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ABSTRACT 

Electromagnetic absorbers and emitters have been attracting interest in lots of 

fields, which are significantly revitalized because of the novel properties brought by the 

development of the metamaterials, the artificially designed materials. Metamaterials 

broadens the approaches to design the electromagnetic absorbers and emitters, making it 

possible to obtain the perfect absorption or emission at the wavelengths covering a wide 

range. Metamaterial absorbers and emitters are promising for various applications, 

including solar thermal-photovoltaics and thermal-photovoltaics for energy harvesting, 

chemical and biomedical sensors, nanoscale imaging and color printing. This work 

focuses on three aspects (materials, structures and design methods) to improve the 

experiment realizations of visible and infrared absorbers and emitters. Firstly, this work 

investigates simple structures based on aluminum and tungsten materials for the 

metamaterial absorber and emitter, which results in the realization of the all-metal visible 

color printing with square resonators and wavelength selective mid-infrared absorber 

(emitter) with cross resonators, respectively. Secondly, we explore the thermal emission 

properties of the quasi-periodic metal-dielectric multilayer metamaterials, which show 

the ability of engineering emissivity by different lattice structures. Finally, this work 

demonstrates the use of micro-genetic algorithm to realize efficient design and 

optimization for broadband metasurface absorbers, as well as wavelength-selective 

metasurfaces with giant circular dichroism. This work is believed to facilitate the 

development and application of metamaterial absorbers and emitters.  
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1. INTRODUCTION 

 

The field of electromagnetic (EM) absorber and emitter has been receiving 

interest for a long history, due to its intrinsic bountiful physical mechanisms and 

important practical applications over a wide range of frequencies, from visible and 

infrared range to THz and GHz in the electromagnetic spectrum shown in Figure 1.1. 

Electromagnetic absorber and emitter are believed to be of great interest to a vast of 

applications such as energy harvesting, imaging, sensor, and optical 

communication [1,2].  

 

 

Figure 1.1. Electromagnetic spectrum from long-waves to Gama-rays [3]. 

 

The electromagnetic absorbers refers to devices selectively absorbing incident 

radiation with certain wavelength and then transforming into another forms of energy 

(e.g. ohmic heat) [2]. According to mechanism of absorption, there are generally two 

types of absorber: resonant absorber (narrow band) which depends on the material 

interaction at specific frequency and broadband absorber which depends on various 

methods (e.g. mixing multiple resonators, exciting phase resonance and slow light modes 
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in the tapered anisotropic metamaterial waveguides) but not on materials frequency 

dependent properties [1]. The metamaterial based absorbers possessing the ability to 

arbitrarily design the effective permeability and permittivity with subwavelength unites 

are one new branch of electromagnetic absorber since 2008 [4]. Then, various 

metamaterial absorbers are reported towards the narrow band absorber and broad band 

absorber from visible and infrared range to THz and GHz [4–8]. Figure 1.2 presents the 

 

 

Figure 1.2. Examples of various metamaterials with excellent absorption. (a) Broadband 

absorption at visible range and the unit cell of the absorber with Au-Si multilayered 

conical frustums [8]. (b) Broadband absorption extended from visible to near-infrared 

range demonstrated by the planar thin film with various metals [7]. (c) Near Perfect 

absorption at mid-infrared range demonstrated by the Au-Al2O3-Au sandwiched 

layers [5]. (d) Narrowband absorption at THz demonstrated from the Cr-polymer 

multilayer stack [6]. (d) Perfect absorption at GHz demonstrated by the sandwiched 

structure of electric resonator and cut wire [4]. 
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represented metamaterial absorbers with either narrow or broad absorption band at the 

wavelength range of interest.  

In order to achieve a complete understanding on the EM absorbers, two aspects 

are reviewed in this work to fully describe the design and development of EM absorbers. 

One aspect is attached on the underlying mechanisms of the narrow band absorber; 

another aspect is focused on the mechanisms of broad band absorbers. In addition, it 

provides the promising applications of the EM absorbers (emitters), including the solar 

thermal-photovoltaics and thermal-photovoltaics, sensors, imaging and color printing.  

1.1. DESIGN OF NARROWBAND ELECTROMAGNETIC ABSORBER 

Narrowband EM absorbers have been studied for a long history and are used as 

the elementary structure to investigate the physical mechanisms of the light-material 

interactions. The narrowband absorption is found to be generated through numerous 

approaches: surface plasmon polaritons (SPPs) in metallic grating [2,9], magnetic 

resonance [4,10,11], ENZ/ENP [12] and MNZ [13], bandgap engineering [14–16] and 

other approaches ( such as Inter band transition [17], phonon polaritons [18]). In this 

work, we focus on the former four main mechanisms. Different mechanisms are closely 

related with the materials and geometries of the nanostructure of the absorbers, which 

will be discussed in the following sections. 

Surface Plasmon Polaritons (SPPs). Metallic gratings attracted people’s attention 

since the observation of the obvious dips in the reflection spectra in 1902, which is called 

Wood’s anomalies [19]. With the throughout investigations in the past years, this curious 

absorption is now found to be closely related with the excitation of the SPPs in the 
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periodic structures [20]. SSPs are known as the coupling surface wave between the 

external incident electromagnetic wave and collective oscillation of surface charges at 

metal-dielectric interface [9]. Figures 1.3(a-b) schematically shows the SSPs propagating 

as the surface waves along the metal-dielectric interface and decaying in the direction 

perpendicular to the interface. The dispersion relation of the SPPs generated at the 

interface of non-magnetic metal and dielectric is described as |kspp| = 

(ω/c)√𝜀1𝜀2/(𝜀1 + 𝜀2), where 𝜀1  and 𝜀2  denotes the permittivity function of metal and 

dielectric, respectively, and c represents the light speed in the free space (or air). 

 

 

Figure 1.3. Examples of surface plasmon polaritons (SSPs). Schematic of (a) the surface 

SPPs excited at the interface between metal and dielectric and (b) decay of the 

electromagnetic filed [9]. (c) Schematic of the SPPs propagation at the periodic metallic 

grating. (d) Absorption spectrum with perfect absorption at 0.75 µm. (e) Magnetic field at 

the resonant wavelength. (e) Absorption performance with varying incident angle [2]. 
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Due to the fact that wave vector of SPPs (kspp) is almost always larger than the 

incident wave vector (kinc) in the free space or air, SPPs are difficult to be directly excited 

with non-structured materials. However, SPPs are capable of trapping light in the 

periodic structures and are simply categorized into planar SPPs and localized SPPs 

according to their different behaviors in the light confinement [2]. Planar SPPs are easily 

excited in one dimensional metallic gratings when the momentum match condition is 

satisfied at a specific wavelength, namely, kspp = k||, inc + kg, where kg denotes the 

reciprocal lattice vector of the Bloch wave in the periodic structure. In Figures 1.3(c-f), it 

schematically shows 1D metallic grating with the total absorption spectra under 

transverse magnetic (TM) polarization, as well the magnetic field distribution with the 

excited SPPs mode. The SPPs mode is confined in the groves and exhibits strong 

sensitivities with the changes of the parallel component of the incident wave vector, k||, 

inc, which is an angle dependent quantity and reads, k||, inc = (ω/c)sinθ�̂� for SPPs only 

along 𝒙  direction. In contrast, metallic gratings with modified design are almost 

insensitive to the incident angles as the excited SPPs have light confinement for at least 

2D modes. In Figures 1.3(g-i), metallic gratings with deep groves are able to confine the 

light and allow the SPPs propagating inside the groves, known as gap SPPs. With the 

waveguide theory, it supports multiple propagating modes in the deep groves, which 

leads to mode m=1, 2 and 3 in the magnetic field shown in Figure 1.3(h).  

Magnetic Resonance. Metamaterial absorbers attract lots of interest since the first 

demonstration of the perfect absorption for the microwaves [4]. In Figures 1.4(a-c), it 

schematically shows the metamaterial absorber consisted of two parallel metal layers 

sandwiched with one dielectric layer. The absorber was fabricated with standard optical 
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lithography processes and measured to perfectly absorb the electromagnetic wave at the 

frequency of 11.25 GHz as shown in Figure 1.4(d). The electrical ring resonator and the 

background metal layer support the coupling between the incident field and the 

circulating charges effect in the absorber. Later, this resonance is called magnetic 

resonance since magnetic moment resulting from surface charges with anti-parallel 

directions are excited in the metal-dielectric-metal (MIM) absorbers and a strong light 

confinement is created inside the absorber [4].  

 

 
 

Figure 1.4. Electric resonator and its absorption. Schematic of (a) electric resonator, (b) 

cut wire and (c) unit cell of the absorber, which generates perfect absorption at 11.6 GHz 

(red line for absorption, green line for reflection, blue line for transmission) [4]. 

 

Inspired by this design, a vast of metal-dielectric-metal (MIM) absorbers are 

developed to achieve the perfect absorption. The top metallic layer is usually patterned to 

realize special absorption or polarization target. Two typical patterns, grating  [10] and 

square  [11] patch, are shown in Figure 1.5, as well as their absorption spectrum. In 

Figure 1.5(b), it finds the grating structure generates perfect absorption at the wavelength 

around 1.8 um, explained as the magnetic resonance supported by the magnetic field 

enhancement in Figure 1.5(c). Similarly, the metamaterial absorber with the pattern of 
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square patch leads to the almost same perfect absorption due to the magnetic resonance. 

What’s more, the coupled magnetic resonance is employed to understand another 

resonance peak. In Figure 1.5(f), it shows that two types of current loops excited and 

coupled to confine the incident wave. 

ENZ/ENP and MNZ.  There are designs of perfect absorption with narrow band 

using materials with epsilon-near-zero (ENZ), epsilon-near-pole (ENP) or mu-near-zero 

(MNZ). These designs utilize the advantages of the metamaterial by flexibly tailor the 

permittivity and permeability parameters. 

 

 
 

Figure 1.5. Examples of two types of gratings. Schematic of the (a) 1D tungsten grating 

shows (b) strong absorption in the wavelength range from visible to near-infrared, 

supported by (c) the magnetic resonance in the magnetic field distribution [10]. Similarly, 

schematic of the (d) 2D tungsten grating shows (e) strong absorption in the wavelength 

range from visible to near-infrared, generated by (f) the magnetic resonance in the 

magnetic field distribution in 2D array [11]. 
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The 1D epsilon-near-zero (ENZ) and 2D epsilon-near-pole (ENP) metamaterials 

are investigated for narrowband absorbers and emitters [12]. In Figure 1.6(a), the ENZ 

metamaterial is realized by multilayers composed of the alternating metal and dielectric 

layers, whose effective permittivity can be formulated in the vertical and parallel 

direction by 𝜖∥ = 𝜖𝑚𝜌 + 𝜖𝐷(1 − 𝜌) and 𝜖⊥ =
𝜖𝑚𝜖𝐷

𝜖𝐷𝜌+𝜖𝑚(1−𝜌)
 , where 𝜌  is the relative fill 

factor of metal in the unit cell, 𝜖𝑚 is the permittivity of metal and 𝜖𝐷 is the permittivity of 

dielectric.. The ENZ resonance comes from the displacement field boundary condition 

𝜖1𝐸1⊥ = 𝜖2𝐸2⊥ , which means if 𝜖2 → 0, 𝐸2⊥ → ∞ , a large electric field enhancement 

and perfect absorption will appear as shown in In Figure 1.6(c).  

In contrast, as shown in Figure 1.6 (b), ENP metamaterial can be achieved with 

the nanowire embedded in the dielectric structure, whose effective permittivity is 

described by 𝜖∥ = 𝜖𝐷[
𝜖𝑚(1+𝜌)+𝜖𝐷(1−𝜌)

𝜖𝑚(1−𝜌)+𝜖𝐷(1+𝜌
] and 𝜖⊥ = 𝜖𝑚𝜌 + 𝜖𝐷(1 − 𝜌) , where 𝜌, 𝜖𝑚  𝜖𝐷  are 

the same notes as above. The ENP resonance comes from the condition of an ideal pole 

of the dielectric constant,  𝑅𝑒(𝜖) → ±∞. In Figure 1.6(d), the metamaterial absorber with 

ENP resonance exhibits the needle like absorption with almost no sensitivities to incident 

angles. By comparison, ENP structure can exhibit a narrower spectral window with 

relatively lower material losses as compared to ENZ resonance. Basing on this theory, 

another calculation for the nanowire metamaterial was also realized in Reference [21]. 

The narrow band perfect absorption is the ideal candidate for the thermos-photovoltaic 

applications. 

The mu-near-zero (MNZ) design is theoretically studied by assuming a thin MNZ 

layer with thickness d on the perfect electric conductor as substrate as shown in Figure 
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1.6(e) [13]. The dielectric layer and the MNZ layer are denoted as 0 and 1, respectively, 

as well as the permittivity and permeability symbols, By applying the boundary 

conditions at the interfaces and assuming a thin layer of MNZ, for normal incidence, the 

reflection coefficient of the absorber is approximately given by 𝑟 =
1+𝑖𝑘0𝑢1𝑦𝑑

1−𝑖𝑘0𝑢1𝑦𝑑
. Therefore, 

the perfect absorption is achieved if 𝑢1𝑦 = 𝑖𝜆0/(2𝜋𝑑), where 𝜆0 is the wavelength in free 

space. Basing on this theory, the MNZ absorber is experimentally realized with the 

double-layered spiral shaped rings as shown in Figure 1.6(f-h) [22]. As shown in Figure 

1.6(g), the permeability curves show the characters as predicted by the previous 

 

 
 

Figure 1.6. Example of ENZ and ENP metamaterial. (a) ENZ metamaterial with 

multilayers composed of the alternating metal and dielectric layers, showing (c) perfect 

absorption at the wavelength around ENZ [12]. (b) ENP metamaterial with nanowire 

embedded in the dielectric structure, showing (d) needle like absorption [12]. Schematic 

of (e-f) MNZ metamaterial with double-layered spiral shaped rings which produces the 

permeability curves in (g) and demonstrates (h) near perfect absorption at the frequency 

of 1.74 GHz [22]. 
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theoretical analysis. MNZ is shown at the frequency of 1.74 GHz, where perfect 

absorption appears and exhibits insensitive to the incident angle in a wide range. What’s 

more, combining the advantages of both ENZ and MNZ, perfect absorption can even be 

achieved by arbitrary thin absorber at certain incident angle for thin layer standing on the 

mirror substrate [13].  

 

 
 

Figure 1.7. Examples of photonic crystals. (a) Band structure and density of states 

distribution of the 3D photonic crystal structure [16]. (b) The absorption performance of 

the 3D photonic structure [16]. (c) Narrowband emission at near-infrared range from the 

2D photonic crystal in holes array [15]. (d) Narrowband absorption property at mid-

infrared range from the 3D photonic crystal [14]. 

 

Bandgap Engineering.  Photonic band-gap materials are famous for the generation 

of band gap for the electromagnetic wave propagating in the periodic photonic structures, 
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which an analogy to the electronic band gap in semiconductors. Photonic band-gap 

materials are found to be capable of absorbing light within a narrow wavelength due to 

the band edge effect [14,16]. In Figure 1.7(a), it shows the band structure and 

corresponding density of stages (DOS) for the closed-packed FCC lattice of air spheres 

embedded in the silicon substrate. Sharp absorption peaks can be observed in Figure 

1.7(b) for different incident angles. It is noted that a strong absorption peak at the 

incident angle of 45 °  appears around ωa/(2πc) =0.8. This sharp absorption peak is 

generated since the group velocity (d ω /dk) approaches to 0 at the Brillouin zone 

boundary and the number of available electromagnetic modes changed sharply as the 

density of states (ρ(ω) ∝ dk/dω) approaches to infinity. Thus the photonic crystals with 

narrow band absorption are suitable for the thermal TPV design [15], where emission 

equals absorption at equilibrium state according to the Kirchhoff’s law (to be introduced 

latter) [23]. Figure 1.7(c) shows the 2D photonic crystal in holes array made of Ta, 

exhibiting a narrow band emission (absorption) peak with the intensity approaches to the 

blackbody emission limit. Similarly, in Figure 1.7(d), the design of 3D tungsten photonic 

crystal is also realized to be competitive in near perfect absorption performance at mid-

infrared range with almost insensitivities to the incident angles [14]. 

1.2. DESIGN OF BROADBAND ELECTROMAGNETIC ABSORBER 

Narrow band absorbers have been widely investigated and proved to be promising 

in lots of applications, however, the absorbers with absorption in wide wavelength range 

is still in need for applications such as the solar thermos-photovoltaic (TPV) system, 

infrared radiation energy collection, electromagnetic wave screening detections. 
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Investigations on the broadband absorber have explored a wide wavelength range, in 

which visible, near-infrared, and infrared absorbers will be introduced in this work. A 

vast of mechanisms are proposed to design the functional absorbers, mainly including 

impedance match for ultra-thin absorbers, nano-focusing of gap plasmon modes in 

metallic gratings, resonators mixing in 1D (vertical or horizontal direction), 2D, and 3D. 

 

 

Figure 1.8. Examples of impedance matched absorbers. Schematic of (a) absorber with 

planar thin film, (b) operating at mid-infrared range and (c) based on the impedance 

match theory [24]. Illustration of (d) alternative absorber with planar thin film, (e) 

operating from visible to near-infrared range [7]. 

 

Ultra-thin Absorbers with Impedance Match.  Among various broadband 

absorbers, ultra-thin absorbers are always the pursuit of researchers [7,24]. Figure 1.8(a) 

shows the design of thin film mid-infrared absorber made of Ti and silicon nitride (Si3N4) 

as well as a copper substrate as mirror [24]. The thicknesses of the Ti and Si3N4 layers are 
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adjusted to match the impedance of the free space, such that the near perfect absorption 

band is realized at the range of 3-5 μm (see Figure 1.8(b)). The calculated impedance is 

shown in Figure 1.8(c), in which it finds that the normalized impedance is close to 1 in 

the region of the interest. It means the impedance of the designed absorber is close to that 

of the free space. This conclusion is further verified when observing the electric field 

distribution. The wave front of the incident light is found to keep the same propagating 

direction into the designed absorber with almost no signature of reflection observed from 

 

 
 

Figure 1.9. Nano-focusing of gap plasmon modes. Schematic of (a) the ultra-sharp 

convex grating. Fabricated samples with SEM images for (b) 1D grating and (c) 2D 

grating.  (d) Reflectivity spectra for sample of flat plane and 1D grating under TE and 

TM polarization at different incident angles. (e) The electric field distribution of the ultra-

sharp grating [25]. 
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the absorber. Similarly, basing on the impedance match theory, another thin absorber 

with constitutes of Cr and SiO2 is schematically shown in Figure 1.8(d) [7]. As shown in 

Figure 1.8(e), the designed absorber exhibits the near perfect absorption of light in the 

wavelength range from visible to near infrared, which is superior to other materials due to 

the well-designed absorber possessing impedance match property, making a near perfect 

absorption. 

Nano-focusing of Gap Plasmon Modes in Metallic Gratings. Metallic gratings 

support versatile design not only in narrow band absorption but also in broadband 

absorption. Surface plasmon polaritons (SPPs) modes can be easily excited for periodic 

structures, but difficult to be absorbed into the structures. One solution is to use adiabatic 

nano-focusing design with ultra-sharp convex gratings as shown in Figure 1.9(a) [25]. 

