matrices. However,

efficient projection is only possible if the dependence relationships are estimated accurately.

Two problems arise while evaluating dependence relationships in big data. First, im-

perfect estimation is observed in the presence of nonlinear relationships among dimensions,

especially when Pearson correlation/covariance matrices are used [11, 12, 13]. Second, a

full-rank Pearson correlation/covariance matrix cannot be obtained when large p, small n

data-sets are involved [3]. As a consequence, efficient feature extraction cannot be ensured

when using methodologies such as those described in [11, 12].

Therefore, a measure of dependency characterizing independence in a more general

framework is required. In a seminal paper by Professor Szekely [7], one such dependence

measure known as distance covariance (DC) was proposed. For simplicity, consider the
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training data to have n observations with only two attributes (p = 2). Thus, each vector

in X can be written as [a b]. Let a = [a1 · · · an]
T and b = [b1 · · · bn]

T . The

population version of distance covariance can be written as follows.

Definition 1 DC between random vectors a ∈ Rn×1 and b ∈ Rn×1 under finiteness of first

moment is given as

νa,b = ‖ga,b − gagb‖, (3)

where ga,b is the joint characteristic function and ga and gb are the respective marginals.

It can be clearly seen that νa,b is zero iff ga,b = gagb, which is only true when

both a and b are independent. In other words, νa,b is a non-negative and sure measure of

independence for any kind of relationship among two random vectors. As a consequence,

DC is appropriate for characterizing nonlinear relationships with big data. A sample

estimate of DC is described as follows.

Let A and B represent a matrix of pairwise distances between every pair of elements

in vectors a and b respectively. Note that A = {Am,l : m, l = 1,2, · · · n} and B = {Bm,l :

m, l = 1,2, · · · n} with Am,l = (am − al)
2 and Bm,l = (bm − bl)

2. Let (.)m. denote the mth row

in (.) and (.).l denotes the lth column in (.). Next, double center A and B such that Ã and

B̃ represent the double centered matrices where

Ãm,l =



Am,l −
1
n1T

n (A).l−

1
n (A)m.1n +

1
n2 1T

n A1n m , l

0 m == l

B̃m,l =



Bm,l −
1
n1T

n (B).l−

1
n (B)m.1n +

1
n2 1T

nB1n m , l

0 m == l,

(4)

where 1n is a column vector of ones of length n.
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Definition 2 Let the second-order moment of a and b be finite. The squared sample DC is

defined as

νa,bn =
1
n2 1T

n (Ã � B̃)1n, (5)

where � represents the Hadamard product and 1n represents a vector of ones with size n.

The squared sample distance correlation can be written as

r a,bn =
νa,bn√
νa,an νb,bn

. (6)

Note that the distance covariance as defined in [7] allows for estimating independence

between multivariate samples. The objective in this paper is to systematically remove

redundant dimensions; therefore, we look at pairwise dependencies among attributes.

The objective of this paper is to present a dimension reduction methodology that

addresses the challenges such as distance concentration and spurious correlation.

2.2. RELATEDWORKS

Several dimension-reduction techniques such as Isomap [14], LLE [15], Hessian

LLE [16], Laplacian eigen-maps [17] and its variants [18] including kernel PCA [19],

have been introduced to handle nonlinear relationships. These methodologies discover the

intrinsic geometric structure of high-dimensional data. In [3], the authors show that high

dimensional spaces are sparse and suffer from distance concentration [3]. This challenge

makes the discovery of intrinsic geometric structure nontrivial. InNDR, distance covariance

is utilized to evaluate nonlinear relationships while the sparsity of the high-dimensional

space is addressed by evaluating dependencies in groups.
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More recently, distance covariance has been utilized as a tool to perform effective

independent component analysis in [20] where dimensions are decorrelated in the presence

of nonlinear relationships and has been shown to be effective. However, there is a need to

estimate the complete distance covariance matrix and its inverse. Therefore, this method

would still suffer from improper estimation [6, 3].

To address the problem of computational disadvantages and imperfect estimation

in large dimensional scenarios, divide-and-conquer mechanisms for dimension reduction

were proposed in [21, 22, 23, 24], where the authors have shown that in many cases,

known application-specific relationships and natural groupings can be exploited for efficient

dimension reduction. However, such approaches [21, 22, 23, 24], require prior knowledge of

these relationships to enable organization, which may not be available in big data scenarios.

Similar to [21, 22, 23, 24], a divide-and-conquer approach is presented in this paper,

too. However, in contrast to [21, 22, 23, 24], NDR allows the use of SVD results to

perform group-wise organization. In addition, if information about such relationships is

available, the generic organization structure proposed here allows for the incorporation of

this information at the first step.

In traditional dimension reduction approaches [11, 12, 13, 14, 20, 15, 16, 17, 18,

19, 21, 22, 23, 24], the underlying principle is to perform one-step mapping from a higher

dimensional space to a lower dimensional space. First, such an approach is computationally

unfriendly when the dimension of the original data is very large. Moreover, it is also

susceptible to improper estimation due to the presence of large amounts of noise and

redundancies [25]. In contrast, a multi-step dimension-reduction approach is introduced in

the proposed NDR. Furthermore, while standard dimension-reduction approaches require

the practitioner to specify the number of dimensions to be extracted from the data. In

contrast, the user only specifies the percentage of information to be retained in NDR and

NDR can estimate the number of dimensions to be extracted from the data.
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In the dimension-reduction approaches mentioned earlier [11, 12, 13, 14, 20, 15, 16,

17, 18, 19, 21, 22, 23, 24], there is no mechanism to incorporate new information into the

analysis structure when new data is available. In such scenarios [11, 12, 13, 14, 20, 15, 16,

17, 18, 19, 21, 22, 23, 24], one would either be required to retrain the dimension reducing

transformation or ignore all the previous samples of data [11, 12, 13], which is inefficient.

Although parameter aggregation methods facilitating the update of Pearson cor-

relation and/or covariance [12] with the corresponding SVD [26] exist, they are focused

towards computational efficiency when all the data is available. Since it is not the case

in big data scenarios, these methods may be inefficient. Furthermore, these parameter

aggregation methods are not applicable with distance covariance due to the difference in

construction between Pearson correlation and distance covariance. Thus, in contrast with

[11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26], novel batch-wise update procedures suited

to both computational efficiency and parameter aggregation methods for use with distance

covariance are derived in this paper.

One potential application of NDR is in the field of visualization, where approaches

such as TSNE and deep-autoencoders [27, 28] have shown to be very promising and effec-

tive. First of all, deep-autoencoders and TSNE are efficient for visualization, however, they

[27, 28] require multiple passes through the data for visualization and therefore computa-

tionally scale with the number of datapoints. On the other hand, NDR is computationally

efficient and can perform reasonable visualization when large dimensional data is available.

More importantly, popular visualization methods [27, 28] optimize a cost function

for effectiveness. Due to this, one may be at a disadvantage if all the data is not available at

once and there is no mechanism to incorporate new information. On the other hand, with

batch processing updates proposed in NDR, one is able to incorporate new information as

new data is available. Furthermore, the changes in the data structure over the course of time

can be observed with NDR.
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3. NONLINEAR DIMENSION-REDUCTION

Encountering large dimensions in big-data applications is a major issue faced by

data analysts. To mitigate this challenge, in each step of the dimension-reduction procedure,

we propose to split the number of dimensions in the data into groups. Next, we reduce the

dimensions in each group via a transformation where nonlinear relationships are considered

using distance covariance. Finally, we merge the newly extracted dimensions. The split and

merge process is repeated until a predefined condition is satisfied.

Another issue of concern in big-data situations is that data may arrive in batches.

Moreover, sometimes it is not practical to analyze the data all at once. To address this

challenge, the dimension-reduction process proposed herein can handle data arriving in

batches by aggregated information. This refinement of the previous estimates with infor-

mation from new data also allows us to address the issue of heterogeneity. A flowchart of

the overall methodology is shown in Figure 2.

3.1. MULTI-STEP GROUP-WISE DIMENSION REDUCTION

For illustration, first consider a simple case, where the sampleX = [x1 · · · xn]
T,

with x1 representing the first observation in X with eight dimensions such that p=8, and xn

represents the nth sample point in the data-set. Alternatively, the data in the first step can

be denoted by a matrix X (1) = [x(1)1 · · · x(1)8 ] such that x(1)j represents the j th column

in X (1). In other words, x(1)j represents the vector of values taken by the j t dimension for

all the n observations. The proposed methodology is composed of a sequence of steps with

i = 1, · · · , I, where each step can be described in two stages, the grouping stage and the

transformation stage.
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Figure 2. Overview of the dimension-reduction methodology



65

3.1.1. Stage 1: Groupings When i = 1. The first stage consists of creating groups

from the data directly. The initial groupings are performed randomly. Potentially, if some

information about the structure of data is available, then the initial groupings could be

constructed using it. As an example, we will consider the eight-dimensional case for

analysis.

Therefore, at the start of the dimension-reduction approach, the eight attributes are

grouped as (1,2), (3,4), (5,6), (7,8) such that (x(1)1 , x(1)2 ) form group t = 1 and (x(1)3 , x(1)4 )

form group t = 2 and so on.

Let X (i)t denote the attributes at the ith step and tth group. Note that i = 1,2,3, · · · , I,

where I is the total number of steps in the dimension-reduction process, and t = 1,2,3, · · · ,T (i),

where T (i) is the total number of groups at step i. With these notations and the initial group-

ing, the transformation stage is initiated.

3.1.2. Stage 2: Transformation. For each group, let C(1)1 be the DC matrix esti-

mated for the pair (x(1)1 , x(1)2 ) using Eq. (5), thus yielding

C(1)1 =


ν
x(1)1 ,x(1)1
n ν

x(1)1 ,x(1)2
n

ν
x(1)2 ,x(1)1
n ν

x(1)2 ,x(1)2
n

 .
As observed, the matrix C(1)1 is symmetric and of size 2 × 2. The diagonal el-

ements represent individual variances, and the off-diagonal elements represent pairwise

relationships. By using distance covariance to measure relationships among dimensions,

the strength of the relationships are captured even when the two dimensions are nonlinearly

related.

The objective is to transform the data into a new dimensional space such that

redundancies among attributes are minimized and the variance captured by the reduced

dimension is maximized [11]. Therefore, let C(i)t denote the DC matrix for group t and

define the singular value decomposition of C(i)t as
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C(i)t = U (i)t Σ
(i)
t V (i)t

T
. (7)

Note that λt,1 ≥ λt,2 ≥ · · · ≥ λt,η(i)t
≥ 0 denotes the eigenvalues of C(i)t and Σ(i)t =

diag(
√
λt,1,

√
λt,2, · · ·

√
λt,η(i)t
) with U (i) and V (i) being the orthonormal transformations,

which are the eigenvectors of C(i)t .

To perform the group-wise transformation, the size of the projected space is de-

termined depending on a threshold set by the practitioner. This threshold is denoted as

α/100, where α refers to the percentage of information that must be retained from each

group. To this end, the eigenvalues are first normalized to sum to one. Next, the largest

κ
(i)
t eigenvalues are selected such that their cumulative sum is greater than α/100 and the

rest of the dimensions are discarded. Using the selected eigenvalues and the corresponding

eigenvectors, the data in each group is projected to a new space where these dimensions

explain a minimum of α% variation in the data. In this paper, this projection is performed

using a low-rank approximation of SVD. The problem of lower rank estimation can be

solved by using techniques such as coordinate ascent or the power method. These iterative

mechanisms are readily available in the literature [29]. One such estimation process is given

in Algorithm 4.

Formally, let κ(i)t be the number of dimensions that are derived from this group such

that κ(i)t dimensions explain α % of the variation in the group data. Thus, κ(i)t is given as

κ
(i)
t = min{ j :

j∑
m=1

λt,m∑η
(i)
t

l=0 λt,l

≥
α

100

, j = 1, · · · , η(i)t },

(8)
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where η(i)t represents the number of attributes in group t at level (i). Depending on κ(i)t ,

a low dimensional approximation corresponding to C(1)t is computed [29] and denoted by

Ĉ
(i)
t = Û

(i)
t Σ̂
(i)
t (V̂

(i)
t )

T with V̂
(i)
t and Û

(i)
t representing the eigenbasis with rank κ(i)t . Further,

Σ̂
(i)
t represents a diagonal matrix with κ

(i)
t eigenvalues. As a result, the transformation

parameters that best extract α% variation from the group are obtained through Û (i).

With the current example, let α = 95% and assume that in each group, the number of

dimensions explaining 95% variation is one. Then, the original data is transformed into four

new data-vectors using the eigenvectors corresponding to each of the largest eigenvalues

found in each group. Thus, dimensions are reduced from eight to four.

Formally, let P(1)t = Û
(1)
t denote the transformation parameters obtained from the

approximation in each group such that

X̂
(2)
= {X̂

(2)
t ,∀t = 1,2,3,4}, (9)

where X̂
(2)
t = X (1)t P(1)t and X (1)t ∈ Rn×2, and after transformation X̂ t ∈ R

n×1. Next, we

aggregate data from all the groups after transformation to achieve

X̂
(2)
= [X̂

(2)
1 X̂

(2)
2 X̂

(2)
3 X̂

(2)
4 ].

In general, one can describe the cumulative transformation from step i to i + 1

as follows. Let P(i)t be the projection matrix which forms the eigenbasis for the reduced

dimensions in group t and step (i). Thus, we can write,

X̂
(i+1)
= {X (i)t P(i)t , t = 1,2, · · ·T (i)},

= [X (i)1 P(i)1 ,X
(i)
2 P(i)2 , · · · ,X

(i)
T (i+1)P

(i)
T (i+1)]

= [X (i)1 X (i)2 · · · X (i)
T (i+1)]

diag(P(i)1 ,P
(i)
2 , · · · ,P

(i)
T (i+1))

= X (i)P(i),
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where X (i) = [X (i)1 X (i)2 · · · X (i)
T (i+1)] with P(i) = diag(P(i)1 ,P

(i)
2 , · · · ,P

(i)
T (i+1)). For each

group, the sum of the eigenvalues greater than the threshold for the groups is known.

Under the assumption that the information contained in a dimension is proportional to the

eigenvalues, an average of the eigenvalues from each group provides an estimate about the

amount of information that is retained. The objective is to control the information loss

while reducing the dimensions. Thus, if κ(i)t in all groups becomes equal to η(i)t for each

group, the process is stopped. It can be interpreted that the dimensions cannot be reduced

further without losing more information, which acts as a stopping criterion.

Remark 14 1. Increasing the value of α increases the number of dimensions that move

to the next step.

2. This process of transformation, according to the magnitude of the eigenvalues, allows

the proposed methodology to remove noise and redundant dimensions. This is, how-

ever under the assumption that the attributes with smaller eigenvalues are noisy and

redundant. This assumption is justified in the unsupervised dimension-reduction case.

Note that this is the primary assumption behind popular unsupervised dimension-

reduction approaches such as PCA, FA, etc. Relaxing this assumption would require

feedback from the detection methodology, which is not the goal of this paper.

3. When a redundant dimension is encountered in a group, the proposed selection

procedure allows for the removal of dimensions with zero or minimal contribution to

the variation.

4. During the initial group-wise organization, the dependencies across the groups are

ignored. However, by performing another step of group-wise reduction, these cross-

dependencies, ignored in the previous step are captured. Repeated application of the

proposed procedure can capture these dependencies to some extent. This allows for

a methodical process of capturing relationships with algorithmic simplicity.
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Assuming that the stopping criterionwas not satisfied in the first step, the group-wise

organization must be performed again and Stage 1 of the methodology is reinitiated.

3.1.3. Stage 1: Groupings When i > 1 . For illustration, let the stopping criterion

be unmet after the first step of dimension- reduction. Next, denote the set of transformed

datapoints from the first step in the dimension-reduction procedure such that these trans-

formed datapoints are ordered in descending order. These new dimensions are grouped

according to the strength of eigenvalues. In other words, the dimensions with smaller

eigenvalues are grouped with dimensions with larger eigenvalues. By doing this, we ensure

that the dimensions with large variance are not placed in one group and discarded at the

dimension-reduction step.

The principle behind this group-wise organization is to form groups according to

their contribution to the overall variation. Specifically, in the example used above, it can be

seen that attributes one and two contribute more to variance. On the other hand, attributes

three and four contribute less. The objective therefore is to keep one and two in separate

groups. This structure reduces the premature loss of attributes that contributes more to the

variation thereby mitigating information loss. With this line of thought, two new groups

can be constructed for our example. The first attribute is assigned to the first group and the

second attribute is assigned to the second group. Next, the third attribute is assigned to the

first group and the fourth attribute is assigned to the second group.

In a general case, let X (i+1) contain observations with transformed dimensions and

ordered according to the eigenvalues obtained in the previous step. Consider T (i+1) to be

the total number of groups constructed from X̂
(i+1). Similar to the example earlier, the first

T (i+1) attributes are assigned to each of the T (i+1) groups. Then, the next T (i+1) attributes

are assigned to each of the T (i+1) groups. The process is continued till all the attributes in
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X̂
(i+1) are assigned to a group. The overall process results in the groups given as

X (i+1)
1 = [X̂

(i+1)
1 , X̂

(i+1)
1+1T (i+1), · · · , X̂

(i+1)
1+η(i+1)

1 T (i+1)]

X (i+1)
2 = [X̂

(i+1)
2 , X̂

(i+1)
2+1T (i+1), · · · , X̂

(i+1)
2+η(i+1)

2 T (i+1)]

...

X (i+1)
T (i+1) = [X̂

(i+1)
T (i+1), X̂

(i+1)
T (i+1)+1T (i+1), · · · ,

X̂
(i+1)
T (i+1)+η

(i+1)
T (i+1)T

(i+1)],

where η(i)t is the number of attributes in each group t at level i.

One can observe that the grouping mechanism expressed in Eq. (10) can be al-

ternatively interpreted as a shuffling mechanism written in matrix form denoted as Q(i).

Therefore, the transformation from step i → i + 1 is achieved as

X (i+1) = Q(i)X (i)P(i). (10)

The two stages of the proposed procedure are continued till the stopping criterion

is satisfied. At this point, the dimension-reduction procedure is complete. For the example

considered here, the dimension-reduction process is continued for two steps.

Depending on the number of attributes desired by the practitioner or the criterion

on information loss, the proposed process of transformation and corresponding group-wise

organization can be continued for I steps, resulting in X (I). Then, a generalization for these

I transformations can be written as

X (I) = Q(I) · · · Q(1)X (1)P(1) · · · P(I),= QX (1)P,

where Q = Q(I) · · · Q(1) and P = P(1) · · · P(I).
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Figure 3. Overview of the dimension-reduction methodology

Remark 15 1. By using the proposed strategy and by controlling the size of the group,

one can ensure that dependencies can be evaluated efficiently even in situations when

the number of dimensions far exceeds the number of observations as shown here.

Thus, this estimation process can be very effective in high-dimensional cases.

2. When batch-wise updates are used to define the group-wise approximation as per-

formed here, there is a danger of the newer batch changing κ in every group. Due to

this, the group-wise organization from that step forward might change, leading to an

incorrect estimation. The reason for this is the possibility that the batches till now

did not give an adequate estimation of the dependency matrix or that the newer batch

represents noisy samples. To avoid complications due to this, the group sizes are

fixed after the first batch. The situation can also be avoided by increasing the size of

the first batch and/or hand-picking the first batch such that it is optimal. This update

process is continuously performed until all the batches are used for training. The

whole training process is repeated until convergence or for a pre-defined number of

iterations.

The procedure explained above can be applied on all the observations in the test

sample to obtain the dimension reduced data and the step-by-step details for the proposed

dimension-reduction are described in Algorithm 3. Let the transformation be denoted as
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Figure 4. Distribution of ψ,X and XB

X (I) = φ(X (1)). Any test datapoints y can be transformed by applying φ on y

y(I) = φ(y). (11)

In NDR, all datapoints in the data-set were assumed to be available. In a big-data

environment, data is distributed, which would make the native approach for evaluating

dependencies practically infeasible. Furthermore, as the dependence relationships evolves

across different data samples, statistical heterogeneity would be observed [6]. To understand

this effect, consider a system where big data is collected from one attribute and is stored

at multiple locations. Let the underlying distribution be represented by Ψ with mean µ, as

shown in Figure 4.

Consider two data samples from the underlying distribution as X0 and X1 with

means µ0 and µ1, respectively. Neither of the two samples represent Ψ fully because there

are certain characteristics of Ψ not covered by the data, as shown in Figure 4. As a result,
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methodologies that learn to classify with X0 or X1 will not capture complete information

about Ψ. One way to mitigate this problem is to aggregate the information derived from

multiple samples.

3.2. BATCH-WISE ESTIMATION OF DC AND SVD

For illustration, considerX with p = 2 and letX be available in two batches denoted

as X0 and X1 such that X0 = [a b] and X1 = [aN bN ], where a and b are vectors of

length n and aN, bN are vectors of length N . The objective is to update νa,bn estimated from

X0 using Eq. (5) with information from X1.

Therefore, define two augmented vectors â =


a

aN

 and b̂ =


b

bN

 such that the

length of vectors â and b̂ is now (n + N). The update for distance covariance and/or

correlation is given by the following lemma.

Lemma 3 Define two augmented data matrices â and b̂ and let aN and bN be the new

samples for updating DC. The update for distance covariance is then given as

ν â,b̂ =
1
n2 ν

a,b + 2
1

(n + N)2
ν â×b̂ +

1
N2 ν

aN ,bN , (12)

where νa,b is the old estimate of DC with distance correlation estimate given as

r â,b̂ =
1

M2 r a,b + 2
1

(M + N)2
r â×b̂ +

1
N2 r aN ,bN ,

where ra,b is the old estimate of distance correlation.

Proof: See Appendix

The first term in Eq. (12) represents the distance covariance that is evaluated from

X0. The second term is the distance covariance value between the samples a, b and the

new batch aN, bN . The cross term can also be understood as the measure of change in
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relationships between the current sample and the new batch. The final term in Eq. (12)

refers to the distance covariance estimated from the new batch of data. In a similar line of

thought, distance covariance/correlation matrix for the multi-variate scenario can be written

as

C â,b̂ = Ca,b + 2C â×b̂ + CaN ,bN .

Information about nonlinear relationships within any set of attributes is provided by the

distance correlation matrices. Using the above proposed procedure, an aggregation of

distance correlation can be performed. The expression for aggregating the SVD is presented

by the following lemma.

Lemma 4 Let the SVD of Ca,b be given as UΣV and let C â×b̂,CaN ,bN be evaluated from

the new batch of data. The overall SVD of Ca,b is given as C â,b̂ = [U I]ÛΣ̂V̂
T
[V J]T,

where K =


Σ 0

0 I



I VT J

0 RJ

 and ÛΣ̂V̂
T
= SV D(K ), and U,V and Σ are previously

known SVD where J = 2C â×b̂ + CaN ,bN and RJ = (J − VVT J). Proof: See Appendix

Similar to Eq. (12), U,V and Σ are already known. The information about Û, Σ̂ and

V̂
T is derived from the new batch of data. Furthermore, the size of C is fixed. It is possible

that, in some cases, numerical instability is observed during estimation. This problem can

be easily fixed using Gram-Schmidt orthogonalization procedures [26].

For practical implementations, the batch-wise updates defined in Lemma 3 and 4

are slightly modified. To this end, consider the data-set be divided into M batches such that

n = n1 + n2 · · ·+ nM . Further assume that bq represents the batch q,with q being the index.

Considering this, rewrite the batch-wise updates as

C(q) = C(q−1) + 2Ĉ(q−1)×(q)
+ Ĉ

(q),(q)
, (13)
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where C(q) represents the aggregated estimate of distance covariance up to and including

batch bq−1. The factor Ĉ
(q−1)×(q) is the estimate with the current batch of data (that is batch

bq), and the previously aggregated batch estimate. Finally, Ĉ(q),(q) is the estimate involving

the current batch bq. Similarly, the updates for the singular value decompositions are given

for each iteration as

U (q) = [U (q−1) I]Û
(q)

V (q) = [V (q−1) I]V̂
(q)

Σ(q) = Σ̂
(q)
,

(14)

where Û (q)Σ̂(q)(V̂ (q))T = SV D(K ) and K =


Σ̂
(q)
Σ̂
(q)
(V̂
(q−1)
)T J (q)

0 R
(q)
J

 .
Furthermore, Û (q), Σ̂(q) and V̂ (q) are decomposition fromK (q)with J (q) = 2Ĉ(q−1),(q)

+

Ĉ
(q),(q) and R

(q)
J = (J

(q) − V̂
(q−1)
(V̂
(q−1)
)T J (q)). In practical scenarios, Eq (14), (13) can be

used to update DC and its corresponding SVD when new data is observed.

