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ABSTRACT

Variable selection becomes more crucial than before, since high dimensional data

are frequently seen in many research areas. Many model-based variable selection methods

have been developed. However, the performance might be poor when the model is mis-

specified. Sufficient dimension reduction (SDR, Li 1991; Cook 1998) provides a general

framework for model-free variable selection methods.

In this thesis, we first propose a novel model-free variable selection method to deal

with multi-population data by incorporating the grouping information. Theoretical prop-

erties of our proposed method are also presented. Simulation studies show that our new

method significantly improves the selection performance compared with those ignoring the

grouping information. In the second part of this dissertation, we apply partial SDR method

to conduct conditional model-free variable (feature) screening for ultra-high dimensional

data, when researchers have prior information regarding the importance of certain predictors

based on experience or previous investigations. Comparing to the state of art conditional

screening method, conditional sure independence screening (CSIS; Barut, Fan and Verhas-

selt, 2016), our method greatly outperforms CSIS for nonlinear models. The sure screening

consistency property of our proposed method is also established.
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SECTION

1. INTRODUCTION

1.1. HIGH DIMENSIONAL DATA

In many statistical applications, researchers need to extract important information

from high dimensional data, where the dimension p is much larger than the sample size

n. The problems are frequently seen in genomics, biomedical imaging, functional MRI,

tomography, tumor classifications, signal processing, image analysis, and finance. For in-

stance, researchers in biomedical area often need to use microarrays or proteomics datasets,

which consist of only several hundred samples but with thousands of genes, to do tumor

classification or to predict certain clinical prognosis such as injury scores and survival time.

Tremendous amount of new financial products have been created, as a new era of financial

markets have been introduced by the development of technology and trade globalization.

High dimensional statistical problems frequently arise in estimating the covariance matrices

of the returns of assets during optimizing the performance of a portfolio. Statistical analysis

of high dimensional data is generally acknowledged as an important challenge to traditional

statistics. There is little doubt that high dimensional data analysis will be the most important

topic of statistics in the 21st century. Please refer to Donoho (2000) and Fan and Li (2007)

for overviews of statistical challenges with high dimensional data.

Dimension reduction is fundamental to information extraction from high dimen-

sional data. It has two different branches: feature extraction and variable selection. To re-

duce the dimension, feature extraction generates new features or variables by combining the

original ones. It is preferable in applications such as image analysis, signal processing, and

information retrieval, where model accuracy is more important than model interpretability
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(Boln-Canedo et al., 2015). Variable selection achieves dimension reduction by identifying

significant ones from all variables. It is frequently applied in text mining, genetics analysis,

sensor data processing and so on, where the original variables are important for model

interpretation and information extraction (Boln-Canedo et al., 2015). In this dissertation,

we will focus on variable selection.

1.2. VARIABLE SELECTION

A huge amount of variable selection procedures have been proposed in literature.

However, traditional variable selection procedures such as Cp, AIC and BIC are infeasible

for high dimensional data because of the expensive computational costs. Innovative variable

selection procedures are needed for high dimensional data analysis. Many methods have

been developed in recent years to extract the important variables effectively from high

dimensional data. Tibshirani (1996) proposed the least absolute shrinkage and selection

operator (LASSO), which is an l1 penalized least squared method, for linear models. It

minimizes the residual sum of squares with the sum of the absolute values of the coefficients

less than a constant. Certain coefficients are forced to be set to zero through this procedure.

Many variants of LASSOhave been proposed tomake it more useful in different applications

such as adaptive LASSO (Zou, 2006) and group LASSO (Yuan and Lin, 2006). Fan and

Li (2001) proposed penalized likelihood approach which can be applied to generalized

linear models. Many variable selection procedures such as the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li, 2001) and the procedures mentioned above can be

considered as members of the family of penalized likelihood approach.

There are many other variable selection procedures proposed based on different

models. For example, variable selections for Cox’s proportional hazards model and frailty

model were studied by Fan and Li (2002); Efron et al. (2004) proposed least-angle regression

(LARS); Candes and Tao (2007) proposed the Dantzig selector which is a solution to an l1-
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regularization problem. However, in many applications, the models underlying are complex

or unknown. These procedures can give biased results when the models are mis-specified.

To avoid this problem, model-free variable selection methods are desired.

1.3. MODEL-FREE VARIABLE SELECTION

The concept of model-free variable selection was proposed by Li et al. (2005). It

aims to find the important predictors without the full knowledge of the underlying model

structure. Hence, it can avoid the problem due to the model misspecification. Let X =

(X1, · · · , Xp)
T be the p-dimensional predictor, and Y be the scalar response. Let I =

{1, 2, . . . , p} denote the complete index set. Model-free variable selection considers the

problem seeking the index set A ⊂ I such that

Y XAc |XA, (1.1)

where means independent and XA = {Xi : i ∈ A}. Ideally, the smallest subset A,

where only the indices of active predictors are included, can be identified. The existence

and uniqueness of such a set A have been discussed in Yin and Hilafu (2015).

Model-free variable selection can be derived from the perspective of sufficient

dimension reduction (SDR) (Li 1991; Cook 1998), which aims to find a set of linear

combinations of X, say βTX, such that

Y X|βTX, (1.2)

Where β is a p×d matrix with d ≤ p. The column space of β is called a dimension reduction

space. The central subspace,SY |X, is the smallest dimension reduction space. As pointed out

by Bondell and Li (2009), the general framework of sufficient dimension reduction is very

useful for model-free variable selection since no pre-specified underlying models between
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the response and the predictors are required. Many SDR methods have been proposed in

literature such as sliced inverse regression (SIR) (Li, 1991), sliced average variance estimator

(SAVE) (Cook and Weisberg, 1991), minimum average variance estimators (MAVE) (Xia

et al., 2002), directional regression (DR) (Li and Wang, 2007), and likelihood acquired

directions (LAD) (Cook and Forzani, 2009).

Manymodel-free variable selection procedures based on SDR have been proposed in

literature. They can be summarized into two branches: shrinkage selection procedures and

hypothesis testing ones. Ni et al. (2005) proposed the shrinkage sliced inverse regression

(SIR) estimators by integrating SIR with LASSO. A unified approach was proposed by Li

(2007) through combining SDR and shrinkage estimation to produce sparse estimators of the

central subspace. Chen et al. (2010) proposed coordinate-independent sparse dimension

reduction (CISE) by imposing a subspace-oriented penalty. Other shrinkage selection

procedures include sparse SIR (Li and Nachtsheim, 2006) and regularized SIR (Li and

Yin, 2008). Unlike the traditional SDR methods, these shrinkage selection procedures can

achieve feature extraction and variable selection simultaneously.

Model-free variable selection through SDR can be also considered as a hypothesis

testing problem. As in Yu et al. (2016), without loss of generality, we assume that the

active index setA = {1, . . . , q}. Then (1.1) is equivalent to the following hypothesis testing

within the framework of sufficient dimension reduction:

PHSY |X = Op, (1.3)

where P(.) denotes the projection operator with respect to the standard inner product,

H = Span{(0(p−q)×q, Ip−q)
T } is the subspace of the predictor space, corresponding to

the coordinates of the inactive predictors, and Op is the origin in Rp. Hence, now we

successfully transform the original variable selection problem (1.1) to a testing hypothesis

problem (1.3) , which enables us to set up the connection between variable selection and
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sufficient dimension reduction. Based on SIR, Cook (2004) proposed marginal coordinate

hypothesis test to check the contribution of predictors. Shao et al. (2007) studied the similar

test on SAVE. Li et al. (2005) proposed the gridded chi-squared test. However, these

shrinkage and test methods are often not suitable for high dimensional data where n < p.

To deal with n > p situation, Zhong et al. (2012) proposed correlation pursuit

(COP) based on SIR. Unfortunately, it inherits the limitations of SIR in the sense that it

also might miss important predictors which are linked to the response through quadratic

functions or interactions. For example, active predictors, which are linked to the response

through quadratic functions or interactions, may be missed. Furthermore, COP involves

the estimation of the dimension of SY |X, which could be challenging for high dimensional

data. Yin and Hilafu (2015) proposed a sequential method, which transforms the original

problem to the traditional n < p problem by partitioning the original data into pieces.

However, there might be some issues with implementations of their method since different

partitions of the predictors might lead to different results. Recently, Yu et al. (2016)

developed a novel general framework of model-free variable selection for n > p situation,

the trace pursuitmethod, which could be combined with many existing sufficient dimension

reduction methods. Their method provides a versatile framework for variable selection via

stepwise trace pursuit (STP), which can be viewed as a model-free counterpart of the

classical stepwise regression. Mimicing the forward regression in linear model, the forward

trace pursuit (FTP) was proposed to conduct the initial variable screening.

All these proceduresmentioned above are based on single population data. However,

in practice, researchers often need to deal with data from different groups, such as different

genders and regions. It would be desirable to incorporate those grouping information into

the variable selection procedure, since it might be related to both the response and the

predictors. In Paper I, we extend the trace pursuit method to data with multiple groups. Our
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simulation studies suggest that the selection performances could be greatly improved with

the utilization of the grouping information. Specifically, the underfit (omission of significant

variables) rate is greatly reduced, while the correct fit rate is significantly improved.

1.4. CONDITIONAL SCREENING

Working on data sets with high or even ultra-high dimensional structure is very

common in different research areas, such as genomics, neuroscience and finance. Here

ultra-high dimension means dimension p increases with an exponential rate of sample size

n. A common assumption for this kind of data is that only a small number of predictors

actually contribute to the response, and it is called sparsity assumption. In consideration

of the expensive time cost, researchers usually prefer to use a fast screening procedure

first to reduce the dimension of data, then do variable selection through more sophisticated

procedures. Fan and Lv (2008) proposed the sure independence screening ( SIS ) procedure

for linear models through ranking the marginal correlation between the response variable

and each individual predictor. SIS has the so-called sure screening property (Fan and Lv,

2008), in the sense that as n→∞, the important predictors are guaranteed to be retained in

the model with probability tending to 1. Fan et al. (2009) and Fan and Song (2010) extended

SIS to generalized linear models. Fan et al. (2011) further extended SIS to additive models

and proposed nonparametric independence screening (NIS) using nonparametric marginal

ranking. Wang (2012) investigated forward regression (FR) for high dimensional data.

Many other variable screening procedures have been developed, such as Xue and Zou

(2011), Zhao and Li (2012), and Chang et al. (2013).

However, all the variable screening procedures mentioned above are model-based,

such as linear models and generalized linear models. The performance would be poor if

the model is mis-specified. To avoid the restriction of specification of the model structure,

statisticians proposed many model-free variable screening methods, where model-free vari-

able screening means the variable screening procedure works without knowledge of the link
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function between Y and X. For example, Zhu et al. (2011) proposed a sure independent

ranking and screening (SIRS), Li et al. (2012) proposed a sure independence screening

procedure based on the distance correlation (DC-SIS), He et al. (2013) proposed a quantile-

adaptive model-free screening framework, which estimated marginal quantile regression

nonparametrically using B-spline approximation, and Mai and Zou (2015) proposed the

fused Kolmogorov filter approach, which performs feature screening for the data with many

types of predictors and response. There are also some model-free variable screening pro-

cedures developed for discriminant analysis with high dimensional data, such as Mai and

Zou (2013), Cui et al. (2014), and Pan et al. (2016).

As we discussed before, Yu et al. (2016) recently proposed a novel model-free

feature screening method, the forward trace pursuit (FTP), based on the framework of

sufficient dimension reduction. It was showed that FTP can work with different sufficient

dimension reduction methods, such as SIR (Li, 1991), SAVE (Cook and Weisberg, 1991),

and DR (Li and Wang, 2007). The screening consistency property of the SIR-based FTP

was also established.

As discussed in the existing literatures such as Fan and Lv (2008), Zhu et al. (2011),

and Barut et al. (2016), the simple variable screening procedures are heavily influenced by

the correlations among predictors. When the correlations among predictors are high, these

procedures may raise false positives, where the inactive predictors are mistakenly screened

in as active ones, and also false negatives, where the active predictors are mistakenly

screened out as inactive ones. Unfortunately, as mentioned in Hall and Li (1993) and

Fan and Lv (2008), there always exist spurious correlations among predictors with growing

dimensionality p. Hence, this problem is unavoidable for high dimensional data analysis. To

obtain the sure screening property, some restrictions are needed on the correlation structure

among predictors for variable screening procedures.
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Also, in many applications, researchers have some prior knowledge that certain

predictors are important from experience or previous research work, such as the treatment

effects in biological studies and market risk factors in financial studies. To fully utilize this

prior information and also to relieve the influence of high correlation among predictors,

Barut et al. (2016) proposed sure independence screening (CSIS), which performed variable

screening on the rest of predictors conditioning on the known ones. Through simulation

studies and real data analysis, Barut et al. (2016) showed that CSIS could greatly improve

the screening performance compared with SIS Fan and Lv (2008). Compared with SIS,

CSIS makes it possible to identify those significant hidden predictors whose contributions

might otherwise get canceled out due to the correlations with other predictors. Also, when

there are high correlations among significant predictors and insignificant ones, CSIS can

help to reduce the number of false negatives.