Both 1D and 2D gratings with period of 250 nm and depth of 500 nm are fabricated in 

gold film and their SEM images are shown in Figures 1.9(b-c), respectively. These sharp 

groves are able to capture the SPPs modes which are termed as the gap SPPs because of 

the narrow distance between two neighbor gratings. Figure 1.9(d) shows the spectra of 

the 1D gratings with perfect absorption at visible range for the TM polarized normal 

incident light (solid line). Due to the difficulty in exciting the gap SPPs for 1D grating at 

TE polarization, the absorption spectra (dashed lines) shows worse absorption 

performance compared with TM polarization. Also, the absorption performance will 

degrade further for gold film with flat surface. Furthermore, in Figure 1.9(e), the electric 

magnitude distribution within the grooves reveals the absorption of light is due to the 

adiabatic nano-focusing gap SPPs mode. The incident light is almost totally confined into 

the groves. 
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Resonators mixing in 1D, 2D and 3D.  Inspired by the aforementioned absorbers 

with narrow band absorption, the design of broadband absorbers extends to the approach 

of mixing resonators in different dimensions within the unit cell. The super-unit cell may 

contain multi-sized resonators with the same type or different types, supporting multiple 

 

 
 

Figure 1.10. Examples of gratings with 1D and 2D structures for near perfect absorption 

performance. (a) Schematic of the 1D grating with multiple widths arranged in the 

horizontal direction and (b) the absorption spectrum with near perfect absorption, 

supported by the resonant electromagnetic field shown in (c) [26]. (d) Schematic of the 

absorber with three square patches with different sizes arranged in the horizontal 

direction, showing perfect absorption at visible range and the resonant electromagnetic 

field in (e) [27]. 

 

resonances at different wavelengths and ultimately realizing the multi bands or 

broadband absorption within the target range. What’s more, MIM structures are widely 
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employed for the resonators mixing in 2D due to the simple configuration and direct 

patterns fabrication in the top layer as well as the interesting optical performances they 

are possessing. 

With regard to the resonators mixing in 1D, the design with vertical or horizontal 

arrangement of resonators is presented in Figure 1.10 [26,27]. One super unit cell of 1D 

gratings with different width are shown in Figure 1.10(a) [26]. Since the width of grating 

is critical for the resonant wavelength, a combination of gratings with multiple widths 

leads to the broadband absorption if the resonant wavelengths are close to each other. 

Figure 1.10(b) shows the near perfect broadband absorption in the range of 8.7 -11μm. 

The normalized magnetic field distribution is given in Figure 1.10(c) for each resonant 

peak. As for the resonators arranged in the vertical direction, the absorber with three 

square patches with different sizes is shown in Figure 1.10(d) [27]. The corresponding 

absorption spectrum (blue line) with perfect broadband absorption is presented in Figure 

1.10(e). The perfect absorption is mainly contributed by two resonant wavelengths, 520 

nm and 580 nm, considered in the article. The absorption mechanism is explained as the 

localized field energy within different layers through the distribution of the magnetic 

field. 

With regard to the resonators mixing in 2D, it allows the integration of multi-

sized resonators with the same geometric type or the different types in the 2D plane 

within the super unit cell. Figure 1.11(a) shows the super unit cell with four square 

patches [28]. Since the resonant wavelength is correlated with the size of square patch, 

multi band absorption can be obtained through a carefully designed combination of the 

patches with different sizes. In Figure 1.11(b), four resonant peaks appear with strong 
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absorption in the infrared range for both TM and TE polarizations. The magnetic field at 

each resonance is given in Figure 1.10(c), in which the magnetic field intensity is 

obviously enhanced in the corresponding square patch. As for the integration of different 

 

 
 

Figure 1.11. Examples of multi-sized gratings with different structures toward near 

perfect absorption. (a) Schematic of multi-sized resonators in the 2D plane within the 

super unit cell and the SEM image. (b) The multi-band absorption spectrum with four 

resonant peaks, supported by resonant field at each peak shown in (c) [28]. (d) Schematic 

of the mixed multi-sized cross and circle resonators, showing near perfect absorption 

from visible to near-infrared range shown in (e). The electric filed distribution at three 

resonant wavelengths, respectively, showing the arising of the excellent absorption 

performance in the optical response at three different resonance wavelength from visible 

to infrared. [29]. 

 

types of resonators, the super unit cell of mixing crosses and circles with 16 elements is 

schematically shown in Figure 1.11(d) [29]. The absorber with mixed cross and circle 
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resonators leads to the near perfect absorption from visible to near infrared wavelength as 

observed in Figure 1.11(e), which matches well for the absorption of the nature sunlight 

  

 
 

Figure 1.12. Examples of multilayered gratings. (a) Schematic of the multilayered 

gratings in 1D and 2D. (b) Absorption spectra obtained in experiment and simulation of 

the 1D grating showing near perfect absorption with the inserted SEM image. (c) 

Absorption spectra obtained both in experiment and simulation of the 2D grating showing 

the broadband absorption performance with the inserted SEM images taken at the 

inclined view. (d) Magnetic field distribution of the grating at different resonant 

wavelengths from visible to mid-infrared range plotted at the side cross section positions 

of the grating [30]. 

 

in achieving the ideal solar energy conversion efficiency. In Figure 1.11(f), the electric 

field distribution at resonance is given for wavelength at 1000 nm, 705 nm and 350 nm, 
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respectively. It reveals the variation in contribution to the absorption performance from 

the different resonators at the corresponding resonant wavelength. 

With regard to the resonators mixing in 3D, multilayered metamaterial absorbers 

(or the so called anisotropic metamaterials) extend the design freedom to obtain the 

broadband and even ultra-broadband absorption performance  [30,31]. In Figure 1.12(a), 

it schematically shows the multilayered gratings in 1D and 2D which are composed of 5 

pairs of the alternately arranged Cr (10 nm thick) and Al2O3 (70 nm thick) layers [30]. 

The spectra of the multilayered structures are shown in Figures 1.12(b-c) for two types of 

gratings, respectively. It observes the near perfect absorption spectra from visible to mid-

infrared range for the normally x polarized 1D multilayered grating; the similar 

 

 

Figure 1.13. Examples of multilayered and tapered gratings. SEM images of the 

multilayered (a) 1D two-pattern grating and (b) 2D four-pattern grating with multiple 

sizes in the super unit cell. Absorption spectra obtained from (c) experiment and (d) 

simulation under TM and TE polarization, respectively. Electric field distribution for (e) 

1D two pattern grating and (f) 2D four-pattern grating at different resonant 

wavelengths [31]. 
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absorption performance is also achieved for the 2D gratings with normal incidence and 

arbitrary polarization. To understand the mechanism behind the broadband absorption, 

the normalized magnetic field is given in Figure 1.12(d). With the assumption of 

waveguide theory, multiple waveguide modes are allowed within the taper multilayered 

grating. Furthermore, the multilayered gratings with multiple sizes in the super unit cells 

are designed and fabricated as shown in Figures 1.13(a-b) [31]. The multilayered 

waveguide structures are made of four pairs of Ag and SiO2 films with thickness of 35 

nm for each layer. The experimental absorption spectra of the 1D two-pattern absorber 

and 2D four-pattern absorber are shown in Figure. 1.13(c) for both TM and TE 

polarizations. The excellent absorption performance can be observed in the mid-infrared 

range. The absorption spectra are also modeled and simulated in Figure 1.13(d). The 

electric field distribution of the cross-sectional modes is shown in Figures 1.13(e-f) for 

two types of absorbers, respectively. The broadband absorption is also ascribed to the 

guided modes supported in the taper multilayers as well as the effect of multi-sized 

resonators supporting the resonances at different wavelengths. 

1.3. APPLICATIONS 

With the ability to flexibly control the spectral behavior and electromagnetic field 

confinement, electromagnetic wave absorbers have been widely studied and found to be 

promising in a vast of applications. Four typical applications will be introduced in this 

work, including the full color imaging in the visible range, solar energy harvesting 

through visible and near-infrared range, refractive index sensing in the infrared range and 

spatial light modulator in the THz range. With the advantages of the novel properties 
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from metamaterials, the traditional approaches or limits in applications can be extended 

or improved to a new era.  

Color Imaging.  In the visible range, the resolution of the printed color images is 

usually limited by the diffraction limit of the visible light. By assuming the center 

wavelength of the visible image as 500 nm, the minimum resolvable distance between 

two pixels is half of the center wavelength, namely, 250 nm. This limit seriously impedes 

the resolution improvement for traditional color printing approaches with depositing 

materials, for instance, dyes or quantum emitters. Recently, the color printing with 

plasmonic metamaterials is used to print the full color image with resolution up to the 

diffraction limit [32]. In Figure 1.14(a), it presents the full color image printed with 250 

nm-pitch pixels formed by the MIM cavities. With tuning the diameters of the nano-disks 

and gap distances between two neighboring nano-disks, a wide range of colors are 

obtained and then utilized to print color images with an extremely high resolution. 

Furthermore, the high resolution color printing techniques are realized not only with the 

MIM structures, but also with one-step direct printing on metallic materials. With the 

assistance of plasmonic metamaterials, a variety of colors are achieved both in bright 

field and dark field, obviously extending the imaging techniques based applications [33]. 

Solar Energy Harvesting.  Solar energy harvesting has been earning interests for a 

long time, since the solar energy belongs to unlimited energy stored in nature. However, 

energy conversion efficiency has always been an important factor preventing the 

utilization of the solar energy, which is given as the Shockley-Queisser limit (31%) for 

traditional solar cells [34]. Fortunately, the appearance of the metamaterial absorber and 

emitter bring the new breakthroughs to the energy conversion efficiency. A schematic of 
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the solar cell composed of absorber and emitter is shown Figure 1.14(b) [35]. The 

employment of the absorber is capable of absorbing the solar energy in the range from 

visible to near infrared range, which takes up a larger amount of the solar energy over the 

electromagnetic spectrum. Through the emitter, the absorbed energy is selectively 

emitted into a narrow frequency range, designed to match the band gap of the 

semiconductors in the thermos-photovoltaic cells. Due to the existence of the absorber 

and emitter, the electromagnetic waves are tailored artificially to improve the 

performance of the solar cells, leading to the high energy conversion efficiency equaling 

or even beyond the Shockley-Queisser limit. What’s more, as the target frequency can be 

intentionally designed, heat sources can be extended to a vast of range, including high 

temperature frames, furnaces and even waste energies in the manufacture industries and 

applications. 

Sensors in Refractive Index Sensing. Sensors with high sensitivity are gaining 

growing interest along with the sensor design using metamaterials, which are found to 

bring novel approaches to facilitate the sensing applications in chemicals and bio-

medicals [9,36,37]. In Figure 1.14(c), it shows a typical infrared perfect absorber used as 

the refractive index sensing [36]. The perfect absorber employs the MIM structure with 

gold and MgF2 and shows sensitivities to the environmental refractive index changes by 

exciting the SPPs. The experimental results show a blue shift for the resonant dips in the 

reflectance spectra with the increase of indices of the glucose solution. Moreover, 

absorber or emitters with narrow or ultra-narrow band width are also proposed to 

detections in the infrared range, which contains bountiful signature information for 

chemicals and bio-medicals. 
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Spatial Light Modulator. The emergence of metamaterials provides the alternative 

technology to shape the special distribution of electromagnetic radiation pattern. As for 

compressive sensing at THz range, spatial light modulator (SLM) is essentially important 

to manipulate and process information of electromagnetic waves [38,39]. In Figure 

1.14(d), it presents the metamaterial absorbers based design of one 6 by 6 pixel array of 

 

 
 

Figure 1.14. Examples of applications. (a) Full color image with resolution up to the 

diffraction limit through printed plasmonic metamaterial. It also shows the schematic of 

the nano-disk structure and the SEM image [32]. (b) Schematic of the solar energy 

harvesting system design with metamaterial absorber and emitter [35]. (c) Metal-

dielctric-metal metamaterial absorber designed for refractive index sensing [36]. (d) 

Spatial light modulator realized with near perfect absorber at THz range [39]. 

 

SLM, which is allowed to be electronically manipulated because of the employment of 

the liquid crystals [39]. The refractive index of the liquid crystals will significantly 
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influence the absorption behaviors or the designed structure and hence leads to resonance 

shift as shown in Figure 1.14(d). It can result in the redshift if the SLM is loaded with 

certain bias. In addition, with the ability to control the electromagnetic filed dynamically, 

SLM is also promising in numerous applications such as spectroscopy and imaging [38]. 

1.4. RESEARCH OBJECTIVE 

Although EM absorbers (emitters) have been widely studied, there are still some 

spaces to improve, such as the structure design, materials section and mechanism 

understanding in specific situations. Thanks to the rapid development in the field of 

metamaterials, new designs are allowed to be realized with modifying the geometry and 

hence the effective permittivity and permeability of the materials. The unprecedented 

electromagnetic properties, beyond the nature materials, can be achieved with 

metamaterials. Therefore, this work focuses on three aspects: (1) the simple structure 

design with aluminum and tungsten materials for the metamaterial absorbers and emitters 

through periodic structures, (2) engineering the thermal emission properties via the quasi-

periodic metal-dielectric multilayer metamaterials, (3) improve the design method 

beyond the traditional design method toward broadband metasurface absorber and 

metasurface with giant circular dichroism by the micro genetic algorithm. 

Simple structure design to realize the expected electromagnetic property is always 

attractive, not only in explaining the underlying physical mechanism, but also in 

industrial applications for large scale production. For applications in the industry, it needs 

a balance between the complexities in structure design and the final properties. Also, 

simple structure design can be more competitive due to a short period in fabrication and 
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relatively low requirement in fabrication precision. In addition, suitable materials are 

determined for specific applications in most situations. Noble metals (such as Au, Ag) are 

prevailing in the metamaterials design, however, more chemical and temperature stable 

and less expensive materials are favored for real applications with requirement of high 

temperature environment or large-scale production. 

The properties of periodic metamaterials have been widely investigated, however, 

the quasi-periodic metamaterials are still worthy of more attentions due to their similar 

but novel properties in some extent. Quasi-periodic metamaterials are appealing to be 

used for tailoring the electromagnetic properties since the specific arrangement of the 

geometries are able to generate special interference and interactions with materials 

different from the periodic situations. It provides alternative approaches to the design of 

the metamaterial absorber and emitter. 

The last but not the least attention focuses on the design method. In traditional 

design of metamaterial absorber and emitters, it initializes the design progress with the 

experience of researchers and follows by sweeping the parameters step by step using 

repeated attempts. Though the traditional design will finally generate the design result, it 

is obvious to see the limitations. It is not only less efficient in design progress, but also 

easily to be misled or miss the optimal design. Thus, the optimization method with 

efficiency is attractive in metamaterial design. 

In conclusion, this work will investigate the design of metamaterial absorber and 

emitter both in theory and experiment. The simple structure with aluminum and tungsten 

materials will be developed for specific application in color imaging and energy 

harvesting.  Also, this work will conduct the comparison between the periodic and quasi-
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periodic metal-dielectric multilayer metamaterials, as well as the development of the 

efficient design method of metamaterials using micro genetic algorithm for the geometric 

optimization, which will facilitate the development and promising applications in the 

field of metamaterials. 
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ABSTRACT 

An all-metal structural color printing platform based on aluminum plasmonic 

metasurfaces is proposed and demonstrated with high color performance using only one-

step etching process on aluminum surface. A wide visible color range is realized with the 

designed metallic square-shaped disk arrays by simply adjusting geometrical parameters 

of the disk etching depth, disk width and unit cell period. The demonstrated all-metal 

microscale structural color printing on aluminum surface offers great potential for many 

practical color related applications. 

 

1. INTRODUCTION 

 

Over the past decade, different kinds of structural color filtering and printing 

techniques have been used to reproduce vivid colors in nature with great advantages over 
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conventional colorant-based pigmentation [1-3]. In particular, plasmonic metamaterials 

and metasurfaces are receiving more attention for the next generation structural color 

applications due to their capability of controlling the light intensity, phase and 

polarization effectively [41–45]. Plasmonic nanostructures with various geometries have 

been developed for structural color generation with high resolution including one 

dimensional gratings [46–48], hole arrays [49–53], nanoantenna arrays [54–58], metal-

insulator-metal (MIM) structures [10, 22–27], and combined nanodisk and nanohole 

arrays [65–67]. By tuning the geometries and dimensions of the plasmonic 

nanostructures, optical resonances in the visible frequency range can be achieved based 

on the mechanisms of propagating surface plasmons (SP) [12–16], localized surface 

plasmon resonances (LSPR) [18, 28–33], as well as Fabry-Pérot cavity modes [71]. 

Plasmonic color generation has been widely studied in realizing highly saturated color 

with narrow bandwidth [23, 25-27], color filtering with extraordinary optical 

transmission [35–37], high-resolution color pixels for imaging [10, 28, 34], polarization 

dependent [16, 17] or independent [18, 20, 21] color filtering and imaging, and angle-

insensitive structural color printing  [21, 34]. Noble metals like gold and silver have been 

traditionally employed in the color filtering and imaging platforms due to their lower 

ohmic losses within the visible spectrum  [10, 18, 24, 25, 28, 34, 38]. However, the 

interband transition of gold limits the color range obtainable to below the wavelength of 

550 nm [24,39], while silver is susceptible to oxidation and sulfidation which leads to the 

degradation of colors under ambient usage [55]. Consequently, a suitable substitute for 

noble metals, aluminum, has been highly attractive for structural color printing 

application due to its excellent optical response in the visible spectrum, chemical and 
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thermal stability thanks to its natively formed oxidation layer, low cost, and 

complementary metal oxide semiconductor (CMOS) compatibility [15, 16, 20, 26, 27, 

40]. Recently, aluminum based metamaterials with complex nanostructures such as MIM 

structures [10, 22–27] and combined nanodisk and nanohole arrays [65–67] have been 

designed to exhibit excellent color performance, however, the fabrication processes are 

still sophisticated, which will not only increase the production cost but degrade the color 

performance due to fabrication imperfections. 

In this work, we introduce and demonstrate an all-metal structural color printing 

platform based on aluminum plasmonic metasurfaces with high color performance using 

a simple, one-step focused ion beam milling process on aluminum surface. By adjusting 

the geometrical parameters of the designed aluminum square-shaped disk arrays, 

including the disk etching depth, disk width and unit cell period, a wide visible color 

range can be realized. The mechanism of structural color generation in aluminum square-

shaped disk arrays is analyzed according to the excitation of electric dipole and magnetic 

dipole resonances. Furthermore, the polarization and incident angle dependent optical 

properties of the color printing platform have also been studied. The demonstrated all-

metal structural color printing on aluminum surface offers great potential for many 

relevant applications such as microscale imaging, information storage, and security 

marking. 
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2. DEVICE DESIGN AND FABRICATION 

 

The square-shaped disk array on aluminum surface designed for plasmonic 

structural color printing is schematically illustrated in Figure 1(a). In order to vary the 

optical response of the designed disk arrays in the visible spectrum, the geometrical  

  

 

Figure 1. Design of the square-shaped disk array. (a) Schematic of the design. (b-d) SEM 

images of the design fabricated on h = 250 nm thick aluminum film with different 

geometric parameters of (b) P = 400 nm, d = 135 nm, w = 245 nm, (c) P = 400 nm, d = 

227 nm, w = 200 nm, and (d) P = 400 nm, d = 82 nm, w = 245 nm. Insets: Optical 

reflection microscope images of 20 × 20 µm2 disk arrays. Scale bars: 1 μm. 

 

parameters of the disk etching depth (d), disk width (w) and the unit cell period (P) are 

tuned. First, a 250 nm thick aluminum layer is deposited on a silicon wafer using an 

electron-beam evaporator at a rate of 12 Å/sec. Then the designed disk arrays are directly 

milled into the aluminum layer using a focused ion beam (FIB) milling process (FEI 

Helios Nanolab 600 DualBeam) with a gallium ion current of 9.7 pA and an accelerating 



 

 

31 

voltage of 30 KeV. In order to investigate the effects from geometrical parameters, three 

groups of disk arrays are fabricated with varying d, w and P, respectively. It is noted that 

the obtained unit cell period during the ion beam milling process is always consistent 

with the design, while the etching depth and disk width experience slight deviations from 

the designed values but still in a reasonable range with ±15 nm variation. After the ion 

beam milling process, as shown in Figures 1(b)-1(d), the top width of the square disk is 

smaller than the bottom width and thus there is a tapered angle of 83º for the disk 

sidewall. Optical transmission of the designed structure will be effectively blocked due to 

the limited penetration depth in the thick aluminum layer for incident light in the visible 

range.  

