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ABSTRACT

Aerodynamic design optimization is typically performed at fixed flight conditions,
without considering the variation and uncertainty in operating conditions. The objective
of robust aerodynamic optimization is to design an aerodynamic configuration, which will
keep its optimum performance under varying conditions such as the speed of aircraft. The
primary goal of this study was to investigate the impact of turbulence models used in
RANS simulations on the 2-D airfoil and 3-D wing designs obtained with gradient-based
deterministic and robust optimization in transonic, viscous, turbulent flows. The main
contribution of this research to the aerodynamic design area was to quantify the impact
of turbulence models (Spalart-Allmaras and Menter’s Shear Stress Transport) and shape
parameterization techniques (Hicks-Henne bump functions, B-Spline curves and Free-Form
Deformation) on the computational cost, optimal shape, and its performance obtained with
robust optimization under uncertainty. The effect of changing the relative weight of mean
drag reduction and robustness measures used in the objective function was also investigated
for the 3-D robust design. The robustness of the final design obtained with stochastic
optimization approach was demonstrated over the Mach number range considered as the
uncertain operating condition in this study. The results of the 2-D study show that the shape
parameterization technique has a larger impact on the computational cost than the turbulence
models in both deterministic and robust design. The results of the 3-D study show that
the effect of the weight distribution in the objective function is more significant than the
effect of turbulence model on the final design obtained with robust optimization below the
design Mach number value. In general, robust optimization tends to reduce the impact of the
turbulence model selection on the optimum shape and performance over the uncertain Mach
number range considered, whereas the effect of the turbulence model becomes significant

at off-design conditions for the optimal shapes obtained with deterministic design.
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1. INTRODUCTION

1.1. MOTIVATION FOR THE CURRENT STUDY

The deterministic aerodynamic design optimization is typically performed at fixed
operation conditions without considering the variation and the uncertainty in these pa-
rameters, which may significantly affect the optimum performance of the deterministic
aerodynamic design. For example, significant variation of drag coefficient can be observed
in transonic flow with the change in Mach number and/or angle of attack. The objective of
robust aerodynamic shape optimization is to obtain a design, which will keep its optimum
performance under varying conditions or uncertain parameters. The robust optimization
approach can also be thought similar to multi-point optimization in terms of the main goal,
however the latter is still based on deterministic formulations at multiple discrete points
whereas the former considers the stochastic nature of the problem by the integration of
uncertainty modeling and propagation to the optimization process, which also uses a dif-
ferent objective function formulation involving the simultaneous minimization of the mean
and the variance of the performance metric [1, 2]. The flowfield and adjoint solvers are
evaluated at each iteration until the convergence is achieved, which may have significant
impact on the computational cost of robust design. Therefore, it is important to select the
proper turbulence model and shape parameterization technique with optimum parameters
to achieve robust design with minimum computational cost while retaining the accuracy of

the design at the desired level.



1.2. OBJECTIVE AND CONTRIBUTIONS OF THE CURRENT STUDY

The main objective of this study is to investigate the impact of two commonly
used turbulence models (SA and SST) in Reynolds-Averaged Navier-Stokes simulations
on two-dimensional and three-dimensional optimum design obtained with gradient-based
deterministic and robust aerodynamic shape optimization in transonic, viscous, turbulent
flow. In addition, the impact of three different shape parameterization techniques (B-Spline,
Hicks-Henne, and FFD) is investigated on two-dimensional optimum design obtained with
gradient-based deterministic and robust aerodynamic shape optimization. The impact
of each turbulence model and shape parameterization technique is evaluated in terms of
computational cost and difference in the shape and performance of the final design. The
inherent variation of Mach number in transonic flow is modeled as the uncertain operating
condition for the robust design study. The same shape parameterization techniques and
turbulence models are first applied to the deterministic optimization of the same airfoil
geometry (2-D) and the same wing geometry (3-D) at a selected mean Mach number
to make comparison between the deterministic and robust optimization findings. In the
robust optimization methodology, stochastic expansions obtained with point-collocation
non-intrusive polynomial chaos (NIPC) technique are utilized for uncertainty quantification
due to their computational accuracy and efficiency in stochastic aerodynamics problems.

The primary contribution of 2-D study to the aerodynamic design area is the evalu-
ation of the impact of turbulence models with different shape parameterization techniques
on the final design obtained with robust aerodynamic optimization under uncertainty. The
results of 2-D study contributed to the design of optimum wing sections for transonic aircraft
by improving the aerodynamic performance under uncertain operating conditions with a
computationally efficient robust aerodynamic shape optimization methodology described in
this work. The shape parameterization techniques, which gave the best optimization results
(i.e. in terms of computational time and the performance of final design) from a previous

study by the authors [3] are utilized for deterministic and robust design. The optimum



airfoil shapes, various aerodynamic quantities of interest (drag coeflicient, lift coefficient,
and pressure distribution), and the number of functional evaluations to converge obtained
with different turbulence models and shape parameterization techniques are compared to
evaluate their impact on the final design in robust optimization.

The primary contribution of 3-D study to the aerodynamic design area is the evalu-
ation of the impact of turbulence models on three-dimensional wing design obtained with
deterministic and robust aerodynamic shape optimization. This work is a follow-up to
the 2-D study for the comparison of the findings between 2-D and 3-D deterministic and
robust aerodynamic shape optimization. The optimum wing shapes, various aerodynamic
quantities of interest (drag coefficient, lift coefficient, and pressure distribution), and the
number of function evaluations to converge obtained with two turbulence models with three
different weight contribution in the objective function cases are compared to investigate

their impact on the final design in robust optimization.

1.3. DISSERTATION OUTLINE

The following section provides a literature review on aerodynamic shape optimiza-
tion with the focus on previous studies relevant to the scope of this research. This section
also contains the literature review of uncertainty quantification and shape parameterization
techniques applied to airfoil/wing geometries. The computational fluid dynamics (CFD)
model of the 2-D and 3-D problems, the information about the direct and adjoint solvers are
provided in Section 3. Section 4 explains the turbulence models used in this work. Section
5 explains the optimization framework used for both robust and deterministic optimization,
uncertainty quantification approach and robust optimization procedure. Section 6 consists
of shape parameterization techniques, the problem definition and the related findings of
deterministic and robust optimization of the 2-D study. Section 7 contains the shape pa-
rameterization technique, the problem definition and related findings of deterministic and

robust optimization of the 3-D study. The conclusions and suggestions for future work are



presented in Section 8. Appendix A includes the grid convergence study of the RAE2822
airfoil. Appendix B contains the grid convergence study of the CRM wing. Appendix
C includes the identification of the optimum factors for the 2-D shape parameterization

techniques.



2. LITERATURE REVIEW

In this section, a review of previous studies on aerodynamic shape optimization of
2-D and 3-D problems are included. In particular, previous studies on the application of
stochastic expansions as a means of uncertainty quantification in design optimization are
discussed. In addition, the aerodynamic optimization studies focused on shape parameteri-
zation techniques and turbulence flows in transonic flow are presented.

In robust design studies, two different type of uncertainties, epistemic and aleatory
(inherent) are considered in general [4, 5]. Epistemic uncertainty is reducible and due to lack
of knowledge in computational models or parameters (e.g., turbulence model uncertainty
in CFD simulation). Aleatory uncertainty [6] is irreducible and due to inherent variation
of physical model (e.g., operating conditions). To characterize the uncertainty in a mathe-
matical problem, aleatory uncertainties are typically presented with appropriate probability
distribution function (e.g, uniform, normal, Weibull). In this study, we consider aleatory
uncertainties in our robust optimization formulation both for 2-D and 3-D problems. In
specific, the inherent variation of Mach number in transonic flow is modeled as an aleatory
uncertainty with uniform distribution.

Uncertainty quantification is an important component of robust optimization to ob-
tain the necessary statistics (such as the mean and the variance) of aerodynamic coefficients
and their sensitivities with respect to design variables, which has to be repeated at each
optimization iteration. The traditional uncertainty quantification methods based on sam-
pling such as the Monte-Carlo approach become too expensive and impractical to use due
to the large sample size requirement for the convergence of statistics. This is especially
the case when high-fidelity Computational Fluid Dynamics (CFD) and adjoint solutions
are utilized in aerodynamic design optimization. To remedy the computational cost as-

sociated with Monte-Carlo approach for design with uncertainty, various approaches are



proposed in previous studies to reduce the number of function evaluations to improve the
efficiency of the robust design [7, 8,9, 10]. To address the computational cost of uncertainty
quantification in robust aerodynamic design with high-fidelity CFD models, we utilize the
Point-Collocation Non-Intrusive Polynomial Chaos, an advanced uncertainty modeling and
propagation method based on stochastic expansions, which has been shown to be very ef-
ficient and accurate in previous uncertainty quantification studies involving transonic and
hypersonic aerodynamic flows [11, 12, 13].

In the literature, RANS and Euler based aerodynamic shape optimization are applied
to different geometries and flow regimes. Euler equations are used to minimize the induced-
drag of non-planar geometries and examine the optimal shape of flying wings for subsonic
and transonic speeds [14, 15]. The previous studies also include the application of two and
three-dimensional Navier-Stokes equations using discrete and continuous adjoint approach
for the aerodynamic shape optimization problems [16, 17, 18].

Many authors proposed preliminary methods to obtain an insensitive design to the
uncertainties in order to remedy the weakness of single-point optimization under varying
conditions [19, 20, 21]. The majority of proposed techniques contains the gradient-based
optimizer to solve the aerodynamic shape optimization problem [22, 23, 24, 25, 26]. In lit-
erature, the authors studied high-fidelity and multi-fidelity aerodynamic shape optimization
with the consideration of large number of high fidelity function evaluations and large num-
ber of dimensions [27, 28]. Multi-modality, multi-point and multi-objective techniques in
gradient-free aerodynamic shape optimization are also investigated in the previous studies
[29, 30,31, 32], however no study focused on a parametric investigation of the gradient-based
robust optimization with stochastic expansions for RANS-based two and three dimensional
aerodynamic shape optimization, which is addressed by this PhD research.

In the 2-D study, the best optimization results based on the shape parameterization
technique (i.e. in terms of computational time and the performance of final design) from

a previous study by Vuruskan and Hosder [3] are used for deterministic and robust design.



The findings experienced with each turbulence model for robust design is compared with
the deterministic optimization results including the previous work reported in the literature
[33, 34, 35, 36, 37]. The Spalart-Allmaras (SA) and the Menter’s Shear Stress Transport
(SST) models are studied to investigate their impact on the final design. SA and SST
models are among the most commonly used one-equation and two-equation turbulence
models, respectively in terms of accuracy, efficiency and design cycle time according to
studies presented in the literature [38, 39]. SA model is shown to be robust and efficient
in the modeling of many wall-bounded transonic, turbulent flows including aerodynamic
shape optimization studies [40, 41]. Hicks-Henne bump functions, B-Spline curves and
Free-Form Deformation (FFD) are utilized as shape parameterization techniques in 2-D
study. In the previous studies, these parameterization techniques are shown to be effective
to represent the initial geometry with less number of design variables and suitable for
deforming the geometry presented by the set of curves or control points [42, 43].

The CRM transonic wing case from the AIAA Aerodynamic Design Optimization
Discussion Group test problem database is studied for both the deterministic and robust op-
timization with two turbulence models (SA and SST) by using FFD shape parameterization
technique [44, 45]. The previous studies focusing on the optimization of CRM wing or
body/wing configuration mostly utilized a single turbulence model [46, 47, 48]. The multi-
point optimization of CRM wing is performed in the studies [49, 50] which include the
deterministic optimization formulation with discrete points. In addition, the multi-modality
and high-fidelity optimization of CRM wing are presented in the previous studies [51, 52].
The FFD shape parametrization technique which is used in 3-D wing study of this work have
been used frequently on the aerodynamic shape optimization of 3-D geometries because it

is flexible and highly accurate to parameterize the complex geometries [46, 47, 48, 53, 54].



3. COMPUTATIONAL FLUID DYNAMICS MODEL

In this section, the computational fluid dynamics (CFD) model of 2-D and 3-D
studies are explained. In this study, deterministic and robust optimization are performed
to minimize the drag coefficient of RAE2822 airfoil and CRM wing at transonic flow
conditions at a specified lift coefficient value. Robust design is also targeted to minimize

the variation of the drag coefficient under uncertainty (i.e., variation in Mach number).

3.1. COMPUTATIONAL FLUID DYNAMICS MODEL FOR RAE2822 AIRFOIL

In the 2-D study, the open-source CFD code SU2 [55, 56] is utilized for the solution
of the flow field and to obtain the adjoint-based sensitivities. In both deterministic and robust
optimization studies, SU2 is used to solve steady, 2-D, Reynolds-Averaged Navier-Stokes
(RANS) equations with standard form of SA and SST turbulence models. In SA model, one
equation is solved to obtain turbulent (eddy) viscosity for aerodynamic wall-bounded flow
problems. In SST model, two equations are solved to obtain the turbulent (eddy) viscosity.
The more information on these turbulence models is given in the next section.

In the solutions obtained with SU2, finite volume method was utilized to discretize
RANS Equations. Jameson-Schmidt-Turkel scheme [57] with second-order scalar upwind
discretization and Venkatakrishnan’s limiter was used to model the convective fluxes. The
viscous terms are calculated with least-squares approach with second-order spatial accuracy.
The GMRES method was utilized to solve the linear system with an error tolerance value
of 107, and Euler implicit method was applied for time integration to reach the steady
state solution. The adjoint solver was utilized to obtain the sensitivities of lift and drag
coeflicients with respect to the design variables at each optimization iteration. The solution

convergence criterion for all cases was set to have a maximum number of 5000 iterations or



a reduction in the residuals by six orders of magnitude. SU2 mesh deformation script (SU2
MDC) was utilized to deform mesh after modifying the airfoil shape based on the updated
design variables at each optimization iteration.

The unstructured mesh (O-grid) used in the CFD model (Figure 3.1) was constructed
around RAE2822 airfoil with 22,842 elements in total. 40 and 192 edges are used for the far-
field boundary and the surface of the airfoil, respectively. The airfoil was placed at a distance
of 100-chord length away from the far-field boundary. Hybrid mesh with quadrilaterals was
utilized at the vicinity of airfoil surface and continued with triangular mesh in the remaining
region of control volume. The first grid point normal to wall was located 10> chord length
away from the airfoil surface and its non-dimensionalized distance (z*) was determined to
be approximately 1. A grid convergence study is performed for the RAE2822 airfoil and
for each turbulence model at a Mach number of 0.734, Re number of Re = 6.5 x10°, «
of 2.92° for SA and a of 3.06° for SST model. The results of this study are presented in
Appendix A. Original (baseline) grid used in this study is called as medium grid in the grid
convergence study whose topology is fixed while generating the two finer and one coarser
mesh level. The grid convergence study showed that the grid level utilized in this study
has sufficient accuracy in resolving the quantities of interest used in aerodynamic shape
optimization of the RAE2822 transonic airfoil.

Deterministic optimization was performed at a Mach number of M = 0.734,
Reynolds number of Re = 6.5 x10° and at a target lift coefficient of C,,, cer = 0.824
which was obtained at an angle of attack of @ = 2.92° for SA and @ = 3.06° for SST model
with the initial airfoil geometry. In robust optimization, Mach number was modeled as a
uniformly distributed random variable with interval [0.725,0.743] including its nominal
(mean) value of 0.734. The angle of attack was varied as a design variable to match the lift

constraint in both the deterministic and robust optimization processes.
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Figure 3.1. (a) Computational grid. (b) The view of the grid at the vicinity of the airfoil
surface.

3.2. COMPUTATIONAL FLUID DYNAMICS MODEL FOR THE CRM WING

In the 3-D study, SU2 code is used to solve steady, 3-D, Reynolds-Averaged Navier-
Stokes (RANS) equations with two turbulence models (i.e. SA or SST). Similar to 2-D
study, finite volume method was utilized to discretize RANS Equations in the solutions
obtained with SU2. Jameson-Schmidt-Turkel scheme with second-order scalar upwind
discretization and Venkatakrishnan’s limiter were used to model the convective fluxes.
The viscous terms were calculated with least-squares approach with second-order spatial
accuracy. The GMRES method was utilized to solve the linear system with an error tolerance
value of 1E-04, and Euler implicit method was applied for time integration to reach the
steady state solution. The adjoint solver was utilized to obtain the sensitivities of lift and
drag coefficients with respect to the design variables at each optimization iteration. The

solution convergence criterion for all cases was set to have a maximum number of 15000
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iterations or a reduction in the residuals by six orders of magnitude. SU2 mesh deformation
script (SU2 MDC) was utilized to deform mesh after modifying the wing shape with respect
to updated design variables at each optimization iteration.