However, CSIS was proposed for generalized linear models. The misspecification

of model structure might corrupt the performance of the variable screening procedure. To

address this issue, we propose a model-free conditional screening method via sufficient

dimension reduction in Paper II. Specifically, our method is based on the partial sufficient

dimension reduction procedure proposed by Feng et al. (2013). In numerical studies,

we compare the performance of our proposed method with CSIS using the true model

coverage rate (CR, the rate of all the significant predictors being selected), the average

model size (MS), the average false positive rate (FP), and the average false negative rate

(FN). Comparing to CSIS, our proposed method can produce screening results with smaller

model sizes, similar or better coverage rates, smaller false positive rates and/or false negative

rates when the model structure is nonlinear, which is often the case in real data applications.
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PAPER

I. TRACE PURSUIT VARIABLE SELECTION FOR MULTI-POPULATION DATA

Lei Huo1, Xuerong Meggie Wen1, and Zhou Yu2

1Department of Mathematics and Statistics,

Missouri University of Science and Technology, MO 65409, U.S.A.

email: wenx@mst.edu
2School of Finance and Statistics,

East China Normal University, Shanghai, China

ABSTRACT

Variable selection is a very important tool when dealing with high dimensional

data. However, most popular variable selection methods are model-based, which might

provide misleading results when the model assumption is not satisfied. Sufficient dimension

reduction provides a general framework for model-free variable selection methods. In

this paper, we propose a model-free variable selection method via sufficient dimension

reduction, which incorporates the grouping information into the selection procedure for

multi-population data. Theoretical properties of our selection methods are also discussed.

Simulation studies suggest that our method greatly outperforms those ignoring the grouping

information.

Keywords: Trace Pursuit; Variable Selection; Partial Central Subspace; Sufficient Dimen-

sion Reduction.
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1. INTRODUCTION

The importance of variable selection becomes more critical nowadays since modern

scientific innovations allow scientists to collect massive and high-dimensional data at a

rapid rate. Often the dimensions of the predictors (p) may greatly surpass the relative

small sample size (n). Many methods have been developed in recent years to extract the

significant variables effectively under the so called n < p context. However, most of the

popular variable selection methods, such as nonnegative garrotte (Breiman, 1995), LASSO

(Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Zou, 2006), group LASSO

(Yuan and Lin, 2006), Dantzig selector (Candes and Tao, 2007), and MCP (Zhang, 2010),

are model-based, where a linear model or generalized linear model is assumed. Such

methods might generate biased results if the underlying modeling assumption is violated,

which is typically the case for complex or unknown models. Hence, model-free variable

selection method, which does not require the full knowledge of the underlying true model,

is called for.

Let X = (X1, · · · , Xp)
T be the p-dimensional predictor, andY be the scalar response.

Let I = {1, 2, . . . , p} denote the complete index set. Model-free variable selection aims to

identify the index set A ⊂ I such that

Y XAc |XA,

where Ac is the complement set of A, and XA = {Xi : i ∈ A}. The goal here is to

identify the smallest XA which contains all the active predictors. Yin and Hilafu (2015)

gave a detailed discussion of the existence and uniqueness of such a set A. As pointed

out by Bondell and Li (2009), the general framework of sufficient dimension reduction (Li

1991; Cook 1998) is very useful for model-free variable selection since no pre-specified

underlying models between the response and the predictors are required.
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When n > p, Ni et al. (2005), Li and Nachtsheim (2006), and Li and Yin (2008)

proposed model-free variable selections by reformulating sufficient dimension reduction as

a penalized regression problem. Li (2007) proposed a unified approach combining SDR and

shrinkage estimation to produce sparse estimators of the central subspace. Wang and Zhu

(2015) proposed a distribution-weighted lasso method for the single-index model. Chen

et al. (2010) proposed coordinate-independent sparse dimension reduction (CISE) imposing

a subspace-oriented penalty. However, none of thosemodel-free variable selections can deal

with variable selection when n < p. Such situations do arise in many high dimensional data

sets in bioinformatics, machine learning and pattern recognition. Recently, Yin and Hilafu

(2015) proposed a sequential method which transforms the original problem to the regular

n < p one, by decomposing the original data into pieces. However, there might be some

issueswith implementations of theirmethod since different partitions of the predictorsmight

lead to different results. Yu et al. (2016) developed a novel model-free variable selection

method under the n < p context, the trace pursuit method, which could be combined with

many existing sufficient dimension reduction methods. Their method provides a versatile

framework for variable selection via stepwise trace pursuit (STP), which can be viewed as

a model-free counterpart of the classical stepwise regression.

However, in practice, we often deal with situations where the data came from

different groups, say, males or females. It would be desirable to incorporate those grouping

information into the variable selection procedure, since it might be related to both the

response and the predictors. In this paper, we extend the trace pursuit method to data

with multiple groups. Our simulation studies suggest that the selection performances could

be greatly improved with the utilization of the grouping information. Specifically, the

underfit (omission of significant variables) rate is greatly reduced, while the correct fit rate

is significantly improved.
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The rest of this article is organized as follows. We first give a brief introduction of

sufficient dimension reduction methods and trace pursuit method for a single population in

Section 2. In Section 3, we present our new estimationmethod in details; and also discuss its

related asymptotic properties. We illustrate the performance of our methods via simulation

studies in Section 4. Brief conclusions and a discussion on future research directions are

given in Section 5.

2. SUFFICIENT DIMENSION REDUCTION FOR A SINGLE POPULATION

For regression problemsY |X within a single population, Li (1991) and Cook (1998)

proposed sufficient dimension reduction that aims at reducing the dimension of X while

preserving the regression relationship between Y and X without requiring a parametric

model. Specifically, the scope of sufficient dimension reduction is to seek a set of linear

combinations of X, say βTX, where β is a p × d matrix with d ≤ p, such that

Y X|βTX.

The column space of β is then called a dimension reduction space, and the smallest

dimension reduction space is defined as the central subspace, denoted by SY |X. It is the

intersection of all dimension reduction spaces. The goal of sufficient dimension reduction

is to make inferences about the central subspace and its dimension d, which is called the

structural dimension of the regression. Subsequent modeling and prediction can be built

upon those d reduced directions.

Sufficient dimension reduction has received considerable interests in recent years due

to the ubiquity of large high-dimension data sets which are now more readily available than

in the past. Many methods have been developed, including sliced inverse regression (SIR;

Li 1991), sliced average variance estimation (SAVE; Cook and Weisberg 1991), minimum

average variance estimation (MAVE; Xia et al. 2002), directional regression (DR; Li and
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Wang 2007), likelihood acquired directions (LAD; Cook and Forzani 2009), cumulative

slicing estimation (CUME; Zhu et al. 2010), dimension reduction for special-structured

X (Li et al., 2010), nonlinear sufficient dimension reduction (Lee et al., 2013), sufficient

dimension reduction via a semiparametric approach (Ma and Zhu 2012, 2013) and many

others.

We now briefly review the most widely used sufficient dimension reduction method,

SIR (Li, 1991). Let Σ = Cov(X) denote the marginal covariance matrix of X, µ = E(X),

and letZ = Σ−
1
2 (X−E(X)) be the standardized predictor. By the invariance property (Cook,

1998), we have SY |X = Σ
− 1

2SY |Z, where SY |Z is the central subspace for the regression of

Y |Z. Unlike traditional regression modeling, sufficient dimension reduction methods, rely

on an assumption about the marginal distribution of Z instead of the conditional distribution

of Y |Z. The so-called linearity condition requires that E(Z|ρTZ) be a linear function of

ρTZ, where the columns of the p × d matrix ρ form an orthonormal basis for SY |Z. For

more detailed discussions of the linearity condition (LM condition), please see Feng et al.

(2013).

The linearity condition connects the central subspace with the inverse regression of

Z on Y . Li (1991) showed that E(Z|Y ) ∈ SY |Z when it holds. When Y is continuous, Li

(1991) proposed estimating E(Z|Y ) by replacing Y with a discrete version constructed by

partitioning the range of Y into H fixed non-overlapping slices s1, . . . , sH . Let ph = Pr{Y ∈

sh}, mh = E(Z|Y ∈ sh), Msir =
H∑

h=1
phmhmT

h . Li (1991) showed that the eigenvectors

corresponding to the d nonzero eigenvalues of Msir form a basis of SY |Z.

Let M̂sir denote a consistent estimate of Msir , SIR made use of the span of the

eigenvectors corresponding to the d largest eigenvalues of M̂sir to estimate Span(Msir).

The eigenvalues provide a test statistic for hypotheses on the structural dimension, and the

eigenvectors can be linearly transformed back to the X-scale to form a basis for SY |X. This

is the so called spectral decomposition approach (Wen and Cook, 2009), since it is based

on a spectral decomposition of the sample kernel matrix M̂sir . SAVE (Cook and Weisberg,
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1991) and DR (Li and Wang, 2007) took the same spectral decomposition approach via

different kernel matrices: Msave = E{Ip − Var(Z|Y )}2, and Mdr = 2E{E2(ZZT |Y )} +

2E2{E(Z|Y )E(ZT |Y )}+2E{E(ZT |Y )E(Z|Y )}E{E(Z|Y )E(ZT |Y )}−2Ip. SAVEandDR require

a constant conditional variance condition (Var(Z|ρTZ) is nonrandom) in addition to the

linearity condition.

3. TRACE PURSUIT VARIABLE SELECTION FOR MULTIPLE GROUPS

3.1. The Test Statistics. For easy of exposition, we follow Yu et al. (2016) to

assume that A = {1, . . . , q}. Then (1) is equivalent to the following hypothesis testing

within the framework of sufficient dimension reduction:

PHSY |X = Op, (3.1)

where P(.) denotes the projection operator with respect to the standard inner product,

H = Span{(0(p−q)×q, Ip−q)
T } is the subspace of the predictor space, corresponding to the

coordinates of the inactive predictors, and Op is the origin inRp. Cook (2004) first proposed

a test for testing hypothesis of (3.1) based on a generalized least square rederivation of

the SIR estimator for SY |X. Shao et al. (2007) and many others also considered (3.1)

based on other estimators of SY |X. However, all those tests will not be applicable when

n < p, due to the difficulty of obtaining a sensible initial estimator for SY |X. Zhong

et al. (2012) and Jiang and Liu (2013) tackled testing (3.1) via sliced inverse regression

(SIR) method. However, both methods require the estimation of the rank of SY |X (the

so-called order determination), which is a very challenging problem when n < p. Yu et al.

(2016) proposed a novel trace pursuit approach to conduct model-free variable selection via

sufficient dimension reduction approach for n < p, which successfully circumvents the need

of order determination. However, as we discussed in Section 1, none of those methods took

the grouping information into consideration for data from multiple groups. In this section,
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we extend the trace pursuit method to deal with this specific issue. As Yu et al. (2016)

pointed out, the trace pursuit method can be combined with many commonly used sufficient

dimension reduction methods. We will propose our method with SIR in this article, since

the methodology can be extended to SAVE and DR similarly. In the numerical studies, we

provide simulation results via all three methods.

We first introduce the concept of partial central subspace which was proposed by

Chiaromonte et al. (2002) when the predictor is a mixture of a p-dimensional continuous

vector X and a categorical variableW , and the dimension reduction was focused on X alone.

The partial central subspace (S(W)Y |X) is defined as the intersection of all subspaces Span(β)

satisfying

Y X | (βTX,W),

where W ∈ {1, . . . ,K} is a categorical predictor (or group indicator). Let (Xw,Yw) denote

a generic pair of (X,Y ) for the w-th group, Σw = Var(Xw), and Zw = Σ
− 1

2
w (Xw − µw).

Let SYw |Xw
be the central subspace for the regression of Yw |Xw. The following equation

(Chiaromonte et al., 2002) connects the partial central subspace with the conditional central

subspaces:

S
(W)
Y |X =

K∑
w=1
SYw |Xw

. (3.2)

Equation (3.2) is the key to the connection between the partial central subspace and the

conditional central subspaces. It showed howwe can obtain an estimate of the partial central

subspace through the conditional central subspaces. Partial SIR (Chiaromonte et al., 2002),

Partial OPIRE (Wen and Cook, 2007), and PDEE (Feng et al., 2013) were all developed to

estimate the partial central subspace based on Equation (3.2). Equation (3.2) also suggests

that S(W)Y |X contains each conditional central subspace SYw |Xw
.

For multiple population data, the original testing problem (1) becomes

Y XAc |(XA,W), (3.3)
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where W is the group indicator. Adopting the concept of partial central subspace, (3.3) is

equivalent to testing:

Ho : PHS
(W)
Y |X = Op,

versus not Ho.

Within group w, without loss of generality, we assume that E(Xw = 0). Partition

the range of Yw into Hw fixed non-overlapping slices s1, . . . , sHw. Let pw = Pr(W = w),

phw = Pr{Yw ∈ shw}, Uhw = E(Xw |Yw ∈ shw). Based on (3.2), we can hence construct

the kernel matrix for SIR as M =
K∑

w=1
pwΣ

− 1
2

w

( Hw∑
h=1

phwUhwUT
hw

)
Σ
− 1

2
w . For any index set F ,

denote XF = {Xi : i ∈ F }, Var(XF |W = w) = ΣwF , and UF ,hw = E(XF |Yw ∈ shw,W = w).

Define MF =
K∑

w=1
pwΣ

− 1
2

wF

( Hw∑
h=1

phwUF ,hwUT
F ,hw

)
Σ
− 1

2
wF , we have the following proposition.

Proposition 1 Assuming the linearity condition for X within each group, then for any index

set F such that A ⊆ F ⊆ I, we have tr(MA) = tr(MF ) = tr(MI), where A denotes the

active index set such that Y XAc |(XA,W), and Is denotes the full index set.

