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ABSTRACT 

Frequency selective surfaces (FSS) are periodic arrays of resonant elements with a 

specific (resonant) reflection/transmission response when illuminated by electromagnetic 

energy. FSSs have been utilized for different applications such as spatial filters, reflectors, 

lenses, radomes, and more recently, as sensors. FSS-based sensors have shown potential 

for numerous applications in structural health monitoring such as crack detection, 

concurrent strain and temperature sensing, normal and shear strain sensing, inspection of 

layered structures, etc. As FSS-based sensing is largely undeveloped, there are many 

critical aspects that must be fully understood before this sensing approach can be fully 

utilized. Therefore, the goal of this research is to advance the science behind FSS-based 

sensing in order to create a platform of knowledge upon which future engineers may utilize 

when designing FSS-based sensors. To this end, the theoretical (assuming infinite 

dimensions and a uniform excitation) FSS response is modeled using a cavity-based 

coupled-mode theory and subsequent quality factor analysis for patch and loop unit cells 

in order to study the effect of unit cell dimension, element geometry and substrate 

properties on the FSS frequency response. In addition, the differences between theoretical 

and practical FSSs are studied in order to obtain design rules and metrics to achieve a 

reliable (localized) sensing measurement by an FSS sensor, thereby improving the sensing 

resolution (from the dimensions of the sensor to smaller “cells” within the sensor). Then, 

to achieve the maximum resolution of the FSS sensor, an approach is presented to 

determine the optimal sensor cell size. Additionally, a method using synthetic 

beamforming is presented to obtain an adaptive resolution for FSS sensing.  
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1. INTRODUCTION 

1.1. FREQUENCY SELECTIVE SURFACES 

Frequency selective surfaces (FSSs) are periodic arrays of conductive elements that 

cause a particular resonant reflection or transmission response when illuminated with high 

frequency electromagnetic energy. A few example elements are shown in Figure 1.1. The 

FSS frequency response is dependent upon element geometry, inter-element spacing, 

substrate properties (permittivity, loss tangent, and thickness) and the local environment 

[1]. FSSs have historically been used as high frequency filters [2]-[3], reflectors [1], lenses 

[4], radomes [5]-[6], and absorbers [7]-[10]. More recently, they have also found 

application as sensors [3-12], often for structural health monitoring (SHM) needs. 

FSSs are uniquely well-suited as a wireless sensing solution due to their remote 

interrogation, as illustrated in Figure 1.2. As mentioned above and shown in Figure 1.1, 

FSSs can be designed to operate in reflection or transmission mode. However, from a 

practical point-of-view for sensing applications, FSS sensors designed in reflection mode 

are desirable, as they require a one-sided interrogation (as opposed to needing access to 

both sides of a structure for inspection). This is also beneficial from a signal detection 

point-of-view, since the structure under test does not interact with a signal reflected by the 

FSS but will affect (and may attenuate) that signal if it must travel through the structure 

prior to detection.  

 

Figure 1.1. Example FSS elements. 
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Figure 1.2. FSS sensor with an external illumination. 

1.2. FSS-BASED SENSING APPLICATIONS 

As a sensor, changes in the frequency response of an FSS are monitored and related 

to parameters such as strain, temperature, etc. Therefore, geometrical or physical changes 

may affect the frequency response of FSS in different ways including: 1) causing a shift in 

the resonant frequency of the FSS sensor; 2) varying the amplitude of the 

reflection/transmission coefficient at the resonance (i.e., affecting resonant depth); and 3) 

varying the quality factor (Q-factor) in terms of the width and depth of the frequency 

response at resonance [11].  

Recent examples of FSS sensing include crack detection [12]-[13], strain sensing 

[11], [14]-[17], inspection of layered structures [18], material characterization [19], paper 

thickness and humidity detection [20], concurrent temperature and strain sensing [17], etc. 

More specifically, in [12], a cross dipole FSS is used for crack detection by monitoring the 

frequency shift of the transmission response the sensor. It is shown that when the crack 

occurs on the cross dipole in a direction perpendicular to the interrogating polarization, it 

Illumination source 

Interrogating signal 

Reflected signal 

Transmitted signal 

FSS sensor 
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causes a frequency shift. However, when the crack direction is parallel to the interrogation 

polarization, the frequency response does not change. Another example of crack detection 

using frequency selective surface on a paper substrate is shown in [13] for the assessment 

of concrete structures.   

FSS-based sensors have also been applied as strain sensors for normal and shear 

strain [14]. In this work, a loaded tripole-based FSS is used. Normal strain sensing is 

achieved using the reflection response of the FSS when the interrogating polarization is 

perpendicular to the direction of strain. In addition, it is shown that as the shear strain 

increases, the cross-polarization level (i.e., the polarization of the received and incident 

electric fields are perpendicular) increases. Another example of strain sensing is found in 

[15], which features a loop-based FSS and is embedded in a multi-layer bridge column.  

FSS sensors  can also be useful for inspection of changes in layered structures such 

as detection of disbond or delamination. For example, in [18] an FSS sensor is located 

behind the layer, which may be delaminated. Then, the effect of delamination thickness is 

studied as an additional air layer. It is shown that delamination changes the resonant 

frequency and depth of the FSS sensor response. Multiple sensing parameters can also be 

concurrently sensed via FSS sensing technology through proper sensor design and 

interrogation. For example, in [17], a dual band FSS sensor is presented using two cross 

loops that provide two distinct resonances in reflection mode. This sensor is capable of 

concurrent temperature and unidirectional strain measurement when the interrogating 

polarization is parallel to the strain direction.  

FSS-based sensors have also found applications in terahertz (THz) regime. As an 

example, in [21] a symmetric split ring resonator is used for sensing small amounts of 
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chemical and biochemical materials. Specifically, the effect of a small film at the gap of 

the split ring element (making the split ring asymmetric) is studied and is shown to provide 

a high sensitivity to the presence of chemical materials. Another example of a THz FSS 

sensor is an integrated sensor using a THz FSS and an optical fiber [20]. Here, the FSS is 

interrogated by a THz subwavelength optical fiber for monitoring the optical properties of 

non-transparent films when the film is in contact with the sensor. Hence, this sensor is 

capable of monitoring multiple parameters such as paper thickness and humidity content. 

As mentioned, FSS-based sensors have shown application as a wireless and passive 

sensor. However, adding active components such as diodes to the FSS can be 

advantageous. As such, in [16], an active FSS for strain sensing is introduced. This FSS 

sensor is a two-layer FSS (with two resonant frequencies) featuring cross dipoles (lower 

resonance) and loop elements (higher resonance). The loop elements are electrically 

connected by PIN diodes. The upper resonance is used for strain sensing and is modulated 

between a visible (detectable) and invisible (i.e. does not exist) state. This modulated 

capability has two practical ramifications: 1) the ability to clearly delineate the sensing 

resonant frequency from any other (static) resonant frequencies or noise; and 2) the ability 

to make differential measurements in order to remove other reflections that may be present 

in both states of the measured signal. In this way, any static reflections that are common to 

both states will be effectively removed from the sensing data. The lower resonance can be 

used for energy harvesting to power the active element. 

Another similar area of study is metamaterial-based sensors. Metamaterials are 

synthetic composite materials that are similar to FSSs when used within an array of 

elements and externally illuminated. An example of metamaterial-based sensors is the 
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double split ring resonator-based metamaterial for strain sensing [22], and a multi-

functional metamaterial sensor for sensing of moisture, density and temperature [23]. In 

addition, a metamaterial-based sensor for dual axis strain sensing in the terahertz regime is 

presented in [24].  

1.3. RESEARCH OBJECTIVE 

As explained, FSS-based sensors have shown the potential for sensing applications. 

Usually, FSSs are analyzed assuming an infinite number of unit cells and a uniform plane 

wave excitation. However, in practice, an FSS has a finite number of unit cells and is 

illuminated with a spatially varying electric field pattern from an antenna such as a horn 

[25]. In this case, there are three factors that affect the deviation of the finite FSS’s response 

from the ideal (infinite array with plane wave excitation) case: 1) the non-uniform 

excitation, 2) the effect of edges (truncation from an infinite array), and 3) the number of 

FSS unit cells. Hence, it is very important to understand these factors as they relate to 

differences between the infinite FSS response and finite FSS response. Most of the 

literature that has been published (and discussed above [12]-[19]) uses the theoretical FSS 

response to show the FSS sensor performance. However, the practical FSS response will 

deviate from the theoretical FSS response with and without the presence of a change on 

the sensor. Another issue of using theoretical FSS analysis for sensing applications is that, 

often, a localized measurement is desired. For example, the presence of a crack will not 

occur on all FSS elements at the same time, as is assumed in [12]-[13] for crack detection. 

Another practical concern is the resolution of the sensor. FSSs are traditionally used as a 

large array of elements and illuminated in their entirety. However, this results in a low 
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sensing resolution (i.e., the dimensions of the sensor itself). Hence, in this work, the 

resolution of FSS-based sensors is studied based on a localized illumination pattern. In this 

way, a large FSS sensor can be considered as consisting of many sensor cells, which can 

be illuminated individually to distinguish smaller changes on the sensor and hence improve 

the resolution.  

To address these challenges, this dissertation focuses on several aspects of FSS-

based sensing. First, the theoretical FSS response is studied through reflection coefficient 

modeling of two unit cells (i.e. patch and loop-based elements) using a cavity-based 

coupled resonator approach and quality factor analysis. In this way, the effect of design 

parameters such as element dimensions, inter-element spacing and substrate properties 

(permittivity, loss tangent, and thickness) on the frequency response of the FSS are studied, 

including the effect of fringing fields. The analytical model of [26] is modified for the patch 

unit cell, while a new model for the rectangular loop unit cell is proposed. Both models are 

in good agreement with full wave simulation for a wide range of substrate properties. 

Second, to evaluate the frequency response of an FSS sensor, three performance metrics ( 

resonant frequency, resonant depth and quality factor) are introduced for the patch- and 

loop-based unit cells. In this study, the effect of different substrate properties on the FSS 

response is quantified in order to achieve a desired sensor response by a proper selection 

of the substrate and element shape. Third, the concept of resolution for an FSS-based 

sensor, which is introduced in [27] and based on the footprint of the illumination pattern 

on the sensor, is improved by an optimization approach to determine the optimum 

resolution of FSS-based sensor for a given illumination pattern. This optimization approach 

is based on the aperture efficiency approach in reflect-array antennas [28], and is applied 
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to FSS-based sensing for the first time. It discusses how to determine an illumination 

footprint for localized sensing that is optimized for minimal non-uniformity (similar to 

theoretical FSS excitation) and spill-over energy (energy diverted outside of the sensor 

cell) in order to isolate the sensor cells’ response from that of other cells. Finally, a 

synthetic beamforming approach based on synthetic aperture radar, introduced in [29], is 

extended in order to achieve a high and adaptable resolution for FSS sensors.   

1.4. ORGANIZATION OF THE DISSERTATION 

In this dissertation, the fundamentals of FSS-based sensing are studied in order to 

create a platform for FSS-based sensing development. This investigation is achieved 

through various simulations, measurements, modeling, and analyses, as is delineated below 

in 4 publications.  

In Paper I, in order to find the reflection response of FSS unit cell with periodic 

boundary conditions and Floquet excitation analytically, the coupled resonator approach is 

used with a subseuenty quality factor analysis. This method is used to understand the effect 

of the element geometry, and substrate properties (permittivity, loss tangent, and thickness) 

on the response of infinite FSS with uniform illumination. To this end, the response of the 

infinite FSS is defined in terms of the radiation, conductor and dielectric quality-factors. 

The FSS element is modeled as a cavity resonator at the end of a waveguide transmission 

line and excited with Floquet modes. The effect of fringing fields and the frequency 

dependent behavior of the effective permittivity of the substrate are considered to improve 

the accuracy of the frequency response. A rectangular loop and patch unit cell are 

considered for this study. The fringing fields effect for the loop unit cell is more 
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complicated than that of the patch due to three factors. The first is the existence of the 

electric field null in the middle of the loop. The other two factors are the ratio of the inter-

element spacing to substrate thickness and the ratio of the loop length to the substrate 

thickness, as both are related to fringing field outside or inside the loop, respectively. The 

effect of these factors is discussed on the resonant frequency of the loop. Then, to develop 

a model for the radiation Q-factor of the loop with fringing fields effect, the loop is 

designed for when the coupling inside and outside of the loop is minimal. Finally, the 

reflection coefficient of the unit cells is calculated using the Q-factors, which are in good 

agreement with the full-wave simulation results for a wide range of substrate properties.    

In Paper II, three performance metrics (resonant frequency, resonant depth, and 

quality factor) are proposed to quantify the effect of substrate properties on the sensor 

performance. These metrics are applied to a patch- and loop-based FSS sensor. The results 

show that the patch-based sensor has improved performance when designed using a thinner 

and higher loss substrate, while the loop-based sensor has better performance when a 

substrate with less loss but increased thickness is used. Additionally, measurements are 

also provided for sensors utilizing the low loss substrate. Lastly, the performance of the 

two sensors is shown for strain sensing. The results indicate that the resonant frequency 

shift (when under mechanical loading) of both sensors is largely independent of the 

substrate permittivity.  

In Paper III, the resolution of FSS-based sensors is discussed. When an FSS sensor 

is illuminated in full, the response of the sensor is related to the entire FSS landscape. In 

this way, the resolution of the sensor is equal to the FSS dimensions. However, this limits 

the localized sensing. As such, to improve the achievable resolution, the sensor must be 
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illuminated locally in order for the response to be related to a specific region of the sensor. 

Under this approach, an FSS sensor is considered to consist of many sensor cells. 

Therefore, to quantify the sensor cell efficiency in terms of the illuminating footprint in 

order to obtain the optimum sensor cell size, an analysis approach based on reflectarray 

aperture efficiency is used. As such, by maximizing the sensor cell efficiency, an optimum 

sensor cell size can be determined for a given illuminating footprint. This approach is 

applied to a grounded square loop-based FSS sensor, with simulation and measurement 

results provided. The results indicate that optimal sensor cell dimensions can be determined 

where the total efficiency of a given footprint is maximized. To support this, three different 

sensor cells are considered with the same maximum total efficiency, of which the smallest 

sensor cell gives the highest resolution of ~3 cm × 3 cm.  

In Paper IV, the application of synthetic beamforming is used to achieve an 

adaptable resolution for localized sensing using FSS sensor. To this end, this approach is 

proposed to generate an arbitrary beam shape with a desired footprint. Moreover, the 

illumination and spill-over efficiencies of the synthetic beam are defined, simulated, and 

discussed. The results show that a minimum focal area of 1λ0 × 1λ0 (3×3 unit cells for the 

FSS sensors considered here) is essential to achieve a spill-over efficiency of greater than 

80%, thereby reducing the contribution of other neighboring unit cells on the sensor 

response. In addition, the illumination efficiency when a synthetic beam is utilized for 

illumination is greater than 80% due to the uniformity of the synthetic beam. 

Representative measurements were also performed on a sensor with a simulated strain 

profile.   
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PAPER 

I. PATCH- AND LOOP-BASED FREQUENCY SELECTIVE SURFACE 
MODEL BASED ON THE QUALITY FACTOR APPROACH 

ABSTRACT 

Frequency selective surfaces (FSSs) are periodic arrays of conductive elements 

illuminated with electromagnetic excitation. Theoretically, FSSs are analyzed using a unit 

cell with periodic boundaries and uniform illumination. Another analysis approach is based 

on a coupled-mode theory with Floquet excitation. To this end, the reflection response of 

a conductor-backed rectangular patch and loop-based FSSs is defined in terms of radiation, 

conductor and dielectric quality factors. Within this approach, the effect of fringing fields 

and the frequency-dependent behavior of the effective permittivity of the substrate is 

included. Specifically, the fringing field of the loop unit cell is discussed in the context of 

three factors: 1) the ratio of inter-element spacing to substrate thickness, 2) the ratio of loop 

length to substrate thickness, and 3) excitation mode of the loop (here, TM010 mode ). In 

addition, the effect of fringing fields on the resonant frequency of the FSS is captured 

through and effective perimeter for the loop (and effective length for the patch). Then, a 

model for the radiation Q-factor of the loop is developed that includes the effect of fringing 

fields. The model does not include the effect of mutual coupling between adjacent elements 

or between two arms of the loop. The model for the radiation Q-factor is modified from 

the literature by including the effect of fringing. Finally, the reflection coefficient of both 
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unit cells are calculated using the Q-factor model. The results are in good agreement with 

full-wave simulation results for a wide range of substrate properties. 

1. INTRODUCTION 

Frequency selective surfaces (FSSs) are a planar array of conductive elements that 

can provide a reflection or transmission response when illuminated by an external 

electromagnetic source [1]. The frequency response of FSS is primarily affected by the 

element shape, substrate properties (permittivity, Ɛr, loss tangent, tanδ, and thickness, h), 

and inter-element (edge to edge) spacing (S). FSS have been utilized in many applications 

such as reflectors [1], lenses [2], spatial filters [3]-[4], radomes [5]-[6], absorbers [7]-[10], 

and recently as a wireless sensor [11]-[13]. Also, FSSs are low profile and suitable for 

many applications by providing wireless interrogation in addition to ease of fabrication and 

implementation. On a larger scale, the popularity of FSSs for different applications is due 

to the fact that, by using different element geometries and substrates, the frequency 

response of FSS can be quite diverse and hence tailored to many different applications.   