The structured mesh (O-grid) used in the CFD model (Figure 3.2) was constructed
around the NASA Common Research Model (CRM) wing [58] with 450,560 elements,
which was determined to have sufficient resolution after a grid convergence study (Ap-
pendix B) and included 120, 92 and 40 edges chordwise, spanwise and off-wing directions,
respectively. The wing was placed at a distance of 25-span lengths away from the far-field
boundary. The coordinates are scaled by the mean aerodynamic chord, therefore the refer-
ence chord is 1.0. The first grid point was located 1E-05 reference chord length away from
the wing surface and its non-dimensionalized distance (z*) is approximately 2.2.

Deterministic optimization was performed at a Mach number of M = 0.85, Reynolds
number of Re = 5x 10° and at a target lift coefficient of ClLygrger = 0.65 which was obtained
at angle of attack of @ = 3.56° for SA and @ = 3.81° for SST with the initial wing
geometry. In robust optimization, Mach number was modeled as a uniformly distributed
random variable with interval [0.827,0.873] including its nominal (mean) value of 0.85.
The angle of attack was varied as a design variable to match the lift constraint in both the

deterministic and robust optimization processes.
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4. TURBULENCE MODELS

In this section, the two RANS turbulence models used in this study are outlined. In
the description of the turbulence models, the nomenclature of turbulence modeling resource

(TMR) website of NASA Langley Research Center is utilized [59].

4.1. SPALART-ALLMARAS ONE-EQUATION MODEL (SA)

The SA model is developed from the Nee-Kovasznay model [60] with several com-
pressibility and near-wall corrections [61]. SA model is simpler, computationally less
expensive and more robust than the multi-equation turbulence models. Therefore, it is a

commonly used turbulence models in wall-bounded external aerodynamic flow applications.

The model is given by
a9 9D o o, 1(P)
FTR T cp1(1 = f12)SP — [Cwlfw - ?ftz] (5)
/ 4.1
+ L ((v + 9)ﬁ) + Al ﬁ]
o | 0x; 0x; 0x; 0x;

The complete formulation of the model is given by Spalart and Allmaras [61]. The turbulent

eddy viscosity is computed from:

Me = PV fy1 4.2)

where
3

fr = 4.3)

s X =

S
< | <

X+,
and p is the density, v = u/p is the molecular kinematic viscosity, and u is the molecular

dynamic viscosity. Additional definitions are given by the following equations:

A

A 1%
S=Q+ m‘fvz (44)
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where Q = /2W;;W;; is the magnitude of the vorticity, d is the distance from the field point

to the nearest wall, and

1+ c® 16
fa=logfom =gl g =rrantt-n)
r = min [Sszz, 10] . Jio = cexp(—cux©), Wi = 5 (axj - (9_x,
The constants are;
o=2/3, cp1 =0.1355, ¢ =0.622, k=041
Cpl 1+ cp (4.6)
Cyl = — + , ¢w2=03 o¢cn3=2 o¢1=7.1
K o

The turbulent eddies are absent very near to the wall, therefore ¥ is zero on the viscous
walls. Some fraction of the laminar viscosity at the far-field is implemented as the far-field

boundary condition for the turbulent viscosity.

4.2. MENTER SHEAR-STRESS TRANSPORT TWO-EQUATION MODEL (SST)

Menter’s SST model is a two-equation model that contains traditional k£ — w and
k — e models [62, 63]. The goal is to utilize the k — w model at the near-region which is the
most accurate, and to take the advantage of the freestream independence of the k — e model

in the outer part of the boundary layer. The model is given by

d(pk)  dpu;k) * 9 ok
=P - B pwk + — 2= 4.7
ar T ox, B pwk + ax; (1 + owpy) ox; 4.7
d(pw) O(pujw) vy , 0 dw PO Ok Ow
=-pP- — wi)— | +2(1 = F —— (4.8
ot - 0x; vy Ppw +8xj (p+o “f)ax,- 2 ) O0x; 0x;j (4.8)

The complete formulation is given by Menter [62, 63]. The closure coeflicients include

2
K
=Bl X 4.9)

N
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B2 K>

Pr gy K 4.10
5 UZVF (4.10)

Y2 =

where g1 = 0.075, B, = 0.0828, 5* = 0.09, 0,1 = 0.5, o2 = 0.856, and « = 0.41. P, 7;;,

and §;; are given by:

P= T,-ja—x: (4.11)
J
20u 2
T = (25,] ga—xl’:a,-j) - 3Pk (4.12)
1 {0u; auj
S == |24 413
) (axj i 0x; *13)

The turbulent eddy viscosity is computed from:

park

= 4.14
max(ajw,SF,) ( )

Mt

where § = /25;;S;;, ai = 0.31. Each of the constant is a blend of inner (1) and outer (2)

constant, blended via

¢ =F¢+(1-F)p (4.15)

where ¢ represents constant 1, and ¢, represents constant 2. Additional functions are given

by

Vi 500v\ 4pouak |

Fi; = tanh 4 R = mi , , w
| = tanh(argy), arg, = min [max (ﬁ*wd o | Chr

1 0k 0
ve =2 CDy = max [2p0y——— 22 10720 4.16)
P w@xj 0xj

k500

Fo = tanhlargs), - argy = man (zf% e

where p is the density, v; is the turbulent kinematic viscosity, u is the dynamic viscosity, d

is the distance from the field point to the nearest wall, and w is the vorticity magnitude.
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S. UNCERTAINTY QUANTIFICATION APPROACH AND ROBUST
OPTIMIZATION PROCEDURE

5.1. OPTIMIZATION FRAMEWORK

Figure 5.1 shows the optimization framework developed for deterministic or robust
optimization to minimize the objective function of the aerodynamic design problem. The
inputs of the framework are flow and adjoint solver parameters setting, the numerical
algorithms and physics models, the specification of the shape parameterization technique,
design variables associated with the shape parameterization technique used, angle of attack
(if used as a design variable), uncertain variables and their distributions (uniform or normal),
objective function and constraints. The optimized shape and its aerodynamic characteristics
are served as outputs of the framework.

To generate the initial geometry (e.g., airfoil or 3-D wing), current options available
in the framework include the use of externally provided point data or B-Spline control points.
Hicks-Henne bump functions, B-Spline curves, and Free-Form Deformation are the current
shape parameterization techniques for two-dimensional problems. Free-Form Deformation
is the current shape parameterization technique for three-dimensional problems. As shown
in a previous aerodynamic optimization study by the authors [3, 64], parameterization with
Hicks-Henne bump functions and B-Spline curves were able to produce optimum airfoil
shapes with no shocks or weaker shocks in transonic flow which is the main contributor to
the drag coefficient. Currently, the optimum airfoil shapes or wings with no shock or weaker
shocks in transonic flow can be produced by utilizing Free-Form Deformation technique in
the framework.

In this study, the open-source CFD code SU2 is utilized for the solution of the
flow field and obtaining the adjoint-based sensitivities used in gradient-based optimization.

Moreover, SU2 mesh deformation script is utilized to deform the mesh after modifying
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Figure 5.1. Optimization framework.

the wing shape based on the updated design variable values. The framework is created
modular so that various CFD software for flow and adjoint solutions can be utilized in the
place of SU2 such as the FUN3D code from NASA. Another advantage of the framework
is the flexibility for the integration of different optimization algorithms, which currently
uses the SLSQP algorithm [65, 66]. Uncertainty quantification module integrated to the
optimization algorithm provides the modeling of input uncertainties and the propagation of

uncertainty with polynomial chaos expansions (PCE) for robust optimization.

5.2. UNCERTAINTY QUANTIFICATION APPROACH

The robust optimization approach described in the next section utilizes the Point-
Collocation Non-Intrusive Polynomial Chaos (NIPC) method as the uncertainty quantifica-
tion approach to obtain the statistical metrics (the mean and variance) used in the optimiza-
tion formulation. The Point-Collocation NIPC is based on the polynomial chaos theory.

With this theory, an uncertain response function R (e.g., lift, drag, or pressure coefficient)
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can be represented with a series expansion:
— P —
R(Z &)~ ), a;(R)%(€) (5.1)
Jj=0

where the random basis function of j/ mode is represented by \P,(E’) which is a polyno-
mial function of n-dimensional standard random variable vector (?), and the coeflicient
a; which is a function of the deterministic variable vector (¥), (e.g., the deterministic
design variables). Random basis functions are in the form of multi-dimensional Hermite
Polynomials when the distribution of uncertain variable is defined as Gaussian which is
first studied by Wiener [67]. The application of polynomial chaos theory on the continuous
non-normal input uncertainty is extended by using the set of polynomials known as Askey
scheme [68]. The Legendre and Laguerre polynomials are included in Askey Scheme and
used as optimal basis functions for uniform and exponential input uncertainty distribution
respectively. Multivariate basis functions can be utilized for the different distribution of
random variables in the same problem [69]. Different stochastic problems studied with
polynomial chaos can be found in literature [70, 71, 72].

In theory, Equation 5.1 should include infinite number of terms, but for practical
implementation of the polynomial chaos expansion, a discrete sum is taken over a number
of output modes (N; = P + 1). The total number of samples used to generate the response

surface, N, is;

(n+ p)!

Ny=n,-(P+1)=n, I

(5.2)

where p is the polynomial order, n is the number of uncertain variables, and n, is the

oversampling ratio for the Point-Collocation NIPC.
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The first step of Point-Collocation NIPC method is to replace a stochastic response
or random function with its polynomial chaos expansion given by Equation 5.1. Then, N;

vectors are chosen in random space and the deterministic code is evaluated at these points.

R(Z, €0) Yo(€o)  Wi(Eo) ... W(Z0) @
2 Wo(E Y€1) ... Wp(€
R(x.’ &) _ 0(.5 1) 1(.5 1) P(.f 1) @ 5:3)
R(Z, En,-1) Wo(Ent) Wién1) ... Yr(En1) |\ ap

The linear system of equations is solved for the coefficients (a;) of the stochastic
expansion. At a minimum, N, deterministic function evaluations are needed for the solution
of Equation 5.3. Least-squares method can be used for the over-determined system of
equations which has more samples (Ny) than N;. Based on the conclusions from a previous

study [3], an oversampling ratio of 2.0 is used in this study.

5.3. ROBUST OPTIMIZATION PROCEDURE

Figure 5.2 presents the flowchart for robust optimization procedure. The inputs
to the framework for robust optimization are the deterministic design variables (s) (i.e.
the angle of attack, function amplitudes or control points), uncertain variables (i.e. Mach
number, M (?)), objective and constraint functions and NIPC order (Step 1). In this study,
constraints are used to bound the design variables while modifying the geometry.

In step 2, the number of samples (V) are calculated based on the order of polynomial
function (p), the number of random dimensions (7), and over sampling ratio (n,) in Equation
5.2. In this study, the number of random variables is 1 (the Mach number); the polynomial
order is chosen as p = 2, and an oversampling ratio of n, = 2 is used. These parameters give
the total number of samples required to create the stochastic response surface as Ny = 6.

These samples were chosen uniformly in the given uncertain Mach number interval [0.725,
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0.743], since the Mach number is modeled as a uniform uncertain variable in this study.
After the determination of the sample points (i.e., the Mach numbers), the direct and adjoint
solvers are evaluated at these sample points to calculate the lift and drag coefficients and
their sensitivities. Then, the stochastic expansions are created for each force coeflicient via

Point-Collocation NIPC;
—> P —
REET) = ) ai(D(€) (54)
7=0

where R is the response surface (drag and lift), i; is the basis function (Legendre polynomial
for this study). Here, s is deterministic variable vector (design variables) and E) is the
standard random variable vector (a single uniform random variable for this study where
M =M (E’)). In step 3, the stochastic expansions are utilized to calculate the mean
(Equation 5.5) and the variance (Equation 5.6) of the force coefficients. In specific, the
first coefficient of the expansion gives the mean and the variance is obtained by evaluating
Equation 5.6, where <> indicates the inner product integral over the support region of the

uncertain variable.

P
() = (RY = " ax(TWi(€) = ao(F) (5.5)
k=0
,
o($) = ) i () (5.6)
k=1

Sensitivities obtained with the adjoint solver at each sample point are utilized to
calculate the sensitivity of the mean (Equation 5.7) and the variance (Equation 5.8) with

respect to each design variable [73]:

5.7
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Figure 5.2. Robust optimization flowchart.
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1l
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Then, the objective function involving the statistics of the force coefficients is calculated
(Box 6) and checked against the specified convergence criterion (Box 7). If it is satisfied,
the current shape is declared as the optimized shape (Box 8). If the difference between the
current and previous objective function is higher than the specified tolerance (10~7), the
mean and the variance of aerodynamic coefficients and their sensitivities are inserted into
the SLSQP algorithm to update the design variables and the entire optimization procedure
is repeated between steps 2 and 7 until the convergence is achieved. It is important to note
that at each optimization iteration the required number of direct solver and adjoint solver

evaluations is equal to Ny, which is equal to 6 for the current robust optimization problem.



21

In other words the computational cost of robust optimization will be N, times higher
than the deterministic optimization cost for the same number of optimization iterations to
converge. Although it is more expensive compared to the deterministic design, the robust
optimization approach based on stochastic expansions will be much more efficient than a
robust optimization approach which utilizes a traditional sampling method such as Monte

Carlo for the evaluation of the statistical quantities at each iteration.
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6. 2-D ROBUST AERODYNAMIC SHAPE OPTIMIZATION

6.1. SHAPE PARAMETERIZATION TECHNIQUES

In 2-D study, three shape parameterization techniques (B-Spline curves, Hicks-
Henne bump functions, and Free-Form Deformation) are studied. A description of each
technique is presented below.

6.1.1. Parameterization with B-Spline Curves. With this technique, the shape is
represented by B-Spline curves and surfaces. Control points are defined as design variables,
and the shape is modified by moving the control points in z direction at the same x location.

The B-Spline function of order k is expressed with

C(t) = Z PiNig(t), 10 <1 <tme, k<n+1 6.1)
i=0

where N (t) are the B-Spline basis functions and P; is the position vector of i" control
point. Knot vectors are known as ¢ = #;. The basis functions are calculated with Equations

(6.2) and (6.3):

1, ift; <t <ty
Nii = (6.2)

0, elsewhere
and

t—t tivk — 1t
Nig(t) = ————Njp1(t) + ———

Ni1x-1(1) (6.3)
livk-1 — 1 Livk — Ti+1

for k = 2,3,...,K for all i values. The order of basis functions can be any positive integer
number. In optimization problems, the control points are defined as design variables. The

illustration of B-spline shape parameterization technique is presented in Figure 6.1.
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Figure 6.1. Illustration of B-Spline shape parametrization technique.

B-Spline curves provide local control on the geometry, and the degree of polynomial
function can be limited based on user specification without changing the number of control
points.

6.1.2. Parameterization with Hicks-Henne Bump Functions. Hicks and Henne
[74, 75] proposed to use bump functions for airfoil design. They are summed and added to
the initial shape for the perturbation of the geometry. In this parameterization technique,

function amplitude is used as a design variable. The new airfoil shape can be defined as:

N
2(x) = 2(X)pasetine + Z O fu(x) (6.4)
n=1
where z(X)pasetine 1S z values of the initial shape at each x location, ¢, is the function
amplitude, N is the number of bump function, and

1log0.5

fu(x) = [sin(zxTsm)]2, 0<t <1 (6.5)
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Figure 6.2. Hicks-Henne bump functions with #, = 10.

where 1] is the location of maximum function value (function amplitude) and #, represents
the width of the bump function. In the optimization problems, function amplitudes are
defined as design variables. Hicks-Henne bump functions with #, = 10 with different #
values are shown in Figure 6.2.

Hicks-Henne bump functions can refine certain regions or the entire region of the
airfoil surface. Bump functions are located between x = 0.0001 and 0.9999 in this study.
The width of the function and the number of function amplitudes (design variables) can
have a significant effect on the optimized shape.

6.1.3. Parameterization with Free-Form Deformation. Free-Form Deformation
(FFD) is based on a domain deformation technique proposed by Sederberg and Parry [76]
instead of deforming the surface itself. With this approach, the airfoil is embedded into
the rectangular lattice by constraining the control points to a plane shown in Figure 6.3.
A two-dimensional space of (m + 1) X (n + 1) uniformly distributed Bezier surface control

points, P;;, are located around the airfoil, and the control lattice is created. The two-
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dimensional space is normalised to the unit domain N(u,v) € [0, 1] X [0, 1] by the following

transformation equation:

X = Xpi 2= Zmi
u(x) = —20 0 y(z) = — (6.6)
Xmax — Xmin Zmax — Zmin

where [ X,in, Xmax ] and [ Zmin, Zmax ] are the intervals of the control lattice in x and z directions,

respectively. The deformation of the airfoil is defined as:

X(u(x),v(2)) = >° > Bim(u(x)Bjn(v(2)P;; (6.7)

j=0 i=0

where B, ,,(u(x)) and B;,(v(z)) are Bernstein polynomials and P; ; is the control point. The

control point position is calculated with the following equation:

I J
Pi,j =\ Xmin t ;(xmax ~ Xmin)s Zmin + ;(Zmax ~ Zmin) | - (6.3)
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Figure 6.3. Two-dimensional FFD box.
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The Bernstein polynomial, B;,,(u(x)), is defined as:

B p(u(x)) = (l?)(u(x))i(l —u(x)™ D, i=0,..,n (6.9)

where (') is a binomial coefficient.
FFD is a versatile and strong technique, and local deformation over the geometry is
possible with the FFD technique. It is compatible with different surfaces of any formulation

or polynomial degree.