The proof of Proposition 1 is provided in the appendix. It suggests that for all the sets

satisfying F ⊇ A, tr(MF )will be the same as tr(MA). Hence, assuming that XF is already

in the model, then for any X j < XF , we can use the differences between tr(MF∪ j) and

tr(MF ) to test the contribution of the additional variable X j to the regression of Y versus

(X,W).

Assuming a subset linearity condition for any X j < XF , which requires that

E(X j |XF ,W = w) is a linear function of XF within each group w, the following theo-

rem provides a way to calculate the trace differences: tr(MF∪ j) − tr(MF ).

Theorem 1 Assuming a subset linearity condition defined as above, then for any F ⊂ I,

and j ∈ F c, we have

• If A ⊆ F , then tr(MF∪ j) − tr(MF ) = 0.
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• If A * F , then tr(MF∪ j) − tr(MF ) =
K∑

w=1
pw

( Hw∑
h=1

phwγ
2
j |wF ,hw

)
where γ j |wF ,hw =

E(γ j |F |Y ∈ shw,W = w) with X j |F = X j − E(X j |XF ), σ2
j |F = Var(X j |F ), and

γ j |F = X j |F /σj |F .

Let (Ywi,Xwi), i = 1, . . . , nw be a simple random sample of size nw from the wth

group (Yw,Xw) for w = 1, . . . ,K . Let X̄w =
1

nw

nw∑
i=1

Xwi, and Σ̂w = 1
nw

nw∑
i=1
(Xwi − X̄w)(Xwi −

X̄w)
T . X̄wF and Σ̂wF can be defined similarly. Let nhw denote the total number of data

points in the hth slice within group w. Let p̂w =
nw
n , where n = n1 + · · · + nK . Let

p̂hw =
nhw
nw

, the sample proportion of data points in the hth slice within group w. Let

ÛF ,hw = 1/nhw
∑

i:Ywi∈shw
(Xwi,F − X̄wF ). We can construct M̂F , the sample version of MF ,

as
K∑

w=1
p̂wΣ̂

− 1
2

wF

( Hw∑
h=1

p̂hwÛF ,hwÛT
F ,hw

)
Σ̂
− 1

2
wF .

Let Tj |F = n
(
tr(M̂F∪ j) − tr(M̂F )

)
be the test statistic for hypothesis (3.3). The-

orem 1 can be used to calculate Tj |F , with pw, phw and γ j |F being estimated using their

corresponding sample versions. The asymptotic distribution ofTj |F is given in the following

theorem.

Theorem 2 Let (Ywi,Xwi), j = 1, . . . , nw be a simple random sample with finite fourth

moments of size nw from the wth group (Yw,Xw) for w = 1, . . . ,K . Assuming the subset

linearity condition as in Theorem 1, and |F | is fixed when n goes to infinity, then under

Ho : Y X j |(XF ,W), j ∈ F c, we have:

Tj |F −→

H∑
i=1

ω2
j |F ,i χ

2
1,

where H = H1 + · · · + HK is the total number of slices, ω j |F ,1 ≥ · · · ≥ ω j |F ,H are the

eigenvalues of Ω j |F as defined in the Appendix.
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3.2. The Selection Procedure. FollowingYu et al. (2016), we use the forward trace

pursuit (FTP) and the stepwise trace pursuit (STP) procedures to select the active variables.

Specifically we use FTP to serve as a screening tool, and STP to refine the selection. Yu

et al. (2016) call this selection method the hybrid trace pursuit (HTP) procedure. Below are

the algorithms for FTP and STP procedures respectively.

Forward trace pursuit

1) Let F0 = ∅.

2) At the kth (k ≥ 1) iteration, find ak such that

ak = argmax
j∈F c

k−1

tr(M̂Fk−1∪ j).

3) Repeating 2) n times, to obtain a sequence of n nested index sets. Denote the

solution path as S = {Fk : 1 ≤ k ≤ n}, where Fk = {a1, . . . , ak}.

Stepwise trace pursuit

1) Let F0 = ∅.

2) Forward addition: Find aF such that

aF = argmax
j∈F c

tr(M̂F∪ j).

If TaF |F is greater than a pre-specified cut off value c1, then update F to be F ∪ aF .

3) Backward deletion: Find dF such that

dF = argmax
j∈F c

tr(M̂F\ j).

If TdF |F \dF is less than a pre-specified cut off value c2, then update F to be F\dF .

4) Repeat 2) and 3) until no predictors can be added or deleted.
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We now discuss the theoretical properties of our procedures. AssumeVar{E(Zw |Y ∈

shw )} has qw nonzero eigenvalues λw1 ≥ · · · ≥ λwqw with corresponding eigenvectors

ηw1, . . . , ηwqw , wherew = 1, . . . ,K . Let βwi = Σ
−1/2
w ηwi for i = 1, . . . , qw andw = 1, . . . ,K .

Let βwi, j be the jth elements of βwi, j = 1, . . . , p. Define βmin = min
w=1,...,K

j∈A

{√
qw∑
i=1

β2
wi, j

}
. Let

λ0 = min
w=1,...,K

{λwqw }, λmax = max
w=1,...,K

{λmax(Σw)} and λmin = min
w=1,...,K

{λmin(Σw)}, where

λmax(Σw) and λmin(Σw) are the largest and the smallest eigenvalues of Σw.

Proposition 2 Assuming Span{βw1, . . . , βwqw } = SYw |Xw
and the subset linearity condition

as in Theorem 1, then for any index set F such that F c ∩ A , ∅, we have

max
j∈F c∪A

{tr(MF∪ j − tr(MF )} ≥ λ0λminλ
−1
maxβmin.

The above proposition suggests that when F does not contain A, the maximum value of

tr(MF∪ j) − tr(MF ) is greater than 0. The proof is given in the Appendix.

We assume the following condition for the selection consistency for STP procedure:

Condition 1 Assuming that there exist α > 0 and 0 < θ < 1/2 such that

min
F :F c∩A,∅

max
j∈F c∪A

{tr(MF∪ j − tr(MF )} ≥ αn−θ

Theorem 3 Let (Ywi,Xwi), i = 1, . . . , nw be a simple random sample with finite fourth

moments of size nw from the wth group (Yw,Xw) for w = 1, . . . ,K . Let c1 and c2 be two

constants such that 0 < c1 < 1/2αn1−θ and c2 > An1−θ for any A > 0. Assuming the subset

linearity condition and Condition 1, then

lim
n→∞

Pr( min
F :F c∩A,∅

max
j∈F c∪A

Tj |F > c1) = 1,

and

lim
n→∞

Pr( max
F :F c∩A=∅

min
j∈F

Tj |{F / j} < c2) = 1
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Theorem 3 provides the selection consistency result for the STP method. It suggests that

the addition step will not stop til all significant predictors are included, and the deletion step

will continue until all insignificant predictors are removed.

We need the following conditions for the consistency of the FTP procedure.

Condition 2

a. Xw follows a multinormal distribution for w = 1, . . . ,K .

b. There exist γ1 > 0 and γ2 > 0 such that γ1 < λmin < λmax < γ2.

c. There exist constants α1, θ1 and θ2 such that log p ≤ α1nθ1 , |A| ≤ α1nθ2

and 2θ + θ1 + θ2 < 1, where θ is a constant from Condition 1.

Follow Chen and Chen (2008) and define the modified BIC criterion

BIC(F ) = −log
{
tr(M̂F )

}
+ n−1 |F |(logn + 2logp).

Theorem 4 Assume Condition 1 and Condition 2 hold true, then we have

Pr(A ⊂ Fm̂) → 1,

as n→∞ and p→∞, where m̂ = argmin
1≤k≤n

BIC(Fk), and Fk is defined in the FTP procedure.

Hence Theorem 4 guarantees the selection consistency for FTP procedure.

4. NUMERICAL STUDIES

In this section, we compare the performance of our method with Yu et al. (2016).

We summarize our results over 50 replications for each simulation study. We studied the

performance of our proposed tests via SIR, SAVE and DR with different choices of p.

Throughout our simulation studies, the number of slices is set as h = 4, the sample size is
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n = 400. Following Yu et al. (2016), the under fitted count (UF), the correctly fitted count

(CF), the over fitted count (OF), and the average model size (MS) are used to evaluate the

performances of different methods.

Model I. We first consider the following model

Y =


sign(X1 + Xp) exp(X2 + Xp−1) + ε1, W = 0;

sign(X1 − Xp) exp(X2 + Xp−1) + ε2, W = 1.

X = (X1, . . . , Xp) ∼ N(0,Σ), where Σ = (σi j) = ρ|i− j |, and εi ∼ N(0, 0.2), for i = 1, 2.

We considered uncorrelated predictors (ρ = 0), and correlated predictors with ρ = 0.5.

W is generated independently with X from Bernoulli(1
2 ) distribution. Hence we have two

populations (W = 2), and the active predictors are X1, X2, Xp−1 and Xp for both populations.

Yu et al. (2016) also considered this model with a single population. For uncorrelated

predictors case, Table 4.1 showed the great improvement of correct selection rates when

the grouping information is considered. For example, when p = 2000, our method via

SIR and DR both select the correct predictors all the time (CF rate 100%, while the single

population method proposed by Yu et al. (2016) always underfits. SAVE based methods

are expected to fail since for this model the predictors are linked to the response through

monotone functions. Table 4.2 tells the same story with correlated predictors.

Model II. We then consider a variant of Model I with W being generated from

Bernoulli(0.7) distribution, and all the other model configurations are the same as Model I.

Table 4.3 reported the simulation results with uncorrelated and correlated predictors for SIR-

based methods. We observed a similar trend as that of Model I. The utilization of grouping

information has greatly improved the correct selection rates. Unreported simulation results

suggest that SAVE-based and DR-based methods provide similar performance as that of

Model I.
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Table 1. Selection Performances (50 Runs) for Model I with ρ = 0

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 4 3 6.6 2.24 4.04 9.08
UF 0 50 35 50 0 46
CF 50 0 0 0 48 0
OF 0 0 15 0 2 4

1000

MS 4.06 3 9 2.06 4.12 10.68
UF 0 50 48 50 0 50
CF 48 0 0 0 45 0
OF 2 0 2 0 5 0

2000

MS 4 3 8.6 2.1 4 10.5
UF 0 50 49 50 0 50
CF 50 0 0 0 50 0
OF 0 0 1 0 0 0

Table 2. Selection Performances (50 Runs) for Model I with ρ = 0.5

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 4.02 3 6.22 2.16 4.02 7.12
UF 0 50 24 50 0 44
CF 49 0 0 0 49 0
OF 1 0 26 0 1 6

1000

MS 4.08 3 8.8 2.06 4.14 9.22
UF 0 50 24 50 0 49
CF 47 0 0 0 45 0
OF 3 0 26 0 5 1

2000

MS 4 3 8.46 2.14 4 9.22
UF 0 50 49 50 0 48
CF 50 0 0 0 50 0
OF 0 0 1 0 0 2

Model III. We now consider a model where Y depends on quadratic functions X2
1 ,

X2
2 , X2

p−1 and X2
p . X and ε’s are generated the same way as in Model I. Due to the model

structure, SAVE-based methods are expected to perform well, while SIR-based methods are

expected to fail. Table 4.4 and 4.5 report the performances of the multiple group and single
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Table 3. Selection Performances (50 Runs) for Model II with W ∼ Bin(0.7)

ρ = 0 ρ = 0.5
p Method MS UF CF OF MS UF CF OF

100 SIR 3.12 44 6 0 3.22 39 11 0
M-SIR 4 0 50 0 4 0 50 0

1000 SIR 3.04 48 2 0 3.08 46 4 0
M-SIR 4 0 50 0 4 0 50 0

2000 SIR 3.08 46 4 0 3 50 0 0
M-SIR 4 0 50 0 4 0 50 0

group selection methods for Model III. Again, the incorporation of grouping information

greatly improves the correct selection rates. Also, it seems that DR performs well for both

models, as suggested by the literature.

Y =


2X2
1 X2

p − 2X2
2 X2

p−1 + ε1, W = 0;

2X2
1 X2

p + 2X2
2 X2

p−1 + ε2, W = 1.

Model IV. Model IV is generated in a similar way as that of Yu et al. (2016). Again,

X, W and ε’s are generated the same way as in Model I. As suggested by Yu et al. (2016),

this model is specially constructed to favor DR-based methods. As shown in Table 4.6 and

4.7, the multiple population selection methods again dominate over the single population

selection method. For example, with p = 1000 and ρ = 0.5, the average model size for

DR-based multiple population selection method is 4.06, which is slightly greater than the

true model size 4; while the average model size yielded by DR-based single population

selection method is 9.14.