 

 3. RESULTS OF EXPERIMENTAL CHARACTERIZATION AND NUMERICAL 

SIMULATION 

 

The optical reflection spectra from the fabricated square-shaped disk arrays are 

characterized within the visible range (400 ~ 800 nm) by utilizing an optical spectrometer 

(LR1, ASEQ instruments). Optical reflection spectrum and the corresponding optical 

reflection microscope image are collected in the bright field from each fabricated disk 

array with an area of 20 × 20 µm2. Figures 1(b)-1(d) show SEM images of three 

representative disk arrays with different geometrical parameters. The insets display the 

measured bright-field optical microscope images of these disk arrays, showing three 

prime colors belonging to the Cyan-Magenta-Yellow (CMY) color model, a standard 

model to describe colors.  
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The effects of varying disk etching depth d, disk width w and unit cell period P 

for the square-shaped disk arrays on the optical reflection spectra and visible colors are 

further investigated. The measured optical reflection spectra and bright-field microscope  

 

Figure 2. Measured and simulated reflection spectra. (a) Spectra of three groups of disk 

array samples by varying disk etching depth d from 82 nm to 135 nm with constant P = 

400 nm and w = 245 nm, (b) by changing disk width w from 250 nm to 200 nm with 

constant P = 400 nm and d as a function of w, and (c) by changing  period P from 350 nm 

to 600 nm with constant d = 82 nm and P - w = 147 nm. Insets show the optical reflection 

microscope images of 20 × 20 µm2 disk arrays. Normal light incidence is employed.  
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images for three groups of disk arrays with varying d, w and P are shown in Figure 2. In 

Figure 2(a), the measured and simulated reflection spectra for disk arrays with varying d 

exhibit a red-shifted plasmonic resonance and a broader resonance dip as d is increased 

from 82 nm to 135 nm while w = 245 nm and P = 400 nm are constant. The colors of the 

microscope images also change accordingly. As shown in Figure 2(b), a similar optical 

response is observed for disk arrays with reduced w from 250 nm to 200 nm and constant 

P = 400 nm. It is noted that d will depend on w during the FIB process due to the 

variation of ion beam exposure area, giving a rough expression of d = [3(250-w)+77] nm. 

Especially for the w = 200 nm case, a broad absorption band is obtained due to both the 

aluminum loss in the visible spectrum  [17, 30, 40, 41] and the excitation of gap plasmon 

modes [42, 43]. It is indicated that the obtained visible color range is dependent on both 

disk etching depth d and disk width w with a constant unit cell period P. Moreover, a 

wider range of color can be realized with simultaneous variation of both d and w. In 

addition, Figure 2(c) displays the results for disk arrays with varying P from 350 nm to 

600 nm and w = (P -147) nm at a constant d = 82 nm. As both P and w are increased, the 

plasmonic resonance gets red-shifted. Numerical simulation results from the Finite 

Element Method (COMSOL Multiphysics) are also shown in Figure 2. The geometrical 

parameters of square-shaped disk arrays used in simulation are measured from the SEM 

images. A good match between the experimental and simulation results can be found in 

Figure 2. In order to understand the relationship between optical reflection spectra and 

color generation, all the experimental and simulated reflection spectra depicted in Figures 

2(a)-2(c) have been converted as the discrete points in the CIE 1931 xy chromaticity 

coordinates based on color theory [44] in Figures 3(a)-3(c), respectively. As the 
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geometrical parameters of d, w and P for disk arrays vary, the chromaticity coordinates 

evolve in a clockwise fashion close to the achromatic point, demonstrating the capability 

of aluminum metasurfaces to produce a relative large degree of visible color range 

tuning. 

In order to understand the mechanism of the plasmonic resonance for the square-

shaped disk array, optical field distributions at the resonance wavelength of 546 nm are 

analyzed for one selected sample with P = 400 nm, w = 245 nm and d = 114 nm. As 

shown in Figure 4(a), the time-averaged magnetic field (color map) and electric 

displacement (red arrows) distributions in the y-z cross section of the designed disk array 

 

 

Figure 3. Measured (black square) and simulated (red circle) results in the CIE 1931 xy 

chromaticity coordinates. Results for three groups of disk array samples by changing (a) 

d, (b) w, and (c) P. The reflection spectrum data are obtained from Figures 2(a)-2(c). The 

beginning and ending points of parameter variations are labeled for each case. 

 

indicate a strong magnetic dipole resonance [45–47] with enhanced magnetic field 

concentrated within the air trench surrounded by three aluminum-air interfaces due to the 

anti-symmetric current flow. At the same time, an electric dipole resonance is also 
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formed on the top aluminum-air interface of the disk. The time-averaged optical power 

flow distribution in Figure 4(b) depicts the penetration of light into the aluminum surface 

layer. The excitation of resonant plasmonic modes will lead to the strong optical 

absorption for incident light at certain wavelength so that the subtractive color can be 

observed in the reflection from the disk array sample. A variety of colors are presented 

with the corresponding reflection spectra. 

 

 

Figure 4. Mode analysis of the resonator. (a) Cross section of the time-averaged magnetic 

field (color map) and electric displacement (red arrows) distributions for a selected disk 

array (with P = 400 nm, w = 245 nm and d = 114 nm) at the resonance wavelength. (b) 

Cross section of the time-averaged optical power flow vector distribution. 

 

The designed square-shaped disk arrays on aluminum surface can exhibit various 

visible colors. In Figure 5, the bright-field microscope images of two color palettes are 

displayed, where subtractive structural colors are generated from disk arrays with varying 

geometrical parameters in disk etching depth d, disk width w and unit cell period P. The 

color palette in Figure 5(a) includes the disk arrays with constant P = 400 nm but varying 

w and d, where the dimensions are measured from the SEM images. While the color 
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palette in Figure 5 (b) has the disk arrays with a certain P in each row changing from 360 

nm to 500 nm and varying w and d. An etching depth beyond the total thickness of the 

aluminum layer is also obtained experimentally, forming an aluminum-silicon two-layer 

post array on the silicon substrate. The absorption of incident light is further enhanced by 

the plasmonic resonance from the two-layer post as well as the optical loss in the silicon 

 

 

Figure 5. Color palettes generated from square-shaped disk arrays with varying disk 

etching depth d, disk width w and unit cell period P. (a) Color palette with constant P = 

400 nm but varying w from 267 nm to 138 nm and d from 51 nm to 505 nm. Each 

fabricated disk array has an area of 15 × 15 µm2. (b) Color palette with a certain P in 

each row changing from 360 nm to 500 nm and varying w from 293 nm to 154 nm and d 

from 91 nm to 456 nm. Each fabricated disk array has an area of 10 × 10 µm2. The 

dimensions are measured from the SEM images. A variety of colors are obtained based 

on the designed square arrays, making it is possible to vividly realize the imaging 

properties with various colors. 

 

substrate. As a result, dark colors can be realized at the upper-right corner of the color 

palette in Figure 5(a) and the right columns of the color palette in Figure 5(b). The wide 
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range of colors achieved with the designed aluminum metasurfaces can be used 

forstructural color printing applications. A micrometer scale plasmonic printed copy 

[Figure 6(b)] of a landscape painting we drew [Figure 6(a)] is fabricated according to the 

color palettes in Figure 5(a), where the original image features and colors are successfully 

reproduced. The SEM images of the fabricated plasmonic painting are shown in Figure 

6(c)-6(e). 

 

 

Figure 6. The high-resolution display technology based on the designed structure. (a) 

Original landscape painting with different colors. (b) The measured bright-field optical 

microscope image of the plasmonic painting with size of 50 µm by 35 µm. (c) SEM 

image of the fabricated plasmonic painting with various disk array patterns. (d) SEM 

image of the area outlined in panel (c). (e) SEM image of the area outlined in panel (d). 

Both SEM images in panels (d) and (e) are tilted with an angle of 52° to show clear three-

dimensional disk array structures. Scale bars: 20 µm in (b) and (c), 5 µm in (d), and 3 µm 

in (e). 
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4. INCIDENT ANGLE DEPENDENCE OF OPTICAL RESPONSE 

 

By considering the realistic situation for structural color printing applications, the 

incident angle dependence and polarization dependence of the optical spectral response 

are investigated in simulation for one designed square-shaped disk array with P = 400 

nm, w = 245 nm and d = 114 nm. The calculated TE (electric field parallel to y axis) and 

 

 

Figure 7. Polarization dependent reflection. Simulated incident angle dependent (a) TE 

and (b) TM polarized optical reflection spectra for a selected disk array (with P = 400 

nm, w = 245 nm and d = 114 nm). (c) Incident angle resolved chromaticity coordinates 

calculated from the reflection spectra for TE (red circle) and TM (black square) 

polarizations, indicating the spatial color distribution of the resonators. 

 

TM (magnetic field parallel to y axis) polarized optical reflection spectra with varying 

incident angle from 0° to 80° are plotted in Figures 7(a) and 7(b), respectively. For TE 

polarization, the plasmonic resonance gets a broader linewidth towards the longer 

wavelength range as the incident angle is increased. While for TM polarization, the 

bandwidth of strong optical absorption almost linearly extends into the longer wavelength 

as the incident angle is increased. Such incident angle dependence indicates that the 
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excitation of plasmonic modes are relevant to the grating coupling [22, 34, 48]. Based on 

color theory [81], the TE and TM polarized reflection spectra are converted into the 

chromaticity coordinates as a function of the incident angle as shown in Figure 7(c).  

 

5. CONCLUSION 

 

In summary, we have demonstrated an all-metal structural color printing platform 

based on aluminum plasmonic metasurfaces with high resolution and high color 

performance using a simple, one-step focused ion beam milling process on aluminum 

surface. A wide range of visible colors has been achieved with the plasmonic 

metasurfaces by varying the geometrical parameters of square-shaped disk arrays 

including the disk etching depth, the disk width and the unit cell period. The subtractive 

colors are obtained from the reflection spectra due to the excitation of plasmonic electric 

and magnetic dipole resonances. The reproduced microscale landscape painting shows 

the feasibility and flexibility of all-metal plasmonic metasurfaces used for color printing 

applications. The demonstrated aluminum plasmonic metasurfaces for structural color 

printing are well-suited for applications such as microscale imaging, information storage, 

anti-counterfeit tagging and security marking. 
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ABSTRACT 

Wavelength-selective metamaterial absorbers in the mid-infrared range are 

demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical 

parameters of cross resonators in single-sized unit cells, near-perfect absorption with 

single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of 

two, three, or four cross resonators of different sizes in one unit cell enables broadband 

near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit 

omnidirectionality and weak dependence on incident polarization. The underlying 

mechanism of near-perfect absorption with cross resonators is further explained by the 

optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, 

thermal analysis is performed to study the heat generation and temperature increase in the 

cross resonator absorbers, while the energy conversion efficiency is calculated for the 

thermophotovoltaic system made of the cross resonator thermal emitters and low-

bandgap semiconductors. The designed metamaterial absorbers (emitters) are expected to 

be promising in energy harvesting applications. 
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1. INTRODUCTION 

 

Metamaterials exhibit intriguing electromagnetic properties with flexibly tailored 

permittivity and permeability through engineering the geometrical shape and material 

composition of artificial meta-atoms [1]. One important application of metamaterials is 

perfect light absorbers and thermal emitters used for promising applications of energy 

harvesting, imaging, sensor, and optical communication [2–4]. Metamaterial perfect 

absorbers in the mid-infrared range are appealing to various applications such as thermal 

imaging system with spatial light manipulation [5], molecular or gas sensing with low 

cost [6,7], and thermophotovoltaics (TPV) with conversion efficiency exceeding the 

Shockley-Queisser (SQ) limit [8–11]. Thermal emitters play key roles in TPV systems 

with heat energy directly converted into electric power. Since the emissivity of a material 

equals to the absorptivity at equilibrium according to the Kirchhoff’s law [12], the 

thermal emission spectrum of a metamaterial at a certain temperature can be equivalently 

predicted by its light absorption spectrum. For TPV system with relatively high-bandgap 

semiconductor such as GaSb (0.71 eV), it requires a narrowband metamaterial thermal 

emitter with resonant wavelength shorter than 1.75 µm and radiation suppression at other 

wavelengths for getting optimal conversion efficiency [13]. By considering the thermal 

stability, high temperature-enduring refractive metals (e.g. Ti [14], W [8], Pt [15,16]) and 

dielectrics (e.g. Al2O3 [7], TiN [17]) are preferred materials for constructing the 

metamaterial thermal emitters.  

In terms of the materials used, metamaterial absorbers can be mainly categorized 

into three types: all-metallic, metal-dielectric and all-dielectric metamaterial 
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absorbers [18,19]. All-metallic micro-/nano-cavities or photonic crystal structures in 

1D [20], 2D [21] and 3D [22] have been widely investigated for efficient light absorption, 

owing to the advantages of intrinsic thermal stability and enhanced photonic density of 

states. In contrast, all-dielectric structures are able to realize a narrow absorption window 

via surface phonon polaritons or inter-subband transitions [23,24]. Metal-dielectric 

metamaterials are known as perfect absorbers or emitters with the excitation of plasmonic 

magnetic resonance at certain wavelength [2,25–28]. The metal-insulator-metal (MIM) 

structures are usually designed as a combination of a metallic ground plane, a dielectric 

spacer and a top patterned metallic layer with resonators. Various geometries have been 

designed to obtain wavelength-selective metamaterial absorbers with omnidirectional and 

polarization-independent properties, including simple multilayer [29], ring resonator [2], 

fishnet [30], patch resonator [25], cross resonator [26] and other complex structures [1]. 

Since the resonance wavelength of a single resonator highly depends on its geometrical 

design, methods have been developed by combining dual or multiple resonators with 

different sizes in one unit cell in order to obtain the multi-band or broadband absorption, 

including multi-width strips [27], multiple patches [28], cross resonators [26], disks [31]  

and mixture of cross and disk resonators [32], as well as stacked double ring 

resonators [33]. The metal-dielectric multilayers are also used to realize ultra-broadband 

absorption with either 1D gratings [34] or 2D trapezoid cavities [35] based on the stop-

light waveguide theory and structured metamaterial absorber through multiple 

overlapping resonances [36,37]. 

In this work, wavelength-selective metamaterial absorbers in the mid-infrared 

range are demonstrated by using single-sized and double-sized unit cells of tungsten cross 
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resonators to obtain single peak, dual-band and broadband near-perfect absorption (or 

emission) at mid-infrared range. The design and optimization of metamaterial absorbers 

are discussed, followed by the experimental characterization of the absorption spectra. 

The underlying mechanism of near-perfect absorption in cross resonators is explained 

with the excitation of optical magnetic resonances for both TM and TE polarized 

incidence, and is further modelled by equivalent RLC circuit for intuitive understanding. 

Finally, potential applications at mid-infrared range for metamaterial absorbers and 

emitters are analyzed through the thermal analysis for heat generation and temperature 

increase, as well as the energy conversion efficiency calculation for low-temperature 

TPV system based on low-bandgap semiconductors. 

 

2. DESIGN AND CHARACTERIZATION OF MID-INFRARED ABSORBERS 

 

The designed metamaterial absorbers are composed of a top 50 nm-thick tungsten 

(W) layer patterned with cross resonators, a 200 nm-thick alumina (Al2O3) spacer layer 

and a 200 nm-thick tungsten ground plane on a silicon substrate, denoted as th, td and tm, 

respectively. The thicknesses of top tungsten layer and spacer layer are selected to 

optimize the absorption performance and fabrication quality for the following absorber 

designs. The thick tungsten ground plane will effectively block the transmission so that 

the absorption is equal to unity minus the reflection. Figure 1(a) presents the schematics 

of single-sized unit cells of cross resonators A, B, C and D with the same geometrical 

parameters of period (P = 1500 nm) and arm width (w = 450 nm) but different arm 

lengths L of 0.87P, 0.77P, 0.67P and 0.57P, respectively. As shown in Figures 1(b)–1(d), 
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by combining two, three or four cross resonators of different sizes in one double-sized 

unit cell, metamaterial absorber patterns of ADAD, ABCC, and ABCD are obtained for 

realizing flexibly tunable absorption band. 

Geometrical parameters of metamaterial absorbers are optimized with numerical 

simulation (COMSOL Multiphysics), by starting from a single-sized unit cell of cross 

resonator with P = 900 nm, L = 800 nm and w = 300 nm at normal incidence under 

averaged TE and TM polarizations. Figures 2(a)–2(c) give the simulated polarization- 

 

 

Figure 1. Schematics of the unit cells of wavelength-selective metamaterial absorbers 

with tungsten cross resonators. (a) Single-sized unit cells of cross resonators A, B, C and 

D with the same period P and arm width w but different arm length L. (b - d) The 

combination of two, three or four cross resonators of different sizes in one double-sized 

unit cell, forming the patterns of ADAD, ABCC, and ABCD, respectively.   

 

averaged absorption spectra of single-sized unit cells as functions of period, arm length 

and arm width, where two main absorption peaks are observed. The absorption peak at 

around 1.5 μm is due to the grating effect of coupled cross resonators, showing less 
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dependence on the geometrical parameters of cross resonators. Another absorption peak 

at longer wavelength arises from the magnetic resonance of cross resonator, exhibiting a 

strong dependence on the period and arm length but not arm width. Moreover, Figures. 

2(d)–2(f) show the absorption spectra of length but not arm width. Moreover, Figures. 

2(d)–2(f) show the absorption spectra of three different types of double-sized unit cells 

with patterns of ADAD, ABCC and ABCD by changing the unit cell period, where dual-

band and broadband near-perfect absorption at mid-infrared range are achieved. In 

experiment, the unit cell period of P = 1500 nm is used by considering a balance between 

high absorption and relatively wide bandwidth for double-sized unit cells. 

 

 

Figure 2. Simulated polarization-averaged absorption spectra of metamaterial absorbers 

as functions of geometrical parameters at normal incidence, for single-sized unit cells 

with varying (a) period P, (b) arm length L and (c) arm width w, and for double-sized 

unit cells of (d) ADAD, (e) ABCC and (f) ABCD with varying period P. 
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The W-Al2O3-W three-layer stack is grown by RF sputtering on a silicon 

substrate. The W is grown in Ar atmosphere at 6 mTorr pressure at a deposition rate of 

0.75 Å / sec and the Al2O3 is grown in Ar atmosphere at 5 mTorr pressure at a rate of 

0.08 Å / sec. The designed cross resonator patterns are fabricated with focused ion beam 

(FIB) milling on the top tungsten layer. Figures 3(a)–3(d) show scanning electron 

microscopy (SEM) images of the fabricated metamaterial absorbers with cross resonator 

array patterns of C, ADAD, ABCC and ABCD, with the geometrical parameters of cross 

resonators A, B, C and D described in Figure 1(a). Due to the strong atomic bonding 

force and high hardness of W, the FIB milled W cross resonators have relatively rough 

side walls, compared with other metals such as Au [38], Ag [39] and Al [40,41]. Such 

imperfections in the fabrication process gives an averaged variation of ± 15 nm in the 

geometrical parameters of cross resonators different from the design. The absorption 

spectra of the metamaterial absorbers are obtained from the measured reflection spectra at 

normal incidence using Fourier transform infrared spectroscopy (FTIR). The measured 

reflection spectra are normalized with the reflection from a high-quality gold mirror. 

Numerical simulation is further conducted with the geometrical parameters of cross 

resonators obtained from the SEM images, where the permittivity of W and Al2O3 is 

from Rakic [42] and Kischkat [43], respectively. 

Figure 4 shows the experimental unpolarized absorption spectra (solid lines) at 

normal incidence for different unit cell patterns, where the simulated polarization-

averaged absorption spectra (dashed lines) are also plotted for comparison. In Figure 4(a), 

it shows the absorption spectra of single-sized unit cell patterns of A, B, C and D with P 

= 1500 nm and w = 450 nm but L = 0.87P, 0.77P, 0.67P and 0.57P, respectively. A near 



 

 

52 

perfect absorption peak induced by the magnetic resonance of the cross resonator shows 

red shift with the increased arm length, allowing the widely tunable absorption band 

ranging from 3.5 µm to 5.5 µm, which differs from the almost fixed absorption peak  

 

 

Figure 3. SEM images of the fabricated metamaterial absorbers. The cross resonator 

arrays for unit cell patterns of (a) C, (b) ADAD, (c) ABCC and (d) ABCD. The scale bar 

inside the insert image is 1 µm. 