FSSs are typically analyzed as a unit cell (i.e., the element with a specific 

periodicity on a substrate) with periodic boundaries and  uniform illumination. In this way, 

the structure mimics an infinite array of elements. One such way to accomplish modeling 

of an infinite FSS is through Floquet theory [1], [14]-[15]. Among different methods, 

Floquet theory better approximates the infinite FSS response since it accounts for the effect 

of incident angle [14]-[15]. In [15], an analysis approach is introduced for reflectarray unit 

cell design using a coupled-mode theory including the Floquet modes of excitation to find 
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the reflection coefficient (Г) of a unit cell backed by a conducting plane with periodic 

boundary analytically (in order to remove dependence on full wave simulation). This Г is 

defined in terms of the quality factors for the element radiation, substrate and conductor. In 

the current paper, the Q-factor analysis based on the coupled-mode theory of [15] is applied 

to a rectangular patch and rectangular loop unit cells with a conductor-backed substrate in 

order to better understand the effect of design parameters such as element geometry, unit cell 

dimension, and substrate properties on the reflection coefficient of the infinite FSS. Hence, 

Г of both (infinite) FSS designs with a uniform planewave excitation is analytically 

calculated. Also, to extend the model from [15], the model includes the effect of fringing 

fields and surface waves.  

2. BACKGROUND 

In order to find the reflection coefficient (Γ) of a unit cell (FSS/reflectarray element) 

with a conductor backed substrate, the coupled-resonator approach can be used along with 

the Q-factor analysis [15]. This method is applied to a rectangular patch and a rectangular 

loop unit cell, with both illustrated in Figure 1. The patch and loop unit cells are modeled 

inside a waveguide with dimensions of a×b, which have the same length of W and L, 

respectively (see Figure 1), along the x- and y-directions, on the same substrate with a 

thickness of h. In addition, the width of the loop element is equal to tw and tl along x and y 

directions, respectively. The structure made up of the element, substrate, and conductor-

backing can be modeled as a cavity resonator which is (as part of the FSS unit cell) 

subsequently considered as the load to a waveguide transmission line with a Floquet mode 
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excitation [15]. The two fundamental orthogonal Floquet modes, TE00 and TM00, are 

considered to propagate inside the waveguide transmission line (polarization indicated in 

Figure 1). The incident propagating mode inside the waveguide can be coupled to the 

resonator radiating mode of TM010. The E-field and magnetic current of the patch and loop 

resonator models for the TM010 mode are shown in Figure 2 (neglecting fringing). The E-

field on edges of the patch and the exterior edges of the loop are shown in red, while the 

E-field on the interior edges of the loop are shown in green. Also, the magnetic current 

direction on the long edges is shown in black. As shown, the E-field at / 2y L   (long edge 

of the cavity) is constant for both elements. However, the E-field along the short edges of 

the cavity (modeled below in (7) as a sinusoidal distribution), along the y-direction, is a 

function of y with a minimum of zero at y = 0. In other words, the E-field at the short edges 

(i.e., at / 2x W ) of the cavity is variable. 

 

Figure 1. The unit cell load of a rectangular waveguide transmission line with Floquet 
excitation for (a) patch, and (b) loop unit cells. 
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Figure 2. The electric field and magnetic current of the element using the cavity model 

with TM010 mode for the (a) patch, and (b) loop elements. 

 

The power reflected from the element is reflected in co- and cross-polarized 

portions [15]. Specifically, there are three different reflections defined as follows [15]: 
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where Qrad,TE and Qrad,TM are the radiation Q-factors for TE and TM modes, respectively, f 

is the operating frequency, fr is the resonant frequency of the cavity resonator, and Q0 is 

the parallel combination of conductor loss, cQ h f  and dielectric loss, 1/ tandQ   

as is shown in (4). 

0
c d

c d

Q Q
Q

Q Q



                                                         (4) 

Here, h is the substrate thickness, and µ and σ are the permeability and conductivity 

of the conductor, respectively. Additionally, Qrad is in general formulated as: 

2 S

rad

W
rad r PQ f                                                       (5) 

where Ws and Prad are the stored energy within the cavity resonator and the power radiated 

from the resonator into the excited mode in the waveguide, respectively. To calculate Qrad 

(5) depends on the element geometry, h, unit cell dimensions (i.e. waveguide dimensions), 

and incident angle, there are two steps. First, using the cavity model with an excitation 

mode of TM010 shown in Figure 2, the energy stored between the element and conductive 

plane can be found [15], [16]. Second, Prad is excited by the volume magnetic current 

density on the long edge of the resonator (see Figure 2) and can be determined in terms of 

the excitation wave impedance and the reflected wave amplitude inside of the waveguide 

[18], [20]. Moreover, the Floquet excitation wave impedances are different for TE and TM 

modes [15], [17] (specific equations defined below). Hence, by knowing the Qrad,TE and 

Qrad,TM in addition to Q0, the Г of unit cell can be found. As such, the unit cell with different 

relative values of Qrad,TE and Qrad,TM||Q0, (for TE mode) operates in different coupling 

conditions [13], [15] when 1) Qrad,TE = Qrad,TM||Q0, the resonator is critically coupled to the 

incident wave which means there is no reflection at fr (which is proper for FSS application 
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[13]); 2) Qrad,TE < Qrad,TM||Q0 and the resonator is over-coupled to the incident wave and 

will reflect the incident wave back with a large phase swing of Г (proper for reflectarray 

antenna application [15]); and 3) Qrad,TE > Qrad,TM||Q0, the resonator is under-coupled and 

a majority of the energy is stored inside the resonator and very little signal is reflected.  

In [15], an analytical model for Qrad of a rectangular patch unit cell is presented 

using the Q-factor approach with Floquet excitation. However, this work ignores the effect 

of fringing fields and the analytical results are presented for a thin and high permittivity 

substrate and a given resonant frequency. Hence, in [18], to achieve a more accurate model, 

the effect of fringing fields and effective permittivity (Ɛr,eff) are considered for a square 

patch and a circular loop unit cell when the unit cell is considered inside the waveguide 

with TE10 excitation mode. However, the effect of fringing fields was assumed to be 

uniform for a loop-based unit cell, which is shown below to not be the case. Therefore, in 

this work, the complex Г is modeled using the Q-factor approach with Floquet mode 

excitation (similar to [15]) for rectangular patch and loop unit cells including the effect of 

fringing fields and effective permittivity for a wide range of substrate properties (tanδ, h, 

and Ɛr). Specifically, the model for the rectangular patch unit cell is used from [15] and 

modified with including the fringing fields effect and calculating the resonant frequency 

based on the dimension of the patch element (similar to [18]). Moreover, the resonant 

frequency of the loop unit cell is studied in terms of Ɛr,eff and the effective perimeter of the 

loop by considering fringing fields. Using this definition of the resonant frequency, a more 

accurate definition of Qrad and hence Г(f) are presented for the rectangular loop unit cell. 

The models for both patch and loop elements show good agreement between the analytical 

and full-wave results.  
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3. EFFECT OF FRINGING FIELDS ON RESONANT FREQUENCY 

To begin, the resonant frequency of the patch (frp) and loop (frl) unit cells was 

calculated using two approaches. The first utilizes full wave simulation via CST© 

Microwave Studio, where the unit cells of Figure 1 were simulated with periodic boundary 

conditions and a Floquet excitation. The elements had dimensions of a = 22.86 mm, b = 

10.16 mm, W = 12.5 mm, L = 6.5 mm (same for both patch and loop) and tl = 0.5 mm and 

tw = 0.5 mm for the loop. The unit cells are considered on a substrate with varying h from 

5 mils to 140 mils, and Ɛr of 2, 4.3 and 8, all with tanδ = 0.023. In addition, an analytical 

(closed form solution) approach based on the effective permittivity (Ɛr,eff) and effect of 

fringing fields was also developed, with the results from this model compared to those from 

full wave simulation.  

In the Q-factor approach presented in [15] and here, the unit cell is a microstrip-

based element on a conductor-backed substrate. As is known for microstrip elements, Ɛr,eff 

of the substrate is dependent upon the Ɛr and h of the substrate, and the ratio of the 

microstrip line width to h. In addition, dispersion also plays a role as the operating 

frequency increases. Therefore, the frequency dependent model for Ɛr,eff is used as part of 

the closed form solution of resonant frequency [19]:  
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where Ɛr,eff(f = 0) is the effective permittivity at low frequencies approaching f = 0, and  
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0( 0) / 2t Cf Z f h  , where ZC is the characteristic impedance of the microstrip transmission  

line.  

As mentioned, an element on a substrate backed by a conducting plane can be 

modeled as a resonator cavity. In this way and for the patch and loop elements considered 

here, the E-field between the element and conducting plane (neglecting fringing fields) 

with a TM010 mode excitation (as shown in Figure 2) is polarized in the z-direction as 

follows:  

0 ˆsin
y

E E z
L
 
 
 




                                                (7) 

where E0 is the amplitude of the E-field and L is the length of the patch/loop in the y-

direction (see Figure 1). However, as mentioned above, this model does not include the 

effect of fringing fields [16]. Such an approximation is more accurate for thin substrates 

where the fringing fields are negligible. However, generally speaking, fringing fields may 

have a noticeable effect on FSS performance. As such, the effect of fringing fields 

specifically on the resonant frequency of the FSS will be captured through adjusted (or 

effective) physical dimension(s) of the element.  

3.1. RESONANT FREQUENCY OF THE PATCH UNIT CELL 

To illustrate the effect of fringing fields on the resonant frequency of the patch 

element, the magnitude of the E-field and surface current on the surface of the patch 

element on the substrate with Ɛr of 4.3 and h of 30 mils were simulated in CST and are 

shown in Figure 3. As seen (Figure 3a), the fringing field distribution at the long edges of 

the patch is mostly uniform. However, the fringing field distribution is variable at the short 
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edges of the patch (as a result of the variable E-field of (7)). In addition, the surface current 

of the patch is shown in Figure 3b, which has a maximum value at y = 0 and minimum at 

the long edges. This surface current variability in the y-direction illustrates that this 

dimension (L) dictates the resonant frequency. Hence, the length extension (addition to L) 

due to the fringing field at the long edges is important. Therefore, the length extension (δl, 

as shown in Figure 3) on each side of the patch along its length (L) affects the resonant 

frequency of the patch (frp). Hence, the effective length of the patch, Lp,eff, is given as Lp,eff 

= L + 2δl, and is subsequently used to determine frp as follows [16]:  

, ,2
rp

p eff r eff

c
f

L 
                                               (8) 

where c is the speed of light. 

The frp from CST and (8) of the patch unit cell is shown in Figure 4a, and as seen, 

it reduces as h increases. The increase in h will slightly reduce the average of Ɛr,eff over the 

frequency band, as shown in Figure 4b. However Lp,eff, shown in Figure 4c relative to the 

original length (L) increases as h increases. Therefore, since the rate of increase of Lp,eff is 

greater than the rate of decrease of the square root of Ɛr,eff, the increase in h results in an 

overall reduction of frp. Also, as seen in Figure 4a, the increase in Ɛr of substrate reduces 

frp, which is (indirectly, through (6)) evident in (8). In addition, Lp,eff for high Ɛr is slightly 

less than that with for a low Ɛr because the electric field beneath the element is more 

confined for higher values of Ɛr. 
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Figure 3. 2D representation of (a) the electric field magnitude, and (b) the surface current 
of the patch. 

 

Figure 4. Comparison of simulated and analytical (a) resonant frequency, (b) Ɛr,eff, and (c) 
Lp,eff on different substrates of the patch unit cell. 
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3.2. RESONANT FREQUENCY OF THE LOOP UNIT CELL 

The same approach (full wave simulation and closed form model) was applied to 

the loop element. In order to compare the results of the loop unit cell with the patch, the 

unit cell in Figure 1b is considered with the aforementioned dimensions and is referred to 

herein as loop unit cell #1. Later, as part of the discussion on the fringing fields effect on 

the resonant frequency of the loop unit cell, two more unit cells are studied.  

In the case of the loop unit cell, the fringing fields on the exterior long and short 

edges of the loop are similar to the patch element, as shown in Figure 5a. However, the 

loop element has fringing fields on the interior edges as well. In addition, the surface 

current of the loop, shown in Figure 5b, follows the perimeter of the loop, with the 

minimum value at x = 0. The total electrical length of the loop is proportional to the 

perimeter of the loop [18], [21]. For a circular loop, this is true when the radius of the loop 

is much smaller than h [21]. Hence, generally the resonant frequency of the loop (frl) is 

related to its perimeter. However, since the effect of fringing fields is different on the inner 

and outer perimeters, the modified effective perimeter, Pl,eff, is defined in terms of the 

average of the physical perimeter, P0 = 2(L+W-tl-tw), in addition to the effect on the 

perimeter due to fringing fields.  

With regards to the effect of fringing fields, it can be seen from Figure 5a that the 

fringing fields are almost uniform along the long edges of the element. However, since the 

E-field varies in terms of y (7) with the maximum at the exterior long edges ( / 2y L  ), the 

width extension of tw at the exterior long edges is defined as δtw, where δtw is shown in 

Figure 6 and calculated using [16]. The width extension for the interior long edges is 

defined as δtw multiplied by the coefficient of sin( ( / 2 ) / )WL t L   since the E-field at 
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/ 2 wy L t    is reduced in comparison with the exterior long edges (Figure 5a). On the other 

hand, the width extension for tl along the short edges is variable since the E-field is a 

function of y. As seen, the width extension approaches to zero when y approaches zero, 

since E-field gets zero. Therefore, the width extension, lt is modeled as sin( / )lt y L   on 

both the exterior and interior short edges, because the E-field has sinusoidal behavior in 

this direction. Also, the fringing at the exterior corners, common between the two 

orthogonal edges, are modeled as a right triangle with base and height of δtw, and δtl, 

respectively.  

 

Figure 5. 2D representation of (a) the electric field magnitude, and (b) surface current of 
loop unit cell #1. 

 

It should be mentioned that to calculate δtw (which is the width extension of the arm 

with the width of tw), the ratio of tl to h is used in the equation from [16], similar to the 

patch. This is because the fringing fields along the x-direction follow the width extension 

that occurs at the ends of the microstrip line with width of tl. Then, since the E-field at the 

exterior long edge is constant, the fringing fields along the arm with a width of tw (the long 

arm) follows the fringing at the ends of the exterior long edges. Therefore, the width 
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extension along the long edge is considered uniform and equal to δtw, Similarly, δtl is 

calculated in terms of tw/h in the equation from [16].  

To estimate the average perimeter of the loop, the length of the sinusoidal paths of 

the perimeter is calculated via a line integral along these curved sections and is given in 

the Appendix. Then, the average perimeter of the loop element due to the fringing fields is 

calculated but without the nulls located at y = 0. Also, in order to capture the effect of nulls 

in addition to mutual coupling due to the adjacent elements, a final modification to Pl,fringe 

is done to determine the overall effective perimeter of the loop, Pl,eff. In fact, the presence 

of the nulls effectively removes a small section of the short edges of the loop. However, 

the mutual coupling between adjacent elements can increase as h increases by reducing the 

b/h ratio (same for S/h) [10] which leads to an increase in the effective exterior perimeter. 

Therefore, Pl,eff was determined by simulating (in CST) the resonant frequency, calculating 

the effective permittivity (using (6)), and using  

,
,

l eff
rl r eff

c
P

f 
                                                  (9) 

In order to use (9) to determine Pl,eff, Ɛr,eff is necessary. To determine this parameter, 

(6) was used. In addition, for the range of Ɛr and h considered here, tw,eff(f = 0)/h > 1 and 

therefore the approximation for Ɛr,eff(0) of [22] is used. To this end, Ɛr,eff is shown in Figure 

7 for tw = 0.5 mm (low frequency and high frequency averaged over the band values). 

Specifically, in Figure 7a, it is shown that Ɛr,eff(0) reduces as h increases. However, as seen 

in Figure 7b, the average of Ɛr,eff over the frequency band exponentially decreases for small 

values of h. For larger values of h, the behavior of Ɛr,eff linearly increases with h.  
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Figure 6. δtw/tw vs. h for different Ɛr. 

 

Figure 7. (a) Ɛr,eff from for a range of substrate heights, h, at (a) lower frequencies and (b) 
higher frequencies. 
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As can be seen, there are minor differences between the simulated and analytical model 
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cases, frl increases for small values of h, with the most substantial increase occurring for Ɛr 

= 2. This is a result of the behavior of Ɛr,eff  and (9), where larger changes in Ɛr,eff have a 

less substantial effect on frl and vice versa. For larger values of h, frl remains essentially 

constant with a slight decrease as h increases (consistent with the trends of Figure 7c).  

Once Ɛr,eff and frl are known, Pl,eff can be determined from (9), as is shown in Figure 

9. Also, Pl,fringe from above is included for comparison. In all cases and to faciliate 

comparison, the values have been normalized with respect to the original perimeter, P0. As 

seen, Pl,fringe is slightly less than P0 (maximum of 1% difference). As h increases, Pl,fringe 

decreases, and then for thicker substrates, slightly increases which is due to an increase in 

fringing fields which leads to an increase in Pl,fringe. In fact, since the rate of increase in the 

exterior perimeter and rate of reduction of the interior perimeter are very similar, Pl,fringe is 

similar to P0. However, Pl,eff shows more variation in comparison with P0 than Pl,fringe as a 

function of h. More specifically, Pl,eff reduces as h increases due to the nulls, and then 

increases as h increases due to the reduction in S/h which increases the electric field 

coupling between elements (and reduces the electric field located between the element and 

conductive ground plane (as is discussed in detail next).  

 

Figure 8. Resonant frequency of the loop for different Ɛr. 
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Figure 9. Comparison of Pl,fringe and Pl,eff vs. h for different Ɛr. 