Y =


X4
1 − X4

p + exp(0.8X2 + 0.6Xp−1) + ε1, W = 0;

X4
1 + X4

p + exp(0.8X2 − 0.6Xp−1) + ε2, W = 1.
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Table 4. Selection Performances (50 Runs) for Model III with ρ = 0

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 5.84 6.54 4.18 6.18 4.22 8.94
UF 50 50 6 28 13 19
CF 0 0 36 2 29 0
OF 0 0 8 20 8 31

1000

MS 4.38 6.82 3.84 4.82 4.1 10.1
UF 50 50 26 43 23 40
CF 0 0 22 1 20 0
OF 0 0 2 6 7 10

2000

MS 4.2 6.42 4.02 4.76 3.62 10.54
UF 50 50 32 48 33 39
CF 0 0 15 0 17 0
OF 0 0 3 2 0 11

Table 5. Selection Performances (50 Runs) for Model III with ρ = 0.5

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 5.9 5.68 4.02 5.02 4.08 10.92
UF 50 50 12 29 6 23
CF 0 0 31 4 39 0
OF 0 0 7 17 5 27

1000

MS 4.64 6.62 4.2 4.54 4.22 9.78
UF 50 50 15 44 20 46
CF 0 0 25 2 21 0
OF 0 0 10 4 9 4

2000

MS 4.06 6.5 3.86 4.22 4 9.42
UF 50 50 35 49 34 47
CF 0 0 14 0 6 0
OF 0 0 1 1 10 3

Model V. Model V is generated as the following:

Y =


sign(X1 + Xp) exp(X2 + Xp−1) + ε1, W = 0;

exp(X2 + Xp−1) + ε2, W = 1.



25

Table 6. Selection Performances (50 Runs) for Model IV with ρ = 0

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 3.44 2.84 4.34 4.72 4.08 10.72
UF 50 50 44 45 4 32
CF 0 0 5 4 37 0
OF 0 0 1 1 9 18

1000

MS 2.34 2.38 4.94 4.26 4.12 10.24
UF 50 50 50 50 12 45
CF 0 0 0 0 25 0
OF 0 0 0 0 13 5

2000

MS 2.12 2.14 5.06 4.2 3.6 9.8
UF 50 50 49 50 27 47
CF 0 0 1 0 20 0
OF 0 0 0 0 3 3

Table 7. Selection Performances (50 Runs) for Model IV with ρ = 0.5

p Multi-SIR SIR Multi-SAVE SAVE Multi-DR DR

100

MS 3.64 3.62 3.88 4.8 4.14 9.16
UF 47 50 34 42 4 37
CF 2 0 12 5 38 0
OF 1 0 4 3 8 13

1000

MS 2.32 3.04 5 4.56 4.06 9.14
UF 50 50 46 49 11 47
CF 0 0 2 1 29 0
OF 0 0 2 0 10 3

2000

MS 2.18 3.2 4.58 4.34 3.74 8.82
UF 50 50 50 50 23 49
CF 0 0 0 0 23 0
OF 0 0 0 0 4 21

The X, W , and εi, i = 1, 2 are all generated the same as in Model I. Notice that population

one and two now has different active sets: X1, X2, Xp−1, Xp for population one; and X2, Xp−1

for population two, though the active set in population one consists of that of population
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Table 8. Selection Performances (50 Runs) for Model V

ρ = 0 ρ = 0.5
p Method MS UF CF OF MS UF CF OF

100 SIR 3.48 44 5 1 3.3 44 5 1
M-SIR 5.02 0 39 11 4.2 0 41 9

1000 SIR 3.28 49 0 1 3.22 49 1 0
M-SIR 4.04 1 46 3 4 1 48 1

2000 SIR 3.22 50 0 0 3.08 50 0 0
M-SIR 4 1 48 1 4 3 45 2

two. Table 4.8 showed that our multiple population selection method greatly improves the

correct fit rate. For example, with p = 2000 and ρ = 0, the correct fit rate is 48/50 for

selections via multi-SIR, and 0/50 for SIR-based method.

Model VI. Model VI is considered to investigate the performance of our method

when each population consists of its unique active variables. Model VI is generated similarly

as Model I except for Y , which is generated as:

Y =


sign(X1 + Xp) exp(X3 + Xp−2) + ε1, W = 0;

sign(X2 + Xp−1) exp(X3 + Xp−2) + ε2, W = 1.

Hence the active sets for population one and two are X1, X3, Xp−2, Xp and X2, X3, Xp−1, Xp

respectively. The current model size is 6. Table 4.9 showed the our multiple population

selection method still outperforms single population selection method. For example, when

p = 2000 and ρ = 0, the average model size for our method is 5.38, which is much closer

to the true model size (6) comparing to 3.42 from the single population method.
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Table 9. Selection Performances (50 Runs) for Model VI

ρ = 0 ρ = 0.5
p Method MS UF CF OF MS UF CF OF

100 SIR 5.48 24 25 1 4.36 50 0 0
M-SIR 5.86 7 43 0 5.7 14 36 0

1000 SIR 3.86 49 1 0 4.02 50 0 0
M-SIR 5.44 27 23 0 5.34 29 21 0

2000 SIR 3.42 50 0 0 4 50 0 0
M-SIR 5.38 30 20 0 4.98 37 13 0

5. CONCLUSIONS AND DISCUSSION

Sufficient dimension reduction provides a general framework formodel-free variable

selections. However, few of the current variable selection methods consider the grouping

information when dealing with data from multi-populations. In this paper, we propose a

model-free variable selection method for n < p multi-population data, which fully utilizes

the grouping information. Simulation studies show that our method provides superior

performance comparing to those ignoring the grouping information.
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APPENDIX

Proof of Proposition 1:

Assume Var{E(Zw |Y ∈ shw )} has qw nonzero eigenvalues λw1 ≥ · · · ≥ λwqw with

corresponding eigenvectors ηw1, . . . , ηwqw , where w = 1, . . . ,K . Let βwi = Σ
−1/2
w ηwi for

i = 1, . . . , qw and w = 1, . . . ,K .

Note that M =
∑K

w=1
∑qw

i=1 pwλwiηwiη
>
wi =

∑K
w=1

∑qw
i=1 pwλwiΣ

1/2
w βwiβ

>
wiΣ

1/2
w , we

have tr(M) = tr(
∑K

w=1 pwΣw
∑qw

i=1 λwiβwiβ
>
wi).

Under the linearity condition for X within each group, we know βwi ∈ SYw |Xw
.

Define βwi,A = {βwi, j : j ∈ A} and βwi,Ac = {βwi, j : j ∈ Ac}, where w = 1, . . . ,K . Since

Y XAc |(XA,W), βwi,Ac = 0 for all w ∈ {1, . . . ,K}. Therefore, tr(M) can be rewritten as

tr(
∑K

w=1 pwΣw,A
∑qw

i=1 λwiβwi,Aβ
>
wi,A)

Recall that A = {1, . . . , q}, so

Var(E(X|Y )|W = w) = Σw(

qw∑
i=1

λwiβwiβ
>
wi)Σw

=
©«
Σw,A Σw,AAc

Σw,AcA Σw,Ac

ª®®¬
©«
∑qw

i=1 λwiβwi,Aβ
>
wi,A 0

0 0

ª®®¬
©«
Σw,A Σw,AAc

Σw,AcA Σw,Ac

ª®®¬ ,
where Σw,A = Var(XA |W = w), Σw,Ac = Var(XAc |W = w), and Σw,AAc = Cov(XA,XAc |

W = w). Hence,

Var(E(XA |Y )|W = w) = Σw,A

qw∑
i=1

λwiβwi,Aβ
>
wi,AΣw,A,

and

MA =
K∑

w=1
pwΣ

−1/2
w,A Cov(E(XA |Y )|w)Σ−1/2

w,A =

K∑
w=1

pwΣ
1/2
w,A

qw∑
i=1

λwiβwi,Aβ
>
wi,AΣ

1/2
w,A .



29

Based on these results, we have tr(MA) = tr(MI). Similarly, we can prove tr(MF ) = tr(MA)

for any F such that A ⊂ F . �

Proof of Theorem 1:

i) Since A ⊆ F , A ⊆ F ∪ j. From Proposition 1, it is easy to show that

tr(MF∪ j) − tr(MF ) = tr(MA) − tr(MA) = 0.

ii) If the subset linearity condition holds in each group, then Xw j |F = Xw j −

E(Xw j |XwF ) = Xw j − Σ
T
w, jFΣ

−1
wF

XwF for any w ∈ {1, . . . ,K}, where Σw, jF = Cov(X j,XF |

W = w). We construct two matrices Pw and Vw as

Pw =
©«

I|F | 0

−ΣT
w, jFΣ

−1
wF

1

ª®®¬ and Vw =
©«
ΣwF 0

0 σ2
w, j |F

ª®®¬ .
where |F | is the cardinality of F and σ2

w, j |F is σ2
j |F in group w. Note that Cov(XwF , Xw j |F )

= 0, then we have Var(PwXw,F∪ j) = PwΣw,F∪ jP>w = Vw and Σw,F∪ j = P>wV−1
w Pw.

We can rewrite MF∪ j as

MF∪ j = E[Cov(E(ZF∪ j |Y )|W)]

= E[Σ−1/2
w,F∪ jCov(E(XF∪ j |Y )|W)Σ

−1/2
w,F∪ j]

= E[P>wV−1/2
w PwCov(E(X,F∪ j |Y )|W)P>wV−1/2

w Pw]

=

K∑
w=1

pwP>wV−1/2
w

( Hw∑
h=1

phwPwUhw,F∪ jU>hw,F∪ jP
>
w

)
V−1/2
w Pw
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Because PwUhw,F∪ j = (U>hw,F ,E(X j |F |Yw ∈ shw,W = w))>, then we have

tr(MF∪ j) = tr
( K∑
w=1

pwP>wV−1/2
w

( Hw∑
h=1

phwPwUhw,F∪ jU>hw,F∪ jP
>
w

)
V−1/2
w Pw

)
= tr

( K∑
w=1

pwV−1
w

( Hw∑
h=1

phwPwUhw,F∪ jU>hw,F∪ jP
>
w

) )
= tr

( K∑
w=1

pwΣ−1
wF

( Hw∑
h=1

phwUFw,hUT
Fw,h

) )
+

K∑
w=1

Hw∑
h=1

pwphwE2(X j |F /σj |F |Yw ∈ shw,W = w)

Hence, tr(MF∪ j) − tr(MF ) =
K∑

w=1
pw

( Hw∑
h=1

phwγ
2
j |wF ,hw

)
�

Proof of Theorem 2:

For any w ∈ 1, . . . ,K , we define Fw as the joint distribution of (Xw,Yw) and Fnw as

the empirical distribution for random sample (Yw j,Xw j), j = 1, . . . , nw . Let G be a real

or matrix valued functional. Based on Frechet derivative and the regularity conditions in

Fernholz (1983), we know that G(Fnw) satisfies

G(Fnw) = G(Fw) + En[G
?(Fw)] + Op(n−1

w ), (5.1)

where G(Fw) is fixed for each group, and En[G
?(Fw)] = Op(n

−1/2
w ) as E[G?(Fw)] = 0. Let

Rhw = I(Yw ∈ shw), µ j,hw = E(X j |Yw ∈ shw,W = w) and νw j |F = Σ
−1
w,F
Σ>
w, jF . To prove

Theorem 2, we need the results in Lemma 1 in the following.

Lemma 1 If the conditions in 2 holds and Ho is true, then Σ̂w,F , Σ̂
−1
w,F , ÛFw,h, ν̂w j |F ,µ j,hw

and γ̂ j |Fw,hw have expansions in the form (5.1) with Σw,F , Σ−1
w,F

, UFw,h, νw j |F , µ̂ j,hw or

γ j |Fw,hw as substitutes for G(Fw) , and Σ?w,F = Xw,FX>
w,F

, (Σ−1
w,F
)? = −Σ−1

w,F
Σ?
w,F
Σ−1
w,F

, U?
Fw,h = (Xw,F − UFw,h)Rhw/phw − Xw,F , ν?w j |F = Σ

−1
w,F

(
(Xw j |XwF − E((Xw j |XwF )

)
+

(Σ−1
w,F
)?E((Xw j |XwF ), µ?j,hw = (Xw, j − U jw,h)Rhw/phw − Xw, j or γ?j |Fw,hw =

(
µ?j,hw −

(ν?
w j |F )

>UFw,h − ν>w j |FU?
Fw,h

)
/σw, j |F as substitutes for G?(Fw)
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Since the proof is similar to Yu et al. (2016), we omit the proof for Lemma 1.

Let L̂ j |F ,w = (p̂
1/2
w p̂1/2

{hw=1}γ̂ j |Fw,1, . . . , p̂1/2
w p̂1/2

{hw=Hw}
γ̂ j |Fw,Hw)

> and L̂ j |F = (L̂>j |F ,1,

. . . , L̂>j |F ,K)
>. Based on Lemma 1, we define Ω j |F = E

(
L?

j |F ,1(L
?
j |F ,1)

>
)
, (L j |F ,w)

? =

(p1/2
w p1/2

{hw=1}γ
?
j |Fw,1, . . . , p1/2

w p1/2
{hw=Hw}

γ̂?j |Fw,Hw
)> and (L j |F )

? =
(
(L?

j |F ,1)
>, . . . , (L?

j |F ,K)
>)>.