6.2. DETERMINISTIC OPTIMIZATION

In this study, deterministic optimization results are performed to make a comparison
between the performance of the same shape parameterization techniques and the turbulence
models used in robust optimization in terms of their effectiveness and computational cost.
The objective of deterministic optimization is to reduce the drag coefficient Cp of the airfoil
at a specified Mach number subject to a specified minimum lift coefficient C; and area
constraint.

6.2.1. Problem Statement. The optimization of RAE2822 airfoil is performed for
steady, viscous, turbulent flow at a Mach number of 0.734 and Re number of 6.5 x 10°. The
shape parameterization techniques included B-Spline curves with 20 control points, Hicks-
Henne bump functions with 256 bump functions and 7, = 10 (the width of the function),
and FFD with 2x40 control lattice with the size of [-0.1,0.1] in z direction. The uniform
distribution (UD) is implemented for the spacing of design variables over the geometry for
each parameterization technique. The settings for each shape parameterization technique
were determined by a parametric study [3] described in Appendix C, which gave the most

effective deterministic optimum design with minimum computational cost.
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The angle of attack is defined as a design variable for all cases, and the C;, constraint is
included in the objective function, setting the target Cy, as 0.824. For B-Spline curves, the an-
gle of attack is constrained within the interval [-10.0°,10.0°], and the non-dimensionalized
vertical position of each control point is limited with the interval [-0.1,0.1]. For Hicks-
Henne bump functions, the angle of attack is constrained within the interval [2.0°,4.0°],
and the function amplitude limit is set [-0.01,0.01] at each iteration. For FFD, the angle
of attack is also constrained within the [2.0°,4.0°], and the size of control lattice is set
[-0.01,0.01] at each iteration. The boundary of each control point is set [0.5z;, 1.5z;] where
zi is the z coordinate of i’ control point at each iteration. It has been noticed that the angle
of attack value remained between 2.0° and 4.0° at each iteration that was obtained with
B-Spline curves, which is the first parameterization technique applied for the optimization
of RAE2822 airfoil. The same optimization problem is repeated by constraining the angle
of attack within the interval [2.0°,4.0°], and it was verified that the optimal shape, the
aerodynamic coeflicients of the optimal shape, and the number of iterations to converge
were the same. Therefore, the angle of attack constraint of [2.0°,4.0°] was used for the
studies with Hicks-Henne bump functions and FFD techniques.

The optimization algorithm started with the original airfoil shape and with 2.92°
and 3.06° as the initial values of the angle of attack for the SA and SST turbulence model,
respectively. The weights are specified in the objective function within the interval [0, 1]

according to following relation:
Z Wi=1 (6.10)
i=1

where W; is the weight of the i’ term in the objective function, including n» number of
terms. A weighted objective function is defined to include the C;, constraint along with the

main objective of the minimization of the Cp:
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minimize W) ( C
L

Drcf ref

where the weights Wi and W, are 0.5, the reference factor of the drag coeflicient, Cp,, o
is 0.007, and the reference factor of the lift coefficient, Cr,, o 18 0.224. The reference
factors are used as normalization factors to bring the magnitude of the C;, and Cp terms
to the same level, and the weights are utilized to adjust the contribution of each term to
the objective function. The contribution of each term to the objective function in terms of
their percentage is investigated on test cases, and the optimum combination of the weights
is selected based on the test case results. It is important to note that the pitching moment
coeflicient constraint is excluded in the problem formulation for both the deterministic and
robust aerodynamic optimization; therefore, higher tail lift and trim drag will be required
due to a higher nose-up pitching moment.

6.2.2. Deterministic Optimization Results. The lift coefficient (Cy ) of the original
shape is 0.824 for each turbulence model. The drag coefficient (Cp) is 0.0209, obtained at
a = 2.92° with the SA model and 0.0217, obtained at @ = 3.06° with the SST model. The
area of the airfoil is non-dimensionalized by c¢?, which is 0.0778 for the original geometry.
The numerical results of the optimized shapes are given in Table 6.1. In this table, the
angle of attack for the optimum shapes is given as @, and XCry o per is the angle of attack
obtained with the optimum shapes at the target C;. Cy is included in the objective function,
and the area constraint is satisfied at each iteration. Therefore, the number of iterations
presented in the table is equal to the total number of CFD (flow solver + adjoint solver)
evaluations required for convergence. As observed in Table 6.1, the smallest difference
in drag reduction between each turbulence model is observed for the FFD, whereas the
largest difference is obtained with the B-Spline parameterization. Another finding is that
the number of iterations (i.e. computational cost) required to converge is almost constant
with respect to different turbulence models for the B-Spline and Hicks-Henne techniques.

With the FFD technique, the SST turbulence model requires the least number of iterations
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Table 6.1. Deterministic optimization results.

Optimization ACp # of ACrypygur
Case Cr Cp (counts) Area Iterations «a (°) @)
Original (SA)  0.824 0.0209 - 0.0778 - 2.92 -
Original (SST) 0.825 0.0217 - 0.0778 - 3.06

B-Sp, 20cp, SA  0.821 0.0128 81 0.0795 63 3.34 3.38
B-Sp, 20cp, SST 0.813 0.0130 87 0.0790 62 3.47 3.62
H-H, 256bf, SA  0.823 0.0133 76 0.0813 21 2.94 2.95
H-H, 256bf, SST 0.827 0.0137 80 0.0815 22 3.08 3.06
FFD, 2x40, SA  0.807 0.0128 81 0.0794 14 2.93 3.08
FFD, 2x40, SST 0.809 0.0137 80 0.0793 7 3.07 3.28

to converge, which corresponds to a significant reduction of computational cost. The slight
deviations from the target C; is observed for the optimal shapes for the B-Spline and Hicks-
Henne techniques with both turbulence models, and for the FFD technique with the SST
model due to the inclusion of Cy in the objective function.

Figure 6.4(a) and 6.4(b) present the original and optimal shapes and their pressure
distributions obtained with B-Spline as the shape parameterization technique for different
turbulence models. There is a slight difference on the upper surface of the optimal shapes
between x/c = 0.6 and 0.8, which is also reflected in the pressure distributions. The
strength of the shock wave is reduced on the optimal shapes for both turbulence models.

The original and optimal shapes and their C, distributions obtained with the Hicks-
Henne technique for different turbulence models are shown in Figure 6.5. The optimal
shapes and the pressure distributions show a similar trend for each turbulence model. The
shock wave strength is reduced with both turbulence models; however, a slight difference
in C,, can be observed downstream of the shock between the two turbulence models.

Figure 6.6 includes the original and optimal shapes and their C,, distributions with
the FFD technique for different turbulence models. Figure 6.6(a) shows that the optimal

shapes obtained with each turbulence model are very similar. Figure 6.6(b) presents C,
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Figure 6.4. Deterministic optimization results obtained with the B-Spline approach with
the SA and SST models. a) Airfoil shapes. b) Pressure distributions.
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Figure 6.5. Deterministic optimization results obtained with the Hicks-Henne approach
with the SA and SST models. a) Airfoil shapes. b) Pressure distributions.

distributions of optimal shapes, which are similar except for the shock region and the
downstream of the shock. With FFD, the SA model seems to produce a weaker shock, even

though the airfoil shapes are very similar.
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Figure 6.6. Deterministic optimization results obtained with the FFD approach with the SA
and SST models. a) Airfoil shapes. b) Pressure distributions.

Figure 6.7 shows the original and optimal shapes obtained by using different shape
parameterization techniques with the SA turbulence model and the corresponding pressure
distributions. The airfoil shapes obtained with each shape parameterization technique
show differences in different regions, which also affects the pressure distribution. This
difference is especially recognized for the top surface B-Spline results when compared to
the results of two other shape parameterization techniques. Figure 6.8 shows the original
and optimal shapes obtained by using different shape parameterization techniques with the
SST turbulence model and the corresponding C,, distributions. Similar to the results of the
SA model, the optimal shapes are different, with B-Spline having the largest difference for
the top surface.

Overall, the results presented in this section show that, for deterministic optimization,

shape parameterization techniques have a larger impact on the optimum shape and the

number iterations required to converge than the effect of the specific turbulence model used.
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Figure 6.7. Deterministic optimization results obtained with the SA model with different
shape parameterization techniques. a) Airfoil shapes. b) Pressure distributions.
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Figure 6.8. Deterministic optimization results obtained with the SST model with different
shape parameterization techniques. a) Airfoil shapes. b) Pressure distributions.

6.3. ROBUST OPTIMIZATION

The impact of turbulence models and shape parameterization techniques on the
computational cost, optimal shape and its performance obtained with robust optimization

under uncertainty is investigated.
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6.3.1. Problem Statement. The robust design procedure is applied to the same
RAE2822 case studied for deterministic optimization; however, the Mach number is con-
sidered a uniformly distributed uncertain variable within the interval [0.725, 0.743]. The
settings for each shape parameterization technique were determined in a previous paramet-
ric study [3] described in Appendix C, which gave the most effective robust optimum design
with the minimum computational cost. Specifically, the shape parameterization techniques
include: (1) B-Spline curves with 20 control points, (2) Hicks-Henne with 256 bump func-
tions and #, = 10 (the width of the function) with the function amplitude limit set to [-0.01,
0.01] at each iteration, and (3) FFD with 2x20 control lattice with the size of [-0.1,0.1] in z
direction. For FFD, the boundaries of each control point are set as [0.25z;, 1.75z;] where z;
is the z coordinate of i’ control point. For robust design, a cosine distribution (CoD) is used
for the spacing of design variables over the geometry for B-Spline curves and Hicks-Henne
bump functions. Uniform distribution is utilized for the FFD technique. The x location of

the design points based on this cosine distribution are obtained with Equation (6.12):

X _ (1 —cosp)

0<pB<m. (6.12)
c 2

For robust optimization, the weighted objective function is formulated to minimize the mean

and the variance of Cp simultaneously, while keeping the mean of target C; constant:

2 2

T MC arge —/lC

minimize Wi |22 | 4wy [ | oy [~ E (6.13)
/lCDref O-CDref /lCLref

where the weights Wy, W;, and W3 are 0.333, 0.333, and 0.334, respectively. Hcp,,, is
3.33x 1073, oCp,,, 18 0.001, and Hcy,,, 18 0.150. The weights identify the contribution
of each term to the objective function and the reference values are utilized to bring the

magnitude of values in each term to the same level. The contribution of each term to the

objective function is investigated on the test cases, and the weights of the optimum case are



34

utilized for this study. The contribution of each term to the objective function is investigated
in terms of their percentage on the test cases, and the weights of the optimum case are utilized
for this study. The mean of target C;, is defined as 0.824, and the optimization algorithm is
started with @ = 2.92° for the SA turbulence model and @ = 3.06° for the SST turbulence
model as an initial value. In this formulation, the first term is related to the optimization
of the mean performance (i.e., the minimization of the mean of the drag coefficient), the
second term is intended to minimize the variance of the design under the variation of the
Mach number (i.e., the minimization of the variance of the drag coefficient), and the third
term is used for the implementation of the Cy, constraint.

6.3.2. Robust Optimization Results. The statistical performance metrics of the
robust optimization at a target Cy, of 0.824 are given in Table 6.2. Similar to deterministic
design, Cr is included in the objective function, and the area constraint is satisfied at
each iteration in robust design. Consequently, since the number of samples required to
obtain the mean and the variance of Cp and C; with stochastic expansions is N (6 for
this study), the number of total CFD evaluations is N times the number of iterations
required to converge for robust design. The highest uc,, and o, reduction is observed for
the Hicks-Henne technique with the SST model corresponding to 84 and 32 drag counts,
respectively. Another observation is that the number of iterations (i.e. computational cost)
required to converge significantly varies based on the shape parameterization technique.
On the other hand, it stays constant for each turbulence model for the Hicks-Henne and
FFD parameterizations. Among all shape parameterization techniques, FFD requires the
minimum number of iterations to converge for both turbulence models. It should be noted
that the computational time per iteration for each shape parameterization technique is
approximately the same regardless of the number of design variables, since sensitivities
are obtained from an adjoint-solution and the design variables in this study are considered

deterministic.
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Table 6.2. Robust optimization results for airfoils obtained at uc, = 0.824 with the Hicks-
Henne (H-H), B-Spline (B-Sp), and FFD shape parameterization techniques and the SA
and SST turbulence models.

Optimization Auc, Aog, # of

Case Hcp ocp X 103 (cts)  (cts) Area  Iterations « (°)
Original (SA)  0.02125 2.88 - - 0.07785 - 2.92
Original (SST)  0.02222 3.51 - - 0.07785 - 3.06
B-Sp, 20cp, SA  0.01466 0.65 66 22 0.07919 88 3.48
B-Sp, 20cp, SST 0.01482 0.93 74 26  0.07874 74 343
H-H, 256bf, SA  0.01375 0.30 75 26  0.08179 36 2.96
H-H, 256bf, SST 0.01380 0.33 84 32 0.08113 37 3.09
FFD, 2x20, SA  0.01348 0.68 69 22 0.07975 13 2.93
FFD, 2x20, SST 0.01413 0.60 81 29 0.08039 14 3.07

By examining the results of the Hicks-Henne and FFD techniques individually, one
can see a small difference in o,, between the SA and SST models. However, a significant
difference in the same quantity can be noticed when the values obtained with these two
shape parameterization techniques for the same turbulence model are compared. This may
imply that the shape parameterization has more impact on the robustness of the final design
than the specific turbulence model used.

The original and optimized shapes obtained with B-Spline parameterization with
each turbulence model can be seen in Figure 6.9. There is a large difference between the
optimized shapes and the original RAE2822 shape; however, the optimized shapes with
different turbulence models are very similar. Figure 6.10 presents the C, distributions of
original and optimized shapes with the B-Spline technique with each turbulence model at
a target Cp, of 0.824 at M,,pminai (0.734) and M4, (0.743), corresponding to the mean and
maximum of the Mach number interval that is considered in this study. At both Mach
numbers, the pressure distributions obtained with different turbulence models are close to
each other and the strength of the shock wave is reduced over the optimized shapes. The

shock wave is weakened more at M,,,,ina than at M,,, .
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Figure 6.9. The comparison of original and optimized shapes (B-Spline, Robust design).
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Figure 6.10. The C, distributions for the original and the optimum shapes at C; = 0.824
(B-Spline, Robust design). a) C,, at Myominai- b) Cp, at M.

Figure 6.11 shows the original and optimized shapes with the Hicks-Henne technique
with each turbulence model. There is a slight difference between the two optimized shapes
on the lower surface between the leading edge and x/c = 0.4. The pressure distributions
of original and optimized shapes with Hicks-Henne parameterization with two turbulence

models at M,,omina; and M, for Cp = 0.824 are shown in Figure 6.12. At both Mach
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numbers, the strength of the shock wave is reduced with optimized shapes. Similar to
B-Spline cases, the shock wave is weakened more at M,,,;inq; than at M,,,,. The slight
difference between optimum shape pressure distributions can be seen on the lower surface
where the shapes are different.

Figure 6.13 presents the original and optimized shapes with the FFD technique with
both turbulence models. As observed for the other two shape parameterization techniques,
the different turbulence models provide very similar optimized shapes with the FFD tech-
nique. Figure 6.14 shows the C,, distributions of original and optimized shapes with the
FFD technique with two turbulence models at M, mina and My, for Cp = 0.824. At
M ominat, the C,, distributions of the optimized shapes with different turbulence models are
slightly different at the shock location than they are at M, .

The original and optimized shapes with the B-Spline, Hicks-Henne and FFD tech-
niques with the SA model are presented in Figure 6.15. Three optimized shapes can be seen
to be different than the original shape. The optimized shapes with the Hicks-Henne and
FFD techniques are thicker than the optimized shape with the B-Spline technique, which

is significantly different than the other two optimum shapes. In addition, optimized shapes

Original
——————— Optimized (H-H, 256bf, SA)
0.08 ——e—— Optimized (H-H, 256bf, SST)

x/c

Figure 6.11. The comparison of original and optimized shapes (Hicks-Henne, Robust
design).
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Figure 6.12. The C, distributions for the original and the optimum shapes at C; = 0.824
(Hicks-Henne, Robust design). a) C, at Myominai- b) Cp at Mypqx.
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Figure 6.13. The comparison of original and optimized shapes (FFD, Robust design).

with Hicks-Henne and FFD parameterizations are very similar in the vicinity of the leading
edge for both upper and lower surfaces; however, the Hicks-Henne shape deviates from the
other two shapes at the trailing edge with a larger camber. Figure 6.16 shows the pressure

distributions of the original and optimized shapes with the B-Spline, Hicks-Henne, and
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Figure 6.14. The C, distributions for the original and the optimum shapes at C; = 0.824
(FFD, Robust design). a) C;, at Myominai- b) Cp at Myyqx.
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Figure 6.15. The comparison of original and optimized shapes (SA model, Robust design).