 

To better understand the behavior of Pl,eff, the E-field of the loop unit cell is studied, 

as shown in Figure 10 and Figure 11. The reduction in Pl,eff for increasing h is related to 

the width of the null in the electric field. That is to say, as h increases, the width of the null 

increases and the effective perimeter decreases, as is shown in Figure 10a-c. A side view 

of the element is shown in Figure 10d-f in the y-z plane at x1 = -(L-tl)/2 (location of nulls), 

where the null width is also evident. However, while in Figure 10c/f (h = 140 mils), the 

width of the null is greater than that of Figure 10b/e (h = 70 mils), Pl,eff for h = 140 mils is 

larger than that of h = 70 mils. To illustrate the reason for this behavior, the E-field at x = 

0 and the y-z plane (location of maximum E-field) is shown in Figure 11. As seen, for small 

h (i.e. 10 mils, Figure 11a), the concentration of the E-field is primarily located between 

the conductive loop and the conducting plane on the back of the substrate. However, as h 

increases, the E-field located between the conductive loop and ground plane reduces, and 

instead is primarily located around the conductive loop and coupled with the adjacent 

conductor loop (Figure 11b-c). In fact, in addition to h, the inter-element spacing (S) on the 

FSS affects the resonant frequency of the loop unit cell (here, the unit cell with the periodic 

boundary conditions represents an infinite array of loop elements). This is why the 

modeling of the loop shows small changes in Pl,fringe with increasing h due to the effect of 

 P
/P

0 (
%

) 



 

 

27

fringing fields only (i.e., the effect of mutual coupling and nulls are not included). It should 

be noted that the scaling used in Figure 10 is used also valid for Figure 11-Figure 13.  

As it relates to the mutual coupling effect, in [10], it is shown that when the ratio 

of substrate thickness to the periodicity of the unit cell (i.e., h/b) is less than 0.3, the 

capacitance between the element and conductor backing substrate exponentially decreases 

with increasing h. Meaning, for a thicker h, which is a factor of 0.3 greater than the 

periodicity, the mutual coupling is dominant in comparison with the field stored beneath 

the element. The aforementioned loop unit cell reaches h/b > 0.3 for h > 120 mils.  

 

 

Figure 10. The E-field magnitude on the loop unit cell for Ɛr = 4.3 and h equal to (a) 10 
mils, (b) 70 mils, and (c) 140 mils, and the E-field magnitude in the y-z plane at x = L/2-

tl/2 (location of nulls) for h equal to (d) 10 mils, (e) 70 mils, and (f) 140 mils. 
 

Figure 11. The E-field magnitude in the y-z plane at x = 0 (location of maximum E-field) 
for Ɛr=4.3 and h equal to (a) 10 mils, (b) 70 mils, and (c) 140 mils. 
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Regarding to the effect of Ɛr on Pl,eff  from Figure 9, it is evident that as Ɛr increases, 

Pl,eff  decreases. This is due to the increased confinement of the E-field as Ɛr increases. 

Hence, the mutual coupling effect will be reduced by increasing Ɛr which results in more 

confinement in the E-field, as shown in Figure 12a-c for Ɛr of 2, 4.3 and 8, respectively. 

Also, the E-field around the nulls is more confined which causes a longer null and 

consequently a smaller Pl,eff. The elongation of the null with increasing Ɛr is evident in 

Figure 12d-f. Additionally, since the E-field is more confined for higher Ɛr, the minimum 

Pl,eff  (Figure 9) occurs for a greater h (i.e. minimum at h = 50 mils for Ɛr, of 2 and h = 75 

mils for Ɛr of 8).  

 

Figure 12. The E-field magnitude in the y-z plane at x = 0 (location of maximum 
E-field) for h equal to 70 mils and Ɛr of (a) 2, (b) 4.3, (c) 8 and the E-field magnitude in 

the y-z plane at x=L/2-tl/2 (location of nulls) for Ɛr equal to (d) 2, (e) 4.3, and (f) 8. 

 

To show the effect of inter-element spacing (S), the dimension in the y direction 

(“b” in Figure 1b) of unit cell #1 is increased to 22.86 mm, with the other dimensions 

remaining the same. The new unit cell is herein referred to as unit cell #2. In this way, the 

inter-element spacing is increased and the coupling between adjacent loop elements 

(b) (c) 

(d) (e) (f) 
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reduced. The E-field is shown in Figure 13 for unit cell #2 on a substrate with Ɛr = 4.3 and 

h = 10, 70, and 140 mils. As seen, because of the large spacing between adjacent loop 

elements, the E-field is concentrated between the loop conductor and ground plane for 

small h (Figure 13a). However, as h increases, the coupling between two arms of the loop 

(along the x-direction) also increases, as is shown in Figure 13b-c for h equal to 70 and 140 

mils, respectively. The coupling inside of loop unit cell #2 (conductor arms of the loop) 

dominates since the ratio of distance between arms to h, (L-2tw)/h, for thick substrates is 

much smaller than the S/h ratio (i.e. for h of 70 mils, (L-2tw)/h is 3.1 and 9.2, respectively). 

While S/h was smaller than (L-2tw)/h for the unit cell #1 (i.e. for h of 70 mils, (L-2tw)/h = 

5.15, S/h = 2). Hence, more coupling inside of the loop also reduces the effect of nulls as 

well, as is evident in Figure 13b, in comparison with that of loop unit cell #1 on the same 

substrate with smaller S (see Figure 10e). 

As discussed above, the E-field distribution (including fringing fields) differs from 

that shown in Figure 5a for different design parameters such as S/h and (b-2tw)/h, as a 

majority of the coupling can take place between adjacent elements or inside the loop. 

Hence, in order to reduce the coupling between adjacent elements (i.e., unit cell #1, Figure 

11b-c) due to small S/h and the coupling inside of the loop element (i.e., unit cell #2, Figure 

13b) due to small (L-2tw)/h, unit cell #3 is considered with similar S/h and (L-2tw)/h ratios. 

Unit cell #3 has dimensions of a = b = 22.86 mm, L = W = 12.5 mm, and tw = tl = 0.5 mm. 

The E-field on the surface of loop unit cell #3 is shown in Figure 14 for h equal to 10 mils, 

70 mils, and 140 mils. As seen, by increasing h, the fringing fields and the null length 

increase. Also, the E-field coupling with adjacent elements and inside the loop are 

eliminated as a result of the particular dimensions.  
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In order to compare the behavior of unit cells with different S/h and (b-2tw)/h, frl 

and Pl,eff for unit cells #2 and #3 are shown in Figure 15. As seen, over the range of h 

considered here, frl of unit cells #2 and #3 solely increases as h increases. This is in contrast 

with the behavior of frl of Figure 8 (unit cell #1), where first an increase and then a decrease 

is evident. This is a result of small S which causes more mutual coupling for thicker 

substrates and the subsequent increase in Pl,eff. More specifically, since S is large, E-field 

coupling between elements is minimal and the behavior is dictated by the presence of nulls 

(and the effective perimeter). That is to say, for small h, the effect of nulls is dominant (as 

explained above). However, for large h, since the coupling inside of the loop is greater (see 

Figure 13b-c), the effect of nulls decreases and Pl,eff shows an asymptotic behavior. In 

addition, the rate of decrease in Pl,eff of unit cell #2 is less than that of unit cell #3. This is 

because unit cell #3 has a larger physical perimeter, and hence the reduction in Pl,eff due to 

the null is less. Also, for unit cell #2, as h increases, the coupling is primarily located within 

the loop (see Figure 13b) and hence the effect of nulls is reduced and Pl,eff is more similar 

to the interior perimeter. A last point to be made involves Pl,eff for Ɛr = 4.3 of unit cell #2 

(Figure 15a); specifically, that is less than that of Ɛr = 8. This is a result of the behavior of 

(9) (used to calculate Pl,eff). 

 
 

Figure 13. The E-field magnitude of loop unit cell #2 for h of (a) 10 mils, (b) 70 mils, and 
(c) 140 mils. 
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Figure 14. The E-field magnitude of loop unit cell #3 for h of (a) 10 mils, (b) 70 mils, (c) 
140 mils and (d) scaling in dB. 

 

 Figure 15. The resonant frequency and Pl,eff of the loop unit cell (a) #2, (b) #3. 

(a) (b) (c) (d) 

y 
x 

(b) 

(a) 



 

 

32

4. QUALITY FACTORS AND THE REFLECTION RESPONSE 

Using the results of Section 2, in this section, the Q-factor of the rectangular patch 

and the loop unit cells will be presented in order to calculate the Γ from the patch and loop 

unit cells. In this Section, the rectangular patch in Figure 1a and loop unit cell #3 are used 

to show the results of the Qrad model and Γ calculated using Q-factors. It should be noted 

that to calculate Qrad and Γ, the analytical frp was used for the patch unit cell. However, the 

simulated frl is used for the loop unit cell to avoid the effect of the small difference between 

the full wave simulation results and those from the analytical model developed above (i.e. 

Figure 8) on Qrad and Γ. 

As discussed in Section 2 and shown in (5), Qrad of the patch and loop in the cavity 

model depends on WS and Prad from the resonator coupled into the excited mode (here, 

fundamental Floquet modes of TE00 and TM00). The patch/loop element in the cavity model 

with an excitation mode of TM010 has the field distribution beneath the element given in 

(7) and shown in Figure 2, along with the equivalent magnetic current direction on each 

longer edge ( M


). Hence, to find an analytical expression for Qrad (5) of an element, WS 

and Prad are required. However, in the cavity model of [18], [20], the fringing fields are 

ignored. Therefore, in order to develop a more accurate expression for Qrad, the physical 

extension of the geometry due to the fringing fields is taken into account (as discussed 

above). Additionally, the surface wave effect (seen in thicker substrates) is included since 

the radiation by the element for thick substrates will be reduced by surface waves [21], 

[23]. In other words, the surface wave efficiency, ηSW, is included as a coefficient in Qrad 

in order to capture the effect of the surface waves and is defined as follows: 
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SP
SW

SP SW

P

P P
 


                                                     (10) 

where PSP is the space-wave radiated power and PSW is the surface wave power (both of 

which are defined in [20]).  

Using the approach presented in [18] for the patch unit cell, the general form of 

Qrad for any element type can be defined for TE00 and TM00 incident modes and including 

ηSW as follows:   

0

, 2cos cos
,rad TE SW r rQ f ab




 
           (11) 

and 

0

, 2

cos

sin
rad TM SW r rQ f ab

 



                                            (12) 

where α is a constant related to element geometry, WS and Prad. In this way, general 

expressions can be defined for Qrad and the element details captured within specific values 

of α (i.e., αp for the patch and αl for the loop, as is described below). 

Using this approach, for the rectangular patch element, Qrad is determined by 

considering / 4p effL hW  . However, Qrad of the rectangular loop is more complicated when 

the fringing fields are considered. Therefore, WS and Prad of the loop are defined first. To 

this end, WS is found as: 

2| |
4

.SW E dv


 


                                                 (13) 

To add the physical extension of the loop element (area) due to the fringing fields, 

the loop element is considered as 10 sections, as is shown in Figure 16. Also, the effect of 

fringing field on the width of the loop along x- and y-directions and corners are considered 
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as shown in Figure 5a and explained in Section 3. By using this fringing field model, the 

stored energy is found by calculating the summation of the volume integral of ten sections 

of the loop (Figure 16) with limits of integral along x-and y-directions by considering th 

width extension as shown in Figure 5a. As such, WS from (13) is calculated for the loop 

element as follows: 

      
10 2

1
| |

4 i
S i S

W h E dydx



  


                                            (14) 

where
10 2 2

1 01
| |

i
i S

EE dydx 


 


. A detailed derivation is available in Appendix in (4)-(5). 

 

 

Figure 16. The fringing field model of the loop element including illustrating 10 sections. 

 

Next, to find Prad into the Floquet excitation mode using the volume magnetic 

current density, the reflected wave amplitude (A+) can be found by evaluating the volume 

integral of the product of the magnetic current density and magnetic field (which is the 

modal magnetic field of Floquet TE or TM modes) [15], [17]. A+ for both TE and TM 

modes is given as [15]: 

x 

y 



 

 

35

1 1
. , .TE TE TM TMv v

TE TM

A h Mdv A h Mdv
P P

   
  

                       (15) 

where 2 /TE TEP Z and 2 /TM TMP Z . ZTE and ZTM are the wave impedances for TE and TM 

modes. The wave impedance for the fundamental Floquet TE00 and TM00 modes are as 

follows [15]: 

0
0, Cos

Cos
TE TMZ Z


 


                                           (16) 

where 0 is the free space impedance. It should be mentioned that the volumetric integrals 

over the edges (parallel to the y-z plane, Figure 2b) are zero. Then, TEA due to the magnetic 

currents ( M


) on the edges (walls parallel to the x-z plane shown in Figure 2b) is as follows:  

 1
.TE

TE
TEA

P
h Mdx  
 

                    (17) 

where 0
ˆ2M hE x 


and 0

ˆ2 sin( ( 2 ) / 2 )lM hE L t L x 


at / 2y L and / 2 ly L t   , respectively. 

Also, the magnetic current at the corners has a component along the x-direction which 

contribute in TE
A  which is 0

ˆ2M hE x 


at the corners of the area 9 and 10 as shown Figure 

16, respectively. Therefore, TE
A is calculated in the Appendix as: 

    0 2 0 22 cos 2 sin
,TE TM

hE hE
A A

ab ab

                                       (18) 

where
2 0 0

( 2 2 sin / ) sin / 2
l l l

W W t t y L y L t         and 
0

/ 2 sin ( / 2 ) /
W W W

y L t t L t L      as 

derived in the Appendix. Hence, Prad for TE and TM modes is as follows: 

2 2 2 22
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


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                                   (19) 
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which are shown for the fundamental Floquet modes of TE00 and TM00. Hence, the Qrad of 

the loop for TE and TM modes can be found from (11) and (12), when 2
1 2/ 8l   where

1
  is provided in the Appendix (2) and 

2
  is given above.  

4.1. CALCULATION OF THE QUALITY-FACTORS 

As mentioned before, the relative values of Qrad,TE and Qrad,TM||Q0 of the unit cell 

create different coupling conditions (for TE mode). Hence, the Q-factors of the patch and 

loop unit cells are presented as a function of h for Ɛr = 2, 4.3, and 8 (as above in Section 3) 

and tanδ = 0.023 and 0.09 in Figure 17 and Figure 18, respectively. Here, two different 

values of tanδ are considered to show the effect of dielectric loss on Q0 and consequently 

Г. The results are for normal incidence ( 0   ), meaning Qrad,TM is infinite and hence 

Qrad,TM||Q0 = Q0. In all cases, when h increases, Qrad,TE reduces. This is due to the fact that 

WS is directly proportional to h (14), while Prad is proportional to h2 (19)-(20). In this way, 

Prad will have a dominant effect on Qrad,TE. 

 

Figure 17. Analytical model results of Q-factors vs. h for patch unit cell on a substrate 
with tanδ of (a) 0.023 and (b) 0.09. 

 

(a) (b) 
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Figure 18. Analytical model results of Q-factors vs. h for loop unit cell on a substrate 
with tanδ of (a) 0.023 and (b) 0.09. 

 
 

In addition, for all cases, when h increases, Qc ( h f  ), and consequently Q0, (4), 

will increase. However, since Qc is large (due to large σ), Q0 will be closer to Qd (1/tanδ). 

This is why for different Ɛr (and fixed tanδ), Q0||Qrad,TM is almost equivalent. Hence, as 

seen in Figure 17 and Figure 18, Q0||Qrad,TM increases slightly with increasing h and has 

asymptotic behavior as h continues to increase. In addition, a larger tanδ will result in a 

lower Qd and consequently a lower Q0, as seen in Figure 17a for the patch unit cell on the 

substrate with tanδ of 0.023 in comparison with Figure 17b for tanδ of 0.09. Similar 

behavior for Q0 of the loop is shown in Figure 18.  

The substrate permittivity (Ɛr) affects the stored energy in the cavity resonator. As 

Ɛr increases, WS (5) increases because the E-field is more confined, which results in an 

increase in Qrad,TE for all cases. This is more obvious for thinner substrates when Qrad,TE is 

greater than Qrad,TM||Q0 in Figure 17 and Figure 18. 

Additionally, the loop unit cell, with the same dimensions as the patch unit cell, has 

a larger Qrad,TE. This is due to the fact that, while the loop has a smaller WS and Prad, the 

ratio, which is proportional to Qrad, is larger. Also, Qrad is directly proportional to resonant 

(a) (b) 



 

 

38

frequency (5). As shown in Figure 4a and Figure 8/Figure 15b (frp and frl, respectively), the 

loop unit cell (as compared to the patch) has a lower resonant frequency but still a larger 

Qrad due to the effect of the ratio of WS to Prad. As a result, for equivalent loop and patch 

dimensions (as is the case here), the loop must have a thicker substrate (larger h) as 

compared to the patch to achieve the FSS operation coupling condition of Qrad,TE = 

Qrad,TM||Q0. That is to say, in Figure 17a (patch), this condition is met for values of h 

between 10-20 mils, and in Figure 18a (loop), for values of h between 50-80 mils. 

4.2. CALCULATION OF THE REFLECTION COEFFICIENT RESPONSE 

Next, using the calculated Q-factors, ГTE,co is calculated in terms of frequency from 

(1) as a function of substrate thickness and dielectric properties. For the patch unit cell, the 

analytical frp (shown in Figure 4a) is used in Qrad,TE. The same has also been simulated 

using CST for comparison. Specifically, the resonant depth in terms of h is shown for the 

patch unit cell in Figure 19. As can be seen, there is a good agreement between the 

simulated response and analytical results for h = 5 mils to 140 mils and tanδ of 0.023 and 

0.09. The maximum resonant depth occurs (for TE excitation) when Qrad,TE = Qrad,TM||Q0  

(i.e., the condition necessary for FSS application). For the cases considered here (and as 

seen in Figure 19), a thinner substrate is needed for FSS operation when tanδ is low (0.023). 

For example, for Ɛr of 4.3, the maximum resonant depth occurs for h = 10 mils when tanδ 

= 0.023 (Figure 19a), while h = 40 mils required when tanδ increases to 0.09 (Figure 19b). 

Also, as Ɛr increases (for a fixed tanδ), the maximum resonant depth is achieved for a 

thicker substrate.  
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Figure 19. Comparison of simulated and analytical model results for the patch unit cell 
resonant depth vs. h for a substrate with tanδ of (a) 0.023 and (b) 0.09. 