Then we have Tj |F = n(L̂ j |F )
>L̂ j |F . Under H0, we have

L̂ j |F = L j |F + En
(
(L j |F )

?) + op(n−1/2),

Then the result in Theorem 2 follows directly. �

Proof of Proposition 2:

Without loss of generality, we assume that (X>
F
, X j) are the first |F | + 1 elements of

XT in the proof. Recall that Var(E(X|Y )|W = w) = Σw(
∑qw

i=1 λwiβwiβ
>
wi)Σw and tr(MF∪ j)−

tr(MF ) =
K∑

w=1
pw

( Hw∑
h=1

phwγ
2
j |Fw,hw

)
, then we have

σ2
w, j |F

( Hw∑
h=1

phwγ
2
j |Fw,hw

)
= Var(E(X j |F |Y)|W = w)

=
(
− Σw, jFΣ

−1
wF , 1

)
AVar(E(X|Y )|W = w)A>

(
− Σw, jFΣ

−1
wF , 1

)>
=
(
− Σw, jFΣ

−1
wF , 1

)
AΣw(

qw∑
i=1

λwiβwiβ
>
wi)ΣwA>

(
− Σw, jFΣ

−1
wF , 1

)>
(5.2)

where A = (I|F |+1, 0(|F |+1)(p−|F |−1)). Note that
(
Σw, jF − Σw, jFΣ

−1
wF
ΣwF

)
= 0, then we

obtain (
− Σw, jFΣ

−1
wF , 1

)
AΣwβwi =

(
Σw, jF c − Σw, jFΣ

−1
wFΣwFF c, 1

)
βwi,F c

Recall that βwi,Ac = 0 for all w ∈ {1, . . . ,K}. Let F̃ = F c ∩ A, then it follows

(
− Σw, jFΣ

−1
wF , 1

)
AΣwβwi =

(
Σw jF̃ − Σw, jFΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃
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From this equation and 5.2, we can obtain that

σw, j |F
( Hw∑

h=1
phwγ

2
j |Fw,hw

)
=

qw∑
i=1

λwi{
(
Σw jF̃ − Σw, jFΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃ }

2

Note that ∑
j∈F̃

{
(
Σw jF̃ − Σw, jFΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃ }

2

=βwi,F̃
>
(
Σw,F̃ − Σw,F̃ FΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃

and
λmin

(
Σw,F̃ − Σw,F̃ FΣ

−1
wFΣwF F̃ , 1

)
=λ−1

max{
(
Σw,F̃ − Σw,F̃ FΣ

−1
wFΣwF F̃ , 1

)−1
} ≥ λ−1

max(Σw) = λmin(Σw)

for any w ∈ {1, . . . ,K}, then it follows

max
j∈F c∩A

σw, j |F
( Hw∑

h=1
phwγ

2
j |Fw,hw

)
≥|F c ∩ A|−1

∑
j∈F̃

{
(
Σw jF̃ − Σw, jFΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃ }

2

=|F c ∩ A|−1
qw∑
i=1

λwiβwi,F̃
>
(
Σw,F̃ − Σw,F̃ FΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃

≥|F c ∩ A|−1
qw∑
i=1

λwiλmin
(
Σw,F̃ − Σw,F̃ FΣ

−1
wFΣwF F̃ , 1

)
βwi,F̃

>βwi,F̃

≥λw,qwλmin(Σw)
2βmin

Because σw, j |F ≤ σj |F ≤ Var(X j) ≤ λmax , then

max
j∈F c∩A

(
tr(MF∪ j) − tr(MF )

)
= max

j∈F c∩A

K∑
w=1

pw
( Hw∑

h=1
phwγ

2
j |Fw,hw

)
≥

K∑
w=1

pwσ−2
w, j |F max

j∈F c∩A
σw, j |F

( Hw∑
h=1

phwγ
2
j |Fw,hw

)
≥

K∑
w=1

pwσ−2
w, j |F λw,qwλmin(Σw)

2βmin ≥ λqλminλ
−1
maxβmin �
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Proof of Theorem 3:

i) Let ∆ = αn−θ − n−1c1 > 0. Since t 0 < c1 < (1/2)αn1−θ , we have ∆ = Op(n−θ).

Because
(
tr(M̂F∪ j) − tr(M̂F )

)
−

(
tr(MF∪ j) − tr(MF )

)
= Op(n−1/2) as F c ∩ A , ∅ and

0 < c1 < 1/2,

max
F :F c∩A,∅

max
j∈F c∩A

[ (
tr(M̂F∪ j) − tr(M̂F )

)
−

(
tr(MF∪ j) − tr(MF )

) ]
< ∆

with probability 1, as n goes to infinity. Hence,

min
F :F c∩A,∅

max
j∈F c∩A

(
tr(M̂F∪ j) − tr(M̂F )

)
> min
F :F c∩A,∅

max
j∈F c∩A

[ (
tr(MF∪ j) − tr(MF )

)
− max
F :F c∩A,∅

max
j∈F c∩A

[ (
tr(M̂F∪ j) − tr(M̂F )

)
−

(
tr(MF∪ j) − tr(MF )

) ]
>αn−θ − ∆ = n−1c1

It is easy to obtain that lim
n→∞

Pr( min
F :F c∩A,∅

max
j∈F c∩A

Tj |F > c1) = 1.

ii) It is obvious that A ⊂ F as F c ∩ A = ∅. There are two different situations for

j. One is j ∈ A, the other one is j ∈ F \ A. If j ∈ A , we can have Tj |{F \ j} > (1/2)αn1−θ

with probability 1 based on the proof before. If j ∈ F \ A, we know Tj |{F \ j} follows a

weighted χ2
1 distribution from Theorem 2. Then Tj |{F \ j}is Op and asymptotically smaller

than (1/2)αn1−θ . Hence, min
j∈F

Tj |{F \ j} < c2 = Op < An1−θ for θ < 1 and A > 0. It follows

that lim
n→∞

Pr( max
F :F c∩A=∅

min
j∈F

Tj |{F \ j} < c2) = 1 �

Proof of Theorem 4:

Let Rw, j |F = Var(E(X j |F |Y)|W = w) and R̂w, j |F be the estimate for Rw, j |F . We can

derive that

tr(MF∪ j) − tr(MF ) =
w=k∑
w=1

pwσ2
w, j |F Rw, j |F
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and

tr(M̂F∪ j) − tr(M̂F ) =
w=K∑
w=1

p̂wσ̂−2
w, j |F R̂w, j |F .

Suppose that |F | = O(nθ+θ2). From Lemma 7 in Yu et al. (2016), we know that|R̂w, j |F −

Rw, j |F | ≤ D0 |F |
√

log p/n with probability tending to 1, where D0 is some constant. Since

p̂w − p̂w = OP(n−1/2) and

| p̂w R̂w, j |F − pwRw, j |F | ≤ | p̂w(R̂w, j |F − Rw, j |F )| + |(p̂w − pw)Rw, j |F |,

there exists some constant D1 such that

| p̂w R̂w, j |F − pwRw, j |F | ≤ D1 |F |
√

log p/n,

with probability tending to 1. Based on the proof of Lemma 3 in Jiang and Liu (2013) and

Lemma 6 in Yu et al. (2016), we have that |σ̂2
w, j |F − σ

2
w, j |F | = Op(|F |

√
log p/n). It follows

that σ̂−2
w, j |F ≥ σ

−2
w, j |F . based on the proof of Theorem5.1 inYu et al. (2016), we can know that

Pr(A ⊂ F2Hα−1 Anθ+θ2) → 1, as n → ∞ and p → ∞. Define k0 = min1≤k≤n{k : A ∈ Fk},

then k0 ≤ 2Hα−1 Anθ+θ2. The conclusion is easy to be proved based the proof of Theorem

2 in Wang (2009), and we omit the details. �
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ABSTRACT

In many applications, conditional variable screening arises when researchers have

some prior information regarding the importance of certain predictors, such as the treatment

effects in biological studies and market risk factors in financial studies. It is natural

to consider feature screening methods conditioning on these known important predictors.

Barut, Fan and Verhasselt (2016) proposed conditional sure independence screening (CSIS)

to address this issue under the context of generalized linearmodels. WhileCSIS outperforms

the marginal screening method when few of the factors are known to be important and/or

significant correlations among some of the factors exist, unfortunately, CSIS is model-based

and might fail when the models are mis-specified. We propose a model-free conditional

screening method under the framework of sufficient dimension reduction (SDR, Li 1991;

Cook 1998) for ultra-high dimensional statistical problems. Numerical studies show that

our method can easily beat CSIS for nonlinear models, and performs comparable to CSIS

for (generalized) linear models. The sure screening consistency property for our method is

also proved.

KEY WORDS: Conditional Screening; Trace Pursuit; Variable Selection; Sufficient Dimen-

sion Reduction.
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1. INTRODUCTION

Researchers in many different fields, such as economics and finance, need to analyze

high dimensional data, where the number of predictors p is frequently huge compared with

the sample size n. Most traditional statistical methods failedwhen p is large. Also, with high

dimensional data, it is often reasonable to assume only a small number of predictors actually

contribute to the response (sparsity assumption). Hence, dimension reduction or feature

selection is often conducted as the first step of data analysis. Estimation accuracy and model

interpretability can be greatly improved in the subsequent analysis by effectively identifying

the important predictors first. Fan and Lv (2008) proposed the sure independence screening

(SIS), which is a feature screening procedure for linear models by ranking the marginal

correlations between the response and each individual predictor. SIS has the so-called

sure screening property (Fan and Lv, 2008), in the sense that as n → ∞, the important

predictors are guaranteed to be retained in the model with probability tending to 1, even

for ultra-high dimensional predictor space, where p can diverge at an exponential rate of

n. SIS was extended to generalized linear models in Fan and Song (2010). Fan et al.

(2011) proposed nonparametric independence screening (NIS) for nonparametric models

with additive structure using nonparametric marginal ranking. Many other feature screening

methodologies have been developed, such as Xue and Zou (2011), Wang (2012), Zhao and

Li (2012), and Chang et al. (2013).

However, all the aforementioned procedures are model-based and might yield poor

performance when the models are mis-specified. Motivated by this fact, model-free feature

screening procedures, which can identify the important predictors without specifying the

model structure, were developed. To list a few, Zhu et al. (2011) proposed a sure independent

ranking and screening (SIRS), Lin et al. (2013) proposed a nonparametric ranking feature

screening (NRS) using the function-correlation between the response and predictors, He

et al. (2013) proposed quantile-adaptive model-free screening through the marginal quantile

regression, Mai and Zou (2015) proposed the fused Kolmogorov filter approach, which
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performs feature screening for the data with many types of predictors and response. For

discriminant analysis with high dimensional data, model-free feature screening has been

studied by Mai and Zou (2013), Cui et al. (2014), and Pan et al. (2016).

The performance of these feature screening procedures is heavily influenced by

the correlations among the predictors, as mentioned in Fan and Lv (2008), Zhu et al.

(2011), and Barut et al. (2016). As Barut et al. (2016) pointed out, the correlations among

predictors might cause false positives (where the unimportant predictors are mistakenly

considered as important ones through the screening procedure), and/or false negatives

(where the important predictors are screened out as the unimportant ones). Unfortunately,

the correlations among predictors are unavoidable for high dimensional data analysis (Hall

and Li 1993; Fan and Lv 2008), since spurious correlations among predictors always exist

as p diverges. To obtain the sure screening property, feature screening procedures usually

need to impose some restrictions on the correlation structure among predictors.

One possible way to alleviate the above problem is to consider conditional screening

method, since researchers in many applications have some prior information regarding the

importance of certain predictors, such as the treatment effects in biological studies and

market risk factors in financial studies, it is natural to consider feature screening methods

conditioning on these known important predictors. For example, consider the leukemia data

studied by Golub et al. (1999), Barut et al. (2016) and others, where gene expression data

from 72 patients with two types of acute leukemia, acute lymphoblastic leukemia (ALL)

and acute myeloid leukemia (AML) were collected. Gene expression levels were measured

for 7129 genes. Golub et al. (1999) described that two genes, Zyxin and Transcriptional

activator hSNF2b, had empirically high correlations for the difference between people

with AML and ALL. Barut et al. (2016) proposed a conditional screening method called

conditional sure independence screening (CSIS) to conduct screening in the presence of

the known set of predictors. They applied CSIS to the aforementioned leukemia data

conditioning on the two genes, and were able to select TCRD (T-cell receptor delta locus)
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which had not been previously detected. Numerical studies also showed that, compared

with SIS, CSIS makes it possible to identify those significant hidden predictors whose

contributions might otherwise get canceled out due to the correlations with other predictors.

Also, when there are high correlations among significant predictors and insignificant ones,

CSIS can help to reduce the number of false negatives.

Although CSIS improves the performance of the screening procedure by using prior

information, it is still a model-based screening procedure for generalized linear models and

it might fail when the model assumption is not satisfied. To address this issue, we propose a

model-free conditional screening method via sufficient dimension reduction in this article.

Specifically, our method is based on the partial sufficient dimension reduction procedure

proposed by Feng et al. (2013). The rest of this paper is organized as follows. In Section 2,

we briefly review partial sufficient dimension reduction. We then propose our model-free

conditional screening method and discuss its properties in Section 3. Numerical studies and

real data analysis are provided in Section 4. A brief discussion and conclusion are given in

Section 5. We defer all proofs to the Appendix.

2. PARTIAL SUFFICIENT DIMENSION REDUCTION

In this section, we give a brief introduction to partial sufficient dimension reduction

since our model-free conditional screening method is based on it. For a regression problem,

partial sufficient dimension reduction arises when one considers the predictive role of all

predictors but limits dimension reduction to a subset of the predictors. Those predictors on

which dimension reduction is performed are referred to as the predictors of primary interest,

and the rest of predictors are referred to as the predictors of secondary interest. Partial

dimension reduction is of practical use, since in many applications, some predictors play a

particular role and must be shielded from the dimension reduction process. Considering the

leukemia data discussed in Section 1, the two predictors (genes), Zyxin and Transcriptional



42

activator hSNF2b, are the predictors of “secondary interest", since prior knowledge indicated

that further dimension reduction should be conducted on other predictors (genes) while

conditioning on these two predictors.