 

at 1.73 µm due to the grating effect of coupled cross resonators. The deviation between 

the experimental and simulation results can be explained by the imperfect geometries in 

the fabricated cross resonators and the variation of permittivity. The influence of period is 

shown in Figure 4(b) for the double-sized unit cell pattern ADAD. Two individual 

absorption peaks at longer wavelength arising from resonator A and D in the double-

sized unit cell pattern ADAD exhibit red shift with the increased period and the fixed arm 

width, however, a mitigation of the absorption appears due to the reduced effective light-
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cross resonator interaction volume. Additionally, the improved absorption has been 

observed by increasing the arm width w from 450 nm to 600 nm. The structure with 

larger arm width has higher fabrication tolerance, and the effect of roughness on 

absorption is less compared to the structure with smaller arm width. 

 

 

Figure 4. Experimental (unpolarized) and simulated (polarization-averaged) absorption 

spectra at normal incidence for cross resonator arrays with different unit cell patterns. (a) 

A, B, C and D with P = 1500 nm and w = 450 nm but L = 0.87P, 0.77P, 0.67P and 0.57P, 

respectively. (b) ADAD with P = 1100 nm, 1300 nm and 1500 nm. (c) ABCC with 

different w but same P and L. (d) ABCD with different P The scale bar of the SEM image 

is 1 µm. 
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More continuous absorption bands are realized with the double-sized unit cell 

patterns of ABCC and ABCD, as shown in Figures 4(c) and 4(d), respectively. With P = 

1500 nm and w = 600 nm, pattern ABCC shows an absorption band of around 900 nm 

with the absorption intensity over 0.9 (the maximum of 0.93). And the absorption band is 

about 1 μm (1.2 μm) for the absorption intensity over 0.88 (0.85) for pattern ABCD. 

Compared with the absorption spectra of pattern ABCC, the single-sized unit cell D 

slightly broadens the absorption band to the shorter wavelength range in pattern ABCD, 

but it also affects the absorption intensity due to the weak coupling with neighboring 

resonators. Furthermore, a near perfect absorption band is observed in experiment for 

pattern ABCD with P = 1100 nm and w = 450 nm, having the absorption intensity over 

0.94 (the maximum of 0.96) from 3.22 µm to 4 µm. 

 

3. OPTICAL MODE ANALYSIS AND EQUIVALENT CIRCUIT MODEL 

 

In Figure 5, cross sections of magnetic field Hy distributions along the x-z plane 

across the unit cells are plotted under TM polarization (electric field is along x direction) 

at normal incidence, where the location of each cross section view is illustrated in Figures 

5(e1)-5(e4). Figures 5(a1)-5(a3) show the magnetic field distributions in unit cell pattern 

C at the wavelength of 4.17 µm and 1.73 µm, representing the first-order and high-order 

magnetic resonance modes along the horizontal cross arm along the x direction, 

respectively. The black arrows represent the direction and magnitude of the induced 

electric current density. The magnetic resonance arises from the antiparallel currents of 

electric charges in the W layers excited by the incident light [2]. There is one induced 
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current loop between the top W resonator and the ground plane for the first -order 

magnetic resonance at 4.17 µm in Figure 5(a1).  For the high-order magnetic resonance at 

1.73 µm in Figure 5(a2), there are multiple induced current loops observed with the 

coupling between neighboring cross resonators. This type of resonance at short 

wavelength is related to the grating effect of coupled cross resonators, and the cross-talk 

effect between the neighboring cross resonators manifests itself by the connected induced 

 

 

Figure 5. Cross section view of the normalized magnetic field Hy distribution at different 

resonance wavelengths under TM polarization at normal incidence. Results for the 

designed unit cell patterns of (a1 - a3) C, (b1 - b2) ADAD, (c1 - c3) ABCC and (c1 - c4) 

ABCD. The black arrows represent the induced current density. (e1 - e4) Schematics of 

the locations of cross sections in the designed unit cells. 

 

current loops. Furthermore, as shown in Figures 5(b)-5(d), the first-order magnetic 

resonance and induced current loop are also found in the magnetic field distributions at 
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longer wavelengths for double-sized unit cell patterns. The combination of the multiple 

first-order magnetic resonances in cross resonators with different sizes are responsible for 

the generation of absorption bands with different bandwidth and absorption intensity [25–

27].  

In order to develop further understanding of absorption performance, the 

dispersion relations of designed metamaterial absorbers are plotted through the simulated 

absorption spectra as a function of wave number 𝜆−1 and in-plane wave vector kx 

normalized with half of the reciprocal lattice vector kd = π/P. The results are shown in 

Figure 6 for unit cell patterns of A, D, and ABCD under TM and TE polarization, 

respectively. It shows that there is almost no dependence of the absorption peak and band 

on the incident angle for the first-order magnetic resonances at long wavelengths larger 

than 2.5 μm (below 4000 cm-1), which is a significant advantage for absorber or emitter 

applications with omnidirectional requirements. However, for the high-order magnetic 

resonance at high wave number larger than 4000 cm-1, the absorption branch is strongly 

modified by the grating effect of coupled cross resonators, with the excitation of spoof 

surface plasmons [16,25,44,45]. The dispersion relation of surface plasmons is described 

as |kspp| = (ω/c)√𝜀1𝜀2/(𝜀1 + 𝜀2), where 𝜀1 and 𝜀2 denotes the permittivity of metal and 

dielectric, respectively. It is noted that spoof surface plasmons are usually considered for 

1D or 2D periodic metamaterials under TM polarization [44,46], however, spoof surface 

plasmons also exist under TE polarization for 2D case [45]. For a 2D periodic 

metamaterial absorber, to excite spoof surface plasmons, momentum matching condition 

(i.e. kspp = k||, inc + kg) must be achieved at a specific wavelength. k||, inc = kx,inc  �̂� + 

ky,inc  �̂�, representing the wave vector of the tangential component of the incident light 
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in the x-y plane. kg is the reciprocal lattice vector of the Bloch wave for the grating with 

kg =2πm/P 𝒙 + 2πn/P �̂�, where m and n are the grating diffraction order along the x 

and y direction, respectively. The wave vector of spoof surface plasmons is then a 

function of unit cell period and incident angle, which is observed in Figure 6. The 

excitation of different diffraction orders of spoof surface plasmons depends on the 

incident polarization. For TM polarized incidence with only kx,inc, |kspp| = |kx,inc + 

2πm/P| with kx,inc = (ω/c)sinθ and the assumption of n = 0. The branches with 

diffraction orders of m = ± 1 are plotted with white dashed lines in Figures 6(a1)–(c1) 

 

 

Figure 6. Polarized dispersion. Dispersion relation of unit cell patterns of A, D, and 

ABCD under (a1 - c1) TM  and (a2 - c2) TE polarization, respectively. The white dashed 

lines are obtained from the grating dispersion relations at different diffraction orders. 

 

from the theoretical dispersion relation. In addition, the diffraction orders with m = 0 and 

n = ± 1 are shown under TM polarization following the relation of |kspp| = 
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√(ωsinθ/c )2 + (2πn/P)2, which are attributed to the electric field component along the 

y direction of the diffracted wave. Furthermore, in Figures 6(a2)–6(c2), the diffraction 

orders with m = 0 and n = ± 1 are plotted under TE polarization where the above 

dispersion relation is still followed, where the incident electric field is dominant along y 

direction with kx,inc = 0. The dispersion curve shows blue shift with the increased 

incidence angle for the TE case. The above dispersion analysis explains the strong 

interactions between the high-order magnetic resonances of neighboring cross resonators 

and the excitation of spoof surface plasmons at short wavelength range [45,47]. 

In order to obtain an intuitive description of the underlying mechanism for 

magnetic resonance characteristics, the designed cross resonators are analyzed with the 

equivalent RLC circuit model [48,49] to model not only the first-order magnetic 

resonance and its coupling but also the impedance of the effective multilayer stack. 

Figure 7(a) shows the equivalent RLC circuit model of the single-sized unit cell pattern 

C. The total impedance ZC is composed of the impedance from unit cell pattern ZC0 and 

the impedance of the effective multilayer stack Zms. For ZC0, two types of capacitance 

are considered, the parallel capacitance between the top W resonator and ground plane 

Cd = ϕ1𝜀0𝜀𝑑(2Lw-w2)/td and an approximated gap capacitance between neighboring 

resonators Cg = ϕ2𝜀0𝜀𝑑wth/(P-L), where 𝜀0 is the permittivity in the free space, ϕ1 and 

ϕ2 are numerical factors to approximate the non-uniform distribution of charges due to 

the induced electric currents [48,49]. Furthermore, Lm is employed to represent the 

mutual magnetic inductance from stored magnetic energy between the top W resonator 

and the ground plane, while Lk accounts for the kinetic inductance induced from the 

kinetic movement of free charge carriers inside the W layers. Lm = ϕ3𝜇0Ltd/w with the 
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permeability of free space, 𝜇0, and the numerical factor, ϕ3, to rectify the geometrical 

approximation. Lk can be derived from the complex kinetic impedance Zk = Rk - 𝑖ωLk 

with Zk = L/(Aeff �̃�) and Aeff = ϕ4wλ/(2πκ). Aeff denotes the effective area across. The 

induced current path obtained from the multiplication of arm width and skin depth of W, 

with the extinction coefficient κ [50] and the numerical factor ϕ4 . The complex 

conductivity of W reads �̃� = σ′ + 𝑖σ′′ , where σ′ = 𝜔𝜀0𝜀𝑚
′′  and σ′′ = −𝜔𝜀0𝜀𝑚

′  are 

derived from Maxwell’s equation by considering the conduction current density and 

 

 

Figure 7. Equivalent RLC circuit model of the designed unit cells of cross resonators. (a) 

Single-sized unit cell of C. (b) Double-sized unit cell pattern of ABCD. (c) Unpolarized 

absorption spectra obtained from experiment and equivalent RLC model at normal 

incidence for unit cell patterns of C, ADAD, ABCD and ABCD. (d) The real and 

imaginary parts of normalized impedance calculated from equivalent RLC model. The 

dashed line is at the impedance of 1. 

 

displacement current density [50]. Therefore, Rk and Lk can be solved from the real part 

and imaginary part of Zk, respectively. Additionally, the impedance of the effective 
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multilayer stack Zms can be calculated from the impedance transformation method [51]. 

This method is based on the recursion relation of Zj = η𝑗(Zj+1 + iη𝑗tankjdj ) / (η𝑗  + 

iZj+1tankjdj), j = 2, 1, with the initialization of Z3 = η3, where η𝑗= √𝜇0/(𝜀0𝜀𝑗) expresses 

the intrinsic impedance of the jth layer with thickness dj and refractive index nj. The 

impedance of vacuum is Z0 =√𝜇0/𝜀0. kj is the wave vector at the jth layer with kj = njk0, 

where k0 denotes the wave vector in free space. The impedance of the effective 

multilayer stack is then obtained by the relation Zms = ϕ5Z1, where ϕ5 is numerical 

factor to account for the influence from the cross resonator pattern in the effective 

multilayer stack assumption. Finally, the total impedance of single-sized unit cell pattern 

C is obtained by Zc = Zms + (Zk + 𝑖ωLm) / [1 + 𝑖ωCg(Zk + 𝑖ωLm) ]+2 / ( 𝑖ωCd). As 

shown in Figure 7(b), regarding the impedance of multiple cross resonators, a parallel 

circuit connecting each single-sized unit cell is employed to evaluate the coupling effect 

of multiple resonances for the double-sized unit cell patterns of ABCD, with the 

impedance of each cross resonator denoted as ZA0, ZB0, ZC0 and ZD0, respectively. To 

simplify the problem, a homogenization assumption is used by setting the same value for 

each type of numerical factor (ϕ1, ϕ2, ϕ3, ϕ4), and the same value for gap capacitance 

between neighboring resonators with Cg = ϕ2𝜀0𝜀𝑑wth/deff, where the effective distance 

deff = [(2P – LA – LB)+ (2P – LB – LC)+ (2P – LC – LD)+ (2P – LA – LD)]/4. The total 

impedance of the whole unit cell pattern of ABCD reads ZABCD = Zms + 

(1/ZA0+1/ZB0+1/ZC0+1/ZD0). The absorption spectrum is consequently calculated by 

A = 1 – [(ZABCD – Z0) / (ZABCD + Z0)]2. Figure 7(c) plots the equivalent RLC model 

calculated unpolarized absorption spectra for metamaterial absorbers with unit cell 

patterns of C, ADAD, ABCC and ABCD, respectively, showing a good agreement with 
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the measured results. Accordingly, Figure 7(d) shows the real and imaginary parts of the 

total effective impedance Ztotal of the designed metamaterial absorbers, normalized by 

the Z0 of free space. The absorption performance can be alternatively explained through 

the impedance match theory [4]. When Ztotal/Z0 approaches 1, there is no reflected wave 

and a strong absorption band will appear in the absorption spectrum. 

 

4. THERMAL ANALYSIS FOR ABSORBERS AND ENERGY CONVERSION 

EFFICIENCY FOR EMITTERS 

 

As the incident light wave is coupled into the metamaterial absorber, heat is 

generated due to the optical loss of the W layers and the time-averaged dissipative energy 

density per unit volume is written as Qh = 𝜀0𝜔𝜀𝑚
′′ (𝜔)|𝑬|2/2, where E is the electric field 

and 𝜀𝑚
′′  is the imaginary part of the metal [52,53]. Figure 8 shows the distributions of the 

time-averaged dissipative energy density at the cross section of the top W layer for the 

designed metamaterial absorbers at different resonance wavelengths, with green arrows 

describing the direction and magnitude of the Poynting vector. The power dissipation 

density distributions in Figure 8 are obtained with TM polarized normally incident light 

with the power of 22.2 µW/µm2 for each type of metamaterial absorber. From the top 

view of the unit cell pattern of C at two resonance wavelengths in Figures 8(a1) and 

8(a3), the optical energy flow inside the W cross resonators at certain resonant 

wavelengths generate heat. The cross sections in Figures 8(a2) and 8(a4) show the optical 

energy penetration inside the absorbers and both the W resonator and ground plane 

contribute to the heat generation through dissipative loss. Similar dissipation process 

happens for metamaterial absorbers with double-sized unit cell patterns of ADAD, ABCC 
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and ABCD, as seen in Figures 8(b1)-8(b2), 8(c1)-8(c3) and 8(d1)-8(d4), where the 

specific energy dissipation distribution inside each type of unit cell at certain resonance 

wavelength is observed. 

  

 

Figure 8. Time-averaged optical power dissipation density Qh (W/m3) distributions at the 

cross section (x-y plane) of top W layer. Results for unit cell patterns of (a1, a3) C, (b1, 

b2) ADAD, (c1 - c3) ABCC and (d1 - d4) ABCD at different resonance wavelengths 

under normal incidence. Cross section (x-z plane) of single-sized unit cell pattern of C is 

shown in (a2) and (a4). Green arrows show direction and magnitude of Poynting vector. 

 

The generated heat Qd serves as the heat source in the transient heat transfer 

equation 𝐶𝑝𝜌𝜕𝑇/𝜕𝑡 + ∇ ∙ (−𝑘𝑐∇𝑇) = 𝑄𝑑 , where 𝐶𝑝 , 𝜌, 𝑘𝑐 , are the material dependent 
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specific heat capacity, density and thermal conductivity, respectively. To simplify the 

heat transfer analysis, the steady-state heat transfer is considered by setting the time 

derivative component as zero. This equation has been proved valid for a nanoscale 

material system, however, the parameter of thermal conductivity needs to be modified 

accordingly for thin films [53–56]. It has been theoretically and experimentally pointed 

out that the thermal conductivity of a thin film at the nanoscale dramatically decreases 

since the interfacial scattering effects between similar or dissimilar materials inside the 

structure significantly impede the vibrational energy transfer across the interfaces [55]. 

To simplify the problem, specific heat capacity and density can still be the same as bulk 

material. Thermal parameters used in this work are listed in Table 1 [53–56]. To solve the 

heat transfer problem, proper boundary conditions are imposed on the designed 

metamaterial absorber. At the bottom of the 100 µm-thick silicon substrate, a Dirichlet 

boundary condition is used by setting a constant temperature T = T0, where T0 is the 

room temperature of 300 K. Following the boundary conditions used in  [53], the heat 

generation and temperature distribution is solved for metamaterial absorbers using 

COMSOL Multiphysics.  

Figure 9 shows the calculated steady-state temperature distributions in cross 

resonators generated by heat source from the dissipative energy for metamaterial 

absorbers with unit cell patterns of C, ADAD, ABCC and ABCD at different resonance 

wavelengths. It is noted that the 100 µm-thick silicon substrate is not shown in the plot. 

For a single-sized unit cell pattern of C shown in Figures 9(a1)-9(a2), a temperature 

variation range from 315 K to 320 K is found at 𝜆 =4.17 µm and the highest temperature 

appears in the horizontal arm of the W cross resonator. A similar temperance range is 
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found at 𝜆 =1.73 µm but with the highest temperature in the vertical arm of the W cross 

resonator. The magnitude of temperature distribution is consistent with the time-averaged 

 

 

Figure 9. Temperature distributions at resonance. Temperature distributions for unit cell 

patterns of (a1, a2) C, (b1, b2) ADAD, (c1 - c3) ABCC and (d1 - d4) ABCD at different 

resonance wavelengths under TM polarized normal incidence. It is noted that the incident 

optical power density is 22.2 µW/µm2 and the 100 µm-thick silicon substrate is not 

shown. The enhanced temperature is observed at the resonant cross resonator. 

 

dissipative energy density Qh serving as the heat source. For the double-sized unit cell 

patterns of ADAD, ABCC and ABCD, high temperature regions are distributed in the 

specific W cross resonators at certain resonance wavelengths. When comparing the 

temperature distribution of single-sized unit cell patterns of C at 𝜆 =  4.17 µm (with 

maximum T of 313 K and minimum T of 308 K) with double-sized unit cell pattern of 

ABCD at 𝜆 =4.18 µm (with maximum T of 314 K and minimum T of 306 K), one can 

find a relatively higher maximum temperature but a lower minimum temperature for the 
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double-sized unit cell pattern, which is due to the coupling effects between neighboring 

cross resonators and hence a different heat dissipation environment for each type of unit 

cell pattern.  

The designed W-based metamaterial absorbers and emitters can advance 

promising applications in thermal energy harvesting such as thermal photovoltaic (TPV) 

cells at the mid-infrared wavelength range. Different from conventional solar cells, many 

types of heat sources are available for TPV cells such as high-temperature combustion 

processes (typically above 2000 K) and low-temperature waste heat sources (typically in 

600 K ~ 1300 K) from industries of glass, steel and paper [57,58]. High-temperature TPV 

  

Table 1. Physical properties of materials for heat transfer analysis. 

 𝜌(kg m-3) 𝐶𝑝 (J kg-1 K-1) 𝑘𝑐(W m-1 K-1)  

Tungsten 19300 132 

52.2 (thickness, 200 nm) 

17.4 (thickness, 50 nm) 

Alumina 3970 765 1.6  

Silicon 2330 712 148  

Air 1 353 [K] / T 0.03  

 

cells are still difficult to implement in practice mainly due to the requirement of high-

temperature enduring materials and thermal management [57]. Low-temperature TPV 

cells are important for energy recovery from waste heat sources and have been 

experimentally explored with low-bandgap semiconductor of InAs (0.32 eV) [58]. 

Alternative selections of low-bandgap semiconductors (0.18 eV – 0.35 eV), for instance, 
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InSb (0.18 eV) [59], SnTe (0.18 eV) [60], PbTe (0.19 eV) [61], PbSe (0.26 eV ~ 0.29 

eV) [62,63], InAsSb (0.29 eV) [64] and GaInAsSbP (0.35 eV) [65], have also been 

reported for designing practical low-temperature TPV cells. 