 
 

Figure 20. Comparison of simulated and analytical model results for the loop unit cell 
resonant depth vs. h for a substrate with tanδ of (a) 0.023 and (b) 0.09. 
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A similar approach is considered to calculate ГTE,co (1) of the loop unit cell using 

the Qrad,TE and Qrad,TM of the loop from (11) and (12). Since frl is related to Pl,eff, the 

simulated resonant frequency of the loop unit cell is used to avoid any discrepancy in Γ 

due to the difference in the analytical and simulated frl. The resonant depth of ГTE,co of the 

loop unit cell is shown in Figure  20 versus h. As seen, a similar trend (to the patch) occurs 

for the resonant depth of the loop unit cell, except a thicker substrate is required (in 

comparison with the patch) for a given Ɛr and tanδ. This is because the loop has a larger 

Qrad,TE than the patch, and consequently the maximum resonant depth (where Qrad,TE = 

Qrad,TM||Q0) occurs for a thicker substrate (as discussed earlier). The resonant depth of the 

loop unit cell for tanδ = 0.023 shows good agreement between simulation and the analytical 

results. As mentioned for Qrad,TE = Qrad,TM||Q0, Γ at the resonance is zero. Hence, the 

difference in simulation and modeling of the patch and loop unit cells for the cases with 

larger resonant depth (Qrad,TE and Qrad,TM||Q0 are almost equivalent) are attributed to small 

differences in the calculated Qrad,TE. As an example, the resonant depth result shown in 

Figure 19a for the patch when Ɛr is 2 and h is 10 mils. Also, the resonant depth results of 

the loop shown in Figure 20 has a large difference with the full-wave simulation results for 

low loss material when Ɛr is 4.3 and h is 70 mils (Figure 20a) and for high loss substrate 

when Ɛr is 2 and h is 120 mils (Figure 20b).  

5. CONCLUSION 

In this paper, an analytical approach for an infinite FSS using Floquet excitation 

and based on a quality factor analysis is used to define the reflection coefficient of a unit 
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cell with periodic boundary. This approach is used for rectangular patch and loop unit cells 

with conductor-backed substrates, which are modeled as a cavity with the dominant 

excitation mode of TM010. To expand the Q-factor model for a wide range of substrate 

properties from the current model, the effect of fringing fields and the frequency dependent 

effective permittivity are included. The fringing field effect on the patch element is well-

known and its resonant frequency is related to the effective length of the patch along the 

interrogating polarization. However, resonant frequency of the loop is related to the 

effective perimeter of the loop. It is shown that the effective perimeter (the average of 

interior and exterior perimeters) of the loop depends on the mutual coupling between 

adjacent elements, the coupling between conductor arms of the loop, and the excitation 

mode of the loop (here, it is shown for TM010 mode). Hence, the effective perimeter of the 

loop is evaluated for different loop designs using the effective permittivity and resonant 

frequency from the full wave simulation of the loop unit cell. In addition, to find the 

radiation Q-factor, the extension of the geometry of the elements due to fringing field are 

considered. The model for the radiation Q-factor for the patch is modified and a model for 

the radiation Q-factor of the loop is developed at the resonant frequency of the elements. 

Then, using radiation, conductor and dielectric Q-factors of each unit cell, the analytical 

reflection coefficient in terms of frequency for the patch and loop unit cells are calculated. 

The analytical results are in good agreement with the full wave simulation results for a 

wide range of permittivity (2-8), tanδ (0.02-0.09), and substrate thickness (5 mils to 140 

mils).    
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APPENDIX 

Regarding to the average perimeter of the loop element by considering the effective 

dimension due to the fringing fields, the model in Figure 5a is considered as explained in 

subsection 3.2. The exterior perimeter includes four equal curved sections (lext) along both 

shorter edges (two per edge). The line integral along the length of this curvature path is 

evaluated assuming ˆ ˆ ˆl xdx ydy zdz  


to find lext as follows: 

     
2 2

| | 1ext

dx dz
l dl dy

dy dy

   
      

   
 


         (1) 

To find lex on the top right curvature in Figure 5a, the x position is written as a 

function of y as / 2 sin( / )
l

x W t L y   . Hence, / ( / )cos( / )ldx dy t L L y  . Therefore, 

(20) can be calculated as shown below: 

   
2

/2 2

0
1 cos

L
l

ext

t y
l dy

L L

        
                                   (2) 

To calculate lext from (22), MATLAB is used. Hence, the exterior perimeter is 

calculated as 2 24 2( 2 )
ext ext l W

P l W t t     . A similar process is used for the other three 

curved sections.  

To calculate the interior perimeter (Pint), a similar approach is used. The extension 

of tl toward the interior side of the loop is a function of y (as explained in Subsection 3.2). 

Hence, the length of curvature (lint) is calculated using (21) for the range of y from 0 to 

1 / 2 sin( ( / 2 ) / )
W W W

y L t t L t L     and calculated in MATLAB. Then,
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int int 1
4 2( 2 2 sin( / )

l l
P l W t t y L     . Therefore, Pfringe is considered as the average of Pext 

and Pint.  

Next, the calculation of WS for the loop unit cell is explained. As mentioned in 

Section 4, in order to calculate the reflection coefficient Γ(f), of the unit cell backing a 

conductor using Q-factors, Qrad of the element is required. Hence, to find the Qrad of a 

conductor backed loop element into the waveguide, the approach shown in [18] for patch 

element is used here (see Figure 1). In this way, the loop element with conductor on the 

back of the substrate is modeled as cavity with dominant mode of TM010. It is also 

considered as a load at the end of a waveguide transmission line, which is excited by 

fundamental Floquet modes (TE00, and TM00). To calculate Qrad from (5) and considering 

the dimension extension of the loop element, it is considered as ten segments as shown in 

Figure 16. Therefore, the stored energy (WS) and radiated power into the excited modes 

(Prad) are required. WS is calculated from (13) as a summation of the volumetric integral 

over each piece of the loop (Figure 16) as (14). To calculate WS from (14), the integral 

ranges are commensurate with the fringing fields of Figure 5a. Hence, in (14), 

10 2

1
( / 4) | |

i

i SSW h E dydx


  


is equal to 2
0 1( / 4)h E  where  
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The Prad is also calculated. To find it, TE
A

 is calculated as follows: 
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where
2 0 0

( 2 2 sin ) sin 2
l l l

W W t t y y t
L L

 
       and 0

/ 2 sin ( / 2 ) /W W Wy L t t L t L    

. Hence, Prad for TE and TM modes can be found from (19), and (20), respectively. From 

this, the final expression of Qrad for the fundamental Floquet modes are presented in 

Section 4. 
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II. PERFORMANCE METRICS FOR FREQUENCY SELECTIVE SURFACE-
BASED SENSORS 

ABSTRACT 

A frequency selective surface (FSS) is a periodic array of conductive elements 

(located on a dielectric substrate) that has a specific transmission or reflection response 

when illuminated with electromagnetic energy. Since the FSS response is sensitive to 

changes in substrate properties (permittivity, loss tangent, and thickness) as well as element 

geometry, FSS-based sensors have strong potential as a wireless sensing solution. To this 

end, this paper proposes three performance metrics (resonant frequency, resonant depth, 

and quality factor) to quantify the effect of substrate properties on sensor performance. 

These metrics are applied to a patch- and loop-based FSS sensor. The results show that the 

patch-based sensor has improved performance when designed using a thinner and high loss 

substrate, while the loop-based sensor has better performance when a substrate with less 

loss but increased thickness is used. Additionally, measurements are also provided for 

sensors utilizing the low loss substrate. Lastly, the performance of the two sensors is shown 

for strain sensing. The results indicate that the resonant frequency shift (when under 

mechanical loading) of both sensors is largely independent of the substrate permittivity. 

1. INTRODUCTION 

Frequency selective surfaces (FSSs) are periodic arrays of conductive elements 

located on a dielectric substrate. These arrays have a specific reflection or transmission 



 

 

48

response that is directly related to the element geometry and spacing (often referred to as 

the unit cell), substrate thickness, and dielectric properties near the FSS (dielectric substrate 

and surrounding environment) [1]. As such, FSS-based sensors have recently shown 

potential for structural health monitoring (SHM) applications. More specifically, FSS-

based sensing has been used for crack detection [2], normal strain sensing by monitoring 

the shift in resonant frequency (fr) [3], and shear strain sensing by monitoring the cross-

polarized reflection response (meaning the polarization of the reflected signal was 

orthogonal to that of the interrogating signal). In addition, [4] considered an FSS sensor for 

delamination detection. FSS sensors have also been used in the terahertz regime to monitor 

paper thickness and humidity changes [5]. 

FSS sensors can be designed to operate in reflection or transmission mode. This is 

important as it relates to the practicality of the sensor, as a sensor designed to operate in 

reflection mode is interrogated in a single-sided manner, while transmission mode requires 

a two-sided inspection. For many applications, accessibility to both sides of a structure is 

challenging or impossible to achieve (e.g., bridge deck, aircraft, etc.). Thus, the sensors 

considered in this work operate in reflection mode. In this way, the sensor response can be 

measured by measuring the complex reflection coefficient, Γ, when illuminating the sensor 

with electromagnetic energy. 

In order to better understand the relationship of Γ with the FSS sensor design, an 

approach similar to [6] is used to evaluate FSS sensor performance. More specifically, in 

[6], the reflection response of a reflectarray unit cell (similar to a conductor-backed FSS 

unit cell) is studied using an equivalent coupled resonator approach. To this end, the 

reflection coefficient is given as [6]: 
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where Qrad is the radiation quality factor (Q-factor) and is given as 2
rad

Energy Stored
rad r PQ f , Prad  

is radiated power, and Q0 is a parallel combination of two Q-factors that represent 

conductive losses
CQ h f  (h is substrate thickness) and dielectric losses Qd = 1/tanδ, 

(tanδ is the loss tangent of the substrate) and is given as
0

c d

c d

Q Q
Q QQ  . 

As discussed in [6], based on the relative values of Qrad and Q0, three different 

conditions exist: 1) when Qrad = Q0, there is no reflection at fr and the energy is dissipated 

in the unit cell; 2) when Qrad < Q0, the unit cell will resonate and the response is totally 

reflective (desirable for reflectarray design); and 3) when Qrad > Q0 the phase of the 

reflection response at fr is 180⁰. The condition Qrad = Q0 results in a resonant reflection 

response (i.e. zero reflections) at fr, as shown in (1). It is this condition that is met by an 

FSS at its resonant (design) frequency. Since the substrate properties directly affect the 

reflection response of an FSS-based sensor, this Q-factor approach for modeling the 

reflection properties of the sensor can be used to explain and quantify the performance of 

a sensor. Specifically, the performance metrics are defined and applied to two FSS sensors 

(patch- and loop-based). In this way, the effect of substrate thickness, permittivity (εr) and 

tanδ on the sensor performance are studied from a resonant cavity perspective [6] through 

simulation and measurement. Based on the conclusions from the proposed metrics, a design 

flowchart is provided as a design guide to evaluate and optimize FSS sensor performance. 

Lastly, the performance of the FSS sensors for strain sensing is also considered. 
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2. PERFORMANCE METRICS 

In order to quantify the performance of a given FSS design, three performance 

metrics are defined: resonant frequency (fr), resonant depth, and Q-factor. For this work, 

Q-factor is defined as the ratio of fr to BW of |Γ| when |Γ| is less than -10 dB. In this way, 

a reflection response that is measureable in the presence of noise/other environmental 

reflections is ensured. 

Many basic FSS designs are based on patch- and loop-type elements, with more 

complex designs featuring combinations of these structures. Accordingly, the performance 

of two different sensors (unit cells shown in Figure1), one with a rectangular patch unit 

cell and the other a loop unit cell with similar dimensions to that of the patch, are chosen 

to be analyzed and their performance quantified with proposed performance metrics. The 

dimensions of the patch were chosen to achieve resonance in the X-band (8.2-12.4 GHz) 

with a substrate permittivity (εr) of 4.3 and tanδ = 0.023 (i.e., FR4). As such, to facilitate 

measurements, the patch unit cell periodicity is defined equal to X-band dimensions (22.86 

mm × 10.16 mm) and its dimensions are D = 6.5 mm and L = 12.5 mm. The loop unit cell 

has the same periodicity (and a width of 0.5 mm) in order to keep both unit cells 

dimensionally comparable. 

 

Figure 1. FSS unit cells (a) patch, (b) loop. 

(a) (b) 
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2.1. EFFECT OF SUBSTRATE 

In order to study the effect of dielectric properties and substrate thickness on the 

performance of the two sensor designs of Figure1, full wave electromagnetic simulations 

were conducting using CST Microwave Studio©. A change in dielectric properties may 

occur in practice if the substrate properties of an FSS sensor were to change (such as due 

to cracking or moisture ingress). Therefore, it is important to understand how such changes 

will affect the sensor performance. Additionally, considering the effect of substrate 

thickness on sensor performance is useful in the design phase in order to determine whether 

a thick or thin substrate will provide optimal performance. To this end, for both unit cells 

of Figure1, two substrates were considered; one with tanδ = 0.09 (a high loss substrate) 

and one with tanδ = 0.023 (the value for FR4 and representing a low loss substrate). For 

both cases, εr of 2, 4.3, and 8 were considered. 

Figure2 shows the effect of substrate thickness on the three performance metrics 

for both sensor designs for a high loss dielectric substrate. As shown in Figure2a, fr is 

reduced for both unit cells as εr increases. This trend can be explained by considering fr = 

p/, where the wave speed p = 𝑐/√𝜀௥, and c is the speed of light. Thus, as εr increases, 

the wave speed is reduced and fr as well. However, the effect of substrate thickness is 

different for each unit cell. For the patch, fr decreases with increasing substrate thickness. 

Conversely, fr of the loop increases with substrate thickness up to 20 mils and after that 

remains constant. The behavior of the patch can be explained by considering the patch 

element as a patch antenna [7]. Thus, fr = 𝑐/2𝐿௘௙௙√𝜀௘௙௙,where Leff is the effective electrical 

length of the patch taking into account the effect of fringing fields and εeff is effective 

permittivity (considering the substrate and dielectric material above the unit cell), as is the 
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case for microstrip lines [7]. Hence, when the substrate thickness increases, the stored 

energy decreases, causing more fringing fields and a subsequent increase in Leff and 

decrease in fr. Additionally, εeff itself decreases slowly with increasing substrate thickness, 

thereby having a negligible effect. Therefore, as can be seen in Figure 2a, fr of the patch 

decreases with increasing substrate thickness. On the other hand, fr of the loop increases 

with increasing substrate thickness to ~20 mils, at which point it becomes constant. This 

trend can also be explained by considering the effect of fringing fields and change in εeff 

but from a different perspective. Thus, fr of a circular loop is proportional to , 

where Dave is the average diameter of the ring (and depends on the inner and outer diameters 

and effect of fringing fields on both diameters) [8]. The effect of fringing fields on the 

effective inner and outer diameters (i.e., related to Dave) is equal and opposite, causing a 

net effect of zero on Dave and subsequently no change to fr. However, εeff does effect fr. 

More specifically, considering each side of the loop as a microstrip line, as the substrate 

thickness increases to 20 mils (equal to the width of square loop), εeff reduces slowly [7]. 

After that, for thicknesses larger than the loop width, εeff does not change much. Thus, as 

shown in Figure 2a, fr increases by reducing εeff up to 20 mils and then remains constant. 

In Figure 2b, the effect of thickness on resonant depth is shown. For both designs, 

maximum resonant depth is achieved by using a thicker substrate for larger εr. This 

behavior can also be explained by considering Qrad. That is to say, the energy stored in the 

substrate increases with increasing εr. Thus, Qrad also increases, but Q0 does not. In order 

to reach Qrad = Q0, the substrate thickness must be increased, thereby increasing Q0. In 

addition, increasing substrate thickness decreases Qrad. This occurs since Prad and the stored 

energy increase with increasing thickness. However, the increase in Prad is more significant 

1( )ave effD  
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than that of the stored energy, resulting in an overall decrease in Qrad [6]. Generally, there 

is a tradeoff between increasing εr and thickness, and the optimal substrate thickness is 

found when Qrad = Q0 (resulting in maximum resonant depth). Figure 2b also shows that 

the loop element achieves maximum resonant depth for a slightly thicker substrate 

(compared to the patch). This occurs since the loop element has less (effective) area and 

consequently has smaller Qrad. Thus, a thicker substrate is needed to reduce Q0 in order to 

maintain Q0 = Qrad. Figure 2c shows the effect of substrate thickness on the Q-factor. As 

shown, the Q-factor for both designs is finite for thicknesses with a related resonant depth 

(see Figure 2b) less than -10 dB. 

To verify the simulation results, the waveguide simulator approach (WSA) [9] was 

used to measure |Γ| of both unit cells when placed inside a standard rectangular waveguide, 

with the results included in Figure 3. Specifically, Figure 3a shows fr as a function of 

substrate thickness which exhibits a similar behavior to that of Figure 2a (high loss 

material). The maximum resonant depth for the low loss dielectric occurs with a thinner 

substrate thickness (as compared to the high loss case of Figure 2b) as illustrated in Figure 

3. This occurs since Q0 is increased by the reduction in tanδ. Thus, in order to maintain Q0 

= Qrad, Qrad must increase. As discussed above, since Qrad is inversely proportional to 

substrate thickness, a thinner substrate thickness is needed. Lastly, Figure 3c shows the Q-

factor for the low loss substrate. The advantage of using a lower loss substrate is that a 

higher Q-factor is achieved (evident by comparing Figure 2c with Figure 3c), because the 

low loss substrate will store more and attenuate less energy at fr. Specifically, the optimum 

case for both sensors is achieved for thicknesses less than ~ 80 mils for the low loss 

material. This differs from that of the high loss substrate, where optimal conditions are 
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achieved for a thicker substrate (see Figure 2c). Lastly, the simulated and measured results 

are in good agreement for fr and resonant depth for both unit cells for substrate thicknesses 

of 15 mils and 32 mils. However, there are differences in the resonant depth and Q-factor 

of the loop element with a substrate thickness of 62 mils (attributed to a change in 

periodicity necessary for WSA measurements). 