Let Y be a univariate random response, X = {X1, X2, . . . , Xp} ∈ Rp be a vector of

continuous predictors of primary interest, and W = {W1,W2, . . . ,Wq} ∈ Rq be a vector of

predictors of secondary interest. The aim of partial sufficient dimension reduction is to find

the partial central subspace S(W)Y |X , which is the intersection of all subspaces S such that

Y X | (PSX,W),

where stands for independence and PS is the orthogonal projection on subspace S. The

concept of partial central subspace was first proposed by Chiaromonte et al. (2002) to deal

with dimension reductions for regressions with a mixture of continuous and categorical

predictors where the dimension reduction procedure focused on continuous predictors.

Although it expands the scope of sufficient dimension reduction with practical applications,

the method developed by Chiaromonte et al. (2002) is only limited to situations where W

is categorical, and is difficult to be extended to cases with continuous W. Hilafu and Wu

(2017) proposed partial projective resampling dimension reduction (PPR-DR) to estimate

the partial central subspace for any type of W by changing the role of W from predictor

to the response variable. However, the subspace they estimated is larger than the partial

central subspace when W is not independent with X given P
S
(W )
Y |X

X.

Feng et al. (2013) proposed partial discretization-expectation estimation (PDEE) to

estimate the partial central subspace S(W)Y |X when W is continuous, upon which our model-

free conditional screening method is based. A brief review of PDEE is given below.

First, the continuous W is discretized into a set of binary variables by defining W(T) =

(I{W1≤T1}, I{W2≤T2}, . . . , I{Wq≤Tq}), where T = {T1,T2, . . . ,Tq} ∈ Rq is an independent copy

ofWwith support ofRq
T, and I{Wi≤Ti} is an indicator function taking value 1 forWi ≤ Ti, and
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0 otherwise, for i = 1, . . . , q. Then, let SW(t)
Y |X be the partial central subspace of Y |(X,W(t)),

for T = t ∈ Rq
T, Feng et al. (2013) showed that

S
(W)
Y |X =

⋃
t∈Rq

T

S
W(t)
Y |X . (2.1)

Hence, an estimate of S(W)Y |X can be obtained via those SW(t)
Y |X .

For simplicity, (Y,X)|W(t) is denoted as (Xt,Y t) for any fixed t ∈ Rq
T. We can con-

struct kernel matrices M(t) such that Span{M(t)} = SW(t)
Y |X to infer about the partial central

subspace SW(t)
Y |X . Notice that (2.1) not only provides a general framework for estimating the

partial central subspace, it can also be combined with many different sufficient dimension

reduction methods by choosing different kernel matrices M(t). The following are the kernel

matrices of the three most popular sufficient dimension reduction methods:

SIR: M(t) = Σ−1
t Var{E(Xt |Y t)}Σ−1

t ;

SAVE: M(t) = Σ−1
t E{Σt − Var(Xt |Y t)}2Σ−1

t ;

DR: M(t) = Σ−1
t E{2Σt − E

(
(X̃t − Xt)(X̃t − Xt)T |Y t, Ỹ t)}2Σ−1

t ,

where Σt = Var(Xt), and (Ỹ t, X̃t) is an independent copy of (Y t,Xt). Interested readers may

refer to Li and Dong (2009) and Li et al. (2010) for further details.

The following conditions are commonly used in sufficient dimension reduction area

to ensure that Span{M(t)} = SW(t)
Y |X holds for the above choices of M(t).

Condition 3 For any t ∈ Rq
T, we assume that

(a) E(Xt |P
S

W(t)
Y |X

Xt) is linear combination of P
S

W(t)
Y |X

Xt;

(b) Var(Xt |P
S

W(t)
Y |X

Xt) is nonrandom.
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Condition 3(a) is also called the linear conditionalmean (LCM) assumption, while condition

3(b) is the constant conditional variance (CCV) assumption. Both conditions hold for

normally distributed X. When X is not normally distributed, please refer to Cook and

Nachtsheim (1994), Li and Dong (2009), Dong and Li (2010) for possible options. SIR (Li,

1991) only requires 3(a), while SAVE (Cook and Weisberg, 1991) and DR (Li and Wang,

2007) need both conditions.

Feng et al. (2013) showed that it suffices to take the expectation over the afore-

mentioned random vector T (an independent copy of W) to obtain the target matrix

M = E{M(T)} such that Span{M} = S(W)Y |X .

3. CONDITIONAL SCREENING THROUGH TRACE PURSUIT

For model-free conditional screening, we setW as the set of predictors which should

be retained in the model based on the prior knowledge, and perform feature screening on X

while conditioning on W. We seek the smallest active index set A such that

Y XAc |(XA,W), (3.1)

where Ac is the complement set of A with respective to the index set I = {1, . . . , p}.

From (3.1), it is obvious that XA just includes all important predictors for predicting Y

given W. Without loss of generality, we may assume the active index set A = {1, . . . ,K}

for ease of exposition. We can see that (3.1) is equivalent to PHS
(W)
Y |X = Op, where

H = Span{(0(p−K)×K, Ip−K)
T } is the subspace of the primary predictor space, corresponding

to the coordinates of the inactive predictors, and Op is the origin in Rp.

Cook (2004) first considered variable selection via a testing hypothesis approach by

testing Y XAc |XA , when the predictors are treated indiscriminately. Under the context

of the regression of Y versus X, Cook (2004) proposed a test for testing hypothesis of

Y XAc |XA based on a generalized least square rederivation of the SIR estimator for
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SY |X. Shao et al. (2007) and many others also investigated the same testing problem based

on other estimators of SY |X. Zhong et al. (2012) and Jiang and Liu (2013) tackled the

problem when n < p via sliced inverse regression (SIR) method. However, both methods

require the estimation of the rank of SY |X (the so-called order determination), which is a

very challenging problem when n < p. The trace pursuit approach proposed by Yu et al.

(2016) successfully circumvents the need of order determination to conduct model-free

variable selection via sufficient dimension reduction approach for n < p. In this article,

we will conduct conditional variable screening via testing approach (3.1) from the partial

sufficient dimension reduction perspective. We give a detailed discussion of our method

using SIR (Li, 1991), though we can extend our approach to other sufficient dimension

reduction methods such as SAVE (Cook and Weisberg, 1991) and DR (Li and Wang, 2007)

by using different kernel matrices M.

Let µt = E(Xt), Zt = Σ
−1/2
t (Xt − µt) and denote the Z-scaled central space as

S
W(t)
Y |Z . By the so called invariance property (Cook, 1998), we have SW(t)

Y |X = Σ
−1/2
t S

W(t)
Y |Z .

We will work with the Z-scaled central spaces first in the following discussions. For

any given t ∈ Rq
T, partition the range of Y t into Ht non-overlapping slices Jt

1, . . . , Jt
Ht
.

Let pht = Pr(Y t ∈ Jt
ht
), Uht = E(Xt |Yt ∈ Jt

ht
) − µt, then the SIR-based Z-scaled kernel

matrix M = E{M(t)} = E
{
Σ
−1/2
t (

Ht∑
ht=1

phtUhtU>ht
)Σ
−1/2
t }. Notice that for easy of exposition,

with a slight abuse of notation, we keep using the same notation M, for Z-scaled kernel

matrices as the X-scaled ones, which were previously discussed in Section 2. For any

index set F , we denote Xt
F
= {X t

i , i ∈ F }, µF ,t = E(Xt
F
), UF ,ht = E(Xt

F
|Yt ∈ Jt

ht
) − µF ,t

and ΣF ,t = Var(Xt
F
). Moreover, we define MF (t) = Σ−1/2

F ,t (
Ht∑

ht=1
phtUF ,htU>F ,ht

)Σ
−1/2
F ,t and

MF = E(MF (t)), then we have the following proposition.

Proposition 3 Suppose Condition 3 holds, then for any index set F such thatA ⊆ F ⊆ I,

we have tr(MA) = tr(MF ) = tr(MI).
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Proposition 3 shows that tr(MF ) can be used to capture the strength of the relationship

between Y and X given W. If A is a subset of F , then the kernel matrix MF has the same

trace as MA . Denote F ∪ j as the index set consisting of j and all the indices in F . Suppose

we already have the index set F selected in the model, and F does not containA, based on

the following theorem, we can use the difference between tr(MF∪ j) and tr(MF ) to measure

the contribution of the additional X j to Y given (XF ,W).

Theorem 5 For any t ∈ Rq
T, suppose that we have

E(X t
j |X

t
F
) is a linear f unction o f Xt

F
, f or any j < F and F ⊆ I.

Then

• If A ⊆ F , then tr(MF∪ j) − tr(MF ) = 0.

• IfA * F , then tr(MF∪ j)−tr(MF ) = ET
( Ht∑

ht=1
pht(γ

t
j |F ,ht
)2
)
, where µt

j |F = E(γ j |F |T =

t) and γt
j |F ,ht

= E(γ j |F |Y ∈ Jht,T = t) − µt
j |F with X j |F = X j − E(X j |XF ),

σ2
j |F = Var(X j |F ), and γ j |F = X j |F /σj |F .

Condition 5 is parallel to Condition 3 (a). When Xt follows an elliptical contour distribution

for any t, both conditions are satisfied. The first part of Theorem 5 shows that the trace

difference between MF∪ j and MF is 0, when the active setA is already included in the set

F . The second part provides a formula to calculate the trace difference, when the set F

does not include all the active predictors.

For the derivation of the asymptotic consistency of our method, we hence assume

that Σt = Σ, for any t ∈ Rq
T. Although simulation studies suggest that our method still

performs well in applications where this “homogeneous variance condition" does not hold.
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Suppose that d = dim(S(W)Y |Z ) = dim(S(W)Y |X), and let λ1 ≥, · · · , ≥ λd be the nonzero

eigenvalues forM andη1, . . . , ηd be the corresponding eigenvectors. Denote βi = Σ
−1/2ηi =

(βi,1, . . . , βi,p)
>, for i = 1, . . . , d. Under Condition 3, we have Span{β1, . . . , βd} = S

(W)
Y |X .

Furthermore, we define β2
min = min j∈A

∑d
i=1 β

2
i, j , where λmin and λmax are the smallest and

the largest eigenvalues of Σ respectively.

Proposition 4 Suppose that condition 5 in Theorem 5 holds, for any F which A * F we

have

max
j∈A∩F c

(
tr(MF∪ j) − tr(MF )

)
≥ λdλ

−1
maxλminβ

2
min,

Under the sufficient dimension reduction framework, we know Y X|(βT
1 X, . . . , βT

dX,W).

SinceA is the smallest active index set such thatY X|(XA,W), then
∑d

i=1 β
2
i, j > 0 for any

j ∈ A. Hence, for any F which does not include all the active predictors, the maximum

difference between MF∪ j and MF over j ∈ F c ∩ A is larger than 0 based on the result in

Proposition 4.

Let (Xi,Yi,Wi), i = 1, . . . , n be simple random sample of size n. Follow Feng et al.

(2013), for easy of implementation, we choose ln different tm’s of which ln is of order O(n)

and use ntm to denote the subsample size for a given tm. Then we can rewrite the sample

as (Xtm
i ,Y

tm
i ), i = 1, . . . , ntm for a given tm. Let M̂(tm) be the sample estimate of M(tm),

then we can estimate M using M̂ = 1
ln

∑ln
m=1 M̂(tm). Follow the SIR-based forward trace

pursuit algorithm in Yu et al. (2016), the screening procedure starts with an empty index

set F0, then, each time, add the index which maximize the difference between the traces of

successive kernel matrices to the working set, until we obtain a working index set with n

indices. Hence, we obtain a sequence of n nested working index sets F1, . . . , Fn. To select a

model from this sequence of nested working index sets, we use the modified BIC criterion

defined in Yu et al. (2016):

BIC(F ) = −log
{
tr(M̂F )

}
+ n−1 |F |(logn + 2logp),
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where |F | denotes the cardinality of set F .

To obtain the sure screening property of conditional forward trace pursuit based on

SIR, we need the following conditions.

Condition 4

a. There exist some constants α0 > 0 and 0 < b0 < 1/2 such that

min
F : A*F

max
j∈A∩F c

(
tr(MF∪ j) − tr(MF )

)
≥ a0n−b0 .

b. X and Xt follows multi-normal distributions for any t ∈ Rq
T.

c. There exist c1 > 0 and c2 > 0 such that c1 < λmin < λmax < c2.

d. There exist constants a1, b1 and b2 such that log(p) ≤ a1nθ1 , |A| ≤ a1nb2

and 2b0 + b1 + 2b2 < 1.

e. There exists constant b3 such that ln = O(nb3) and ntm = O(n1−b3) for any tm

among the ln points where 0.5(1 − c3) < b3 < 1 − c3.

Motivated by the conclusion in Proposition 4, we assume that Condition 4 (a) holds.

Condition 4 (b) and (c) are common for variable screening of high dimensional data.

Assuming Condition 4 (b) and (c), Wang (2009) studied the sure screening property of

forward linear regression. Condition 4 (d) allows the dimension p and the number of

important predictors to go to infinity as sample size n goes to infinity. We assume Condition

4 (e) to guarantee that it is not too sparse for each subsample and M̂(tm) is
√

n consistent

estimator of M(tm) for m = 1, . . . , ln.