Remark 16 It can be observed that to estimate the middle term in the batch-wise updates

in Eq (13) and (14), one needs to know the data corresponding to the previous batches.

Theoretically, it can be shown that if an infinite number of datapoints are available

then the estimated DC and its SVD will converge to the true values. This result is presented

in the appendix; see Theorem 1.

However, in practical cases, it is sufficient to maintain a representative sample of

the batches seen till now to enable these updates. This history could be generated using

popular sampling techniques.

With the proposed update mechanism, the dimension-reduction method can explore

the complete distribution of data while evaluating the transformation parameters. Further-

more, parallelized and distributed estimation is possible using the proposed updates. In

[30], a methodology using Hadoop’s distributed file system (HDFS) and Apache Spark
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is introduced for implementing PCA. Similar to [30], NDR can be implemented on such

a framework where the original data-set may be stored in HDFS. For each partition of

data, the batch wise estimation procedure presented in this paper can be used to evaluate

the dimension reducing transformation. Furthermore, it is also possible to implement the

group-wise estimation procedures on separate CPU cores.

In these scenarios, the computational overhead for NDR is influenced by the num-

ber of groups and the size of the batch. The following lemma attempts to quantify the

computational overhead of NDR.

Lemma 5 The worst case computational complexity of calculating NDR is in the order of

p
( (ηI − 1)
(η − 1)ηI

)
O[η3 + MlogM],

where η is the number of attributes in a group and M is the size of the batch. Proof: See

Appendix

Observe that the computational complexity of the proposed methodology is a func-

tion of both the group-size and the total number of samples in a batch. By keeping both of

these quantities small, one is able keep the computational overload to a minimum. However

small group size increases the total amount of information that is ignored while capturing

relationships. On the other hand, using a large group size can minimize this information

loss. Similarly, a large batch size would allow estimation of precise sample parameters,

whereas small batch sizes would lead to estimation error. By carefully choosing the batch

size and the group sizes for the application at hand, one can manage this trade-off. It is

therefore our recommendation that the group size should always be smaller than the batch

size for efficiency; otherwise the p << n problem would be observed.
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Algorithm 3 Training for regression param-
eter estimation
1: Input: Training batch.
2: for step = 1 → Number of Leap Frog up-

dates. do
3: A sample from the batch
4: Evaluate H.
5: Half update of momentum.
6: Update theta based on momentum.
7: Half update of momentum.
8: Evaluate Hnew .
9: if Hnew − H < 0. then
10: Accept state change.
11: else
12: Keep current θ.
13: end if
14: end for

Algorithm 4 Low-rank approximation for
SVD, j represents the dimension in the ma-
trix, d represents the singular value
1: Inputs: matrix K , κ.
2: Outputs: U,Σ,V .
3: Let C1 = C.
4: Let κ1 = 0.
5: for j ∈ 1,2, ..., κ. do
6: for Iterate until convergence, ∀k. do
7: uk ←

(KTK )ku0
‖(KTK )ku0 ‖

8: uk ←
(KTK )kv0
‖(KTK )kv0 ‖

.
9: end for
10: dj ← uTj C jv j

11: C j = C j−1 − dju
T
j v j .

12: end for
13: Final SVD, U = {u j},V = {v j},Σ =

diag({dj}),∀ j = 1,2, · · · , κ.

Algorithm 5 A Nonlinear dimension-
reduction (NDR)
1: Input: X, α
2: Output:Reduced dimension X
3:
4: for Each batch in X do
5: X (1) = batch
6: Standardize X (1).
7: for step from i = 1→ I do
8: if 1

T (i)
∑T (i)

t=0
∑κ

l=0 λl ≥ α then
9: Stop the dimension-

reduction procedure
10: end if
11: if i>1 then
12: Create groups
13: else
14: Generate groupings at ran-

dom
15: end if
16: for Every group at step i do
17: Calculate Distance Correla-

tion matrix
18: if batch number is one then
19: Use current Distance

Correlation
20: Evaluate κ
21: else
22: Use the aggregated Dis-

tance Correlation
23: Evaluate κ
24: end if
25: Evaluate low rank approxi-

mation using Alg. 4
26: Update distance covariance

using Eq (13)
27: Update low rank SVD using

Eq (14).
28: end for
29: end for
30: Train the regression parameter using

Alg. 5
31: end for
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As described in Eq. (2), the objective was to determine p(y ∈ Ψk |X). Due to the

dimension-reduction transformation φ, one may rewrite Eq. (2) as

p(y ∈ Ψk |X) = f (φ(y); θ), (15)

where f represents the regression function and θ represents the parameters. A total of F

probabilities are evaluated using Eq. (15). Finally, the probability with the maximum value

determines the state of the system using y which is given as

p∗k = arg max{p(φ(y) ∈ Ψk |X), k = 0,1, · · · ,F }. (16)

The index with the winning probability p∗k indicates the class of the sample or the corre-

sponding fault.

To learn the regression coefficients, Hamiltonian (cost function) H is first defined

as described in [31] and the optimization problem is given as

θ∗ = arg max
θ

H(θ), (17)

where H(θ) is an appropriate cost function and cross-entropy is the most popular choice

[9].

To optimize Eq (17), HamiltonianMonte Carlo-based leap frog optimization (HMC)

is performed [31].First, a small sample of data is extracted from X (I) using Monte Carlo

sampling and the gradient of H(θ) is evaluated using the sample. Next, momentum υ is

calculated to get

υ = υ − ε
∆θH(θ)

2
. (18)

The parameters are then updated based on momentum, given as

θ = θ + ευ, (19)
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where ε is the step size and ∆θH(θ) denotes the gradient of the cost function with respect

to θ. Once the new parameters are obtained, the cost is evaluated to see if the update must

be allowed or not. For this, the Hamiltonian value (cost function) is calculated again. The

transition is allowed if and only if

dH < 0. (20)

Otherwise, resampling is performed. The overall algorithm for the optimization is described

in Alg. 3.

The application of the proposed methodology on real-world and synthetic data-sets

is presented next.

4. RESULTS AND DISCUSSIONS

A total of ten data-sets are used for analysis in this study. The statistics for these

data-sets are tabulated in Table 2. Each data-set is randomly split into test and train data.

The split is chosen as 20% for test and 80% for training.

The fault diagnostics performance of the methodology will be shown first using

the rolling element bearing data-set and the sensorless drive diagnostics data-set. Next, the

classification performance of the NDR is shown on the rest of the data-sets that are tabulated

in Table 2. All results in this section are averaged over 1000 iterations. Hyper parameters

for all of the classification methodologies are tabulated in Table 3.

4.1. FAULT DIAGNOSTICS

4.1.1. Rolling Element Bearing Data-set. There are eleven attributes in the data.

Three types of faults are under analysis. One thousand data points are randomly sampled

from the data-set to constitute the healthy sample and each of the three fault conditions.

The choice of the number 1000 for the preprocessing data is arbitrary.
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Table 2. Summary descriptions of the different data-sets used in this paper

Data-set Dimensions Data points Classes
Rolling [32] 11 35000 4
Sensorless [33] 48 78000 11
MNIST [5] 784 72000 10
NotMNIST [34] 784 81000 10
CiFAR-10 [4] 3072 50000 10
Gisette [35] 5000 6000 2
Madelon [35] 500 1000 2
Arcene [35] 10000 100 2
Dexter [35] 20000 300 2
Image-Net [36] 784 12614060 10
Synthetic Data-set 20000 2000000 10

Table 3. Hyper-parameters for different methodologies in this paper.

Method Hyper-parameters
KNearest Neighbors (KNN) Three neighbors
Support Vector Machine (SVM) C = 0.025
Kernel SVM RBF kernel, gamma = 2, C=1
Desicion Trees (DT) Max depth =5
Random Forest (RF) Max depth=5 estimators=10, max attributes=1
Shallow Neural Network (SNN) Lr = 0.01, 1 hidden layer, 500 neurons
AdaBoost Number of estimators=50, learning rate=1.0
Naive-Bayes No Priors
Quadratic Discriminant Analysis (QDA) No Priors
Logistic Regression (LR) Random initialization, learning rate = 0.001, 1000 iterations

Table 4. Accuracies at various dimensions along with false positive rates for rolling element
bearing data-set.

α/100 Dimensions False Positive Rates Accuracy
0.50 5 0.008 0.93
0.60 6 0.009 0.94
0.70 7 0.011 0. 96
0.95 10 0.011 0.98
0.99 11 0.011 0.95

To test the performance of NDR, false positives and accuracies with respect to the

number of dimensions extracted from the data are listed in Table 4. With a decrease in the

total number of dimensions derived from the data, the false positive rate decreases. The case
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Table 5. Accuracy for the proposed methodology at various dimensions for the sensorless
drive diagnostics data-set.

α/100 Dimensions False Positive Rates Accuracy
0.7 20 0.008 0.91
0.75 25 0.009 0.91
0.80 30 0.011 0. 81
0.85 35 0.031 0.78
0.95 40 0.023 0.76
0.99 48 0.021 0.77

Table 6. Average classification accuracy (Avg. Class. Acc.) rates for various dimensions
reduction techniques (Dim-Red) and classifiers using the Sensorless Drive Diagnostics
data-set.

Dim-Red ↓ KNN SVM LDA DT RF SNN AdaBoost Naive-Bayes QDA
PCA 0.52 0.52 0.52 0.45 0.45 0.52 0.18 0.45 0.53

ISOMAP 0.67 0.46 0.43 0.32 0.39 0.58 0.18 0.42 0.49
LLE 0.25 0.08 0.15 0.18 0.18 0.08 0.18 0.19 0.19
KPCA 0.54 0.53 0.52 0.45 0.44 0.58 0.28 0.45 0.53
NDR 0.89 0.91 0.60 0.50 0.95 0.47 0.74 0.83 0.84

with 10 dimensions provides better accuracy compared to no dimension reduction. This

can lead to a conclusion that the data-set has a particular dimension, which is redundant.

When the value of α/100 is set to be 0.95, NDR can only reduce dimensions to 10. By

reducing the value of α, further reduction can be achieved. Also note that the case with 5

dimensions is accomplished with α/100 of 0.5.

Different classificationmethodologies are used in conjunctionwithNDR.The results

are shown in the first row of Table 7 and the results indicate the efficiency of NDR to

capture information in the data. The rolling element data-set is a benchmark data-set for

the proposed methodology. Here, a traditional dimension-reduction approach provides

reasonable results. In the next data-set, some of the traditional methodologies fail due to

the presence of complicated relationships, as will be shown.
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Table 7. Accuracies for the various data-sets with different methods using NDR as the
dimension-reduction methodology with generalization error (the difference between the
test and the training error) in parenthesis. The value of α is chosen as 0.95 for all the
data-sets.

KNN SVM LDA DT RF SNN AdaB LR
Rolling 0.99

(0.006)
0.96
(0.017)

0.96
(0.004)

0.95
(0.019)

0.97
(0.0077)

0.88
(0.014)

0.86
(0.034)

0.97
(0.019)

Sensorless 0.88
(0.008)

0.91
(0.01)

0.60
(0.016)

0.50
(0.013 )

0.95
(0.021)

0.47
(0.004)

0.74
(0)

0.93
(0.004)

MNIST 0.91
(0.031)

0.91
(0.006)

0.82
(0.024)

0.64
(0.0836)

0.62
(0.021)

0.96
(0.024)

0.721
(0.039)

0.96
(0.083)

NotMnist 0.90
(0.044)

0.82
(0.016)

0.88
(0.033)

0.82
(0.022)

0.66
(0.026)

0.93
(0.014)

0.72
(0.025)

0.94
(0.014)

CiFAR-10 0.29
(0.080)

0.44
(0.047)

0.37
(0.056)

0.26
(0.048)

0.21
(0.090)

0.50
(0.036)

0.51
(0.077)

0.66
(0.036)

Madelon 0.49
(0.28)

0.57
(0.21)

0.58
(0.72)

0.56
(0.081)

0.54
(0.183)

0.53
(0.201)

0.59
(0.195)

0.61
(0.081)

Dexter 0.48
(0)

0.54
(0)

0.54
(0)

0.77
(0)

0.53
(0)

0.57
(0)

0.69
(0)

0.81
(0.015)

Gisette 0.94
(0.031)

0.93
(0.012)

0.91
(0.052)

0.92
(0.049)

0.74
(0.074)

0.98
(0.015)

0.97
(0.019)

0.99
(0.015)

4.1.2. Sensorless Drive-Diagnostics Data-set. Sensorless Drive Diagnostics data-

set is significantly larger than rolling element bearingdata-set. The problem considered here

is an 11-fault estimation problem involving 48 dimensions. A total of 1000 observations

belonging to every fault are sampled and NDR is used to reduce dimensions in the data.

The resulting accuracies on the test-set are shown in the second row of Table 7.

As seen in Table 7, the detection results are optimal. Large values of accuracies

and low values of false positive error rates indicate this optimality. In this data-set, it is

observed that the Type-1 error rate increases with an increase in the number of dimensions.

The best-case accuracy is achieved in this case when the total number of dimensions is

reduced to 35.

Based on the results in Table 7, NDR is able to capture information accurately. Note

that the results for DT, RF, Ada-boost, and Naive-Bayes are suboptimal for this data-set. For

further investigation, these methods are applied on the sensorless drive diagnostics data-set

without dimension reduction. It was confirmed from the results that these methods are

unsuitable for the sensorless drive data-set.
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Next, NDR is compared to the state-of-the-art dimension reduction techniques. The

results are summarized in Table 61. The use of NDR results in better accuracies compared

to the rest of the dimension-reduction methods.

Since the sensorless drive data-set contains nonlinear relationships, PCA is expected

to fail, and this is observed from the results. Furthermore, nonlinear dimension-reduction

approaches such as ISOMAP, LLE, and KPCA fail due to the stringency of approximation.

In all of these tests, the data are reduced from 48 dimensions to 25. The observation that

DT, RF, Adaboost, and Naive-Bayes are suboptimal for this data-set is consistently seen

here for various dimension-reduction schemes.

In the above two data-sets, the performance of the overall approach has been estab-

lished, even for cases where the traditional dimension-reduction approach does not perform

well. In the next section, relative performance of NDR on classification of big data is

studied and a total of 10 data-sets were used.

4.2. CLASSIFICATION

All of the data-sets mentioned in Table 2 are analyzed using NDR in conjunction

with 10 popular classification methods on these data-sets. These results are shown in Table

7. It is seen that the NDR performs reasonably well for data-sets with both linear and

nonlinear relationships.

To analyze how much information is captured by NDR relative to a standard

dimension-reduction method such as PCA, a linear regression approach is utilized. Each

PCA component is regressed against components derived from NDR. The goodness of fit

for these linear regressions is measured by averaging the R2 value for varying number of

PCA components for an equal number of NDR components. For example, each of the first

five components from PCA are regressed against the first five components from NDR, and

1Acronyms for different dimension-reduction techniques are PCA (Principal Component Analysis),
ISOMAP (Isometric Mapping), FastICA (Independent Component Analysis), LLE (Locally Linear Em-
bedding), and NDR (Nonlinear Dimension-reduction) [37].
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then the R2 values are averaged for each execution. This test is executed 1000 times and

5,10,15,20 components are compared. Large R2 averages indicate that we can reconstruct

the principal components relatively accurately from NDR components as seen in Table

8. The results suggest that the multi-step NDR approach does not result in appreciable

information loss relative to the standard PCA method since the R2 averages are large. Note

that for this test, synthetic data are generated with varying number of observations and a

total of 100 dimensions.

Finally, NDR is tested on a very large data-set consisting of 20,000 dimensions and

2,00,00,00 datapoints. While generating this data-set, clusters of normally distributed points

are created about vertices of a 20,000-dimensional hypercube with sides of a predefined

length which is chosen as one for this case. An equal number of clusters is constructed

for each class. Note that the datapoints are equally distributed among all the classes in

consideration. A python function for generating this data-set is available in the standard

sklearn python library [38]. The ten classes in the data are visualized using NDR and the

results are compared with TSNE. Therefore, five thousand datapoints corresponding to each

class are sampled and two dimensions are extracted using both NDR and TSNE.

The results in Figure 5 highlight the application of the proposed methodology to

visualization. The results indicate that NDR is able to reasonably disentangle nonlinearities

in the synthetic data-set as seen from Figure 5a and can act as a useful tool in the domain

of data visualization. In comparison, TSNE provides clear separation between different

classes, as seen in Figure 5b. However, it must be observed that the computational load

of using NDR is eighty times lower than that of TSNE, which is observed in Table 9.

Furthermore, the increased computational load comes at the price of 2% improvement in

accuracy, as seen in Table 9, when LR is used for obtaining the result.

Themain idea behind the proposedmethodology is to group the attributes and reduce

the dimensions in each group. As a result, each group at a particular step can be imple-

mented independently. Using the python multi-processing library, NDR is implemented on
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Table 8. Approximate R2 values between the components derived from PCA compared to
components derived from NDR for an increasing number of datapoints.

Number of Components 4096 2048 1024 56 10 5
5 0.8516 0.8615 0.8975 0.8328 0.9569 1.
10 0.8895 0.8826 0.8554 0.9014 1. 1.
15 0.8995 0.9026 0.9554 0.9901 1. 1.
20 0.8921 0.9014 0.9210 0.9964 1. 1.

0
1
2
3
4
5
6
7
8
9

(a) (b)

Figure 5. Visualization results for the (a) NDR (b) TSNE.

Table 9. Average accuracies with computational times for the synthetic data-set.

Methodology Accuracy Computational
Times (sec)

NDR 96.10 57
TSNE 98.41 4834

Table 10. Average accuracies with computational times for parallelized implementation on
a twelve core CPU.

Data-set Accuracy Computational
Times (sec)

Synthetic 94.10 377
Image-Net 56.21 6874
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a multi-core CPU. Finally, the results are demonstrated on two large data-sets where the first

is the popular ImageNet data-set [36], and the second is the synthetic data-set. We construct

a ten class problem from the ImageNet data-set by sampling with replacement. In the end,

the data-set is about 138 GB in size consisting of ten classes. Both of these data-sets are

extremely large and cannot be implemented on a single computer node. The results indicate

the ability of the methodology to obtain reasonable performance in parallelized environ-

ments. Note that ImageNet is a very complicated data-set and a simple Logistic Regression

based classification is not enough for optimum performance. The results demonstrated here

indicate the possibility of a parallelized implementation for NDR and do not imply state of

the art performance.

These results indicate impressive performance of NDR even in scenarios where the

traditional methods do not work very well. Moreover, we note that in data-sets, where the

number of observations are fewer than the number of dimensions in the data, the proposed

methodology is optimal.

5. CONCLUSIONS

In this paper, an iterative dimension-reduction approach is proposed for handling

big-data challenges such as nonlinear relationships (NDR), spurious correlations, redundant

dimensions, and statistical heterogeneity. The proposed methodology was applied to the

problem of fault diagnostics and classification.

NDR achieves high accuracies in the case of large p, small n data-sets. Due to

the incremental updates proposed in this paper, NDR can address heterogeneity while

being effective in large-scale distributed storage environments typical with large p, large n

scenarios. As information loss is controlled by a user-defined parameter in this approach,

NDR can dynamically determine the number of dimensions to be extracted from the data.

As a consequence, NDR is able to remove redundant and unwanted dimensions while
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taking into account spurious correlations efficiently. Due to the use of distance covariance,

NDR is also able to capture nonlinear relationships from the data in contrast with standard

dimension-reduction approaches such as PCA, FA.

Since, NDR does not take into account the error in the detection process while

reducing dimensions, it suffers from ineffectiveness in very complicated data-sets, such as

CiFAR-10. Enabling such a feedback loop would be beneficial for improvements in big-data

cases and is therefore part of our future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. John Singler, Associate Professor, Department

of Mathematics and Statistics, for his help in verifying the math related to the batch-wise

update of the SVD and the related results and Dr. Elizabeth Bowles, Research Associate,

Biological Sciences Department, for her help in improving the written flow. This research

was supported in part by NSF I/UCRC award IIP 1134721 and Intelligent Systems Center.

APPENDIX

0.0.0.1. Proof:. [Incremental updates for distance covariance] Consider a double

centered matrix of pairwise distance A as shown in Eq 4 in the main body of the paper. The

updated distance matrix Â can be written as

Â =


Ã Ãa,aN

Ãa,aN ÃaN ,aN

 , (21)

where Ã is the old distance matrix with Ãa,aN representing the distance matrix between

old and new samples and ÃaN ,aN represents the pairwise distance values within the new

sample.

Similarly, consider another augmented distance matrix as B̂ given as
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B̂ =


B̃ B̃b,bN

B̃b,bN B̃bN ,bN

 . (22)

The squaredmeasure of distance covariance for the augmentedmatrix can be written

in matrix form as

ν â,b̂ = [1T
a 1T

aN ]

( 
Ã Ãa,aN

Ãa,aN ÃaN ,aN

 �


B̃ B̃b,bN

B̃b,bN B̃bN ,bN


)

[1b 1bN ],

(23)

where � represents the Hadamard product. Simplifying the above expression, one can

achieve

ν â,b̂ = [1T
a 1T

aN ]

( 
Ã � B̃ Ãa,aN � B̃b,bN

Ãa,aN � B̃b,bN ÃaN ,aN � B̃bN ,bN


)
[1b 1bN ]. (24)

After further simplification the final expression can be written as

ν â,b̂ = 1T
a

(
Ã � B̃

)
1b + 1T

a

(
Ãa,aN � B̃b,bN

)
1bN + 1T

aN

(
Ãa,aN � B̃b,bN

)
1b

+1T
aN

(
ÃaN ,aN � B̃bN ,bN

)
1bN .

(25)

Let νa,b = 1T
a

(
Ã � B̃

)
1b be the old estimate of the distance covariance. Let ν â×b̂ =

1T
aN

(
Ãa,aN � B̃b,bN

)
1b be the estimate between the old and new samples with νaN ,bN =

1T
aN

(
ÃaN ,aN � B̃bN ,bN

)
1bN being the estimate from the new sample alone. Combining all

the constant terms, one can achieve

ν â,b̂ =
1

M2 ν
a,b + 2

1
(M + N)2

ν â×b̂ +
1

N2 ν
aN ,bN . (26)
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Similarly, one can write the correlation estimate as

r â,b̂ = r a,b + 2r â×b̂ + r aN ,bN , (27)

which completes the proof. �

0.0.0.2. Proof:. [Incremental update for SVD] Consider

C â,b̂ = Ca,b + 2C â×b̂ + CaN ,bN . (28)

Given the SVD of the old estimate of the matrix, merge the two terms on the right as

J = 2C â×b̂ + CaN ,bN . Split the terms to write

C â,b̂ = [U I ]


Σ 0

0 I

 [V J]T, (29)

where I is the identity matrix of appropriate dimensions. Next decompose [V J] such

that [V J] = [V J + VVT J − VVT J] and rearrange to get

[V J] = [V I ]


I VT J

0 RJ


Rewrite the decomposition as

C â,b̂ = [U I ]


Σ 0

0 I




I VT J

0 RJ


T

[V I ]T, (30)
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where RJ = (J −VVT J). Further let K =


Σ 0

0 I



I VT J

0 RJ

 to achieve the expression
as a product of two orthonormal matrices.

C â,b̂ = [U I ]K [V I ]T, (31)

where K =


Σ ΣVT J

0 RJ

 . Finally, diagonalize K to achieve the final result of

C â,b̂ = [U I ]U′Σ′V ′T [V I ]T . (32)

Since U and V are known and I is the identity matrix. One can diagonalize K to get

U′,Σ′,V ′ and the final incremental updates of SVD. �

Theorem 2 Consider the batch-wise update given by Lemma 1 and 2. The updates converge

to their true values as M →∞ with M being the number of batches.