In order to illustrate how the performance metrics can be used to guide the design 

procedure rather than simply assess the performance of a given sensor, a flowchart is 

provided in Figure 5. As shown, first, the desired fr and BW are defined. Then, the 

geometry of the unit cell should be chosen to provide a large or small Qrad. Next, the unit 

cell must be modified if the resonant depth is less than -10 dB. Care must also be taken to 

ensure that the Q-factor is not deceptively large. For example, the loop element with a high 

loss substrate (εr of 4.3 and thickness of 90 mils) has a resonant depth of ~-11 dB (barely 

meeting the metric), but the BW is very narrow, causing the resulting large Q-factor (~50 

in Figure 2c). This indicates the importance of assessing performance using resonant depth 

and Q-factor together. In addition, the minimum BW needed for an accurate measurement 

of a measureable resonant response depends on measurement parameters and application 

(equipment resolution, minimum measurement time, etc.). Therefore, the metrics proposed 

here provide a framework for sensor design, but the final sensor performance must be 

verified against application/measurement needs. 

2.2. STRAIN SENSOR PERFORMANCE 

It is also useful to see how the two sensor designs considered here perform in an 

actual sensing setting. Thus, simulations were conducted to see the effect of strain for both 
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Figure 2. Performance metrics of FSS unit cells for a high loss substrate (P: patch, L: 
loop): (a) resonant frequency, (b) resonant depth, (c) Q-factor. 

 

sensors on a substrate with εr = 4.3 and tanδ = 0.09, with εr equal to 2 and 8 also considered 

(to capture the effect of practical issues such as cracking and moisture ingress, 
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Figure 3. Measured and simulated performance metrics of FSS unit cells for a low loss 
substrate (P: patch, L: loop, Sim: simulation, Mea: measurement): (a) resonant frequency, 

(b) resonant depth, (c) Q-factor. 

 

respectively). The substrate thickness is chosen to achieve maximum resonant depth (with 

an acceptable Q-factor) from Figure 2b (40 mils for the patch and 120 mils for the loop). 
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Figure 4. Flowchart for FSS sensor design procedure. 

 

As discussed earlier, when εr increases, fr is reduced. Also, when the strain 

increases, the dimensions of the unit cell will increase (in the direction of imposed strain), 

and subsequently fr will decrease. In order to quantify these changes in fr and obtain the 

sensitivity of each sensor, the change in fr, Δfr, is calculated as 

, , ,| |r r NoStrain r WithStrain r NoStrainf f f f   , where fr,NoStrain
 is the resonant frequency without strain, 

and fr,WithStrain is the resonant frequency when the sensor is experiencing strain. As such, Δfr 

for both sensors is shown in Figure 6. 

 

 

Figure 5. Comparison of the frequency shift between patch and loop. 
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The results in Figure 6 indicate a linear relationship between Δfr and strain. The 

patch and loop-based sensors provide strain measurement sensitivity of 3.8% and 3% 

(respectively) for 4% strain. In [2], [3], where different sensor designs (cross dipole and 

grounded tripole) are used, strain sensitivity of 2.7% and 3% (for fr), respectively, is 

achieved for the same strain. Therefore, by optimizing the design, improved sensing 

sensitivity can be achieved. In addition, for a given strain, changes in εr do not substantially 

affect the resultant Δfr. 

3. CONCLUSION 

FSS-based sensors are ideal for structural health monitoring due their planar 

structure, ease of implementation, and remote interrogation. To this end, three performance 

metrics (resonant frequency, resonant depth, and quality factor) are proposed that can be 

used to guide and optimize FSS sensor design. These performance metrics have been 

applied to rectangular patch and loop-based sensors to quantify the effect of dielectric 

properties and thickness on sensor performance. The patch element performs better for 

thinner and high loss dielectric substrates. While the loop (for the same substrate) requires 

a thicker substrate for optimum performance. In addition, it is important to utilize resonant 

depth and Q-factor together when quantifying sensor performance. Lastly, the frequency 

shift of both sensors is largely independent of substrate permittivity, an important feature 

as it relates to practical measurement performance. The proposed metrics may be used in 

the future to quantify the effect of incident angle and surface waves on sensor performance. 
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III. AN APERTURE EFFICIENCY APPROACH FOR OPTIMIZATION OF 
FSS-BASED SENSOR RESOLUTION 

ABSTRACT 

Frequency selective surfaces are periodic arrays of conductive elements, and when 

illuminated by electromagnetic energy, have a specific frequency response. FSS-based 

sensing is a relatively new application of FSSs, and such sensors have shown promise for 

crack detection and strain sensing, amongst others. Generally, when an FSS sensor is 

illuminated in full, the response of the sensor is related to the entire FSS landscape. In this 

way, the resolution of the sensor is equal to the FSS dimensions. However, this limits 

localized sensing. As such, to improve the achievable resolution, the sensor must be 

illuminated locally in order for the response to be related to a specific region of the sensor. 

Under this approach, an FSS sensor is considered to consist of many sensor cells. 

Therefore, to quantify the sensor cell efficiency in terms of the illuminating footprint in 

order to obtain the optimum sensor cell size, an analysis approach based on reflectarray 

aperture efficiency is used. As such, by maximizing the sensor cell efficiency, an optimum 

sensor cell size can be determined for a given illuminating footprint. This approach is 

applied to a grounded square loop-based FSS sensor, with simulation and measurement 

results provided. The results indicate that optimal sensor cell dimensions can be determined 

where the total efficiency of a given footprint is maximized. To support this, three different 

sensor cells are considered with the same maximum total efficiency, of which the smallest 

sensor cell gives the highest resolution of ~3 cm × 3 cm. 



 

 

61

1. INTRODUCTION AND BACKGROUND 

Frequency selective surfaces are periodic arrays of conductive elements located on 

a dielectric substrate, and when illuminated by electromagnetic energy, have a specific 

transmissive or reflective frequency response. This frequency response is dependent upon 

inter-element spacing, element geometry, substrate properties (dielectric properties and 

thickness) and the local environment [1]. There are numerous (traditional) applications of 

FSSs including filters [2], absorbers [3], [4], radomes [4], [5], reflectors and lenses [6]. 

More recently, FSSs have also shown potential as sensors for structural health monitoring 

(SHM) [7]-[13]. Their ease of implementation, planar structure, and wireless interrogation 

make such sensors ideal for SHM. For example, FSS-based sensing has recently been 

utilized for crack detection [7]. In this case, the presence of a crack causes a shift in the 

resonant frequency of the FSS. Similarly, in [8], normal and shear strain sensing are 

achieved by monitoring the reflection response of an FSS sensor. In [9], an FSS is used as 

an embedded sensor on a concrete/composite column for detection of strain and buckling 

during displacement load testing. FSS-based sensing has also found application for 

concurrent temperature and strain sensing [10], and detection of delaminations/disbonds 

within layered structures [11]. Also, the addition of active components to FSS sensors can 

improve the sensitivity of the sensor to environmental noise by modulating the frequency 

response [12]. In this way, the modulated FSS response can be easily delineated from other 

signals that may be present. The particular sensor design of [12] also included the potential 

for energy harvesting (to power the active elements). FSS sensors have also been utilized 

in the terahertz regime for chemical and biochemical sensing (i.e., humidity changes and 
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paper thickness) [13]. Metamaterials (structures similar in design and illumination to FSSs) 

have also found application in the sensing regime, including a telemetric strain sensor 

based on a split-ring-resonator [14]. 

As mentioned, FSSs can be designed to operate in reflection [9, 11] or transmission 

mode [7], [14]. From a practical point of view, FSS sensors operating in reflection mode 

(in general designed with a conductive backing to the substrate) [11] are desirable from a 

sensing perspective, as they require a one-sided interrogation (as opposed to needing access 

to both sides of a structure to perform transmission based measurements). It is also 

beneficial to utilize a reflection-based sensor from a signal detection point-of-view, as the 

sensor response may be attenuated by the structure under test if two-sided measurements 

are performed. The addition of a conductor backing to the sensor also prevents the material 

properties of the structure under test from affecting the sensor response [15]. 

In the theory, the response of an FSS is analyzed assuming infinite dimensions, an 

infinite number of unit cells (where the unit cell includes element shape, dimensions, and 

inter-element spacing), with a uniform plane wave excitation. However, in practice, an FSS 

has a finite number of unit cells and is illuminated with a spatially-varying electric field 

pattern from an antenna (for example, a horn antenna). As such, there are three factors that 

cause a deviation in the finite FSS’s response from that of the ideal case: 1) the non-uniform 

excitation, 2) the effect of edges (truncation from an infinite array), and 3) the number of 

FSS unit cells within the FSS [16]. As such, the effect of the number of unit cells and non-

uniform excitation are studied explicitly in this work with the goal of optimized sensor 

resolution. Edge effects are considered as part of the background effects, as is discussed 

below in Section 3. 
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The issue of a non-uniform excitation and the corresponding illumination pattern is 

particularly important as it relates to localized sensing. More specifically, when an FSS is 

interrogated with an illumination pattern that covers the entire FSS, the frequency response 

is affected by all FSS unit cells. As such, it is impossible to locate where, within the FSS 

dimensions, a change occurred. Therefore, in order to achieve a sensor resolution smaller 

than the dimensions of the (entire) FSS, the excitation must be adjusted accordingly. In 

other words, to monitor an FSS sensor locally, the FSS must be illuminated locally. In this 

way, the frequency response due to specific locations within the FSS landscape can be 

detected and changes attributed to these localized areas. For example, in [17], the ability 

of an FSS sensor to detect localized changes (i.e., the presence of damage within a unit 

cell) is studied by illuminating the sensor locally with a horn antenna (which was physically 

scanned over the entire FSS). However, since the step size of the scan (essentially the 

varying position of the horn) is smaller than the beamwidth of the antenna, the frequency 

response due to each illuminated area “overlaps”, rendering a low measurement resolution 

and ultimately a large area is determined to contain the detected damage. To overcome this 

issue, an FSS sensor can be considered as an array of sub-FSS (or sensor) cells, with each 

cell illuminated independently. In this way, localized sensing and subsequent improved 

sensor resolution can be accomplished. Hence, it is important to study the effect of 

illumination pattern and sensor cell dimensions on the sensor cell response in order to 

determine the optimum achievable resolution per application needs. To this end, this work 

expands upon the preliminary investigation published in [18] by determining the optimum 

sensor cell size by applying a modified version of the reflectarray aperture efficiency 

analysis of [20]. 
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2. SENSOR CELL EFFICIENCY 

As mentioned, the dimensions of the illuminating pattern on the FSS sensor (herein 

referred to as the footprint) play a role the resolution of the sensor. To this end, in [18], the 

footprint was defined as the dimensional area within which 75% of the incident energy (or 

6 dB variation in electric field) was contained. Under this definition, 25% of the incident 

energy excites the sensor outside the footprint (and hence the sensor cell) of interest, and 

as such, may also affect the response of a given cell. To this end, to better quantify the 

effect of the illuminating footprint on the performance of an FSS sensor, an FSS can be 

considered similar to a reflectarray since both are planar arrays that are remotely 

illuminated. It is well known that the aperture efficiency of a reflector antenna is related to 

the aperture size, its distance from the illuminating source (focal length), and the pattern of 

the illuminating source [19]. In other words, the aperture efficiency is dependent upon the 

illumination pattern for a fixed aperture. Hence, a similar approach, based on the aperture 

efficiency analysis of reflectarray antennas [20], can be applied to FSS sensors in order to 

quantify the optimum sensor cell size in terms of illumination footprint. In particular, the 

sensor cell efficiency, ηsc, is studied to obtain the resolution (e.g., sensor cell size) of the 

sensor analytically in terms of a given illumination pattern. 

For the case of reflectarrays, the aperture efficiency of a reflector antenna is 

affected by the ratio of focal length (h) to the diameter of the aperture (D) [20], as shown 

in Figure 1a. Therefore, to apply this approach to FSS sensors, the sensor cell dimensions 

are considered as the aperture dimensions for this analysis. In this way, ηsc is defined as the 

product of 1) the illumination efficiency, ηill, which is related to the non-uniform electric 
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field across illumination footprint on the sensor, and 2) the spill-over efficiency, ηs, which 

is defined as the ratio of the amount of energy that illuminates the sensor cell to the total 

amount of radiated energy from the illuminating source [20]. To expand this approach for 

FSS-based sensing, only the non-uniformity of the illumination footprint is considered in 

the modified (from [20]) definition of ηill, (whereas in [20], the element factor of the 

reflectarray is included as part of the total electric field across the aperture). Additionally, 

the illumination footprint (i.e., antenna pattern) is considered to be represented by cosqθ 

(which can be used to model the radiation intensity of a horn antenna for an elevation angle 

of θ). In this way, increasing q represents a more directive pattern. Therefore, using this 

illumination pattern model (i.e., cosqθ) and considering a linear polarization (here, in the 

x-direction as shown Figure 1a), a modified illumination efficiency and (equal to that of 

[20]) spill-over efficiency are given as: 
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where θe is half of the subtend angle from the illuminating source to the aperture (tanθe = 

SC/2h, where SC is the sensor cell length) as shown in Figure 1a. Since this approach is 

modified from [20] (which focused on reflectarrays), the given equations are for a circular 

aperture. Therefore, since the sensor cells considered here are dimensionally square (sized 

in this way due to the square nature of the unit cell), a sensor cell with a length of SC, as 

shown in Figure 1b, is represented by an equivalent circular area with a diameter, D, 

of 2 × 𝑆𝐶/√𝜋 (see Figure 1a). 
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Figure 1. The schematic of aperture and illuminating source geometry for (a) a reflector 
antenna, (b) an FSS sensor. 

 

From (2), it can be seen that ηs increases with θe. Additionally and per (1), as θe 

increases, ηill reduces and hence these two efficiencies have complementary behavior with 

respect to each other [20]. Hence, the maximum ηsc occurs when the product of ηill and ηs 

is maximum (which may not be when ηill or ηs is maximum). To this end, in Figure 2, the 

efficiencies are shown in terms of q (for a cosqθ radiation pattern) for θe from 15⁰ to 30⁰ 

with step size of 5⁰. In this way, a range of illuminating footprints incident on the aperture 

(i.e. FSS sensor) are represented. The complementary behavior can be seen since ηill 

decreases and ηs increases with θe. Additionally, an increase in q means the pattern becomes 

more directive, meaning the electric fields on the sensor cell has more variation from the 

center to the edge of the sensor cell. In this way, the electric fields are less uniform and 

hence ηill reduces. On the other hand, for a given sensor cell size, by increasing q, most of 

the incident energy is contained within the desired sensor cell. As such, the spill-over 

energy (incident outside the sensor cell) reduces which improves ηs. Also and as seen in 

Figure 2a, when θe increases, ηs increases for a fixed q (i.e., a specific illumination pattern). 
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For a fixed q, increasing θe represents an increase in footprint size. Hence, increasing the 

footprint size for a given pattern decreases the uniformity of the electric field over the 

footprint dimensions. Also in this case, a larger portion of radiated energy from the 

illuminating source is contained within the footprint and less energy is incident outside it. 

Therefore, ηill reduces as θe increases (for a fixed q/pattern), while ηs increases. 

Using ηill and ηs of Figure 2a, ηsc is calculated and shown in Figure 2b. It can be 

seen that a smaller θe causes a higher maximum efficiency when q (in cosqθ) is large (i.e. 

q greater than ~30 or a more directive pattern). This is due to the fact that the illuminating 

footprint is more uniform and directive for large q and small θe. Hence, the footprint is 

“focused” and the illumination efficiency dominates in ηsc (since ηs approaches 100% as 

shown in Figure 2a). It can also be seen that the maximum values for ηsc are not equivalent 

as a function of θe. This is because for smaller values of q, the footprint is less directive 

and hence a larger θe is needed in order to achieve a greater ηs (i.e., less spillover energy). 

Hence, for small q and large θe, ηs dominates the overall ηsc. 

3. SIMULATION RESULTS 

In order to study the sensor cell efficiency of an FSS sensor, full-wave 

electromagnetic simulations were conducted using CST Microwave Studio© (frequency 

domain solver) considering a grounded square loop design. To begin, the ideal FSS sensor 

response is simulated using periodic boundary conditions (to create an infinite array of unit 

cells) with a uniform plane wave excitation. The unit cell, along with the reflection 

response, |S11|, of the FSS are shown in Figure 3. This FSS is designed to resonate at 10 
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GHz  (see Figure 3b) with design parameters of D = 10mm, a = 4.95 mm, w = 0.4 mm on 

an FR-4 substrate with a thickness of t = 32 mils. 

 

Figure 2. (a) ηill and ηS versus q (b) ηsc versus q for different θe. 

 

Figure 3. (a) Unit cell schematic, and (b) |S11| of the ideal FSS. 
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To illuminate the FSS, an X-band (8.2 – 12.4 GHz) pyramidal horn antenna is 

considered as the illuminating source. The simulated magnitude of the reflection 

coefficient (|S11|) of this antenna radiating into free space is shown in Figure 4 (used later 

for normalization purposes), along with a photograph of the horn antenna modeled here 

and used later for measurements. The dimensions of the horn antenna aperture (shown in 

Figure 4b) are a = 67 mm and b = 56 mm, and the length of the flared section is 92.8 mm. 

 

Figure 4. Simulated |S11| of the horn radiating into free space (a), and photograph of the 
horn antenna (b). 