FFD techniques with the SA model at C; = 0.824 for M, o;mina; and M. The effect of the
trailing edge camber on the pressure distribution can be seen for the Hicks-Henne shape.

The pressure distributions vary mostly in the shock region and on the lower surface.
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Figure 6.16. The comparison of the C,, distributions for the original and optimum shapes
at C = 0.824 (SA model, Robust design). a) Cp, at Myominai- b) Cp at My,

The original and optimized shapes with the B-Spline, Hicks-Henne, and FFD tech-
niques with the SST model are presented in Figure 6.17. Three optimized shapes are
different than the original shape. Similar to the SA results, the optimized shapes with the
Hicks-Henne and FFD techniques are thicker than the optimized shape with the B-Spline
technique. The Hicks-Henne shape has a high trailing edge camber. Figure 6.18 shows
the pressure distributions of the original and optimized shapes with the B-Spline, Hicks-
Henne, and FFD techniques with the SST model at M,pmina and M4 at Cp = 0.824.
Similar to the SA model results, the C, distributions of optimized shapes with three shape
parameterization techniques differ in the shock region and on the lower surface.

Overall, the detailed shape and pressure distribution analyses performed in this
section indicate that the effect of the shape parameterization on the optimum shape and
the associated aerodynamic characteristics is larger than the effect of the turbulence model
in robust optimization. This is consistent with the observations made for deterministic

optimization.
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Figure 6.17. The comparison of original and optimized shapes (SST model, Robust design).

Original Original
———a—— Optimized (B-Sp, 20cp, SST) ———a—— Optimized (B-Sp, 20cp, SST)
——=—— Optimized (H-H, 256bf, SST) ——=—— Optimized (H-H, 256bf, SST)
15 e ----o--- Optimized (FFD, 2x20, SST) ’ =, ----o--- Optimized (FFD, 2x20, SST)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/c x/c

(a) (b)

Figure 6.18. The comparison of the C,, distributions for the original and optimum shapes
at Cr = 0.824 (SST model, Robust design). a) C,, at Myominai- b) Cp at Myyax.

6.4. COMPARISON BETWEEN ROBUST AND DETERMINISTIC OPTIMIZA-
TION

In deterministic aerodynamic design, the airfoil shape was optimized to minimize
the drag coefficient at a target Cy, for a certain Mach number with the angle of attack taken

as a design variable. However, the performance of the optimized shape can significantly



42

degrade if the Mach number deviates from its design point value in transonic flow. In
robust aerodynamic design, the objective was to minimize the mean (uc,,) and the variance

(O'éD) of the drag coefficient at a target mean lift coefficient value (,uCLTa l) to achieve

ree
robustness in the performance to the variation of the Mach number over a specified range.
The number of iterations required to converge is greater with robust design than it is when
using deterministic optimization with the Hicks-Henne and B-Spline techniques for both
turbulence models and with the FFD technique for the SST model. The number of total CFD
evaluations is equal to the number of iterations required to converge in deterministic design,
whereas the number of total CFD evaluations is Ny times the number of iterations required
to converge for robust design, as explained in Section 4. Therefore, the computational cost
of robust design per optimization iteration is six times higher than the cost of deterministic
optimization. In this section, the difference between the performance of the deterministic
and robust designs is demonstrated over the uncertain Mach number range. The effects of
the shape parameterization technique and the turbulence model are also investigated.

In Figure 6.19, the drag coefficient of the original airfoil shape, deterministic
design, and robust design are presented for the Hicks-Henne shape parameterization
for both turbulence models. The drag coefficient values of each shape are evaluated
at the target C; value of 0.824. The Cp of baseline RAE2822 shape is the high-
est over the entire Mach number range for each turbulence model. At M = 0.734,
which is the deterministic design point, the Cp of the deterministic design is approxi-
mately 85 drag count for both SA and SST turbulence models. There is a significant
drop in Cp until it reaches the deterministic design Mach number and then a signifi-
cant rise occurs as the Mach number increases. This trend clearly shows that the deter-
ministic optimization performs relatively poorly at the off-design Mach numbers. The
increase in Cp is more dramatic with the SST model than it is with the SA model which
indicates that the turbulence model plays a significant role in deterministic design at higher

off-design Mach numbers. On the other hand, the airfoil obtained with the robust optimiza-
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Figure 6.19. Cp comparison of original and optimum shapes (deterministic and robust)
under varying Mach number at C; = 0.824 (Hicks-Henne technique).

tion approach exhibits a relatively flat Cp curve over the Mach number range, with a slight
increase starting from M = 0.74. The shape obtained with robust optimization achieves 40
drag count reduction with the SA model and 89 drag count reduction with the SST model,
compared to deterministic design at M,,,, = 0.743. Overall, robust design performs better
than deterministic design in terms of robustness and mean performance over the Mach
number range that is considered.

In Figure 6.20, the drag coefficients of the original, deterministic design, and robust
design are presented for the B-Spline shape parameterization for both turbulence models.
The drag coeflicient values of each shape are evaluated at the target C;, value of 0.824. The
Cp of deterministic design decreases until M = 0.732 and then increases dramatically for
each turbulence model. The robust design follows a relatively flat Cp curve unlike the de-
terministic design over the Mach number range. At M,,,, = 0.743, the shape obtained with

robust optimization achieves 8 drag count reduction with the SA model and 34 drag count
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Figure 6.20. Cp comparison of original and optimum shapes (deterministic and robust)
under varying Mach number at C; = 0.824 (B-Spline technique).

reduction with the SST model compared to deterministic design. Similar to the Hicks-
Henne technique, robust design has better performance than deterministic design in terms
of robustness over the Mach number range considered for both turbulence models.

In Figure 6.21, the drag coefficient of the original, deterministic design (uniformly
distributed 2x40 control lattice), and robust design (uniformly distributed 2x20 control
lattice) is presented under varying Mach numbers with two turbulence models. Similar
to the Hicks-Henne and B-Spline parameterizations, the drag coefficient values of each
shape were evaluated at the target C; value of 0.824, and the Cp of baseline RAE2822
shape is the highest of all Mach number values at each turbulence model. The Cp of
deterministic design increases significantly after M = 0.732 for each turbulence model.
Similar to the Hicks-Henne and B-Spline techniques, robust design exhibits a relatively flat
Cp curve compared to deterministic design over the Mach number range. At the maximum
Mach number of 0.743, the shape obtained with robust optimization achieves 35 drag count
reduction with the SA model and 87 drag count reduction with the SST model compared to

deterministic design.
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Figure 6.21. Cp comparison of original and optimum shapes (deterministic and robust)
under varying Mach number at C; = 0.824 (FFD technique).

From Figure 6.22, it can be seen that the robust design obtained with the Hicks-
Henne shape parameterization gives the best result in terms of the mean performance and
robustness obtained over the Mach number range that is considered for both turbulence
models. As a general observation, Figures 6.19 to 6.22 indicate that robust design tends to
reduce the impact of the turbulence model selection on the optimum shape and performance,
whereas the turbulence model becomes important for the deterministic design at off-design
conditions. The effect of the shape parameterization technique on robust design is much
more significant than the effect of the turbulence model. In Figure 6.23, the comparison of
original and optimized shapes for both deterministic and robust design with Hicks-Henne
parameterization, which is identified as the best approach for robust design, is presented for
the SA model. For both designs, optimized shapes are similar in the vicinity of the leading
edge; however, downstream geometries differ both for the upper and the lower surfaces.
Robust design provides better performance under the variation of the Mach number, which
is also reflected in the difference between the optimized shapes. Area constraint is satisfied

with both designs.
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Figure 6.22. Cp comparison of the original and optimum shapes (deterministic and robust)
under varying Mach number at C; = 0.824. a) SA model. b) SST model.

Original
----=--- Optimized (Deter., H-H, 256bf, SA)
——e—— Optimized (Robust, H-H, 256bf, SA)

Figure 6.23. The comparison of original and optimized (deterministic and robust) shapes.

Figure 6.24 shows the Mach number contours over optimized (deterministic and
robust) and original shapes of RAE2822 at M,,,inai and M, at Cr = 0.824 for the best

robust design case which was obtained with the Hicks-Henne parameterization and the
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M =0.734 (Mnominal)

M = 0.743 (Mynax)

Figure 6.24. The Mach number contours at C;, = 0.824 over optimized and original shapes
for the best robust design case (Hicks-Henne, SA model).

SA model. The strength of the shock wave is reduced with both deterministic and robust
designs. However, the shock wave is weakened more with the robust design than it is
with the deterministic design, especially at M,,,,. In Figure 6.25, the comparison of C,
distributions of the optimal and original shapes at M, ,;ina; and M,,,, are presented. These
figures also verify the observations made from the presented contour plots.

Overall, the flatness of the Cp over the varying Mach number with two turbulence
models and three shape parameterization techniques in robust design shows that the ro-
bustness is significantly improved when compared to deterministic design. However, the
robustness comes at the expense of a slight increase in 11, when compared to the Cp values

obtained with the deterministic optimization.
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Figure 6.25. The comparison of C,, over original and optimized shapes at C;, = 0.824 for
the best robust design case (Hicks-Henne, SA model). a) C,, at Myominai- b) Cp at Mypax.
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7. 3-D ROBUST AERODYNAMIC SHAPE OPTIMIZATION

7.1. SHAPE PARAMETERIZATION TECHNIQUE

In 3-D wing study, Free-Form Deformation (FFD) is utilized as shape parameteriza-
tion technique. With this approach, the wing is embedded into the lattice box by constraining
the control points to a plane. A three-dimensional space of (/ + 1) X (m + 1) X (n + 1) uni-
formly distributed Bezier surface control points, P; jx, are located around the wing and the
control lattice box is created. The three-dimensional space is normalized to the unit domain

N(u,v,w) € [0,1] x [0,1] X [0, 1] by the following transformation equation;

X — Xmin — Ymin Z = Zmin
u(x) = T () = LA gy = ST i (7.1

max — Xmin Ymax — Ymin Zmax — Zmin

where [ Xmins Xmaxls [Ymins Ymax], and [Zmin» Zmax| are the intervals of control lattice in x,y,

and z directions, respectively. The deformation of the wing is defined as;

n

X@(x),v(0).w(2) = Y > > Bu(x) B Biaw@)Pijs (12)

[
i=0 j=0 k=0

where B;;(u(x)), Bj»(v(y)) and By ,(w(z)) are Bernstein polynomials and P; j x is the control

point. The control point position is calculated with the following equation;

i Jj k
Pi,j,k = | Xmin + Z(xmax - xmin), Ymin T E(ymax - ymin)a Zmin t+ ;(Zmax - Zmin) (73)

Bernstein polynomial, B;;(u(x)), is defined as;

By (u(x)) = (f )(u(x))"(l —u())D, i=0,..,1 (7.4)
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Figure 7.1. FFD lattice box with control points.

where (!) is a binomial coefficient. The FFD box with the control points is shown in Figure
7.1.
FFD is a flexible and string shape parameterization method. Local deformation over

the 3-D geometry is possible with the FFD technique.

7.2. DETERMINISTIC OPTIMIZATION

In deterministic optimization, the impact of turbulence models is investigated in
terms of computational cost, the difference in the shape and performance of the final
design. The deterministic optimization results are performed to make a comparison with the
turbulence models used in robust optimization in terms of effectiveness and computational
cost. The objective of deterministic optimization is to reduce the drag coefficient Cp of the
wing at a specified Mach number subject to a specified minimum lift coefficient C;, and
thickness constraints.

7.2.1. Problem Statement. The optimization of CRM wing is performed for
steady, viscous, turbulent flow at a Mach number of 0.85 and Re number of 5 X 106,

The shape parameterization technique is FFD with 24 X 15 X 2 control lattice box used in the
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previous studies [46]. FFD control lattice box used in this optimization problem is shown
in Figure 7.1. The uniform distribution (UD) is implemented for the spacing of design
variables over the geometry.

The angle of attack is defined as a design variable for all cases and C con-
straint is included in the objective function, setting the target C; as 0.65. The angle
of attack is constrained within the [2.0°,5.0°] range and the size of control lattice box
is set to [—1.0,1.0] in z direction at each iteration. Ten thickness constraints located
at [0.0%, 11.1%,22.2%,33.3%,44.4%,55.5%, 66.7%, 77.8%, 88.9%, 100%] of the span are
defined with the non-dimensional values of [0.223,0.173,0.131,0.104,0.0901,0.0782,0.067,
0.0569,0.0471,0.0374]. The planform shape of the wing (wingspan, sweep angle and
spanwise chord distribution) is kept the same at each optimization iteration. To prevent
the change in spanwise twist distribution, the FFD control nodes at both upper and lower
surfaces at the leading and trailing edges are fixed. The optimization algorithm is started
with @ = 3.56° for the SA model and @ = 3.81° for the SST model as an initial value in
order to match the target C;. The weights are specified in the objective function within
the interval [0, 1] according to Equation 6.10. A weighted objective function is defined to

include the Cy, constraint besides the main objective of the minimization of the Cp:

2 2
C C arget - C
minimize W, ( D ) W, (M) (7.5)
Dref
where the weights W and W, are 0.5, the reference scaling factor of the drag coefficient,

Cp,.,, is 0.012 and the reference scaling factor of lift coefficient, Cr_ ., is 0.071. The

ref? ref?

reference factors are used as normalization factors to bring the magnitude of C; and Cp
terms to the same level so that the weights can be conveniently utilized to adjust the
contribution of each term to the objective function. The contribution of each term to the
objective function in terms of their percentage is investigated on test cases and the optimum

combination of the weights is selected based on the test case results. It is important to
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note that the pitching moment coeflicient constraint is excluded in the current problem
formulation; therefore, higher tail lift and trim drag may be required for the optimum
configuration due to higher nose-up pitching moment.

7.2.2. Deterministic Optimization Results. The lift coefficient C;, of the original
shape is 0.65 for each turbulence model. It is determined based on a parametric study, which
was performed to identify a target C; with significant difference in the drag coefficient
obtained with each turbulence model over a Mach number range including the point value
at which the deterministic optimization is performed. The Cp comparison of original
shapes under varying Mach number at a Cy, of 0.5, 0.6, and 0.65 is given in Figure 7.2.
The selection of turbulence model plays an important role at a Cy, of 0.65, however the Cp
difference between two turbulence models is small at the C;, of 0.5 and 0.6. Therefore,
deterministic and robust optimization is performed at the target Cy of 0.65 to investigate
the impact of turbulence models in terms of computational cost, the difference in the shape

and the performance of final design.

— = SA(C =05)
—e— SST(C,=05)

005 —-= - SA(C, =08)
. — —e - SST(C,_=06)
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Figure 7.2. Cp comparison of original shapes under varying Mach number at a C, of 0.5,
0.6, and 0.65.
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The drag coefficient Cp is 0.0356 obtained at @ = 3.56° with SA and 0.0379 obtained
at @ = 3.81° with SST model. The numerical results of the optimized shapes are given in
Table 6.1. In this table, the angle of attack for the optimum shapes is given as @ and the
angle of attack obtained with the optimum shapes at the target Cr, is ACrp o The angle
of attack obtained with the optimum shapes at the target Cy is 3.51° for SA model and
3.71° for SST model. The lift coefficient Cy is included in the objective function, and the
thickness constraints satisfied at each iteration; therefore, the number of iterations presented
in the table is equal to the total number of CFD (flow solver + adjoint solver) evaluations
required for convergence. As it can be seen in the table that the difference in the drag
reduction with SST is higher than SA model. This is expected as the Cp of the original
wing with SST model is 23 drag counts higher than the Cp of original wing with SA model.
This difference is reduced to 9 drag counts for the optimal shapes, which indicates that the
impact of selection of turbulence model is reduced at the specified C;. The computational
cost is almost constant with respect to turbulence models.

Figure 7.3 shows the wing sections at eight spanwise locations for the original and
optimal shapes obtained with each turbulence model. There is a noticeable difference
between the optimal and original shapes at each station. The upper and lower surfaces of

the optimal shapes are very similar for each turbulence model at stations A-D, however

Table 7.1. Deterministic optimization results obtained with SA and SST models at C; =
0.65.