0.0.0.3. Proof:. Let the n sample points in the data be divided across M batches

and consider the update of the distance given as

C(q) = Ĉ
(q−1)
+ 2C(q−1),(q) + C(q),(q). (33)

where m refers to the batch index . Write the two elements on the right as J (q) = 2Ĉ(q−1),(q)
+

Ĉ
(q),(q) to achieve

C(q) = C(q−1) + J (q). (34)

As a result the update for the M th batch can be written as

C(M) = C(M−1) + J (M), (35)
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where C(M−1) is given as

C(M−1) = C(M−2) + J (M−1). (36)

Substitution into Eq. (35) reveals

C(M) = C(M−2) + J (M−1) + J (M). (37)

Generalizing this for all of the batches and collecting all the terms, the update is written as

C(M) = C(1) +
M−1∑
q=2

J (q), (38)

such that C(M) represents the sample dependency matrix for sample size n, where n is the

cumulative sum of sample points across all of the batches. It is known that C(M) will

converge to its true estimate almost surely as n → ∞ [8] and the left side in Eq. (38)

converges. Therefore, as M → ∞,
∑M−1

q=1 J (q) converges to its true values which implies

that the updates converge. Moreover, since the SVD updates are exact, the convergence

follows directly from the fact that C(M) converges which was just shown. �

0.0.0.4. Proof:. [Computational Complexity Lemma] At the first step in NDR, the

total number of attributes are paired into groups of η. As a result there are a total p/η

groups at the first step. Let there be I steps in the dimension-reduction process. The total

number of groups upto the penultimate step of the dimension-reduction process assuming

equal group sizes can be counted as

p
I∑

i=1

1
ηi

( (ηI − 1)
(η − 1)ηI

)
. (39)

The most computationally expensive operation is that of calculating the distance covariance

and corresponding SVD. This process has a complexity of O[MlogM] and O[η3] [39],

respectively, where M is the size of the batch and η is the size of the distance covariance
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matrix. As a result the worst case upper bound for dimension-reduction in one group can be

counted as O[η3 + MlogM] [40]. We can therefore write the total approximate asymptotic

complexity from the lowest step until the ultimate step for one batch as

p
( (ηI − 1)
(η − 1)ηI

)
O[η3 + MlogM]. (40)

This completes our proof. �
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ABSTRACT

In this paper, heterogeneity and noise in big-data are shown to increase the general-

ization error for a traditional learning regime utilized for deep neural networks (deep NN).

To reduce this error while overcoming the issue of vanishing gradients, a direct error-driven

learning scheme is proposed. First, to reduce the impact of heterogeneity and data-noise,

the concept of a neighborhood is introduced. Using this neighborhood, an approximation

of generalization error is obtained and an overall error, comprised of learning and the

approximate generalization errors, is defined. A novel NN weight-tuning law is obtained

through a layer-wise performance measure enabling the direct use of overall error for learn-

ing. Additional constraints are introduced into the layer-wise performance measure to guide

and improve the learning process in the presence of noisy dimensions. The proposed di-

rect error-driven learning scheme effectively addresses the issue of heterogeneity and noise
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while mitigating vanishing gradients and noisy dimensions. A comprehensive simulation

study is presented where the proposed approach is shown to mitigate the vanishing gradient

problem while improving generalization by 6%.

1. INTRODUCTION

Classification in the presence of large data-sets is a common problem in many fields

today where many challenges must be addressed for efficiency [1]. These challenges include

(1) heterogeneity of two types: semantic heterogeneity: where unique characteristics arise

due to the diversity among data-sources, and statistical heterogeneity- dissimilarity between

statistical properties of any one part of a dataset to other parts of the data-set [1]; (2) data-

noise- where data-points may be distorted; (3) noisy dimensions: those not contributing

to the actual prediction [2, 1] and (4) spurious correlations- unwanted relationships in the

data.

Deep neural networks (deep NN) can address a few of these challenges, where a

composition of linear and nonlinear transformations [3] with tunable parameters is present.

Typically, these parameters are estimated using a performance measure that is minimized

through stochastic gradient descent (SGD) [4]. In spite of many successes, noise and

heterogeneity [2, 1, 5] are challenges and can increase generalization error in deepNN-

based approaches.

In the literature, cross-validation methods [6], norm regularization [7] and dropouts

[8] are commonly used to compensate for these effects. However, these methods [7, 8]

depend on the practitioner’s experience and cannot guarantee performance. Furthermore,

determining the hyper-parameters for the classifier depends on upper-bounds for gener-

alization error. Generally, these upper-bounds are derived using Vapnik-Chervonenki’s

dimensions, Radmacher complexity or uniform stability [4, 9]. However, this process often

requires complex mathematical analysis and the bounds are model dependent. In brief, the
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approaches present in the literature [6, 9, 8, 10] are either heuristic and do not guarantee low

generalization error or require an exact understanding of the underlying data-distribution

for efficiency in the presence of noise and heterogeneity.

On the other hand, SGD [11] learning suffers from unstable learning due to dimin-

ishing or exploding learning signals in deep neural networks [12, 13]. Scaling the gradients

using relu activation function [14, 12], learning rate schedules [15] and L1/L2 regularization

[16] methods with robust weight initializations [13] are common ways of addressing this

issue. However, no guarantee can be given regarding diminishing learning signals and the

use of different activation functions may not solve the problem completely[14].

To overcome the vanishing/exploding gradient, an alternate learning scheme, known

as target propagation, was introduced in [17]. In [17], auto-encoders are used to estimate

targets at every layer for learning. However, it is difficult in most cases to define targets

at each layer and the computational overload of maintaining auto-encoders at every layer

is large. To alleviate this issue, direct feedback alignment was proposed in [18] where the

error is directly used for learning at every layer. Although impressive results have been

reported in [18], there are some drawbacks of the approach. First, the approach projects

the error in random directions which allows the learning to progress at random. Second,

learning would be inhibited in the presence of a zero-derivative activation function.

Motivated by these challenges, this paper proposes a systematic approach for ad-

dressing heterogeneity and noise in big-data with deep NN-based classification as an ap-

plication. Specifically, the impact of big data challenges are addressed by (1) reducing

the generalization error due to heterogeneity and data-noise, (2) improving the learning

efficiency in the presence of noisy dimensions, and (3) mitigating vanishing gradients.

For every sample of data, the cost of learning is first estimated by feeding the data-

sample into the classifier. Next, synthetic distortions are introduced to create a neighborhood

around the sample which is utilized to approximate the cost due to the generalization error.

Next, an overall cost is defined, comprised of learning and generalization errors. A learning
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problem is then designed to minimized the overall cost. By minimizing generalization

error in the learning procedure, the impact of heterogeneity and data-noise is explicitly

mitigated in contrast with [19, 20, 21, 8, 10]. Moreover, in contrast with [9], the underlying

distribution of data need not be known to calculate the approximated generalization cost.

To learn the classifier, a direct error-driven learning (EDL) regime is proposed,

where the weights at each layer in the deep NN learn directly from the overall error, which

is comprised of learning and generalization errors. To enable this learning, a cost function

is defined at each layer in the deep NN as a function of the overall cost. In contrast with

traditional gradient descent [4, 7, 12], the feedback is designed to ensure that the magnitude

of the learning signal does not vanish. Finally, a novel weight-update rule is obtained using

the derivative of the layer-wise cost. Therefore, the update rule is generic enough to solve

any cost function and can address the issue of heterogeneity and data-noise through the cost

function. The direct use of error for learning also mitigates the issue of vanishing gradients.

The deep NN weight-update law also includes a decay term to counter the issue

of ineffective learning in the presence of noisy dimensions. To obtain the decay term,

singular values of the correlation matrix are utilized to determine the dimensions that are

noisy. Finally, penalties are introduced into the learning rule to inhibit learning in the

directions influenced by these dimensions. In traditional regularization methods [7, 8, 10],

a constant penalty is injected in all directions, therefore, one cannot effect learning in

specific directions. In contrast, the penalties in the EDL are proportional to the measure of

the variance provided by the singular values which discourage learning in noisy directions

while encouraging it along others.

The direct error-driven learning regime may look similar to tracking error-based

NN updates [22] or direct feedback alignment [18] due to the use of a user-defined matrix

for projecting the error . However, there are some key improvements: (1) the user-defined

matrix is specifically designed to propel learning in the directions of steepest descent and

(2) the learning is not inhibited even when the activation function is saturated. A compre-
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hensive simulation study using ten benchmarking data-sets is finally presented for testing

the proposed approach. Simulation indicates that the proposed methodology mitigates the

problem of vanishing gradients and outperforms SGD in the presence of heterogeneity and

noise.

The contributions of this paper therefore include: (1) the development of a novel

cost formulation for optimization of deep NN-based classification to reduce the impact of

heterogeneity and data-noise; (2) Using the cost function, a direct EDL scheme is defined

to minimize the cost function to address heterogeneity and data-noise while mitigating the

vanishing gradient problem; (3) the design of a systematic approach to mitigate the impact

of noisy dimensions to learning for the EDL scheme and (4) the verification of the efficacy

of the proposed approach with simulation analysis.

The rest of the paper is organized as follows. Section II describes the problem

statement and establishes the motivations for the paper. Section III describes the proposed

framework and the direct error-driven learning scheme while Section IV outlines simulation

results for the paper. Finally, Section V outlines the conclusions.

2. PROBLEM STATEMENT

In this section, the notations used in this paper are introduced first. Next, the

objectives of classification are presented and finally, the impact of big-data challenges on

generalization error are demonstrated. Throughout the paper, matrices and vectors are

denoted by boldface type; lowercase symbols are used for vectors; and uppercase symbols

are used for matrices. Furthermore, superscripts (i) indicate the layer index for the deep

NN. The iteration index in the learning phase and the prediction phase are denoted by t and

k respectively. Squared Frobenius norm for matrices and euclidean norm for vectors are

denoted by ‖.‖.



100

Consider any data generating process, e.g. manufacturing system, where xt ∈ R
p×n

represents the data, at the sampling instant t. Let the sample xt be collected from p attributes

with n being the number of sample points. The objective is to determine whether the system

is in the healthy state or at one of the F faults using xt via an input-output map. Assuming

that φ(.) can be approximated using a deep neural network (deep NN) with the weights that

includes layer-wise bias denoted as θ = [W (1) · · ·W (d)], it follows from the approximation

property of NNs [23] that

φ(xt) = y(xt ; θ) + ε,

= f (d)(W (d) · · · ( f (1)(W (1)(xt))))) + ε,

where y ∈ RF×n represents the ideal output for φ(.). The term ε represents the

approximation error and f (i),∀ i = 1 · · · d denote the layer-wise activation functions with

d layers. Let the estimated map ŷ(xt) with weights denoted as θ̂ = [Ŵ (1) · · · Ŵ (d)] be

written as

ŷ(xt) = ŷ(xt ; θ̂),= f (d)(Ŵ
(d)
· · · ( f (1)(Ŵ

(1)
xt)))). (1)

To learn the weights, a data-set D is defined by collecting a representative sample from

each of the fault populations denoted as ψi,∀i = 1,2, · · · F where the following assumptions

hold.

Assumption 6 Samples from each fault are obtained such that they are independently and

identically distributed.

Assumption 7 The distribution of each of the categories in the learning phase is similar to

the distribution of the data in the prediction phase.
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Each data-point inD is collected across p attributes and labels are vectors ofRF×n. Learning

φ(.) via ŷ(xt ; θ̂) involves minimizing a cost function Jo(.) while estimating θ̂ [24]. Let the

expected value of the learning error el be defined as

E[el(k)] = E∀x∈X,y∈Y[y(x; θ) − ŷ(x; θ̂)],

where E[.] refers to the expectation operator. For simplicity, the iteration index k is only

indicated when weight update laws are

E[e] = E[el] + ε, (2)

where E[e] is the total expected error and ε is the approximation error.

Remark 17 Note that ε = φ(x(t)) − y(xt ; θ), is understood as the error between NN

approximation y(xt ; θ) with ideal parameters θ and the underlying function φ. Therefore, ε

depends on the choice of NN parameters (the number of hidden layer neurons and activation

function) and the properties of the underlying function φ (differentiability, complexity class,

etc. [25]). Resultantly, ε is assumed as the approximation error corresponding to the NN

model that is considered for analysis. Therefore, ε is assumed constant such that E[ε] = ε

in Eq. (2).

The overall cost J(θ̂) is obtained as

J(θ̂) = E[e]T E[e], = E[el]
T E[el] + 2εT E[el] + ε

Tε,

= Jemp + Jgen + Japx,

where Jemp = E[el]
T E[el] is the empirical cost with Jgen = 2εT E[el] and Japx = εTε

being the cost introduced by generalization and approximation errors, respectively [25].

Usually, the unknown quantities Jgen and Japx are assumed to be bounded [25] while Jemp

is minimized during learning.
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However, Jgen increases due to heterogeneity and noise [1] and cannot be assumed

to be bounded. For illustration, let big-data be collected from one attribute and be stored at

multiple locations. Let the healthy case be denoted byΨ with mean µ as shown in Figure 1b

and considerX with mean µ0 to be sampled from one of the available data-storage locations.

Because, there are certain characteristics of Ψ not covered by X, it does not represent Ψ

fully as seen in Figure 1a. As a result, methodologies that learn with X do not capture Ψ

fully, which results in erroneous predictions and is reflected in an increased Jgen.

On the other hand, in the presence of noisy dimensions, learning is focused in

directions that may not be useful [26]. This is observed in Figure 3, when the number of

noisy dimensions in the data increases, the accuracy falls. A methodology to mitigate the

aforementioned challenges is needed and is presented next.

(a) (b)

Figure 1. (a) Distribution of the actual, the first sample and the second sample that is ψ,X
and XB (b) Illustration for the neighborhood principle.

3. ERROR-DRIVEN LEARNING

In this approach, synthetic distortions are used to define a neighborhood around

the data-point which is utilized to generate an approximation of generalization error. An

optimization approach is designed to minimize the learning and generalization errors using
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a novel update law. Subsequently, the impact of noisy dimensions is addressed with an

additional term introduced into the update law. The details of this proposed methodology

are provided in the following sub-sections. The impact of heterogeneity and data-noise is

discussed first.

3.1. MITIGATING HETEROGENEITY AND NOISE

As mentioned earlier, the challenge of heterogeneity and data-noise arises because

the data used during the learning phase does not present the complete picture of the

underlying problem. Thus, in both these cases, the classifier may encounter data during the

prediction phase with characteristics that were not described by the training sample. These

data-points are referred to as "unseen samples," and they result in an increased Jgen.

To approximate Jgen, one needs to approximate the unseen samples. Therefore, let

every data-point in the training set be a center of a neighborhood such that the data-points

in the neighborhood may be understood as unseen samples that are similar to the center

point. An example is illustrated in Figure 1b, where the "×" denotes the center and the

circle denotes the neighborhood. Under the assumption that these unseen samples belong

to the same category as the center, generalization error egen and its associated cost Jgen can

be approximated using the neighborhood.

Formally, let ∆xt ∼ p′(µ,S) represent perturbations introduced into every data-

point x, where p′(.) is a probability distribution of choice characterized by the first two

moments: mean µ and covariance S. Thus, for every x ∈ X, there exists a x + ∆x with

‖∆x‖ ≤ Q such that x + ∆x belongs to the same category as x. A collection of x + ∆x

represents the neighborhood for x. The collection of the data-points in the neighborhood

for all x is written as

XB = {xB |xB = x + ∆x,∀0 ≤ ‖∆x‖ ≤ Q,∀x ∈ X}.
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For an example, the histogram of XB illustrated in Figure 1b is the collection of all the

data-samples obtained when Gaussian noise with zero mean and unit variance is introduced

into X. It can be observed that XB is a better representative of Ψ than X.

Depending on the magnitude of the perturbations, the neighborhood could represent

the entire input space or a small region around x. However, if the magnitude of ∆x

is large, XB might also include outliers in the distribution. On the other hand, if the

magnitude of the perturbations is small, large generalization error may be observed due

to the overlapping of neighborhoods as is observed in Figure 1b. The trade-off can be

addressed by carefully choosing the size of the neighborhood. More details and simulation

results on the significance of the neighborhood are presented in the appendix.

Ideally, it is desirable to make the classifier resilient to the presence of all the unseen

samples. Thus, the cost of generalization is incorporated into the learning problem by

defining E[egen]
T E[egen] as Ĵgen with

E[egen] = E∀xB∈XB,y∈Y[y(x; θ) − ŷ(xB; θ̂)].

Substitution into Eq. (3) reveals

J(θ̂) =
(
Jemp + Ĵgen

)
+ Japx,

=
(
E[el]

T E[el] + E[egen]
T E[egen]

)
+ Japx,

with el being the estimated learning error and egen being the generalization error. The

factor Japx is assumed to be bounded and constant. For brevity of notation, the expectation

operators are not explicitly stated from hereon.

The learning problem thus involves the minimization of J with respect to the esti-

mated weights θ̂ such that

θ∗ =argmin
θ̂∈Ω

J(θ̂), (3)
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withΩ representing the parameter space. Introducing perturbations allows themethodology

to capture more of the data-distribution than what is represented by X, as observed from

the histogram of XB in Figure 1b. Thus, XB approximates the impact of heterogeneity

rather than knowing it a priori, in contrast with [27]. In contrast with cross-validation

[9] and regularization approaches [16], the proposed approach introduces model selection

into the optimization problem such that the learning procedure can methodically establish

a trade-off between the learning error, bias of the model towards the training data, and the

generalization error which is the variance of the model. To optimize Eq. (3), a learning

approach is presented next.

3.2. LEARNING APPROACH

To optimize Eq. (3), the following update law is defined as

Ŵ
(i)
k+1 = Ŵ

(i)
k − αu

(i)
k ,

(4)

where α > 0 is the learning rate. An L2 norm regularized cost function is defined to ensure

the boundedness of the weights where

H( ŷ, x; θ̂) =
[
J(θ̂) + λ

d∑
i=1
‖W (i)k ‖

]
, (5)

with λ > 0 being the decay coefficient. The learning problem is finally given as re α > 0 is

the learning rate. An L2 norm regularized cost function is defined to ensure the boundedness

of the weights where

θ∗ =arg min
θ̂∈Ω

H( ŷ, x; θ̂). (6)
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Note thatminimizing Eq. (6) is equivalent tominimizingEq. (3)with theweight constraints.

The weight updates at each iteration k are given as

u(i)k = ∇Ŵ (i)k
H( ŷ, x; θ),= δ(i)k + λŴ

(i)
k . (7)

Let the term ∇
Ŵ
(i)
k

(.) denote the gradient of (.) with respect to the NN weight Ŵ (i)k which

results in δ(i)k as

δ(i)k = ∇Ŵ (i)t
J = G(i)(x) + G(i)(x + ∆x), (8)

where G(i)(x) = ∇
Ŵ
(i)
t

Jemp represents the gradient of the empirical cost and G(i)(x + ∆x) =

∇
Ŵ
(i)
t

Ĵgen represents the gradient of the cost due to generalization error. Applying the chain

rule, a generalized expression for G(i)(x) can be derived as

G(i)(x) = − f (i−1)(x)eTl[ i+1∏
j=d

diag(∇ f (j)(x))Ŵ
(j)

]
diag(∇ f (i)(x)).

(9)

Denote
∏i+1

j=d(diag(∇ f ( j)(x))Ŵ
( j)
)diag(∇ f (i)(x)) as T(i)(x) and simplify Eq. (8) to get

δ(i)
k
= −[ f (i−1)(x)︸    ︷︷    ︸

η(i−1) × 1

f (i−1)(x + ∆x)︸            ︷︷            ︸
η(i−1) × 1

]εTT(i), (10)

where the overall error is written as

εT = diag(
dJ(θ)

d ŷ
)T = diag( el︸︷︷︸

F × 1

, egen︸︷︷︸
F × 1

),

where J(θ) is defined in Eq. (3) and the expectation operators are ignored. Similarly, by

denoting
∏i+1

j=d(diag(∇ f ( j)(x + ∆x))Ŵ
( j)
)diag(∇ f (i)(x + ∆x)) as T(i)(x + ∆x) we get

T(i) = diag(T(i)(x)︸ ︷︷ ︸
F × η(i)

,T(i)(x + ∆x)︸         ︷︷         ︸
F × η(i)

),
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where η(i) represents the number of neurons in the hidden layer (i).

Observe that the overall error ε has to propagate through transformation T(i) to

impact learning. Since T(i)(x) and T(i)(x +∆x)) are linear approximations in the neighbor-

hood of the weights, the singular vectors of T(i) dictate the directions of learning and their

magnitude is described by the singular values of T(i). Each diagonal element in T(i) is the

product of the derivative of the layer-wise activation functions. In other words, the singular

values of T(i) would also tend to zero as the number of layers in the deep NN increase,

otherwise known as the vanishing gradients issue [12].

In the literature, ResNet [28] and DenseNet [29] have been demonstrated to present

improved performance in the presence of vanishing gradients. In these approaches[28, 29]

, changes are introduced into the NN architecture such that the gradients do not vanish.

However, specific architectures are employed for analysis and these approaches are not

generic. In contrast, the learning approach presented in this paper is not dependent upon

the type of architecture used.

Therefore, we propose to directly utilize the error for learning the weights at every

layer instead of propagating the error through the hidden layers using T(i) [4] or random

matrices [30]. To enable this learning, a layer-wise performance measure H(i)( ŷ, x; Ŵ (i)) is

defined and H(i)( ŷ, x; Ŵ (i)) is optimized for each layer instead of the overall cost. Specif-

ically, the layer-wise cost is defined as a function of overall error through δ(i)k such that

minimizing H(i)( ŷ, x; Ŵ (i)) for each i minimizes the overall error. It follows that

H(i)(Ŵ
(i)
) =

1
2
[
tr((δ(i)k )

TPŴ
(i)
k ) + λ‖W

(i)
k ‖

2], (11)
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where tr(.) is the trace operator and P is a positive definite symmetric matrix of choice.

Note that for each layer i, δ(i)k can be understood as the feedback provided by the overall cost

J(θ) towards controlling the layer (i). Therefore, the layer-wise cost can be interpreted as

the minimization of the correlation between δ(i)k and Ŵ
(i)
k under the constraint that ‖Ŵ (i)k ‖

must be as small as possible.

Remark 18 Observe that

tr((δ(i)k )
TPŴ

(i)
k ) = tr((PŴ

(i)
k (δ

(i)
k )

T ) = tr(PX)

where X = Ŵ
(i)
k (δ

(i)
k )

T is a square matrix and P is symmetric and positive definite matrix.

Rewrite P =
∑η(i)

i=1 νi p
T
i pi. Substitution into the equation above and simplification reveals

tr(PX) =
∑η(i)

i=1 νi(tr(piX pT
i ))), which is a linear combination of non-negative values [31].

Thus, the formulation in Eq. (11) can be alternatively interpreted as a linear combination

of standard quadratic forms that are independently convex [31].

To define δ(i)k at each layer, T(i) in Eq. (10) is replaced by a user-defined feedback matrix

denoted as

B(i) = diag(B(i)(x)︸ ︷︷ ︸
F × η(i)

,B(i)(x + ∆x)︸         ︷︷         ︸
F × η(i)

),

where B(i) is chosen such that B(i)(B(i))T is positive definite. The feedback δ(i)k is then given

as
δ(i)
k
= [ f (i−1)(x)︸    ︷︷    ︸

η(i−1) × 1

f (i−1)(x + ∆x)︸            ︷︷            ︸
η(i−1) × 1

]εTB(i). (12)

Finally, the overall cost may be written as the sum of layer-wise costs

H( ŷ, x; θ̂) =
d∑
i=1

H(i)(Ŵ
(i)
). (13)

With the cost defined in Eq. (11), the weight updates are defined as u(i)k = ∇Ŵ (i)k
H( ŷ, x; θ̂)

which results in the update rule as defined in Eq, (7) with δ(i)k as defined in Eq. (12).
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Observe that the update rule demonstrated in Eq. (12) can be incorporated for any

cost function that can be setup for a deep neural network. Thus, the proposed learning

regime is composed of a generic and simple weight update rule that can enable learning in

most deep NN environments.

