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ABSTRACT 

The reduction of motion blur in computed tomography (CT) drives the current 

research for multisource CT. Due to their compact nature, the current multisource systems 

utilize stationary angled anodes. Unfortunately, these configurations neither simplify the 

imaging geometry, nor satisfy the need for managing the high thermal loads demanded by 

real-time CT (30 acquisition frames per second). To add to the current field of knowledge, 

two x-ray tube concepts are presented in this dissertation. First, a simulation of transient 

thermal analysis was performed on a compact transmission-type x-ray tube anode operating 

in pulse-mode. A correlation was found between deposited beam power and maximum 

anode temperature for any anode thickness beyond 0.5 mm.  

    A second approach was developed for higher current applications: a rotating 

cylindrical anode.  A modified Oosterkamp equation was developed and used to investigate 

three beam-sweeping sequences. It was found that although increasing beam sweeping 

speed increased the maximum power, the deposited energy in the focal spot per acquisition 

time decreased. Ultimately the step-and shoot sequence was found to be optimal for the 

cylindrical anode. Next, MCNP was used to find the angular dependence of the fraction of 

energy that the backscattered electrons carry away from the focal spot for a curved anode. 

That information was then used in COMSOL to find the electron beam efficiency and 

maximum power for different incident angles using various focal spot lengths and anode 

diameters. After that a correlation between maximum deposited power, focal spot length, 

and rotational surface speed was found. Finally, design considerations are reported based 

upon a sensitivity analysis of a preliminary design for the cylindrical multisource anode. 
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1. INTRODUCTION 

 

Research in computed tomography (CT) has not slowed down since its inception in 

1973. With the advent of multidetector row CT[1], helical CT [2], [3], and dual-source 

CT[4]–[6], the scanning times for volumetric acquisitions have become lightning fast. 

However, even modern designs are still based on the rotating gantry concept developed 50 

years ago, which significantly hampers any major advancements in temporal resolution[7]. 

1.1. BACKGROUND OF THE RESEARCH PROBLEM 

Reduction of cardiac motion blur is the main driving force for the appearance of 

multisource x-ray designs[8]. In order to acquire the adequate information to reconstruct a 

2D slice in a traditional CT, the source-detector pair must travel 180° (plus the fan angle 

of the beam) around the object being imaged. The time it takes to do this is called the CT 

scanner’s temporal resolution. But if there are two pairs of source-detector sets[4], then 

you only have to travel half the distance to get the same information, implying that the 

temporal resolution could be halved. Extrapolating this concept to its logical end by 

creating an array of sources that completely surround the imaging object would mean 

rotation would be totally eliminated and the temporal resolution would only be limited by 

the speed at which the x-ray sources could be activated. This is the rationale behind the 

development of some of the previous multisource CT systems.  

Recent investigations into multisource x-ray imaging have yielded fascinating 

results. Inverse geometry and tetrahedron beam computed tomography (TBCT) broke new 

ground in beam architecture and volumetric data acquisition[9]–[12].  Stationary CT 
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architectures potentially improve reliability while also increasing temporal resolution[13]–

[17]. Due to space constraints, these designs used stationary anodes. This limits the 

maximum deposited power, and consequently, the x-ray output power. 

 

 

Figure 1.1 G-force as a function of gantry rotation frequency [3] 

 

1.2. STATEMENT OF THE RESEARCH PROBLEM 

3rd generation design requires that the source and detector rotate around the gantry 

to acquire projections from all angles. These systems can reach up to 1000 kg[3]. Since the 

centrifugal force acting on the gantry increases with the square of rotational frequency, 

bringing the acquisition rate to real-time (30 acquisition-frames per second) would create 

incredible stress on the gantry (Figure 1.1).  The conclusion one could draw from this is 

that real-time CT cannot be reached using the conventional 3rd generation CT architecture.  



 

 

3 

In order to achieve real-time CT, the rotational motion of the gantry needs to be 

completely eliminated. In its place, a ring of stationary source spots completely 

surrounding the imaging object (i.e. the patient) is placed next to a detector ring (Figure 

1.2). With the gantry rotation gone, temporal resolution is limited by the amount of energy 

that can be deposited per focal spot needed to maintain image quality. We estimate the goal 

for most applications is around 9-10 joules deposited per focal spot based on previous 

cardiac CT outputs[18].  

Increasing the temporal resolution means that the energy is deposited during a 

shorter period of time, meaning the deposited heat rate increases linearly with increasing 

temporal resolution. This increase in heat rate, if not properly managed, causes an increase 

in temperatures which can lead to x-ray tube failures.  Thus, the management of heat in the 

anode is one of the main limiting factors in increasing the temporal resolution in 

multisource CT systems to real-time.  

1.3. RESEARCH OBJECTIVES AND SCOPE 

This work seeks to investigate the feasibility of two multisource concepts intended 

for real-time CT (30 acquisition-frames per second) in the scope of heat transfer. The first 

is a linear x-ray tube utilizing a transmission anode and electrostatic lenses as part of a 

continuous, long-term research project for stationary CT architecture[19]–[21]. Recent 

innovations in CT reconstruction using compressed sensing allows for a small number of 

source projections in order to attain quality images[22].  Thanks to that concept, we placed 

around 200 linear tube sources in a ring, each tilted towards a neighboring detector ring. 
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The completely stationary design would provide a reliable and fast alternative to third 

generation CT (Figure 1.2). 

 

 

Figure 1.2 Schematic of proposed stationary CT architecture utilizing transmission 

anodes 

 



 

 

5 

To determine the feasibility of the stationary CT system, a thermal analysis had to 

be performed. The physical design of the transmission anode was the primary focus of the 

research. Tungsten thickness and anode material were determined from a list of previously 

investigated parameters. The detector ring design was not taken into consideration. Other 

forms of electron emission, such as field emission, were not taken into consideration as 

these had already been investigated elsewhere[23]–[26]. 

The second design is a rotating cylinder anode proposed to be used in a multisource 

module[27] (Figure 1.3). The anode would have the same benefits as previous attempts at 

multisource designs, such as line focusing and fast pulsed-beam sequences, but would 

allow for a significant increase in power due to the rotating motion of the cylinder. The 

transition from stationary to rotating has already been seen in conventional x-ray 

tubes.  The rotating disk anode (see Section 2.2.4.3) is commonly used in CT scanners 

today. The disk diameters can reach up to 200 mm[28], meaning it would be impossible to 

distribute them in a multisource configuration with enough focal spots.  

The work for the cylinder anode will be limited to just the novelties of the anode 

structure without any strong consideration of module design. Previous versions of 

multisource designs have used a magnetically swept electron beam sequence[17], [29]–

[31]. The consequence of applying this sequence, as well as our own sequences, to the 

rotating anode will be investigated. Also, the effects of a curved surface on heat deposition 

distribution will be studied. Finally, design considerations for a research prototype anode 

concept will be given based upon a sensitivity analysis for various parameters considered 

in design.  
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Figure 1.3 Basic design of the cylindrical multisource x-ray system 

1.4. RESEARCH METHODOLOGY 

This research uses a combination of literature review, mathematical and numerical 

modeling, and analysis of simulation results to investigate the research objective. The 

literature review is used to define the frontier of knowledge and act as a compass for the 

needed analysis. It also forms the foundation to the mathematical modeling of temperature 

rise that is used for comparing beam sweeping sequences. 

Electron interaction with the target material is modeled using two Monte Carlo 

software CASINO [32] and MCNP [33]. CASINO is used to find the energy and material 
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dependent electron heat deposition for the thermal analysis of the transmission anode. The 

output is used as a depth dependent heat profile in COMSOL Multiphysics [34] software. 

MCNP is used to find the angular dependence of the energy spectrum and 

backscatter fraction of electrons impinging on a tungsten surface. This information is then 

used as an input for the Heat Flux Node in COMSOL, allowing for the differential heat 

distribution to be mapped for any combination of incident angle and focal-spot-length-to-

diameter ratio.  

COMSOL Multiphysics is used to model heat transfer in conduction, convection, 

and radiative emission. In this particular application, the maximum temperature in the 

anode is found for different power inputs, geometries, and materials. This relation is 

analyzed in MATLAB and organized in a form that allows the reader to easily ascertain 

the novelties of the results. 

1.5. SCIENTIFIC CONTRIBUTIONS 

This work contributes to the overall goal of real-time CT. Previous attempts at 

multisource anodes have used a stationary anode. This work is the first to utilize a rotating 

cylinder anode that significantly increases the thermal loading in the system. Using the 

results in this research, a designer can efficiently navigate the novelties that the cylinder 

anode provides, giving rise to the ultimate goal of real-time CT. Applications of this 

technology can be used in cardiac CT and research in traumatic brain injury, as well as 

Tetrahedron Beam CT in radiation therapy devices. 
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1.6. STRUCTURE OF DISSERTATION 

This dissertation is organized as follows: Section 1 introduces the novelties and 

objectives of the research. Section 2 gives a literature review of the relevant material to 

understand the problem and frontier of knowledge. Section 3 contains the study for the 

transmission-type anode design. Section 4 introduces the cylindrical multisource anode and 

compares three types of 2-D beam sweeping techniques. Section 5 presents some design 

considerations for the cylindrical multisource anode. Section 6 gives some general 

conclusions from the work, as well as set the stage for future research. At the end of the 

dissertation is a list of references used throughout the research. 
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2. LITERATURE REVIEW 

2.1. X-RAY COMPONENTS 

 Section 2.1 talks about the relevant components of a conventional x-ray tube in the 

scope of this dissertation.  

2.1.1. Cathode.  From a technical standpoint, x-ray generation is a fairly straight-

forward process. All you need is an electron emitter (cathode), a high-Z target (anode), and 

a way to accelerate the electrons (Figure 2.1). Most cathodes used in conventional x-ray 

tubes primarily operate from a mechanism called thermionic emission where the cathode 

filament is heated up to a couple thousand degrees, allowing a current of electrons to escape 

 

 

Figure 2.1 Diagram of a simple x-ray tube. An electric potential is applied between a 

cathode and anode. Electrons released from the cathode accelerate towards the anode, 

producing x-rays useful for imaging. [19] 
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the metal and enter the tube vacuum[35]. The relationship between filament temperature 

and electron current density can be estimated by the Richardson equation. 

𝐽 = 𝐴(1 − 𝑟)𝑇2𝑒(−𝛷
𝐾𝑇⁄ )     (1) 

where J is the current density, A is Richardson’s constant, r is the reflection coefficient, T 

is temperature, Φ is work function, and k is Boltzmann’s constant. The ideal choice for 

filament material would be a metal that has a very high melting temperature and a low 

work function. Tungsten (or tungsten alloy) is typically the choice for such an application; 

and although it doesn’t have the lowest work function, its high melting temperature 

(3400°C) more than makes up for it. 

 

 

Figure 2.2 Grid switching of the focusing cup. The cup on the left shows the electron 

beam trajectory being shaped by the focusing cup at the same electric potential as the 

filament. Notice how the focal spot is blurry and unformed. Applying a slightly 

negative potential to the cup relative to the filament further compresses the electron 

beam, creating a more focused focal spot (in the middle). Applying a largely negative 

bias voltage to the cup completely shuts off the flow of electrons (right). [36] 
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Surrounding the filament is the focusing cup. This acts as a form of control and 

focus for the flow of electrons from the cathode down to the anode, which is held at a more 

positive potential[36]. When the focusing cup is at the same voltage as the hot filament, 

the electrons leave the cathode (unfocused) and bombard the anode (Figure 2.2 on the left). 