Theorem 6 Assume Condition 1 and Condition 2 hold, then we have

Pr(A ⊂ Fm̂) → 1,

as n→∞ and p→∞, where m̂ = argmin
1≤k≤n

BIC(Fk).
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Theorem 6 shows that our conditional forward trace pursuit method based on SIR

has the desired sure screening property.

4. NUMERICAL STUDIES

Table 1. Results for Model I, II and III

Model Method CR MS FP FN

I

CFTP-SIR 1 8.3 0.0037 0
CFTP-SAVE 0 31.8 0.0159 1
CFTP-DR 1 32.3 0.0157 0
CSIS 1 859 0.4303 0

II

CFTP-SIR 1 13 0.0065 0
CFTP-SAVE 0 30 0.0150 1
CFTP-DR 1 33 0.0165 0
CSIS 0.1 16.5 0.0082 0.9

III

CFTP-SIR 1 11.2 0.005 0
CFTP-SAVE 0 32.3 0.016 1
CFTP-DR 1 33.3 0.016 0
CSIS 0.18 10.5 0.052 0.82

4.1. Simulation Studies. In this part, we compare the screening performance of

our conditional forward trace pursuit (CFTP) method with CSIS (Barut et al., 2016). Based

on 100 repetitions, we evaluate the performance using the true model coverage rate (CR,

the rate of all the significant predictors being selected), the average model size (MS), the

average false positive rate (FP), and the average false negative rate (FN). For CSIS, we use

random decoupling, which was discussed in (Barut et al., 2016), to select the thresholding

parameters and determine themodel size forModel I-VI; while forModel VII-IX, [n/log(n)]

is used as the model size since those provided by random decoupling method would be too

small.
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The following models are considered.

(I) Y = 3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1 + ε

(II) Y = (3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1 + ε)
2

(III) Y = exp(3W1 + 3W2 + 3W3 + 3W4 + 3W5 − 7.5X1) + ε

(IV) Y = 5W + 2Xp + ε

(V) Y = (5W + 2Xp)
2 + ε

(VI) Y = exp(5W + 2Xp) + (5W + 2Xp)
3 + ε

(VII) Y = 8W1 − 6W2 + 5W3 + (X1 + Xp)
2 + ε

(VIII) Y = 2W1 − 1.5W2 + exp(Xp−1) + 2X4
p + ε

(IX) Y = sign(W1 −W2)exp(X1 + X2 + Xp−1 + Xp) + ε

We set the sample size n = 400 for all models. The random error ε follows a standard

normal distribution N(0, 1) and is independent with W and X. For Model I, II and III, we

generate [W>,X>]> from N(0,Σ), where Σ = 0.5Iq+p + 0.5Jq+p, q = 5, p + q = 2000. We

use Ip to denote the p-dimensional identity matrix, and Jp is the p × p square matrix of all

ones. Model I was also studied in Barut et al. (2016) to show that the conditional screening

can recover the hidden significant predictors since Cov(Y, X1) = 0 under the setting in

this model. For Model IV, V and VI, [W,X] are also generated from multivariate normal

distribution with zero mean vector. In these three models, we set q = 1, p + q = 2000,

X1, . . . , Xp−1 and W are all correlated with each other with correlation coefficient of 0.8,

while Xp is independent with all of them. Under this setting, we have Cov(Y, Xi) = 4 for

i = 1, . . . , p − 1, and Cov(Y, Xp) = 2 for Model IV. Barut et al. (2016) discussed a similar

model and show that conditional screening can reduce the false negative rate. In Model

VII, Wi, i = 1, 2, 3, are independently generated from U[0, 1], and X follows N(0,Σ) with
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elements σi, j = ρ|i− j | for i, j = 1, . . . , p and p = 2000. For Model VIII, [W>,X>]> are

generated from N(0,Σ), where σi, j = ρ
|i− j |, q = 2, p+q = 2000. In Model IX, Var(X|W) is

dependent on W, which violates the homogeneous variance assumption. Here W1 and W2

are independently generated from U[0, 1], and X is generated from N(0,Σ). As in Model

VII, we set σi, j = ρ|i− j | for i, j = 1, . . . , p and p = 2000. However, in this model, we

consider ρ = ρ? which takes two different values depending on the difference between W1

and W2: ρ? = 0 if W1 −W2 > 0, and ρ? = 0.5 otherwise.

Table 4.1 compares the performance of our method with CSIS for Model I–III.

As expected, the SAVE based method does not perform well as it could not deal with

linear trends well (Cook and Forzani, 2009). However, both SIR and DR based conditional

forward trace pursuit methods outperform CSIS: the true model coverage rates provided

by our methods are 1, which means that our method can always select all the significant

predictors; the false positive rate and false negative rate are also much smaller than those

of CSIS; the average model sizes are also much smaller than those of CSIS. For example,

for Model III, CR and FN from CSIS are 0.18 and 0.82 respectively, comparing with 1 (the

closer to one the better) and 0 (the smaller the better) from our method.

Table 2. Results for Model IV, V and VI

Model Method CR MS FP FN

IV

CFTP-SIR 1 9.75 0.0044 0
CFTP-SAVE 0 27 0.0135 1
CFTP-DR 0.97 28.6 0.0138 0.03
CSIS 1 221 0.1106 0

V

CFTP-SIR 1 9.2 0.0041 0
CFTP-SAVE 0.04 27.1 0.0135 0.96
CFTP-DR 1 28.1 0.0136 0
CSIS 0.01 223.94 0.1121 0.99

VI

CFTP-SIR 1 9.1 0.0041 0
CFTP-SAVE 0 27.1 0.0135 1
CFTP-DR 1 28.3 0.0137 0
CSIS 0.13 209.05 0.1046 0.87
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Table 4.2 gives simulation results for Model IV–VI. Still, CSIS is outperformed by

our SIR and DR based methods. Our methods can provide screening results with much

smaller model sizes, similar or better coverage rates, smaller false positive rates and/or

false negative rates for all three models. The nonlinear model structure does not affect the

performance of our screening method, however it adversely affects the performance of CSIS

greatly for Model V and VI. Results for Model VII and VIII are given on Table 4.3. Model

VII has a quadratic structure in the mean function where SAVE is expected to perform well,

which agrees with the simulation results. For Model VIII, DR based method dominates all

the other methods.

Table 3. Results for Model VII and VIII

ρ = 0 ρ = 0.5
Model Method CR MS FP FN CR MS FP FN

VII

CFTP-SIR 0 15.5 0.0078 1 0 15.15 0.0076 0.975
CFTP-SAVE 1 30.6 0.0143 0 1 30.3 0.0142 0
CFTP-DR 0.94 33.6 0.0159 0.060 1 33.6 0.0158 0
CSIS 0 67 0.0333 0.885 0 67 0.0333 0.865

VIII

CFTP-SIR 0.03 11.9 0.0050 0.475 0.10 12.36 0.0056 0.450
CFTP-SAVE 0.20 27.5 0.0132 0.400 0.08 27.3 0.0132 0.465
CFTP-DR 1 32.4 0.0152 0 1 32.2 0.0151 0
CSIS 0 67 0.0332 0.810 0 67 0.0332 0.790

Simulation results for Model IX with different correlation structures are shown on

Table 4.4. We discussed before, when ρ = ρ∗, the homogeneous variance assumption is

violated. As we can see, both SIR and DR based methods still outperform CSIS. Though

DR based method does not perform as well as SIR based method since the constant variance

condition does not hold for this model. The false negative rates for SIR based method, DR

based method, and CSIS are 0, 0.075, and 0.455 respectively; while the coverage rates for

the three methods are 1, 0.83 and 0.21 respectively. CSIS mistakenly screens out some

of the significant predictors frequently. All our simulation results suggest that DR based
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conditional forward trace pursuit method is the most robust screening method, while SIR

based method most of the time provides the best screening performance. We suggest to use

SIR based screening method first, and use DR based method as a complement.

Table 4. Results for Model IX

ρ Method CR MS FP FN

ρ = ρ?

CFTP-SIR 1 10.3 0.0032 0
CFTP-SAVE 0 30.9 0.0155 1
CFTP-DR 0.83 33.2 0.0148 0.075
CSIS 0.21 67 0.0325 0.455

4.2. Real Data Analysis. In this section, we consider the aforementioned leukemia

data set which was first studied by Golub et al. (1999) and has become a benchmark in

many gene expression studies. The dataset consists of 72 samples and gene expression level

of 7129 genes in two types of acute leukemias, acute lymphoblastic leukemia (ALL) and

acute myeloid leukemia (AML). There are 38 (27 ALL and 11 AML) training samples and

34 (20 ALL and 14 AML) testing samples. Our goal is to select related genes and classify

future patients to the two leukemia types based on those genes.

We standardized the gene expression dataset by centering and scaling each array

with mean 0 and standard deviation 1. The proposed conditional screening method and

CSIS are performed based on the following three different choices of W.

• W1={X95735, D26156};

• W2={X95735, M27783};

• W3={X95735, MD88422}.

The genes X95735 (Zyxin) and D26156 (Transcriptional activator hSNF2b) in W1 have

empirically high correlations for the difference between patients with AML and ALL and

were used in Barut et al. (2016). The genes X95735 and M27783 (ELA2 Elastatse 2,
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neutrophil) in W2 are the two top ranked genes from marginal screening SIS. For W3, the

genes X95735 and MD88422 (CYSTATIN A) were identified in Hong et al. (2016). To

compare with CSIS, we first perform our conditional forward trace pursuit method to select

genes based on the training samples given Wi, i = 1, 2, 3 respectively. Next, we establish a

classification rule through the logistic model based on the genes being selected, and apply

this rule to the testing samples. The results are shown on Table 5.

Table 5. Results for Model V

W1 W2 W3
Method Train Err Test Err Train Err Test Err Train Err Test Err
CSIS 0/38 2/34 1/38 5/34 0/38 2/34
CFTP-SIR 0/38 1/34 0/38 5/34 0/38 3/34
CFTP-SAVE 0/38 3/34 0/38 5/34 0/38 3/34
CFTP-DR 0/38 3/34 0/38 5/34 0/38 3/34

Conditioning on {X95735, D26156} (W1), we identified another gene Z32765 (GB

DEF = CD36 gene exon 15) using SIR-based conditional trace pursuit method. Armesilla

et al. (1996) showed that Gene CD36 was associated with acute myeloid leukemia. The

classification rule based on these three genes can achieve 0/38 training error rate and 1/34

testing error rate.

5. CONCLUSIONS

In this paper, we proposed a model-free conditional screening method to fully

utilize the prior information regarding the importance of certain predictors. Comparing

to CSIS developed by Barut, Fan and Verhasselt (2016), our method outperforms CSIS

when the model structure is nonlinear, and is comparable to CSIS for generalized linear

model. Numerical studies suggest that our methods can provide screening results with much

smaller model sizes, similar or better coverage rates, smaller false positive rates and/or false

negative rates for nonlinear models.
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APPENDIX

Proof of Proposition 3:

For any given t, we denote λt
1 ≥ · · · ≥ λt

dt
as the nonzero eigenvalues for

M(t) and η1(t), . . . , ηdt(t) as the corresponding eigenvectors. Let βi(t) = Σ
−1/2
t ηi(t) =

(βi,1(t), . . . , βi,p(t))> for i = 1, . . . , dt. Since Y XAc |(XA,W), then we have βi, j(t) = 0,

for any j ∈ Ac. Recall that A = {1, . . . ,K}. Define βA,i(t) = (βi,1, . . . , βi,K)
> and

βAc,i(t) = (βi,K+1, . . . , βi,p)
>, then βi,Ac (t) = 0.

Note that M(t) =
dt∑

i=1
λt

iηi(t)ηi(t)> = Σ
1/2
t

( ∑dt
i=1 λ

t
i βi(t)βi(t)>

)
Σ

1/2
t , then we have

tr(M(t)) = tr
{
Σt

( dt∑
i=1

λt
i βi(t)βi(t)>

)}
= tr

{
Σt,A

( dt∑
i=1

λt
i βA,i(t)βA,i(t)

>
)}
. (A.1)

Since MA(t) = Var{E(Zt
A
|Y t ∈ Jt

ht
)} = Σ

−1/2
A,t Var{E(Xt

A
|Y t ∈ Jt

ht
)}Σ
−1/2
A,t , we have

tr(MA(t)) = tr
{
Σ−1
A,tVar{E(Xt

A |Y
t ∈ Jt

ht
)}

}
. (A.2)

Note that

Var{E(Xt |Y t ∈ Jt
ht
)} = Σ

1/2
t M(t)Σ1/2

t = Σt
( dt∑

i=1
λt

i βi(t)βi(t)t
)
Σt

=
©«
ΣA,t ΣAAc,t

ΣAcA,t ΣAc,t

ª®®¬
©«
∑dt

i=1 λ
t
i βA,i(t)βA,i(t)

> 0

0 0

ª®®¬
©«
ΣA,t ΣAAc,t

ΣAcA,t ΣAc,t

ª®®¬
(A.3)

From A.3, it is obvious that Var{E(Xt
A
|Y t ∈ Jt

ht
)} = ΣA,t

( ∑dt
i=1 λ

t
i βA,i(t)βA,i(t)

t)ΣA,t.
CombinedwithA.1 andA.2, we have tr(MA(t)) = tr(MI(t)). Similarly, we have tr(MA(t)) =

tr(MF (t)) for any F such that A ⊆ F . Then the conclusion follows. �

Proof of Theorem 5:

From Proposition 3, we know that tr(MA) = tr(MF ) for any F such that A ⊆ F .

