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ABSTRACT

The unforced cases of Duffing's equation and the equation of 
the simple pendulum are considered by imposing certain conditions 
on a linear partial differential equation. Geometrical arguments 
are presented which lead to solutions of the special cases con­
sidered.

Undetermined functions of integration in the solutions limit 
their use to the approximation of systems with small non-linearity.
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- Complete elliptic integral of the first kind.
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1. INTRODUCTION

The equation

d 4 ^  +  c d f  +  s  F c o s t u t

a)
was first systematically studied by Duffing in 1918 with

9f (x) - OL X  +  A * *  • c and Ot are positive constants and p may 
be either positive or negative. The equation has an exact solution 
only when c and F are zero. However, many methods of approximating 
a solution have been devised for this equation and the special cases 
when c or F or both pass to zero.

The system to which equation (1) refers is subject to viscous 
damping, an applied periodic force, and a non-linear restoring force 

f(x) which is an odd analytic function. If the mass were displaced 
an amount x « A and released, the system would oscillate about the 
equilibrium position x « 0.

If p in equation (1) is made very small then the periodic motion 
of the system approximates that of a linear harmonic oscillator.
Most methods of solution use the solution of the linear system as a 
first approximation and for this reason should yield acceptable 
results only when the system is * quasi-linear1, i.e. A « C L  .<*>

^^Duffing, G., Erzwungene Schwingungen bei veranderlicher 
Eigenfrequenz.
Minor sky, N. , Introduction to Non-Linear Mechanics, p. 135(2)



The experimental results of Ludeke^^ however indicate that when 
(3 is large the form of the solution differs only slightly from the 

quasi-linear system. Systems with large non-linearity still exhibit 
solutions having the appearance of slightly distorted sinusoidal 
functions.

Unlike linear systems, the motions described by equation (1) are 
not always isochronous. The frequencyv / of oscillation is dependent 
upon the amplitude A. An important part of any solution is the relation­
ship between amplitude and frequency. As an example, for the undamped, 
free system the frequency-amplitude relation has the form OJp s Cfc-t* 
where 5 is a parameter which depends upon the approximation method 
employed.

The purpose of this study is to determine a solution to the un­
damped, free system. Since this system has an exact solution, the 
results may be checked accurately. The method of solution is then 
applied to the more general damped, free case which has no known 
exact solution. In addition, the case of the simple pendulum is 
studied. The simple pendulum is a more general extension of the un­

damped, free form of Duffing1s equation. No forced systems are in­

vestigated.

^Ludeke, Carl A., J. App. Phy. 20, 694.
^^The terms ’frequency’ and 'angular frequency’ will be used inter­

changeably when no confusion is likely to result.
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II. REVIEW OF THE LITERATURE

A brief discussion of the methods of solution of the equations 
of interest follows.

1) The undamped^ free form of Duffing's equation is written

•ax+<fixJ *o.
d +

(2)

A well known exact solution is expressed in the form of the 'inverse' 
f u n c t i o n .

(I - »  sin* ?)&
(3)

”h“ * x S  “ d t ' c o s '(t } •
The integral in the right side of equation (3) is an incomplete el­

liptic integral of the first kind with modulus,X •
In standard notation the solution is written

t  * - - 1 T)
(4)

Values of F (X,f) corresponding to given values of may be found 
in tables of elliptic integrals^ . The solution has the form of an

“̂̂ McLachlan; N. W., Ordinary Non-Linear Differential Equations in 
Engineering and Physical Sciences. p. 27.

^^Jahnke, Eugene and Fritz Enide, Tables of Functions with Formulae 
and Curves.



elliptic cosine cn(wt) which is shown graphically on figure 2. From 
equation (4) one may easily compute the angular frequency w for given 
values of the parameters OC, and A.

A widely used approximate method of solving equation (2) 
employs as a first approximation the relation

X= A. COS 0)t 4 COS 3 cut (A3 « A ) .