Applying a slightly negative bias to the focusing cup creates a repelling force on the 

electron stream and focuses the beam into a point-like spot on the anode target (Figure 2.2 

in the center). Lowering the relative potential on the focusing cup even further will 

eventually raise the 0 V potential line above the surface of the filament, shutting off the 

flow of electrons altogether (Figure 2.2 on the right). Quickly fluctuating the focusing cup 

potential allows for the electron beam to be pulsed on and off as needed.  This action is 

called grid-switching. 

 

 

Figure 2.3 Visual example of the inefficiency of the x-ray production process. Values 

used are for 100 keV electron energies[37]. 
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2.1.2. Anode. The newly emitted electrons are accelerated across the x-ray tube by 

the potential difference between the cathode and anode. The anode has two primary 

functions: generation of x-rays (target layer) and dissipation of heat (anode block). The 

first function is an extremely inefficient process as shown by Equation (2) [37]: 

𝑃 =∝ 𝐼𝑡 ∗ 𝑍 ∗ 𝑉𝑡
2     (2) 

where P is the total X-ray power, 𝐼𝑡 is the tube current, Z is the proton number of the target, 

and 𝑉𝑡 is the tube voltage. For diagnostic energies (50 keV - 150 keV) using tungsten as 

the target material (Z=74), the efficiency is less than 1% (Figure 2.3). The other 99% is 

either deposited in the focal spot as heat, or scattered back out into the vacuum and 

deposited elsewhere in the anode as heat (see Section 2.2.3.1). 

2.2. HEAT MANAGEMENT IN DIAGNOSTIC X-RAY ANODES 

Section 2.1.2 mentioned how the process of creating x-rays is quite inefficient, 

making the dissipation of heat in the anode the dominating factor for determining the x-ray 

tube output power[38]. 

2.2.1. Deposition of Electron Energy in the Anode. In order to understand the 

approaches for how the heat is dissipated, we must first find out where the heat is deposited. 

The incident electrons undergo many interactions during their journey through the 

anode.  Primarily, energy loss in the beam occurs from the disturbance of the electron cloud 

in the target as it travels through the metal, slightly perturbing its trajectory. This relation 

is more or less linear and was studied using thin films[39]–[41]. Unfortunately, this concept 

does not take other forms of scattering into account, which significantly changes the 

energy-depth profile. The true trajectories of electrons are far more chaotic, as shown in 
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Figure 2.4. In most anodes, the electrons only penetrate several microns into the target, 

which is basically on the surface[42], [43]. 

2.2.2. Focal Spot. The focal spot is the area on the anode utilized as the source spot 

for radiographic projection onto the detector. From an image resolution standpoint, the 

ideal focal spot would be a point source, but this is obviously not practical. The focal spot 

does, however, need to be kept as small as possible. The determination of the focal spot 

size requires a compromise between image quality and anode power loading ability[36]. 

 

 

Figure 2.4 Monte Carlo simulation of a 1 µm diameter beam of 100 keV electrons 

interacting in an infinite tungsten layer. The color of the trajectories denotes the energy 

of the electrons. Notice that some of the electrons backscatter out of the anode with 

almost all of their original energy. Image made using CASINO [32]. 
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As previously stated, around 99% of the energy from the electron beam is converted 

to heat. Since the heat is deposited in the first few microns of the target (See Section 2.2.1), 

the input heat rate (i.e. the maximum deposited power) will be limited by the target’s ability 

to disperse the heat via conduction and the size of the focal spot. We can estimate the 

temperature rise ΔT in the focal spot of area A for pulses of short duration τ (less than 

about 0.05 seconds) using the following equation[44]: 

∆T=
2*Λ

A √
τ

kρcpπ
       (3) 

where k is the thermal conductivity, ρ is the density, and 𝑐𝑝 is the heat capacity for the 

target material. As mentioned earlier, the deposited power Λ is proportional to the x-ray 

output power. So, the design of the anode should find a way to maximize this value by 

manipulating the other variables in the equation (k, ρ, 𝑐𝑝, A, τ). 

2.2.3. Electron Interaction Outside the Focal Spot. This section discusses the 

mechanisms that lead to bombardment by electrons outside the focal spot and how it can 

be alleviated. 

2.2.3.1. Electron backscatter.  Section 2.1.2 mentioned that some of the electrons 

backscatter out of the focal spot and deposit their energy outside the focal spot. As a matter 

of fact, for a 100 keV beam normally incident to a tungsten surface, approximately 50% of 

the primary electrons will scatter outside the focal spot carrying almost 40% of the original 

energy[37]. The values increase sharply as the incident angles increase and as Z 

increases[45], [46]. The backscattered electron trajectories and their energies can be seen 

in Figure 2.4. 
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Figure 2.5 a) Off-focal radiation caused by small interelectrode distance b) Philips 

iMRC utilizes an electron trap[37] 

 

2.2.3.2. Off-focal radiation and electron trap. The fate of the electrons 

backscattered into the vacuum is largely determined by the design of the x-ray tube. For 

systems where the cathode is very close to the anode, the strong electric field causes the 

electrons to curve back to the anode and land outside the focal spot, creating heat and x-

rays outside of the region (see Figure 2.5a). This is called off-focal radiation.  

Off-focal radiation is undesirable for two reasons. First, it puts unnecessary heat 

back into the anode. Second, and more importantly, the x-rays it produces outside the focal 

spot negatively impact the image quality and increase patient exposure[36], [47]. This 

effect was found to increase when a magnetic field was placed so that the field lines run 

parallel to the beam axis[48]. 

An electron trap can help alleviate the problem by providing an alternative 

destination for the electrons to travel[49]. Placing the cathode further away from the anode 

decreases the strong field felt by the electrons as they exit the anode. The backscattered 
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electrons will then travel back towards the cathode direction.  An electron trap made of 

low-Z material is placed close to the anode and the backscattered electrons deposit the 

energy there (See Figure 2.5b). 

2.2.4. X-Ray Anode Designs. The design of the anode plays a large part in heat 

management. This section gives a brief summary of the different kinds of anodes and their 

methods of heat management. 

 

 

Figure 2.6 Transmission x-ray tube[50] 

 

2.2.4.1. Transmission anodes. Figure 2.6 gives an example of an x-ray tube 

utilizing a transmission anode. The anode materials and dimensions are constructed in such 

a way that the x-rays produced in the target layer “transmit” through the anode. The trick 

here is to make the target layer thick enough that the x-ray production is maximized, yet 
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thin enough that those same x-rays don’t get over-attenuated[51], [52]. The optimum 

thickness is energy dependent but the range doesn’t vary by more than a few microns[53]. 

Innovations in this field typically rely on boosting the heat transfer properties of 

the substrate[53] or modifying the target to a point-like source[50]. The transmission anode 

has the benefit of being used in a compact environment[9], [10], [19]–[21], [54]–[56], but 

the “transmission” property means the surface area of the focal spot, A, must be kept small 

to maintain adequate spatial resolution for imaging purposes. 

 

 

Figure 2.7 X-ray tube utilizing stationary angled anode 

 

2.2.4.2. Stationary angled anodes. Figure 2.7 shows a stationary angled anode. A 

target layer (typically around 1 mm) is embedded in a copper anode block which carries 
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the heat away[36]. The tube powers in these designs are typically limited by the size of the 

focal spot and the heat capacity of the target, as thermal diffusivity of tungsten isn’t high 

enough to carry the heat away from the target layer during operation. Long term thermal 

management is afforded by the high conductivity of the copper block, which dumps the 

heat into a reservoir outside the tube. 

Stationary angled anodes take advantage of the principle of line focus[37]. Line 

focus allows the deposited beam area (called the thermal focal spot) to be elongated while 

still maintaining a small apparent focal spot when viewed from below (Figure 2.8). 

Referring back to Equation 3, this allows the maximum deposited power, Λ, to increase 

linearly with the increase in thermal focal spot length. 

2.2.4.3. Rotating angled anodes. The advent of the rotating anode (shown in 

Figure 2.8) marked a huge step forward in x-ray tube technology. Not only did it utilize the 

line focus principle, but the rotating motion of the disk-shaped anode allowed for the heat 

to be spread over a much larger area during exposure. This increased the tube power by 

almost 50 times the stationary design[15].  The anode typically consists of a tungsten layer 

sintered onto a molybdenum alloy, such as TZM[57]. 

The long-term thermal behavior of the rotating anode is greatly dependent on the 

design of the rotor bearings. For traditional ball bearings, the contact surface is extremely 

small, leading to poor conduction efficiency. In these models, thermal radiation is the 

dominant form of heat transfer. Other iterations have replaced the ball bearings with 

hydrodynamic bearings, which significantly increases the thermal conductivity, allowing 

for better overall performance[58]–[61]. 
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Figure 2.8 Rotating anode with line focus [36] 

2.3. COMPUTED TOMOGRAPHY 

 Computed tomography (CT) is when three-dimensional radiographic data is 

acquired by taking projections from every angle and reconstructing them into slices. The 

speed at which these slices can to acquired is called its temporal resolution. Ideally, the 

temporal resolution would be fast enough to avoid blurring due to the motion of the 

imaging object. The following section summarizes the history of CT in regards to the 

advancement of temporal resolution. 
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2.3.1. First-Generation.  The first-generation CT scanner was developed in 1967 

by Godfrey N. Hounsfield, an engineer at the Central Research Laboratory of EMI, Ltd[3], 

[16].  A photo of the experimental setup is shown in Figure 2.9. The system consisted of 

an Americium source and sodium iodide detector with an imaging object between (in this 

case, a preserved brain)[62]. The source emitted a pencil beam which would travel through 

the imaging object and get detected by the detector on the other side. The source-detector 

pair would move incrementally along a specified plane (about 60 translational steps) until 

the entire imaging field had been covered. The imaging object would then be rotated 

slightly and the whole acquisition process would start again. This translate-rotate process 

was repeated until every angle of the imaging object was acquired (Figure 2.10a).  Of 

course, acquisition time was extremely slow, taking around 9 days to acquire enough data 

for a single slice[62]. Obviously, this was too long to be used in a medical setting, but 

innovations soon followed that would fix that. 

 

 

Figure 2.9 CT scanner setup of Hounsfield experiment at EMI laboratory[3] 
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2.3.2. Second-Generation. The second generation would introduce the fan-beam 

concept[3], [63]. The translational motion of the source-detector did not change, but the 

pencil beam was widened to a fan shape and the detector was elongated to accommodate 

the new beam geometry (Figure 2.10b). This allowed the number of translations to be 

reduced to 12. Acquisition time for the second generation took about 5 minutes, which was 

just short enough for certain medical applications. 

2.3.3. Third-Generation.  Translational motion was discarded altogether in the 

third generation (Figure 2.10c). Instead, this iteration utilized a source-detector pair 

rotating around a gantry. The invention of the slip ring was crucial to this design, allowing 

the power and communication cables to be completely removed from the x-ray source and 

detector[3], [64]. Cutting edge versions of this generation can acquire a slice in fractions 

of a second[18]. 