Optimization Case Cp ACp (cst)  a(®) LT # of Iterations

Original (SA) 0.0356 - 3.56 - -
Original (SST) 0.0379 - 3.81 - -
Optimum (SA) 0.0302 54 3.58 3.51 21

Optimum (SST)  0.0311 68 3.82 3.71 18
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Figure 7.3. The comparison of the optimal and original shapes at selected spanwise stations.

the upper and lower surface of the optimal shapes nearby the trailing edge show slightly
different trend at stations E-H. In addition, the upper and lower surface of the optimal shapes
nearby the leading edge shows slightly different trend at stations G and H.

The comparison of C,, distribution of the optimal and original shape for CRM wing
at different spanwise stations are presented in Figure 7.4. The shock wave strength over the
original shape is weakened for the optimized shapes, in particular at stations C, D and E. The
difference in pressure distribution between two turbulence models is decreased significantly

at stations C-F.
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Original (SA)
Original (SST)
Optimized (SA)
Optimized (SST)

Figure 7.4. The comparison of C,, distribution of the optimal and original shapes at selected
spanwise stations.

The C,, distribution contours of the optimal and original shapes are shown in Figure
7.5. The shock wave strength is significantly reduced for the optimal shapes with both
turbulence models. A weak shock wave is observed in the vicinity of the trailing edge
nearby the tip of wing with SA model.

Overall, the results presented in this section show that the difference in aerodynamic
characteristic due to the selection of turbulence model is reduced significantly with deter-
ministic optimization at the design Mach number. Also, the computational cost stays nearly

constant with different turbulence models.
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Figure 7.5. The contour showing the C,, distribution over the optimized and original shapes
of the CRM wing.

7.3. ROBUST OPTIMIZATION

The impact of turbulence models and the weight distribution in the objective func-
tion on the computational cost, optimal shape and its performance obtained with robust
optimization under uncertainty is investigated.

7.3.1. Problem Statement. The robust design procedure is applied to the same
CRM wing studied for deterministic optimization; however, Mach number is considered a
uniformly distributed uncertain variable within the interval of [0.827,0.873]. Similar to de-
terministic optimization, the shape parameterization technique is FFD with 24 x15X2 control
lattice box. The uniform distribution is utilized to distribute the control points over the wing
geometry. The angle of attack is defined as a design variable within the interval of [2°,5°] and
Cy constraint is included in the objective function for a target mean Cy, of 0.65. The size of
control lattice box is setto [—1.0, 1.0] in z direction at each iteration. The thickness contraints
are located at [0.0%, 11.1%,22.2%,33.3%,44.4%, 55.5%, 66.7%,77.8%, 88.9%, 100%] of
the span defined with the non-dimensional values of [0.223,0.173,0.131,0.104,0.0901,
0.0782,0.0672,0.0569,0.0471,0.0374]. The wingspan, spanwise chord distribution, and
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sweep angle of the wing are preserved at each optimization iteration. The FFD control
points at both upper and lower surfaces at the leading and trailing edges are fixed in order
to prevent the change in spanwise twist direction. For robust optimization, the weighted
objective function is formulated to minimize the mean and variance of Cp simultaneously,

while keeping the mean of target C;, constant:

2 2

o1 Hcry, . — HC

minimize Wy |22 | g w, [ 2| 4oy, |t T E (7.6)
/lCDref O-CDref /lCLref

where the weights, Wi, W, and W3 are within the interval of [0, 1] according to Equation

6.10. ucy, , is 1.85x 107, o¢

Dre

,is4.08 x 107, and uc,  is 1.49 x 107", The weights
identify the contribution of each term to the objective function and the reference values
are used to bring the magnitude of values in each term to the same level. The impact of
each term on the optimal shape and its performance, robustness, and computational cost is
investigated by changing the weights in the objective function. The weights used in this
study are given in Table 7.2 for each case. The W, W5, and W3 are set to 0.36, 0.323
and 0.317 for the mean-biased weighting (MBW), respectively. The Wy, W,, and W3 are
set to 0.333, 0.333 and 0.334 for the equal weighting (EW), respectively. Variance-biased
weighting (VBW) is performed at the Wy of 0.3, the W, of 0.4, and the W3 of 0.3. To match
the target Cr, the optimization algorithm is began with @ = 3.56° for the SA model and
a = 3.81° for the SST model. In this formulation, the first term is related to the optimization
of the mean performance (i.e. the minimization of the mean of the drag coefficient), the
second term is used to minimize the variance of the design under the variation of Mach
number (i.e. the minimization of the variance of the drag coefficient), and the last term is
intended for the implementation of C;, constraint.

7.3.2. Robust Optimization Results. The statistical performance metrics of the
robust design at a target C; of 0.65 are given in Table 7.3. Similar to the deterministic

optimization, Cy is included in the objective function and the thickness constraints are
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satisfied at each iteration in robust optimization. N (6 for this study) is the number of
samples required to obtain the mean and variance of Cp and C;, with stochastic expansions.
The number of CFD evaluations is N times the number of iterations required for convergence
for robust design. The highest pic,, reduction is observed for the MBW case with SST model
corresponding to 51 drag counts. Similarly, the highest o¢,, reduction is observed for the
VBW case with SST model corresponding to 22 drag counts. The MBW and VBW cases
provided the lowest uc,, and o¢,, with both turbulence models when the same quantities
are compared for the same turbulence model. Another important observation is that the
U, difference between SA and SST models reduced significantly for all optimization
cases. In particular, the difference in pc,, between two models decreased from 23 to 2 drag
counts for the VBW case. Among all cases, the MBW case with SST model requires the
minimum number of iterations to converge. The computational cost stays constant with
both turbulence models for the MBW and VBW cases. Unlikely, the number of iterations
to converge is 19 and 24 for the EW case with SA and SST models, respectively. It should
be noted that the computational time per iteration for each case is approximately the same
since the sensitivities are obtained from an adjoint solution.

The original and optimized shapes for the MBW case with SA and SST models can
be seen in Figure 7.6. There is a significant difference between the original and optimal
CRM wing shapes, however the optimized shapes with different turbulence models are very
similar at stations A-F. The difference between the original and optimal shapes increases

from the root (station A) to the tip (station H) of the wing. The upper and lower surfaces of

Table 7.2. The robust design cases with different weight contributions to the objective
function.

Optimization Case Wi W W;
Mean-biased weighting (MBW)  0.360 0.323 0.317
Equal weighting (EW) 0.333 0.333 0.334

Variance-biased weighting (VBW) 0.3 0.4 0.3
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Table 7.3. Robust optimization results for the wing obtained at uc, = 0.65 with the SA and
SST models.

Optimization # of
Case Hcp  Ocp X 10° Auc,, (cts) Ao, (cts) Iterations «a (°)
Original (SA) 0.0356 4.06 - - - 3.56
Original (SST) 0.0379 3.61 - - - 3.81
MBW (SA)  0.0320 2.74 36 14 17 3.58
MBW (SST) 0.0328 2.26 51 13 16 3.82
EW (SA) 0.0328 2.38 28 17 19 3.59
EW (SST) 0.0335 1.65 44 20 24 3.83
VBW (SA) 0.0331 1.99 25 21 22 3.59
VBW (SST) 0.0333 1.38 46 22 22 3.83

02

Original
Optimized (SA, MBW)
01k Optimized (SST, MBW)

0.241

014 0.22%-

Figure 7.6. The comparison of original and optimal shapes at different spanwise stations
for the MBW case with SA and SST models.
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the optimal shapes nearby the trailing edge with different turbulence model show slightly
different trend at stations G and H. The slight difference in the lower surface of the optimal
shapes nearby the leading edge with different turbulence model can also be observed at the
same stations.

Figure 7.7 presents the C, distributions of the original and optimized shapes at
selected spanwise stations for the MBW case with SA and SST models at a C;, of the
0.65 at M, mina corresponding to the mean of the Mach number interval considered. The

pressure distributions obtained with different turbulence models are close to each other at

Original (SA)

Original (SST)
Optimized (SA, MBW)
Opﬂmized (SST, MBW)

Figure 7.7. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW case with SA and SST models at C;, = 0.65 at
Myominai -
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stations A-F. The difference between the optimum shape pressure distributions can be seen
on the upper and lower surfaces at stations G and H where the shapes are different. The
difference due to the selection of turbulence model is reduced significantly at stations B-F.
Two weaker shock waves are observed at stations F-H. The strength of the shock wave is
reduced at stations D and E with SST model.

Figure 7.8 presents the C, distributions of the original and optimized shapes at
selected spanwise stations for the MBW case with SA and SST models at a Cy, of the 0.65

at M, corresponding to the maximum of the Mach number interval considered. The

Original
- Original (SST)
——e—— Optimized (SA, MBW)
Optimized (SST, MBW)

Figure 7.8. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW case with SA and SST models at C;, = 0.65 at
Mmax M
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pressure distributions obtained with different turbulence models are close to each other at

each station. The difference due to the selection of turbulence model is reduced significantly

at stations C-G. In particular, the same C, distribution is observed at station E with SA and

SST models. The strength of the shock wave is reduced significantly at stations E, F and

H. The reduction in shock wave strength was more at M,,,, compared to the reduction at

Mnominal .

Figure 7.9 presents the original and optimized shapes at selected spanwise stations

for the EW case with both turbulence models. As observed for the MBW case, the different

turbulence models provide similar optimized shapes at each station except stations G and H.
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Optimized (SA, EW)
Ly Optimized (SST, EW)
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Figure 7.9. The comparison of original and optimal shapes at selected spanwise locations

for the EW case with SA and SST models.
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There is a significant difference between the original and optimized shapes at each station,
and this difference increases from station A to H along the spanwise direction. Similar to
the MBW case, the difference between the optimum shapes can be observed at the upper
and lower surfaces in the vicinity of leading and trailing edge at stations G and H.

Figure 7.10 shows the C, distributions of the original and optimized shapes at
selected spanwise locations for the EW case with two turbulence model at M, ina at
the C; of 0.65. The difference due to the selection of the turbulence model is reduced

significantly at stations B-F. The difference in the pressure distribution between optimum

Original (SA)
15 - Original (SST)
——=—— Optimized (SA, EW)
Optimized (SST, EW)

Figure 7.10. The comparison of C, distributions for the original and optimum shapes at
selected spanwise locations for the EW case with SA and SST models at C;, = 0.65 at
Myominai -
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shapes can be observed on the upper and lower surfaces at stations G and H where the
difference in the wing profile shapes is observed. Two weaker shock waves are observed
at stations F-H. The strength of shock wave is reduced significantly at station D with SST
model.

Figure 7.11 presents the C, distributions of the original and optimized shapes at
selected spanwise stations for the EW case with two turbulence model at M,,,, at a Cp of
0.65. The difference in pressure distribution between the optimum shapes is very small at
each station. Similar to the MBW case, the C, distribution with SA and SST models are the

same at station E. The shock wave is weakened at stations E, F and H. The difference in C,

Original (SA)

Original (SST)

Optimized (SA, EW)
——=—— Optimized (SST, EW)

Figure 7.11. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the EW case with SA and SST models at C;, = 0.65 at M.
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distributions due to the selection of the turbulence model and the strength of shock wave are
reduced more at M,,,, compared to the reductions observed at M,;,;;inq for the EW case.
The original and optimal shapes at selected spanwise stations for the VBW case
with each turbulence model can be seen in Figure 7.12. The significant difference between
the original and optimal shapes is shown at each station. Similar to the other cases the
optimum shapes are very close to each other at each station except the locations G and H.
The difference between the optimum shapes can be seen on both upper and lower surfaces

nearby the leading and trailing edges.
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Figure 7.12. The comparison of original and optimal shapes at selected spanwise stations
for the VBW case with SA and SST models.
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Figure 7.13 represents the pressure distribution of the original and optimal shapes
at selected spanwise stations for the VBW case with each turbulence model at a Cy, of 0.65
at Myominai- The C, distribution of the optimum shapes are close to each other at each
station. In particular, the difference in C,, distributions between the two turbulence models
decreased significantly at stations E-G. The reduction in the strength of shock wave can be
seen at stations D and H. Similar to the other cases (MBW and EW), two weaker shock

waves are observed at stations E-G.

——=—— Original (SA)
. Original (SST)
——=e—— Optimized (SA, VBW)
Optimized (SST, VBW)

Figure 7.13. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the VBW case with SA and SST models at C; = 0.65 at

Mnominal .
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The pressure distribution of the original and optimal shapes at selected spanwise
stations for the VBW case with each turbulence model at a Cy, of 0.65 at M,,,, is presented in
Figure 7.14. The difference in C, distributions due to the selection of the turbulence model
is reduced remarkably at each station, in particular for locations E-G. The reduction in the
shock wave strength is observed at stations E-G. Similarly to the previous cases (MBW and
EW), more reduction in the shock strength is observed at M,,,, compared to the reductions

observed for M,,pminai-

Original (SA)

Original (SST)
Optimized (SA, VBW)
Optimized (SST, VBW)

Figure 7.14. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the VBW case with SA and SST models at C; = 0.65 at
Mmax~
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The comparison of the original and optimal shapes at selected spanwise stations
for the VBW, MBW and EW cases with SA model is presented in Figure 7.15. There is
a remarkable difference between the original and optimum shapes at each spanwise. The
difference between the original and optimum shapes increases from root to the tip of the
CRM wing. The optimum shapes for the MBW case provides slightly different trend on
the upper and lower surface nearby the trailing edge compared to the other two optimum
shapes at stations E-G. At station H, the optimum shapes for the VBW and EW cases are
observed to be similar, however the optimum shape for the MBW case shows a different

trend for both upper and lower surfaces.

0.2 Original (SA)
* Optimized (SA, MBW)
Optimized (SA, EW)
0.1k Optimized (SA, VBW)
A

0.28} s

0.26% —_

-0.05

0.241

01k 0.22%-

Figure 7.15. The comparison of original and optimal shapes at selected spanwise stations
for the MBW, VBW and EW cases with SA model.
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Figure 7.16 presents the C, distribution of original and optimum shapes at selected
spanwise stations for the MBW, VBW and EW cases with SA model at a C; of 0.65 at
M ominai- The pressure distributions of optimum shapes for all cases are similar at stations
A and B. The C, distribution of the optimum shape for the MBW case is slightly different
compared to the C,, distribution for the other cases at stations C-F. The C,, distribution of
optimal shapes on upper surface is different for each case at stations G and H. The single
strong shock wave observed over the original wing shape is replaced with two weaker shock

waves over the optimum shape at stations E-H.

Original (SA)
------------ Optimized (SA, MBW)
——a—— Optimized (SA, EW)

Optimized (SA, VBW)

Figure 7.16. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW, VBW and EW cases with SA model at C; = 0.65
at Mnominal .
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Figure 7.17 presents the C, distribution of the original and optimum shapes at
selected spanwise stations for the MBW, VBW and EW cases with SA model at a C;, of
0.65 at M,,,,. The pressure distribution of optimum shapes are similar at stations A and
B, however the difference in the C, distribution of optimum shapes among all cases can
be seen at stations G and H where the optimum shapes are different. The C, distribution
of optimum shape for the MBW case shows different trend compared to the other cases
at stations C-F. The reduction in shock strength is noticeable at stations E and H for all
cases. At M., there is less difference in pressure distributions due to the selection of
the turbulence model compared to the difference at M, ypinqa;. The shock strength is also

reduced more at M, .

Original (SA)
------------- Optimized (SA, MBW)
———=—— Optimized (SA, EW)

Optimized (SA, VBW)

Figure 7.17. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW, VBW and EW cases with SA model at M,,,, at
Cr =0.65.
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The comparison of original and optimized shapes at selected spanwise stations for
the MBW, VBW and EW cases with SST model is presented in Figure 7.18. Similar to
SA model, the difference between the original and optimal shapes is remarkable for all
cases at each station. The optimal shapes are similar at stations A and B, however the
noticeable difference between the optimal shapes can be observed at stations G and H. The
optimal shapes for the MBW case exhibits a different trend on the upper and lower surfaces
nearby the trailing edge compared to the other optimum shapes. The difference between

the original and optimum shapes increase from root to tip of the wing.

Original (SST)
------------- Optimized (SST, MBW)
Optimized (SST, EW)

0.2
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Figure 7.18. The comparison of original and optimal shapes at selected spanwise stations
for the MBW, VBW and EW cases with SST model.
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Figure 7.19 shows the pressure distribution of the original and optimized shapes at
selected spanwise stations for the MBW, VBW and EW cases with SST model at a Cy of
0.65 at M, omina;- The pressure distributions of optimum shape for VBW and EW cases
present similar trend at stations A-F, however the C, distributions of the optimum shape
obtained with MBW case are slightly different at the same stations. At stations G and H,
the C, distributions of the optimum shapes with MBW and EW cases are fairly different
compared to the C, distribution of the optimum shape for the VBW case. The strength
of shock wave is reduced significantly at station D, and the single shock of the original

geometry is replaced with two weaker shocks over the optimum shape at stations E-H.