The overall H( ŷ, x; θ̂) is minimized if each of the layer-wise cost functions are

minimized. The stationary condition for each layer-wise cost depends on the term δ(i)k

since d
(
tr
(
(δ(i)

k
)TPŴ

(i)
k

) )
dŴ

(i)
k

= ((δ(i)k )
TP)T = Pδ(i)k . The term δ(i)k is a linear transformation of

the overall error ε . Observe that δ(i)k is zero when the overall error is zero, provided B(i)

and [ f (i−1)(x) f (i−1)(x + ∆x)] are assumed to be non-zero. When these conditions are

satisfied, learning in the direction of minimizing the layer-wise cost function would result

in minimizing the overall error. Since, the transformation parameters B(i) are set by the

practitioner and [ f (i−1)(x) f (i−1)(x + ∆x)] depends on the data, the non-zero assumption

is reasonable and the procedure works well in practice as is observed in the simulation.

Choice of B(i): The simplest way to choose B(i) is to sample at random from a pre-

selected distribution. By ensuring that B(i) is chosen with all positive singular values, the

issue of vanishing gradients will be avoided. The associated drawback is that the behavior

of the cost function with respect to changing weights has no impact on learning because

learning directly depends on the instantaneous error for every sample and the choice of B(i),

which leads to randomized direction of learning. In other words, the learning, mimics a

random search propelled by the overall error.

It is therefore desirable to choose B(i) to propel learning in directions of the steepest

descent for J(θ̂). One way of choosing B(i) is to use the directions of learning dictated by

the singular vectors of T(i). Moreover, positive singular values are chosen at random to

signify the magnitude of learning in every direction. The size of the output vector in the

deep NN is F and the number of neurons in any hidden layer is given by η(i). It follows that

T(i) ∈ RF+η(i)×F+η(i), yielding B(i) =
∑F+η(i)

j=1 κ
(i)
j (ν

(i)
j )

Tν(i)j ,where ν j represents the singular-
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vectors of T(i) for each j. Similarly, κ j > 0 is the singular value that is chosen at random

for any layer i. When B(i) is chosen as described above, B(i) would project the error in the

direction of the steepest descent for every layer.

Furthermore as different layers in the NN align themselves towards the steepest

descent of the cost function, there is no incubation period for improvement in accuracy

and the alignment problem is mitigated, in contrast with [18]. Next, the issue of noisy

dimensions is discussed.

3.3. MITIGATING NOISY DIMENSIONS

In the presence of noisy dimensions, the hidden layers in the deep NN may generate

features that are non-informative and would lead to deterioration in performance [26]. For

illustration, assume that the neurons with small output variances generate features that may

not be useful at any hidden layer i. One may observe that the output at any neuron at layer

i is the consequence of corresponding weight connections to that neuron at layer i. If the

neuron is generating features that are non-informative, learning in the weight connections

corresponding to that neuron are less important relative to others. A method to control

learning in specific directions is therefore introduced.

Consider, for illustration, a neuron j at hidden layer i and assume that the j th neuron

is irrelevant to the final prediction. All the weight connections corresponding to the j th

neuron form the j th row in Ŵ
(i). To scale the weight connections corresponding to the j th

neuron, pre-multiply the weight matrix by an identity matrix D(i) with a scaling factor on

the j th row and j th column. The factor now affects all the elements at row j. To introduce

a scaling proportional to the amount of variance in that particular neuron, singular values

can be used. Subsequently subtract the scaled matrix from the original Ŵ (i) to introduce

decay in specific directions.
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To generalize the principles described above, let the output at every layer be repre-

sented by X (i) ∈ Rb×η(i) , where b is the size of the sample at each training iteration. Write

the singular value decomposition as U (i)D(i)V (i)T,where U (i) and V (i)T provide the singular

vectors. The term D(i) is the diagonal matrix of all singular values providing a measure of

variance for every neuron. Since the scaling factor must be between zero and one, let D(i)

be normalized such that the elements sum up to one such that

A(i) =


(I − ηD(i)) i < d

I i = d,
(14)

with η being a parameter of choice and I being an identity matrix of appropriate dimensions.

The diagonal matrix consisting of the scaling factor is subtracted from an identity matrix

to ensure that a large decay is introduced in the rows with smaller singular values. A small

decay is introduced where larger singular values are observed. With A(i) as defined in Eq.

(14), the layer-wise cost function is modified as

H(i)(Ŵ
(i)
) =

1
2
[
tr((δ(i)

k
)TPŴ

(i)
k ) + λtr((W (i)

k
)T A(i)W (i)

k
)
]
,

which results in the layer-wise update rule with δ(i)k as defined in Eq. (12). These update

rules are summarized in Table 1. A few implementation related remarks are discussed next.

Remark 19 1. For each batch of data, an alternate batch representing the neighborhood

is generated can be seen in Figure 1b. The larger the size of the alternate batch, the

better is the approximation of the neighborhood. As part of our simulations, for each

data-point in a batch, two additional data-points are generated, which worked well in

practice. Sampling methodologies such as bootstrap [32] may be utilized for efficient

generation of the alternate batches.
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2. The learning methodology progresses batch-wise where random sampling is used to

determine batches in classification. Therefore, for every update, expected values are

evaluated over the batch, assuming uniform distribution.

Table 1. Summary of the batch-wise updates with P chosen as an identity matrix.

(W (i))

Gradient descent u(i)k = E[δ(i)k ] + λW
(1)
k ,

where δ(i)k is defined in Eq. (10).
EDL u(i)k = E[δ(i)k ] + λA

(i)W (i)k ,

where δ(i)k is defined
in Eq. (12).

The proposed methodology is tested on several data-sets and the results are presented in the

next section.

4. RESULTS AND DISCUSSION

A total of ten data-sets are used for analysis and the statistics for these data-sets are

summarized in Table 3. In all of the data-sets considered here, 80% of the available data

is chosen for learning and twenty percent is used to test the trained model [24]. All of the

results demonstrated in the next section are calculated from the data used to test the trained

model. The splits are constructed randomly.

For the proposed framework, Gaussian-distributed and uniformly-distributed per-

turbations are introduced during the learning phase to construct the neighborhood. We train

the NN with the mean vector for the Gaussian distribution, chosen as a zero vector, whereas

the variance matrix for the perturbations is chosen as ρI , with I being an appropriate

identity matrix and ρ being the variance of choice. The parameters for the uniformly-

distributed noise are chosen as [−ρ, ρ]. One may enforce the size of the neighborhood by

writing ∆x = ∆x
‖∆x‖ ρ. The choice of ρ during the learning phase represents the size of the

neighborhood defined by the practitioner.
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Table 2. Parameters of the different models used in this paper.

Architecture Parameters
CNN nconv = 2, nlayers = 2,

filter size = 5, pool shape = (3,3),
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

MLNN d = 7, hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

SAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

DAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

In all the simulations for EDL, B(i) is chosen using the singular vectors of T(i) at

every layer. All of the results in this section are averaged over 100 initial conditions. The

software package Tensor-flow with Python is used for all of the experiments in this paper.

The robustness of the proposed framework to heterogeneity and data-noise for the proposed

methodology on the MNIST data-set is studied first. The hyper-parameters are summarized

in Tables 3 and 2. In Tables 2 and 3, hln refers to the number of hidden layer neurons at

each layer; b denotes the batch size and nneigh represents the number of data-points in the

neighborhood corresponding to each data-point in the data-set. Also, nconv represents the

number of convolutional layer and nlayers represents the number of feed-forward layers.

4.1. MNIST DATA-SET

The impact of heterogeneity and data-noise is studied using generalization error to

quantify the performance of the methodology. To simulate the presence of heterogeneity

and data-noise in this data-set, randomly sampled perturbations are introduced into the data

during the testing phase. TheNN in the proposed framework is consideredwith tanh and relu

activation functions, respectively. For the first set of results, we evaluate the methodology

when the amount of noise in the data increases and the results are shown in Figure 2b. The
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Figure 2. Change in the size of the neighborhood versus (top) accuracy (bottom) general-
ization error. Results presented in these plots are averaged over two types of perturbations
that are Gaussian and Uniform distributed.

generalization performance of the proposed framework is studied for increasing dissimilarity

of the test data introduced using synthetic perturbations. The neighborhood size for training

is kept as one and the average accuracies and generalization error over one hundred initial

conditions of weights are illustrated in Figure 2b. The deterioration in performance for

the proposed framework with an increase in the perturbations is smaller with the proposed

framework. Both learning regimes, EDL and GD, show improved performance. In Figure

2b, SGD results in accuracy that is a little higher than that achieved by EDL when no

dissimilarity is present. However, EDL is very resilient to increasing dissimilarity in

the data. In other words, the proposed approach, while exhibiting comparable best case

accuracy, indicates improved resilience in the presence of data-noise and heterogeneity.
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Next, we test the performance of convolutional neural networks (CNN) [33] and

multilayer neural networks (MLNN), with respect to the proposed methodology. The hyper-

parameters corresponding to these architectures are summarized in Table 2. For both CNN

and MLNN, it is consistently observed that a significant improvement in performance is

achieved when uniformly and Gaussian distributed perturbations are introduced to construct

the neighborhood.

Next, the performance of the proposed methodology is compared with sparse auto-

encoders [34] and denoising auto-encoders [35]. The hyper-parameters are again summa-

rized in Table 2. The results are demonstrated in Figure 2c. The best case accuracies for

varying amount of noise in the data-set is achieved by the proposed approach. The proposed

methodology is built to address scenarios where the test data-set is different from the train-

ing data-set, whereas sparse auto-encoders and denoising auto-encoders are constructed to

look for and remove noisy patterns in the training data-set. Moreover, explicit modification

of the objective function appears to help and thus improve performance within the proposed

approach.

Next, the performance of the proposed framework is studied relative to the regular

SGD for the MNIST data-set, the results are summarized in Table 6. The accuracies are

higher for relu compared to tanh activation functions. The improved performance of the

relu activation function over tanh is well recorded in the literature [13]. The standard

error of accuracy for the proposed framework is much smaller compared to traditional

SGD. Therefore, learning with the proposed framework is resilient towards varied initial

conditions and the results are statistically significant.

Next, with the use of proposed decay, classification is performed on theMNIST data-

set, while synthetically introducing noisy dimensions. The noisy dimensions are sampled

from a Gaussian distribution with known mean and standard deviation. The coefficient of

decay is chosen to be 0.01. The results illustrated in Figure 3 demonstrates the performance

of EDL with respect to a change in the number of noisy dimensions in the data. The change
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Table 3. % accuracies for the various data-sets with the proposed framework and four
different learning algorithms with generalization error in the parenthesis.

Datasets p n F Model Parameters DFA FA SGD EDL
Rolling [36] 11 35000 4 α = 0.01, b = 100, d = 7, hln = 100, 99(0.0001) 99(0.0001) 99(0.6) 99(0.0)

λ = 0.001,nneigh = 2, ρ = 1
Sensorless [37] 48 78000 11 α = 0.01, b = 100, d = 8, hln = 100, 94(0.008) 94(0.008) 95(0.008) 94(0.002)

λ = 0.001,nneigh = 2, ρ = 1
MNIST [38] 784 72000 10 α = 0.01, b = 100, d = 8, hln = 100, 92(0.1) 94(0.2) 95(1) 97(0.6)

λ = 0.001,nneigh = 2, ρ = 1
NotMnist [39] 784 81000 10 α = 0.01, b = 100, d = 9, hln = 100 90(1) 82(1.8) 88(2) 92(0.8)

λ = 0.001,nneigh = 2, ρ = 1
CIFAR10 [40] 3072 50000 10 α = 0.01, b = 100, d = 10, hln = 100 81(7.21) 80(8.00) 82(12.11) 84(8.77)

λ = 0.001,nneigh = 2, ρ = 1
Arcene [41] 10000 100 2 α = 0.01, b = 100, d = 9, hln = 100, λ = 0.001 69(0) 61(0) 51(0) 78(0)

λ = 0.001,nneigh = 2, ρ = 1
Dexter [41] 20000 300 2 α = 0.01, b = 100, d = 8, hln = 100 71(0.7) 77(0.9) 81(1.1) 80(1)

λ = 0.001,nneigh = 2, ρ = 1
Gisette [41] 5000 6000 2 α = 0.01, b = 100, d = 8, hln = 100, 92(0.25) 93(0.21) 91(0.3) 98(0.07)

λ = 0.001, nneigh = 2, ρ = 1

in accuracy for EDL is smaller relative to SGD as seen in Figure 3. The above-mentioned

results indicate that the proposed update law remains robust in the face of noisy dimensions

in the data. The accuracies plateau when the number of dimensions increase beyond a

certain limit. The behavior indicates that the use of proposed decay is able to demonstrate

control over how the number of dimensions impact the performance.

Next, the performance of the proposed method is tested on classification.

4.2. CLASSIFICATION

Four learning paradigms, namely DFA (Direct Feedback Alignment) [18], SGD

(Stochastic Gradient Descent) [4], FA (Feedback Alignment) [30] and EDL (Error-driven

Learning), are tested with all the data-sets listed in Table 3. The hyper-parameters for

different models used in the paper are summarized in Table 3. Consistent performance

of the proposed framework with EDL is observed across data-sets as is seen in Table 3.

Reasonable accuracies are observed for the large dimensional data-sets and others provide

marginal improvement for typical SGD. For the dexter data-set, our EDL method achieved

similar accuracies compared to standard SGD but indicates significant improvement over
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Table 4. Computational time for training the NN over the synthetic data-set for 100 runs,
where τ denotes the computational time.

nneigh τ (hours)
0 88
2 90
3 97
5 108

Table 5. Average accuracies.

Data-set n p F Accuracy
Synthetic 20000 2 million 10 94.10
Image-Net[42] 784 12614060 10 56.21

DFA and FA. The guided choice of the feedback matrix appears to assist EDL. Next,

the generalization performance of the methodology for different data-sets is presented in

Table 3. It is observed that the lowest generalization error is achieved for the proposed

framework with the EDL learning scheme. Even for the case of gradient-based updates on

the proposed framework, there is a significant reduction in the generalization error over the

traditional SGD. Improved generalization errors indicate that the impact of challenges such

as heterogeneity and data-noise is indeed mitigated with the proposed framework.
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Figure 3. Accuracy with respect to increase in the number of dimensions in the data with
decay.
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Table 6. Mean test accuracies with the standard error in accuracy for the MNIST data-set.

SGD PF+GD
relu (Gaussian) 0.83(0.07) 0.91(0.093)
relu (Uniform) 0.85(0.10) 0.93(0.018)
tanh (Gaussian) 0.82(0.006) 0.87(0.003)
tanh (Uniform) 0.86(0.10) 0.89(0.018)

4.3. BIG-DATA APPLICATION

Big data is commonly defined as the scenario where the analysis of a big data-set

cannot be conducted on a single core CPU. Therefore, to demonstrate the use of proposed

methodology in such an environment, our approach is implemented on a multi-core CPU.

The results are demonstrated on two large data-sets where the first is the popular ImageNet

data-set [42], and the second is the synthetic data-set.

We construct a ten class problem from the ImageNet data-set by sampling with

replacement. In the end, the data-set is about 138 GB in size consisting of ten classes.

Similarly, the synthetic data-set is composed of 20,000 features and 2 million data-points.

While generating this data-set, clusters of normally distributed points are created about

vertices of an 20,000-dimensional hypercube with sides of a pre-defined length. Both of

these data-sets are extremely large. The results, as summarized in Table 5, indicate the

ability of the methodology to obtain reasonable performance.

4.4. COMPUTATIONAL OVERHEAD

Finally, since the amount of computational resources required for our methodology

depends on the number of data-points that constitute the neighborhood, we study the

increase in computational time with an increase in the number of data-points. The results
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are summarized in Table 4. Although there is an increase in the amount of time it takes for

implementation, we observe that the increase is not substantial and justifies the improvement

in the accuracy.

5. CONCLUSIONS

A systematic approach was presented to design a classifier in the presence of chal-

lenges such as heterogeneity, vanishing gradients and noise. Since synthetic distortions are

introduced to approximate the generalization error, our framework is robust in the pres-

ence of data-noise because less variation in accuracy is observed. Careful selection of

the magnitude of the perturbation is necessary because large perturbations deteriorate the

performance of the proposed framework significantly.

The direct use of the overall error signal in the learning process appears to mitigate

the vanishing gradient issue even when sigmoid and tanh activation functions were used.

The proposed framework combined with EDL appears to outperform other approaches such

as DFA and FA in all of the data-sets under analysis. Moreover, noisy dimensions appear to

impact accuracy less with the use of the singular value-based decay in the proposed update

law. Overall, the proposed approach appears to provide a 5% improvement in generalization

error and a 10% improvement in accuracy over SGD in the presence of noise. Future effort

will address the challenges such as non-stationary distributions and incidental endogeneity.
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ABSTRACT

In this paper, a novel approach is presented to mitigate the issue of domain shift in

big data classification. In the proposed approach, a suitably selected domain shift is first

introduced to the training data via a "distortion model" and additional data-samples are

obtained. Next, a deep neural network, referred as "classifier," is used to classify both the

training data and the additional data samples. Since the additional data-samples represent

the domain shifted data, the classifier can compensate for domain shift while maintaining

its performance on the training data. Furthermore, as the exact magnitude of this shift is

unknown a priori, in this work, we compensate for the optimal shift by formulating a zero-

sum game. In the proposed game, the distortion model is viewed as the maximizing player

which increases the domain shift while the classifier becomes the minimizing player. The
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Nash solution of the game provides the domain shift and its optimal adaptation through the

classifier. To solve the proposed game for the Nash solution, a direct error-driven learning

scheme is introduced. A comprehensive simulation study and mathematical analysis is

presented to demonstrate the efficiency.

1. INTRODUCTION

Generally, when deep neural networks (DNN) are used for extracting insights from

big data, the underlying distribution generating the data is assumed stationary [1]. In other-

words, the data-distribution in the learning phase, "source distribution," is assumed similar

to that in the testing phase, "target distribution." However, this is untrue in many practical

real world scenarios [1]. Consider an example where defects in a roller bearing are to be

detected. Let the source distribution involve a data-set with no motor load. If the bearing

system comes under different motor load states in the testing phase, the data distribution will

not be similar. Learning therefore involves compensating for a shift in the data-distribution

[2]. The phenomenon is called domain shift (DS) while the compensation of this shift is

referred to as domain adaptation (DA) or transductive transfer learning [2].

DS can be observed due to a number of reasons such as data-noise and statistical

heterogeneity [3]. Since this shift is often unpredictable and/or unknown, it introduces

errors, known as generalization errors, in the data analytics including prediction. To

counter this problem, a novel methodology is introduced in this paper to model and reduce

generalization errors specifically due to the challenges mentioned above. The problem

under consideration is that of classification.

In the literature, norm regularization [4], dropouts [5] and data-augmentation [6]

have been utilized to reduce the sensitivity of DNN towards distribution changes. Further-

more, several DNN based approaches have been proposed to compensate for DS [7, 8].
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The afore-mentioned approaches [4, 5, 6, 7, 8], suffer from two major drawbacks:

(1) the performance depends on the good use of heuristics [4, 5, 6], which is difficult to

obtain in the big data environments and (2) they work well under a general assumption: the

source and the target distributions are known and available [8, 7], an impractical assumption

in many engineering environments.

To counter the problem, additional data-samples that are representative of the un-

known distribution shift, referred as "ψT ," are generated and the deep NN is used to classify

these samples. To generate these samples, the unknown shift is simulated by introducing

variations in the source distribution (ψS) through a distortion model under the assump-

tion that the shift can be modeled by a suitably selected transformation. The additional

data-samples provide an estimate of the target distribution, referred as "ψT ."

To learn the parameters of the distortion model and the classifier, an overall cost is

defined to include the cost due to learning and generalization errors and a measure of DS

introduced by the distortion model. The true targets for ψS, and ψS provide an estimate

of learning error. Moreover, ψT and the corresponding targets provide an estimate of the

generalization error. Ameasure of DS is then obtained by calculating the difference between

ψS and ψT .

Since the targets corresponding to ψT are unknown, a nearest neighbor based ap-

proach is introduced to estimate them. In this approach, for every data-point x in ψT ,

the distance between the classifier output of x and that of all the data-points in ψS is first

evaluated. Then, depending on the magnitude of the distance values, the neighbors of the

classifier output of x are determined. The final label for x is assigned based on the true

targets for these neighbors from ψS . The final objective is to minimize the overall cost while

introducing optimal DS through the distortion model.

Since, these are conflicting objectives, a two player zero-sum game is designed

where distortion model is treated as the first player whose aim is to increase the DS. On the

other hand, the second player is the classifier where its aim is to minimize the impact of DS
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for adaptation. In the proposed game, the distortion model manipulates the data to introduce

variations in the output of the classifier thus introducing generalization error. On the other

hand the classifier compensates for the change in generalization error through adaptation of

weights. The Nash solution of the game provides the DS and its optimal adaptation through

the classifier.

In traditional games, system dynamics play a key role in deciding the solution of

the two player zero-sum game because each player is a dynamical system. Furthermore,

majority of results present in the literature support such an interplay [9]. In contrast, in this

work, no dynamical systems are present and the dynamics for the game are introduced by

the parameter updates for the two players.

To solve the proposed game, a direct error-driven learning scheme is introduced

where a combination of the learning and generalization error is multiplied by a projection

matrix to tune the classifier. On the other hand, a measure of DS is multiplied by a projection

matrix to train the distortion model. To enable this learning, a cost function is defined at

each layer in the deep NN as a function of overall cost. Finally, the projection matrix and

the weights at each layer are optimized to minimize the sum of all the layer-wise costs. The

proposed learning rule is generic enough to solve any cost function. As an added benefit,

the use of the projection matrix to directly utilize the error for learning mitigates the issue of

vanishing gradients in contrast with traditional learning schemes such as SGD [10]. Direct

error-driven learning was first introduced in [11]. Despite its demonstrated effectiveness,

the main drawback was that the projection matrix had to be chosen manually. In contrast

with [11], the projection matrix is optimized in the learning regime proposed in this paper.

Finally, theoretical analysis is presented. Specifically, we show that the saddle point

solution of the two player game exists. Furthermore, we quantify the changes introduced

by the choice of the distortion model on the first two moments of the data-distribution. The

benefits of the proposed approach are demonstrated on a total of ten data-sets, a few of

which fall into the category of big data. The contributions of this paper include:
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Table 1. Notations

Notation Meaning
X Data-set
F Number of faults/classes in the system.

(n, p)
Number of sample points in the training set,
the dimensionality of data

R and N The set of real and natural numbers.
(.)(i) Number of layers in the NN
W ,Ŵ Ideal and estimated weights

k, t
Iteration index in the learning phase and the
test phase

ε The approximation error
f (i), f or i = 1 · · · d layer-wise activation functions with d layers
ψS and ψT The source and the target distribution

1. A generic distortion model for DA in the presence of big data challenges such as

heterogeneity and noise. Our approach estimates the DS using a neighborhood when

the target distribution is unknown in contrast with the current literature [4, 6, 12, 8, 7].

Further, compensation for higher order changes in the data-distribution is possible in

contrast with [11], where only mean shift is considered.

2. Design of a two player zero-sum game for classification. In the proposed approach,

the estimation of the DS is part of the learning problem in contrast with [4, 6, 12, 8, 7].

3. A direct error driven alternating minimization approach for solving the zero-sum

game. In contrast with traditional learning regimes such as back-propagation [10],

the challenges from big-data are directly addressed during learning.

4. Simulation and mathematical analysis of the proposed approach involving a total of

ten data-sets. The theoretical results in the paper are generalized to the case when

the number of data-points, the number of dimensions, the number of layers in the NN

and the number of neurons at each layer all tend to infinity.
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2. PROBLEM STATEMENT

The basic notations for the paper are summarized in Table 1. The problem of

classification can be divided into two phases, the learning and the testing phase. In the

learning phase, the DNN learns from ψS, the "source distribution," and the iteration index

is denoted as k. The second phase is called the testing phase where the DNN is used for

testing the data-points from the "target distribution," denoted as ψT and t is used as the

index.

Let xk ∈ ψS represent a data-point at the learning instant k. Next, define the

objective of learning as that of determining the class/category corresponding to xk using an

input-output map φ(.). Let there be a total of F classes/categories such that ψS = {∪
F
i=1ψi}.