2.3.4. Fourth-Generation.  Fourth generation (Figure 2.10d) was created to 

alleviate some of the perceived problems with third generation such as the sampling 

limitation. The third generation had a fixed detector location relative to the source, meaning 

that the spatial sampling is dependent on pixel size and pitch. The fourth generation fixed 

that problem by disjoining the traditional source-detector relationship. The source moved 

independently from the detector, which is now a full detector ring. This created a sort of 

role reversal in the sampling, where each detector pixel collects information from the entire 

fan beam. On the downside, this also increased the noise from scatter since no feasible 

post-patient collimator could be used[64]. 
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Figure 2.10 Generations of computed tomography scanners. a) First generation scanner 

with pencil beam source geometry. b) Second generation introduced the fan beam, 

allowing for much faster image acquisition times. c) Third generation used a rotational 

trajectory instead of the translational trajectories from previous generations. d) In an 

effort to improve temporal resolution, the fourth generation used a stationary detector 

ring and a rotating source[63]. 

 

2.3.5. Cardiac CT.  Cardiac CT isn’t exactly a generation of CT, but the technical 

requirements to be considered a “cardiac CT” definitely put it in a league of its own[18]. 
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Applications that require the use of cardiac CT typically need two things: high tube power 

(decreases noise) and high temporal resolution (imaging a fast-moving object). 

Unfortunately, increasing the temporal resolution also increases the required tube power in 

order to maintain similar image quality[37]. 

Cardiac CT typically uses the third-generation architecture. Numerous advances 

have been made to incrementally improve image quality and acquisition speed[4], [65]–

[67] but the weight of the gantry prevents any huge advancements in temporal 

resolution[7]. 

2.4. DISTRIBUTED SOURCE AND MULTISOURCE COMPUTED 

TOMOGRAPHY 

One way to increase the temporal resolution of a CT system is to increase the 

number of sources. Remember that a 3-D slice requires projections to be taken from every 

angle. In a typical CT architecture, that means the source must be mechanically moved to 

each point. If the number of sources is increased, the distance each source has to travel is 

less, meaning the speed of movement can be reduced by the number of sources in order to 

maintain the same temporal resolution. Centrifugal force felt by a rotating object increases 

linearly with increases mass, but increases quadratically with increasing speed. So, for 

example, doubling the number of sources would roughly double the mass but halve the 

necessary rotation speed. This would then halve the centrifugal force felt by the gantry. 

Multisource, or distributed source, systems take advantage of this principle. 
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Figure 2.11 Intrinsic antiscatter properties of inverse geometry. (On the Left) 

Traditional x-ray setup with a single source and a detector array. Scatter from inside 

the imaging object causes decrease in image contrast. (On the Right) Inverse geometry 

uses a source array with a small detector area. Scatter from imaging object is 

significantly reduced[68]. 

 

2.4.1. Multisource X-Ray Systems.  A multisource (or distributed source) x-ray 

system is an assembly that contains more than one x-ray source spot in a single module. 

They have the advantage of being able to form projections from multiple locations without 

mechanical movement[25]. A simple type would be a linear distributed source, where fast 

3D data is acquired using tomosynthesis imaging[69], [70]. 

Multisource systems can also be used to form unique geometries such as inverse-

geometry[9], [10]. Inherent to this layout is the significant decrease in scatter which can 

have a negative effect on image quality[68], [71] (Figure 2.11). Tetrahedron Beam CT 

(TBCT) expands on that concept by utilizing a source array and detector array positioned 

orthogonally. The resultant radiographic projection volume creates a tetrahedron shape. By 

rotating the system around the imaging object, 3D data similar to the traditional cone data 
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is formed, except scatter is again significantly reduced[12], [72], [73]. This design is meant 

to replace the cone beam CT used in image guided radiation therapy machines. 

2.4.2. Multisource CT.  There has also been interest in using multisource systems 

in diagnostic/interventional CT applications. Electron beam CT (EBCT), one of the first 

multisource systems to be used in a clinical setting, consisted of a single cathode emitting 

a high current electron beam that was magnetically swept along a semi-circle stationary 

anode target, similar to a cathode ray tube[29], [31] Figure 2.12). Temporal resolutions of 

between 33 ms and 100 ms were achievable, but it suffered from high scatter (a common 

problem for most stationary CT designs) and prohibitive costs[63]. 

Two forms of inverse geometry CT (IGCT) have been conceived. The first utilizes 

a rotating gantry system similar to third generation CT except the detector is much smaller 

and the single source is replaced with a source array[74], [75]. The second uses three 

modules with sweeping source beams projecting onto a small, rotating detector[11]. 

Research in stationary CT has seen a recent surge. A rectangular CT system was 

proposed for luggage CT[76]. This opened the door to non-circular CT design. A stationary 

CT for space applications was developed using a photocathode as the electron emitter[13]. 

A novel concept was investigated using an angled anode ring that took advantage of the 

thermal capacity of the tungsten target material by taking several, high-frequency 

projections of lower quality and combining them in post-processing to create a high-quality 

projection. This method allowed for a 1.3-fold increase in temporal resolution compared 

to conventional CT[14], [15].  Walker et al. demonstrated a modular multisource tube 

where multiple electron beams were magnetically swept along a long, stationary angled 

anode[16], [17], [77]. 
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Figure 2.12 Electron beam CT [8] 
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3. TRANSMISSION TUBE SETUP AND SIMULATION 

 

We first investigated a modular, linear x-ray tube with a transmission anode that 

could be placed radially around the gantry and sequentially pulsed for rapid image 

acquisition. We aimed for around 200 tubes, which meant each tube had to be as thin as 

possible in order to fit around the 1-meter diameter gantry. The electron emission, focusing, 

and targeting for the tubes are all designed to meet that need. 

3.1. TUBE DESIGN 

 Figure 3.1 shows a schematic of the linear x-ray tube. The design consists of three 

major parts (cathode assembly, electrostatic lenses, and transmission target), described in 

the following sections. This design was used for an electron trajectory Particle-in-Cell 

(PIC) simulation and an electron deposition heat transfer simulation using COMSOL 

Multiphysics®[34]. 

 

 

Figure 3.1 Schematic of linear x-ray tube 
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3.1.1. Cathode Assembly. A cathode assembly using a tungsten thermionic emitter 

was created to handle the high current needs of real-time CT. 

3.1.1.1. Tungsten filament. Figure 3.2 shows a CAD model of the circular cathode 

assembly. It contains a focusing cup and a tungsten spiral filament. The circular pattern of 

the filament was used to take advantage of the relation between surface area and tube 

current as described by Richardson’s Law of thermionic emission (Equation 1 of Literature 

Review). 

 

Figure 3.2 CAD model of cathode assembly 
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3.1.1.2. Focusing cup.  Switching of the electron current from the tungsten 

filament can be controlled from the focusing cup by changing the electric potential. For 

our design, a focal cup potential of -4000 volts relative to the filament potential was 

sufficient to prevent the electrons from spilling out into the tube. Changing the cup 

potential to -100 volts allowed the electrons to be released and provided some focusing, as 

well. 

3.1.2. Electrostatic Lenses. The length of the linear x-ray tube required the 

strategic use of electrostatic lenses for extraction and focusing. The following sub-sections 

talk about how the lenses were configured in the design. 

 

a) 

 

 

b) 

 

Figure 3.3 OOPIC output a) 60 kVp 500 mA   b) 120 kVp 500 mA 

 

3.1.2.1. Lens groups.  The five lenses were split into three groups, each with a 

separate purpose. The first two lenses closest to the cathode were used as extraction lenses. 

Even with the large potential difference between cathode and anode (anode potential varied 
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from 60 kVp to 120 kVp), the distance prevented large tube currents from being efficiently 

focused. The extraction lenses created an initial electric field which prevented space charge 

effects from becoming an issue.  

The length of the tube allowed for various currents and potentials to be used, but a 

longer travel distance means the electron beam will start to diverge. The third lens helped 

keep the electron beam focused. Finally, the last two lenses were the focusing lenses. 

Typically, the fourth lens was held at a potential almost as high as the anode, while the 

fifth lens was held at a potential much lower. This created a focusing effect, demonstrated 

in Figure 3.3. 

3.1.2.2. Particle-In-Cell (PIC) simulation.  A simulation for the electron 

trajectory of 60 kVp and 120 kVp potentials at 500 mA tube current was performed in 

OOPIC[78] to show the versatility of the linear x-ray tube. Figure 3.3 shows an output for 

the two simulations.  

Figure 3.3a shows the output for 60 kVp. The focal spot width was measured using 

the built-in cursor and it came out to be 1.7 mm in diameter. The lens potentials were 

(starting from the left) 10 kV, 27.5 kV, 40 kV, 50 kV, and 6 kV. Figure 3.3b shows the 

output for 120 kVp. The focal spot width was measured to be 2 mm in diameter. The lens 

potentials were 20 kV, 55 kV, 73.5 kV, 100 kV, and 24 kV. 

The above simulation supports the conclusion that the linear tube can be used for 

high-current, high-energy applications; at least from an electron trajectory standpoint. The 

next step would be to model the heat transfer in the transmission tube. 
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3.2. COMSOL SIMULATION 

A transient thermal analysis simulation was performed on a compact, modular 

transmission-type x-ray tube anode operating in pulse-mode. The anode consisted of a 

tungsten layer with energy-dependent thickness deposited on a selection of three anode 

materials: beryllium, aluminum, and copper. Electron energy deposition depth profiles 

were created using CASINO for each combination of tungsten thickness and anode 

material. These material and energy dependent profiles were then used as depth-dependent 

heat inputs for COMSOL and compared with the traditional assumption of surface 

deposition for the proposed geometry. The transient thermal analysis was performed using 

0.5 millisecond pulse widths from a cold starting condition (referred to as Single Pulse) 

and from a steady-state starting condition (referred to as Peak Pulse) to show how the 

maximum temperatures rise from the initial startup to long-term operation. The thickness 

of the anode was also varied in the heat transfer simulation to create an understanding of 

how the thickness correlated to maximum temperature.  Finally, we performed an MCNP 

simulation to compare the relative spectrum filtration for each material. 

3.2.1. Stationary CT Design. We assumed there were 201 transmission 

anodes[22] around the gantry, each inside a compact tube, firing around a ring making a 

complete “frame” (a stationary CT has no rotation by definition). The target temporal 

resolution was around 30 frames per second (real-time acquisition). Three sources were 

switched on simultaneously to reduce overheating in the anodes (Figure 3.4). This means 

that each x-ray “pulse” lasts for roughly 0.5 milliseconds. 

3.2.2. Methods for COMSOL Simulation. The methods for the COMSOL 

simulation of the transmission x-ray anode are described in the following subsections.  
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3.2.2.1. Electron deposition.  As the energetic electrons strike the anode target, 

around 99% of the energy will be “wasted” in the form of heat deposition in the anode, 

while the rest will generate x-rays to be used for imaging[3]. For a reflection-type anode, 

the tungsten target is relatively thick and the electron energy can be assumed to be 

deposited on the surface.  That same assumption may not be true for a transmission type, 

due to the thinness of the tungsten layer required to avoid over-attenuation of x-ray 

spectrum.  Because of this, electron deposition depth for each energy was found, and a 

comparison of surface heat deposition and volume heat deposition temperatures was 

conducted.   