Original (SST)
P o--oeeaeees Optimized (SST, MBW)
——o—— Optimized (SST, EW)

- Optimized (SST, VBW)

Figure 7.19. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW, VBW and EW cases with SST model at C;, = 0.65
at Mnominal-
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The C, distributions of the original and optimal shapes at selected spanwise stations
for the MBW, VBW and EW cases with SST model at a Cy, of 0.65 at M,,,,, is presented in
Figure 7.20. The C, distribution of the optimum shapes for VBW and EW cases follow a
similar trend compared to the optimum shapes for the MBW case at stations A-F, however
the C, distribution of optimum shape for the EW and MBW cases is similar compared to
the optimal shape for the VBW case at stations G and H. The strength of the shock wave is
reduced remarkably at stations F-H.

Overall, the detailed shape and pressure distribution analysis performed in this
section indicate that the impact of the selection of turbulence models on the aerodynamic

characteristics (i.e., the pressure distribution) of the wing is reduced remarkably with

Original (SST)
Optimized (SST, MBW)
Optimized (SST, EW)
Optimized (SST, VBW)

Figure 7.20. The comparison of C, distributions for the original and optimum shapes at
selected spanwise stations for the MBW, VBW and EW cases with SST model at C;, = 0.65
at M,y
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robust optimization over the Mach number range considered. This is consistent with the
observations made for the 2-D robust optimization results. Also, the weights used in the
objective function has a larger effect on the optimal shape and the associated aerodynamic
characteristics of the optimized wing geometry than the effect of turbulence model in the

robust optimization.

7.4. COMPARISON BETWEEN ROBUST AND DETERMINISTIC OPTIMIZA-
TION

In deterministic optimization, the wing shape is optimized to minimize the drag
coeflicient at a target C;, for a certain Mach number with the angle of attack defined as
a design variable, However, the performance of optimized shape noticeably degrade if
the Mach number changes from its design point in transonic flow. The objective of robust
aerodynamic design is to minimize the mean (uc,,) and variance (o¢,, ) of the drag coefficient
at a target mean lift coefficient ('“CLTarget) to achieve robustness in the performance over the
specified range. The number of iterations required to converge is greater with the robust
design than the deterministic design for VBW case with both turbulence models and for the
EW case with SST model (see Table 7.1 and 7.3). Similar to the 2D study, the number of
total CFD evaluations is equal to the total number of iterations to converge in deterministic
design, whereas the number of total CFD evaluations in Ny times the number of iterations
required to converge in robust optimization. The computational cost of robust design
per optimization iteration is six times higher than the computational cost of deterministic
optimization. In this section, the difference between the performance of the robust and
deterministic designs are investigated over the uncertain Mach number range. The effect of
the turbulence model is also demonstrated.

The variation of the drag coefficient of the original shape, deterministic design and
robust design with the Mach number are presented in Figure 7.21 for each test case for the

SST model. The drag coeflicient of each shape are evaluated at the target Cy, of 0.65. The
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Cp of the original CRM wing is the highest over the entire Mach number range except the
minimum Mach number. At M = 0.85, which is the deterministic design point, the Cp of
the deterministic design is approximately 69 drag counts. There is a slight drop in Cp until
the deterministic design Mach number and then a significant increase occurs as the Mach
number increases. This trend clearly shows that the deterministic optimization performs
relatively poorly at the off-design Mach numbers. On the other hand, the wing obtained with
the robust optimization approach exhibits a relatively flat Cp curve over the Mach number
range with a slight increase starting from M = 0.865. The shape obtained with robust
optimization achieves 43 drag counts for the MBW case, 46 drag counts for the EW case,
and 52 drag counts for the VBW case compared to deterministic design at M,,,,,, = 0.872.
The shape obtained with robust optimization for the MBW case performs better than the
other two robust designs until the deterministic design Mach number, however its increment
in Cp is larger than the other two robust designs after the nominal Mach number. The robust
design obtained with VBW case improves the robustness more than the other two robust
designs. Overall, robust design performs better than the deterministic design in terms of

robustness and the mean performance over the Mach number range considered.

—=o—— Original (SST)
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Figure 7.21. Cp comparison of original and optimum shapes (deterministic and robust)
with SST under varying Mach number at C;, = 0.65 (The MBW, VBW, EW cases).
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In Figure 7.22, the variation of the drag coefficient of the original, deterministic
design, and robust design with the Mach number are presented for each test case for the SA
model. The drag coefficient values of each shape are evaluated at the target C;, value of 0.65.
The Cp of deterministic design decreases until M = 0.85 and then increases dramatically.
The robust design, the VBW case in particular, provides relatively flat Cp curve unlike the
deterministic design over the Mach number range. At M,,,, = 0.872, the shape obtained
with robust optimization achieves 28 drag counts for the EW case, 30 drag counts for the
MBW case, and 31 drag counts for the VBW case compared to deterministic design. The
robust design with the MBW case provides better mean performance compared to the other
two robust designs. Similar to the SST model, robust design has better performance than
deterministic design in terms of robustness over the defined Mach number range.

From Figure 7.23, it can be seen that the robust design obtained with VBW case with
SST model gives the best result in terms of the mean performance and robustness obtained
over the Mach number range that is considered for both turbulence models. It is also
observed that the robust design tends to reduce the impact of the turbulence model selection

on the optimum shape and performance, because the turbulence model becomes important
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Figure 7.22. Cp comparison of original and optimum shapes (deterministic and robust)
with SA under varying Mach number at C; = 0.65 (The MBW, VBW, EW cases).
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Figure 7.23. Cp comparison of original and optimum shapes (deterministic and robust)
under varying Mach number at C; = 0.65 MBW (left), EW (middle), VBW (right).

for the deterministic design at off-design conditions. The effect of weight contribution on
the objective function on robust design is more significant than the effect of turbulence
model.

The comparison of original and optimal shapes for both deterministic and robust
optimization obtained with the VBW case with SST model, which is identified as the best
approach for robust design, is presented in Figure 7.24. Optimized shapes obtained with
robust and deterministic optimization are similar at station A. The optimal shapes for both
designs are slightly different at stations G-H, which is sufficient enough for the robust
design to provide better performance under varying Mach number as shown in Figure 7.21.
Thickness constraints are satisfied with both designs.

In Figure 7.25, the comparison of C, distributions of the original and optimized
shapes at M, omina1 is presented. The pressure distribution of optimal shapes for both
designs show similar trend at stations A-C; however, the difference between the pressure
distributions of two designs can be observed for the upper surface at stations D-H. The
strength of the shock wave is significantly reduced over the deterministic design at stations
D-F; however it is replaced with two weaker shocks over the robust design especially at

stations E-H.
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Figure 7.24. The comparison of original and optimized (robust and deterministic) shapes
at selected spanwise stations.

In Figure 7.26, the comparison of C, distributions of the original and optimized

shapes at M),y is shown. Similar to the findings at M,,,minal, the pressure distribution of

optimal shapes for both designs show similar trend at stations A-C; however, the difference

between the pressure distribution of two designs on upper surface increases at stations

D-H. The strength of shock wave is reduced noticeably at stations E and H of the robust

design. Overall, the strength of shock wave is weaker over the robust design compared to

the deterministic at M,,,,,.
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Original

Optimized (Deter., SST)
——s—— Optimized (Robust, SST, VBW)

Figure 7.25. The comparison of C, over original and optimized shapes at C; = 0.65 at
M ominal for the best robust design (The VBW case with SST model).

Figure 7.27 shows the pressure coefficient contours over the optimized (deterministic
and robust) and original shapes of the CRM wing at M, ,pina and at M,,,, at Cp, = 0.65
for the best robust design case which was obtained with VBW case and SST model. The
strength of the shock wave is decreased with both deterministic and robust designs. The

shock wave is weaker over the robust design compared to the deterministic design.
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Original

Optimized (Deter., SST)
———— Optimized (Robust, SST, VBW)

Figure 7.26. The comparison of C, over original and optimized shapes at C; = 0.65 at
M, for the best robust design (The VBW case with SST model).

Overall, the relatively flat profile of the Cp under varying Mach number obtained
with two turbulence models and three different weight cases indicates that the robustness of
the wing improved significantly with stochastic optimization compared to the deterministic
design. On the other hand, the robustness, especially with the VBW case, comes at the

expense of an increase in yc,, compared to the Cp values of the deterministic design.
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M =0.854 (Mnominal)
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M = 0.872 (Mynax)

Figure 7.27. The C, contours at C;, = 0.65 over optimized and original shapes for the best
robust design case (The VBW case, SST model).
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8. CONCLUSIONS AND FUTURE WORK

The main objective of this study is to investigate the impact of the two commonly
used turbulence models (SA and SST) in Reynolds-Averaged Navier-Stokes simulations on
two-dimensional and three-dimensional optimum design obtained with gradient-based de-
terministic and robust aerodynamic shape optimization in transonic, viscous, turbulent flow.
The impact of shape parameterization technique is also investigated for two-dimensional
optimization problem. The impact of each turbulence model and shape parameterization
technique is evaluated in terms of computational cost and difference in the shape and per-
formance of the final design. The inherent variation of Mach number in transonic flow is
modeled as the uncertain operating condition for the robust design study. The same shape
parameterization techniques and turbulence models are first applied to the deterministic
optimization of the same airfoil and wing geometry at the mean Mach number to make
comparison between the deterministic and robust optimization findings. In the robust opti-
mization methodology, stochastic expansions obtained with point-collocation non-intrusive
polynomial chaos (NIPC) technique are utilized for uncertainty quantification due to their
computational accuracy and efficiency in stochastic aerodynamics problems.

The objective of deterministic optimization of RAE2822 airfoil is to minimize the
drag coeflicient at a target lift coefficient of 0.824 (implemented in the objective function)
subject to area constraint at M = 0.734. The deterministic optimization of RAE2822 airfoil
is performed for B-spline curves with 20 control points, Hicks-Henne bump functions
with 256 bump functions and #, = 10 (the width of the function), and FFD with 2 x 40
control lattice with the size of [-0.1,0.1] in the z direction. The uniform distribution is
implemented for the spacing of design variables over the geometry for each parameterization
technique. The objective of robust optimization of RAE2822 airfoil is to minimize the

mean and variance of drag coefficient at a mean of target Cy of 0.824 (implemented in the
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objective function) subject to area constraint. Mach number is considered as a uniformly
distributed uncertain variable within the interval of [0.725,0.743]. The robust optimization
of RAE2822 airfoil is performed for B-spline curves with 20 control points, Hicks-Henne
bump functions with 256 bump functions and 7, = 10 (the width of the function), and
FFD with 2 x 20 control lattice with the size of [—0.1,0.1] in the z direction. A cosine
distribution is used for the spacing of design variables over the geometry for B-spline curves
and Hicks-Henne bump functions. Uniform distribution is used for the FFD technique. The
optimization algorithm is started with @ = 2.92° for the SA model and @ = 3.06° for the
SST model as an initial value both for deterministic and robust optimization. The angle
of attack is defined as design variable for the deterministic and robust optimzation of the
RAE2822 airfoil. The objective of deterministic optimization of CRM wing is to minimize
the drag coefficient at a target lift coefficient of 0.65 (implemented in the objective function)
subject to thickness constraint at M = 0.85. The deterministic optimization of CRM wing
is performed for 24 x 15 X 2 control lattice box (uniformly distributed over the geometry)
with the size of [-1.0,1.0] in z direction with FFD technique. The objective of robust
optimization of CRM wing is to minimize the mean and variance of drag coefficient at
a mean of target lift coefficient of 0.65 (implemented in the objective function) subject
to thickness constraint. Mach number is considered as a uniformly distributed uncertain
variable within the interval of [0.827,0.873]. The control lattice box used for deterministic
optimization is used for robust optimization of the CRM wing with the same FFD box size.
The optimization algorithm is started with @ = 3.56° for the SA model and @ = 3.81° for
the SST model as an initial value both for deterministic and robust optimization. The angle
of attack is defined as design variable for the deterministic and robust optimzation of the
CRM wing.

The results of the 2-D study show that the shape parameterization technique has
larger effect on the computational cost than the turbulence model both for deterministic and

robust optimization. In general, robust design tends to reduce the impact of the turbulence
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model selection on the optimum shape and performance, whereas the turbulence model
becomes important for the deterministic design at off-design conditions. The effect of the
shape parameterization technique on robust design is more significant than the effect of the
turbulence model. The robust design of streamlined aerodynamic shapes such as airfoils
and wings lead to simplified flow fields over these geometries (e.g., with weak or no shock
waves and no flow separation), which reduces the impact of the selection of the turbulence
models as these models provide similar solutions over the same geometries at a range of
operating conditions. The same observation can be made for the deterministic design but
only at the design point. However, for aerodynamic designs obtained with deterministic
or robust optimization that still include complex flow physics over the final configuration,
and the turbulence model may still play an important role on the optimum shape and the
performance prediction.

In 2-D study, the robust design obtained with the Hicks-Henne shape parameteri-
zation gives the best result in terms of the mean performance and the robustness over the
Mach number range considered for both turbulence models. In this study, the improvement
of the robustness of the final design obtained with stochastic optimization approach is also
demonstrated over the Mach number range considered as the uncertain operating condition.

The results of the 3-D study show that the computational cost of optimization
remains approximately constant for each turbulence model. It is observed that the drag
reduction is larger with SST model than the SA model; however, the drag value of original
shape is also significantly larger with the SST model. Similar to 2-D results, at the target
Cr and Mach number, the difference between the drag and pressure distributions for the
optimal shapes obtained with each turbulence model is reduced, which indicates that the
optimization tends to minimize the impact of selection of the turbulence model on the
aerodynamic analysis. The difference in Cp between two turbulence models at higher off-
design Mach numbers is also reduced significantly. The impact of selection of turbulence

model on the optimum shape and performance is reduced significantly over the uncertain
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Mach number range considered with robust optimization. The effect of weight distribution
in the objective function is larger than the effect of turbulence model on the optimal design
obtained with robust optimization below the design Mach number value. Optimized wing
geometries exhibit better performance under varying Mach number than the original wing
for both turbulence models.

The future work may focus on the multidisciplinary optimization of the CRM
wing. The deterministic and robust optimization approaches introduced in this work can
be applied to the optimization of the aeroelastic response of the CRM wing. The effect of
initial design on the computational cost, the shape and performance of the final design may
be investigated by utilizing the deterministic optimium design as an initial geometry. In
addition, the multimodality of robust aerodynamic shape optimization of CRM wing may

be investigated in the future.
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Three additional grids are generated based on the medium grid by conserving the
original grid topology. These grids include a coarse grid and two finer grids, L1 and
L2. The results presented in this study obtained from the deterministic and robust shape
optimization studies utilized the medium grid as the baseline (RAE2822) mesh. It should
be noted that, in some previous studies, the same medium grid used in the current work was
also utilized for the validation of turbulence models [77, 78]. The coarse grid is generated
by coarsening the medium grid by a factor of approximately 2 in both airfoil surface and
normal directions. This ratio of 2 was strictly enforced in the structured part of the grid (i.e.,
region with quadrilaterals) close to the surface. L1 grid is created by refining the medium
grid by a factor of approximately 2 in both directions while this ratio of 2 was again strictly
enforced in the structured part of the grid close to the surface. In a similar way, L2 grid is
generated by refining the L1 grid by a factor of approximately 2 in both directions.

Tables A1 and A2 give a summary of the lift (Cz ) and drag (Cp) coeflicients obtained
for the RAE2822 airfoil with the four grid levels outlined above. The simulations for all
grid levels are performed at a Mach number of 0.734, Re number of 6.5 X 10%, @ = 2.92°
for SA and @ = 3.06° for SST model. The Cp of L1 and L2 grids with SA model are 4
and 3 drag counts higher than medium grid, respectively. The Cp of L1 and L2 grids with
SST model are 1 drag count higher than medium grid. The comparison of C, distributions
obtained with the four grid levels and SA and SST models are presented in Figure Al. The
C, distributions of all grid levels except the coarse grid are close to each other for each
turbulence model and they are in good agreement with the experimental data [79]. Overall,
the grid convergence results reported here indicate that the medium grid level utilized in
this study has sufficient accuracy in resolving the quantities of interest used in aerodynamic

shape optimization of RAE2822 transonic airfoil.
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Table Al. Summary of the grid convergence study with SA model.

+

Grid Total Cells Cp, Cp Z
L2 365,208 0.845 0.0212 0.6
L1 90,410 0.842 0.0213 0.95

Medium 22,842 0.824 0.0209 1.0
Coarse 7,382 0.764 0.0197 5.2

Table A2. Summary of the grid convergence study with SST model.

+

Grid Total Cells Cp, Cp Z
L2 365,208 0.833 0.0218 0.6
L1 90,410 0.832 0.0218 0.95

Medium 22.842 0.824 0.0217 1.0
Coarse 7,382 0.786 0.0228 5.2
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Figure Al. The comparison of C,, over RAE2822 airfoil at different grid levels with SA and
SST models. a) C,, with SA model. b) C,, with SST model.
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Three additional grids are created based on the medium grid by conserving the
original grid topology. The additional grids include one fine and two coarser grids, C1
and C2. The results presented in the study obtained from deterministic and robust shape
optimization studies used the medium grid as the baseline (CRM) mesh. The fine grid is
generated by refining the medium grid by a factor of 2 in each computational direction. The
C1 is created by coarsening the medium grid by the factor of 2 in the streamwise direction.
The C2 is generated by coarsening the medium grid by the factor of 2 in each computational
direction.