Under the assumption that φ(.) can be approximated using a DNNwith ideal weights

denoted as θ = [W (1) · · ·W (d)]T, one may write [13]

φ(xk) = y(xk ; θ) = f (d)(W (d) · · · ( f (1)(W (1)(xk))))) + ε, (1)

where y ∈ RF×1 represents the ideal output for φ(.) and the target weights includes the

layer-wise bias and there are d layers in the DNN. Consider the estimated map be denoted

as ŷ(xk) with weights given as θ̂ = [Ŵ
(1)
· · · Ŵ

(d)
]T such that

ŷ(xk) = ŷ(xk ; θ̂) = f (d)(Ŵ
(d)
· · · ( f (1)(Ŵ

(1)
xk)))). (2)

A sample from the source distribution is denoted as X and is used for learning the DNN.

The following assumptions are necessary before proceeding further.

Assumption 8 Samples from each fault/category are obtained such that they are indepen-

dently and identically distributed.

Assumption 9 The probability distribution for each of the categories in the training phase

is similar to the distribution of the data in the testing phase.
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With these assumptions, the learning objective can be defined as the estimation

of φ using a DNN. However, when the problem under consideration deals with the high

dimensionality and volatility of big data, the second assumption is violated. In other words,

a difference between ψS and ψT is observed. Furthermore, it is expensive or even impossible

to recollect the required training samples for reconstructing the classifier such that we can

account for the sudden change [14]. Therefore, it is preferable for the DNN to compensate

for such changes in the learning phase, which is the aim of this paper. In the literature, such

compensations exists and the related work is discussed next.

3. RELATEDWORK

In the literature, several Deep NN-based approaches have been proposed to com-

pensate for DS. Taigman et al. [7] proposed a domain transfer network (DTN), that allows

to translate images from a source domain to a target one, under a f-constancy constraint,

where f is a generic function that maps images in a feature space and the translated target

images are very similar to the source domain data.

Similarly, a two neural network architecture is proposed in [19], where the weights

are adapted to each domain independently and weight sharing is enabled to enforce col-

laboration between the two neural networks. Haeusser et al. [20] propose a similar two

NN structure to exploit and optimize associations between source and target features during

training. On the other hand in [21], the authors optimize the relationship between the target

features and the decision boundary by adding a discrepancy loss into the problem.

In contrast with the approaches in [24, 4, 19, 5, 25, 12, 21, 20, 7], several adversarial

training based approaches have been proposed too. Ganin and Lempitsky [8] propose

a neural network (Domain-Adversarial Neural Network, DANN) where a ConvNet-based

feature extractor is optimized to both correctly classify source samples and have domain-

invariant features, through adversarial training. The main feature in [8] is the prediction

of targets for the target distribution. Similarly, in Saito et al. [26] propose an approach
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where pseudo-targets are inferred and exploited for target samples during training. In

particular, two networks are trained, one to assign targets to target samples and one to

obtain target-discriminative features.

In contrast with the approaches in [27, 17, 28, 29, 8], the target distribution need

not be known, but is approximated in the learning process with our work. In contrast

to [27, 17, 28, 29], our approach performs feature learning and the estimates the target

distribution in a unified architecture within the same learning phase and thus there is no

need for hand-crafted features.

To improve the performance when target distribution was unknown, a methodology

was introduced in [11], where target distribution was approximated. The approximation was

derived under the assumption that the target distribution lies on the same manifold of the

source distribution and can be approximated by defining a neighborhood around the source

distribution. Although, this method was shown to work well, there are two drawbacks

to this approach: it is difficult to predict the neighborhood. Secondly, the neighborhood

was created by introducing additive perturbations into the training data-set. The associated

drawback is that, one can only account for changes in the mean, that is the first moment, of

the data-distribution which restricts the applicability. Furthermore, in [11], it is assumed

that all the additional samples have the same label as that of the original data-point from

ψS.

Similar to [11], a notion of neighborhood is utilized in this paper too. However, in

contrast with [11], where additive perturbations are used to quantify the neighborhood, a

generic transformation of the training set is introduced to quantify the neighborhood due

to which, the proposed approach can compensate for changes in higher order moments.

Moreover, in contrast with [11], the size of the neighborhood is estimated as part of the

learning process instead of being fixed. To counter the problem of assumed labels, it is first

shown that the assumption is impractical and then a nearest neighbor approach is proposed.



131

Furthermore, even in the case when the domain adaptation is not the goal, with the

proposed framework, other discrepancies in the data distribution can be considered as part

of the learning process thus increasing the applicability of the proposed approach in contrast

with [27, 17, 28, 29, 15, 14, 16, 8] which are restricted to the field of domain adaptation.

The proposed approach has the following benefits: (1) the genericmodel is presented

here to estimate DSwhich allows the flexibility to control and compensate for different types

of distribution changes, (2) the NN exhibits better generalization ability and (3) it allows for

compensation of shift even when the target distribution is unknown. The rest of the paper is

organized as follows. Section II describes the proposed methodology. Section III describes

the simulation results with Section IV providing the conclusions for the paper.

Figure 1. Overview of the Proposed Approach.

4. METHODOLOGY

The block diagram of the overall methodology is demonstrated in Figure 1. The

main objective in this work is to compensate for a shift in the data-distribution in the

learning phase. Since this shift is unknown and unpredictable, data-samples that represent
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Figure 2. Block Diagram for the Proposed Approach.

the distribution shift are derived. The shift is introduced through the distortion model where

a suitably selected transformation is utilized. The transformation is chosen according to the

application under consideration.

Once these additional samples are generated, it is important to know the cate-

gories/class targets for these samples. A nearest neighbor based approach is employed to

predict these targets. Finally, the classifier is used to learn on both the additional data-

samples and the original data-samples.

The learning objective is to increase the extent of domain shift in the data and

compensate for it through the classifier. However, as the extent of distribution shift must

be obtained through the learning problem, we will design a two player zero sum game

between the distortion model and the classifier. In the proposed game, the distortion

model manipulates the data to introduce variations in the output of the classifier thus
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introducing generalization error. On the other hand the classifier compensates for the

change in generalization error through adaptation of weights. To learn the proposed game,

we will introduce a direct error driven learning regime.

The details are individually explained below where the learning objective is de-

scribed first. Next, the construction of the distortion model and the label predictor is

illustrated and afterwards, we describe the two-player zero-sum game and finish with the

direct error-driven learning methodology.

4.1. LEARNING OBJECTIVE

At learning instant k, let the expected value of the error e(k) be defined as the

difference between Eq. (1) and Eq. (2) such that

E[e(k)] = E[el(k)] + ε, (3)

where E[.] refers to the expectation operator and E[el(k)] = E∀x∈X[y(k) − ŷ(k)] is referred

as learning error. The cost function to minimize is obtained by squaring the total error

resulting in

J(k) = E[e(k)]T E[e(k)],

= E[el(k)]T E[el(k)] + 2εT E[el(k)] + εTε,

= Jemp(k) + Jgen(k) + Japx,

with Jemp = E[el(k)]T E[el(k)] being the empirical cost and Jgen(k) = 2εT E[el(k)] and

Japx = ε
Tε being the cost introduced by generalization and approximation errors, respec-

tively [30]. Assuming that Japx is bounded [31], we will write J(k) = Jemp(k) + Jgen(k).

Formally, the learning objective is written as

θ∗ = arg minθ̂∈ΩJ(k), (4)
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whereΩ represents the parameter space. Note that due to the presence of big data challenges

or DS, there is an increase in Jgen(k), that is, an increase in generalization error. To generate

additional samples that are representative of this increase, we will introduce the distortion

model.

4.2. DISTORTION MODEL

To generate the additional samples, synthetic distortions are introduced into the data

through a distortion model. Let this transformation be defined as g(.; θ̂B),where θ̂B denotes

the parameters of the transformation such that ψT = g(ψS; θ̂B).

Remark 20 The transformation may be chosen of a general nonlinear form defined as

(θ̂B)
TΨ(x). Other choices of the transformation include affine map or a mean shift [11].

Formally, for every x ∈ X, there exists a

g(x; θ̂B)

within the ball Qθ̂B
with θ̂B denotes the estimated parameters of the transformation. A

collection of g(x; θ̂B) represents the neighborhood for x which results in XB = {xB |xB =

g(x; θ̂B),∀x ∈ X}, where XB represents the target distribution. The distortion model

is responsible for introducing domain shift, which is introduced due to the challenge of

heterogeneity and noise. The choice of the distortion model is therefore important in

determining the type of distribution changes that can be compensated through the use

of distortion model. Under certain assumptions the distribution changes introduced by

different choices of transformation can be quantified. These assumptions are as follows.

Assumption 10 The distribution of the X has an absolute continuous component.

Assumption 11 The transformation g(.) is bounded.
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Assumption 10 implies that a Taylor series expansion of the data-distribution can be derived

and is satisfied by most data-distributions [32]. On the other hand, assumption 11 states

that g(.) is assumed to be a bounded transformation. It will be shown later in this paper

that with the proposed learning methodology, the transformation remains bounded. The

following lemma quantifies the distribution changes through the first two moments of the

distorted data.

Lemma 6 Consider a data-sample of a random variable be given as X ∈ Rn×p where p

denotes the number of dimensions in the data. Then, the moment generating function is

given as

Ψ(t) = 1 + tE[g(X)] +
t2

2!
E[g(X)]2 + · · · . (5)

Furthermore, the first two moments when n, p→∞ can be quantified under two cases

Case 1: In a simple case, consider affine transformation X and consider Â, b̂ to be

the parameters of the affine transformation

‖µ1‖ ≤ λmax(Â)‖µ(X)‖ + ‖b‖,

‖µ2‖ ≤ λmax(A)λmax(Σ(X)) + ‖b‖

+[λmax(Σ(X)) + 2λmax(A)‖b‖]| |µ(X)‖,

where Σ(X) = XTX is the asymptotic covariance matrix andA = AAT . Furthermore, A, b

are the parameters of the affine transformation and µ(X) is the asymptotic mean.

Case 2: In a general case, let g(X) be a generic nonlinear transformation such that

g(X) = θ̂
T
BΦ(X). Following the same steps as before, we can conclude the first moment as

‖µ1‖ ≤ ‖θB‖‖µ(Φ(X j))‖

‖µ2‖ ≤ λmax(A)λmax(Σ(Φ(X))),
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where A = θBθ
T
B and λmax() represents the largest eigenvalue. Proof: Please see the

appendix.

Remark 21 The lemma above requires the sample estimates of mean and covariance to

converge to their population estimates. Law of large numbers guarantees this under the

condition that n, p→∞ and n→∞ at a rate slower than p.

Remark 22 The covariance matrix would be full rank in the case when n → ∞ at a rate

slower than p. . However, when p → ∞ at a rate equal to or greater than that of n, one

would observe a sparse covariance matrix that may be singular.

As observed, the upper limit of the moments converges as a function of the norm of

the weight for the distortion model. Therefore, the transformation effects different moments

on the data depending on the type of transformation that is applied on the source distribution.

It stands to reason that depending on the type of transformation applied to generate this

neighborhood, higher order changes in the data-distribution can be compensated for in the

learning process.

In case of images when the problem of object detection is considered, an affine

transformation could allow compensating for changes in object orientation, lighting etc. for

the objects. On the other hand, when a generic nonlinear transformation is considered, the

methodology can compensate for contraction and expansion of the data-distribution.

Remark 23 If more complicated changes in the data distribution are sought then parametric

maps such as neural networks may be considered for choosing g. However in this case,

the methodology will take the form of a generative adversarial network (GAN) with the

key difference that the generator distorts the images instead of creating real images from

random input [33].

In summary, the transformation used in the distortion model must be chosen as per the

application that is under consideration. To learn the classifier using these additional samples

we need the targets corresponding to these additional samples.
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Let t(xB) represent the targets for the data-points in the neighborhood. In a simple

case, the targets for the neighborhood can be achieved by assuming that all the data-points

in the neighborhood has the same class as that of the center point itself [11]. However, as

the size of the neighborhood grows, one may observe a situation, where the neighborhood

are overlapping. In such cases, the data-points in the overlapping areas might not belong to

the same class as that of the center. In fact, these data-points might belong to a different

class. In which case, the assumption is violated.

However, it is reasonable to assume that the data-points in the overlapping neigh-

borhood belong to the same class as that of its closest spatial neighbor. In this case, it is of

significance to determine the spatial location of data-points in the overlapping area relative

to the center point. The spatial location can then provide the information corresponding to

the target for that data-point which is core idea behind the proposed label detection approach

as discussed next. Note that the idea of defining targets of the data based on their spatial

location extends to the range space of the classifier too. Thus, we would talk about these

targets in the range space of the classifier. That is, after the classifier function has been

applied to the data.

Define, for every xB ∈ XB, a vector D = {d(ŷ(xB), ŷ(x)),∀x ∈ X}, where

d(ŷ(xB), ŷ(x)) represents some distance metric. Next let D be arranged in decreasing

order. For the purpose of detection, we will determine what is the spatial location of the

data-point in the neighborhood relative to the different data-points in ψS. Let ζ as the

number of neighbors to be considered. Let D̂ denote the first ζ elements in D, then the

targets are finally given as t(xB) =

[∑ζ
i=1 y(di)

ζ

]
, where

[ ]
is the rounding off function

and y(di) are the true targets corresponding to the ith elements in D̂. Moreover, di is

the corresponding neighbor in ψS . Traditionally, in nearest neighbor based approaches, the

neighbors are evaluated in the data-space that is the domain of the classifier. In contrast, the
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neighbors are evaluated in the range-space of the classifier which is in the space of outputs

of the classifier. Observe that the neighbors are determining based on the range space for

the NN.

The approximation of generalization error that is obtained using ψS and the targets

corresponding to it can then be introduced into the cost function such that the distribution

shift can be compensated for. However, the extent of the distribution shift or the size of

the neighborhood is still unknown. These quantities are estimated as part of the learning

problem that is designed next.

4.3. TWO PLAYER ZERO-SUM GAME

In the proposed game, the data is distorted such that it is reflected in an increased

generalization error. This increase is approximated and optimized through the learning

problem.

Formally, let the approximate generalization error be denoted as egen and write

E[egen] = E∀xB∈XB
[t(xB)− ŷ(xB; θ̂)]with the associated cost given as Ĵgen = E[egen]

T E[egen].

The cost function in Eq. (4) is given as

J(k) = Jemp(k) + Ĵgen(k). (6)

Note that, if the impact of Ĵgen(k) is larger on J(k) relative to Jemp(k) then an

undesirable phenomenon is observed. The classifier performance would start improving on

ψT so much that the performance would significantly degrade on ψS [34]. This phenomenon

can be avoided by controlling the contribution of Jgen(k) on the overall cost function. A

parameter α is introduced into the cost function to effect this control such that

J(k) = αJemp(k) + (1 − α)Ĵgen(k). (7)
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The approximated generalization cost is introduced into the learning problem at the

training instant k by rewriting Eq. (7) as

J = αE[el(k)]T E[el(k)] + (1 − α)E[egen(k)]T E[egen(k)]

= [el(k) egen(k)]T

α 0

0 1 − α

 [el(k) egen(k)]

= ε (k)TPε (k),

where ε (k) = [el(k) egen(k)] denotes the overall error and P =


α 0

0 1 − α

 . Observe that
the expectation operators are dropped for brevity of notations and the iteration index k is

not explicitly stated from hereon. By minimizing J, we minimize the overall error which

in-turn leads to the minimization of the learning error as well as the generalization error.

Next, define d( ŷ(x), ŷ(xB)), as the measure of discrepancy between the NN output of

the source and the neighborhood. In other words, d( ŷ(x), ŷ(xB)), is a measure of the impact

of neighborhood on the generalization error. Therefore, increasing d( ŷ(x), ŷ(xB)) manipu-

lates the distortion such that there is an increase in generalization error that is reflected in

the output of the NN. Furthermore d(.) is some distance metric where Mahalanobis distance

or the Euclidean distance are possible choices.

Numerically, a ratio between the overall error ε and d( ŷ(x), ŷ(xB)) is defined as

ε (k)TPε (k)
d( ŷ(x), ŷ(xB))

. (8)
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and the objective is to force Eq. (8) to be less than a predefined gain γ. Considering the

squared euclidean metric as a choice for d(.), one may rewrite Eq. (8) under the squared L2

norm distance as
ε (k)TPε (k)
‖ ŷ(x) − ŷ(xB)‖

2 ≤ γ
2,

ε (k)TPε (k) ≤ γ2‖ ŷ(x) − ŷ(xB)‖
2,

(9)

which results in the final cost function as

J( ŷ; θ̂B, θ̂) = ε (k)TPε (k) − γ2‖ ŷ(x) − ŷ(xB)‖
2. (10)

Remark 24 Since, it is convenient and typical in classification approaches to solve the

optimization problem in terms of maximum likelihood principle, one may write the learning

problem as

J = [−log(p(y |x)) − log(p(y |xB))]

− γ2d( ŷ(x), ŷ(xB)),

where p(y |xB))& p(y |x) are parametrically estimated by ŷ and KL divergence can be used

as a divergence measure for d( ŷ(x), ŷ(xB)).

In the current literature [27, 17, 28, 29, 15, 14, 16, 8], most of the work involves

the scenario when the exact nature of d( ŷ(x), ŷ(xB)) is known. This is because, samples

from the target distribution are available. In contrast with [27, 17, 28, 29, 15, 14, 16, 8], we

obtain samples from the neighborhood in place of these target sample.

Since we want to increase the distribution shift while reducing its impact, one may

restate the overall objective in game theoretic parlance where θ̂B aims at maximizing the

DS while θ̂ aims at minimizing their impact. The classifier and the distortion model are the

two players in the proposed approach that are tied through the cost function. Therefore, an

increase in perturbation by the distortionmodel increases the generalization error term in the

cost function thus reducing the payoff for the classifier. Similarly, if the classifier minimizes

the error of learning and generalization, the payoff for the distortion model decreases.
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As a result, a strategy played by any one of the players results in an impact on the

other player and vice versa. This interaction between the two players introduce the dynamics

required to play the game. Mathematically, the optimization problem is designated as

(θ∗,θ∗B) = arg min
θ̂∈Ω

arg max
θ̂B∈ΩB

J( ŷ; θ̂B, θ̂), (11)

such that (θ∗,θ∗B) is the saddle point solution withΩ,ΩB representing the respective param-

eter spaces that are assumed to be compact.

Remark 25 Observe that the approximation of E[egen] depends on the training data and

its neighborhood. Therefore, one is able to capture more of the data-distribution than what

is represented by X. Thus, XB allows us to approximate the impact of heterogeneity rather

than knowing it a priori in contrast with [35]. In contrast with cross-validation [36] and

regularization approaches [37], the proposed approach introduces model selection into the

optimization problem.

4.4. DIRECT ERROR-DRIVEN LEARNING

To solve the learning problem in eq. (11), a layer-wise performance measure and the

targets are defined. Let the term ε is defined as ε = dJ
d ŷ(x) whereas εB =

dJ
d ŷ(xB)

. The factor

εB represents the feedback from the cost function for the distortion model. Using these

definitions, H(i)( ŷ, x; Ŵ (i)) are defined for each layer in the NN. Specifically, the layer-wise

cost is defined as a function of overall error through δ(i)k such that minimizing H(i)( ŷ, x; Ŵ (i))

for each i minimizes the overall error. It follows that

H(i)(Ŵ
(i)
) =

1
2
[
tr((δ(i)k )

TQŴ
(i)
k ) + λ‖W

(i)
k ‖

2], (12)
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where tr(.) is the trace operator and Q is a positive definite symmetric matrix of choice.

Note that for each layer i, δ(i)k can be understood as the feedback provided by the overall

cost H(θ,θB) towards controlling the layer (i). The feedback δ(i)k is then given as δ(i)(k) =

[ f (i−1)(x) f (i−1)(xB)]ε
TB(i),where x ∈ X.

Similarly, a cost that is Hd(θ̂B) for the distortion model is also defined based on

εB such that Hd(θ̂B) =
1
2
[
tr((δd(k))TQθ̂B(k)) − λ‖θ̂B(k)‖2

]
, where δ(0)(k) is defined as

δd(k) = εT
BB
(0).

Next, the feedback matrix is introduced as a variable in the layer-wise cost function

and define B = [B(0) · · · B(d)]. Finally, write the overall cost as the sum of layer-wise costs

with three variables that is

H(θ̂, θ̂B,B) =
d∑

i=1
[ζ (i)H(i)(Ŵ

(i)
)] − γ2Hd(θ̂B). (13)

As a result, the final optimization is given as

(θ∗,θ∗B,B∗) = arg min
θ̂,B̂∈Ω,ΩB

arg max
θ̂B∈ΩB

H(θ̂, θ̂B, B̂), (14)

where ΩB is the parameter space for B. The parameter updates at each iteration k are then

given as

θ̂(k + 1) = θ̂(k) − η1∆θ̂H

θ̂B(k + 1) = θ̂B(k) + η2∆θ̂BH,

B(k + 1) = η3
∆BH
‖B(k)| |

where η1, η2 and η3 are the respective learning rates.

Remark 26 Since, the cost function consists of an L2 norm penalty, the updates for θ̂B will

have a decaying term. The decaying term will then ensure that ‖θ̂B‖ is bounded. As a

consequence, g(., θ̂B) is bounded and Lemma. 6 holds. Furthermore, one may observe that

the weights of the neural networks are bounded too.
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One may observe that the proposed formulation represents a mixed strategy two

player game. Therefore, a saddle point solution is not guaranteed and it must be shown [38].

Furthermore, within the proposed formulation, one may observe that the a cost function is

derived for each layer in the NN, which makes the existence of a saddle point non-trivial.

To this end, we would first show that H satisfies the conditions under which a saddle point

solution is possible. We demonstrate that the conditions are true even when the number of

layers in the neural network as well as the number of neurons at every layer tend to infinity.

Next, under the strategies chosen by the two players, it will be shown in Theorem 3 that

proposed formulation would achieve Nash equilibrium. With a little abuse of notation let

θ∗ and θ̂ to include B∗ and B respectively.

Theorem 3 Let H be defined as shown in Eq. (13) and Q be a positive definite matrix.

Further, let the solution pair be given as (θ∗B,θ
∗) and let the parameter set be given as

(Ωθ∗B,Ω). Consider the case when the number of layers as well as the number of neurons

in the NN tend to infinity and let
∑d

i=1 ζ
i = L,

∑η(i)

j=1 ν j = L, where L ∈ R. Furthermore,

consider that γ > 0 and it follows that H is a linear combination of quadratic forms that

are convex with respect to the parameters of the neural network. Similarly, H is a linear

combination of quadratic forms that are concave with respect to the parameters of the

distortion model. Under the assumption that the parameters sets are compact, it can be

concluded that the two player zero-sum game represented by H has a saddle point denoted

by (θ∗B,θ
∗). Proof: Please see the appendix.

Remark 27 The conditions η(i) → ∞ implies the big data case when the number of

dimensions in the data are very large. This is due to the fact that the large dimensions in the

data typically requires a larger NN for optimality. As a result, the theorem above is valid

for a very deep and large neural network.

Remark 28 The conditions
∑d

i=1 ζ
i = L,

∑η(i)

j=1 ν j = L, are important to ensure that the cost

function value is not numerically unbounded. Further ζ i signifies the contribution of each

layer in the NN to the cost function and ν j signifies the contribution of each neuron at every
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layer in the neural network. In practical scenarios, the number of layers and the number of

neurons in the NN can be adjusted to make sure that the contributions of different neurons

and different layers in the NN is not very small.

Remark 29 The choice of γ is important to enable the solution space. A large value of

γ would increase importance of distortion model in the learning and the neural network

would focus more on the the domain shifted data-distribution. On the other hand, a small

value of γ would better the accuracy but would compensate less for the heterogeneity in the

data-distribution.

Finally, the proposed methodology is applied on several datasets and the results are

presented in the following section. An algorithm for the overall methodology is presented

in Algorithm 6. Using this algorithm, the results of this methodology are detailed next.

Algorithm 6 Two step learning algorithm for DNN
1: Input: X,
2: for k = 1→ Γ, where Γ is the number of epochs do
3: for each batch in X do
4: Generate alternate batch
5: Learning Step

θ̂(k + 1) = θ̂(k) − η1∆θ̂H

θ̂B(k + 1) = θ̂B(k) + η2∆θ̂BH,

B(k + 1) = η3
∆BH
‖B(k)| |

6: end for
7: end for
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Table 2. Parameters of the different models used in this paper.