 

Figure 3.4 Schematic of stationary CT with 3 simultaneously firing projections 
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The optimum transmission thicknesses of the tungsten for each energy was 

estimated by the following equation from Nasseri[51]: 

𝑌 = −1.45 + 0.075𝑋     (4) 

where Y is the optimum tungsten thickness in µm and X is the incident electron energy in 

keV.  From this equation the tungsten thicknesses for 30 keV, 60 keV, 100 keV, and 150 

keV are 0.8 µm, 3.05 µm, 6.05 µm, and 9.8 µm, respectively. The volume heat deposition 

profiles were then found using the Monte Carlo electron simulation software, 

CASINO[32]. The comparison for surface heat deposition and volume heat deposition 

temperatures was made in COMSOL Multiphysics®[34]. 

 

 

Figure 3.5 MCNP geometry for spectrum comparison of a 60 keV beam attenuated by 

0.5 mm of beryllium, copper, or aluminum 

 

3.2.2.2. Spectrum simulation in MCNP. A representation of the MCNP[33] cell 

geometry is shown in Figure 3.5. A 1 mm diameter, 60 keV electron beam bombarded a 

3.05 µm thin tungsten layer, creating bremsstrahlung and characteristic x-rays.  Those x-
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rays attenuated through a 0.5 mm vacuum block cell and were tallied using an F2 surface 

tally to determine the x-ray spectrum yielded from the tungsten target interaction.  Figure 

3.5 represents the surface as a cell in order to visualize the placement of the virtual 

“detector”. We then ran the same simulation three more times using beryllium, copper, and 

aluminum in place of the vacuum air block to find the relative x-ray attenuation for each 

material.  

3.2.2.3. Modeling maximum temperature rise of anode. COMSOL 

Multiphysics® was used in the transient thermal analysis of a transmission-type anode 

being bombarded by electrons. Figure 3.6 shows a schematic for the input geometry. The 

part of the compact tube being studied is shown in the top right. Temperature-dependent 

thermal conductivities, heat capacities, and densities were used for tungsten, copper, 

beryllium, and aluminum[79]–[84]. Stainless steel and glass did not have temperature 

dependent properties. 

A boundary condition was placed on the outer surface of the glass housing to 

approximate cooling by natural convection of a tube in room temperature transformer oil, 

a simplification that COMSOL offers.  The outer surfaces of the molybdenum collimator 

also had a natural convection boundary condition using room temperature air.  The inside 

surfaces of the tube were allowed to cool using radiative heat transfer.  All other surfaces 

were adiabatic. 

    For the single pulse simulation, all components were initially at 20° Celsius. A 

0.5 millisecond heat flux was turned on to represent electron bombardment of the tungsten 

layer. Temperature probes were placed in the tungsten layer and the anode block to record 

the maximum temperature during and shortly after the pulse. The same simulation was ran 
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again using steady-state initial conditions to represent the maximum temperature of the 

anode after long-term operation. This was called the peak pulse.  

 

 

Figure 3.6 A detailed schematic of the geometry of the transmission-type anode 
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Various parameters were changed for each iteration. The electron energies used 

were 30 keV, 60 keV, 100 keV, and 150 keV.  The tube current parameters were 0.5 mA, 

3 mA, and 6 mA. The anode thickness parameters were 0.1 mm, 0.3 mm, 0.5 mm, 0.75 

mm, 1 mm, and 2 mm. The anode block materials were copper, beryllium, and aluminum. 

Each iteration consisted of a combination of electron energy, tube current, anode thickness, 

and anode material.  The simulations were ran until all combinations were found. 

3.2.3. Results for COMSOL Simulation. The results for the linear transmission 

anode are summarized in the following sub-sections. 

3.2.3.1. Electron deposition. Figure 3.7, Figure 3.8, and Figure 3.9 show the 

electron heat deposition profiles found from the CASINO simulations. The dotted vertical 

lines represent the interface between the tungsten layer and the anode material for each 

energy. Using these profiles as inputs for the heat flux (referred to as volume function), we 

compared the temperature pulses to uniform surface deposition. 

 

 

Figure 3.7 Electron heat deposition in tungsten with aluminum anode 
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Figure 3.8 Electron heat deposition in tungsten with beryllium anode 

 

 

Figure 3.9 Electron heat deposition in tungsten with copper anode 

 

3.2.3.2. Maximum temperature rise of anode. Figure 3.10 shows the temperature 

pulse profiles from both cases. The difference in the maximum element temperature for the 

two simulations was 0.0196%. The conclusion is that surface heat approximation is still 

valid for thin tungsten layers that are optimized to their respective energy. 
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Max Element Size: 3.8e-7 m 

Min Element Size: 7.6e-10 m 

Run Time: 11 minutes, 36 seconds 

Max Element Size: 3.8e-4 m 

Min Element Size: 7.6e-7 m 

Run Time: 36 seconds 

 

Figure 3.10 Comparison study of pulses using volume function input and surface 

heat flux. The pulse is from a 150 keV electron beam and 6 mA tube current. The 

anode material is copper 

 

Figure 3.11 shows the Single Pulse maximum element temperature for copper, 

aluminum, and beryllium being bombarded by a 0.5 millisecond pulse of 30 keV, 60 keV, 

100 keV, and 150 keV electrons for varying block thicknesses and currents. From the 

values in Figure 3.11, it becomes clear that the maximum temperature starts to plateau for 

blocks greater than 0.5 mm thick, regardless of anode block material. 

Figure 3.12 shows the peak pulse temperature for the same configuration as shown 

in Figure 3.11. As mentioned in the Methods section, the peak pulse is the pulse that comes 

after a steady-state solution. This represents the highest temperature that the anode will 

face for a certain beam power. Again, a temperature plateau forms around 0.5 mm anode 

thickness. 
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3.2.3.3. Temperature VS beam power. Utilizing the plateau effect of the anode 

temperature graphs, Figure 3.13 shows the relationship between deposited beam power 

(keV*mA) and maximum element temperature of the anode blocks. The operational 

temperature range for each material is bounded by the single pulse and peak pulse lines. 

The shaded area between those lines give transition temperatures for the anode during 

operation.  The vertical dotted lines give a beam power maximum that each material can 

handle. 

 

 

Figure 3.11 Maximum Single Pulse temperature for anode thicknesses between 0.05 

mm and 2 mm for (a) 30 keV. (b) 60 keV. (c) 100 keV. (d) 150 keV 
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Figure 3.12 Maximum Peak Pulse temperature for anode thicknesses between 0.05 mm 

and 2 mm for (a) 30 keV. (b) 60 keV. (c) 100 keV. (d) 150 keV 

 

3.2.3.4. Spectrum. Figure 3.14 shows how much copper and aluminum will 

attenuate the original spectrum when compared with beryllium. The 0.5 mm of aluminum 

filtered out about 53% of the photons while copper filtered almost 97% of the photons. The 

beryllium, however, only attenuated around 5.5% of the photons. This difference becomes 

less dramatic as energy is increased, but for diagnostic energy ranges, the beryllium is 

significantly less attenuative. This, along with a high melting temperature and decent 

thermal conductivity, means that beryllium is better than copper and aluminum for anode 

material for diagnostic energies.  At high energies, copper might be better suited for a 

filtering material depending on the desired spectrum. 
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Figure 3.13 Relationship of beam power to maximum temperature in the anode 

 

3.2.4. Summary of Findings. COMSOL, MCNP, and CASINO were used to 

simulate a compact, modular transmission-type x-ray tube anode operating in pulse-mode 

with varying thicknesses of copper, aluminum, and beryllium blocks. In comparison, the 

beryllium had adequate heat removal and a much lower x-ray attenuation, making it a better 

option in the electron energy ranges of 30 keV to 150 keV. The results showed a 

temperature plateau starting around 0.5 mm which would allow for future researchers to 

tune their anode to the spectrum they desire without worrying about significant variations 

in temperature.  That plateau lasted even over long-term operation which is closer to real-
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world application. From the data, a maximum beam power of 743 watts plus a reasonable 

margin of safety is recommended to prevent the beryllium anode from melting. Also, it 

was found that the surface deposition assumption for beam power is still valid, even for 

tungsten thicknesses in the micrometer range. 

 

 

Figure 3.14 60 keV x-ray spectra comparison for 0.5 mm anode block. The blue 

spectrum is the original x-ray spectrum created in the forward direction from 60 keV 

electrons interacting with 3.05 µm of tungsten using MCNP 

3.3. CYLINDRICAL ANODE 

Since the goal of this research is to develop a real-time CT, the transmission type 

anode does not allow a high enough power to be used for this purpose. We then decided to 

change tactics and go with a rotating cylinder design. The rationale behind this is that a 

drum utilized in a multisource[16] could allow much higher beam power than previous 

attempts have been able to make.  
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4. COMPARISON OF ELECTRON BEAM SEQUENCES FOR ROTATING 

CYLINDER MULTISOURCE ANODE 

 

The reduction of motion blur in cardiac CT drives the current research for multi-

source CT. The rationale being that as the number of sources increase, the distance each 

source has to travel around the axis decreases. Reducing this source travel distance allows 

for faster acquisition of slice information. The obvious conclusion this leads to is to 

completely remove any source movement in the radial direction by creating a ring of x-ray 

sources, or multi-source x-ray modules. This would mean that the acquisition speed is 

completely dependent on how fast the machine can project x-rays from source points 

around the object, known as focal spots. 

Attempts have been made to create such a system [14], [17], [76]. These lead to 

great advances in acquisition speed, but the general consensus is that the stationary anode 

arrays are not capable of handling the high beam powers that “real-time” CT (i.e. 30 frames 

per second) requires [8]. 

A rotating cylindrical multisource anode (shown in Figure 4.1) is proposed to break 

this barrier and allow for higher image quality at lightning fast acquisition speeds. The 

unique geometry also lets us study the effect of different sweeping sequences on image 

quality. Since the cylinder anode is rotating in a direction orthogonal to conventional CT 

tubes, multiple focal spots can be placed on a single anode, just as in the stationary 

multisource anodes, but the added benefit of rotation allows for a significant improvement 

in heat rate. Three beam sequences will be tested using this new geometry and compared 

with a traditional stationary reflection anode design. 
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Figure 4.1 Rough schematic of cylinder CT array 

4.1. METHODS FOR SWEEPING STUDY 

Anode temperature rise was calculated using a form of the Oosterkamp equation 

[44], [85] modified for use in 2-dimensional electron beam sweeping. The results were then 

compared with COMSOL Multiphysics [34] simulations and maximum deposited powers 

for a focal spot temperature of 2600°C was found for the various beam sizes and sweeping 

speeds. These results were then used to compare the different beam sequences with a 

conventional stationary reflection multisource array. 

4.1.1. Modifying the Oosterkamp Equation. A basic design for the cylindrical 

anode multisource x-ray system is shown in Figure 4.1. An electron beam is generated 

from a thermionic emission cathode, accelerated and focused onto a rotating cylindrical 
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anode radially encapsulated by a 1 mm layer of tungsten. The incident beam deposits its 

energy over a rectangular area of size W x L, where W is the beam width and L is the beam 

length.  If the cylinder and the beam were stationary (cylinder is NOT rotating), the 

temperature rise ΔT of the beam impact area over short exposure time τ could be estimated 

by the Oosterkamp equation [44]. 