 

In order to verify that the approach used in (1) and (2) is valid for any field pattern 

within all regions of the horn antenna considered here, field patterns at distances of 1λ0, 

5λ0, and 10λ0 (near field, radiating near field, and beginning of far field, respectively) from 

the horn aperture were simulated in Ansys HFSS© and compared with far field patterns 

from Ansys HFSS© and CST©, with the results shown in Figure 5. . As can be seen, all 

patterns have similar distributions (in the main lobe) as cos13.5θ. Therefore, the radiation 
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intensity of the horn antenna is modeled as cos13.5θ in order to calculate the efficiencies, as 

shown in Figure 6 as a function of θ. As seen, the maximum ηsc, of 80% occurs for θe = 

25⁰. 

As discussed earlier, it is important to obtain an optimal illumination footprint 

where the ηsc is maximum in order to have less spill-over energy outside of the sensor cell 

and more uniformity in electric field across the sensor cell. To illustrate this, three different 

sensor cell sizes are considered with dimensions of 1λ0 ×1λ0 (3×3 unit cells), 1.67λ0×1.67λ0 

(5×5 unit cells) and 3.34λ0× 3.34λ0 (10×10 unit cells). As mentioned and shown in Figure 

1, θe represents the illuminating footprint size. Hence, to achieve the optimal footprint for 

a given sensor cell using the horn antenna of Figure 4, the optimal distance (hopt) between 

the horn antenna and the sensor cell can be determined where ηsc is maximum (since the 

electric field distribution is different at different distances from the aperture). Therefore, 

the efficiencies shown in Figure 6, which are in terms of θe, can be converted to in terms 

of h. Hence, hopt can be determined in order to find the optimal footprint for maximum ηsc, 

as shown in Figure 7 (hopt is indicated for the largest cell). 

 

Figure 5. Cosqθ pattern for q = 13 in comparison with pattern of horn antenna. 
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As seen in Figure 7, as h increases, ηill increases. This indicates that the non-

uniformity of the electric fields over the footprint reduces. In other words, for a fixed 

footprint (or a specific h), a smaller sensor cell experiences less variation in the incident 

electric field and hence a larger ηill is achieved (as shown). Further, as the sensor cell size 

increases, ηill reduces for a fixed illumination footprint for distances smaller than a few λ0 

(Figure 7a). However, as h exceeds a few λ0
, ηill becomes constant and hence insensitive to 

h since the electric field distribution begins to approximate that of the far field region and 

hence becomes more uniform, as illustrated in Figure 8 (shown over an area of 100 mm × 

100 mm). On the other hand, with regards to ηs, for a given sensor cell size, as h increases, 

more energy spills outside of the sensor cell. This causes a reduction in ηs, as is evident in 

Figure 7a. Since ηill and ηs are complementary to each other, hopt (indicated in Figure 7b) 

occurs when the product of ηill and ηs (or ηsc) is maximum. Otherwise, for other values of 

h: 1) when h<hopt, there is significant variation in the electric field across the sensor cell 

(i.e., low ηill), or 2) h>hopt and there is large spill-over energy outside of the sensor cell 

(i.e., low ηs). Hence, it is important to select an optimum h to avoid unnecessary non-

uniformity or spill-over. To this end, in Figure 7b, it can be seen that, the optimum h for a 

sensor cell size with dimensions of 1λ0 × 1λ0, 1.67λ0× 1.67λ0, and 3.34λ0× 3.34λ0, is 1.33λ0, 

2.2 λ0, and 4.43 λ0, respectively. 

3.1. APPLICATION OF SENSOR CELL EFFICIENCY 

As discussed earlier, localized illumination (and the concept of sensor cells) can be 

used to improve the resolution of FSS-based sensors in order to achieve a distributed 

sensing map of an area of interest. As such, three different sensor cells are selected 



 

 

72

(commensurate with those of Figure 7). Specifically, FSS sensors with 3×3 (30×30 mm2 

or 1λ0×1λ0), 5×5 (50×50 mm2 or 1.67λ0×1.67λ0), and 10×10 (100×100 mm2 or 

3.34λ0×3.34λ0) unit cells are considered with an illuminating source of the horn antenna of 

Figure b. 

 

Figure 6. Efficiencies in terms of θe for pattern of cos13.5θ. 

 

Figure 7. Efficiencies vs. distance for different sensor cell sizes (a) illumination and spill-
over efficiencies, (b) sensor cell efficiency.  
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Figure 8. Illumination pattern for (a) h = 1.33λ0, (b) h = 2.2λ0, and (c) h = 4.43λ0. 

 

Since the footprint (i.e. radiation pattern from the antenna) can only be adjusted (in 

this case) by changing the distance between the horn antenna and sensor, three distances 

from illumination source to the sensor are considered in order to capture three different 

illuminating footprints; namely, h = 1.33λ0, 2.2λ0 and 4.43λ0. The illumination footprints 

will be herein be referred to as high variation (HV), medium variation (MV), and low 

variation (LV), respectively, and are shown across the sensor area of 100 mm×100 mm in 

Figure. 8. These distances to achieve specific footprints are selected from Figure. 7 for the 

maximum ηsc. As discussed earlier, for each footprint (i.e., value of h), the optimum sensor 

cell size can be determined by obtaining the optimum illumination footprint (i.e., when ηsc 

is maximized). Similarly, for a given cell size, one of the illuminations of Figure. 8 will 

result in improved sensor cell performance over than other two. In other words, for each 

footprint of Figure 8 one footprint will have a maximum ηsc, while the two other footprints 

will have a smaller ηsc due either low ηs or low ηill. To better illustrate this, Figure 9 shows 

the efficiencies for each sensor cell size for the footprints of Figure 8. 

As seen in Figure 9a, the smallest sensor cell (1λ0×1λ0) has a maximum ηsc for the 

HV footprint (HVF). Further, as the footprint changes from HV to LV, the sensor cell size 
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is smaller than the optimal sensor cell size for the MV and LV footprints. Hence, ηill 

increases since the variation in footprint reduces and results in increased uniformity across 

the sensor cell. Conversely, ηs reduces because the sensor cell is small and more energy 

will be incident outside the cell. 

As shown in Figure 9b (sensor cell of 1.67λ0×1.67λ0), an ηsc occurs for the MVF (h 

= 2.2λ0). For the HVF (h = 1.33λ0), ηs approaches 100%. This indicates that the sensor cell 

is large enough to capture all incident energy (no spill-over energy outside of the sensor 

cell). However, the uniformity of the incident electric field decreases and hence ηill reduces. 

On the other hand, the LVF (h = 4.43λ0) provided more uniformity across the sensor cell 

but at the cost of an increase in spill-over energy since the optimal sensor cell size for the 

LVF is larger than the sensor cell considered. 

Lastly, for the largest sensor cell size (3.34λ0×3.34λ0), shown Figure 9c, a 

maximum ηsc occurs for the LVF (h = 4.43λ0). A reduction in h (or more variation in 

footprint, i.e. MVF or HVF) will increase the non-uniformity of the electric field across 

the sensor cell and consequently reduce ηill. In addition, since the size of sensor cell is 

larger than the optimal footprint for HVF and MVF, all of the energy is incident on the 

sensor and hence ηs approaches 100%. 

3.2. FREQUENCY RESPONSE OF SENSOR CELLS 

As mentioned earlier, the FSS sensor can be considered as consisting of many 

sensor cells and the sensor cell dimensions can be adjusted through adjustment of the 

footprint size. To this end and to isolate the effect of footprint dimensions on the sensor 

response, three individual sensors are considered with dimensions equal to the cells 
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Figure 9. Efficiencies of sensor cells when illuminated with different footprints for sensor 
cells with dimensions of (a) 1λ0×1λ0, (b) 1.67λ0×1.67λ0, and (c) 3.34λ0×3.34λ0. 
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adjacent cells may contribute to the detected frequency response. Therefore, to see the 
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space frequency response of the antenna (radiating into the environment within which the 

sensor resides) is necessary and therefore simulated. In this way, all environmental 

reflections can be coherently removed from the FSS response in order to obtain the 

normalized signal from FSS or the signal of interest (i.e. the response from the FSS 

specifically, or S11), as: 

|S11| = |S11,WholeStructure-S11,FreeSpace|          (3) 

where S11,WholeStructure is the total signal with the FSS present, and S11,FreeSpace is the signal 

when the illuminating source is radiating into free space (Figure 4a). 

The simulations of finite FSS sensor cells (dimensions as above) with the horn 

antenna illumination shown in Figure 8 were conducted using the time domain solver in 

CST Microwave Studio©. The sensor cells are chosen as above and are illuminated by 

HVF, MVF, and LVF. The resulting frequency responses are normalized per (3) and shown 

in Figure 10. As discussed earlier in detail, the relative sensor cell and footprint size affects 

the sensor cell efficiencies. Hence, the frequency response of sensor cells for different 

footprints can be categorized in three cases as follows: 

1. The optimum illumination footprint is smaller than the sensor cell size and ηill < ηs; 

2. The optimum illumination footprint is equal to the sensor cell size and ηsc is maximum; 

and 

3. The optimum illumination footprint is larger than the sensor cell size and η ill > ηs. 

As seen in Figure 10a, for Case 1 where ηill < ηs, the frequency response of the 

sensor cells with 5×5 and 10×10 unit cells and a HVF are very similar. This similarity 

occurs since the number of illuminated unit cells are the same (limited by the HVF), even 

though the size of sensor cell increases. However, when the illumination footprint changes 
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to MVF for the sensor cell with 10×10 unit cells, the frequency response shows a slightly 

larger resonant frequency and depth. This is due to illuminating more unit cells within the 

sensor cell (i.e., a wider footprint). 

This behavior differs in Figure 10b, where the optimum sensor cell efficiency (ηsc) 

is achieved (Case 2). That is to say, even though the sensor cell efficiency is optimized for 

all three sensors considered, the resonant frequency for the sensor cell with 3×3 unit cells 

is slightly less than that of the other two (which are near the ideal response of 10 GHz). 

This is due to the fact that the number of unit cells (3×3) on the sensor cell is not sufficient 

to achieve optimum (i.e., ideal) FSS behavior, whereas the other two sensors are 

converging (at 9.91 GHz) to the ideal resonant frequency of 10 GHz. 

The results for Case 3, when ηill > ηs, are shown in Figure 10c. Here, the illumination 

footprint is very uniform but the illuminating energy “spills outside” of the sensor cell. For 

example, for the 3×3 sensor cell, when illuminated by the LVF, the frequency response is 

~10 dB less than the other two scenarios considered. This is due to an increase in spillover 

energy since the sensor cell size is much smaller than the footprint. More specifically, in 

this case, the area encompassed by the sensor cell is only 9% of the area illuminated by the 

footprint, and as such, a low amount of signal return less energy is reflected back to the 

antenna by the sensor. However, the illumination uniformity is high and therefore the 

sensor cell properly resonates. For the other two sensor cells, the slight decrease in resonant 

frequency is attributed to the increase in footprint variation. When the same sensor is 

illuminated by an MVF (which is larger than the sensor cell size), the frequency response 

is improved regarding the signal level and resonates at 9.88 GHz. Similarly, the sensor cell 
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with 5×5 unit cells when illuminated by a larger footprint (here, LVF) than its size, the 

sensor cell resonates at 9.89 GHz. 

 

Figure 10. Simulated |S11| of three different FSS sensors when (a) ηs> ηill, (b) max ηSC, 
and (c) ηs< ηill. 
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4. MEASUREMENT RESULTS 

To apply the modified efficiency approach developed above and verify the 

simulation results, FSS sensors (of the same dimensions as above) with 3×3, 5×5 and 

10×10 unit cells were fabricated, as shown in Figure 11. The S11 from each was measured 

by connecting a source (horn antenna) to a calibrated port of an Agilent 8510C vector 

network analyzer and placed such that the illumination patterns of Figure 8 were achieved. 

The measurements were performed on 5 sensors of each size, with the average |S11| shown 

in Figure 12 in terms of the efficiencies (as was done for the simulated results of Figure 

10). In addition, the normalization procedure of (3) is utilized with the measured results 

(including that of the horn radiating into freespace) to remove the effect of the background. 

It can be seen in Figure 12a that when the optimum illumination footprint is smaller 

than the sensor cell size and hence ηill < ηs, (Case 1), the frequency response is in agreement 

with simulation. However, the resonant depth is larger which is attributed to measurement 

anomaly, as resonant depth (both simulated and measured) is challenging to capture 

precisely, especially in highly resonant cases. In Figure 12b (Case 2), the results of the 

sensor cells when illuminated by an optimum illumination footprint (and hence ηsc is 

maximum,) is shown. When comparing these results with the simulated results of Figure 

10b, there is good agreement between the 5×5 and 10×10 unit cells. The minor increase in 

resonant frequency between the measured and simulated result for the 3×3 unit cell sensor 

is attributed to measurement error. Lastly, for the results of Figure 12c, where the 

illumination footprint is larger than the sensor cell size and ηill < ηs (Case 3), the measured 

results are also in good agreement with the simulation results. 
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Figure 11. Photograph of the FSS sensors. 

 

Figure 12. Measured |S11| of three different FSS sensors when (a) ηs< ηill, (b) max ηSC, 
and (c) ηs> ηill. 
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Further measurements were performed on a sensor containing 15×20 unit cells 

(with a photograph of the sensor shown in Figure 13). This sensor contains a small area 

(3×3 unit cells) within which the unit cell dimensions have been increased by 5% along the 

y-direction in order to model the effect of unidirectional localized strain. This area is 

indicated by a red square in Figure 13. To this end, measurements were performed using 

the three illumination footprints of Figure 8 where the footprints illuminate 3×3, 5×5 and 

10×10 unit cells, respectively. Moreover, to illustrate the localized sensing capability, 

measurements were performed when the antenna is in line with the strained area of the 

sensor and offset (in the negative x-direction). The sensor response is shown in Figure 14. 

As can be seen in Figure 14a, the sensor response, when directly illuminated by an HVF 

(~3×3 unit cell footprint), the frequency response shows a resonant frequency of 9.51 GHz. 

When the illuminating antenna is moved off-center, the frequency response resonates at 

9.61 GHz and does not change. This indicates that the strained area is not detected. This is 

as expected as it is not contained within the footprint. The sensor response for a MVF 

(~5×5 unit cell footprint) shows a similar (to Figure 14a) behavior, as is illustrated in Figure 

14b. In this case, when the source is offset by 35 mm, the illumination still illuminates a 

few strained elements. However, the frequency response is dominated by the unstrained 

elements and the received power near the edge of the footprint (i.e., location of the strained 

elements) is ~ 6dB less than that of the center of footprint (see Figure 8b). Therefore, the 

effect of the strained elements is minimal and the frequency response is similar to those 

farther than 35 mm from the strained. 
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Figure 13. Photograph of a large FSS sensor with 3×3 strained elements indicated in the 
red square. 

 

Figure 14. Measured |S11| of FSS sensor when illuminated by (a) HVF, (b) MVF, and (c) 
LVF. 
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5. CONCLUSION 

Frequency selective surface (FSS)-based sensors have shown promise for 

numerous structural health monitoring (SHM) applications due to their sensitivity to the 

FSS geometry, substrate properties and environment. Additionally, their ease of 

implementation, planar structure and wireless interrogation are also positive attributes for 

SHM sensors. From a sensing perspective, the resolution of an FSS sensor is important as 

it relates to localized sensing applications. Therefore, this paper has studied (through 

simulation and measurement) the effect of illumination pattern and its footprint on the FSS 

sensor performance through the illumination and spill-over efficiencies of the sensor. It is 

shown that the optimum sensor cell dimensions (and hence maximum achievable 

resolution) for a given footprint is obtained when the maximum sensor cell efficiency 

(product of illumination and spill-over efficiencies) occurs. This is further supported 

through simulation and measurement results of individual sensor cells and a larger sensor 

that indicate the same. 
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IV. ADAPTIVE RESOLUTION FOR LOCALIZED FSS-BASED SENSING BY 
SYNTEHTIC BEAMFORMING 

ABSTRACT 

Recently, frequency selective surface (FSS)-based sensors have shown potential for 

structural health monitoring due to their sensitivity to changes in element geometry, inter-

element spacing, substrate properties, and local environment. In addition, these sensors are 

remotely interrogated and are planar in design, thereby providing a wireless sensing 

solution that can cover large areas. Traditionally, FSS sensors are analyzed assuming a 

uniform (plane wave) illumination. However, practically speaking, the sensor will be 

illuminated with a non-uniform excitation. In this way, the resolution of the sensor is 

limited to the illumination pattern (footprint) on the sensor. As such, a flexible illumination 

pattern is advantageous as it relates to the ability to interrogate the sensor on a localized or 

comprehensive basis. To this end, this paper considers a synthetic beamforming approach 

as a solution for localized sensing applications. This approach is proposed to generate an 

arbitrary beam shape with a desired footprint. Moreover, the illumination and spill-over 

efficiencies of the synthetic beam are defined, simulated, and discussed. The results show 

that a minimum focal area of 1λ0 × 1λ0 (3×3 unit cells for the FSS sensors considered here) 

is essential to achieve a spill-over efficiency of greater than 80%, thereby reducing the 

contribution of other neighboring unit cells on the sensor response. In addition, the 

illumination efficiency when a synthetic beam is utilized for illumination is greater than 

80% due to the uniformity of the synthetic beam. Representative measurements were also 

performed on a sensor with a simulated strain profile. 
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1. INTRODUCTION 

Frequency selective surfaces (FSSs) are periodic arrays of resonant structures (such 

as a patch or loop) located on a planar surface. When these arrays are illuminated with 

electromagnetic energy, a specific transmissive or reflective frequency response results [1]. 

When designed to operate in reflection mode, one-sided measurements are inherently 

facilitated. This is often of interest since some applications do not include access to both 

sides of the structure under test. Such one-sided sensors typically include a ground plane 

beneath the sensor substrate, which also provides an inherent insulating quality to the effect 

of the electromagnetic (material) properties of the structure upon which the sensor has been 

placed. 