Tables B1 and B2 give a summary of the lift (Cy ) and drag (Cp) coefficients obtained
for the CRM wing with the four grid levels outlined above. The simulations for all grid
levels are performed at a Mach number of 0.85, Re number of 5.0 X 10°, @ = 3.56° for
SA and @ = 3.81° for SST model. The Cp of the fine grid with SA and SST models are
3 and 5 drag counts higher than the medium grid, respectively. The Cp of the C1 and C2
with SA model are 12 and 9 drag counts higher than the medium grid, respectively. The Cp
of the C1 and C2 with SST model are 6 and 32 drag counts higher than the medium grid,
respectively. The comparison of C,, distributions obtained with four grid levels with SA and
SST models are presented in Figure B1 and B2, respectively. The C,, distributions of the
fine and medium grid are close to each other at each station for each turbulence model. The
C, distribution of C1 and C2 are significantly different than both fine and medium grids
at all stations except station A for each turbulence model. Overall, the grid convergence
results reported here indicate that the medium grid level utilized in this study has sufficient
accuracy in resolving the quantities of interest used in aerodynamic shape optimization of

the CRM wing.
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Table B1. Summary of the grid convergence study with SA model.

Grid  Total Cells Cj Cp al

Fine 3,604,480 0.669 0.0359 0.69
Medium 450,560  0.65 0.0356 1.58
C1 265,440  0.607 0.0344 1.81
C2 56,320  0.591 0.0365 4.44

Table B2. Summary of the grid convergence study with SST model.

Grid  Total Cells Cj Cp zt

Fine 3,604,480 0.649 0.0371 0.68
Medium 450,560  0.65 0.0376 1.56
Cl1 265,440 0.611 0.0370 1.73
C2 56,320  0.624 0.0408 4.38

Fotesesasesensn,
. 3
C

Figure B1. The comparison of C,, over CRM wing at various spanwise locations at different
grid levels with SA model.
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Figure B2. The comparison of C,, over CRM wing at various spanwise locations at different
grid levels with SST model.
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The objective of the study presented in this section is to investigate and identify
the optimum number of design variables and their distribution(cosine or uniform) over the
geometry for each shape parameterization technique (Hicks-Henne, Bspline and Free Form
Deformation) for robust aerodynamic shape optimization of RAE2822 airfoil described in
Section 6. The parametric study for each shape parameterization technique is evaluated
in terms of the computational cost, the shape of final design, and its performance in

deterministic and robust aerodynamic shape optimization.

1. PARAMETRIC STUDY FOR DETERMINISTIC OPTIMIZATION

1.1. PROBLEM STATEMENT

The objective of deterministic optimization is to reduce the drag coefficient Cp
of the airfoil at a specified Mach number subject to a specified minimum lift coefficient
Cr, and area constraint. The optimization of RAE2822 airfoil is performed for viscous
turbulent flow at a Mach number of M = 0.734 and a Re number of 6.5 x 105, The
shape parameterization techniques studies included B-spline curves with 12, 16, 20, 40 and
60 control points, Hicks-Henne bump function with #, = 10, 20 and 30 (the width of the
function) and with 20, 38, 40, 60, 80, 96, 128, 192 and 256 bump functions, FFD with 2x 10,
2x%20,2x%x30,2x40,2x48,2x64,2x%x96, and 2 x 128 control lattice with the size of control
lattice of [-0.1,0.1], [-0.09,0.09], [-0.08,0.08], and [-0.07,0.07]. In FFD, the boundary
of each control point is set [0.5z;, 1.5z;] and [0.25z;, 1.75z;] where z; is the z coordinate of ith
control point at each iteration. In addition, the uniform (UD) distribution is demonstrated for
the spacing of design variables along the airfoil chord for each parameterization technique.
The cosine (CoD) distribution is demonstrated for the spacing of design variables along
the airfoil chord for B-spline and Hicks-Henne techniques. The x-location of design points
based on cosine distribution is obtained with Equation (6.12). The angle of attack is defined

as a design variable for all cases and C constraint is included in the objective function,
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setting the target Cy, as 0.824. For B-spline curves, the angle of attack is constraint within
the interval [—10.0°,10.0°] and the non-dimensionalized vertical position of each control
point is limited with the interval [-0.1,0.1]. For Hicks-Henne bump function, the angle of
attack is constraint within the interval [2.0°,4.0°]. The effect of function amplitude limit set
for each iteration is studied for intervals [-0.1,0.1] and [-0.01,0.01]. For FFD technique,
the angle of attack is constrained within the [2.0°,4.0°]. The optimization algorithm is
started with the original airfoil shape and @ = 2.92° as an initial value. A weighted
objective function is defined to include the C;, constraint besides the main objective of the

minimization of the Cp:
) 2
minimize WiC% + W, (CLT“W - CL) (1)

where the weights Wy is 10* and W, is 10!, The contribution of each term in terms of their
percentage is investigated on test cases and the optimum combination is selected according

to test case outputs.

1.2. DETERMINISTIC OPTIMIZATION RESULTS

Figure 1 shows deterministic optimal shapes and original shape of RAE2822 using
Hicks-Henne method as the parameterization technique in the optimization. These cases
were obtained with #, = 10 and the interval [-0.01,0.01] for the function amplitude limit.

The Cr, of the original shape is 0.824 and the Cp is 0.0209 at @ = 2.92°. The area
of the airfoil is non-dimensionalized by c¢?, which is 0.0778 for the original geometry and
the objective function value at the first iteration is 4.3882. The numerical results of the
optimized shapes in Figure 1 is given in Table 1. According to data in Table 1, the drag is
reduced 77 drag counts at 128bf and 192bf uniformly distributed cases, 76 drag counts at
256bf (UD) and 78 drag counts at 256bf (CoD). 256bf with UD and CoD converged in 21

and 27 iterations, respectively. However, 128bf and 192bf with UD converged 45 and 29
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iterations, respectively. According to this data, one of the finding is the number of bump
function has a significant impact on computational cost. As it can be seen in Figure 1,
optimized shapes with UD are very similar and their lift and drag coefficients are close as
well. There is a slight difference with CoD case which can be due to the x-location of the
bump functions. This also affects the aerodynamic coefficients of the optimized shapes.
256bf (UD) at t, = 10 with the interval [-0.01,0.01] is selected as the best case.

The pressure distributions of original and optimized shapes are presented in Figure
2. The shock wave over the original shape is weakened for the optimized shapes and

UD shapes exhibit the same surface pressure distribution. For the CoD case, the distance

——— Original

————— Optimized (128bf, Uniform)
——— Optimized (192bf, Uniform)
—— Optimized (256bf, Uniform)
------------- Optimized (256bf, Cos)

oogb 0 vy )
0'080 0.2 04 0.6 0.8 1

x/c

Figure 1. The comparison of the optimal (deterministic) and original shapes for the
RAE2822 airfoil (Hicks-Henne Shape Parameterization).

Table 1. Numerical Results for the original and optimized shapes (Hicks-Henne Shape
Parameterization).

# of Bump Functions CL Cp Objective Func.  Area  # of Iterations
Original 0.824 0.0209 4.3882 0.0778 -
128bf (UD) 0.829 0.0132 1.7519 0.0815 45
192bf (UD) 0.828 0.0132 1.7360 0.0814 29
256bf (UD) 0.829 0.0133 1.7565 0.0813 21

256bf (CoD) 0.840 0.0131 1.7223 0.0806 27
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Original

Optimized (128bf, Uniform)
Optimized (192bf, Uniform)
Optimized (256bf, Uniform)
------------- Optimized (256bf, Cos)

Figure 2. The comparison of C, distribution of the optimal (deterministic) and original
shape for the RAE2822 case (Hicks-Henne Shape Parameterization).

between x-locations of bump functions is small in the vicinity of the leading and trailing
edges. The effect of this feature can be seen on the pressure distribution of optimized shape
especially in peak suction pressure close to the leading edge.

Figure 3 shows the Mach contours of optimized and original shape of RAE2822.
The shock wave over the original shape, which causes drag and reduces airfoil performance,
is significantly weakened on the optimized shape. The Mach contours of optimized shapes

(256bf) with respect to different distributions is indistinguishable.

Figure 3. The contours showing Mach number over optimized (deterministic) and original
shape of RAE2822 (Hicks-Henne Shape Parameterization).
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In Figure 4, Cp, Cr and the number of iterations to converge are presented for
two distributions (UD and CoD) and three function amplitude (#;) values as a function of
the number of bump functions (design variables) with the function amplitude boundary
[-0.1,0.1]. Drag coefficients are lower with less number of bump functions, however there
is a significant increment after 96bf. Lift coefficient trends and the number of iterations
to converge are consistent with the Cp trends. Cp values at UD cases are closer to the
target C;, (0.824) compared to the cosine distribution cases. Cp for UD, 20bf case is
lower than target Cy, which is likely due to the fact that C;, constraint is integrated into the
objective function instead of defining as a constraint separately. The number of iterations for
convergence decreases consistently as a function of the number of bump functions. Since
the computational time for each iteration is approximately the same for all cases, it can be
said that the computational time for each case decreases significantly with the increase of
the number of bump functions (design variables). According to Figure 4, 40bf with UD
at © = 10 within the interval [-0.1,0.1] is the optimal case in terms of drag value and

computational cost.
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Figure 4. (a) Cp vs. number of bump functions for UD, CoD, and #, values. (b) Cr vs.
number of bump functions for UD, CoD, and t, values. (c) The number of iterations to
converge vs. number of bump functions for UD, CoD, and #, values. (For all plots, the
function amplitude boundary is [-0.1,0.1]).



99

In Figure 5, Cp, Cr and the number of iterations to converge are presented for
two distributions (UD and CoD) and three function amplitude (#;) values as a function of
the number of bump functions (design variables) with the function amplitude boundary
set to [—-0.01,0.01]. Drag coefficient decreases with the number of bump functions for
both distributions and all #, values. In terms of Cp, UD and CoD cases with #» = 10 for
all number of bump functions perform better, converging to a Cp value of approximately
77 drag counts beyond 50bf (design variables). Cp constraint is satisfied for all cases
which shows the effect of boundary set for bump function amplitudes on this quantity.
Reducing the number of design variables increases the number of iterations to converge
which directly affects the computational cost compared to the boundary with the interval
[-0.1,0.1]. Among all cases, 256 bf (UD) with t, = 10 within the interval [-0.01,0.01] is
observed as the best case in terms of the computational cost, reduction in drag coefficient
and C;, constraint satisfaction.

Hicks-Henne bump function results show consistency when the function amplitude
is limited within the interval [—0.01,0.01] at each iteration. The deformation of geometry
at each iteration is slight, therefore the number of iterations to converge is higher compared

to the case set with the interval [-0.1,0.1]. The latter has better performance in terms of
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Figure 5. (a) Cp vs. number of bump functions for UD, CoD, and #, values. (b) Cr vs.
number of bump functions for UD, CoD, and t, values. (c) The number of iterations to
converge vs. number of bump functions for UD, CoD, and #, values. (For all plots, the
function amplitude boundary is [-0.01,0.01]).



100

100~

0016 = 083 o —#— Uniferm
F —=&— Uniform —=—— Uniform . [+ — Cos
0.0155 - -bB-c ~ 3 - Cos L -\j
F o825 /'\ 80| .
0015 » / L ‘KW
L / 082 "I 2 -—
0.0145 § NG o o ~
L / F A n z h
o / . F | S S sl
o014 0815 | g 2 B N\
[ / B F n] ~ ‘S 40 o -
0.0136 - /S - i SR 3+
081F ' |
s S _ \
00131 > e L ) - L
F b : e 20

0.0125

L L1 . L L1 , 1 L L 1 I 1 J 0 L 1 L L 1 L J
0012 20 0 50 08 16 20 30 A0 5 20 30 40 56 80 70
# of Control Points # of Control Points # of Control Points

(a) (b) (©

Figure 6. (a) Cp vs. number of control points for UD and CoD. (b) C; vs. number of
control points for UD and CoD. (c¢) The number of iterations to converge vs. number of
control points for UD and CoD.

computational cost, however consistency problem is observed with respect to the number of
bump functions, function amplitudes and distribution type due to high geometry deformation
at each iteration.

Figure 6 presents Cp, Cy, and the number of iterations to converge as a function of the
number of control points (cp) or design variables for two distributions (UD and CoD). The
drag coefficient decreases and the lift coeflicient satisfies the constraint up to 20cp. Beyond
this value, the former increases and the latter violates the constraint for both distributions.
The number of iterations to converge decreases with the increase of the number of control
points for each distribution. Among all cases utilizing B-spline curves, 20cp is observed as
the best case in terms of the drag reduction corresponding to a 81 drag count change, which
is 5 drag counts more compared the Hicks-Henne bump function best case. The Table 2
includes an outline of the results obtained with the B-spline cases. As can be seen from this
table, the drag coeflicient reduction is 81 drag counts for UD case and 80 drag counts for the
CoD case. The former converged in 63 iterations and the latter converged in 71 iterations.
Lift coefficients are 0.820 and 0.821 respectively. The area of airfoil shape increases in both
cases from 0.0778 to 0.0795 (the former) and 0.0799 (the latter). The objective function
reduces from 4.3882 to 1.6351 (UD case) and 1.6501 (CoD case).
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Table 2. Numerical Results for the original and optimized shapes (B-spline Shape Parame-
terization).

# of Bump Functions  Cp, Cp Objective Func.  Area  # of Iterations
Original 0.824 0.0209 4.3882 0.0778 -
l6cp (UD) 0.824 0.0129 1.6609 0.0795 69
16¢cp (CoD) 0.813 0.0129 1.6514 0.0799 83
20cp (UD) 0.820 0.0128 1.6351 0.0795 63
20cp (CoD) 0.821 0.0129 1.6501 0.0799 71

Figure 7 shows the comparison of the shapes and the pressure distribution between
the original and optimized airfoils obtained with B-spline curve parameterization with 20cp
both for UD and CoD cases. Since the aerodynamic coefficients are similar, the shapes
of the optimized airfoils and their surface pressure distributions are close to each other as
expected. The optimized shapes and C,, distributions in the vicinity of the leading edge
(suction region) slightly different due to the difference in x-location of control points for
each distribution. As it can be seen from Figure 7, shock wave becomes weaker on the

optimized shapes which improves the drag coefficient and the performance of the airfoil.

Original Original
Optimized (20cp, Uniform) Optimized (20cp, Uniform)
0.08 Optimized (20cp, Cos) Optimized (20cp, Cos)

x/c x/c

(a) (b)

Figure 7. (a) The comparison of original and optimized shapes (20cp with UD and CoD).
(b) The C,, comparison of original and optimized shapes (20cp with UD and CoD).
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In Figure 8, the shapes and pressure distributions of original and optimized airfoils
with 16¢p, 20cp and 60cp (UD case) are compared. The optimized shapes with 16cp and
20cp are similar and the shock wave is weakened as can be seen from Figure 10(b). On
the other hand, there is no significant shape deformation for the 60cp case compared to the
other two cases with lower number of control points. For the 60cp case, the shock wave
slightly moves upstream with a minor reduction in strength.

The original and optimized shapes obtained with each shape parameterization tech-
nique for the best cases are compared in Figure 9. The best cases for B-spline and Hicks-
Henne parameterization techniques are 20cp and 256bf with UD, respectively. The method-
ology of shape modification is different with each technique, therefore the optimized shapes
and their aerodynamic coefficient values are different. The former converges in 63 iterations
and the latter converges in 27 iterations. Their common feature is to weaken the shock wave.
Based on Figure 9, B-spline curves handle the shock wave better, however it has a disadvan-

tage on the computational cost. Hence, Hicks-Henne bump function technique with 256bf

Original Original

""""""" Optimized (16¢p, Uniform) ++reseeneneee Optimized (16cp, Uniform)
Optimized (20cp, Uniform) Optimized (20cp, Uniform)
0.08 r Optimized (60cp, Uniform) Optimized (60cp, Uniform)

oo o vy IR RTINS ST SR R J
0'080 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x/c x/c

(a) (b)

Figure 8. (a) The comparison of original and optimized shapes (16¢p, 20cp and 60cp with
UD). (b) The C,, comparison of original and optimized shapes (16cp, 20cp and 60cp with
UD).
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Optimized (Hicks-Henne, 256bf, t, = 10, Uniform)
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Optimized (B-spline, 20¢cp, Uniform)
Optimized (Hicks-Henne, 256bf, t, = 10, Uniform)
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Figure 9. (a) The comparison of original and optimized shapes of best cases obtained with
Hicks-Henne bump function and B-spline curve parameterization. (b) The C, comparison
of original and optimized shapes of best cases obtained with Hicks-Henne bump function
and B-spline curve parameterization.