Then the first part of Theorem 5 follows.
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For any fixed t, if Condition 5 holds, we have E(xt
j |X

t
F
) = Cov(Xt

F
, X t

j)Σ
−1
F ,tX

t
F
. Let |F |

denote as the cardinality of F , then we construct two (|F | + 1) × (|F | + 1) matrices At and

Ct as

At =
©«

I|F | 0

Cov(Xt
F
, X t

j)Σ
−1
F ,t 1

ª®®¬ and Ct =
©«
ΣF ,t 0

0 σ2
j |F ,t

ª®®¬ .
where σ2

j |F ,t = Var(X t
j |F ) with X t

j |F = Xt
j − E(X t

j |X
t
F
). Then we have that

AtXt
F∪ j =

©«
Xt
F

X t
j |F

ª®®¬ and AtUF∪ j,ht =
©«

UF ,ht

E(X t
j |F |Y

t ∈ Jt
ht
) − E(X t

j |F )

ª®®¬
From the definition of X t

j |F , it is obvious that Cov(X t
j |F ,X

t
F
) = 0. Then we have

Var(AtXt
F∪ j) = AtΣF∪ j,tA>t = Ct. Therefore, we have Σ−1

F∪ j,t = AtC−1
t A>t . Then we

can rewrite tr(MF∪ j(t)) as

tr(MF∪ j(t)) = tr
{
Σ
−1/2
F∪ j,t(

Ht∑
ht=1

phtUF∪ j,htU
>
F∪ j,ht

)Σ
−1/2
F∪ j,t

}
= tr

{
Σ−1
F∪ j,t(

Ht∑
ht=1

phtUF∪ j,htU
>
F∪ j,ht

)
}

= tr
{
C−1

t
( Ht∑

ht=1
pht(AtUF∪ j,ht)(AtU>F∪ j,ht

)
)}

= tr
{
Σ−1
F ,t(

Ht∑
ht=1

phtUF ,htU
>
F ,ht
)
}
+

Ht∑
ht=1

pht(γ
t
j |F ,ht
)2

Then we have tr(MF∪ j) − tr(MF ) = ET{tr(MF∪ j(t)) − tr(MF (t))} = ET
( Ht∑

ht=1
pht(γ

t
j |F ,ht
)2
)

�

Proof of Proposition 4:

Denote ΣF1F2,t = Cov(Xt
F1
,Xt
F2
) and ΣF1F2,t = Cov(XF1,XF2) for any F1, F2 ⊆ I.

Since we suppose Σ = Σt, then we have that ΣF1F2,t = ΣF1F2,t. For any j ∈ F c ∩ A, we
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have
σ2

j |F
(
tr(MF∪ j) − tr(MF )

)
= ET{Var(E(X j |F |Y))}

=
(
− ΣF jΣ

−1
F
, 1

)
PET{Var(E(Xt |Yt ∈ Jt

ht
))}P>

(
− ΣF jΣ

−1
F
, 1

)>
,

(A.4)

For simplicity, we suppose the first |F | + 1 elements of X is (XF , X j)
>, then P in 5.2 can be

denoted as P = (I|F |+1, 0(|F |+1)(p−|F |−1)). Since M = ET{Var(E(Zt |Y t ∈ Jt
ht
))} =

d∑
i=1

λiηiη
>
i ,

and βi = Σ
−1/2ηi, then we have

ET{Var(E(Xt |Yt ∈ Jt
ht
))} = Σ1/2(

d∑
i=1

λiηiη
>
i )Σ

1/2 = Σ(
d∑

i=1
λiβiβ

>
i )Σ. (A.5)

It follows that (
− ΣF jΣ

−1
F
, 1

)
PΣβi

=
(
− ΣF jΣ

−1
F
, 1

)
PΣ(F∪ j)Iβi

=
(
Σ jI − Σ jFΣ

−1
F
ΣFI

)
βi

Let βi,F = {βi, j, j ∈ F }. Since
(
Σ jI − Σ jFΣ

−1
F
ΣFF

)
βi = 0 and βi,F c∩Ic = 0, we have

(
− ΣF jΣ

−1
F
, 1

)
PΣβi =

(
Σ jF c − Σ jFΣ

−1
F
ΣFF c

)
βi,F c

=
(
Σ j(F c∩A) − Σ jFΣ

−1
F
ΣF (F c∩A)

)
βi,F c∩A,

(A.6)

for any i = 1, . . . , d. From A.4, A.5 and A.6, it follows that

σ2
j |F

(
tr(MF∪ j) − tr(MF )

)
=

d∑
i=1

λi{
(
Σ j(F c∩A) − Σ jFΣ

−1
F
ΣF (F c∩A)

)
βi,F c∩A}

2

Note that ∑
j∈F c

{
(
Σ j(F c∩A) − Σ jFΣ

−1
F
ΣF (F c∩A)

)
βi,F c∩A}

2

=β>i,F c∩A

(
Σ(F c∩A) − Σ(F c∩A)FΣ

−1
F
ΣF (F c∩A)

)2
βi,F c∩A,
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and
λmin

(
Σ(F c∩A) − Σ(F c∩A)FΣ

−1
F
ΣF (F c∩A)

)
=λ−1

max{
(
Σ(F c∩A) − Σ(F c∩A)FΣ

−1
F
ΣF (F c∩A)

)−1
}

≥λ−1
max(Σ

−1) = λmin

Then we have that

max
j∈F c∩A

σ2
j |F

(
tr(MF∪ j) − tr(MF )

)
≥ |F c ∩ A|−1

∑
j∈F c∩A

[σ2
j |F

(
tr(MF∪ j) − tr(MF )

)
]

=|F c ∩ A|−1
d∑

i=1
λiβ
>
i,F c∩A

(
Σ(F c∩A) − Σ(F c∩A)FΣ

−1
F
ΣF (F c∩A)

)2
βi,F c∩A

≥|F c ∩ A|−1
d∑

i=1
λiλ

2
min

(
Σ(F c∩A) − Σ(F c∩A)FΣ

−1
F
ΣF (F c∩A)

)2
β>i,F c∩A

βi,F c∩A

≥λdλmin |F
c ∩ A|−1

d∑
i=1

β>i,F c∩A
βi,F c∩A ≥ λdλ

−1
maxλminβ

2
min. �

To prove Theorem 6, we need the following lemmas.

Lemma 2 Let M̃ = 1/ln
ln∑

m=1
M(tm), ψht = p−1/2

ht
(I(Y t ∈ Jt

ht
)) and ζht = Σ

−1
t E(Xtψht), then

we have tr(M̃) = (H − 1) − 1
ln

ln∑
m=1

Htm∑
htm=1

E(ψhtm − ζ
>
htm

Xtm)2, where H = 1/ln
ln∑

m=1
Htm .

Proof of Lemma 2: For any tm, m = 1, . . . , ln and htm , htm = 1, . . . ,Htm ,

E(ψht − ζ
>
htm

Xtm)2 = E(ψ2
ht
) − 2E(ψhtm ζ

>
htm

Xtm) + E((ζ>htm
XtmXtm>ζhtm )

=E(ψ2
ht
) − ζ>htm

Σtζhtm = (1 − pht) − p−1
ht

E{Ztm>I(Y t ∈ Jt
ht
)}E{Ztm I(Y t ∈ Jt

ht
)}

Then we have that

tr(M̃) = 1/ln
ln∑

m=1
tr(M(tm)) =1/ln

ln∑
m=1

Htm∑
htm=1

p−1
ht

E{Ztm>I(Y t ∈ Jt
ht
)}E{Ztm I(Y t ∈ Jt

ht
)}

=(H − 1) −
1
ln

ln∑
m=1

Htm∑
htm=1

E(ψhtm − ζ
>
htm

Xtm)2.�
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Lemma 3 Let DF∪ j = tr(MF∪ j) − tr(MF ) and D̂F∪ j = tr(M̂F∪ j) − tr(M̂F ). Suppose

|F | = O(nb0+b2) and Condition 4 holds, there exists some constant d0 such that D̂F∪ j −

DF∪ j ≤ d0 |F |
√

logp/n1−b3 with probability tending to 1.

Proof of Lemma 3: Define D̃F∪ j = tr(M̃F∪ j) − tr(M̃F ), then we have that

D̂F∪ j − DF∪ j = [D̂F∪ j − D̃F∪ j] + [D̃F∪ j − DF∪ j]

Form Lemma 7 in Yu et al. (2016), we know that V̂ar{E(X tm
j |F )} − Var{E(X tm

j |F )} =

O
(
|F |

√
logp/n1−b3

)
for any given tm, m = 1, . . . , ln. Furthermore, from the proof of

Lemma 3 in Jiang and Liu (2013), we have σ̂2
j |F ,t − σ

2
j |F ,t = O

(
|F |

√
logp/n1−b3

)
. Then we

have that

{
tr(M̂F∪ j(tm)) − tr(M̂F (tm))

}
−

{
tr(M̃F∪ j(tm)) − tr(M̃F (tm))

}
=σ̂2

j |F ,tV̂ar{E(X tm
j |F )} − σ

2
j |F ,tVar{E(X tm

j |F )}

=
{
σ̂2

j |F ,tV̂ar{E(X tm
j |F )} − σ̂

2
j |F ,tVar{E(X tm

j |F )}
}

−
{
σ̂2

j |F ,tVar{E(X tm
j |F )} − σ

2
j |F ,tVar{E(X tm

j |F )}
}

=O
(
|F |

√
logp/n1−b3

)
+O

(
|F |

√
logp/n1−b3

)
= O

(
|F |

√
logp/n1−b3

)
.

Hence, we have that

D̂F∪ j − D̃F∪ j

=
1
ln

ln∑
m=1

[{
tr(M̂F∪ j(tm)) − tr(M̂F (tm))

}
−

{
tr(M̃F∪ j(tm)) − tr(M̃F (tm))

}]
=

1
ln

ln∑
m=1

O
(
|F |

√
logp/n1−b3

)
= O

(
|F |

√
logp/n1−b3

)
.

From this, it is obvious that there exists some constant d0 such that D̂F∪ j − DF∪ j ≤

d0 |F |
√

logp/n1−b3 with probability tending to 1. �



60

Proof of Theorem 6:

Firstly , we prove that CFTP method can select in all |A| important predictors within

[2Ha−1
0 a1nb0+b2] steps by showing that at least one important predictor in the model within

[2Ha−1
0 nb0] steps since |A| ≤ a1nb2 under Condition 4. Without loss of generality, we just

show that at least one important is selected in the model within the first [2Ha−1
0 nb0].

Recall that Fk is the index set after kth step, we let Q(k) = tr(M̂Fk ) − tr(M̂Fk−1). We assume

that no important is selected in the model within the first [2Ha−1
0 nb0] steps. From lemma 3

and Condition 4, we have that

Q(k) ≥ 2−1 (tr(MFk ) − tr(MFk−1) − d0 |Fk |

√
logp/n1−b3

)
≥ 2−1 (a0n−b0 − d02Ha−1

0 a1nb0+b2

√
logp/n1−b3

)
→ 2−1a0n−b0

if Fk ∩ A = ∅ for any k = 1, . . . , [2Ha−1
0 nb0].

Hence, we have that

[2Ha−1
0 nb0 ]∑

k=1
Q(k) ≥ [2Ha−1

0 nb0] × 2−1a0n−b0 ≥ H.

However, from Lemma 2, we know

[2Ha−1
0 nb0 ]∑

k=1
Q(k) = tr(M̂F

[2Ha−1
0 nb0 ]
) ≤ H − 1.

Therefore, this implies at least one important predictor is selected in the model within the

first [2Ha−1
0 nb0] steps.

Moreover, follow the proof of Theorem 5.2 in Yu et al. (2016) and the proof of Theorem 2

in Wang (2009), it is easy to prove that Pr(A ⊂ Fm̂) → 1, and the details are omitted. �
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SECTION

2. SUMMARY AND CONCLUSIONS

Many model-free variable selection prodecures have been developed under the

framework of sufficient dimension reduction. However, none of these existing methods

considered the grouping information when dealing with multiple population data. In paper

I, we propose a novel model-free variable selection method for n < p multi-population

data. Unlike the existing methods, our method makes full use of the grouping information,

which greatly improves the selection performance. Simulation studies have shown that our

method could easily beat those ignoring the grouping information.

In Paper II, a model-free conditional screening method was proposed, in order to

conduct conditional variable screening for ultrahigh dimension data, when prior information

regarding certain predictors are available. Our method outperforms the state of the art

method, CSIS, proposed byBarut, Fan andVerhasselt (2016)with nonlinearmodel structure,

and is comparable to CSIS with generalized linear model. Simulation studies indicate that

the proposed methods can provide screening results with much smaller model sizes, similar

or better coverage rates, smaller false positive rates and/or false negative rates for nonlinear

models. A real data analysis is also provided to illustrate the performance of our method.

In summary, in our first paper, we studied the dimension reduction problem for high

dimensional data (n < p) from multiple populations using variable selection, and proposed

a model-free method through sufficient dimension reduction framework. In our second

paper, we developed a model free conditional screening method for high or ultra-high

dimensional data to reduce the dimension to a reasonable size, when certain predictors need

to be retained in the model based on prior information.
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