∆T=
2Λ

WL √
τ

kρcpπ
             (5) 

where Λ is deposited power. k is the thermal conductivity, ρ is the density, and cp is the 

heat capacity for the thin tungsten layer surrounding the cylinder at the starting 

temperature. The maximum temperature of the beam area is equal to the starting 

temperature plus the temperature rise. This equation is valid for very short exposure times 

(less than 0.005 seconds) with surface deposition onto a stationary target layer [85]. 

 Equation 5 can be modified to estimate an electron beam that moves relative to the 

target surface by replacing τ with λ/Vλ, which will be referred to as temperature rise time.  

Vλ is the velocity of the beam relative to the target surface (Vλ=√VL
2+VW

2).  VL is the 

further broken down into VL=Vrot+VY-Sweep.   

For a rotating cylinder, Vrot=fπd where f is the rotational frequency in Hz, d is the 

cylinder diameter, and Vrot is the rotational surface speed which is in the direction of the 

beam length (y-direction from beam reference frame). VY-Sweep is the beam sweeping speed 

in the y-direction, while VW is the beam sweeping speed in the x-direction. λ is the 

maximum distance travelled through the original beam impact area measured collinear to 
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the direction of velocity Vλ (see Figure 4.2). The temperature rise for a beam with velocity 

Vλ relative to the anode surface now becomes 

∆Tλ=
2Λ

WL
√

λ

kρcpπVλ
     (6) 

 

 

Figure 4.2 Visual representation of focal spot variables  

 

The angular dependency of λ can be estimated for a rectangular beam area by 

treating it like a rounded rectangle with corners of very small radii (Figure 4.2). In practice, 

the actual beam shape in an x-ray generator is rounded at the corners anyway [37].   For a 

rounded rectangle of sides W and L with corner radius r, the equation describing its 

perimeter is 

(
X

a
)

2a

r
+(

Y

b
)

2b

r
=1              (7)  
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where 𝑎 = 𝑊/2 and 𝑏 = 𝐿/2. For this equation to adequately estimate a standard 

rectangle, the radius of the corners must be very small compared to the length of the sides. 

In the calculations, r was estimated to be equal to 𝑎/25 in order to avoid rounding errors. 

Also, for very small r, 𝑎/𝑟 behaves very similar to 𝑏/𝑟, meaning that 2𝑏/𝑟 and 2𝑎/𝑟 can 

be replaced by another variable we can call 𝑧. Now, replacing X with  
λ cos (θ )

2
⁄  and Y 

with  
λ sin (θ )

2
⁄ , the new equation for angular dependent λ is 

𝜆 =
2𝑎𝑏

√𝑏𝑧sin(𝜃)𝑧+𝑎𝑧cos(𝜃)𝑧𝑧                       (8)  

where 𝜃 = tan−1 𝑉𝑊

𝑉𝐿
 and 𝑧 = 50.   

 Equation 5 and equation 6 were used for the calculation of temperature rise for the 

three different beam sequences described below. For a given beam sequence and 

acquisition time, if the acquisition time is less than the temperature rise time (λ/𝑉𝜆), 

equation 5 will be used. For all else, equation 6 will be used. 

 A focal spot will be defined in the following sections as the total x-ray producing 

area that a detector will see during a single projection. It is shown in Figure 4.3 as the black 

outline. The red, rectangular region is the electron beam area. The electron beam area is 

the location of electron bombardment with the anode at any single point in time. To allow 

for a more intuitive grasp of the results of the simulation, RPM and anode diameter will be 

replaced with a singular concept: surface speed. Rotational surface speed is the vertical 

movement (denoted by the longer, vertical arrow in Figure 4.3) of the surface of the anode 

relative to the location of the beam area. Sweeping surface speed is the speed at which the 

beam is swept, either in the x or y-direction. This is denoted in Figure 4.3b and Figure 4.3c 

by the shorter lines pointing away from the beam area. 
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a) 

 

b) 

 

c) 

 

Figure 4.3 Different sequences being tested. The red represents the electron beam area 

while the black outline represents the focal spot area. a) Step-and-shoot b) X-sweeping 

c) Y-sweeping 

 

4.1.2. COMSOL Simulations. COMSOL Multiphysics was used to find 

maximum temperatures of the focal spots for different scanning sequences. The maximum 

allowed temperature for the focal spot was 2600° C which is well below the melting point 

of the tungsten target material. The deposited power, Λ, that resulted in a maximum focal 

spot temperature of 2600°C was referred to as maximum deposited power. Three sequences 

were measured: Step-and-Shoot (Rotating Only) Figure 4.3a; Rotating with sweeping in 

the x-direction Figure 4.3b, and Rotating with sweeping in the y-direction Figure 4.3c.  

To compare the different sequences with each other, total energy deposited during 

the acquisition time was also calculated. Around 99% of the energy from the bombarding 

electrons are converted into heat, with less than 1% converted to useful x-rays. X-ray 

production efficiency is dependent on the kinetic energy of the incoming electrons and the 
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material of the target [37]. Therefore, assuming both sequences have the same incident 

electron energy and target material (i.e. tungsten), the amount of x-ray energy being 

produced in the focal spot is directly proportional to the amount of heat deposited in that 

same focal spot. Increasing the quantity of x-rays produced per focal spot increases the 

signal-to-noise ratio of the image at the detector [86]. 

To save computation time, a flat surface was simulated instead of the curved surface 

of a cylinder. The focal spot sizes were small enough that the curvature of the cylinder was 

negligible in regards to its effect on the heat transfer over very short time scales. The flat 

surface was a 1 mm thick tungsten slab. The width and length were dependent on the 

scanning sequence, beam dimensions, and focal spot dimensions. The width and length of 

the flat surface was equal to the total distance the beam travels in each direction plus 0.5 

mm padding on each side to allow for the heat to spread laterally during acquisition time. 

All other boundaries were open to allow heat to flow out. 

Tungsten’s thermal conductivity, density, and heat capacity were independent of 

temperature. To simplify the results, electron backscattering was ignored and only the 

energy absorbed in the focal spot during the acquisition was simulated. 

4.1.2.1. Step-and-shoot sequence.  Rotating-Only Beam Sequence, aka Step-and-

Shoot, refers to a sequence where the beam trajectory does not change during the 

acquisition of the focal spot area. The electrons are accelerated from the cathode and 

bombard a single focal spot on the anode during the entire acquisition.  After the desired 

acquisition time has been met, the beam trajectory changes to the next focal spot. 

Throughout the acquisition, the apparent location of the beam area relative to the detector 

does not change due to the cylinder anode surface being the object that’s moving and the 
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electron beam is stationary. This allows for longer beam exposures without significant 

temperature rise or focal spot blurring. 

The simulation focused on the temperature rise in one focal spot starting from 20°C. 

The surface speed in the y-direction (rotational surface speed) was simulated at 0 m/s, 100 

m/s, 200 m/s, and 300 m/s. 0 m/s rotational surface speed represented a scenario where a 

stationary anode was used instead of a rotating cylinder. The focal spot length was varied 

from 5 mm to 10 mm [37]. The focal spot width remained constant at 1 mm throughout the 

entire simulation. In the case of rotation-only beam sequence, the focal spot dimensions 

and the incident beam dimensions were the same. For these parameters, the maximum 

deposited power the focal spot can withstand without surpassing 2600°C was found. 

For step-and-shoot mode, the total energy deposited was simply the maximum 

deposited power for a particular acquisition multiplied by the acquisition time, with the 

assumption the cylinder diameter was large enough that the beam always passed over a 

fresh target surface. The simulated acquisition time varied from 1 microsecond to 1 

millisecond.  

4.1.2.2. X-sweeping with rotation sequence.  X-Direction Sweeping, shown in 

Figure 4.3b, refers to a sequence where the beam trajectory sweeps along a path colinear 

with the focal spot width and deposits its energy in the anode continuously. This sweeping 

of the electron beam typically is done using some form of shifting magnetic field. An 

example of this type of sequence was used in the electron beam CT [29].  

In this sequence the beam width and the focal spot width are not the same, although 

the two lengths are identical. As the beam sweeps across the target, it passes across a 

location that will be used by the detector as the “focal spot”. For the simulation, the focal 
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spot was still 1 mm wide but the beam widths were simulated at 0.1 mm, 0.6 mm, and 0.9 

mm. The acquisition time (τ) for a single focal spot was dependent on its beam width (W), 

sweeping speed (𝑉𝑋), and focal spot width (𝐹𝑆𝑊) in the following way: 

τ =
FSW-W

VX
         (9) 

The above equation assumes that the electron beam was already travelling at its 

sweeping speed across the surface of the target when the focal spot projection was taken. 

The acquisition time, as defined, started when the beam was completely inside the assigned 

focal spot area and ended when the beam has just touched the other edge of the same focal 

spot.  

The maximum deposited power for sweeping speeds ranging from 0.05 m/s to 20 

m/s was found. For each sweeping speed, the rotational surface speed was also varied at 0 

m/s (stationary anode), 100 m/s, 200 m/s, and 300 m/s. The focal spot length will be kept 

constant at 7 mm. 

The simulation for total energy deposited in the focal spot was ran so that the 

acquisition time, τ, was predefined, ranging from 1 microsecond to 1 millisecond. This 

meant that as the beam widths varied, the sweeping speeds were calculated using Equation 

9. The total energy deposited in the focal spot could then be calculated using the product 

of the maximum deposited power for each beam width/ sweeping speed combination and 

the predefined acquisition time, τ.  

4.1.2.3. Y-sweeping with rotation sequence.  Figure 4.3c shows the sequence that 

was referred to as Y-Direction Sweeping. This is when the electron beam travels in the 

direction colinear to the focal spot length, stopping once it has covered the entire focal spot 

area. The beam is then moved to the top of the next focal spot location and the process is 



 

 

52 

repeated. The advantage of this is that the sweeping speed can be added to the rotational 

speed in order to improve surface temperatures. 

Again, the beam and focal spot dimensions were not the same. The widths both 

remained at 1 mm but the length of the beam varied. The lengths of the beam simulated 

were 0.7 mm, 4.2 mm, and 6.3 mm, which was 10%, 60%, and 90% of the 7 mm focal spot 

length, respectively. Similar to X-Sweeping, the Y-Sweeping equation for acquisition time 

is: 

τ =
FSL-L

VY
         (10) 

where L is the beam length and 𝑉𝑌 is the sweeping speed in the y-direction. Y-direction 

sweeping is a special case of Equation 6, where the characteristic length, λ, is the beam 

length, L; and 𝑉𝜆 becomes the rotational surface speed, 𝑉𝑟𝑜𝑡, added to 𝑉𝑌. 

The maximum deposited power for the Y-Sweeping speeds ranging from 0.05 m/s 

to 40 m/s was found. For each sweeping speed, the rotational surface speed was also 

simulated at 0 m/s (stationary anode), 100 m/s, 200 m/s, and 300 m/s. The calculations for 

total energy deposited in the focal spot were the same as for X-Sweeping, except the beam 

lengths were changed instead of the widths.  