(UD) with #, = 10 within the interval [-0.01,0.01] seems to be an appropriate combination
for the deterministic optimization of RAE2822 in terms of aerodynamic coefficients and
computational cost.

In Figure 10, the Cp, Cr, and the number of iterations to converge is presented for
the uniform distribution and the four control lattice size with the boundary of each control
point of [0.5z;,1.5z;]. The drag coefficient reduces up to 96 design variables, however
the Cy. constraint is satisfied with 20 and 40 design variables. The former increases after
starting from 128 design variables and the latter violates the constraint starting from 60
design variables. The number of iterations to converge decreases with the increase of the
control points for each distribution. Among all cases, the lattice box of 2 X 40 is selected as

best case according to the the number of iterations to converge and the reduction in Cp.
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Figure 10. (a) Cp vs. number of columns. (b) Cr vs. number of columns. (c¢) The number
of iterations to converge vs. number of columns with the boundary interval of [0.5z;,1.5z;].

The numerical results for the original and optimized shapes with FFD technique is
given in Table 3. The Cp is reduced 80 drag counts with the lattice box of 2 x 30, 81 drag
counts with the lattice box of 2 x 40, and 79 drag counts with the lattice box of 2 x 64. The
number of iterations to converge is almost the same for the FFD cases given in the table.

Figure 11 shows the shapes and pressure distributions of the original and optimized
airfoils with the lattice box of 2 X 40. There is a significant difference between the original
and optimal shapes on both upper and lower surfaces.

The strength of shock wave is

noticeably weakened with FFD technique.

Table 3. Numerical Results for the original and optimized shapes (FFD Shape Parameteri-
zation).

Lattice Box Cp, Cp Objective Func.  Area  # of Iterations
Original 0.824 0.0209 4.3882 0.0778 -
2x 30 0.800 0.0129 1.6501 0.0798 14
2x40 0.807 0.0128 1.6519 0.0795 13
2 X 64 0.802 0.0131 1.6508 0.0799 12
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Figure 11. (a) The comparison of original and optimized shapes. (b) The C, comparison
of original and optimized shapes. (The lattice box of 2 x 40)

2. PARAMETRIC STUDY FOR ROBUST OPTIMIZATION

2.1. PROBLEM STATEMENT

The robust design is applied to the same RAE2822 case considered for deterministic
optimization, however the Mach number is considered as a uniformly distributed uncertain
variable within the interval [0.7253,0.7427]. The nominal (mean) Mach number is 0.734 at
which the deterministic optimization is performed. For robust optimization, the weighted
objective function is formulated to minimize the mean and the variance of Cp simultaneously

while keeping the mean of target C;, constant:
L 2 g
minimize Wiuc, + Wzo'CD + W3 (#CLTarget - ,uCL) 2)

where the weights Wi, W, and W3 are selected as 1.0 X 102, 2.5 x 10° and 1.5 x 10!
respectively based on a parametric study. The mean of target C, is defined as 0.824 and the

optimization algorithm is started with @ = 2.92° as an initial value. In this formulation the
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first term is related to optimization of the mean performance (i.e., minimization of the mean
of drag coefficient) and the second term is to achieve the robustness of the design under the
variation of the Mach number (i.e., the minimization of the variance of the drag coefficient)
and the third term is for the implementation of C; constraint. In robust optimization,
Hicks-Henne shape parameterization technique is performed using the same number and
distributions of bump functions considered in deterministic optimization with #, = 10, 20
and 30. The boundary of function amplitude and the angle of attack are defined with the
interval [-0.1,0.1] and [2.0°,4.0°], respectively. B-spline curves approach is also evaluated
with the same number and distribution of design variables as deterministic optimization
when the boundary of control points is described with the interval [-0.1,0.1] and the angle

of attack is bounded with the interval [—-10.0°,10.0°].

2.2. ROBUST OPTIMIZATION RESULTS

Figure 12 presents the mean and standard deviation of drag coefficient, the number
of iterations to converge and the mean of lift coefficient under varying number of bump
functions, distributions and function widths. Mostly all the cases between 64 and 128 bump
functions have significant success about the reduction in uc,, and o¢,, at both distributions
and three function widths. In this range, bump functions with CoD performs better results in
terms of yc,, and o¢,,. However, when the combination of mean and standard deviation of
drag coefficient (the objective function of optimized shape) is considered, UD with #, = 10
is advantageous among all cases in this range. The mean of lift coefficient constraint is
implemented into the objective function instead of setting as a contraint, therefore it is
usually slightly lower than HCyp ) ur” According to Figure 12(b), the uc, of uniformly
distributed cases after 64 bump functions at £, = 30 are approximately 0.8. Uniformly
distributed bump functions are advantageous in terms of computational cost, especially for
uniformly distributed with #, = 10. The number of CFD solver run for optimized shape is

the parameter to measure the vast cost of robust design. In this study, each iteration consists
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of 6 samples and direct and adjoint (for drag and lift coefficients) solvers are called for
each sample, therefore 12 CFD runs occur at each iteration (6 flow solutions and 6 for the
adjoint solver runs). As an example, 20bf (UD) with 7, = 10 case converges in 39 iterations
which requires 468 CFD runs. Consequently, uniformly distributed bump function cases
with 7, = 10 are definitely advantageous in terms of computational cost.

Based on Figure 12, 60bf (CoD) with #, = 10 is selected as the best case with a o¢,,
of 0.0038 and 73 drag count reduction in uc,. The convergence criterion is satisfied in 15
iterations and uc, of optimized shape is 0.803 at @ = 2.9316°. The area is increased from

0.0778 to 0.0805. The objective function decreases from 3.4463 to 1.4023.
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Figure 12. (a) uc,, vs. number of bump functions for UD and CoD (b) o¢,, vs. number of
bump functions for UD and CoD (c) uc, vs. number of bump functions for UD and CoD
(d)The number of iterations to converge vs. number of bump functions for UD and CoD
(For all plots, the function amplitude boundary is [-0.1,0.1]).
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Figure 13 presents the comparison of original and optimized (38bf and 40bf with
UD) shapes. Both cases converged in 17 iterations. For the 38bf case, the mean and
standard deviation of drag coefficient are 0.0139 and 0.00035 at @ = 2.9378°. The area of
optimized shape is 0.0827 and the objective function is reduced from 3.4463 to 1.4210. For
the 40bf case, the reduction in uc,, is 69 drag counts and o¢,, is 0.00036 at the same angle
of attack. The area and the objective function of the optimized airfoil is 0.0819 and 1.4366
respectively. Based on these numerical results, since the mean and standard deviation of
aerodynamic coefficients are approximately at the same level, the optimized shape airfoils
are expected to be similar which is proven in Figure 13.

Surface pressure coefficient distribution of optimized shapes is very similar as
presented in Figure 14. Instead of having a single weaker shock wave as observed for
the deterministic optimum designs, the robust optimization procedure creates two weak
shock waves, which is expected to decrease the drag coeflicient under the variation of Mach

number within the specified interval [0.7253,0.7427].
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Figure 13. The comparison of original and optimized shapes (38bf and 48bf with UD).
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Figure 14. The C, comparison of original and optimized shapes (38bf and 48bf with UD).

Figure 15 presents the Mach number contours for the original and optimized shapes
(38bf and 40bf) at M = 0.7253. As discussed for Figure 15, two weak shock waves can be
seen where at x/c = 0.3 and 0.6. In deterministic optimization, the shock wave is weakened
based on a single point (Mach number) optimization procedure. Differently, in robust
design, the power of shock wave is separated into two due to the continuous multi-point

nature of the optimization procedure.

Figure 15. The contours showing Mach number over optimized (robust, 38bf and 40bf with
UD) and original shape of RAE2822.
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In Figure 16, the mean and standard deviation of drag coefficient, the number of
iterations to converge and the mean of lift coefficient as a function of number of control points
are presented for two distributions. With B-spline curve parameterization, the performance
of optimization in terms of the mean and standard deviation of drag coefficient and the mean
of lift coefficient decrease with the increase of control points. UD and CoD cases show
similar trends in terms of robustness and mean measures. Similar to deterministic and robust

(Hicks-Henne) design, the number of control points has high impact on computational cost.
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Figure 16. (a) uc,, vs. number of control points for UD and CoD. (b) o, vs. number of
control points for UD and CoD. (¢) uc, vs. number of control points for UD and CoD. (d)
The number of iterations to converge vs. number of control points for UD and CoD.
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Among B-spline parameterization robust design cases, cosine distributed 20cp is
selected as the best case which reduced pc,, from 0.0209 to 0.0142, o¢,, from 0.0023 to
0.0003. uc, constraint is integrated in objective function, therefore uc, of optimized shape
is 0.8058. The area of airfoil increases from 0.0778 to 0.0783 and the angle of attack for
optimized shape is 3.3627°. This case converged in 69 iterations.

Figure 17 shows the comparison of original shape and optimized shapes for both
parameterization techniques. The optimized shapes show significant difference based on
the shape parameterization technique used. For the Hicks-Henne bump function case,
optimized shape is thicker, however there is a deflection region similar to a flap close to the
trailing edge. This may be due to the fact that the Hicks-Henne bump function can modify
the surface where x is in between 0.0001 and 0.9999.

The pressure distribution comparison of original and optimized shapes from both
shape parameterization techniques at M,,,;ina; and M,,,, can be seen in Figure 18. At both
Mach number, the strength of shock wave is reduced at optimized shapes. The shock wave
is weaken at Mj,inq; more compared to the shock wave of optimized airfoil at M, that is

directly related to performance of final design.

Original
Optimized (Hicks-Henne, 60bf, Cos, db = [-0.1, 0.1])
Optimized (B-spline, 20cp, Cos)

) 0.2 0.4 0.6 0.8 1
x/c

Figure 17. The comparison of original and optimized shapes (robust design).
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—— Original
[  ———— Optimized (Hicks-Henne, 60bf, Cos, db =[-0.1, 0.1])
— Optimized (B-spline, 20cp, Cos)

Original
Optimized (Hicks-Henne, 60bf, Cos, db =[-0.1, 0.1])
Optimized (B-spline, 20¢p, Cos)

Figure 18. (a) The comparison of C, distribution of the optimal and original shape at
Mominar- (b) The comparison of C,, distribution of the optimal and original shape at M.
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Figure 19 and 20 present the mean and the standard deviation of drag coeflicient, the

number of iterations to converge and the mean of lift coefficient under varying number of

design variables with the boundary of each control point of [0.5z;,1.5z;] and 0.25z;,1.75z;,

respectively. The cases with the lattice box of 2 X 20 and 2 X 40 have success in the

reduction in uc, and oc,. The puc, is smaller than HCipyy e because the mean lift

coeflicient is implemented into the onjective function. The number of iterations to converge

is smaller with the boundary of design variables of 0.25z;,1.75z; than the boundary of

design variables of [0.5z;,1.5z;]. The computational cost in robust design is a significant

parameter, therefore it has a vast efect on the selection of best case of FFD technique.
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With Hicks-Henne parameterization technique, bump functions with CoD perform
better in terms of uc, and oc,. Uniformly distributed bump functions with #, = 10 are
advantageous in terms of computational cost. With B-spline technique, the number of
control points has high impact on computational cost. In addition, the performance of
optimization in terms of uc, and o, are similar at less number of control points. For
robust optimization, CoD has high reduction in uc,, and o¢,, at both techniques. B-splines
require more iterations to reduce uc,, to the same level as the one obtained with Hicks-
Henne. Overall, Hicks-Henne is better compared to B-spline in terms of computational

time and the performance of the final design.

3. ROBUST AND DETERMINISTIC OPTIMIZATION COMPARISON

In deterministic aerodynamic design, the airfoil shape was optimized to minimize
the drag coefficient at a target C; for a certain Mach number with the angle of attack
taken as a design variable, however the performance of optimized shape can significantly
degrade if the Mach number deviates from its design point value in transonic flow. In robust
aerodynamic design, the objective was to minimize the mean (yc,,) and the variation of the
drag coeflicient (o¢,,) at a target mean lift coefficient value (chTarget) to achive robustness
in the performance to the variation of the Mach number in a specified range.

In Figure 21, the drag coefficient of the original, deterministic design (uniformly
distributed 256bf) and robust design (cosine distributed 60bf and 20cp) under varying
Mach number is presented. The interval of bump function amplitude is [—0.01,0.01] for
deterministic and [—0.1,0.1] for robust design. Drag coefficient values of each shape are
evaluated at the target C; value of 0.824. The Cp of baseline RAE2822 shape is the
highest at all Mach number values. The deterministic design is optimized at M = 0.734
and its Cp is approximately 140 counts until M = 0.7323. At M = 0.7357 which is the
closest to deterministic design point in the interval, there is a significant drop in Cp and

then significant rise with the increase of the Mach number. This trend clearly shows that
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the deterministic optimization performs relatively poor at the off design Mach numbers.
On the other hand, the airfoil obtained with the robust optimization approach exhibits a
relatively flat Cp over the Mach number range considered with a slight increase starting
from M = 0.7357. The shape obtained with robust optimization (Hicks-Henne 60bf)
achieves a 34 drag count reduction compared to deterministic design at M = 0.7427.
Overall, robust design has better performance compared to deterministic design in terms of
robustness and mean performance (Cp) at each Mach number.

In Figure 22, the comparison of original and optimized shapes for both deterministic
and robust design is presented. For both designs, optimized shapes are similar in the vicinity
of leading edge, however downstream of the half-chord, geometries differ vastly especially
for the upper surface. Robust design provides high performance under the variation of Mach
number that has a high impact on optimized shapes compared to deterministic design. Area

constraint is satisfied with both designs.

—&—— Original
0.03 ——»—— Optimized (Deter., Hicks-Henne, 256bf, Uniform, db = [-0.01, 0.01])

[P — Optimized (Robust, Hicks-Henne, 60bf, Cos, db =[-0.1, 0.1])
———&—— QOptimized {Robust, B-spline, 20cp, Cos)
0025
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0015} v
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Figure 21. Cp comparison of original, optimized (deterministic and robust) under varying
Mach number.
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Figure 22. The comparison of original and optimized (deterministic and robust) shapes.

Figure 23 shows the Mach number contours over optimized (deterministic and
robust) and original shape of RAE2822 at M, ,mmina1 and M,,,,. The strength of the shock
wave is reduced with both deterministic and robust designs. However, with robust design,
the shock wave is weakened more compared to the deterministic design.

In Figure 24, the comparison of C, distributions of the optimal and original shapes
at M, ominar and M, is presented. These figures also verify the observations made from
the contour plots presented above.

In both robust and deterministic optimization, the number of design variables (bump
functions or control points) plays a significant role on computational time for each param-
eterization technique. The boundary conditions (limits) imposed at function amplitude is
an important parameter for the lift and drag coefficients of optimized shape and the com-
putational time when Hicks-Henne parameterization is used. In deterministic design of
RAE2822 airfoil, B-spline parameterization with low number of control points (12, 16 and

20 uniformly distributed) and Hicks-Henne parameterization with uniformly distributed
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M = 0.7427 (M paz)

Figure 23. The contours showing Mach number over optimized and original shape of

RAE2822.
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Figure 24. (a) The comparison of C, distribution of the optimal and original shape at
M ominar- (b) The comparison of C,, distribution of the optimal and original shape at M.

function amplitude confined within the interval [-0.01,-0.01] with , = 10 are both effi-

cient and accurate among all cases. Moreover, Hicks-Henne parameterization with large

number of bump functions is found to be very efficient in terms of computational time.
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In robust design, the cases with the number of bump functions between 20 and 128
show consistency in terms of the mean and standard deviation of drag coefficient for the
Hicks-Henne parameterization. B-spline and Hicks-Henne bump function techniques pro-
vide better robustly optimized shapes with cosine distribution, when low number of design
variables (control points or bump functions) are used. Similar to the deterministic design,
the robust optimization shapes obtained with different shape parameterization techniques
present different shapes because of the difference in shape parameterization methodology
and constraints imposed in their implementation.

The results of the current study show that the number of design variables (control
points or bump functions) and their distribution have impact on the computational cost and
the aerodynamic performance metrics in both robust and deterministic design. In deter-
ministic design, lower number control points for B-spline parameterization provides better
optimum shapes, however the number of iterations to converge increases significantly. For
Hicks-Henne parameterization, large number of bump functions is more effective, accurate
and efficient. Uniform distribution provides better results in deterministic optimization
however, cosine distribution is a better choice for robust design. Similar to deterministic
design, lower number of control points for B-spline parameterization is more effective for
robust design, however computational cost increases significantly. Hicks-Henne is a better
technique in terms of computational cost and the performance of final design in robust
design. Overall, the robust design provides better performance under the variation of Mach

number.
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