The common configuration of the TPV cell has been schematically shown in the 

literature [8,13]. The energy conversion efficiency of TPV cells is mainly determined by 

both the thermal emission spectrum of the emitter and the semiconductor selection as 

pointed out from the detailed balance efficiency [8,10,66]. To simplify the problem, the 

photon recycling process of sub-bandgap photons or re-emitted photons can be ignored, 

which is considered as an improvement of the overall conversion efficiency [8]. It 

assumes that the quantum efficiency of the semiconductor exactly cuts off at the bandgap 

energy (𝐸𝑔). Each photon with energy (𝜁) greater than the bandgap energy can excite an 

electron-hole carrier pair with energy of 𝐸𝑔. The overall conversion efficiency of TPV 

cell 𝜂  is evaluated as the fraction of converted electrical power to input power from 

thermal emitter, described by 𝜂 = 𝑈(𝑇, 𝐸𝑔)𝜈(𝑇, 𝐸𝑔)𝑀(𝑉𝑜𝑝)  [8], where 𝑈 is the ultimate 

conversion efficiency which imposes a cutoff on the irradiance power allowing to be 

converted from thermal emitter, 𝜈  takes account into the recombination process, and 

𝑀presents the consideration on maximizing the overall conversion efficiency of the TPV 

cell by optimizing the selection of open-circuit voltage (𝑉𝑜𝑝). As defined in [8], 

𝑈(𝑇, 𝐸𝑔) =
∫ 𝑑𝜃 sin(2𝜃) ∫ 𝑑𝜁𝐸𝑚(𝜁,𝜃)𝐼𝐵𝐵

∞
𝐸𝑔

𝜋 2⁄

0
(𝜁,𝑇𝑒)𝐸𝑔/𝜁

∫ 𝑑𝜃 sin(2𝜃) ∫ 𝑑𝜁𝐸𝑚(𝜁,𝜃)𝐼𝐵𝐵
∞

0
𝜋 2⁄

0 (𝜁,𝑇𝑒)
                              (1) 

where 𝐸𝑚(𝜁, 𝜃) = (< 𝐴𝑇𝐸(𝜁, 𝜃) > +< 𝐴𝑇𝐸(𝜁, 𝜃) >)/2 is the emissivity obtained from 

polarization and incident angle averaged absorption spectra according to the Kirchhoff’s 

law, 𝐼𝐵𝐵 = 2𝜁3 [ℎ3𝑐2(𝐸𝑥𝑝(
𝜁

𝑘𝐵𝑇
) − 1))]⁄  is the spectral radiance of an ideal blackbody. It 
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finds that the ultimate efficiency is highly dependent on the operating temperature and 

bandgap energy, which is essentially related with the power that can be used for electric 

generation. Optimum useful power is obtained when emissivity of designed selective 

emitter is matched to that of a blackbody. However, taking account into the 

recombination process and actual difference between open-circuit voltage 𝑉𝑜𝑝  and 

bandgap voltage 𝑉𝑔, ultimate efficiency is reduced by the second term, expressed as [8] 

𝜈(𝑇, 𝐸𝑔) = 𝑉𝑜𝑝 / 𝑉𝑔 = 𝑉𝑐 / 𝑉𝑔ln [𝑓𝑄𝑒(𝑇, 𝐸𝑔)/𝑄𝑐(𝑇𝑐, 𝐸𝑔)]                    (2) 

Bandgap voltage is written as 𝑉𝑔 = 𝐸𝑔/𝑒, where e is an electron’s charge; initial 

cell voltage at cell temperature Tc is written as𝑉𝑐 = 𝑘𝐵𝑇𝑐/𝑒. The non-ideality factor 𝑓 is 

usually set as 0.5 to consider the influence from non-radiative recombination and non-

unity absorption in the TPV cell [8]. For the TPV cell, the fraction of incident photon 

number flux resulting from the designed emitter and an ideal blackbody at temperature of 

Tc reads [8] 

𝑄𝑒

𝑄𝑐
= [∫ 𝑑𝜃 sin(2𝜃) ∫ 𝑑𝜁𝜋𝐸𝑚(𝜁, 𝜃)𝐼𝐵𝐵

∞

𝐸𝑔

𝜋 2⁄

0
(𝜁, 𝑇𝑒)/𝜁] [∫ 𝑑𝜁𝜋𝐼𝐵𝐵

∞

𝐸𝑔
(𝜁, 𝑇𝑐)/𝜁]⁄    (3) 

The last consideration is on impedance matching term M, aiming at maximizing 

the conversion efficiency by optimizing the selection of open-circuit voltage. The 

expression is given by [8]  

𝑀 = 𝑧𝑚
2 [(1 + 𝑧𝑚 − 𝑒−𝑧𝑚)(𝑧𝑚 + ln (1 + 𝑧𝑚))]⁄                               (4) 

where 𝑧𝑚 is solved from the relation 𝑧𝑚 + ln(1 + 𝑧𝑚) = 𝑉𝑜𝑝 / 𝑉𝑐. 

Figure 10 plots the distributions of ultimate efficiency 𝑈 and overall conversion 

efficiency 𝜂 as functions of the thermal emitter temperature and semiconductor bandgap 

energy. Compared to the unit cell pattern of D in Figure 10(b1), the high 𝑈 region (over 
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0.5) for the unit cell pattern A in Figure 10(a1) is shifted to the area with lower bandgap 

energy and lower operating temperature. This is  mainly because the energy matching 

condition between the wavelength-selective emissivity spectrum of the thermal emitter 

and the temperature dependent blackbody radiation spectrum [8]. The center emission 

wavelength for the emitter with unit cell pattern of A is around 5.5 μm (0.225 eV), which 

corresponds to the blackbody temperature of 530 K, giving the maximum 𝑈 over 0.5 at 

temperature below 1000 K (even as low as 500 K) and semiconductor bandgap energy 

 

 

Figure 10. Ultimate conversion efficiency (U) as the function of thermal emitter 

temperature and the semiconductor band gap energy. Results for unit cell patterns of (a1) 

A, (b1) D and (c1) ABCD.  Overall conversion efficiency (𝜂) of the TPV system for unit 

cell patterns of (a2) A, (b2) D and (c2) ABCD. 

 

below 0.21 eV. While the emitter with unit cell pattern of D has the center emission 

wavelength around 3.5 μm (0.354 eV) corresponding to the blackbody temperature of 
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830 K, the maximum 𝑈  over 0.5 is located at temperature above 1150 K and 

semiconductor bandgap energy above 0.24 eV. Due to the fact that resonance wavelength 

of the emitter is located in the mid-infrared range, 𝑈 is lower than the reported design in 

the near-infrared range [8], but the current thermal emitter design exhibits the advantage 

of operating at low temperature. For instance, an overall conversion efficiency 𝜂 of 0.1 at 

temperature 685 K or 𝜂 of 0.2 at temperature 1080 K can be enabled by using InSb (0.18 

eV) with the unit cell pattern of A in Figure 10(a2). Also, the similar 𝜂 value can be 

achieved by using InAsSb (0.29 eV) with the unit cell pattern of D in Figure 10(b2) at a 

relatively higher temperature. For the unit cell pattern of D, at the working temperature of 

1800 K, 𝜂  of 0.31 is obtained which is the same as the Shockley-Queisser limit of 

traditional solar cells. In Figure 10(c1), the emitter with double-sized unit cell pattern of 

ABCD shows a region with 𝑈 over 0.5 at lower bandgap energy because of the dominant 

contribution from the unit cell pattern of A with the resonance wavelength around 5.5 

µm. Also, one can find in Figure 10(c2) that the double-sized unit cell enables the TPV 

cells to operate at low emitter temperature with low semiconductor bandgap energy at the 

same time for achieving the same overall conversion efficiency. Therefore, the current 

mid-infrared metamaterial emitters based on multiple W cross resonators are promising 

in low-temperature waste heat recycling for low power electronic products. 

 

5. CONCLUSION 

 

In summary, single-sized and double-sized unit cells patterns with tungsten cross 

resonators have been demonstrated to realize wavelength-selective metamaterial 
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absorbers and emitters in the mid-infrared range, with near-perfect single absorption 

peaks tunable from 3.5 µm to 5.5 µm and broadband absorption with bandwidth of about 

1 µm within the wavelength range from 3 µm to 5.2 µm. The obtained absorption peak is 

mainly explained by the magnetic resonance supported in the cross resonator unit cells 

and the dispersion relation of unit cell array under both TM and TE polarizations. An 

equivalent RLC circuit model is developed to study the characteristics of absorption and 

impedance spectra for different unit cell patterns based on the magnetic resonance. 

Furthermore, heat generation and dissipation is analyzed for absorber applications. 

Thermal energy conversion efficiency is also calculated for realizing feasible TPV 

systems based on mid-infrared thermal emitter operating at low temperature with low-

bandgap semiconductors for applications of low power electronics. 
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ABSTRACT 

We theoretically and experimentally investigate thermal emission properties for 

three types of quasi-periodic metal-dielectric multilayer stacks: Periodic, Thue-Morse and 

Fibonacci multilayer stacks. Compared with local effective permittivity theory (EMT), 

nonlocal EMT shows efficient description of the effective permittivity parameters 

dispersion, providing a better way to characterize the optical topological transitions on 

the designed metamaterials. Epsilon-near-zero and Epsilon-near-pole behaviors are 

closely associated with the high absorptivity (emissivity). The enhancements of 

absorptivity or emissivity arise from surface plasmon polariton (SPP) modes and bulk 

plasmon polariton (BPP) modes formed by the coupling of SPP modes. Differences in the 

dispersion relations of SPP and BPP modes in the designed metamaterials are attributed 

to the existence of specific arrangement sequences of layers in the multilayer stacks, 

which are essential to control the thermal energy density distribution and thermal 

emission properties for selective thermal emitter design, attractive for wavelength 

selective sensing and energy harvesting.  
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 1. INTRODUCTION 

 

Going beyond the ability of traditional natural materials, artificially designed 

metamaterials are famous for their unique properties, which dramatically boost the 

development in a wide range of fields, covering perfect absorber based energy 

harvesting [1–3], selective thermal emission engineering [4–7], color printing and 

imaging at extremely nanoscale  [8,9], and extreme sensitivity for bio-sensing [10]. In 

terms of thermal applications, metamaterials based thermophotovoltaic (TPV) method is 

receiving extensive attention as it is one excellent way to improve the high temperature 

energy conversion process, not only overcoming the upper limit on energy conversion for 

semiconductor cells, but also simplifying the design by efficient integration or 

modulation in real applications [11–14]. To maximize the efficiency of TPV approach, it 

is crucial to use an emitter with tunable thermal radiation spectrum lying within the 

operational wavelength compatible with the bandgaps of specific photovoltaic cells 

(typically 0.3 - 0.7 eV for low bandgap semiconductors  [15,16]). To tailor the thermal 

emission spectrum for a narrow spectral range, four types of methods are mainly applied 

in terms of the materials, namely all-metallic  [17–19], all-dielectric [20], metal-dielectric 

[4,5,25,26] and rare earth oxides [21] configurations. However, metal-dielectric 

multilayer metamaterials manifest the significant role in selective thermal emission 

engineering compared with other routes such as rare earth oxides limited by materials 

availability and complex composites [21], two dimensional or three dimensional photonic 

crystals limited by less sharp bands or low emissivity [17,18,22,23], gratings and meta-

surfaces limited by complex fabrication techniques and large scale applications [4,5,20]. 
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Periodic multilayer stacks are most prevailing multilayer metamaterials utilized to 

construct metamaterials composed of alternative arrangement of the layer A and layer B 

(for example, layer A is metal and layer B is dielectric or reversed allocation ) [6,24,25]. 

Different from the periodic sequence, there exists two representative sequences of the 

quasiperiodic arrangements: Thue-Morse sequence and Fibonacci sequence. Thue-Morse 

sequence can be arranged in strings by the rule of Boolean complementary operation, 

such as S𝑛 = {S𝑛−1S𝑛−1
∗ }  with S0 = 𝐴 ,  S0

∗ = 𝐵 , and 3rd generation term as  S3 =

𝐴𝐵𝐵𝐴𝐵𝐴𝐴𝐵 . Similarly, Fibonacci sequence is generated with the recursive formula 

given as  S𝑛 = {S𝑛−1S𝑛−2} with S0 = 𝐵 and S1 = 𝐴, yielding the 5th generation term as 

𝐴𝐵𝐴𝐴𝐵𝐴𝐵𝐴. Specific sequence of layers in the multilayer stack also produces significant 

differences on the optical properties, including modification of thermal radiation 

behaviors [26,27], localization properties of light [28,29], bandgap effects on the light 

transportation [30–32],  second or high harmonic generation [33–36], and strong optical 

nonlocality [37]. Additionally, previous work on quasiperiodic multilayers are mainly 

basing on noble metals with low temperature stability [26,38], dielectric/semiconductor 

with low wavelength selectivity [28,30,32,33], which are not suitable for high 

temperature selective thermal emission engineering with high emittance and narrow band 

at near and middle infrared region. Furthermore, unique properties of metamaterials are 

supported by the hyperbolic iso-frequency surface, a spatial dispersion relation relating 

the momentum and energy of optical modes inside materials [39].  

In this work, we focus on designing the high temperature selective thermal emitter 

based on quasiperiodic metal-dielectric multilayer stacks and investigating the thermal 

emission properties through modifying the arraignment sequence in multilayer stacks. 
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First, three types of multilayer stacks, Periodic multilayer (PM), Thue-Morse multilayer 

(ThM) and Fibonacci multilayer (FM), are designed and fabricated with the same metal 

filling ratio of refractory tungsten (W), respectively. The effective permittivity theory 

(EMT) is then employed for local and nonlocal analysis, revealing the Epsilon-near-zero 

behaviors associated with the optical topological transition in the iso-frequency surfaces 

of multilayer stacks. ENZ and Epsilon-near-pole (ENP) behaviors are also utilized to 

explain the high absorptivity (emissivity).The differences of the emissivity measured 

from the designed metamaterials are analyzed in terms of the effective group indexes, 

surface and bulk modes with respect to the transverse magnetic (TM) polarization.  

 

2. METHODS AND EXPERIMENTAL PRODUCERS 

 

Figures 1(a)–1(c) schematically illustrate periodic, Thue-Morse and Fibonacci 

multilayer stack, respectively. To explore the thermal emission properties of quasi-

periodic metal-dielectric multilayer and influence from different arrangement sequences, 

the considered three types of multilayer stacks with gold substrate are fabricated on the 

silicon wafer, respectively. The multilayer stacks composed of refractory metal W and 

dielectric Si layers are deposited with specific sequence as periodic, Thue-Morse and 

Fibonacci, respectively. The gold substrate with thickness of 200 nm is added to block 

the light transmission in the spectrum region of mid-infrared and infrared studied in this 

work. In Figures 1(d)–1(f), it shows the scanning electron microscope (SEM) images of 

the cross section of PM, ThM and FM stacks, respectively, with gold substrate on the top 

of silicon wafer. All cross sections are obtained through cutting the multilayer stacks with 
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focused ion beam (FIB) system (Helios Nanolab 600). The same filling ratio of metallic 

medium is initially designed for three types of multilayer stacks, which turns out to be 

0.040 ± 0.005 in fabrication results; the thicknesses of W layer and Si layer varies over 

different layers and stacks. For theoretical calculation in this work, the optical constants 

of W, Si and Au are obtained from references [40,41]. Combining the results from SEM 

image measurement and numerical calculations, the thicknesses of W layer and Si layer 

are determined to be 8.9 ± 0.6 and 209.7 ± 3.5 nm for PM stack, 8.6 ± 1.4 and 180.1 ± 

29.2 nm for ThM stack and 6.3 ± 2.3 and 183.9 ± 33.2 nm for FM stack, respectively. 

The existed variation in layer thicknesses causes slight modifications for three types of 

multilayer stacks in terms of the optical response; however, the specific features of three 

types of multilayer are captured in the experiment.  

 

 

Figure 1. W-Si multilayer stacks in simulation and experiment. Schematic of W-Si 

multilayer stack with (a) periodic, (b) Thue-Morse and (c) Fibonacci sequence, 

respectively. SEM image of the cross section of (d) periodic, (e) Thue-Morse and (f) 

Fibonacci multilayer stack, respectively.   
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The absorptivity (unity minus the reflectivity) is indirectly obtained from the 

reflectivity measurement in the spectrum region of near-infrared and mid-infrared at 

room temperature by the Fourier transform infrared (FTIR) spectrometer (Nicolet 6700) 

with a nitrogen-purged mercury cadmium telluride (MCT) detector. The normalization is 

conducted using high-quality gold mirror as reference. Before the thermal emission 

measurement, all the prepared multilayer stacks are annealed at 400 K for 20 minutes in 

air to remove the pollutions and stabilize deposition layers in the samples. A thermal 

plate (DATAPLATE 730 Series Digital Hot Plates) with temperature controller is used 

for the annealing process and heating process for thermal emission measurement later. 

The emittance signals are collected by the FTIR spectrometer. To stabilize the emittance 

signal, the collection does not start until holding for 20 minutes at the desired 

measurement temperature. A black soot sample is used as reference sample which is 

prepared by direct deposition no to a clean silica glass slide using a candle with a 

deposition time larger than 20 minutes and then annealed at 500 K for 1 hour to purify 

and stabilize the black soot sample. The prepared black soot sample is able to achieve a 

high emissivity close to the ideal black body as reported in the reference [42,43].  

 

3. COMPARISON OF ABSORPTIVITY AND EMISSIVITY IN THE DESIGNED 

METAMATERIALS 

 

Consider the designed three types of multilayer stacks, which possess almost 

identical filling ratio of metallic medium. The almost same effective permittivity 

parameters are therefore expected for different multilayer stacks according to the local 

EMT theory [44]. The effective permittivity parameters 𝜀𝑥
𝑙𝑜𝑐 in the parallel direction and 
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Figure 2. Effective medium analysis. Effective permittivity (a) 𝜀𝑥 and (b) 𝜀𝑧 of the PM, 

ThM and FM stacks based on the local effective medium theory. Effective permittivity 

(c)-(e) 𝜀𝑥 and (f) 𝜀𝑧 of the PM, ThM and FM stack, respectively, based on the nonlocal 

effective medium theory. For each type of stack, one specific topological transition 

region for is colored in gray with conventional anisotropic medium region shaded in 

yellow and hyperbolic medium region shaded in orange.  

 

𝜀𝑧
𝑙𝑜𝑐 in the normal direction of designed multilayer stacks are extracted as 𝜀𝑥

𝑙𝑜𝑐 = 𝜀𝑚𝑓 +

𝜀𝑑(1 − 𝑓) and 𝜀𝑧
𝑙𝑜𝑐 = 𝜀𝑚𝜀𝑑 [𝜀𝑑𝑓 + 𝜀𝑚(1 − 𝑓)]⁄ , where f = 𝑎𝑚/(𝑎𝑚 + 𝑎𝑑) is the metal 
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filling ratio. The calculation results are shown in Figures 2(a)–2(b), respectively. An 

overlap of effective permittivity dispersion is found for both 𝜀𝑥
𝑙𝑜𝑐 and 𝜀𝑧

𝑙𝑜𝑐 , though slight 

violations exist because of small variations among different stacks due to slight 

difference in filling ratios. Due to the limitations of local EMT in predicting the optical 

properties as discussed in literature [44], another analysis for the effective permittivity 

dispersion are performed based on the nonlocal EMT [45,46]. One representative method 

of nonlocal EMT is developed based on the original definition of effective permittivity as 

𝜀𝑥
𝑛𝑜𝑛𝑙𝑜𝑐 = ∫ 𝐷𝑥𝑠

𝑑𝑠 ∫ 𝐸𝑥𝑠
𝑑𝑠⁄  and 𝜀𝑧

𝑛𝑜𝑛𝑙𝑜𝑐 = ∫ 𝐷𝑧𝑠
𝑑𝑠 ∫ 𝐸𝑧𝑠

𝑑𝑠⁄ , integrated on the cross 

section of metamaterial [46], which is proved to be capable of efficiently calculating the 

optical characteristics of multilayer stacks. The nonlocal EMT is then employed to 

extract the effective permittivity parameters 𝜀𝑥
non𝑙𝑜𝑐  and 𝜀𝑧

𝑛𝑜𝑛𝑙𝑜𝑐  as shown in Figures 

2(c)–2(f). Contributions from different arrangement sequences are significantly differed 

in the effective permittivity dispersion relationships for three types of multilayer stacks. 