Architecture Parameters
CNN nconv = 2, nlayers = 2,

filter size = 5, pool shape = (3,3),
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

MLNN d = 7, hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

SAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

DAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

5. RESULTS AND DISCUSSION

A total of ten data-sets are used for analysis and the statistics for these data-sets are

summarized in Table 4. In all of the data-sets considered here, 80% of the available data

is chosen for learning and twenty percent is used to test the trained model [30]. All of the

results demonstrated in the next section are calculated from the data used to test the trained

model. The splits are constructed randomly.

All of the results in this section are averaged over 100 initial conditions. The

software package Tensor-flow with Python is used for all of the experiments in this paper.

The hyper-parameters are summarized in Tables 4 and 2. In Tables 2 and 4, hln refers to the

number of hidden layer neurons at each layer; b denotes the batch size and nneigh represents

the number of data-points in the neighborhood corresponding to each data-point in the

data-set. Also, nconv represents the number of convolutional layer and nlayers represents the

number of feed-forward layers. Affine transformation is chosen for the distortion model.

We start by analyzing the MNIST data-set. First, we show that the use of distortion

model improves performance, when DS is introduced in the data-set.



146

(a)

(b)

Figure 3. (a) Surface plot for change in γ; (b)Surface plot for change in intensity shift.

5.1. TOY PROBLEM - MNIST DATA-SET

To simulate the notion of DS and test the ability of the methodology to compensate

for it, Gaussian-distributed and uniformly-distributed perturbations are introduced into the

MNIST data-set. In other words, additional data-points are added into the test sample by

applying an affine transformation to each data-point in the test samplewhen the parameters of

the affine transformation are sampled using uniform and Gaussian distribution. To simulate

the extent of the DS, we vary the norm of the affine transformation. The objective is to

study the impact of these distortions on learning effectiveness that is the testing accuracy.

For sampling the distortions in the test phase, the mean vector for the Gaussian

distribution is chosen as a zero, whereas the variance matrix for the perturbations is chosen

as ρI , with I being an appropriate identity matrix and ρ being the variance of choice. The

parameters for the uniform-distribution for the affine transformation are chosen as [−ρ, ρ].

Five layer NNs with relu activation functions are utilized with the learning rates chosen as



147

Table 3. Mean test accuracies for the proposed framework compared with traditional SGD
for the MNIST data-set.

SGD [11] Minimax
relu 0.83 0.91 0.97
(Gaussian)
tanh 0.82 0.87 0.97
(Gaussian)

η1 = 0.001 and η2 = 0.1. In Table 3, the results of a total of 100 runs are recorded.

The methodology in [11] is implemented with ρ = 1 with both uniform and Gaussian mean

shift.

Observe the performance improvement for the minimax framework relative to the

case when the neighborhood is defined directly. Furthermore, observe the 6% improvement

in the performance between [11] and the minimax framework in the case when uniformly

distributed complications are present in the data.

On the other hand, one may observe that when the distortions are sampled from

Gaussian distribution, we see a 10 % improvement over [11]. Furthermore note that,

Gaussian perturbation in the data effects both the first and second order moments of the

data-distribution, the compensation for which is not possible with [11] as observed from

Table 3 where the minimax framework outperforms both SGD and [11] in the presence of

Gaussian distortions. Moreover, note that the key difference between [11] and the current

work is that, the neighborhood estimation is part of the optimization here.

In Figures. 4b and 4a, the performance of the classifier for increasing intensity of

the DS is demonstrated. One may observe that the conclusion form Table 3 carries over to

these results. The proposed framework is therefore resilient to an increase in the DS.

Next, we evaluate the methodology when the amount of noise in the data increases

and the results are shown in Figure 5b. The generalization performance of the proposed

framework is studied for increasing dissimilarity of the test data introduced using synthetic
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(a)

(b)

Figure 4. (a) Accuracy with respect to an increase in norm intensity for MNIST data-set
with respect to Gaussian distributed changes in the data.; (b) Accuracy with respect to an
increase in norm intensity forMNIST data-set with respect to Uniformly distributed changes
in the data.

Table 4. % accuracies for the various data-sets with the proposed framework and four
different learning algorithms with generalization error in the parenthesis.

Datasets p n F Model Parameters DFA FA SGD EDL
Rolling [39] 11 35000 4 α = 0.01, b = 100, d = 7, hln = 100, 99(0.0001) 99(0.0001) 99(0.6) 99(0.0)

λ = 0.001,nneigh = 2, ρ = 1
Sensorless [40] 48 78000 11 α = 0.01, b = 100, d = 8, hln = 100, 94(0.008) 94(0.008) 95(0.008) 94(0.002)

λ = 0.001,nneigh = 2, ρ = 1
MNIST [41] 784 72000 10 α = 0.01, b = 100, d = 8, hln = 100, 92(0.1) 94(0.2) 95(1) 97(0.6)

λ = 0.001,nneigh = 2, ρ = 1
NotMnist [42] 784 81000 10 α = 0.01, b = 100, d = 9, hln = 100 90(1) 82(1.8) 88(2) 92(0.8)

λ = 0.001,nneigh = 2, ρ = 1
CIFAR10 [43] 3072 50000 10 α = 0.01, b = 100, d = 10, hln = 100 81(7.21) 80(8.00) 82(12.11) 84(8.77)

λ = 0.001,nneigh = 2, ρ = 1
Arcene [44] 10000 100 2 α = 0.01, b = 100, d = 9, hln = 100, λ = 0.001 69(0) 61(0) 51(0) 78(0)

λ = 0.001,nneigh = 2, ρ = 1
Dexter [44] 20000 300 2 α = 0.01, b = 100, d = 8, hln = 100 71(0.7) 77(0.9) 81(1.1) 80(1)

λ = 0.001,nneigh = 2, ρ = 1
Gisette [44] 5000 6000 2 α = 0.01, b = 100, d = 8, hln = 100, 92(0.25) 93(0.21) 91(0.3) 98(0.07)

λ = 0.001, nneigh = 2, ρ = 1
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Figure 5. Change in the size of the neighborhood versus (top) accuracy (bottom) general-
ization error. Results presented in these plots are averaged over two types of perturbations
that are Gaussian and Uniform distributed.

Table 5. Average accuracies.

Data-set n p F Accuracy
Synthetic 20000 2 million 10 94.10

Image-Net[45] 784 12614060 10 56.21

Table 6. Mean test accuracies with the standard error in accuracy for the MNIST data-set.

SGD PF+GD
relu (Gaussian) 0.83(0.07) 0.91(0.093)
relu (Uniform) 0.85(0.10) 0.93(0.018)
tanh (Gaussian) 0.82(0.006) 0.87(0.003)
tanh (Uniform) 0.86(0.10) 0.89(0.018)
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perturbations. The neighborhood size for training is kept as one and the average accuracies

and generalization error over one hundred initial conditions of weights are illustrated in

Figure 5b. The deterioration in performance for the proposed framework with an increase

in the perturbations is smaller with the proposed framework. Both learning regimes, EDL

and GD, show improved performance. In Figure 5b, SGD results in accuracy that is a little

higher than that achieved by EDL when no dissimilarity is present. However, EDL is very

resilient to increasing dissimilarity in the data. In other words, the proposed approach, while

exhibiting comparable best case accuracy, indicates improved resilience in the presence of

data-noise and heterogeneity.

Next, we test the performance of convolutional neural networks (CNN) [46] and

multilayer neural networks (MLNN), with respect to the proposed methodology. The hyper-

parameters corresponding to these architectures are summarized in Table 2. For both CNN

and MLNN, it is consistently observed that a significant improvement in performance is

achieved when uniformly and Gaussian distributed perturbations are introduced to construct

the neighborhood.

Next, the performance of the proposed methodology is compared with sparse auto-

encoders [47] and denoising auto-encoders [48]. The hyper-parameters are again summa-

rized in Table 2. The results are demonstrated in Figure 5c. The best case accuracies for

varying amount of noise in the data-set is achieved by the proposed approach. The proposed

methodology is built to address scenarios where the test data-set is different from the train-

ing data-set, whereas sparse auto-encoders and denoising auto-encoders are constructed to

look for and remove noisy patterns in the training data-set. Moreover, explicit modification

of the objective function appears to help and thus improve performance within the proposed

approach.

Next, the performance of the proposed framework is studied relative to the regular

SGD for the MNIST data-set, the results are summarized in Table 6. The accuracies are

higher for relu compared to tanh activation functions. The improved performance of the
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relu activation function over tanh is well recorded in the literature [49]. The standard

error of accuracy for the proposed framework is much smaller compared to traditional

SGD. Therefore, learning with the proposed framework is resilient towards varied initial

conditions and the results are statistically significant. The impact of the values of gamma

on learning within the proposed framework is illustrated next.

The extra penalty term in the cost function controls the size of the neighborhood by

determining the amount of perturbations, the distortion model may introduce in the data-set.

As a result, an appropriate choice of γ, the trade off between the neighborhood size and the

accuracy can be addressed and the size of the neighborhood can be controlled. This impact

of γ on the learning performance is discussed next.

5.2. IMPACT OF γ

A large influence on the neighborhood and the effect on the generalization error is

due to the use of the term γ in the optimization problem. In Figure 3a, the behavior of the

generalization error with change in the intensity of DS is illustrated.

One may observe by a drop in generalization error when the value of gamma is close

to one that with an increase in the value of gamma, the intensity of DS has less impact on

the learning efficiency. The surface plot also indicates the changes in the generalization

error with change in intensity. It may be observed that the values of generalization errors

are large when the intensity of DS is large and vice versa which is observed in Figure 3b.

Next, the performance of the proposed method is tested on classification.
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5.3. CLASSIFICATION

Four learning paradigms, namely DFA (Direct Feedback Alignment) [50], SGD

(Stochastic Gradient Descent) [10], FA (Feedback Alignment) [51] and EDL (Error-driven

Learning), are tested with all the data-sets listed in Table 4. The hyper-parameters for

different models used in the paper are summarized in Table 4.

Consistent performance of the proposed framework with EDL is observed across

data-sets as is seen in Table 4. Reasonable accuracies are observed for the large dimensional

data-sets and others provide marginal improvement for typical SGD. For the dexter data-

set, our EDL method achieved similar accuracies compared to standard SGD but indicates

significant improvement over DFA and FA. The guided choice of the feedback matrix

appears to assist EDL.

Next, the generalization performance of the methodology for different data-sets is

presented in Table 4. It is observed that the lowest generalization error is achieved for the

proposed framework with the EDL learning scheme. Even for the case of gradient-based

updates on the proposed framework, there is a significant reduction in the generalization

error over the traditional SGD. Improved generalization errors indicate that the impact

of challenges such as heterogeneity and data-noise is indeed mitigated with the proposed

framework.

5.4. BIG DATA APPLICATION

Big data is commonly defined as the scenario where the analysis of a big data-set

cannot be conducted on a single core CPU. Therefore, to demonstrate the use of proposed

methodology in such an environment, our approach is implemented on a multi-core CPU.

The results are demonstrated on two large data-sets where the first is the popular ImageNet

data-set [45], and the second is the synthetic data-set.
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We construct a ten class problem from the ImageNet data-set by sampling with

replacement. In the end, the data-set is about 138 GB in size consisting of ten classes.

Similarly, the synthetic data-set is composed of 20,000 features and 2 million data-points.

While generating this data-set, clusters of normally distributed points are created about

vertices of an 20,000-dimensional hypercube with sides of a pre-defined length. Both of

these data-sets are extremely large. The results, as summarized in Table 5, indicate the

ability of the methodology to obtain reasonable performance.

The results described in this section suggest that the proposed min-max framework

with EDL may serve as a promising prospect on the problem of classification, especially in

a large dimensional scenario with much noise, as can be observed in the results.

6. CONCLUSIONS

A systematic approach was presented to design a classifier in the presence of chal-

lenges such as heterogeneity, vanishing gradients and noise. The two player game setup

provides the optimal compensation for the classifier and the corresponding distortion. Due

to this the proposed approach is more resilient to distribution changes that is the domain

shift.

The direct use of the overall error signal in the learning process mitigates the van-

ishing gradient issue. The proposed framework combined with EDL appears to outperform

other approaches such as DFA and FA in all of the data-sets under analysis. The main

drawback of the proposed approach is the need to select an appropriate distortion model.

Overall, the proposed approach appears to provide a 5% improvement in generaliza-

tion error and a 10% improvement in accuracy over SGD in the presence of domain shift.

Future effort will address the challenges such as non-stationary distributions and incidental

endogeneity.
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APPENDIX

6.0.0.1. Proof:. [Lemma 1 Proof] Given a random variable X, let the moment

generating function Ψ(t) [52] be defined as

Ψ(t) = E{exptX },∀t ∈ R, (15)

where X is the random variable and E is the expectation. Consider the expansion of the

Ψ(t) using the series expansion of exponential functions and apply the transformation g(.)

[52] to get

Ψ(t) =
∞∑

i=0

ti

i!
E[(g(X))i]. (16)

Under the assumption that the transformation is bounded such that |g(X)| ≤ g∗(X),∀i we

get by Lebesgue dominated convergence theorem that

Ψ(t) ≤
∞∑

i=0

ti

i!
E[g∗(X)],

≤ 1 + tE[g(X)] +
t2

2!
E[g(X)]2 + · · · .

(17)

where the first raw moment under first order Taylor series approximation is given as

µ1 = E[g(X)],

≤ E[g(E[X]) + g′(E[X])(X − E[X])].
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Similarly, the second order raw moment can be achieved using the Jenson’s inequality

resulting in

µ2 = E[g(X2)],

≤ E[g(E[X2]) + g′(E[X2])(X2 − E[X2])].

The question of interest is to see what happens to these moments when the number of

data-points in the population tend to infinity under specific choices of transformation. Two

cases of these transformations are considered and the corresponding moments are derived

below.

Case 1: In a simple case, consider affine transformation X and consider Â, b̂ to be

the parameters of the affine transformation such that

vec(Â) ∼ pA(µ Â,S Â), vec(b̂) ∼ pb(µ b̂,S b̂),

where p.(.) is a probability distribution of choice characterized by the first two moments:

mean µ(.) and covariance matrix S(.). Note that vec() denotes vectorization of a matrix.

Thus g(x; θ̂B) = Â
T
x + b̂ and it follows that

µ1 ≤ E[g(E[X]) + g′(E[X])(X − E[X])].

≤ E[Â
T

E[X] + b̂] + Â
T
(X − E[X])].

≤ Â
T

E[X] + b̂,

which implies that

µ1 ≤ Â
T

E[X] + b̂ (18)

Then, we can write using Cauchy’s inequality

‖µ1‖ ≤ ‖ Â‖‖E[X]‖ + ‖ b̂‖. (19)
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Simplification with limit n, p→∞ through the law of large numbers reveals that E[X] will

converge to the population estimate for the random variable X . Let the population estimate

be written as µ(X) and the first moment converges to

‖µ1‖ ≤ λmax(Â)‖µ(X)‖ + ‖ b̂‖, (20)

Similarly, the second order raw moment can be achieved as

µ2 ≤ E[g(X)2] + 2E[g(E[X])g′(E[X])(X − E[X]].

≤ E[XT ÂÂ
T
X] + 2ÂT

E[X]b̂ + E[b̂
T
b̂].

Simplification with limit n, p→∞ reveals

‖µ2‖ ≤ lim
n,p→∞

[
Tr(ÂΣ(X))

+‖µ(X)TΣ(X)µ(X)‖

+‖2ÂT
µ(X)b + E[b̂

T
b̂]‖

]
,

(21)

where Σ(X) = XTX is the asymptotic covariance matrix and Â = ÂÂ
T
. Finally, we get

‖µ2‖ ≤ λmax(Â)λmax(Σ(X)) + ‖ b̂‖

+[λmax(Σ(X)) + 2λmax(Â)‖ b̂‖]| |µ(X)‖

Case 2: In a general case, let g(X) be a generic nonlinear transformation such that g(X) =

θ̂
T
BΦ(X). Following the same steps as before, we can conclude the first moment as

‖µ1‖ ≤ ‖θ̂B‖‖µ(Φ(X j))‖. (22)
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The second moment is then given as

‖µ2‖ ≤ lim
n,p→∞

‖E[Φ(X)T θ̂Bθ̂
T
BΦ(X)]‖,≤ lim

n,p→∞
Tr(AΣ(Φ(X))). (23)

The asymptotic result can finally be achieved as

‖µ2‖ ≤ λmax(A)λmax(Σ(Φ(X)), . (24)

�

6.0.0.2. Proof:. [Theorem 1 proof] Observe that

H(i) =
[
tr((δ(i)k )

TQ(i)Ŵ
(i)
k ) = tr((Q(i)Ŵ

(i)
k (δ

(i)
k )

T ) = tr(Q(i)X (i)) (25)

where X (i) = Ŵ
(i)
k (δ

(i)
k )

T is a square matrix and Q(i) is symmetric and positive definite

matrix. Rewrite Q(i) =
∑η(i)

j=1 ν j p
T
j p j,where η(i) is the number of hidden layer nodes at layer

i. Substitution into Eq. (25) and simplification reveals

H(i) = tr(Q(i)X (i)) =
η(i)∑
j=1

ν j(tr(p jX pT
j ))),

which is a linear combination of non-negative values [53]. Consider the case when both d

and η(i) tend to infinity and the formulation can be alternatively interpreted as

H = lim
η(i),d→∞

d∑
i=1

ζ iH(i) = lim
η(i),d→∞

d∑
i=1

ζ itr(Q(i)X (i))

= lim
η(i),d→∞

d∑
i=1

ζ i
η(i)∑
j=1

ν j(tr(p jX pT
j ))).

(26)
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Let
∑d

i=1 ζ
i = L and

∑η(i)

j=1 ν j = L, it follows that the term H is a bounded sum provided

tr(p jX pT
j ))) is bounded. However, this depends on the value of the weights and δ(i). The

weights are bounded because of the choice of the update rule (a first order difference equation

results in a bounded sequence). Furthermore, δ(i) is bounded because the cost function is

Lipschitz. With these observations, it follows that
∑d

i=1 H(i) for all the layers in the neural

networks are a linear combination of standard quadratic forms that are independently convex

[53] with respect to the parameters of the neural network. Next, it can be observed from

H(0)(θ̂B)

H(0) = −γ2tr((δ(0)k )
TQ(0)(θ̂B)k)

= −γ2tr((Q(0)(θ̂B)kδ
(0)
k )

T )

= −γ2tr(Q(0)X (0))

where X (0) = ((θ̂B)kδ
(0)
k )

T is a square matrix and Q(0) is symmetric and positive definite

matrix. It follows that following the principles from earlier, H(0) is a concave function

provided γ > 0.

Note that the overall cost function is H(0) +
∑d

i=1 H(i). Moreover,
∑d

i=1 H(i) is only

dependent on the parameters of the neural network and H(0) depends purely on the parame-

ters of the distortion model. The second derivative of the overall cost function with respect

to θ̂ reveals a convex cost function because the term due to the distortion model would result

in a zero. Similarly, the second derivative of the overall cost function with respect to θ̂B

reveals a concave cost function. It follows that the overall cost function is convex relative

to the parameters of the neural network while it is concave with respect to the parameters

of the distortion model. As a consequence, θ∗B is a maximizer for the cost function [54].

Similarly, it follows that θ∗ is a minimizer for the cost function due to convexity with respect

to θ̂ . Thus, invoking the minimax theorem in [55] it can be seen that (θ∗B,θ
∗) is a saddle

point solution to the game and the game admits a Nash equilibrium. �
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ABSTRACT

In this paper, a novel distributed learning methodology is introduced for deep neural

networks (DNN) while considering classification problems with high dimensional data as

an application. To address the challenges posed by high dimensional data, a L1 regularized

DNN optimization problem is formulated where optimal sparsity is estimated by designing

a two player zero-sum game between the penalty coefficients/sparsity parameters and the

DNN weights. To solve this game, a novel learning scheme is introduced where layer wise

cost functions are derived at each DNN layer by introducing additional variables. As a

result, the output at a given DNN layer depends on the additional variables instead of the

previous layer. These layer-wise cost functions are optimized to learn the DNN parameters

as well as the sparsity coefficients through the minimization approach. The obtained Nash
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solution of the game provides optimal sparsity and its compensation through the classifier.

The proposed approach is finally implemented in a parallel and distributed environment

through a novel computational algorithm and demonstrated both theoretically and using

nine data-sets.

1. INTRODUCTION

Deep neural networks (DNN) are very efficient in environments where big data-

sets are available provided efficient learning schemes for training DNN weights can be

designed. Ever since its introduction in the 90s, back-propagation [1] has been the most

popular approach for training DNN weights. In back-propagation, a cost function is first

defined based on the task at hand and then the weights are trained to minimize this cost

function through its gradient. The effectiveness of gradient-based techniques has been well

established in the literature [2]. However, in spite of their effectiveness, it has also been

demonstrated [2, 3] that such gradient-based approaches can suffer from critical drawbacks

such as: (1.) vanishing gradients, where learning signals diminish with the increase in the

number of layers in the DNN, (2.) poor solutions and local minima, due to improper initial

conditions [2], (3.) lack of a proper mechanism for parallelization across layers and (4.)

heuristics associated with L1 regularized DNN-learning procedures.

In this paper, a novel methodology is introduced to address the challenges mentioned

above. A distributed learning procedure for learning DNN to address the issue of non-

convexity and vanishing gradients. Next, a two player game is introduced to minimize

heuristics in hyper-parameter selection and then an efficient algorithm is provided for

implementing the proposed learning regime in parallel environments. The details of the

proposed methodology is provided below.

The use of alternate activation functions such as relu, leaky relu, drelu, etc[4, 5];

and learning rate schedules [5] are common ways of addressing this issue. However,

it has been shown that these approaches [5, 6] do not mitigate the vanishing gradient
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problem completely and only provide a workaround for satisfactory performance [4]. In

addition, non-convexity of the DNN-optimization problem renders the DNN-learning very

susceptible to initial conditions [7] thus leading to local minima and poor solutions. A

solution to this problem is to introduce sustainable strategies for proper initial conditions,

that is weight initialization [8]. However, selecting proper initial conditions is incredibly

heuristic and requires a tedious trial and error procedure. Alternatively, several methods

[9, 10] have been proposed that convert a non-convex problem into a convex one by either

using a smoothing parameter [9] or a predetermined transformation [10]. The drawbacks of

these approaches [9, 10] include the need to know the exact transformation or the smoothing

parameter.

These drawbacks have motivated further research in alternate non-gradient-based

learning frameworks [11, 12, 13, 14]. Target propagation was introduced in [11] where

difficult to define targets are introduced at each layer with great computational cost to

break the learning process across layers. In addition, error-driven learning approaches

were proposed in [12, 15] which suffer from inefficiency while optimizing convolutional

neural networks (CNN) as is shown in [12]. In the literature, coordinate descent [13] or

alternating minimization approaches [14] are also available that can alleviate the issue of

non-convexity. These approaches [13, 14] use different mathematical constructs to split the

cost function across layers in DNN. However, these approaches [13, 14] need to maintain

auxiliary variables for whole data-set, thus impractical in big data scenarios

The presence of high dimensional data-sets, characterized by (large n, large p),

where n denotes the number of data-points and p the dimension, introduces additional

challenges into the learning procedure [16]. As the number of parameters in the DNN scales

quickly with dimensionality of data estimating parameters of DNN mapping is intractable

because enough data-points are not available. Furthermore, challenges such as noisy

dimensions, spurious correlation and incidental endogeneity also introduces estimation
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errors into the learning problem. Because these errors are due to unwanted dimensions

and/or weights [16], removing unnecessary weights in DNN is a necessary and an important

issue.

A principled way of removing unnecessary weights is to pose the learning using L1

regularized optimization [17] where the L1 norm of the mapping parameters are minimized

along with the cost function. The process is known as introducing sparsity into the model

and larger sparsity ensures fewer parameters in the DNN model. The associated drawback

is the introduction of estimation errors as large sparsity also reduces the expressive power

of DNN [18]. This trade-off is typically controlled by carefully choosing the coefficients

for the L1 norm penalty, referred as sparsity parameters. Since, it is impossible to manually

choose correct values for these penalties in a DNN architecture thus most practitioners use

constant values for the penalties. Furthermore, popular methods including grid search[19]

and cross-validation approaches [19] are also used towards this end but the presence of

heuristics makes these approaches very tedious.