4.2. RESULTS FOR SWEEPING STUDY 

The results for the beam sweeping sequences are given below. A description of the 

definitions of deposited power for each sequence are shown in order to fully understand 

the how the results were found. 
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a 

 

b 

 

c 

 

Figure 4.4 COMSOL simulation for step-and-shoot 
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a 

 

b 

 

c 

 

d 

 

Figure 4.5  COMSOL simulation for X-Sweeping 
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a 

 

b 

 

c 

 

Figure 4.6 COMSOL simulation for Y-Sweeping 
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4.2.1. Pulse Shape and Deposited Power Definition for COMSOL Simulations.  

Three different beam sequences were calculated using the modified Oosterkamp equation 

and verified using COMSOL. For all simulations, the focal spot area is 1 mm x 7 mm. 

Figure 4.4 shows an example of an output for a COMSOL simulation for a step-and-shoot 

sequence using a 1 mm x 7 mm beam area (same size as the focal spot area) with rotational 

surface speed of 100 m/s. Looking at the temperature profile, you can see the initial rise in 

temperature until a certain point where the beam has travelled in the anode reference frame 

a distance of one full beam length (Figure 4.4b). The amount of time it takes for this plateau 

to happen (referred to as ∆𝒕𝒓𝒐𝒕) is equal to the beam length divided by the rotational surface 

speed. The amount of energy deposited in the focal spot during acquisition time would be 

equal to the deposited power (equal to 41,449 W) times the length of the entire acquisition, 

which was 0.145 ms in this case. 

A X-Sweeping beam sequence is shown in Figure 4.5. The beam area is 0.6 mm x 

7 mm. The rotational surface speed is 100 m/s and the X-sweeping speed is 20 m/s. The 

initial location of the beam was intentionally placed outside the focal spot to represent the 

actual behavior of the temperature rise in the anode and the corresponding energy 

deposition in the focal spot area (Figure 4.5a). In this particular sequence, the electron 

beam begins sweeping across the surface of the anode and the corresponding temperature 

rise ensues. The amount of time it takes for temperature profile to reach the plateau region 

(referred to as ∆𝒕𝑿) can be found by dividing the beam width by the X-sweeping speed, 𝑉𝑋. 

Instead of a sharp transition at time ∆𝒕𝑿, it is rounded off (Figure 4.5b). This occurs because 

lateral heat dissipation cannot be ignored at that point, an assumption that does not follow 

with the Oosterkamp equation. Once the beam area is completely inside the focal spot, the 
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detector begins the image acquisition (Figure 4.5c) and ends it when the right edge of the 

beam has reached the other end (Figure 4.5d). The beam continues moving, depositing its 

energy as it goes to the next focal spot area. The gray line represents the actual energy 

deposited in the focal spot area, but the orange dotted line represents the energy deposited 

in the focal spot area during acquisition of the projection from that focal spot. As mentioned 

previously, the amount of x-ray energy being produced for a particular projection is 

proportional to the amount of energy being deposited in the focal spot during the 

acquisition time. In this case, the total amount of energy deposited in the focal spot is 

calculated by multiplying the deposited power (equal to 37,989 W) by the acquisition time, 

calculated by equation 9 (0.02 ms in this case). 

 The Y-Sweeping is the most complicated sequence between the three but 

it’s meant to take advantage of the additive benefit of the rotational surface speed and the 

Y-directional sweeping speed. Figure 4.6a shows a 1 mm x 4.2 mm beam area sweeping 

in the negative y-direction with a speed of 20 m/s. The rotational surface speed of the target 

is 100 m/s. The beam area starts from the top of the focal spot and moves in a downward 

motion (Figure 4.6b). Temperature rise time, ∆𝒕𝒀, is equal to the beam length divided by 

(𝑉𝑟𝑜𝑡 + 𝑉𝑌). After the beam reaches the bottom of the focal spot (Figure 4.6c), the beam is 

turned off and moves on to the next focal spot. The total energy deposited in the focal spot 

is the deposited power (equal to 35,307 W for this case) multiplied by the acquisition time, 

which can be calculated by equation 10. 

4.2.2. Comparing Deposited Power Capabilities for X-Sweeping and Y-

Sweeping.  Figure 4.7 shows the maximum power each type of beam sequence allows in 

order to reach a maximum focal spot temperature of 2600°C. The green lines represent a 
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X-Sweeping beam sequence (Figure 4.7a) while the purple lines represent a Y-Sweeping 

beam sequence (Figure 4.7b). Looking at the X-Sweeping plot, for a stationary anode 

(Rotational Surface Speed=0 m/s), the maximum deposited power increases with the 

Sweeping speed. For the rotating cylindrical anode, the maximum deposited power is 

constant until X-Sweeping temperature rise time, ∆𝒕𝑿, is less than ∆𝒕𝒓𝒐𝒕. After which the 

rotating anode power curve converges with the stationary anode curve. Notice the 

acquisition time for a focal spot 1 mm wide drops quickly as the sweeping speed increases 

(orange line). 

The same initial behavior shows up in the Y-Sweeping plot, except the deposited 

power does increase before eventually converging with the stationary anode line. This is 

due to the superposition of the rotational speed and the Y-Sweeping speed. The behavior 

continues until the acquisition time is less than ∆𝒕𝒀. For lower sweeping speeds, the 

maximum deposited power is mostly dominated by the rotational speed, although the Y-

Sweeping does contribute slightly.  For higher sweeping speeds, the X-Sweeping allows 

for significantly higher maximum deposited powers when compared to the Y-Sweeping. 

The two plots in Figure 4.8 represent the energy deposited in the focal spot for 

various acquisition times. The rotational surface speed for both plots is 200 m/s. Using 

equations 9 and 10, the corresponding sweeping speeds for each designated acquisition 

time was calculated. For both plots, the energy deposited in the focal spot during the 

acquisition time increases linearly with acquisition time, although the sweeping speed 

decreased with increasing acquisition time.  A blue line in each plot represents the step-

and-shoot sequence in order to easily compare the sequences. It’s plain to see that the step-

and-shoot allows more energy to be deposited per focal spot regardless of the acquisition 
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time. Another takeaway is the energy deposited in the focal spot per acquisition is greater 

for y-sweeping than x-sweeping for identical beam areas (i.e. length X width). 

 

 

 

Figure 4.7 Maximum deposited power for a) 0.9 mm wide x-sweeping b) 6.3 mm long 

y-sweeping 
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Figure 4.8 Energy deposited in focal spot for: a) x-sweeping b) y-sweeping 
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4.2.3. Step-And-Shoot. Strictly staying with step-and-shoot beam sequences 

allows the designer to make the most out of each x-ray projection in the multisource system. 

With no sweeping, the total energy deposited into the focal spot during the acquisition time 

for a stationary target (shown with red line) increases with the square-root of acquisition 

time. However, for the rotating cylindrical anodes in step-and-shoot mode, the total energy 

deposited in the focal spot during the acquisition time increases linearly with increasing 

acquisition time (Figure 4.9). The faster the rotation speed, the steeper the slope of the line. 

This trend will last as long as the cylinder’s diameter is large enough that the beam only 

encounters fresh tungsten during the acquisition time. Figure 4.10 shows how deposited 

power increases with rotational surface speed and focal spot size, assuming acquisition 

time of the focal spot is greater than ∆𝒕𝒓𝒐𝒕. Given the current state-of-the-art in multisource 

x-ray technology, this is a huge leap forward in the goal of high-speed CT imaging. 

 

Figure 4.9 Energy deposited in focal spot for step-and-shoot beam sequence 
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Figure 4.10 Deposited power vs rotational surface speed 

4.3. DISCUSSION 

The results showed that the step-and-shoot configuration allows for the most 

amount of heat to be deposited into the focal spot for a given acquisition time. The 

sweeping motion had very little effect on the maximum deposited power (especially in X-

Sweeping) for low sweeping speeds. For higher speeds, the acquisition times became too 

short, and the power curve was identical to that of a stationary anode. Next, it was found 

that the amount of energy deposited per focal spot decreased with increasing sweeping 

speeds. The conclusion one could draw from this result is that sweeping does not actually 
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provide any benefit to output. An effective cylindrical multisource anode should employ a 

step-and-shoot beam sequence. 

A cylindrical multisource system could be used in TBCT [12] to increase tube 

power, although a smaller diameter anode would need to be used to decrease size and 

weight. Due to the curved surface of the anode, a smaller diameter would limit the 

maximum focal spot length that can be projected onto the anode while still maintaining a 

1 mm x 1 mm focal spot projection size on the detector.  This would, of course, decrease 

the allowable power that can be used for imaging.  

Another application is traumatic brain injury (TBI) research. Using a ring of 

cylinder multisource systems allows for 4D imaging of an impact onto a phantom. A 

rotating cylinder multisource anode is uniquely suited for this task. It combines the high-

temporal resolution potential that multisource systems intrinsically possess and the heat 

management capabilities that conventional rotating anodes excel in.   

4.4. CONCLUSIONS FOR SWEEPING STUDY 

Three different beam sequences for a cylindrical multisource anode were compared 

using a combination of analytical and numerical approaches. It was shown that although 

adding a sweeping motion to the electron beam increased allowable beam power, the 

amount of energy deposited in the focal spot, and thus the amount of x-rays produced in 

that focal spot, decreased with increasing sweeping speed. This led to the inescapable 

conclusion that a step-and-shoot beam sequence should be used for the further study of the 

possibilities that a cylindrical anode could offer, such as significant increase in temporal 

resolution when compared to conventional CT.    
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5. DESIGN CONSIDERATIONS FOR CYLINDER MULTISOURCE ANODE 

 

Computed Tomography (CT) scanners are one of the most widely used diagnostic 

tools. The most common designs involve an x-ray tube and a detector quickly rotating 

around the patient. Although great advances in tube and detector design have increased the 

rate at which image slices can be acquired[1], [2], [4], the mechanical stress from the heavy, 

rotating components prevents any significant gain[7]. 

One way to solve this problem is to completely remove gantry rotation by placing 

multiple sources axially around the target object. This is referred to as a multi-source (or 

distributed source) x-ray system. Previous research[14]–[17] typically used a stationary, 

angled anode. And while mechanically this is advantageous, the lack of movement 

prevented high heat loads from being applied to the target, limiting the x-ray output.  

This section suggests the possibility that replacing the stationary, angled anode with 

a rotating, cylindrical anode in a multi-source system would allow for much greater x-ray 

output per source projection.  For this hypothesis to be supported, a study of the thermal 

load for various cases of size and rotational speed needs to be performed. The curved 

surface of the cylinder means the thermal load from the incident electron beam will not be 

uniform across the target surface, as is the case for a traditional, angled anode. To 

compound the matter, the proportion of energy carried away by electron backscatter is 

angular dependent[37], [45], [46], meaning this too will contribute to the differential 

thermal load along the length of the source projection area (called a focal spot). The 

consequence of this has not been studied. A thorough investigation into the effect of this 

uneven loading is the primary objective of this paper.  
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Figure 5.1 Cross-section of the cylinder multisource x-ray anode 

5.1. METHODS FOR DESIGN CONSIDERATIONS 

Figure 5.1 shows a cross-section of the cylinder multisource anode. The length of 

the tungsten target area is 400 mm with a thickness of 1 mm. This layer is sintered onto a 

TZM outer sleeve which rotates around the stationary TZM inner sleeve. The interface 

between the two sleeves is lubricated by a gallium-based liquid metal bearing. The anode 

is cooled by a 10 mm diameter water channel flowing at 5 m/s. There are 30 focal spots 

along the target area of the anode. A full CT system would contain 7 multisource anodes 

placed radially around the object to be imaged. 210 projections (7 anodes x30 focal spots 
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each) would form one complete slice[22]. Real-time is defined as 30 slices (called frames) 

per second. 