Furthermore, compared with the results of local EMT, nonlocal EMT provides 

better understanding on the effective permittivity dispersion relationship and optical 

topology transformation for the designed metamaterials. ENZ point serves as the 

separation position for conventional elliptical dispersion relation region (colored in 

yellow) and hyperbolic dispersion relation region (colored in orange). A range of 

transformation region is obtained by varying the incident angle from normal to parallel, 

yielding the transformation region (colored in gray) from 3.860 to 3.882 µm for PM 

stack, 4.366 to 4.436 µm for ThM stack and 3.461 to 3.483 µm for FM stack. 

Additionally, ENP behaviors are also observed in the dispersion relation of effective 
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permittivity parameters for three cases, which are associated with the low polarization 

sensitivity and omnidirectional high absorptivity or emissivity effect [24]. 

In Figure 3, it shows the experimental (blue) and calculated (red) absorptivity 

spectra of the PM, ThM and FM stacks at normal incidence under room temperature. 

Transfer matrix method [37] is applied to theoretically predict the absorptivity of 

designed metamaterials, whose permittivity parameters are considered to be temperature 

independent. For three types of multilayer stacks, differences in the absorptivity spectra 

reflect the optical response of specific arrangement sequence of layers. Specific 

arrangement sequences construct various Fabry-Perot (FP) resonators [47] within 

multilayer stacks. Consequently, the position and intensity of the resonance peaks on the 

absorptivity spectra are quite different among the designed metamaterials.  

 

 

Figure 3. Absorptivity spectra of designed multilayer stacks. Experimental and calculated 

absorptivity spectra of the (a) PM, (b) ThM and (c) FM stacks at normal incidence. 

 

ENZ and ENP region also play an important role on the formation of high 

absorptivity. For the calculated spectrum in Figure 3(b), large absorptivity is found at the 

wavelength of 4.27 µm lying at the proximity the ENZ wavelength. This resonance is 

derived from the impedance matching effect. Similar resonances are found at 3.676 µm 

for PM stack and 3.156 µm for FM stack, but with relatively lower absorptivity because 
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of imperfect impedance match. Comparing with the relatively broad resonance from ENZ 

behavior, absorption resonance generated by ENP shows narrow band, such as the 

resonance at 2.791 µm for PM stack and 2.248 µm for FM stack. The ENP resonance 

arises from the regularized singularity with high loss, which reduces the impedance 

mismatch and enhances the absorptivity. The absorptivity is further enhanced by 

interactions from surface plasmon polaritons and bulk plasmon polaritons [48], which 

will be discussed in detail in the discussion section. Also, it is also immediately revealed 

by the Kirchhoff’s law that high emissivity will be obtained at the wavelength of high 

absorptivity [49]. 

Based on the equivalence principle at thermal equilibrium state from the 

Kirchhoff’s law, the expected emittance can be theoretically calculated by setting the 

formulation as E(λ, θ, φ) = A(λ, θ, φ) , where E  denotes the emissivity and A(λ, θ, φ) 

represents the optical absorptivity in terms of wavelength, azimuthal angle and polar 

angle. To validate thermal emission properties of designed metamaterials, the emittance 

of three types of multilayer stacks were directly measured at elevated temperatures. Also, 

aiming at exploring the stability and adaptability in the ambient atmospheres, thermal 

emission measurements are conducted in air at desired elevated temperatures. Thermal 

oxidation at high temperature will degrade the prepared samples and result in the 

distorted results in the experiment [6,19]; however, the serious degradation could be 

effectively prevented using an appropriate low temperature according to the Arrhenius 

law [50]. Consequently, 400 K is applied as highest temperature in current experiment 

considering the influence of thermal oxidation problem in the samples. More details 

about the temperature selection and validation will be addressed in the discussion section. 
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Figure 4. Comparison of emissivity and absorptivity. Experimental emittance of (a) PM, 

(b) ThM and (c) FM stacks at different temperatures, 350 K, 375 K and 400 K. The 

emittance of blackbody (BB) reference is given at 400 K. Normalized emissivity of (d) 

PM, (e) ThM and (f) FM stacks. Comparison of the emissivity measured at 350 K and 

absorptivity measured at room temperature of (g) PM, (h) ThM and (i) FM stacks. 

 

Figures 4(a)–4(c) show the direct emittance measurement results at 350 K, 375 K 

and 400 K for PM, ThM and FM stack, respectively. The temperature dependent 

emittance shows increasing intensity for increasing temperature from 350 K to 400 K. 

Emissivity is then used to characterize the thermal emission spectra by normalization 

with black soot reference at corresponding temperatures, showing the results in Figures 

4(d)–4(f). Here only show the emissivity spectra in the wavelength range from 3 µm to 

10 µm because of the low single to noise ratio in the wavelength shorter than 3 µm, 
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which is limited by the sensitivity of detector and FTIR spectrometer. In Figure 4(e), an 

emissivity peak is observed to be about 0.6 at the wavelength of 4.27 µm for the ThM 

stack, while most of the character emissivity peaks for PM and FM stacks are located 

before 3 µm outside of the measured spectra range. Some violations on the spectrum are 

attributed to deviations in the normalization process, thermal expansion of the dielectric 

layers [51] and thermal oxidation [6]. 

Comparisons are shown in Figures 4(g)–4(i) for the emissivity E(λ) measured at 

350 K and absorptivity A(λ) measured at room temperature for three types of multilayer 

stacks. The measured emissivity and absorptivity curves show a good agreement both in 

the intensity and spectrum pattern, which is a direct validation of the Kirchhoff’s law. 

Also, this work extends the ability to control the thermal emission with multilayer stacks 

by simply applying different arrangement sequence of layers, showing character thermal 

radiative properties for specific multilayer stacks. 

 

4. DISPERSION RELATIONSHIP AND MODE ANALYSIS 

 

The influence from different arrangement sequence of layers in the multilayer 

stacks can be explained through the dispersion relations in wave vector resolved space. 

To derive the dispersion relation of the designed metal-dielectric multilayer stacks, the 

transfer matrix method was applied for a propagating Block waves. Taking the TM 

polarization as an example [37], the tangential components of the electromagnetic filed at 

the two interfaces of the jth layer with the permittivity 𝜀𝑗 can be formulated as (
𝐸𝑧

𝑗

𝐻𝑦
𝑗) =
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M𝐽 (
𝐸𝑧

𝑗+1

𝐻𝑦
𝑗+1) with the transfer-matrix M𝐽 = (

cos[𝜙] −i sin[𝜙] η⁄

−isin[𝜙]η cos[𝜙]
),  where 𝜙 =

2𝜋𝑎𝑗√𝜀𝑗𝑘0
2 − 𝑘𝑥

2
, η = √

μ0

ε0
√𝜀𝑗𝑘0

2 − 𝑘𝑥
2 𝜀𝑗𝑘0⁄ . ε0  and μ0  denote the permittivity and 

permeability of the vacuum. While the total transfer-matrix of the stack with N layers 

reads M = ∏ M𝑗𝑁
𝑗=1 , and the Bloch type phase shift has a relation with the trace of the 

total transfer-matrix M  written as cos[𝑘𝑧 ∑ 𝑎𝑗
𝑁
𝑗=1 ] =

1

2
𝑇𝑟(M) . For simplification, 

normalization is applied by the W plasma frequency ωp = 2.005 × 1016 rad/s and the 

corresponding electromagnetic wave vector kp = 6.69 × 107m−1.  

For a fully understanding of the dispersion relation of designed multilayer stacks, 

we plot the wave vector resolved space in another two views, ω0 − 𝑘𝑧 and ω0 − 𝑘𝑥, to 

explore the on-axis and off-axis dispersion and band structures, respectively. First, let’s  

see the dispersion relations in the ω0 − 𝑘𝑧 space. Figure 5(a) presents the calculated 

reflection spectra of designed metamaterials, in which the resonance peaks show a 

corresponding relation with bandgap edges in the band structure curves plotted both in 

the real and imaginary part. It is notable that the interested region is shaded in gray from 

1.5 µm to 7 µm. In Figures 8(b)–8(c), band structure relationship is obviously altered 

both in real and imaginary part by the arrangement sequences in the multilayer stacks. 

The group velocity distribution shown in Figures 8(d) 8(e) is obtained by 𝑣𝑔 = 𝑑ω0/𝑑𝑘𝑧 

from band structure relationships. Negative group velocity is generated in the first 

Brillouin zone, accompanying with the sharp variation of group velocity in the vicinity of 

band edge. Large group velocity exceeding the light speed is considered as another 

feature of metamaterials. The effective group index 𝑁𝑒𝑓𝑓𝑧 = 𝑐0 𝑑𝑘𝑧 𝑑ω0⁄  is associated  
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Figure 5. Band structure and group velocity. (a) Reflection and (b) real and (c) imaginary 

part of band structure at normal incidence for designed multilayer stacks. (d) Real and (e) 

imaginary part of group velocity distribution obtained from (b) and (c), respectively. (f) 

and (g) show real and imaginary part of effective group index distribution, respectively. 

An interested region is shaded in gray from 1.5 µm to 7 µm. 

 

with the group velocity governing the optical pulse propagation in the medium. As seen 

in Figures 8(f)–8(g), when approaching the bandgap edges, the frequency dependent  

𝑁𝑒𝑓𝑓𝑧  will be substantially increased, resulting in the high reflectivity; similarly, high 

absorptivity or low reflectivity in this work is observed with real part of 𝑁𝑒𝑓𝑓𝑧 

approaches 1 while its imaginary part approaches the pole with negative value, enabling 

the impedance match with the refractive index of the air. Although the existence of a shift 
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because of different length for the reciprocal lattice vectors, specific band structures are 

clearly observed in the wave vector resolved ω0 − 𝑘𝑧 space for three types of multilayer 

stacks, which are associated with the specific absorptivity properties and also the thermal 

radiative properties. 

To further investigate the surface modes and bulk modes in the designed 

metamaterials, the dispersion curves bounded the bands are plotted in in Figures 6(a)–6(c) 

for PM, ThM and FM stack, respectively. SPPs are able to be thermally excited in the 

metal-dielectric multilayer metamaterials as the contribution of collective behavior the 

electrons oscillation in the multilayer stack [24,52]. The SSPs dispersion in the multilayer 

stack resides below the light line of dielectric.  Light lines of air and Si are plotted 

according to the relation ω0 = c0 𝑛⁄ 𝑘𝑥 , in which 𝑛 = 𝑛𝑎𝑖𝑟  for air and 𝑛 = 𝑛𝑆𝑖  for Si. 

Above the light line of air, there are different branches (Group A) for each type of 

multilayer stack. If only consider the branches within the plot range, it finds four 

branches (A1 to A4) for PM stack, four branches (A1 to A4) for ThM stack and three 

branches (A1 to A3) for FM stack. The branches in group A are related with the dips on 

the absorption curves, while the branches in group B (B1 to B4) below the light line of 

dielectric are corresponding to the BPP modes associated with the metal layers. BPPs are 

induced from the coupling of SPPs between different multilayer interfaces in the 

multilayer stack [48]. Also, consider the classic expression for the propagation constant 

of SPP along the metal-dielectric interfaces: 𝑘𝑥 = √ε𝑚ε𝑑/(ε𝑚 + ε𝑑)/𝑘0, which is 

plotted as black dashed line in Figures 6(a)–6(c). SPP calculated from the classic 

expression is same for three types of multilayer stack since it only considers the 

interaction on one metal-dielectric interface; however BPP modes exhibit the discrepancy 
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in the coupling of SPPs activated from different metal-dielectric interfaces. Variations in 

branches distribution and branch numbers of BPP modes show the influence of specific 

arrangement sequence of layers in different multilayer stacks. For example, the BPP 

dispersion curves (B2 branchs) is featured with different Ohmic damping effects from 

collective oscillation of electrons in the three types of multilayer stacks, which is 

associated with the influence of different SPPs couplings. The SPP coupling can be 

expressed as the generation of different modes split from the surface plasmon frequencies, 

symmetric or low–frequency mode with ω− = ω𝑠𝑝√1 − 𝑒−𝑘𝑥𝑎𝑚/1 + ε𝑑/√1 + ε𝑑  and 

antisymmetric or high–frequency mode with ω+ = ω𝑠𝑝√1 + 𝑒−𝑘𝑥𝑎𝑚/1 + ε𝑑/√1 + ε𝑑 , 

estimated for SSP with large wave vector [53]. Consequently, different SPP couplings are 

expected for the varying metal thicknesses of 𝑎𝑚 because of the specific sequence of 

layers in the stack. Similarly, different characteristic propagation lengths of SPPs,  

described by 𝛿𝑆𝑃𝑃 = 1 [2𝐼𝑚(𝑘𝑥)]⁄ , can be found in different multilayer stacks, which are 

dominated by the imaginary part of the propagation constant [53]. 

Eigen modes analysis of the electromagnetic field is illustrated in Figure 6, 

corresponding to dispersion branches for each type of multilayer stack. Distribution of 

magnetic field intensity |𝐻𝑦| generated at eigenmode directly differs the electromagnetic 

wave interactions within multilayer stack composed of specific arrangement sequence of 

layers. Eigenmodes in Group A are the propagating modes through the multilayer stack, 

while the eigen modes in Group B are the localized electromagnetic fields caused from 

the coupling of SPP modes, distributed on the metal-dielectric interfaces in the stack. 

Again, the differences in the eigenmode analysis show the influence from specific 

arrangement sequence of layers in the multilayer stacks. 
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Figure 6. Dispersion and mode analysis. Dispersion diagram of (a) PM, (b) ThM and (c) 

FM stacks. (d). An interested region is bounded by the dashed purple curves at 1.5 µm 

and 10 µm, respectively and crossed by a dashed blue curve at 4.27 µm. Light lines are 

shown in solid green for air and in dashed green for Si. Eigen modes analysis is shown 

for the magnetic field intensity |𝐻𝑦|of (d) PM, (e) ThM and (f) FM stacks regarding with 

the specific dispersion relation.  

 

5. POLARIZATION AND ANGLE DEPENDENCE OF OPTICAL RESPONSE 

 

Figures 7(a)–7(c) show the calculated polarization averaged absorptivity with the 

incident angle ranging from 0° to 80°for three types of multilayer stacks. According to  
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Figure 7. Absorption dependence on angle and polarization. Angle dependence of the 

polarization averaged absorptivity of (a) PM, (b) ThM and (c) FM stacks. Directional 

absorptivity for (d) PM, (e) ThM and (f) FM stacks at 3.676 µm, 4.27 µm and 3.156 µm, 

respectively. A second wavelength is selected at 2.791 µm, 2.396 µm and 2.248 µm for 

PM, ThM and FM, respectively. The TM polarization (blue and orange lines) shows 

stronger directional absorptivity ability compared with TE polarization (red and purple 

lines). Emissivity poses the identical angle dependence of absorptivity of multilayer stack 

according to the Kirchhoff’s law. 

 

the equivalence principle described by the Kirchhoff’s law, unpolarized emissivity of the 

designed multilayer stacks exhibit incident angle dependence properties same as the 

polarization averaged absorptivity. Additionally, the polarized case is considered by 

plotting the polarized absorptivity spectra at two representative resonant wavelengths for 

each type of multilayer stack, as shown in Figures 7(d)–7(f). Different dependences of 

polarization and incident angle are observed for the absorptivity spectra for three types of 
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multilayer stacks. The similarity is a directional absorptivity property appeared at large 

incident angle, about 75°, under the TM polarization at the wavelength of 3.676 µm for 

PM stack, 4.27 µm for ThM stack and 3.156 µm for FM stack. However, the absorptivity 

of FM stack shows independence of polarization and incident angle while maintaining 

high absorptivity for lower incident angles at wavelength of 2.248 µm due to the low 

polarization sensitivity and omnidirectional high emissivity effect of ENP resonance [24]. 

Influence of ENP resonance can also be observed for absorptivity of PM stack, but with 

less significance because of different permittivity dispersion at ENP resonance compared 

to the FM stack. Therefore, the specific sequence of layers in the multilayer stack greatly 

changes the polarization and angle dependence of optical response, from which polarized 

and directional properties can be achieved at a certain wavelength by constructing the 

multilayer stacks. Since the designed metamaterials are made of refractory metal W and 

high melting point dielectric Si, they are suitable to operate as thermal emitters at high 

temperature situations. 

 

6. CONCLUSION 

 

In this work, quasi-periodic metal-dielectric multilayer stacks are presented as an 

important role for the selective thermal emission engineering through the theoretically 

and experimentally investigation based on PM, ThM and FM stacks. Optical topological 

transitions are critical on these designed metamaterials, which are characterized by the 

nonlocal effective permittivity theory. ENZ and ENP behaviors showed association for 

the high absorptivity (emissivity). Dispersion relations of the designed metamaterials are 
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analyzed in the wave vector resolved space. The space ω0 − 𝑘𝑧 shows high absorptivity 

or emissivity of metamaterials when effective group index 𝑁𝑒𝑓𝑓𝑧  with real part 

approaches one and imaginary part near negative pole. Meanwhile, in the space of ω0 −

𝑘𝑥 , SPP modes and BPP modes enhance absorptivity or emissivity.  The specific 

sequences in the arrangement of the multilayer stacks contribute to the variation of 

dispersion relationships and consequently the absorptivity or emissivity behaviors. These 

findings provide an alternative and flexible way to design the wavelength selective 

multilayer emitter and engineer the thermal emission spectrum at high temperature with 

metal-dielectric hyperbolic metamaterials. 
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ABSTRACT 

Broadband binary-pattern metasurface absorbers are designed and demonstrated 

in the mid-infrared wavelength range through the micro genetic algorithm. The tungsten-

based metasurface absorbers with the optimized binary-pattern nanostructures exhibit 

broadband near-perfect absorption due to the multiple plasmonic resonances supported 

within the unit cell. Furthermore, the influence of minor pixel modifications in the 

optimized binary-pattern nanostructures on the absorption performance is investigated in 

experiment. This work presents a promising approach to design and optimize complex 

optical nanostructures with the desired properties for metamaterial and metasurface 

applications. 

 

1. INTRODUCTION 

 

Electromagnetic metamaterial absorbers have been receiving great interest since 

the first demonstration of the perfect absorption properties [1]. Metamaterial absorbers 

have been designed to realize broadband or narrowband absorption at wavelengths from 
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visible to infrared [2]. Various geometries have been used to design broadband 

metamaterial absorbers, mainly including multilayer films based on impedance match 

theory [3], metal-dielectric-metal structures with multiple resonators [4], structured 

multilayer gratings [5], and hybrid structures with multiple absorption mechanisms [6]. 

These metamaterial absorbers are constrained by the manual design process with limited 

geometry complexity and tedious parameters sweeping. Several optimization methods 

have been proposed to simplify the nanostructure design, including gradient-based 

methods [7], evolutionary models such as genetic algorithms [8–10], particle swarm 

optimization [11] and non-deterministic quasi-random method [12]. Genetic algorithms 

have been proved to be an efficient approach for the absorber design [8–10,13]. Starting 

from one random distribution of materials selection, the genetic algorithm searches the 

optimal distribution through the steps in the crossover of parents’ information, evaluating 

the offspring’s information, and repeating the loop over until reaching the stop criteria. 

Furthermore, micro genetic algorithm (micro-GA) is a modified genetic algorithm by 

adding the option of restarting the initialization of population, which requires a smaller 

initial population and converges faster than the traditional genetic algorithm, making this 

method appealing in real applications [8].      

In this work, micro-GA is employed to design the broadband mid-infrared binary-

pattern metasurface absorbers. The tungsten-based structure is selected for the 

optimization towards broadband near-perfect absorption. The optimized binary-pattern 

nanostructures within the unit cell support multiple plasmonic resonances to achieve 

broadband absorption. The effects of minor pixel modifications in the optimized 

nanostructures on the absorption performance are further investigated. This work 
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provides an effective method to optimize the complex metamaterial and metasurface 

nanostructures with the desired properties.  