In addition, several attempts have been made to parallelize [20, 21, 22] the learning

of DNN across data-points. However, for large models with large number of parameters,

a centralized learning problem is still difficult due to the non-convexity of cost function.

Furthermore, approaches such as elastic averaging stochastic gradient descent [23] fail when

the number of batches in the data becomes large because the parameters have a tendency to

converge to zero.

In light of these issues, a principled methodology is introduced in this paper to

address challenges in terms of : (1) the non-convexity of cost function; (2) heuristics in

the selection of sparsity parameters for L1 regularized optimization and (3) lack of any

structured approaches that parallelize over layers in deep NN.

To minimize heuristics, optimal sparsity is estimated by designing a two player

zero-sum game between the penalty coefficients/sparsity parameters and the DNN weights.

In this game, the first player, the sparsity parameters aim to increase sparsity in the DNN
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while the second player aims to improve the performance of the DNN classifier. In contrast

with cross-validation and grid-search based approaches [19], the proposed approach does

not require an intensive search process to select the sparsity parameters.

To address the non-convexity problem, layer wise cost functions are derived at

each DNN layer by introducing additional variables such that each of these layer-wise cost

function is convex and can be easily optimized. The additional variables are introduced in

such a way that the output at a given DNN layer depends on the additional variables instead

of the previous layer. Subsequently, these layer-wise cost functions are independently

optimized to learn the additional variables, the sparsity parameters and the DNN weights at

each layer. The convexity of the optimization problem is also demonstrated theoretically.

Finally, the existence of the Nash solution for the game with the additional variables is

theoretically demonstrated even when the number of data-batches are large.

As the optimization problem with additional variables is convex, the issues due to

non-convexity of cost function are not observed in contrast with [7] and other SGD-based

approaches [24]. Though, our approach appears similar to [10] in terms of defining a

transformation of the cost function, it is still different due to extra variables instead of

pre-determined transformation. Finally, our approach is similar in spirit to [13, 14] with key

differences that include (1.) a variable for every data-point in the data-set is not maintained;

and (2.) our approach can be generalized to architectures such as CNN in order to work

with images efficiently.

Finally, since each of these layer-wise problems are independent, the methodology

provides opportunities for high scalability and parallelization. To enable such learning,

within the proposed approach a novel implementation algorithm is introduced that enables

parallelization across both the data-batches and the layers in the DNN. In contrast with

[20, 21, 22], the cost of communicating weights between different segments of the DNN
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optimization problem is substantially less compared to [20, 21, 22]. The benefits of this

approach are demonstrated in simulation on a total of eight data-set where many of them

belong to big data. The contributions of this paper include:

1. Introduction of a novel distributed learning approach for DNN. Here, a highly nonlin-

ear and non-convex optimization problem is transformed into simpler nonlinear least

square problems.

2. Development of a two player game for mitigating the impact of high dimensionality

of data in the model. Through this two player game, sparsity is brought into the

learning phase and the impact of heuristics is minimized in contrast with [17, 18].

3. Derivation of theoretical results for the proposed approach.

4. Demonstration of the proposed approach in simulation involving the use of bench-

marking data-sets.

5. Development of a parallelized implementation algorithm of the proposed approach.

In the next section, the preliminaries and subsequent notations are discussed. Next

the proposed approach is introduced in section II, with section III discussing the results,

followed by conclusions in Section IV.

2. BACKGROUND AND PRELIMINARIES

The basic notations for the paper are summarized in Table 1. With these notations,

consider any manufacturing process where the data at an instance is denoted by x. Next,

consider the problem of classificationwhere the objective is to determine, whether x belongs

to one of the F categories or not. To predict these categories, the main idea is to estimate

a map φ(.), referred to as classifier, that transforms the data-point x into a probability

space where the magnitude of φ(x) indicates the membership of x to different categories.
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Membership values signify the probability of x belonging to any particular category. To

learn φ(.) one usually assumes that a data-set X with labels Y is available and it represents

all the necessary information. The overall learning then involves approximating φ(.) through

a parametric map such as neural networks, spline functions, etc [19].

Table 1. Notations

Notation Meaning
X,Y Data-set, Labels
F Number of faults/classes in the system.

(n, p)
Number of sample points in the training set,
the dimensionality of data

R and N The set of real and natural numbers.
(.)(i) Number of layers in the DNN
P(Ŵ

(i)
) The penalty function to introduce sparsity

P1(λ̂
(i)
)

Function signifying magnitude of the spar-
sity parameter

ψ() The penalty function to enforce constraints

In this paper, DNN is chosen to be the parametric map of choice and each training

instant is denoted as k with xk denoting the data-sample from X at that instant. Next, we

assume that φ(.) can be approximated using a DNN [25] with an ideal set of weights denoted

by θ = [W (1) · · ·W (d)]T and one may write the ideal parametric map as

φ(xk) = y(xk ; θ) + ε

= f (d)(W (d) · · · ( f (1)(W (1)(xk))))) + ε,

where y ∈ RF×1 represents the ideal output/labels for φ(.) and the target weights includes

the layer-wise bias. Furthermore, ε is the approximation error and is dependent on the

chosen capacity of the DNN[26]. As a consequence, it is assumed constant and bounded

through out the estimation procedure. Let the variable d denotes the total number of layers

in the DNN and the estimated map at any training instant k be denoted as ŷ(xk). With
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estimated weights denoted as θ̂ = [Ŵ (1) · · · Ŵ (d)]T, one may write the estimated map as

ŷk(xk) = ŷk(xk ; θ̂) = f (d)(Ŵ
(d)
· · · ( f (1)(Ŵ

(1)
xk)))). (1)

It can be observed that the estimated map is dependent on the training instances but the ideal

map is independent of k. To solve this problem, we would usually minimize the difference

between the labels(ideal parametric map) and the DNN output(estimated parametric map)

at any training instance k such that the difference goes to zero as k →∞.

Formally, we define a loss function `(y, ŷ(k)) such that it represents the difference

between the labels and the output of the NN and minimize it in the learning procedure.

Since we cannot work with the whole data-set at one, we will work with a sample of data and

calculate the expected value of loss at any training instance. Let E[.] denote the expectation

operator and write the overall cost J́ as the expected value of the loss to get

J́ = E∀xk∈X,y∈Y[`(y, ŷ(xk))]. (2)

Note that we replace the ideal map with labels from the data-set while calculating the

expected values. For brevity of notation, we will suppress the sub-scripts for the expected

values from hereon. Formally, the learning objective is then obtained as the minimization

of this cost function J́ to estimate the weights such that

θ∗ = arg min
θ̂∈Ω

J́(k), (3)

where Ω represents the parameter space.

Remark 30 The term `(y, ŷ(k)) can denote any generic loss function where examples

include quadratic (L2 norm-based) loss and cross-entropy loss function[19].

With this setup, the proposed approach is described next.
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Figure 1. Illustration for the proposed approach.

3. OVERALL METHODOLOGY

In this section, we first introduce the L1 regularized optimization framework. Next,

a distributed learning approach is demonstrated to solve the optimization problem for which

a pictorial representation is given in Figure 1 Then, the details of the two player game are

presented where the sparsity parameter is introduced as player in the optimization problem.

Finally, the overall approach is theoretically analyzed.

Many challenges are observed while minimizing a cost function in the presence

of high dimensional data-sets. Typically, the size of DNN increases with the number of

dimensions in the data. If n is not greater than p then the system of equations to solve (to

estimate the weights that approximate the map φ(.)) is under-determined. This situation

leads to a lot of unwanted parameters in the DNN due to which the DNN would overfit on

the data and result in increased estimation errors [19]. In these scenarios, it is preferable

to reduces the number of parameters in the DNN during the training phase. Typically,

the process involves introducing sparsity into the DNN using a L1 norm constraint on the

weights. Let P(Ŵ
(i)
) denote the constraint that is applied on the weights and write

J́( ŷ; θ̂, λ̂) = E[`(y, ŷ(k))] +
d∑

i=1
λ̂
(i)

P(Ŵ
(i)
). (4)
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If the penalty function is chosen as the L1 norm then we get P(Ŵ
(i)
) = |Ŵ

(i)
| which denotes

our L1 regularized scenario. The vector λ̂ = [λ̂(i) · · · · · · λ̂(d)] is also referred to as the

sparsity parameters and is generally chosen using the experience of the practitioner. In L1

norm based optimization, it is fairly traditional to set the value of sparsity parameters for

each layer to be equal to some constant that is λ̂(i) · · · = · · · λ̂
(d)
= c [17, 27, 28]. The

objective then is to optimize Eq. (4) to learn the weights and the overall learning problem

is given by Eq. (3). To optimize the proposed problem, a distributed learning approach is

developed next.

3.1. DISTRIBUTED LEARNING APPROACH

It was mentioned before in the introduction that there are several drawbacks with a

traditional gradient based approach when the function to optimize has functional nesting(the

form denoted in Eq. (1)). In DNN-terminology, this refers to the presence of multiple layers

that leads to the non-convexity which is observed in optimization procedures. To alleviate

this issue, the principal idea is to disassociate the learning problem across the layers such that

each layer can be optimized independently. We accomplish this by introducing variables,

referred as additional variables at each layer in the DNN and optimizing these additional

variables along with the weights.

To elaborate, let us start by introducing a variable z(d) to replace the top-most layer

in the DNN such that
J́( ŷ; θ̂, λ̂) = J( ŷ(z(d)); θ̂, λ̂)

= E[`(y, ŷ(z(d))] +
d∑

i=1
λ̂iP(Ŵ ),

where ŷ(z(d)) = f (d)(z(d)) is the output of the DNN that depends on z(d). It follows that the

loss function depends on z(d). The advantage as observed is that the optimization of the cost

function does not have any nesting therefore it is equivalent to a one layer NN optimization

problem. One layer NN optimization problem is relatively simpler to the original problem
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and has been well studied in the literature [19]. However, as optimization procedure is

now dependent on the additional variables instead of the topmost layer in the DNN, the

additional variables must mimic the topmost layer in the DNN. This can be achieved by

adding a constraint into the optimization problem such that

z(d)(x) = Ŵ
(d)

f (d−1)(x).

It can be observed that these additional variables are local observers that estimate the

information required for learning the weights at layer d.

Next, lets introduce another variable z(d−1) that is constrained to mimic the penul-

timate layer in the DNN such that the topmost layer depends on z(d−1). It follows that the

constraint on variable z(d) can be rewritten as

z(d) = Ŵ
(d)

f (d−1)(z(d−1)).

As mentioned earlier, this dependence introduces an additional constraint as

z(d−1) = Ŵ
(d−1)

f (d−2)(z(d−2)).
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With this line of thought onemay define a variable at each layer of the neural network

constrained to mimic all the information prior to that particular layer in the DNN. Due to

this, the overall optimization problem can be rewritten as

θ∗ = arg min
θ̂∈Ω

J( ŷ(z(d)); θ̂, λ̂)

subject to

z(d) = Ŵ
(d)

f (d−1)(z(d−1))

z(d−1) = Ŵ
(d−1)

f (d−2)(z(d−2))

...

z(2) = Ŵ
(2)

f (1)(z(1)),

where z(1)(x) = Ŵ
(1)
x. Observe that each constraint is dependent on the weight, the

activation function at a layer and the additional variables corresponding to the layer below.

As a result, the optimization problem from Eq. (3) can now be rewritten as shown in Eq.

(5). The only difference in between these problems is the presence of additional variables

and the constraints.

One might also observe that a straight forward unconstrained DNN optimization

problem is being changed to introduce constraints. These constraints also introduce more

variables and more parameters that must be optimized. However, the main advantage is the

fact that an inherently non-convex optimization problem is converted into a series of sub-

problems that can be solved independently. This introduces opportunities for parallelization

and efficient scalability.

The constraints introduced into the new problem are already present in a standard

DNN implicitly. However, in a traditional case, these constraints generally take the form of

"input to each hidden layer in the DNN must be equal to the output of the previous layer"

and we do not think of them as constraints. By introducing these additional variables, these
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constraints become explicit. The advantage as observed is that a optimization problem that

depended on nested functional form of DNN does not depend on nested functions anymore.

However, this approach requires that the constraints are satisfied.

To enforce these constraints, we introduce a generic penalty function ψ(.) [29] such

that

J( ŷ; θ̂,Z, λ̂) = E[`(y, ŷ(z(d))] +
d∑

i=1
λiP(Ŵ

(i)
)

+

d∑
i=2

γiψ(z
(i),Ŵ

(d)
f (i−1)(z(i−1))),

where Z = [z(1) · · · z(d)]. Observe that γi is the penalty coefficient for weight at the

layer i andψ(.) denotes a penalty function of choice. The choice of these penalty coefficients

decide the exactness with which these constraints are enforced. In a traditional DNN, these

constraints are enforced exactly, which is not the case in this formulation. It follows that

at the cost of some imprecision in the constraints at each layer of the DNN, we achieve an

optimization problem that is convex and is equivalent to the original optimization problem.

The convexity is demonstrated in Lemma 1. Next, we will introduce the zero-sum game.

3.2. ZERO-SUM GAME

A main drawback of the learning approach described above is that the extent of

sparsity that can be introduced is unknown. Therefore, most practitioners will choose the

sparsity parameters through a trial and error process. The process is necessary because

large sparsity (more magnitude of the sparsity parameters) reduces the expressive power

(capacity) of the model thus increasing the learning cost. With lower capacity, the DNN

may fail at estimating the map φ(.) effectively leading to a violation of the assumption that

the approximation error is constant and bounded.
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It is therefore preferable to let the learning problem establish a trade-off between the

expressiveness (learning cost) and sparsity of the DNN(magnitude of the sparsity parame-

ters). This trade-off is closely tied to the magnitude of the sparsity parameters. Specifically,

the larger the magnitude of the sparsity parameter, the greater the sparsity in the weight

and lower the expressive power of the DNN. Thus, to manipulate sparsity in the DNN, we

manipulate the magnitude of the sparsity parameter. Lets denote this magnitude as P2(λ̂).

Next a two player game is designed where the objective is to increase P2(λ̂) as much as

possible.

Formally. define a ratio between the current cost and the norm of the sparsity

parameter is defined as J( ŷ;θ̂,Z)
P2(λ̂)

. The ratio formalizes the trade-off between the cost function

and sparsity parameters and the objective is to keep this ratio within a threshold Γ, it follows

that J( ŷ;θ̂,Z)
P2(λ̂)

≤ Γ2,where P2(λ̂) is indicative of the magnitude. With this being the objective,

we can rewrite the cost function by including this constraint to get

H( ŷ; θ̂,Z,λ) = E[`(y, ŷ(z(d))]+
d∑

i=1
λiP(Ŵ

(i)
)

+

d∑
i=2

γiψ(z
(i),Ŵ

(d)
f (i−1)(z(i−1)))−

d∑
i=1

Γ
2P2(λ̂).

In the cost function described in Eq. (5), sparsity is introduced into the learning problem

through the second term. On the other hand, the fourth term is representative of the

magnitude of λ̂. As a consequence, we observe that the objective in Eq. (5) can be restated

in game theoretic parlance as the objective of improving the performance of the classifier by

reducing the overall error while increasing the amount of sparsity in the model. Note that

learning cost and the sparsity of the DNN are tied through the second term. It follows that

with an increase in the magnitude of the sparsity parameters the cost increases. Similarly,

with an reduction in the cost value, the sparsity parameters are effected.
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Remark 31 The two player game introduced here may not be restricted to the choice of

penalty parameters for the L1. The same setup can be used to solve for other user-defined

parameters in any optimization. For example, the parameters of γi in the proposed learning

regime can also be introduced through the setup described above.

In contrast with most traditional approaches where the sparsity parameters must be cho-

sen using the practitioners experience, grid-search or cross validation, the parameters are

obtained through the learning process. Finally, optimization problem in Eq. (3) can be

restated as follows

(θ̂
∗
, Ẑ, λ̂

∗
) = arg min

θ̂,Ẑ∈Ω,ΩZ

arg max
λ̂∈Ωλ

H( ŷ; θ̂,Z,λ). (5)

whereΩ,ΩZ,Ωλ are the parameter space for the different variables and Ẑ = [z2 · · · zd]. The

stationary conditions for the optimization can be written as

Z∗ = arg min H

θ̂
∗
= arg min H,

λ∗ = arg max H,

which results in the parameter updates at each iteration k using gradient descent as

Z(k + 1) = Z(k) − η2∆ZH

θ̂(k + 1) = θ̂(k) − η1∆θ̂H,

λ̂(k + 1) = λ̂(k) + η3∆λ̂H,

where η1, η2, η3 are the specified learning rate.

Once the optimization problem has been solved and the optimum DNN has been

obtained, one generally, applies the DNN model on new data. Note that, at the end of the

optimization process, the additional variables mimic the output at the hidden layers in the

DNN such that all the constraints are satisfied.
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Since, this case is equivalent to the case when the additional variables are not

present, one can replace all the variables with a traditional DNN, where the weights are

frozen at the optimized values. This replacement would just imply that all the constraints

are satisfied. A pictorial representation of the proposed approach is shown in Figure 1.

In the next section, some key points about the methodology are analyzed.

3.3. ANALYSIS

One may observe that the proposed formulation in Eq. (5) represents a mixed

strategy two player game. Therefore, a saddle point solution is not guaranteed and it must

be demonstrated [31]. To this end, we would first show that H satisfies the conditions under

which a saddle point solution is possible. We demonstrate that the conditions are true even

when the number of layers in the neural network as well as the number of neurons at every

layer tend to infinity. This is shown in Lemma 7. Next, under the strategies chosen by

the two players, it will be shown in Theorem 4 that proposed formulation would achieve

Nash equilibrium. With a little abuse of notation, we will redefine θ̂ to include all the Ẑ .

Therefore, (λ̂, θ̂, Ẑ) = (λ̂, θ̂) and whenever we state parameters of the neural networks, we

mean the both the weights and the additional variables.

Before stating the results, we will first choose cross entropy as the loss function and

choose log barrier for penalty. Thus, we will rewrite the complete cost function as

H = H( ŷ; θ̂,Z,λ) = E[yT log( ŷ(z(d)))−1] +

d∑
i=1

λi |Ŵ
(i)
|

+

d∑
i=2

γilog(1 −
(z(i) − Ŵ

(i)
f (i−1)(z(i−1)))

γi
)−1 −

d∑
i=1

Γ
2λ2

i .

With this setup, we introduce our first lemma as follows.
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Lemma 7 Let H be defined as shown in Eq. (5) and let the solution pair be given as (λ∗,θ∗)

and let the parameter set be given as (Ωλ∗,Ω). Consider the case when the number of layers

in the DNN tend to infinity and let
∑d

i=2 γi = L and
∑d

i=1 λi = L where L ∈ R. It follows that

H is convex with respect to the parameters of the neural network. Similarly, H is concave

with respect to the sparsity parameters. Proof : See Appendix

With the above result being true, it can be shown the proposed formulation can

achieve a saddle point.

Theorem 4 Let Lemma 7 be valid and assume that the parameters sets are compact, it is

concluded that the two player zero-sum game represented by H has a saddle point denoted

by (λ∗,θ∗). Proof: See Appendix.

The following observations can now bemade as a consequence of the above theorem.

Remark 32 1. The conditions that the number of layers in the DNN and the number

of neurons in each layer tends to infinity reflects the scenario when the number of

dimensions are so large that one needs an exceptionally large DNN to analyze it.

2. Even though, the result above is demonstrated for cross entropy cost function, it is

true for any function that is convex which includes the least square cost function.

3. The proof also depends on the convexity of the norm in large dimensions. It has been

shown in the literature [30] that convex functions hold convexity in high dimensions.

See [30] and the references therein.

4. The compactness of the parameter set is important for the validity of Theorem 4 and

Lemma 7. In the context of a game it implies that there are finite number of strategies

for the two players to take.

By introducing additional variables, the proposed approach lends itself to paral-

lelization because all the layers in the DNN are not connected as is traditional with deep

neural networks. Furthermore because the additional variables Z replicate the data at the



180

hidden layers in the DNN. The convergence of the Zs before the weight updates is important

and the learning rate for updating Z is chosen to be larger than the learning rule for the

weights.

Remark 33 1. Note that the variable z(d) acts as a proxy for the top-most layer. Due

to the presence of this additional variables. All the information required to update

weights at any layer may be estimated locally. Therefore, the learning of weights at

any layer does not depend on anything other than the current layer.

2. Furthermore, the number of updates for the additional variables can also be chosen.

A thumb rule is to update the Z at least 10 times prior to the update of the weights.

This is to ensure that the additional variables converge faster than the weights.

Algorithm 7 Algorithm For the Proposed Approach
1: for each epoch k do
2: Input: X
3: for each batch in X do
4: Compute Cost H
5: for j = 1→ T do
6: Expectation Step:

Ẑ(k + 1, j + 1) = Ẑ(k + 1, j) − η1∆Ẑ(k+1, j)H

7: end for
8: Learning Step:

θ̂(k + 1) = θ̂(k) − η2∆θ̂(k)H

λ̂(k + 1) = λ̂(k) + η3∆λ̂(k)H

9: end for
10: end for

These benefits demonstrate the possibility of a parallel implementation, one such

algorithm is presented in the next subsection.

3.4. PARALLEL IMPLEMENTATION

Traditionally, weight updates at any particular layer requires the use of all the layers

above it. However, such dependency does not exist with the proposed approach. One can

observe this by decomposing the total cost into one at each layer. To achieve this layer wise
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cost, one may rewrite Eq. (6) as

H = E[yT log( ŷ(z(d)))−1]

+

[
γdlog(1 −

(z(d) − Ŵ
(d)

f (d)(z(d−1)))

γd
)−1

+λd |Ŵ
(d)
| − Γ2λ2

d

]
+

[
γd−1log(1 −

(z(d−1) − Ŵ
(d−1)

f (d−2)(z(d−2)))

γd−1
)−1

+λd−1 |Ŵ
(d−1)
| − Γ2λ2

d−1

]
+ · · ·

+

[
γ2log(1 −

(z(2) − Ŵ
(2)

f (1)(z(1)))
γ2

)−1

+λ2 |Ŵ
(2)
| − Γ2λ2

2λ1

+|Ŵ
(1)
| − Γ2λ2

1

]
.

Note that the first three terms in Eq. (6) involves terms with z(d) and Ŵ (d) and forms the cost

function for the top-most layer that is H(d). Similarly, the last three terms are involved with

variables z(1), Ŵ (2) and Ŵ (1) that are combined to get the cost H(1). With these observation,
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the series of layer-wise costs can be obtained from Eq. (6) as

H(i) =



[
E[yT log( ŷ(z(d)))−1]

+γdlog(1 − (z
(d)−Ŵ

(d)
f (d)(z(d−1)))
γd

)−1

+λd |Ŵ
(d)
| − Γ2λ2

d

]
i = d

[
+ γi+1log(1 − (z

(i+1)−Ŵ
(i+1)

f (i)(z(i)))
γi+1

)−1

+γilog(1 − (z
(i)−Ŵ

(i)
f (i−1)(z(i−1)))
γi

)−1

λi |Ŵ
(i)
| − Γ2λi

2

]
i < d

[
γ2log(1 − (z

(2)−Ŵ
(2)

f (1)(z(1)))
γ2

)−1

+λ2 |Ŵ
(2)
| − Γ2λ2

2

+λ1 |Ŵ
(1)
| − Γ2λ2

1

]
i = 1.

It can be observed that the derivatives for the variables z(i) and Ŵ
(i) depend on the

cost H(i) and thus the updates for these variables can be achieved from these individual

cost. With these features, we can design an algorithm for parallel implementation where

the parallelization is across the number of layers in the DNN as well as the data-set. This

algorithm is described as follows.

Using the concept of multi-processing, the proposed learning regime can be imple-

mented in a parallel fashion. Consider therefore that every hidden layer in the DNN or a

group of such hidden layers in the DNN are combined to form a process and each process

shall maintain its own set of variables.