 

 

Figure 5.2 Geometry of the cylindrical anode 
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5.1.1. Description of the Geometry. An electron beam is accelerated toward the 

anode and bombards the focal spot for a fixed exposure time, depositing heat and emitting 

x-rays in all directions. During the exposure time, the anode rapidly rotates, spreading the 

deposited heat around axially. For a rotating anode, the temperature rise time is the focal 

spot length divided by the surface speed[85].  After this rise time, the maximum 

temperature in the anode is constant. 

Figure 5.2 shows the geometry of the cylindrical anode with diameter d being 

bombarded by an electron beam of width, E. The projection of E onto the cylinder surface 

at angle Φ is defined as the Focal Spot Length, L, bounded by the points 𝑙𝑎 and 𝑙𝑏. θ is the 

local incident angle of the incoming electrons inside the beam. This value varies across 

length, L. 𝛾1 and 𝛾2 are the angular deviations from the center of the focal spot that 

correspond with the points 𝑙𝑎  and 𝑙𝑏, respectively. Since angle Φ is defined by the vertical 

axis that runs through the center of the L, 𝛾1 equals 𝛾2. Take note that the center of the 

electron beam does not necessarily intersect with the center of the focal spot. The equation 

for the electron beam width for a fixed focal spot length is given by the following equation: 

E = d*cos(Φ)*sin(
L

d
)          (11) 

The maximum beam angle, 𝛷𝑚𝑎𝑥, is the angle Φ at which the beam line intersecting 

at point 𝑙𝑎 is tangent to the cylinder surface at that point. This should convince you that 

𝛷𝑚𝑎𝑥 = 𝝅/2 – L/d.  

5.1.2. Angular Dependence of Backscatter Energy Fraction.  For the curved 

surface shown in Figure 5.2, the local incident angle, θ, of the electron beam varies along 

L. For large diameters and small focal spots (L/d ≈ 0), this difference is negligible; but as 

L/d increases, the variation becomes increasingly more dramatic. 
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It is already known that the electron backscatter fraction is dependent on the local 

incident angle, θ, of the beam[37], so MCNP6[33], [87] was used to find the angular 

dependency of the energy that the backscattered electrons take away from the focal spot. 

The MCNP geometry consisted of a 2-millimeter diameter sphere half-filled with tungsten 

and the other half filled with vacuum air (shown in Figure 5.3). A circular electron beam 

10 micrometers in diameter pointed in the negative y-direction released 5,000,000 

particles. To test the energy dependency of electron backscatter, the electron energies for 

the source were 50 keV, 100 keV, and 150 keV. The incident angle θ was placed at 0º, 10º, 

20º, 30º, 40º, 50º, 60º, 70º, 80º, and 85º. F1 and *F1 tallies were placed on the outer surface 

of the sphere to find backscatter fraction and energy spectrum for each combination of 

energy and angle. 

 

 

Figure 5.3 MCNP geometry 
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5.1.3. Finite Element Simulation.  The backscattered electron energy fraction, β, 

was defined as the fraction of electrons backscattered multiplied by the average energy of 

those electrons divided by the original energy of the incident electrons.  β for each angle 

was found and the MATLAB curve-fit tool was used to find an empirical equation for β(θ). 

This was then put into COMSOL Multiphysics®[34] as a function for the Heat Flux Node, 

acting as the focal spot. The units for angle are in radians. The Heat Flux Node does not 

take curvature of the incident surface into account which can cause a conservation of 

energy issue for a cylindrical surface (total power deposited on a surface is greater than 

input power of the beam). Therefore, a correction for surface curvature was also added. 

The heat deposited outside the focal spot from backscattered electrons returning to the 

anode was not considered, as Kellermeier stated that they had negligible contribution to 

temperature rise[14]. It can also be assumed that an electron trap was used to remove 

backscattered electrons away from the anode. Also, the loss of power from x-ray 

production was ignored since it only accounts for less than 1% of the deposited energy in 

the diagnostic energy range[37]. 

5.1.3.1. Power efficiency per incident beam angle.  Temperature rise over a focal 

spot is correlated with the power per unit area deposited in the focal spot during 

exposure[44]. Conventional angled anodes have a flat surface, meaning the power per unit 

area deposited in the target is constant across the area of the focal spot. For cylindrical 

anodes, however, the heat is not deposited uniformly because the backscatter fraction of 

electrons changes across the length of the focal spot. 

COMSOL was used to find the power efficiency of the electron beam on the surface 

of the cylinder anode for various values of L/d, as the curvature of the anode across the 
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focal spot was solely dependent on the ratio of focal spot length over diameter of the 

anode.  Power efficiency was defined as the total power deposited in the focal spot area 

divided by the total power of the incoming beam (called tube power). In COMSOL, a 

boundary heat flux was incident on the exterior surface of the anode while the interior side 

(1 mm away) was set at 20ºC. A boundary probe was placed on the surface of the focal 

spot to measure the integrated power deposited in the target. The simulation was ran with 

1000 Watts tube power and the power that was picked up by the probe was tallied in the 

output as the deposited power. 

For the cylindrical anode, L/d values were set at 0.01, 0.1, 0.2, and 0.5. The power 

efficiency was measured at angles of 0º through 𝛷𝑚𝑎𝑥. The anode had no rotation since 

power efficiency was independent of rotation. For comparison, an angled anode was ran as 

well. The focal spot size was 7 mm in length.  

5.1.3.2. Maximum deposited power per angle.  Deposited power was found for a 

maximum focal spot temperature of 2600ºC. Since the amount of heat that is actually 

deposited onto the focal spot is proportional to x-ray output, that was the value that was 

used for comparison. Different values of deposited power were found for angles of 0º 

through 𝛷𝑚𝑎𝑥. Values for L/d were set at 0.01, 0.1, 0.2, and 0.5. The focal spot size was 7 

mm in length and 1 mm in width. The rotational surface speed was 100 m/s. Both rotation 

directions were ran (Clockwise and Counterclockwise) using Figure 5.2 as the reference 

direction for Clockwise. 

The boundary heat flux was again incident on the exterior target surface. The other 

surfaces were open boundaries, which treated the material as extending to infinity in each 

direction.  This assumption was valid, as short-term temperature rise was all that was being 
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measured. For long-term behavior, other components of the cylindrical anode should be 

included. Tungsten was used as the target material. The density, heat capacity, and thermal 

conductivity were all temperature dependent[79]–[81]. 

 

Table 5.1 Baseline properties 

 

 

5.1.3.3. Sensitivity analysis of thermal properties and dimension changes.  A 

long-term sensitivity analysis of the cylinder anode shown in Figure 5.1 was performed by 

varying dimensional and mechanical properties and solving for steady-state temperature in 

the tungsten.  The baseline properties being changed are shown in Table 5.1. The deposited 

Property: Baseline value: Description: 

Gallium Film Thickness (h) 50  [μm] Gap thickness of liquid 

metal bearing. 

Anode Diameter (d) 200  [mm] Diameter of cylindrical 

anode 

Water Speed (V) 5 [m/s] Velocity of cooling 

fluid running through 

center of anode 

Tungsten Thickness (TG) 1  [mm] Target thickness layer 

Tungsten/TZM Interface 

Thermal Conductivity (ITC) 

80 [W/m-K] Thermal conductivity 

between tungsten layer 

and TZM body 

Frame Acquisition Time 

(TR) 

0.0333 [sec] Time for CT to fully 

acquire one slice 

Pause-Time between CT 

frames (DT) 

1 [msec] Time between slices for 

patient movement, etc. 
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power, K, is 50,000 Watts spread over the 210 focal spots (number of projections in a 

frame). The average power deposited in each focal spot is equal to: 

KPerFS=
𝐾 ∗ (1

𝑇𝑅 + 𝐷𝑇⁄ ) ∗ 𝑇𝑅
210

⁄     (12) 

 

 

Figure 5.4 Backscatter electron energy fraction 

5.2. RESULTS FOR DESIGN CONSIDERATIONS 

The following subsections give the results from the thermal loading simulations, 

including a sensitivity analysis for a simple rotating cylindrical anode design. 

5.2.1. Electron Backscatter.  The backscatter electron energy fraction β(θ) was 

found to be relatively independent of incident electron energy, although it did increase 
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slightly with increasing energies (Figure 5.4). The average energy of the backscattered 

electrons increases with increasing angles θ. Also, as θ increases, the fraction of the energy 

carried away by backscattered electrons increases exponentially. The equation for the 

relationship between backscattered electron energy fraction and angle is: 

β(θ)=0.2892*e(-0.2564*θ)+0.07823*e(1.337*θ)   (13) 

where angle is in radians. This equation does not account for curvature of the anode. 

 

 

Figure 5.5 Power efficiency per angle 

 

5.2.2. Power Efficiency.  The lower values for L/d conform with the curve for a 

flat surface (Figure 5.5). The greater values, however, diverge significantly. For L/d=0.5, 

the value at 𝛷𝑚𝑎𝑥 is about 49.0%. 
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Figure 5.6 Effect of L/d, rotation direction, and beam angle on normalized deposited 

power. The normalized deposited power is defined as the maximum deposited power at 

beam angled divided by the maximum deposited power of flat angled anode at normal 

incidence. The normalized deposited power of a flat anode is unity for all angles. 

 

5.2.3. Rotation Direction and L/d.  L/d and rotation direction play a significant 

part in the angular dependence of the normalized maximum deposited power (Figure 5.6). 

At Φ = 0, the rotational direction does not change maximum deposited power. However, 

L/d does have a slightly positive impact on that value. For greater values of Φ, the rotational 

direction is significant. The counterclockwise direction allows the maximum deposited 

power to temporarily increase in value while the clockwise direction generally decreases 
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the maximum deposited power with Φ. The peak for L/d = 0.2 is around 13% higher than 

the power for a traditional angled anode. 

 

 

Figure 5.7 Maximum deposited power vs speed and focal spot length 

 

5.2.4. Maximum Deposited Power VS Focal Spot Size and Rotational Speed.  

Figure 5.7 shows the relationship of maximum deposited power with varying focal spot 

lengths and rotational speeds for an anode with L/d close to 0. The length of the focal spot 

plays a significant role in the maximum power the anode is capable of handling. The 

rotational surface speed also has a positive influence on the maximum power. 

5.2.5. Sensitivity Analysis. Water speed has the largest effect on long-term 

tungsten temperature. The anode diameter and frame acquisition time both had a moderate 
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effect. Pause time, tungsten thickness, and film thickness had no significant effect. 

Tungsten interface thermal conductivity had a large effect for very low values but quickly 

plateaued at around 5% of baseline (Figure 5.8). 