 

2. FORMULATION OF STRUCTURAL DESIGN WITH MICRO GENETIC 

ALGORITHM 

 

In the micro-GA method, the binary-pattern nanostructure is encoded into the 

chromosome with binary numbers defined as either material (“1”) or free space (“0”). To 

enable the evolutionary optimization toward the optimal result, the fitness function is 

defined as 𝐹 = ∑ ∑ (1 − 𝐴𝑇𝑀)2
𝜆 + (1 − 𝐴𝑇𝐸)2

𝜃  to evaluate the absorption property for 

each binary-pattern nanostructure, where 𝐴𝑇𝑀 and 𝐴𝑇𝐸 are the absorption under TM and 

TE polarization at a certain incident angle θ. Thus, the design problem of binary-pattern 

nanostructure is formulated as the minimization of the fitness function F subject to 

∇ × ∇ × 𝑬 − μ𝜔2𝜖𝑬 = 0  and ∇ ∙ 𝜖𝑬 = 0 , where 𝑬 ,  𝜖 ,  μ  denote the electric field, 

permittivity and permeability in the unit cell. Periodic boundary conditions are applied 

around the unit cell in simulation using COMSOL software. The fitness value F is then 

extracted from the simulated absorption spectra for each obtained binary-pattern 

nanostructure and it is further evaluated to stop or start new calculation loops according 

to the criteria conditions.  

The optimization target is to obtain the absorption above 0.9 at the selected 12 

equally-spaced wavelengths from 2 μm to 4 μm at two incident angles of 0°and 45°. The 

binary-pattern nanostructure is encoded with an 11 by 11 array with “1”s and “0”s, where 

the 8-fold mirror symmetry is applied to enable polarization independence and to shorten 

the chromosome string. Due to the advantages of micro-GA in searching solutions, a 
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population of 5 chromosomes is used with the tournament selection for crossover [8–10]. 

No mutation step is required since the repopulation step after reaching a value of the 

similarity among chromosomes will significantly accelerate the evolution progress. The 

two optimized patterns presented in this work both start from random structures initially 

and converge to the fitness values satisfying design target within 35 generations. It takes 

around 72 hours to get the result of Pattern A0 by using the computer with 2 processors 

of the Intel(R) Xeon(R) CPU E5645. No fillet operation is conducted to the pattern due to 

its negligible contribution to the absorption performance in this work. 

 

3. DESIGNED METAMATERIALS TOWARD BROADBAND ABSORBER 

 

Figure 1(a) shows the schematic of the optimized binary-pattern nanostructure 

pattern A0 in the unit cell through the micro-GA, with the top view shown in Figure 1(b) 

where the dashed blue lines mark the cross section locations for optical field analysis in 

Figure 2 The multilayer is composed of a top 45 nm-thick tungsten (W) layer, a 220 nm-

thick alumina (Al2O3) spacer layer and a 200 nm-thick tungsten ground plane on a silicon 

substrate, denoted as th, td and tm, respectively. Tungsten is used for its high intrinsic loss 

and the extended operating temperature due to high temperature enduring ability, making 

it potential for absorber design [4]. The pattern A0 in the unit cell is made of an 11 by 11 

square pixel array filled with either W or air based on the optimization result with pixel 

width w of 100 nm. The tungsten ground plane is thick enough to effectively block the 

transmission so that the absorption is calculated as unity minus the reflection.  
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The W-Al2O3-W multilayer stack was deposited on a silicon substrate by RF 

sputtering. Both, W and Al2O3, were grown in Ar atmosphere at 6.5 mTorr and 5 mTorr, 

respectively. The deposition rates were 0.75 Å / sec for W and 0.08 Å / sec for Al2O3. 

The designed binary-pattern nanostructure was then fabricated with focused ion beam 

(FIB) milling on the top tungsten layer. Figure 1(c) shows a scanning electron 

microscopy (SEM) image of the fabricated pattern A0 array. Variations in the FIB 

 

 

Figure 1. Designed binary-pattern absorber. Schematic of the optimized binary-pattern 

A0 in the unit cell and top view shown in (a-b). (c) SEM images of the pattern A0 array. 

Insert image scale bar: 400 nm. (d) Measured and simulated broadband absorption from 

the pattern A0 array under unpolarized normal incidence. 

 

milling process cause the 100 nm pixels to vary by ± 8 nm. The unpolarized reflection 

spectrum is measured at normal incidence with Fourier transform infrared spectroscopy 

(FTIR). The measured absorption spectrum for the fabricated pattern A0 array is plotted 

in Figure 1(d), showing that broadband near-perfect absorption is obtained with the 
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absorption over 0.9 from 1.9 μm to 4.2 μm and over 0.95 from 3 μm to 3.9 μm. The 

simulated absorption spectrum with the averaged polarization matches the experimental 

data well, where in simulation the permittivity parameters of W and Al2O3 are taken from 

Rakic [14] and Kischkat [15], respectively. 

 In order to understand the mechanism of broadband absorption for the optimized 

pattern A0, optical mode analysis is conducted at the three resonance wavelengths (λ = 

2.02 μm, 2.58 μm and 3.65 μm) as shown in Figure 2. Figures 2(a1)–(a3) show the top 

 

 

Figure 2.  Mode analysis of designed absorber. Top view of the electric field |E| 

distributions at the top W surface of pattern A0 at λ = 2.02, 2.58 and 3.65 μm shown in 

(a1)-(a3). Cross section view of the magnetic field |Hy| distributions at the locations of 

(b1)–(b3) a-a, (c1)–(c3) b-b and (d1)–(d3) c-c under TM polarization at normal 

incidence. Black arrows depict the direction and magnitude of the induced electric 

current density. 
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view of the electric field |E| distributions at the top W surface with normal incidence 

under TM polarization. It shows that the electric field distributions are enhanced at 

certain locations of the nanostructure at different resonance wavelengths. These multiple 

plasmonic resonances are also observed from the magnetic field |Hy| distributions in 

Figures 2(b1)–2(b3), Figures 2(c1)–2(c3) and Figure 2(d1)–2(d3) at the cross sections of 

a-a b-b and c-c, respectively. The black arrows plotted in the magnetic fields describe the 

direction and magnitude of the induced electric current density. 

Figure 2(b1) presents a loop of the induced electric current between the top W 

layer and the W ground plane, which is a signature of magnetic resonance resulting from 

the antiparallel currents [1,4]. These current loops are also observed in other cross 

sections but with different distributions due to the certain pixel arrangement at each cross 

section. The multiple plasmonic resonances supported in the binary-pattern nanostructure 

are responsible for the achieved near-perfect broadband absorption. Additionally, as 

tungsten is treated as a non-magnetic dispersive medium in the designed metasurface 

absorber, the time-averaged dissipative power density reads [16], Qh = 𝜖0𝜔𝜖𝑚
′′ (𝜔)|𝑬|2/2, 

where 𝜖𝑚
′′  denotes the imaginary part of the permittivity. It indicates that the absorbed 

electromagnetic energy is finally converted to heat dissipation due to the optical loss in 

tungsten. 

 

4. PERFORMANCE PERTURBATION FROM MINOR STRUCTURAL 

MODIFICATION 

 

In order to investigate the dependence of the absorption performance on the minor 

pixel modifications of the optimized binary-pattern nanostructure, three types of 
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nanostructures, patterns A1, A2 and A3, are designed as shown in Figures 3(a)–3(c) in 

the 11 by 11 square pixel arrays with pixel width of 100 nm. The yellow pixels are the 

 

 

 Figure 3. Designed absorber with modification. Schematic of three types of modified 

patterns A1, A2 and A3 with yellow pixels representing the perturbations to pattern A0 

shown in (a)–(c). (d)–(f) SEM images of patterns A1, A2 and A3. Scale bar: 400 nm. (g) 

Measured and simulated absorption spectra under unpolarized normal incidence. 

 

intentionally added tungsten pixels to introduce the perturbation to the originally 

optimized nanostructure pattern A0.  In Figure 3(a) for pattern A1, 4 yellow pixels are 

placed at the corners of nanostructure in the clockwise direction which breaks the central 

mirror symmetry of pattern A0, and the SEM image is shown in Figure 3(d). The broken 

symmetry is expected to lead to significant influence on the absorption spectra. The 

measured and simulated absorption spectra of pattern A1 are plotted in Figure 3(g), 

showing that the three resonance wavelengths are red shifted to λ = 2.04 μm, 2.6 μm and 

4 μm, respectively, and the absorption values are lower in the wavelength range from 2 
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μm to 3.5 μm compared to pattern A0. Furthermore, Figures 3(b)–3(c) present the 

perturbed patterns A2 and A3 with the additional central cross and square structures, 

respectively. The corresponding absorption spectra of patterns A2 and A3 shown in 

Figure 3(g) exhibit similar behavior due to the same plasmonic resonance mechanism for 

cross and square structures with the same geometric length and thickness [17]. Compared 

to pattern A1, the resonances at ~ 2.5 μm for patterns A2 and A3 are observed to have 

blue-shifts and the absorption increases slightly at this wavelength due to the central 

cross/square structure. However, compared to pattern A0, the separations between the 

two resonances in the wavelength range of 2.5 – 4 µm become larger and lead to the 

absorption performance degradation from the optimized pattern A0. 

 

 

Figure 4. Mode analysis of designed absorber. Cross section view of the magnetic field 

|Hy| distributions of (a1)–(a3) Pattern A1 at the location b-b, (b1)–(b3) Pattern A2 at the 

location a-a, and (c1)–(c3) Pattern A3 at the location a-a at three resonance wavelengths 

under TM polarization at normal incidence.  
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The perturbation of absorption performance can be understood with optical mode 

analysis for the modified nanostructures. Figure 4 shows the cross-section view of the 

magnetic field |Hy| distributions of patterns A1, A2 and A3 at the locations marked by the 

dashed blue lines in Figures 3(a)–3(c). The yellow pixels in pattern A1 are expected to 

modify the magnetic field distributions, which are verified through simulation results in 

Figres 4(a1)–4(a3) at the b-b cross section. The asymmetric magnetic field distribution on 

the top metal layer is presented in Figure 4(a2) due to the existence of the added pixels in 

pattern A1, compared with the central symmetric magnetic field distribution of pattern 

A0 shown in Figure 2(c2). Pattern A2 and A3 keep the central mirror symmetry as 

pattern A0 after adding new pixels. In Figures 4(b1)-4(c3), the magnetic field |Hy| 

distributions of patterns A2 and A3 at the a-a cross section are similar at three resonance 

wavelengths, so that it is almost equivalent to add either the central cross structure or the 

square structure into pattern A0. The observed variations of magnetic field distributions 

of patterns A2 and A3 compared with those of pattern A0 in Figures 2(b1)-2(b3) explain 

the perturbations due to the central structures, which result in the wavelength shifts for 

the resonances and the lower absorption in the spectra at wavelength range of 2.5 – 3.5 

µm for patterns A2 and A3. 

 

5. ALTERNATIVE DESIGN OF THE BROADBAND ABSORBER 

 

In theory, there are multiple solutions available for the optimized binary-pattern 

nanostructures to achieve the broadband near-perfect absorption performance. However, 

it is difficult to find all the solutions due to the constraints from the optimization 
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algorithm, practical fabrication limit and the limited computational resources [8–10,13]. 

Evolutionary optimization algorithm, for instance the micro-GA, will usually converge to 

a local minimum under predefined constraints for the target fitness value or just stop with 

the criteria of a maximum generation number. In this work, except pattern A0, another 

type of nanostructure pattern B0 is also found to satisfy the design target with constraint 

condition of 125 nm pixel width. Figure 5(a) shows the top view of pattern B0 in the 11 

by 11 array with the pixel width of 125 nm and Figure 5(e) gives the SEM image. The 

measured and simulated absorption spectra are plotted in Figure 5(k), showing broadband 

absorption over 0.9 from 1.75 μm to 4.03 μm or over 0.95 from 2.8 μm to 3.8 μm. Three 

resonance peaks at the wavelength of 1.71 μm, 2.51 μm and 3.53 μm are found for 

pattern B0. Similar to pattern A0, broadband absorption performance of pattern B0 also 

results from multiple plasmonic resonances.  

The perturbation of absorption performance due to the minor pixel modifications 

of pattern B0 is also investigated with the new nanostructures of patterns B1, B2 and B3 

with single-pixel level modifications as shown in Figures 5(b)–5(d) for schematics and 

Figures 5(f)–5(h) for SEM images. The influence from the minor modifications is clearly 

seen in the absorption spectra in Figure 5(k). Compared with the absorption spectrum of 

pattern B0, patterns B1 and B2 exhibit red shifts for the resonance wavelengths and a 

slightly lower absorption in the wavelength range of 2 – 3.5 µm, while pattern B3 shows 

a more significant absorption degradation in the wavelength range of 1.3 – 2 µm. The 

observed spectra indicate that the intentionally added single-pixel defects have different 

levels of impact on the absorption performance according to the certain pixel locations. 

Furthermore, the scaling effect when designing the nanostructure is another factor to  
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Figure 5. Designed binary-pattern absorber and modifications. Schematics of (a) Pattern 

B0 and three modified nanostructures (b) Pattern B1, (c) Pattern B2 and (d) Pattern B3 

with the added yellow tungsten pixels. (e)–(h) SEM images of patterns B0, B1, B2 and 

B3. (i), (j) SEM images of the scaled nanostructures with pattern B0 but with pixel width 

w = 100 and 150 nm. Scale bar: 400 nm. (k) Measured and simulated absorption spectra 

under unpolarized normal incidence for the nanostructures in (e)–(j).  

 

perturb the absorption performance. Here, the designed pattern B0 is scaled up and down 

through adjusting the pixel width w as 100 nm and 150 nm in the unit cell. The SEM 

images of the scaled nanostructures are shown in Figures 5(i) and 5(j) and the 

corresponding absorption spectra are plotted in the last two panels of Figure 5(k). With 
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smaller pixel width of 100 nm, the absorption bandwidth shrinks and the resonance 

wavelengths are blue shifted (for example, a resonance shift from 3.55 μm to 3.17 μm is 

observed in the long wavelength region). In contrast, with the larger pixel width of 150 

nm, the absorption bandwidth is broadened and the resonance wavelengths show red 

shifts. However the absorption from 2 – 3 μm is significantly lowered to below 0.86. In 

general, the absorption performance is degraded in both cases due to the modification of 

the optimized nanostructure with the pixel width of 125 nm. 

 

6. CONCLUSION 

 

In summary, we present the micro-GA enabled design method for the W-based 

broadband mid-infrared binary-pattern metasurface absorbers. Two kinds of optimized 

nanostructures are found with excellent absorption performance. The broadband 

absorption properties are contributed from the multiple plasmonic resonances supported 

in the unit cell. Furthermore, absorption perturbations due to the minor modifications of 

the optimized nanostructures by adding extra tungsten pixels are discussed. This work 

provides an efficient approach to design and optimize complex metamaterial and 

metasurface nanostructures for high-performance functional optical devices.  
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ABSTRACT 

Strong circular dichroism in absorption in near-infrared range is realized by 

plasmonic metasurfaces via the micro genetic algorithm optimization method. Two types 

of binary chiral metasurfaces are designed and experimentally realized with excellent 

chirality performance. The investigations on the effect of geometric parameters 

influencing circular dichroism are also conducted for the binary-patterned chiral 

metasurfaces. The strong circular dichroism in absorption is attributed to simultaneous 

excitation and interference of modes arising from x- and y-polarized light with different 

phase shift. This work provides a universal design method toward the on-demand 

properties of the chiral metamaterials, which paves the way for future applications in 

chemical and biological chiral sensing, chiral imaging and nonlinear optics. 

 

1. INTRODUCTION 

 

Chiral structures are well known for lacking any mirror symmetry. Different from 

chiral molecules or materials with the weak chirality in nature, artificially designed chiral 
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metamaterials, for instance, 2D anisotropic chiral metamaterials [1–4], dual-layer or 

multilayered twisted structures [5–7], 3D helical meta-atoms [8,9], and even achiral 

planar metasurfaces [10,11] can achieve giant chiral properties including optical rotation, 

circular dichroism and asymmetric transmission. Optical chirality has attracted intensive 

attentions in chemical and biological sensing [7], high contrast imaging for display 

technology [12] as well as electrooptical signal manipulation [3]. Generally, 2D planar 

metasurfaces with strong chirality are more appealing for applications with the need of 

compact configuration and simple fabrication requirement. However, there are two limits 

in the metamaterials design progress, complexity and efficiency. For the traditional 

design method mainly depending on the manual parameters sweeping, only few design 

variables and limited complexity can be involved in the geometry, possibly missing the 

optimal solution. As for efficiency, manually conducted metamaterial design method is 

usually limited to specific design applications, which is not efficient serving as the 

universal design method.  

The two limits can be solved by the optimization methods, such as evolutionary 

method [13–15], gradient descent method [16,17], particle swarm optimization [18,19], 

and learning method based on neural networks [20,21]. Among various optimization 

methods, genetic algorithm, one popular branch of the evolutionary method for its simple 

frame and flexible compatibility, has successfully demonstrated the robustness and 

efficiency in the optimization of the electromagnetic design, such as the design with 

broadband absorber under linear polarization [14,15,22,23], selective transmission under 

circular polarization [24,25] or broadband circular polarizer [26]. However, the 

mechanism of generating the strong circular dichroism with complex binary-pattern has 
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not been thoroughly studied yet. Moreover, compared with traditional genetic algorithm, 

micro genetic algorithm is more feasible in real applications since it accelerates the 

evolution progress by the repopulation step and consequently requires smaller initial 

population group but with faster convergence [27,28].  

In this work, we employ the micro genetic algorithm to optimize the chiral 

metasurface for a strong circular dichroism in the absorption (CDA), which is the 

differential absorption of left-handed circularly polarized (LCP) and right-handed 

circularly polarized (RCP) light. Two types of nanostructure patterns are obtained with 

strong circular dichroism at the wavelength of 1.62 μm and 1.91 μm, respectively. The 

influence of geometric parameters on circular dichroism is studied by involving single 

pixel changes in the chiral metasurface pattern. Simultaneous excitation and interference 

of multiple modes under different circular polarizations is found to be responsible for the 

strong CDA. The energy dissipation within the metasurfaces is further discussed. The 

proposed design method is promising to realize the on-demand design of chiral structures 

with high circular dichroism, and the chiral metasurfaces are very attractive for the 

applications in sensing, imaging and optoelectronics. 

 

2. FORMULATION OF STRUCTURAL DESIGN WITH MICRO GENETIC 

ALGORITHM 

 

According to the principle of micro genetic algorithm, optimization of the chiral 

metasurface initializes with random geometry in the top pattern layer of the metamaterial. 

The geometric information of structure is encoded into the chromosome, which is 

composed of binary numbers. In the discretized binary space, the binary numbers “one”s 
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and “zero”s represent material and free space, respectively. The nanostructure pattern 

evolves toward the optimal pattern along the direction driven by the cost function, which 

evaluates the discrepancy between the CDA value of each generated nanostructure and 

the predefined target value. Let the cost function cast as 𝐹 = ∑ (1 − |𝐴𝐿𝐶𝑃 − 𝐴𝑅𝐶𝑃|)2
𝜆 , 

where 𝐴𝐿𝐶𝑃  and 𝐴𝑅𝐶𝑃 are the absorption of the nanostructure under the LCP and RCP 

incidence, respectively. Thus, 𝐶𝐷𝐴 = 𝐴𝐿𝐶𝑃 − 𝐴𝑅𝐶𝑃 . The evolutionary optimization 

problem can be mathematically written as: minimize 𝐹, subject to ∇ × ∇ × 𝑬 − μ𝜔2𝜖𝑬 =

0  and ∇ ∙ 𝜖𝑬 = 0 , where 𝑬  denotes the electric field, 𝜖  the permittivity and μ  the 

permeability. The formulated problem is then solved through the finite element method 

and cost value 𝐹 is derived from the absorption spectra for each generated metasurface. 

Based on the value of 𝐹 , the evolution loop will choose to update the chromosome 

information for new calculation or stop the loop until the predefined target is satisfied in 

the program.  