183

Let j denotes a batch of data in the data-set X and let i denote a process and

has variables Z(i) = [z(i,l)( j), l = 1, · · · , L], Ŵ(i)
= [Ŵ

(i,l)
( j), l = 1, · · · , L] and Λ̂(i) =

[λ̂
(i,l)
( j), l = 1, · · · , L]. Here, L refers to the number of layers in a group. Learning

is performed by computing gradients ∆Ẑ(i)H
(i),∆Ŵ(i)H(i) respectively on the local cost

denoted as H(i).

The algorithm is given in Algorithm 8. Observe that for each process i, the variables

Ẑ(i−1)
( j), Ŵ(i−1)

( j) and Λ̂(i−1)
( j) are inputs from the process i − 1. Next, the variables

Ẑ(i+1)
( j − 1), Ŵ(i+1)

( j − 1) and Λ̂(i+1)
( j − 1), are obtained from the process i + 1. The

resultant variables are obtained as Ẑ(i−1)
( j), Ŵ(i−1)

( j) and Λ̂(i−1)
( j) and these variables

represent the updated values from the current batch of data. As a consequence, every

process results in the variables Ẑ(i)( j), Ŵ(i)
( j) and Λ̂(i)( j) as outputs.

Note from the algorithm that when the process (i) is being optimized, the processes

(i − 1) can update itself on the next batch of data. This presents a unique algorithm to

implement this methodology on streaming data with efficient parallelization over data-

batches. Since a process is defined for each layer/ a group of layers in the DNN, we can

achieve parallelization across different layers in the DNN.

Finally, the advantages and disadvantages of the proposed work are summarized

Remark 34 The following advantages are achieved due to the proposed methodology

1. In contrast with [24], the issue of vanishing gradients is not present because a cost

function is obtained for each layer.

2. In contrast with other distributed learning mechanisms [22], the cost of communi-

cation between different nodes is reduced significantly less compared to [22]. Fur-

thermore, in contrast with [21, 20], the proposed approach is designed to parallelize

across different layers in the DNN as well as different data-samples.
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3. As demonstrated before in Lemma1, the redefined cost function is convex and therefore

enjoys the theoretical support of convex optimization theory. As a result, a highly

non-convex nested problem has been converted into a convex optimization problem

that can be solved with theoretical guarantees.

4. The major disadvantage of the proposed approach is that these use of these additional

variables introduce a computational load. However, with an appropriate parallelized

algorithm, the impact of such a load can be minimized. One such algorithm was

introduced in this paper.

5. One big disadvantage is that due to use of these additional variables, we have

introduced some extra tuning parameters that must be chosen for optimality. However,

certain thumb rules for the choice of these parameters can be summarized and are

shown in Remark 33.

Finally, a set of algorithms for implementation purposed are given in Algorithm 7

and 8. The results are provided next.

Algorithm 8 Parallel implementation for DNN
1: for each process i do
2: for each epoch k do
3: Input: X
4: for each batch j in X do
5: Input: Ẑ(i−1)

( j), Ŵ(i−1)
( j)

6: Input: Ẑ(i+1)
( j − 1), Ŵ(i+1)

( j − 1)
7: Compute Local Cost H (i)
8: Expectation Step:
9: for m = 1→ K do

Ẑ(i)( j) = Ẑ(i)( j − 1) − η2∆Ẑ(i)
H (i)

10: end for
11: Learning Step:

Ŵ(i)
( j) = Ŵ(i)

( j − 1) − η1∆Ŵ(i)H (i)

Λ̂i( j) = Λ̂i( j − 1) − η3∆Λ̂i
H (i)

12: end for
13: end for
14: end for
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4. RESULT AND DISCUSSION

The details of all the data-sets are illustrated below:

1. Arcene data-set, is a small data-set of only 200 data points with twenty thousand

dimensions that is used for a two-class classification of cancer vs normal from mass-

spectrometric data. The data-set has been divided into 50% split for training and

testing, i.e. 100 points each.

2. CIFAR-10 contains a total of 60,000 colored, 32X32 dimensional images for 10

classes, with 6,000 images for each class. The data-set has been split into 50,000

images for training and 10,000 images for testing.

3. Gas Sensor Array This archive contains 239000 measurements from 16 chemical

sensors utilized in simulations for drift compensation in a discrimination task of 8

gases at various levels of concentrations. A total of 72 features are extracted from

this data-set and presents and 8 class discrimination problem.

4. Gisette data-set is a 7,000 data-points data-set, used for a two-class hand-written

digits classification, to differentiate the digits 4 and 9. The training set contains

6000 data-points with five thousand dimensions, while testing set contains 1000

data-points.

5. Madelon is a data-set of 2600 data-points with 500 dimensions introduced in the

NIPS 2003 feature selection challenge. It is used for two-class classification and has

an approximate split of 80% for training and rest for testing.

6. MNIST is a data-set composed of 28X28 gray-scale images of handwritten digits.

The data-set is composed of 55,000 images for training and 10,000 images for testing,

i.e about 82% of data-set is used for training and 18% for testing.



186

7. NotMNIST data-set is similar to the MNIST data-set, but instead of the digits, the 10

classification is for the English letters A-J. The data-set contains 22,000 data-points

and a split of 20,000 points in the training and rest in testing.

8. Rolling Two roller bearings were installed on a CNC machine that was operated at

1600 rpm. Vibration and temperature data from both bearings were sampled and

recorded continuously at a rate of 10 kHz and eleven features were extracted. This

data-set presents a four class fault diagnostics problem.

9. Sensorless is a large data-set whose features have been extracted from electric current

drive signals, for a 11 class classification of the different conditions experienced in it.

The training-testing split is 55-45%.

First, the effect of the game on deciding sparsity is discussed.

4.1. PERFORMANCE ANALYSIS - SPARSITY CONTROL

All results in this section are summarized using mean accuracy and standard devia-

tion over hundred iterations. For the purpose of analysis, all nonlinear transformations are

chosen to be tanh. The update steps for Z is chosen as 150. The learning rates are chosen

as 0.001 and the results are tabulated in Table 2. First, accuracies for the scenario with

sparsity regularization is compared with the scenario when no sparsity regularization. With

Table 2. Accuracies for the different data-sets with the proposed method (with sparsity
control) and method without sparsity control. The last two column represent the results
with and without the Z’s

Data-set With Without Without With
Regularization Regularization Z Z

Arcene 0.86 0.73 84 86
Dexter 0.99 0.69 98 99
Gisette 0.99 0.71 97 99
Madelon 0.85 0.79 85 85
MNIST 0.94 0.89 83 94
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an increase in the number of dimensions in the data, the difference in accuracy increases.

with sparsity regularization performing better. The proposed methodology is optimal when

the total number of data-points is less than the total dimensions in the data as observed from

Arcene, Gisette and Dexter data-set. Next, the sparsity parameters are fixed and the impact

of Zs on the overall approach is tested.

4.2. RESULTS AND DISCUSSION - PARALLEL IMPLEMENTATION

4.2.1. Implementation. We implement the proposed algorithm using the Python

library multiprocessing. In this procedure, two processes are constructed and the total

number of layers in the DNN are divided into these two process such that each process

contains an equal number of layers. The communication between the two processes is

performed through file read and write. This two-process parallel implementation is used

for all the experiments that are discussed in this section.

Table 3. Accuracy’s for different parameter changes

(a)

f (i) Accuracy
tanh 94.19
relu 87.17

sigmoid 74.27

(b)

λ Accuracy
1 94.19
5 93.83
10 94.19
15 94.33
50 94.33

(c)

η1 Accuracy
0.1 22.13
0.01 27.12
0.001 12.47
0.0001 94.19

(d)

η2 Accuracy
0.01 12.61
0.1 94.19
0.5 93.65
0.8 94.17
1 93.74

The performance is first demonstrated on the Mnist data-set.
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Table 4. % accuracies for the various data-sets with the proposed framework and four
different learning algorithms with generalization error in the parenthesis.

Datasets p n F Model Parameters DFA FA SGD EDL
Rolling [32] 11 35000 4 α = 0.01, b = 100, d = 7, hln = 100, 99(0.0001) 99(0.0001) 99(0.6) 99(0.0)

λ = 0.001,nneigh = 2, ρ = 1
Sensorless [33] 48 78000 11 α = 0.01, b = 100, d = 8, hln = 100, 94(0.008) 94(0.008) 95(0.008) 94(0.002)

λ = 0.001,nneigh = 2, ρ = 1
MNIST [34] 784 72000 10 α = 0.01, b = 100, d = 8, hln = 100, 92(0.1) 94(0.2) 95(1) 97(0.6)

λ = 0.001,nneigh = 2, ρ = 1
NotMnist [35] 784 81000 10 α = 0.01, b = 100, d = 9, hln = 100 90(1) 82(1.8) 88(2) 92(0.8)

λ = 0.001,nneigh = 2, ρ = 1
CIFAR10 [36] 3072 50000 10 α = 0.01, b = 100, d = 10, hln = 100 81(7.21) 80(8.00) 82(12.11) 84(8.77)

λ = 0.001,nneigh = 2, ρ = 1
Arcene [37] 10000 100 2 α = 0.01, b = 100, d = 9, hln = 100, λ = 0.001 69(0) 61(0) 51(0) 78(0)

λ = 0.001,nneigh = 2, ρ = 1
Dexter [37] 20000 300 2 α = 0.01, b = 100, d = 8, hln = 100 71(0.7) 77(0.9) 81(1.1) 80(1)

λ = 0.001,nneigh = 2, ρ = 1
Gisette [37] 5000 6000 2 α = 0.01, b = 100, d = 8, hln = 100, 92(0.25) 93(0.21) 91(0.3) 98(0.07)

λ = 0.001, nneigh = 2, ρ = 1

4.2.2. MNIST Data-set. To start with, we will compare the proposed learning

approach with and without the Zs for a varying number of hidden layers in the DNN. For

this experiment, tanh activation functions are used. The learning rates η1 for weights are

set at 0.0001 whereas batch size is chosen as 128. The number of hidden layer neurons and

the learning rate η2 is chosen as 150 and 0.1 respectively. Zs are updated at each step for

100 times. The lambdas are kept fixed for this experimentation and the results are recorded

in Table 2a. With an increase in the number of hidden layers in the DNN, the gap in the

accuracy’s achieved by the two approaches increase. Also, it is observed that the model

with Zs performs significantly better than its counterpart.

Next, a seven hidden layers DNN model is trained for hundred iterations and the

results are illustrated in Table 2a. The training accuracy for the case without the Zs does

not improve beyond 15 epochs. On the other hand, the model with Z achieves an accuracy

of 90% in less than 25 iterations. For the case without the Zs, this behavior is seen due

to vanishing gradient [5] in deep neural networks. The problem does not occur in the

model where Zs are used because the weights at each layer learn locally. To empirically
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(a) (b) (c)

Figure 2. (a) Accuracy’s of both models for 10 different sized hidden layers with tanh
activation, (b) Progression of accuracy’s of both models for 7 hidden layers, (c) Progression
of the Total Cost for the two models

demonstrate this, the progression of the cost function with respect to the number of training

iterations is shown in Figure 2c. The case with the Zs converges faster relative to the case

without the Zs.

Next, the behavior of themethodologywith respect to different parameters is studied.

These results are shown in Table 3, where one parameter is changed while the others are

kept fixed. Table 3a shows the results for different activation functions. Table 3b shows the

comparison for different λ values. Table 3c illustrates the impact of varying η1 while Table

3d illustrates the impact of η2.

It is observed from Table 3c, that when the value of η1 is chosen as 0.1, the learning

is poor because the weights converge faster than the corresponding Zs. This creates a

peculiar problem, since Zs denote the data at output of every layer, the weights learn to

predict based on the values of Z. However, if Zs do not reflect the data before the weights

learn, the weights tend to learn from wrong representation of data thus leading to poor

performance.

From our analysis, it was observed that the best case results were obtained when the

DNN is chosen with four hidden layers containing fifty hidden neurons each. The batch

size is chosen as 128 with tanh activation function. The regularization term α was fixed at

0.00001, whereas the penalty γ is chosen at 10. The learning rates η1 for the weights and η2
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were fixed at 0.0001 and 0.1 respectively. For each epoch, Zs were updated 100 times. The

best case test accuracy achieved for the Mnist data-set at this parameter setting was 94.32%.

Therefore, these parameters are used from here on for analysis on the Mnist data-set.

Next, the performance is analyzed on the problem of classification

Table 5. Parameters of the different models used in this paper.

Architecture Parameters
CNN nconv = 2, nlayers = 2,

filter size = 5, pool shape = (3,3),
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

MLNN d = 7, hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

SAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

DAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

4.3. CLASSIFICATION

Table 6. % accuracies for the various data-sets with the proposed framework and four
different archoitectures with generalization error in the parenthesis.

Datasets p n F MLNN CNN SAE DAE
Rolling 11 35000 4 99(0.0001) 99(0.0001) 99(0.6) 99(0.0)

Sensorless 48 78000 11 94(0.008) 94(0.008) 95(0.008) 94(0.002)
MNIST 784 72000 10 94(0.2) 95(1) 97(0.6) 97(0.6)
NotMnist 784 81000 10 88(2) 92(0.8) 97(0.6) 97(0.6)
CIFAR10 3072 50000 10 81(7.21) 80(8.00) 82(12.11) 84(8.77)
Arcene 10000 100 2 69(0) 61(0) 51(0) 78(0)
Dexter 20000 300 2 71(0.7) 77(0.9) 81(1.1) 80(1)
Gisette 5000 6000 2 92(0.25) 93(0.21) 91(0.3) 98(0.07)
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Next, we analyzed the performance of the proposedmodel on the data-setsmentioned

in Table 6 and these results are presented in Table 6. To demonstrate the ability of the

methodology to work with different architectures, we test CNN, DAE, SAE and MLNN

where the parameters are summarized in 5.

The ability of the model to handle large complex problems by breaking it into

simpler sub-problems and thus achieving faster learning is well illustrated by the testing

accuracy results for the large data-sets such as Gas, Rolling and mnist, where the model

has a very high testing accuracy (more than 90%). Since the data-sets Gas and Rolling are

larger than the mnist data-set, hence for faster learning of the large data, the value of η2 for

these two data-sets was set higher than that for mnist data-set.

Next, Four learning paradigms, namely DFA (Direct Feedback Alignment) [12],

EDL (Error Driven Learning) [15], FA (Feedback Alignment) [38] and EDL (Error-driven

Learning) [15], are tested with a total of ten data-sets. For all the learning paradigms, a

multilayer NNwith 10 hidden lauers is utilized. The results alongwith themodel parameters

are given in Table 4. Consistent performance is observed across data-sets with the proposed

methodology and the results on large dimensional data-sets is very good too as observed

from the results.

5. CONCLUSION

In this paper, sparsity is estimated as par of the learning problem in a structured

process and efficient learning is observed when high dimensional data-sets are utilized. The

proposed optimization approach achieves similar results with or without the additional vari-

ables. However, the use of additional variables improves performance in deep architectures.

Parallelization and scalability is observed because a mathematical construct is used to break

an optimization problem. A unique algorithm is used to demonstrate parallelization among

the layers in the DNN as well as data-batches.
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Overall, computational and analytical benefits are observed with the proposed

methodology. Furthermore, the issue of incidental endogeneity will be addressed in the

future.
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APPENDIX

0.0.0.1. Proof:. [Proof of Lemma 7] We rewrite the final three terms from the cost

function in Eq. (6) as

H1 = E[yT log( ŷ(z(d)))−1] +

d∑
i=1

λiP(Ŵ
(i)
)

+

d∑
i=2

γilog(1 −
(z(i) − Ŵ

(i)
f (i−1)(z(i−1)))

γi
)−1

which can be rewritten as

H1 = −E[yT log( ŷ(z(d)))] +
d∑

i=1
λi |Ŵ

(i)
|

−

d∑
i=2

γilog(1 −
(z(i) − Ŵ

(i)
f (i−1)(z(i−1)))

γi
)−1

Observe that the first term in the cost function is the negative log of the error with respect

to the variable z(d) and the weight Ŵ (d). Furthermore, Let Ŵ (i),∀i not be dependent on

the original function due to a functional nesting. The second term is also a log function

depending for each layer i is dependent on Ŵ
(i) as L2. Let Ŵ

(i) depend on the log function

without any nesting. Although, log is a concave function , negative log function is convex
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since negative of a concave function is convex [29]. However, the covexity only holds

if there is no functional nesting within the variables. With these observations, it is clear

that negative log function is inherently convex and is dependent on variables that have no

functional nesting. Therefore, the first two terms are convex with respect to Ŵ (d).

Furthermore, since |Ŵ (i) | is a convex function with respect to the weights, we have

a sum of three terms that are convex with respect to the weights of the DNN. Moreover, the

convexity is also implied with respect to the additional variables.

Next, consider the case when both d and the number of neurons in each layers tends

to infinity and the formulation is interpreted as

H1 = lim
d→∞

E[yT log( ŷ(z(d)))−1] +

d∑
i=1

λi |Ŵ
(i)
|

+

d∑
i=2

γilog(1 −
(z(i) − Ŵ

(i)
f (i−1)(z(i−1)))

γi
)−1

Let
∑d

i=2 γi = L and let the convexity of log functions extends to large dimensions [30].

With these observations, it follows that H1 for all the layers in the neural networks are

linear combination of convex function that are independently convex [39] with respect to

the parameters of the neural network.

Next, consider the fourth term in the cost function as

H2 = −Γ
2‖λ̂‖2. (6)

Since norm is a convex function and the convexity extends to the case when the size of

‖λ̂‖ → ∞, it follows following the principles from earlier, H2 is a concave function as −H2

is convex.

Note that the overall cost function is given as H1 + H2. Observe that H1 is only

dependent on the parameters of the neural network and H0 depends purely on the penalty

parameters. The second derivative of the overall cost function with respect to θ̂ reveals
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a convex cost function because the term due to the penalty parameters would result in a

zero. Similarly, the second derivative of the overall cost function with respect to λ̂ reveals

a concave cost function. It follows that the overall cost function is convex relative to the

parameters of the neural network while it is concave with respect to the penalty parameters.

�

0.0.0.2. Proof:. [Proof of Theorem 4] The proof follows directly as a consequence

of Lemma 7. The logic follows from the fact that λ̂ is a maximizer for the cost function [40]

due to concavity of the cost function. Similarly, it follows that θ∗ is a minimizer for the cost

function due to convexity with respect to θ̂ . Thus, invoking the minimax theorem in [41] it

can be seen that (λ∗,θ∗) is a saddle point solution to the game and the game admits a Nash

equilibrium. �
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SECTION

2. CONCLUSIONS AND FUTUREWORK

In summary, a two-step approach to classification is considered in this dissertation

where the first step is dimension reduction and the second step is classification. Each step

is designed in such a way that the main goal is to address the challenges introduced by

the high dimensionality and volume of big-data. In the first two papers, novel multi-step

dimension-reduction approaches are introduced where it is demonstrated that the challenges

such as noise, spurious correlation and heterogeneity are well addressed.

In the second part of the dissertation we focus on deep neural network-based clas-

sification. Here, we introduce novel learning framework where challenges such as gener-

alization error, vanishing gradients and unsatisfactory solutions due to non-convexity of

optimization problem are addressed. The efficiency of the overall two-step framework for

big-data analysis is demonstrated both theoretically and in simulation. The conclusions for

each paper is presented next.

2.1. CONCLUSIONS

In the first paper, a generalized distancemeasurewith a novel hierarchical dimension-

reduction approach (GDM-HDR) was introduced. GDM-HDR appears to outperform Ma-

halanobis distance (MD) when noisy/redundant dimensions are present in the data. Due to

the use of L1 norm in GDM-HDR, distance concentration was not observed. Computational

complexity for GDM-HDR was linear which appears to be an improvement over the cubic

complexity observed in MD. Because dependencies are calculated in groups, HDR is able

to satisfy the rank condition even when the number of dimensions in the data far exceeds the
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number of data-points thus allowing efficient dimension reduction. HDR is able to capture

more than 90% of the information from the data. Overall, HDR appears to outperform

standard dimension-reduction approaches in large dimensional scenarios. HDR fails to

perform properly, when nonlinear relationships are present in the data.

In the second paper, a multi-step dimension-reduction approach (NDR) was pro-

posed to address nonlinear relationships, heterogeneity and noisy dimensions. Because an

information-loss criterion was introduced as a user-defined parameter in NDR, the proposed

methodology was able to dynamically determine the number of dimensions to be extracted

from the data in contrast with standard dimension reduction procedures and HDR. Novel

aggregation methods allowed the methodology to process data in batches while allowing

complete exploration of the data distribution. Due to the use of distance covariance, NDR

was able to capture nonlinear relationships from the data while exhibiting 24% improve-

ment over PCA for the sensorless drive diagnostics data-set. Since, NDR and HDR do not

obtain feedback from the detection methodology both suffer from ineffectiveness in very

complicated data-sets, such as CiFAR-10.

In the third paper, a classifier design is presented where synthetic distortions are

utilized to approximate the impact of noisy data. Due to this, the proposed approach

was able to better compensate for data distortions relative to SGD. Careful selection of

the magnitude of the perturbation is necessary because large perturbations deteriorate the

performance of the proposed framework significantly. The direct use of the overall error

signal in the learning process appears to mitigate the vanishing gradient issue even when

sigmoid and tanh activation functions were used. The proposed framework combined with

the proposed learning regime appears to outperform other approaches such as DFA and FA

in all of the data-sets under analysis and a 8% improvement is observed in simulation.

In the fourth paper, a two player game was designed to alleviate the challenge

from the third paper where the exact measure of perturbations need not be premeditated. A

generic distortionmodelwas designed to introduce distortions in the learning problemwhich
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increases the applicability of the proposed approach. A two player game was developed

where the optimal compensation for the classifier and the corresponding optimal distortion

was obtained as part of the solution. Due to this the proposed approach is more resilient to

distribution changes. Overall, the proposed approach appears to provide a 5% improvement

in generalization error and a 10% improvement in accuracy over SGD in the presence of

domain shift.

Finally, in the last paper, sparsity is estimated as part of the learning problem in a

structured process and efficient learning is observed when high dimensional data-sets are

utilized. The proposed L1 regularized optimization approach achieves similar results with or

without the additional variables which supports our theoretical results. However, the use of

additional variables improves performance in deep architectures where a 15% improvement

is demonstrated over gradient descent-based approaches during the training process of a ten

layer neural network. Parallelization and scalability is observed because a mathematical

construct is used to break an optimization problem where parallelization among the layers

in the DNN as well as data-batches is demonstrated. A 200% computational improvement

is demonstrated.

Overall, computational and analytical benefits are observed with the proposed suite

of methodologies for big-data in the presence of big-data challenges. Some additional

perspectives on the dissertation are introduced next.

2.2. FUTUREWORK

The requirement of an off-line learning phase stems from the assumption that the

data-distribution in the learning phase and the testing phase are similar. However, this

assumption is not realistic and typically, in practical big-data scenarios non-stationarity of

data-distribution is observed. To incorporate this phenomenon in the classifier, a combi-
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nation of online and offline framework must be designed where the learning problem must

be redefined to include information about distribution changes. Since these distribution

changes are typically large and fast, this is a very challenging problem.

This dissertation could also be extended to simultaneously analyze different types

of data-set such as speech, images, numeric, etc, where the idea is to make a decision taking

into account observations provided by different data-types. To enable such an analysis, one

would have to design a basis transformation, such as wavelet transformation, that converts

all of these data-types into one common domain and then learn from the common domain.

Since, all of these observations are representative of the task at hand, one can design a

generative model to learn the probability distribution of the task itself which could then be

used for decision-making.

One the other hand, this dissertation was focused on the application of classification

and the problem of regression/prediction was largely ignored. Therefore, one can consider

the regression and address big-data challenges such as incidental endogeneity and data-

speed which is typically in giga-bytes per second. To handle such problems, one would start

with a stationary and stochastic process where the future values must be predicted based

on the history of the process and then redesign the learning problem to address big-data

challenges. Applications of such an approach would include natural language processing,

fault prognostics, etc.

Finally, throughout the dissertation, we have ignored application specific domain

knowledge in the design of our models. In the future, we can consider applications such as

cyber physical systems, neuroscience, genetics, etc and extend the techniques presented in

this dissertation to incorporate such domain expertise. Since this is a very active field of

research, the scope of such applications is enormous.
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