Upon substitution into equation (2) one is led to the frequency- 

amplitude relation A -

2) The motion of the simple pendulum is described by the 
equation

d  ‘V 2’
+ a  sm  x =

(5)
where OC = g/1 and x represents the angular displacement. The system 
may be solved by use of the elliptic integral'' .

f

(6)
' *’ ~ 04 7 ( i - x *  s i n *  r)it

where x *  s i n ( $ )  , r « sin"' /-
z /  ’ S 'n  ^ x s i n C x / 2 )

Integration of equation (6) between the limits t = ( % , o )  

yields one-fourth the period therefore

^^McLachlan, N. W., Theory of Vibrations, p. 48.
v 'Davis, Harold T., Introduction to Non-Linear Differential and 

Integral Equations, p. 192.
(8)



is the time for a complete period. Clearly the motion is not

isochronous; the angular frequency is a function of ^  and therefore 
a function of amplitude.

3 5Since in terms of a Maclaurins series sin x = x-x /3J + x /5* - , 
equation (5) may be approximated by equation (2) provided the ampli­

tude is kept fairly small (A*C30°)» P becomes - 9M  and the same 
methods of solution can be employed.

3) The free, damped case of Duffing1s equation is given by 

%d x  d x  ^ «*
—  + C

(8)

No exact solution is known for this equation. However, if c is small 
the motion is nearly cosinusoidal with angular frequency

au

and equation (8) may be replaced by the approximate linear equivalent 
linear f o r m ^

+  c —  +  u f x - O

which has the solution X *  Ae *  c o s w f  .

The coefficient of the cosine term now represents the amplitude,

(9)McLachlan, N. W., Ordinary Non-Linear Differential and Integral 
Equations. p. 33.
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so that the frequency amplitude relation may be written
a) * (a4 J  p K  & 'oi) y*

The difficulty now is that the coefficients in the equivalent equation 
are no longer constants, but are now variables in amplitude and time.

Intuitively, equation (8) represents an oscillation with both 
amplitude and frequency decreasing with time. The amplitude approaches 

zero with increasing time. Since the frequency squared is approximately 
a linear function of A^ (1®) frequency approaches the limiting value

(10)Ludeke, Carl A., J. App. Phy. 20, 694.



III. DISCUSSION

The method of solution of the special cases of interest of 
equation (1) makes use of a partial differential equation which has 
a known solution.

A second order linear partial differential equation with de­
pendent variable x and independent variables y and t is chosen:

The second order term in x and t corresponds to the first term in 
equation (1), the first order term in x and t corresponds to the 
viscous damping, and the remaining term in x and y corresponds to 
the restoring force.

The solution to the linear partial differential equation is a 
surface in x, y, t-space. The partial differential equation is 

related to Duffing*s equation by the condition that the first order 
term in x and y is equal to the restoring force. The solution to 
this equation is then a second surface. Along the intersection of 

these surfaces, x is given implicitly as a function of time and 
Duffing*s equation must be satisfied.

The following assumptions are made about the nature of the 
solutions of equation one. (a) A harmonic solution exists which is 
a function of the parameters Of, (3, A and if. (b) The solution change

+ c

(9)

continously as any of the parameters pass to zero as a limit and the 

solution becomes the solution to the resulting differential equation.



(a) The undamped, free system with cubic restoring force is given 
by equation two.

The associated partial differential equation

d*x . s x  
a t *  a y

(10)
has a general solution

y) cos[/f+f(i0].

(i d

where the integral is taken over the range of separation parameter 

which is appropriate. C(/) and •P(/> are constants of integration 
which depend on the range of separation parameter. A particular 

solution of interest is

x(y,t) - C exp (r*y) cos [rt + f]

where C and f are constants of integration.
(12)

The partial differential equation is related to Duffing 

equation by the condition

which is the general solution of 

•?(f) is an arbitrary function of time.

(13)
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The solution, expression (12), is a surface in x, y, t-space; the 

condition (13) is a second surface. The intersection of the surfaces 
described by equations (12) and (13) is a curve

X(y,l) * C e*p (r2j) cos (/t+v)
along which

Since x may be written as an implicit function of t along this curve

dV
— t +  a x  + / *  x 3 _

and
T

Cexp ** cosCYt+f)
(14)

is a solution to Duffing’s equation. f(t) remaihs to be determined. 