In this work, the target performance is expected to present the high chirality over 

0.5 in CDA for the designed metasurface under LCP and RCP incidence over a certain 

short wavelength range. To speed up the calculation in the optimization problem, we 

selected 10 equally spaced test wavelengths in the wavelength range between 1.5 μm to 

1.75 μm (or between 1.75 μm to 2 μm). For increasing the anisotropic properties and 

further reducing the complexity in the calculation, the metasurface employs a non-square 

15×11 array in the binary pattern with 2-fold rotation symmetry and intentionally defined 

gap space between four quadrants. The evolutional optimization is implemented by the 

micro genetic algorithm with a population of 20 chromosomes and the tournament 

selection for crossover for each generation. When achieving the valve value of the 
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similarity among chromosomes, the algorithm takes the repopulation step to increase 

diversity and speed up the evolution without the need of mutation step. Eventually, with 

the convergence within 35 generations, this work obtains two types of chiral metasurface 

patterns with excellent CDA values satisfying the predefined target. 

 

 3. DESIGNED METAMATERIAL STRUCTURES WITH STRONG CIRCULAR 

DICHROISM 

 

Metal-dielectric-metal (MDM) structure is used in our design by taking its 

advantage of the flexible design ability for the top metallic layer, which can be further 

enhanced by the geometry generating feature in the micro genetic optimization algorithm. 

Figure 1(a) presents the schematic of the designed metamaterial with chiral metasurface 

with strong circular dichroism. The designed metamaterial consists of a 55 nm-thick top 

gold (Au) layer with the Pattern A obtained from the optimization algorithm, a 145 nm-

thick silica (SiO2) spacer layer and a 200 nm-thick Au substrate. As the substrate is 

optically thick enough to eliminate the transmission through the designed nanostructure, 

the absorption is calculated as unity minus the reflection upon the incidence under LCP 

or RCP state. In Figure 1(b), it shows the top view of the designed chiral metasurface 

Pattern A with a 15×11 array composed of gold pixels with side w = 64 nm. The 

supercell Pattern A includes two types of components with 2-fold symmetry in general. 

Additionally, the material parameters in the simulation are taken from references for 

Au [29] and SiO2 [30], respectively. 
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Figure 1. Designed chiral metasurface with strong chiral dichroism both in simulation 

and experiment. (a) Schematic of the designed chiral metasurface composed of top Au 

pattern layer (pattern A), SiO2 spacer layer and Au substrate. The geometric parameters 

are denoted as w = 64 nm, th = 55 nm, td = 145 nm and tm = 200 nm. (b) Top view of the 

designed pattern A with the period Px = 704 nm and Py = 960 nm. (c) SEM image of the 

fabricated nanostructure pattern A. (d) Experimental and simulated absorption spectra 

under LCP and RCP incidence at normal direction, respectively. (e) Normalized electric 

field distributions at the resonant wavelength 1.62 μm under LCP and RCP incidence, 

respectively, plotted at the surface of the top Au pattern. 

 

To realize the designed chiral metasurface in the experiment, the gold and silica 

layers are deposited on the silicon wafer by using the magnetic sputtering and electron-

beam evaporation, respectively. The nanostructure pattern array is milled on the top 

metallic layer of the Au-SiO2-Au thin film through the focused ion beam (FIB) system 

(FEI Helios Nanolab 600, 30 kV, 9.7 pA). Scanning electron microscopy (SEM) image of 

the fabricated nanostructure Pattern A is shown in Figure 1(c), in which a slight variation 

in the geometric parameters can be observed compared with the designed structure. The 

geometric variations are attributed to the fabrication limitation of the FIB technique. 
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Furthermore, the fabricated nanostructure is characterized through the optical spectra 

response with the fourier transform infrared spectroscopy (FTIR, Nicolet 6700).  

Figure 1(d) shows the measured and simulated absorption spectra (𝐴𝐿𝐶𝑃, 𝐴𝑅𝐶𝑃) of 

the chiral metasurface under the LCP and RCP incidence at the normal direction, 

respectively. The simulated absorption spectra present strong circular dichroism where 

the Pattern A possesses a near perfect absorption (0.96) under the LCP incidence at the 

resonant wavelength of 1.62 μm and low absorption at its counterpart incidence. The 

chiral metasurface Pattern A exhibits a high CDA value of 0.71 at 1.62 μm while it turns 

out to be 0.63 in the experiment. The discrepancy between the prediction and the 

experiment mainly arises from the geometric variations in the fabrication, as well as the 

imperfect linear polarizer and quarter-wave plate used to generate the circular polarized 

wave. Figure 1(e) observes the localization of the electric field distribution |𝐸| and high 

contrast of the electric field intensity under the LCP and RCP excitations at the 

wavelength of 1.62 μm. Giant CDA is induced by the dichroic modes excited in the 

nanostructure under circular polarized wave. A detailed discussion is given in part 5. 

Taking advantage of the flexibility in the optimization method with the micro 

genetic algorithm, this work determines to present one alternative chiral metasurface. The 

same geometric parameters and materials are employed in the optimization progress but 

with the target only different in the operating wavelength range. The new objective is to 

achieve the CDA value over 0.5 between 1.75 μm to 2 μm. Figures 2(a)-2(b) show the 

metamaterial nanostructure obtained from the optimization result. The supercell pattern B 

is also composed of two types of components with the 2-fold symmetry. A SEM image of 

the fabricated pattern B array is shown in Figure 2(c). The high chirality in the absorption 
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spectra can be found in Figure 2(d), which presents the measured and simulated 

absorption spectra under the LCP and RCP incidence, respectively. For the LCP incident 

wave, the chiral metasurface generates a strong absorption around 0.94 at the resonant 

wavelength of 1.91 μm, which leads to the CDA value of 0.67 and 0.6 in simulation and 

experiment, respectively. As shown in Figure 2(e), upon the incidence of LCP wave, 

strong circular dichroic modes are excited between the gap of the four components in the 

chiral metasurface Pattern B, however, these modes are suppressed under the RCP 

incidence. 

 

 

Figure 2. Alternatively designed chiral metasurface with strong circular dichroism both in 

simulation and experiment. (a) Schematic of the designed chiral metasurface with the 

same physical dimensions as in Figure 1(a). (b) Top view of the designed chiral 

metasurface pattern B. (c) SEM image of the fabricated chiral metasurface pattern B. (d) 

Experimental and simulated absorption spectra under LCP and RCP incidence at normal 

direction, respectively. (e) Normalized electric field distributions|𝐸| at the resonant 

wavelength 1.91 μm under LCP and RCP incidence, respectively, plotted at the surface of 

the top Au pattern. 
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 4. INFLUENCE OF GEOMETRIC PARAMETERS INFLUENCING CIRCULAR 

DICHROISM 

 

Geometric parameters of the designed metasurface is studied to investigate the 

robustness of the chiral performance and sensitivities on the geometric variations 

possibly caused by the fabrication progress. Taking the chiral metasurface Pattern A for 

an example, in Figures 3(a) and 3(b), we study the influence of increasing and decreasing 

the gap distance by one-pixel distance in x direction by shifting two components shown 

in the dashed blue box, respectively. As shown in Figure 3(d), the resonance peak in the 

absorption spectrum exhibits redshift to 1.67 μm with perfect LCP absorption and CDA 

of 0.74 under the LCP incidence for chiral metasurface Pattern A1. The excellent 

absorption performance arises from the increased confinement of the resonant modes due 

to decreased gap distance between the neighboring components. In contrast, Figure 3(e) 

shows slight blueshift to 1.61 μm with LCP absorption of 0.9 and CDA of 0.62 for the 

resonant wavelength because of the decreased confinement of the resonant modes as the 

increasing gap distance. Moreover, Figure 3(c) conducts the geometric alignment in plane 

with left shifting lower two components shown in the dashed blue box by one-pixel 

distance. Results of this alinement operation are plotted in Figure 3(f) showing blueshift 

to 1.6 μm with LCP absorption of 0.95 and CDA of 0.7, which indicates the modification 

of modes coupling resulted from the shift operation of components. 

To reveal the influence of critical geometric features on the performance of the 

chirality, this work examines the cases of extending or shortening the lengths and widths 

of the supercell components by adding or removing pixels in the designed chiral 

metasurface patterns.  Figure 3(g) adds one pixel (in the red dashed circle) to the 
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component 1 of chiral metasurface pattern A, leading to obvious redshift to 1.86 μm with 

CDA of 0.34 shown in Figure 3(j). The degradation in the performance is attributed to the 

weaker modes coupling of component 1 resulted from the added pixel, which is discussed 

 

 

Figure 3. Investigation of influence on the chirality due to geometric variations. 

Schematic of (a) decreasing (b) increasing the gap distance in x direction and (c) 

geometric alinement by shifting two components shown in the dashed blue box. (d)–(f) 

show the absorption spectra under LCP and RCP incidence corresponding to the chiral 

metasurface pattern in (a)–(c). Schematic of geometric shape modification shown in red 

circle in (g)–(i) and the corresponding absorption spectra under LCP and RCP incidence. 

 

in detail in part 5. In comparison, one pixel is removed for the component 1 as shown in 

Figure 3(h), resulting in the blueshift of the LCP resonant peak to 1.42 μm with CDA of 

0.45. Similarly, in Figure 3(i), this work also studies the pixel addition effect on 

component 2 of the nanostructure. The LCP absorption peak is shifted to 1.54 μm with 

CDA of 0.55. Consequently, geometric modification through adding or removing 

important geometric features can significantly degrade the circular dichroism of the 
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designed nanostructure pattern compared with the relatively less influence from the shift 

or alignment of internal components. The geometric variations also explain the broaden 

peak and mismatch phenomena between the simulation and experiment results shown in 

Figure 1(d) and Figure 2(d). 

 

 5. CIRCULAR DICHROIC MODE ANALYSIS OF THE DESIGNED 

METAMATERIALS 

 

To find the mechanism how the strong circular dichroism is generated, we 

conduct a further analysis on the circular dichroic mode distributions inside the designed 

chiral metasurface. Based on the chiral metasurface Pattern A, Figure 4(b) plots the 

absorption spectra under x and y polarized incidence at normal direction, respectively. 

Resonant peak is observed at the wavelength of 1.58 μm and 1.6 μm for x and y polarized 

absorption, respectively, which are close to the LCP resonant wavelength (1.62 μm). The 

electric field Ex distributions are presented in Figure 4(c) for the x-polarized incidence 

with a phase shift of −90° or 90° plotted at the wavelength of 1.62 μm, as well as the y-

polarized incidence without phase shift. One can find that the two antiparallel diploe 

modes form one quadruple mode on each component within the supercell Pattern A. 

Moreover, when the metasurface is excited with circularly polarized light, the two 

plasmonic modes under x-polarized and y-polarized incidence are simultaneously excited 

with a relative phase delay of 90° or −90° and interfere with each other to generate the 

orthogonal RCP and LCP modes. As seen in the right panel of Figure 4(c), for LCP 

mode, two typical areas where the presented modes stem from the constructive 

interference of x-polarized and y-polarized modes are shown in red and blue dashed 
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boxes; however, destructive interference is found for the RCP mode. Thus, electric field 

is highly enhanced under LCP excitation and extremely weak (mode intensity is around 

five times smaller) with the RCP excitation, resulting into the strong circular dichroism. 

 

 

Figure 4. Circular dichroic modes analysis for the designed chiral metasurface pattern A. 

(a) Schematic of the top view of chiral metasurface pattern A. (b) Absorption spectrum 

under x and y polarized incidence at normal direction, respectively. (c) Conceptual 

schematic of the arising of circular dichroic modes. It shows the electric field distribution 

Ex under x-polarized incidence with phase shift of −90° or 90°, as well as Ex under y-

polarized incidence without phase shift, resulting into the circular dichroic mode under 

LCP and RCP incidence, respectively. All modes are plotted at the surface of the top Au 

pattern at the wavelength of 1.62 μm. 

 

With the purpose to understand performance degradation in chirality, circular 

dichroic mode analysis is also implemented for representative chiral metasurface Pattern 

A4. Different from Pattern A, Pattern A4 shows degraded CDA due to the geometric 

parameters’ variation in extending the length of two components within the supercell by 
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adding pixels. Figure 5(b) plots the absorption spectra under the linear polarization at x 

and y direction, respectively. Pattern A4 exhibits a lower absorption at the wavelength of 

1.83 μm and 1.8 μm for x and y polarized incidence, respectively. Also, the x-polarized 

 

 

Figure 5. Circular dichroic modes analysis for the designed chiral metasurface pattern 

A4. (a) Schematic of the top view of chiral metasurface pattern A4. (b) Absorption 

spectrum under x and y polarized incidence at normal direction, respectively. (c) 

Conceptual schematic of the arising of circular dichroic modes. It shows the electric field 

distribution Ex under x-polarized incidence with phase shift of −90° or 90°, as well as Ex 

under y-polarized incidence without phase shift, resulting into the circular dichroic mode 

under LCP and RCP incidence, respectively. All modes are plotted at the surface of the 

top Au pattern at the wavelength of 1.86 μm. 

 

resonant absorption is stronger than y-polarized counterpart, rather than the inversed case 

as shown in the results of Pattern A (Figure 4(b)). In Figure 5(c), the electric field Ex 

distributions are shown for the x- and y-polarized incidence with different phase shifts at 

the wavelength of 1.86 μm, respectively. In comparison with Pattern A, the extended 
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length of supercell components from added pixels in Patten A4 causes the different field 

distribution and mode coupling, and hence a higher mode intensity under x-polarized 

incidence rather than y-polarized incidence. Similarly, when LCP light is illuminated, the 

LCP or RCP mode is generated based on the simultaneously excited and interfered x- and 

y-polarized light depending whether they are in phase or out of phase. However, for LCP 

incidence, due to the adverse influence brought by the geometric parameters variations, 

the electric field enhancement stemmed from the constructive interference is weakened 

compared with that of Pattern A. The resulted electric field intensity of the LCP mode 

exhibits only 3.5 times of that of the RCP excitation, generating a relatively degraded 

performance of the circular dichroism. Therefore, the chiral performance of the designed 

metasurface composed of binary pattern can be sensitive on the variations of critical 

geometric parameters. 

For a full understanding the wave propagation and energy absorption inside the 

designed metasurfaces, we perform the investigation on the magnetic field distributions at 

certain cross sections of the Pattern A, located at red dashed line a-a and b-b in the x-z 

plane, respectively (Figure 6(a)). Figure 6(b) shows the cross-sectional magnetic field 

distribution Hy at position a-a at the wavelength of 1.62 μm. Magnetic dipoles are 

observed around the metallic material but showing a different modes distribution under 

LCP and RCP excitations. The magnetic field also induces stronger circulating currents 

represented by the black arrows between two components under the LCP excitation than 

those of the RCP excitation. Similarly, a more complex magnetic modes distribution can 

be found at position b-b shown in Figure 6(c), where the coupling between the two 

components is obvious as the middle gap is shorter for circulating current. When 
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comparing the magnetic field intensity at two cross section locations, a stronger mode 

excitation and hence more contribution to the absorption can be found for cross section at 

position a-a. Furthermore, Figure 6(d) plots the time-averaged optical power dissipation 

 

 

Figure 6. Mode analysis at side cross sections. Schematic of cross-section positions at a-a 

and b-b shown in (a). Cross-sectional magnetic field Hy distributions under LCP or RCP 

incidence located at position (b) a-a and (c) b-b in the x-z plane, respectively. The black 

arrows represent the direction and magnitude of the induced current density due to the 

magnetic field. Cross-sectional time-averaged optical power dissipation density Qh 

distributions under LCP or RCP incidence located at position (d) a-a and (e) b-b, 

respectively. Green arrows describe the direction and magnitude of Poynting vector. All 

fields are plotted at the wavelength of 1.62 μm. 

 

density Qh distributions under LCP or RCP incidence located at position a-a at the 

wavelength of 1.62 μm. Qh is calculated with the formula [31], Qh = 𝜖0𝜔𝜖𝑚
′′ (𝜔)|𝑬|2/2, 

where 𝜖0 and 𝜖𝑚
′′  denote the permittivity in vacuum and imaginary part of the permittivity 

of metal. The circularly polarized light flows into the nanostructure in the way depicted 

through the direction and magnitude of the Poynting vector (green arrows). Due to the 
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stronger circular dichroic mode interactions, LCP excitation leads to a higher energy 

dissipation density compared with the RCP excitation. Similar energy dissipation 

phenomena can be observed in Figure 6(e) for cross-sectional position at b-b, however, 

the maximum dissipation density value under either LCP or RCP excitation is lower 

compared with that at location a-a due to the special modes distribution across the 

components. 

 

6. CONCLUSION 

 

In this work, plasmonic metasurface nanostructure is designed to realize strong 

circular dichroism in the absorption at near-infrared range by using the micro genetic 

algorithm optimization method. Two binary-patterned chiral metasurfaces obtained 

through the optimization method are demonstrated in the experiment with CDA value of 

0.63 and 0.6, respectively. Chirality of the designed metasurfaces remains robust when 

the gap between the supercell components changes but is sensitive to the lengths and 

widths of the components with single pixel change. The presented strong CDA is 

explained as the excitation and suppression of multiple modes under different circular 

polarizations. The absorption of the incident light is further discussed through the energy 

dissipation density distributions. This work provides an effective method to realize the 

on-demand design of chiral structures with excellent performance, especially strong 

circular dichroism, which is promising in chemical and biological chiral sensing, chiral 

imaging and nonlinear optics. 
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SECTION 

2. CONCLUSION 

Various novel optical properties have been realized with the artificially designed 

metamaterials in terms of enormous design methods and material configurations. In order 

to facilitate the development and evolution in the field of metamaterial absorbers and 

emitters, we expect to improve the design methods and explore the physical mechanisms. 

This work is featured in three aspects: (1) the simple structure design with 

aluminum and tungsten materials for the metamaterial absorbers and emitters through 

periodic structures, (2) engineering the thermal emission properties via the quasi-periodic 

metal-dielectric multilayer metamaterials, (3) improve the design method beyond the 

traditional design method toward broadband metasurface absorber and metasurface with 

giant circular dichroism by the micro genetic algorithm. 

We focus on the design of wavelength-selective metamaterial absorbers and 

emitters which are promising in various applications covering visible and mid-infrared 

range. Five projects are arranged in the work. In project one, we demonstrate an all-metal 

structural color printing platform based on aluminum plasmonic metasurfaces using a 

simple, one-step focused ion beam milling process on aluminum surface. We print image 

with high resolution and high color performance. The excellent performance is explained 

as the excitation of plasmonic electric and magnetic dipole resonances. 

 In project two, wavelength-selective mid-infrared metamaterial absorber and 

emitter is designed based on single-sized and double-sized unit cells patterns with 

tungsten cross resonators. We also study the characteristics of absorption and impedance 
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spectra for different unit cell patterns through an equivalent RLC circuit model. At last, 

we conduct thermal analysis for absorbers and energy conversion efficiency for emitters. 

In the third project, we theoretically and experimentally investigate thermal 

emission properties for three types of metal-dielectric multilayer stacks, Periodic 

multilayer, Thue-Morse multilayer and Fibonacci multilayer stacks. Moreover, we 

analyze the dispersion relations of the designed metamaterials in the wave vector 

resolved space. ω0 − 𝑘𝑧 dispersion space. 

In the project four, we develop the design of the W-Al2O3-W three-layer 

electromagnetic absorber toward broadband applications in the mid-infrared range using 

genetic algorithm and explain the broadband absorption performance with multiple 

resonances in the nanostructure. 

In the last project, the micro-genetic optimization method is employed to design 

the binary metasurfaces with strong circular dichroism in the absorption. The excitation 

and interferences of the modes under LCP and RCP incidence are found to be responsible 

for the excellent performance. 

In summary, through five projects presented in this dissertation, the 

electromagnetic properties of the metamaterial absorbers and emitters are theoretically 

and experimentally studied. The designed structures are demonstrated to be feasible and 

versatile to achieve exciting optical properties toward electrical and optical applications 

with compact and miniature requirements in future. Therefore, the work is believed to 

boost the development and promising applications in the field of metamaterials.  
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