FSSs have traditionally been used for numerous applications including filters [2], 

reflectors and lenses [3], absorbers [4], [5], and radomes [5], [6]. In addition, FSS-based 

sensors have recently shown potential for applications in structural health monitoring 

(SHM) since the particular frequency response of an FSS is sensitive to the element 

geometry, inter-element spacing and substrate properties, along with the local 

environment. More specifically, these geometrical changes or changes in the substrate 

properties (dielectric constant, loss tangent, and thickness) can change the frequency 

response according to changes in conductor, dielectric and radiation losses. Hence, the 

frequency response features such as resonant depth, resonant frequency or quality factor 

can be monitored to determine the physical and geometrical changes on the FSS [7]. As a 

result, FSS-based sensing has shown promise for normal and shear strain sensing [8], crack 

detection [9], and detection of delaminations/disbonds within layered structures [10]. It is 
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also possible to monitor multiple measurands with a properly designed FSS-based sensor, 

such as the FSS sensor of [11] that has been designed for concurrent temperature and 

(normal) strain sensing. FSS sensors can also include active components. In this way, the 

sensor response can be modulated (or “tagged”) and hence clearly delineated from other 

signals present [12]. Furthermore, FSS-based sensing has also seen application in the 

terahertz regime for measurement of paper thickness and humidity [13]. Another similar 

area of study is metamaterial-based sensors. Metamaterials are synthetic composite 

materials that can be considered similar to FSSs when used within an array of elements and 

externally illuminated. An example of metamaterial-based sensors is the double split ring 

resonator-based metamaterial for strain sensing [14], and a multi-functional metamaterial 

sensor for sensing of moisture, density and temperature [15]. Also, a metamaterial-based 

sensor for dual axis strain sensing in terahertz regime is presented in [16]. 

2. BACKGROUND 

Generally speaking, sensor resolution is an important parameter for any sensor 

design. As it relates specifically to FSS-based sensing, the resolution is related to the 

illuminating excitation and sensor dimensions [18], [19]. As it relates to both of these 

concepts, theoretically, FSS analysis is conducted assuming the FSS to be an infinite two-

dimensional (2D) array of elements that is illuminated by a uniform plane wave (i.e., an 

ideal FSS). However, in practice, an FSS is dimensionally finite with a finite number of 

elements. As a result, the surface current induced on the outer elements is different than 

the current induced on the central elements [17]. A similar deviation from the theoretical 
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is created due to a (practical) non-uniform excitation such as that from a horn antenna 

(rather than the uniform plane wave illumination). In fact, this is true even if the FSS is 

infinite in dimensions. 

From a practical point-of-view, if an FSS-based sensor is utilized for sensing 

applications, exciting the FSS sensor with a sufficiently wide and uniform illumination 

pattern will excite all elements on the FSS simultaneously, resulting in low sensor 

resolution (as all elements will contribute to the FSS response). Thus, the sensing resolution 

will be equal to the FSS dimensions in this case. As a result, it is impossible to determine 

specific locations that are contributing to the comprehensive sensor response. That is to say 

(for example), a strain or temperature profile within the sensing area (i.e., FSS dimensions) 

cannot be quantified. Hence, if the sensor is considered to consist of many sensor cells 

(sub-FSSs) that can be illuminated on a local scale, the resolution of the sensor will be 

increased. To this end, localized FSS-based sensing has been considered in terms of the 

illumination footprint (on the FSS) and number of unit cells within the illuminated area 

[18], where the illumination footprint from a horn antenna is defined as containing 75% of 

the incident energy (with 25% of the radiated energy incident outside the sensor area of 

interest and hence not contributing to the desired sensor response). As such, the 

illumination approach may be improved by illuminating the area of interest with a highly 

focused (and low side lobe level) beam which illuminates uniformly over the area of 

interest. In this way, the (wasted) energy that is incident beyond the sensor area of interest 

is reduced, as is the unwanted effect of neighboring unit cells on the sensor cell response. 

To this end, in this paper, the potential for utilizing a synthetically focused beam as the 

illuminating source for localized FSS-based sensing is studied. This work is an extension 
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of [19], which focused on using synthetic beamforming (SBF) to generate a highly focused 

beam by focusing on a single unit cell within an FSS sensor. In this work, the SBF method 

is extended to generate a focused illumination footprint with an arbitrary beamwidth in 

order to provide flexibility in the illumination footprint dimensions and hence flexible 

resolution. 

3. SYNTHETIC BEAMFORMING FOR FSS-BASED SENSING 

In order to create a highly directive (i.e., focused) illumination pattern with a 

desired beamwidth and low side lobe level (SLL) for localized FSS-based sensing, the 

synthetic beamforming approach is used. Generally speaking, SBF techniques can be used 

to simulate a large synthetic aperture from which a highly directive beam can be obtained 

[19]-[20]. There are numerous techniques that can be used to realize SBF including raster 

scanning a single radiating antenna [19]-[20], or using mechanical or phased array scanning 

[21]. While a phased array approach lends itself to practical application, such systems are 

often custom designed per specific applications at considerable costs. Hence, for ease of 

use and to show proof-of-concept, in this work, SBF is achieved by raster scanning a small 

and wide-beamwidth antenna (open-ended waveguide, referred to as the transceiver) over 

the FSS sensor, as is illustrated in Figure 1. Specifically, a scanning aperture (i.e. raster 

scan path for the transceiver) located a distance, h, above the focal plane is shown, with 

step sizes for the raster scan in the x- and y-directions of ∆x and ∆y, respectively. The raster 

scan plane (and hence location of the transceiver) is referred to as the aperture plane, and 

the plane of the sensor, the focal plane. 
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Figure 1. Schematic of two-dimensional scan for FSS-based sensing: a) 3D 
representation, and b) side view. 

 

Using raster scanning, the complex reflection coefficient at the transceiver (S11) can 

be measured. Then, the reflection coefficient or reflectivity function (Γ) at the focal plane 

can be found from the measured S11 [19]. Within this process, the effect of the two-way 

phase difference (due the round-trip distance from each scan location on the aperture plane 

to a focal point on the focal plane) must be considered. This phase delay is introduced as 

the point spread function (PSF) in [22], and is given as , ( , , , , , , )i j i jPSF x x y y z z h f    =

,2 | |i jj k R
e


; where 'ix and ' jy indicate the location of focal points, and x and y are the 

location of the transceiver antenna on the aperture plane in the x- and y-directions, 

respectively, k is the wave number equal to 2π/λ0, λ0 is the wavelength of the operating 

frequency (for FSS-based sensing, the resonant frequency of the FSS), and Rij is the 

distance between each scan location on the aperture plane and a focal point on the focal 

plane and is given as 2 2 2

, ( ') ( ')i j i jR x x y y h     . Hence, S11 can be defined as the 2D 

convolution of Γ and PSF as follows: 

(a) (b) 
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' ' ,

( , , , 0)
( , , , )

( , , , , , , )x y i j i j

S x y f z
x y z h f

PSF x x y y z z h f
 

   
     

         (1) 

Here, in order to create a focused beam (from S11) at a particular focal point, Γ can 

be found by back propagating the measured backscattered signal, S11(x, y, z = 0, f), to the 

focal point in order to correct the phase. The phase correction for the component of S11 

from each array element (transceiver location) is related to the distance between the focal 

point and the array element on the aperture plane (or the conjugation of the PSF, PSF*). 

Hence, Γ can be found from (2) as: 

*

11( , ) ( , , 0, )( )
x y

i jz h f S x y z f PSF                            (2) 

It is possible to create a focused beam at all focal points (x’, y’) within the desired 

focal plane and obtain [Γ] for all locations of interest on the focal plane simultaneously. To 

this end, a synthetic beamforming technique utilizing the fast Fourier transform (FFT), 

similar to the synthetic aperture radar (SAR) algorithm of [20], can be used as follows: 

  1
11( , , , ) ( , , , ) . zjK hx y z h f FT FT S x y z f e                               (3) 

where 2 2 2
4

z x y
K K K K   , 2 /

x
K x   and 2 /

y
K y   and are the wave numbers in the z, x, 

and y directions, respectively. As mentioned above, the SBF approach for a single focal 

point for FSS-based sensing is discussed in [19]. However, generating a synthetic beam 

(SB) with an arbitrary focal area is advantageous in that this approach can provide an 

adjustable illuminating footprint (and hence resolution) for the sensor. In this way, the 

changes on the sensor can be inspected on a small or large scale, depending on the 

illumination footprint. In addition, only one raster scanning measurement is required, and 

then, in conjunction with the adaptable SBF approach, different synthetic beams can be 
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generated synthetically off-line and hence the corresponding sensor response can be 

calculated as needed. 

For clarity, it should be noted that the focal area represents the area within which 

the focal points are located (and are separate by the defined step sizes used in the SBF 

algorithm.). The focal area is also finite and has defined boundaries. This is in contrast with 

the illuminating footprint that represents the portion of the SB that is focused within the 

focal area along with the additional portion of the SB that is incident outside of the focal 

area. The footprint, therefore, does not have finite physical boundaries. 

The focal area of the SB alone determines the achievable resolution of FSS-based 

sensor. However, the sensor response may differ when one unit cell vs. multiple unit cells 

are illuminated. More specifically, when a highly focused beam is used to illuminate an 

FSS sensor, it may achieve the highest possible resolution. However, if it illuminates only 

one unit cell within the sensor, FSS behavior will not be achieved since this (theoretical) 

response is related to the unit cell geometry and interaction between adjacent cells. To 

capture this inter-element effect, multiple focal points may be considered to generate a 

beam focused on an area larger than one unit cell, as is illustrated in Figure 2.. In this way, 

by increasing the focal area size, the frequency response may be improved. Hence, the 

method presented in [19] and also provided here in (1) and (2) can be expanded in such a 

way as to create a synthetic beam with a specified focal area. To this end, the summation 

of ,
( , , , , , , )

i j i j
PSF x x y y z z h f    for all a set of focal points representing a focal area is defined 

as ( , , , )J x y z f  and is given as: 

,( , , 0, ) ( , , , , 0, , )i j i j
x y

J x y z f PSF x x y y z z h f
 

                                  (4) 
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Therefore, by substituting ( , , 0, )J x y z f  from (4) into (2), Γ at the focal area can be found 

as (5): 

11( , ) ( , , 0, ) ( , , 0, )i j i j
i j

z h f S x y z f J x y z f                                  (5) 

where *( , , , )J x y z f is the conjugate of ( , , , )J x y z f . 

 

Figure 2. 3D representation of schematic of two-dimensional scan for FSS-based sensing. 

 

To this end and to generate a simulated synthetic beam, the synthetic aperture size 

is considered to be 250 × 300 mm2 (8.34 × 10 λ0
2). Since the FSS sensor considered later 

is this work resonates in the X-band (8.2 – 12.4 GHz), the raster scan step sizes, ∆x and ∆y, 

were selected to be 5 mm (each) in order to meet the Nyquist sampling criteria (step size 

must be smaller than λ/4 at the highest operating frequency of 12.4 GHz) [20]. The step 

size also defines the dimensions of one focal point (i.e., 5×5 cm2 in this case). In addition, 

four different focal areas are considered to represent different achievable resolutions, 

namely, 1, 5×5, 10×10, and 20×20 focal points. As discussed in [19] for a SB focused at a 
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single focal point, the effect of distance between the aperture and focal planes is more 

substantial [20]. In other words, the footprint is increased with increasing h. Therefore, 

since in this work, the focal area is expanded from that of [19] (i.e., one focal point vs. 

multiple), the effect of h on the illuminating footprint is considered here. 

Another important property of an SB illumination is the SLL. More specifically, 

when the SLL of a synthetic beam is large, the frequency response of the illuminated area 

on the sensor may be affected by those elements outside of the main beam that are 

illuminated by a side lobe. In this way, the intended resolution is degraded. Also, as 

discussed in [19], the SLL of a SB (footprint of one focal point) is reduced with the 

application of a Hanning window. However, in [19], a symmetric Hanning window 

(symmetric distribution with maximum at the center of focal plane and minimum at the 

edges [23]) was used. This symmetric window caused a widening of the illuminating 

footprint for SBs focused off-center within the focal plane, specifically for larger h. Hence, 

to avoid this effect, an asymmetric Hanning window is used in this work with the maximum 

located at the center of focal area (footprint), as opposed to the center of the full focal plane. 

In this way, the effect of the Hanning window on the footprint of the synthetic beam with 

multiple focal points is studied, with the results valid for focal points located anywhere 

within the focal plane. 

To this end, the reflectivity function on the focal plane (Γ) is simulated with and 

without the application of a Hanning window at 10 GHz, with the results shown in Figure 

3 and Figure 4 for an h of 1λ0 and 5λ0, respectively. The results are represented along the 

x-axis since the response is symmetric in both directions. As seen in Figure 3, with the 

application of a window, the SB has a large SLL (~ -10 to -15dB as shown in Figure 3b 
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and d). As seen, for each SB with specific focal area, the inclusion of the Hanning window 

reduces the SLL. In addition, the Hanning window improves the uniformity of |Γ| across 

the focal area, as is shown in Figure 3b and c. 

 

Figure 3. Synthetic beam with and without Hanning window when h = 1λ0 and 
beamwidth with (a) 1 focal point, (b) 5×5 points, (c) 10×10 points, and (d) 20×20 points. 

 
 

Next, by increasing h from 1λ0 to 5λ0, as shown in Figure 4, the SB is widened. The 

beam is further widened by the application of the Hanning window. Widening the beam 

means a larger illuminating footprint than the desired focal area is achieved, which 

increases the energy deposited outside of the intended focal area. This externally-deposited 

energy is larger for the SBs with smaller focal areas, as seen in Figure 4 a and b (with a 

single and 5×5 focal points, respectively). Also, the uniformity of |Γ| over the focal area is 

worse for h = 5λ0 with the Hanning window. For example, SBs (i.e., |Г|) with more focal 
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points (Figure 4c and d), are less uniform at edge of the focal area due to a widening of the 

footprint in comparison with the beams in Figure 3c and d for smaller h. However, in Figure 

4 it can be seen that |Γ| outside of the focal area reduces to less than -40 dB when the 

Hanning window is applied. This can improve the performance of sensor response 

(specifically, the resolution) since the radiated energy is essentially solely incident upon 

the focal area of interest and not beyond it. To this end, in order to quantify the uniformity 

and degree of focus of the illuminating footprint, efficiency metrics common to reflectarray 

antennas [24]-[25] are adapted for FSS-based sensing, as is discussed next. 

 

Figure 4. Synthetic beam with and without Hanning window when h = 5λ0 and 
beamwidth with (a) 1 focal point, (b) 5×5 points, (c) 10×10 points, and (d) 20×20 points. 
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3.1. EFFICIENCY OF ILLUMINATING BEAM 

In reflector and reflectarray antenna, the aperture efficiency metric is used to design 

an efficient antenna by a proper selection of the aperture size and the illumination beam 

pattern [24]-[25]. For reflectarrays in particular, the aperture efficiency is defined as 

product of two additional quantities known as illumination efficiency, ηill, and spill-over 

efficiency, ηs. The illumination efficiency (ηill) quantifies the uniformity of the electric field 

distribution over the aperture, and the spill-over efficiency (ηs) quantifies the portion of the 

total radiated energy that is incident within the focal area (i.e., reflectarray aperture). As it 

relates to FSS-based sensing, when a high ηill is achieved, the effect of nonuniform 

excitation on the sensor response will be reduced/minimized. Likewise, for a high ηs, the 

effect of adjacent sensor cells on the response from a given cell of interest will be 

reduced/minimized. Hence, in order to apply this analysis approach to FSS-based sensing, 

the sensor cell size/illumination footprint of the focused beam is considered as the aperture 

size. Here, the uniformity alone of the illuminating beam is quantified through ηill (unlike 

that of [25] that included element effects). Hence, ηs and ηill are used to quantify the effect 

of windowing on 1) the suppression level of |Γ| beyond the focal area for different focal 

area sizes, and 2) the uniformity of |Γ| on the focal area within the focal plane. 

As shown in [24]-[25] for reflector antennas, when an illuminating source with a 

radiation intensity (pattern) represented by cosqθ (where θ is the elevation angle and the 

directivity of the beam is directly proportional to q) is considered as the illuminating 

source, ηill and ηs are complementary (meaning an increase in one results in a decrease in 

the other). In other words, when ηs is large (meaning the radiated energy is 

focused/contained within the reflectarray aperture), ηill will be low (resulting from the high 
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degree of non-uniformity of the field across the same aperture). Hence, the reflector 

antenna can be designed in such a way to achieve maximum total efficiency by proper 

selection of aperture size, and illumination source and its pattern. As such and relating this 

concept to FSS sensing with SBF, using a synthetic beam illumination, the uniformity of 

the SB across the focal area and hence the footprint is high and therefore ηill is improved. 

In addition, the spillover efficiency is improved since a majority of the incident energy is 

focused within the focal area. Thus, to find the efficiency of the synthetic beam generated 

by the SBF approach, the simulated |Γ| (i.e., the synthetic beam) on the focal plane (in terms 

of S11 and J, see (5)) is used. In this way, ηs and ηill are defined as follows: 
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where the synthetic aperture is considered as an array with M×N elements, and the number 

of focal points is m×n. As mentioned before, the spacing between elements of the synthetic 

aperture is 5 mm in order to satisfy the Nyquist sampling criteria. However, to calculate 

efficiencies, a step size of 1 mm is used in order to increase the number of sampling points 

in order more accurately characterize the radiated energy within a desired focal area, the 

total radiated energy, and the uniformity of incident field within the focal area. To this end 

and by using (6), ηs is calculated in terms of the focal area as shown in Figure 5 for cases 
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without and with Hanning windows applied for h = 1λ0 and 5λ0. As can be seen, ηs is very 

low for smaller focal areas, specifically for one focal point. This occurs because the 

illumination footprint is larger than the focal area, which results in an increase in spill-over 

energy (deposited outside the focal area). Also, as explained earlier, applying the Hanning 

window to the SB for higher h widens the illuminating footprint (specifically for SBs with 

a smaller focal area), meaning the illuminating footprint is larger than the focal area. 