Equation (14) will be reducible to the linear case if

f<fl* - S T

%

A* c o s *  ( y T + P )
(15)

where g(t) is now the arbitrary function of time. With this choice 
and the substitution 0*A exp $ (o)

* ± g $  a s c m t )exf bar 3 L A cos* (Yt+*) CLtf'f]
(16)
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and

x  <*.*/? A  
A '  o t y  X'J

1.
Alt

is satisfied by x(0) = A, when ^  * 0.

If the linear case is approached by letting (3 become zero

1
..........  y.

A 1 c o s *  / t

This expression reduces to the identity

x _ I X 1
A c&>̂ A c o s f f J

jCT

where Y ^

Expression (16) may now be rewritten

?  1

.ft

/*■) cosrf

(17)
where g(t) remains undetermined. Since there is apparently no 
criterion available which one may use to determine g(t), one is 

forced to make a simplifying approximation in order to obtain numeri­
cal results. The only choice immediately available is to set g(t) * ^ . 
Expression (16) now becomes

^cos f t -  X
(X.-V/3X

(18)



In order for the solution (18) to be of use, a value for the 
angular frequency must be determined. A frequency-amplitude rela 
tion can be readily obtained from the solution (18). Differentiat­
ing equation (18) with respect to time yields

2 2Making use of the identity sin u + cos u a 1 results in the relation

%z + Y
z

J  ' * L o t + ^ K 1

-J l

(19)
The first integral of equation (2),. after applying the initial con 
ditions x » A, v = 0, when t =* 0, yields the conditions

11

DC A  -f y#A u>he*\ X s 0

Substituting the above conditions into expression (19) yields the 
frequency-amplitude relation ^

In a more useful form the above relation becomes

\oq (ocAS  ̂/sA4) - loq AV- ^  \oq [l+^A2]
(20)

When £ is small, the second term on the right side of the equation 
becomes negligible, and the expression reduces to the relation found 

by several other approximation methods. When £ « 0, the frequency 
reduces to a 2, the frequency of the linear system.



FIGURE NO. I -  UNDAMPED FREE SYSTEM WITH SMALL NON-LINEARITY





14

Several numerical calculations were made from equation (18) for
values of the parameters CC and |3 corresponding to both large and small 
non-1inearitie s.

A quasi-linear system was simulated by placing Ct » 334,1, £3 » 5, 
and A » 1^"^. When these values are substituted into the frequency- 
amplitude relation, the relation is satisfied by \ « 19.5. The first 
quarter period of the solution is shown in figure 1. The solution 
to the linear system, a circular consine, is shown for comparison.
The exact solution in terms of elliptic integrals lies between the two 
curves but so nearly coincides that it cannot be clearly shown on the 
figure.

That the solution yields a good approximation for a system with 
small non-linearity is a consequence of the assumption that the solu­
tion pass to that of the linear case when (3 becomes small.

A highly non-linear system was obtained by setting Ct m 10, p ■ 100, 
and A m 1„ These values result in an angular frequency “f ** 26.2, Also 
shown are the circular cosine and the exact solution, an elliptic cosine 
of angular frequency if =» 9.05.

It is evident that the agreement with the known solution is poor 
for both the shape of the curve and the angular frequency. This indi­
cates that the choice g(t) * 1 is inadequate when £ is large.

(b) Hie simple pendulum is represented by equation (5). The 
associated partial differential equation and its general solution are

^■^The values of the parameters are chosen for ease of calculation 
and to avoid interpolation in the elliptic integral tables.
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given by equations (10) and (11). The particular solution of interest 
is equation (12). The partial differential equation is related to 
the equation of the simple pendulum by the condition

y - io€j +̂ Ct)

which is the general solution of
(21)

~  * ol s'mx

Using the same geometrical reasoning as in the preceding section, 
the expression

n(t) = Cexpfr'ffO) tdtv^-l^cosCVt+v)
(22)

is a solution to the equation of the simple pendulum. Equation (22) 
will be reducible to the linear case if

q(t)] + 1  * 3 5 5 ^ ]
mm

and the integration constant C is given the value

O  A e x f  <3(0)).

With this choice

(23)
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and

is satisfied by x(0) « A, when 0.
Now if the linear ease is approached by letting the angular displace­
ment become small, then tan A/2-^A/2 and tan x/2->x/2. Expression 

(23) now reduces to 3.
X

^  c o s  y t
X

. A c o s  1 t j

which is an identity provided

• <*

Expression (23) may be rewritten

expCTccqft))
e * f  ( L

-  c o s

(24)

where g(t) again remains undetermined. If the undetermined function 

is now set equal to one, equation (24) becomes

Cosyt
4  aw-4

X r

(25)

A frequency-amplitude relation may be found using the same 

method as in the preceding section.

Several numerical calculations were made to test the validity 
of the approximation. Figure 3 shows the results of a calculation



for a system with large amplitude. In the case of the simple pendulum 

large amplitude corresponds to large non-linearity since the approxi­
mation sin x55 x is no longer valid. In this calculation A * 40° and 
Of a 10o The curve labeled cn(Y t) is the exact solution obtained by 
direct integration. This elliptic cosine function has an angular 
frequency of Y = 3.06. A circular cosine curve is included for com­
parison since it is the solution to the linear system and a widely 
used approximation. The remaining two curves are solutions obtained 
from equation (25) using slightly different frequencies. The lower 
curve has the exact frequency obtained from expression (7). The shape 
of the curve may be improved considerably by sacrificing a small a- 
mount of accuracy in angular frequency. Such a curve is labeled 

i - 2.97.
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As before the approximation does not yield good results for 

systems with large non-linearity (amplitude). Once again this exhibits 
the fact that g(t) must be known to produce an acceptable solution.

It is interesting to note the close agreement between the exact 

solution and the circular cosine. The approximate solution x =* cos^t 

is quite good even for large amplitude (A^ 90°) when the relation 
sin xcsx is far from valid. The accuracy of this 1 small amplitude' 
solution can be improved still more by using the frequency obtained 

from expression seven.

(c) The damped, free form of Duffing's equation is given by 

expression eight.
The associated partial differential equation, expression 9, has the 
general solution

f c t y f )  *  JdYCM ( f t )  e * p O c o s C t H l )



A
n

gu
la

r 
D

is
pl

ac
em

en
t 

( 
)

FIGURE N0.3- SIMPLE PENDULUM WITH LARGE AMPLITUDE
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where ^ particular solution of interest is

%(ytf)*■ Cexp cry)e*P 6$t) cos

The partial differential equation is related to equation (8) by the 
condition (13). Using the same geometrical reasoning as in the 
previous cases results in the expression

£
*(t)=Cexpc*'-ftt)) eos^-H?)

(26)
which is a solution to equation (8). Equation (26) will be reducible 
to the proper form if

and

As p passes to zero as a limit, the exponentials (including the 
arbitrary functions of time) vanish and the solution passes to the 
solution of the damped, free linear oscillator. Furthermore, the 
solution is satisfied by x(0) = A provided g(t) » 1 and ^  * 0. 

Expression (27) may now be rewritten
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2 .1cC-V p>X
A

9m

X  *v

e » ? f e ^ 1 ' ) c o s r t

The solution can be expected to yield good results provided f3 is small. 
Once again the undetermined function of time prohibits the use of the 
solution for systems with large non-linearities.
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IV. CONCLUSIONS

General solutions to the three special cases of interest of 
Duffing’s equation have been found. These solutions are intuitively 
acceptable and obey the assumptions made at the outset.

The obvious shortcoming of the investigation is the inability 
to resolve the undetermined functions of time included in each 
solution. However, since this function of time appears only in an 
exponent preceded by a coefficient which vanishes as the system 
approaches linearity, the solutions are valid approximations to the 
corresponding quasi-linear systems.

In general, the approximate solutions obtained yield no better 
results than several other approximation methods, even for systems 
with small non-linearity. The solutions are more cumbersome than 
those resulting from some other methods.

The method of solution appears to be valid and merits further 
study. A continuation of this investigation should disclose whether 
or not g(t) may be determined and exact solutions may be found.
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