Therefore, this causes more spill-over energy (and hence a lower ηs), as is seen in Figure 5 

for h = 5λ0 with a Hanning window for focal areas less than ~2 λ0
2 (and is particularly 

evident for 1 λ0
2 or less). As such, while the Hanning window does reduce SLLs, this 

reduction causes a marginal improvement in ηs on the order of 2% for all cases shown in 

Figure 5. In addition, for small focal areas such as one focal point (~0.03 λ0
2), ηs is ~60% 

and <40% for 1λ0 and 5λ0, respectively, as is also evident in Figure 5. The results of Figure 

5 also indicate that when the focal area exceeds one focal point, ηs increases to more than 

80% and 70% for h = 1λ0 and 5λ0, respectively. However, the rate of increase of ηs reduces 

as the focal area increases. This is attributed to the fact that as the focal area increases, it 

approaches the total dimensions of the focal plane. As such, for this case, a majority of the 

incident energy is located within the focal area and minimal energy is located outside this 

region. In other words, as the focal area approaches the dimensions of the focal plane, the 

rate of increase in energy confined within the focal area will reduce and hence so does the 

rate of increase of ηs. 

Next, using (7), ηill is calculated and shown in Figure 6. It can be seen that ηill also 

increases as the focal area increases. This follows what is shown in Figure 3 and Figure 4, 

where improved uniformity of the illuminating beam occurs as the focal area increases. 
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However, it is seen that when the Hanning window is applied to the SB for h = 5λ0, ηill 

decreases by a maximum of 3%. This is attributed to the reduction in the discrete boundary 

of the SB within the focal area (i.e, more gradual boundary), as shown in Figure 4. 

Lastly, the total efficiency (i.e., product of ηs and ηill shown in Figure 5 and Figure 

6) is shown in Figure 7 for completeness. Overall, the same trends of Figure. 5 and Figure 

6 are evident and discussed above. Ultimately, unlike traditional reflectarray efficiency 

analysis where ηs and ηill are complementary [25], both efficiencies can be improved 

individually, as has been discussed above with regards to Figure. 5 and Figure 6. In this 

way, ηtotal is also improved through the application of the SBF approach. 

 

Figure 5. Spill-over efficiency comparison of synthetic beam with uniform and Hanning 
windows at h of 1λ0 and 5λ0 in terms of focal area size. 

 
 

3.2. APPLICATION OF SBF FOR LOCALIZED FSS-BASED SENSING 

In order to illustrate the application of the flexible SBF approach to FSS-based 

sensing, simulations were performed at X-band (8.2 – 12.4 GHz) considering a conductor 

backed square loop unit cell designed on an FR-4 substrate (relative permittivity of 4.2 and  
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Figure 6. Illumination efficiency comparison of synthetic beam with uniform and 
Hanning windows at h of 1λ0 and 5λ0 in terms of focal area size. 

 

Figure 7. Total efficiency comparison of synthetic beam with uniform and Hanning 
windows at h of 1λ0 and 5λ0 in terms of focal area size. 

 

 

loss tangent of 0.023), as shown in Figure 8, along with the simulated resonant response. 

The unit cell has a resonant frequency of 10 GHz. The dimensions of the unit cell, as 

illustrated in Figure 8a, are L = 10 mm, a = 4.95 mm, w = 0.4 mm and t = 32 mils. 

A potential FSS-based sensing application is that of unidirectional strain sensing [7], [11], 

[12]. To this end, the frequency response of the sensor of Figure 8, with and without the 

presence of 5% unidirectional strain (assuming strain and polarization are parallel), is 

shown in Figure 8b. As seen, the unstrained sensor resonates at 10 GHz (as designed) with 

a resonant depth of approximately -20 dB. In addition, when under 5% unidirectional 

1 FP 
5×5 FPs 
7×7 FPs 
10×10 FPs 

20×20 FPs 

0 2 4 6 8 10 12

Focal Area(
0
2)

20

40

60

80

100

w/o win., h = 1
0

w/ win., h = 1
0

w/o win., h = 5
0

w/ win., h = 5
0

1 FP 
5×5 FPs 
7×7 FPs 

10×10 FPs 
10×10 FPs 



 

 

103

strain, the resonant response reduces by 350 MHz (due to the increase in loop and unit cell 

dimensions). 

 

Figure 8. (a) Square loop unit cell and (b) |S11| of ideal FSS sensor. 

 

As it relates to the goals of this work (i.e., localized sensing via the SBF approach), 

the FSS sensor of Figure 8 with 15×20 unit cells (see Figure 9a) was fabricated and 

measured, with the results shown in Figure 10. In order to model localized strain, the 

dimensions of 5×5 elements within the sensor were altered in order to mimic a 5% strain 

in the x-direction (strained elements indicated within the red square in Figure 9). To 

compare the sensor response illuminated by a highly focused beam with a wider beam, two 

beams were generated (as shown in Figure 3a and b) using the SBF approach for h = 1λ0. 

The illumination footprint for this beam for one focal point is approximately 1×1 

cm2
 (~ 1×1 unit cell) and the wider beam for 5×5 focal points has a illumination footprint 

of approximately 30×30 mm2
 (~ 3×3 unit cells). As discussed in Section 3.1, the 

efficiencies for a synthetic beam (h = 1λ0), with or without the application of a window, 

are very similar. However, the calculated total efficiencies (Figure 7) for an illumination 
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ηtotal of ~39% and ~78%, respectively. Thus, these two illumination footprints are selected 

in order to show that the sensor response is improved when it is illuminated by a wider 

focal area since it has a higher ηtotal (see Figure 7). Of course, a beam with a focal area 

wider than 5×5 focal points could be selected and will have a higher ηtotal (80% to 90%, as 

seen in Figure 7), but at the cost of reduced resolution. 

To begin, measurements were made by measuring the reflection response of the 

sensor with a uniform focused illumination using the SBF approach. Specifically, the 

focused illumination beam was created by raster scanning an X-band open-ended 

waveguide (OEWG) with aperture dimensions of 10.16 × 22.86 mm2 located a distance of 

h = 1λ0 from the FSS sensor with a step size of 5 mm in the x- and y-directions. In this way, 

an overall synthetic aperture of 250 × 300 mm2 is considered. The synthetic aperture size 

is considered 100 mm larger (in both directions) than the width and length of the sensor 

with dimensions of 150 × 200 mm2 (centered with respect to the sensor). Additionally and 

as above, a Hanning window is applied to the measured S11 over the synthetic aperture 

(with a step size of 5 mm in the x and y directions) for all results presented in this Section. 

 

 

Figure 9. Photograph of FSS sensor with the localized strained area indicated in the red 
square. 
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The frequency response of the FSS sensor is calculated from the measured data 

when it is illuminated by synthetic beams at different locations over the FSS sensor. The 

2D representation of the resonant frequency and depth (process of (5) applied for each 

measurement location) over the sensor (focal plane) is shown in Figure 10. As seen in 

Figure 10a and c, the resonant frequency of the sensor (shown in GHz) is shifted at the 

location of the strained elements for both illumination footprints. More specifically, the 

resonant frequency in the area without strain is ~9.62 GHz, and in the location of strain 

reduced to ~9.27 GHz (350 MHz frequency shift which is similar to the expected frequency 

shift of Figure 8b). As seen in Figure 10a, the area with frequency shift on the 2D 

representation of the resonant frequency is more similar to the exact area of strained (Figure 

9) when the sensor is illuminated by the wider illumination (Figure 3b). However, the 

sensor response with a highly focused illumination (one focal point, see Figure 3a) shown 

in Figure 10c shows a larger strained area but a reduction in frequency shift (25 MHz less 

than the ideal sensor response of Fig 9b and the response of Figure 10a). This is because 

the wider illumination footprint will illuminate a larger area including more unit cells 

(~3×3 unit cells) and the frequency response will be more similar to the ideal FSS response. 

In addition, as it relates to resonant depth, Figure 10b and d show a change in 

resonant depth that is indicated the figures as a lighter/white square ring. The location of 

this square ring (Figure 10b and 10d) indicates the boundary between the strained and 

unstrained areas on the sensor and hence indicates where the frequency shift occurs in the 

sensor response. 
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Figure 10. The resonant frequency (a) and depth (b) from sensor with synthetic 
illumination footprint of 5×5 number of focal points. The resonant frequency (c) and 

depth (d) from sensor with synthetic illumination footprint of a single focal point. 

 

4. CONCLUSION 

Frequency selective surface-based sensors have recently been considered as a 

structural health monitoring solution due to their sensitivity to geometry and local 

environment, in addition to their planar structure and wireless interrogation. In order to 

utilize such sensors for localized sensing, a focused beam is needed to illuminate the sensor 

and achieve a high resolution. Also, such sensors can effectively include an adaptable 

resolution, as the resolution can be adjusted by changing the illumination footprint. To this 

end, this paper investigated the synthetic beamforming approach as a solution for localized 

FSS sensing with a flexible uniform focused illumination beam. To quantify the 
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improvements offered by the addition of this approach, the definitions of illumination and 

spill-over efficiency were modified (from those used with reflectarray antennas). The 

results shown that for small focal areas, the spill-over efficiency reduces. In addition, the 

illumination efficiency is greater than 75% for all focal areas considered. Additionally, this 

approach was applied to an FSS sensor with 15×20 unit cells that included 5×5 strained 

elements. Measurement results indicate that localized sensing via the SBF approach was 

successfully applied, as evidenced by the detected area under localized strain. 
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SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

2.1. CONCLUSIONS 

The work within this dissertation focuses on the fundamentals of frequency 

selective surfaces from a sensing point-of-view in order to advance the science behind FSS-

based sensing. In last decade, FSSs have shown potential for wireless sensing including 

crack detection, strain sensing, inspection of layered structures, concurrent temperature and 

strain sensing, etc. FSSs are uniquely well-suited for many sensing applications due to their 

planar structure and ease of implementation, in addition to their sensitivity to FSS element 

geometry, inter-element spacing and substrate properties (permittivity, loss tangent and 

thickness). 

FSSs are analyzed theoretically as a unit cell with periodic boundary conditions in 

order to mimic an infinite array of unit cells with a uniform illumination. However, in 

practice, an FSS is dimensionally finite and undergoes a non-uniform illumination pattern. 

As such, the differences between the theoretical and practical cases must be understood in 

order to utilize FSSs for sensing. To this end, the work presented within this dissertation 

focuses on 1) studying the effect of element geometry and substrate properties on the 

theoretical FSS response; 2) defining performance metrics for FSS-based sensing in order 

to evaluate and quantify the response of an FSS sensor; 3) determining the maximum 

achievable resolution of FSS-based sensors for a given illumination pattern; and 4) 
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achieving an adaptive resolution for localized FSS-based sensing using a synthetic 

beamforming approach.  

In Paper I, the frequency response of a theoretical rectangular patch- and loop-based 

FSS with Floquet excitation is studied using a cavity model and quality factor approach. 

Specifically, a closed form solution for the reflection response of both FSSs based on the 

radiation, conductor, and dielectric quality factors is provided. A new model for the 

radiation quality factor of the loop unit cell is developed and the model for the rectangular 

patch is modified from [26]. In both, the effect of fringing fields and the frequency 

dependent effective permittivity are included. The closed form solution of both FSSs is 

compared with full-wave simulation for a wide range of substrate properties including 

permittivity, loss tangent, and thickness. Good agreement between the model and full wave 

simulation is achieved.     

In Paper II, the quality factor analysis is used to analyze the effect of substrate 

properties on the response of two theoretical rectangular patch and loop-based FSS sensors. 

Specifically, the response is quantified via three performance metrics (resonant frequency, 

resonant depth and the quality factor). It is shown that by a proper selection of the substrate, 

the sensitivity of the theoretical FSS sensor can be improved. In addition, it is shown that 

a change in substrate permittivity (such as due to moisture ingress or cracking) does not 

affect the sensitivity of the resonant frequency to a different measurand (i.e. strain).  

In Paper III, the resolution of an FSS-based sensor is improved through a localized 

sensing approach, achieved by utilizing a finite illumination pattern (i.e. from a horn 

antenna). In this approach, the footprint of the localized illumination pattern on the sensor 

determines the sensor cell size. However, as FSSs in general are assumed to have a uniform 
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excitation, differences in performance are introduced due to the localized illumination. In 

other words, the illumination footprint, intended for a given cell, may illuminate beyond 

the intended cell and hence the response may be affected. Additionally, the spatial 

deviation within the illumination footprint may also cause deviation in the response (from 

that of the “ideal” uniform case). Hence, an approach is presented similar to the aperture 

efficiency in reflectarray antennas to find the maximum efficiency for the illumination 

pattern where the effects of pattern non-uniformity and spill-over (into adjacent cells) 

energy are minimized. It is shown when the optimum sensor cell size is determined by this 

approach, the sensor cell response is very close to the ideal FSS response, with minimum 

contribution from adjacent sensor cells. 

In Paper IV, as a solution for localized FSS sensing with a flexible, uniform, and 

focused illumination beam, an approach based on the synthetic beamforming is presented. 

To quantify the improvements offered by the addition of this approach, the definitions of 

illumination and spill-over efficiency were modified (from those used with reflectarray 

antennas). The results shown that for small focal areas, the spill-over efficiency reduces. 

In addition, the illumination efficiency is greater than 75% for all focal areas considered. 

Additionally, this approach was applied to an FSS sensor that included a strained area. 

Measurement results indicate that localized sensing via the synthetic beamforming 

approach was successfully applied, as the area under localized strain was successfully 

detected.  

2.2. RECOMMENDATIONS 

The following recommendations are proposed for further study in this area.   



 

 

113

2.2.1. Sensitivity Analysis. Regarding Paper I, the primary goal of the modeling 

of the patch- and loop-based FSS sensors was to analyze the sensitivity of FSS response 

to the element design parameters in order to determine the most sensitive design. To this 

end, the following future work is suggested: 

1) The analytical modeling of the frequency response of FSS unit cells was 

completed and verified for different substrate properties such as thickness (5 

mils to 140 mils), relative permittivity (2-8), and loss tangent (0.02-0.09). 

However, a sensitivity analysis of the reflection response to each parameter 

remains. Also, fabrication limitations should be considered in the design 

process. For example, if there is a tolerance in the microstrip width line, the 

FSS design can be adjusted in a way to be less sensitive to the microstrip width 

line for very narrow widths (i.e. 1-4 mils).  

2) The sensitivity of the sensor to a sensing parameter such as strain can be studied 

when there are other unwanted environmental variations such as moisture 

ingress. For example, moisture ingress can change the dielectric properties 

(both permittivity and loss factor). Then, it may cause a change in the frequency 

response of the FSS sensor. Therefore, the effect of external environmental 

factors on the sensitivity of FSS sensors can be studied.    

3) In the modeling of the radiation quality factor, the loop is considered in such a 

way that the mutual coupling between adjacent elements and the coupling inside 

of the loop (amongst loop arms) must be minimal when a thick substrate is used. 

The model can be extended to include the effect of mutual coupling inside or 

outside of the loop. 



 

 

114

4) The sensitivity to incident angle is reduced when FSS designs are miniaturized. 

Hence, the sensitivity of FSS to incident angle should be studied for two cases: 

1) if an FSS is miniaturized in order to have a small spacing between the 

elements (meaning a large mutual coupling), 2) if an FSS is designed with a 

large spacing between adjacent elements (or small mutual coupling), and the 

element has a large electrical length to resonate in lower frequency and shrink 

the electrical dimension of the unit cell (i.e. fractal elements).  

5) Finally, the sensitivity of FSS sensor to the phase response can be 

advantageous. This is because the phase response for the FSS with a large 

resonant depth has a sharp variation in phase which may be more sensitive to 

the measurand of interest than the magnitude response of the FSS (albeit more 

difficult to measure).  

2.2.2. Finite FSS Normalization. In all finite FSS simulations and measurements 

that are done in this work, the complex frequency response from background of FSS is 

subtracted from the complex frequency response of the FSS. In cases that illumination 

footprint is larger than the size of the FSS, it is necessary to do this normalization. 

However, when illumination footprint is located within the FSS, the normalization has 

minimal effect on the response of FSS. In such cases that FSS is considered to consist of 

many sensor cells, the measurement of the frequency response of sensor cells can be done 

by raster scanning the illuminating antenna, and then the background (without the prsdence 

of the FSS) measured using the same antenna at the same locations may be challenging. 

Hence, to avoid the need of characterizing the background, use of the FSS cells can be 

limited to the sensor cells that are completely within the sensor and offset from the edges. 
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2.2.3. Sensor Cell Efficiency. In Paper III, the illumination and spill-over 

efficiencies are used to define the efficiency of the sensor cell. In this paper, the sensor cell 

efficiency is related only to the illumination pattern and the size of the sensor cell. It would 

be advantageous to include the effect of the number of unit cells within the sensor cell to 

the sensor cell efficiency. It is shown in [30] that by implementing the miniaturized FSS, 

the resolution of FSS sensor and the sensitivity of the sensor cell to small anomalies 

increases. This is due to the high density of the elements in the same size of the sensor cell 

using the miniaturized FSS design. Hence, the sensor cell efficiency might be improved by 

using the miniaturized unit cells, as this approach can be used to increase the element 

density within a given cell dimension.  

2.2.4. Reflection Mode FSS Sensor.  It is beneficial if the FSS sensor operates in 

reflection mode as a one-sided measurement is often desired for sensing. However, 

designing the FSS in reflection mode with a ground plane can be challenging, particularly 

as operating frequencies increase. Hence, multi-layer FSSs that incorporate an absorbing 

layer are an alternative to such designs. In other words, an FSS with the desired response 

can be designed without a ground plane and cascaded with a wideband absorbing FSS to 

remove the effect of substructures on the response.  
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