 

 

Figure 5.8 Sensitivity analysis 
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5.3. DESIGN IMPLICATIONS AND DISCUSSION 

The results suggest the ratio of the focal spot length to anode diameter should be 

large enough to take advantage of the curvature of the surface. Unfortunately, the power 

efficiency drops with increasing beam angle, which is where the advantageous region 

appears in Figure 5.6. If electron beam efficiency is the primary factor for anode design, 

then the best choice would be to have a dimensionless focal spot length that is very small. 

This would allow the efficiency profile to be very similar to a flat anode, while still having 

the rotational benefit of the cylindrical anode. If a larger dimensionless focal spot size is 

used, the rotational direction of the anode must be in the counterclockwise direction or any 

benefit will be lost.  

If a designer knows their focal spot size and deposited power requirements 

(imaging exposure needs), Figure 5.7 could be used to find the required rotational surface 

speed to achieve that power. Figure 5.6 would then be used to find the optimum incident 

angle and anode diameter. Finally, Figure 5.5 would allow the designer to estimate the 

required tube power based on efficiency. 

The sensitivity analysis suggests that the water speed is the most important factor. 

Anode diameter and frame acquisition time are the next important factors, although these 

would most likely be fixed depending on the application. The results came from steady-

state conditions which could be considered a conservative estimate of anode temperature 

just before a new acquisition cycle starts. Even in this case, the temperature rise in the 

tungsten is only 80° above initial starting conditions (i.e. room temperature). Assuming the 

maximum temperature of 2600°C in the tungsten, this would only affect the maximum 
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allowable deposited power by a little over 3%, making the plot in Figure 5.7 a reliable 

estimate, even for long-term operation. 

5.4. CONCLUSIONS FOR DESIGN CONSIDERATIONS 

The angular dependence of the thermal loading for a rotating cylindrical 

multisource anode was investigated. The results showed that the ratio of focal spot length 

over diameter played a major role in maximum deposited power, with greater values of 

that ratio allowing for up to a 13% increase at certain angles. The sensitivity analysis 

suggests that, for long-term operation, the water speed will play a crucial role in this design.  
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6. DISCUSSION AND CONCLUSION 

6.1. GENERAL CONCLUSIONS 

A linear, compact x-ray tube and a cylindrical anode designed for multisource CT 

imaging were studied. Tungsten target thickness and anode material and thickness were 

varied so we could investigate the effect of these parameters on anode material 

temperature. It was found that the thickness of the tungsten did not have a significant 

impact on the temperature of the anode. We found that beryllium was the best anode for 

the widest range of tube powers, providing the best combination of heat transfer properties, 

high melting temperature, and low x-ray attenuation. Based upon the temperature plateau 

at anode thickness greater than 0.5 mm, a plot was created to give the power range of the 

x-ray tubes. It was found that the focal spot size in the transmission anode prevented an 

acceptable level of deposited electron beam power for the application of real-time CT. 

Based upon the findings for the linear x-ray tube, the focus was switched to a 

rotating cylindrical anode shape. The assumption was that the anode would have the benefit 

of both line focusing and rotatory motion, as well as providing ample surface area for an 

adequate number of focal spots. Investigation into the effects of rotation and beam 

sweeping on maximum deposited power were first studied. It was found that the step-and-

shoot sequence was optimal, as the heat-spreading benefit from rotation dominated 

maximum deposited power for low sweeping speeds. Although higher sweeping speeds 

did increase the maximum deposited power, the deposited energy per acquisition time in 

the focal spot decreased.  



 

 

80 

The effects of the curved geometry on maximum deposited power in a cylindrical 

multisource anode had not been studied before. The amount of energy carried away from 

the anode by backscattered electrons changes as the incident angle changes. Since the 

anode is curved, an electron beam with a relatively large width would have different local 

incident angles at different parts of the beam. This causes an uneven heat deposition rate 

along the focal spot size. It was found that, although the power efficiency decreases at 

higher beam incident angles, the maximum deposited power can increase by as much as 

13%. Also, a sensitivity analysis found the speed of the coolant water had the biggest effect 

on long term temperature. 

6.2. FUTURE WORK 

The next step for this project would be to perform a beam optics study. We assumed 

the anode would be around 450 mm in length. Past studies have shown it is not feasible to 

have a single beam being steered along that entire length[17]. Therefore, the x-ray module 

would probably consist of multiple cathodes. Another reason for a beam optics study is the 

incident beam angle greater than 0 which would mean the beam would have to be steered 

in both the lateral and vertical direction. In the near future, a prototype cylindrical anode 

will be fabricated and studied to perform these and other studies. 

 

  



 

 

81 

REFERENCES 

[1] H. Hu, “Multi-slice helical CT: Scan and reconstruction,” Med. Phys., vol. 26, no. 

1, pp. 5–18, 1999. 

[2] C. R. Crawford and K. F. King, “Computed tomography scanning with simultaneous 

patient translation,” Med. Phys., vol. 17, no. 6, pp. 967–982, 1990. 

[3] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent 

Advances, Third. Bellingham, Washington: SPIE, 2015. 

[4] T. G. Flohr et al., “First performance evaluation of a dual-source CT (DSCT) 

system,” Eur. Radiol., vol. 16, no. 2, pp. 256–268, 2006. 

[5] M. Lell et al., “Prospectively ECG-triggered high-pitch spiral acquisition for 

coronary CT angiography using dual source CT: Technique and initial experience,” 

Eur. Radiol., vol. 19, no. 11, pp. 2576–2583, 2009. 

[6] T. R. C. Johnson et al., “Material differentiation by dual energy CT: Initial 

experience,” Eur. Radiol., vol. 17, no. 6, pp. 1510–1517, 2007. 

[7] T. G. Flohr, R. Raupach, and H. Bruder, “Cardiac CT: How much can temporal 

resolution, spatial resolution, and volume coverage be improved?,” J. Cardiovasc. 

Comput. Tomogr., vol. 3, no. 3, pp. 143–152, 2009. 

[8] V. B. Neculaes, P. M. Edic, M. Frontera, A. Caiafa, G. Wang, and B. De Man, 

“Multisource X-Ray and CT: Lessons learned and future outlook,” IEEE Access, 

vol. 2, pp. 1568–1585, 2014. 

[9] M. A. Speidel, “Inverse geometry x-ray imaging: application in interventional 

procedures,” J. Am. Coll. Radiol., vol. 8, no. 1, pp. 74–77, 2011. 

[10] M. A. Speidel, B. P. Wilfley, J. M. Star-Lack, J. A. Heanue, and M. S. Van Lysel, 

“Scanning-beam digital x-ray (SBDX) technology for interventional and diagnostic 

cardiac angiography,” Med. Phys., vol. 33, no. 8, pp. 2714–2727, 2006. 



 

 

82 

[11] S. S. Hsieh, J. A. Heanue, T. Funk, W. S. Hinshaw, and N. J. Pelc, “The feasibility 

of an inverse geometry CT system with stationary source arrays,” Med. Phys., vol. 

40, no. 3, 2013. 

[12] T. Zhang, D. Schulze, X. Xu, and J. Kim, “Tetrahedron beam computed tomography 

(TBCT): A new design of volumetric CT system,” Phys. Med. Biol., vol. 54, no. 11, 

pp. 3365–3378, 2009. 

[13] A. Cramer et al., “Stationary Computed Tomography for Space and other Resource-

constrained Environments,” Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018. 

[14] M. Kellermeier, C. Bert, and R. G. Müller, “A novel concept for CT with fixed 

anodes (FACT): Medical imaging based on the feasibility of thermal load capacity,” 

Phys. Medica, vol. 31, pp. 425–434, 2015. 

[15] M. Kellermeier, “Physical assessment of a novel concept for computed tomography 

with a stationary source ring of fixed X-ray anodes for medical imaging,” 2015. 

[16] B. J. Walker, “A Modular Multi-Source X-ray Tube for Novel Computed 

Tomography Applications,” University of Wisconsin-Madison, 2017. 

[17] B. J. Walker, J. Radtke, G. H. Chen, K. W. Eliceiri, and T. R. Mackie, “A beam 

optics study of a modular multi-source X-ray tube for novel computed tomography 

applications,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, 

Detect. Assoc. Equip., vol. 868, no. June, pp. 1–9, 2017. 

[18] M. A. Lewis, A. Pascoal, S. F. Keevil, and C. A. Lewis, “Selecting a CT scanner for 

cardiac imaging: The heart of the matter,” Br. J. Radiol., vol. 89, no. 1065, pp. 1–

11, 2016. 

[19] A. V. Avachat, “Design and development of a compact x-ray tube for stationary CT 

architecture In Partial Fulfillment of the Requirements for the Degree,” 2018. 

[20] A. V. Avachat, W. W. Tucker, C. H. C. Giraldo, and H. K. Lee, “Particle-in-cell 

simulations of electron focusing for a compact x-ray tube comprising CNT-based 

electron source and transmission type anode,” IEEE Trans. Electron Devices, vol. 

66, no. 3, pp. 1525–1532, 2019. 



 

 

83 

[21] A. V. Avachat, W. W. Tucker, C. H. C. Giraldo, D. Pommerenke, and H. K. Lee, 

“Looking Inside a Prototype Compact X-ray Tube Comprising CNT-Based Cold 

Cathode and Transmission-Type Anode,” Radiat. Res., 2020. 

[22] J. C. Park et al., “Fast compressed sensing-based CBCT reconstruction using 

Barzilai-Borwein formulation for application to on-line IGRT,” Med. Phys., vol. 39, 

no. 3, pp. 1207–1217, 2012. 

[23] M. L. Taubin, D. A. Chesnokov, and A. A. Pavlov, “Cathodes for medical purpose 

X-Ray Tubes,” in Journal of Physics: Conference Series, 2017, vol. 808, no. 1. 

[24] P. Kandlakunta, R. Pham, R. Khan, and T. Zhang, “Development of multi-pixel x-

ray source using oxide-coated cathodes,” Phys. Med. Biol., vol. 62, no. 13, pp. 

N320–N336, 2017. 

[25] J. Zhang et al., “Stationary scanning x-ray source based on carbon nanotube field 

emitters,” Appl. Phys. Lett., vol. 86, no. 18, pp. 1–3, 2005. 

[26] W.Zhu, C. Bower, and O. Zhou, “Large current density from carbon nanotube field 

emitters,” vol. 75, no. 6, pp. 873–875, 1999. 

[27] D. J. Heuscher, “Cylindrical X-Ray Tube for Computed Tomography Imaging,” US 

7,305,063 B2, 2007. 

[28] Philips, “Brilliance iCT configuration.” Philips, 2008. 

[29] D. P. Boyd and M. J. Lipton, “Cardiac Computed Tomography,” Proc. IEEE, vol. 

71, no. 3, pp. 298–307, 1983. 

[30] D. P. Boyd, W. B. Herrmannsfeldt, J. R.Quinn, and Robert A Sparks, “X-Ray 

Transmission Scanning Sysytem and Method and Electron Beam X-ray Scan Tube 

for us Therewith,” 1982. 

[31] D. P. Boyd et al., “High-Speed, Multi-Slice, X-ray Computed Tomography,” in 

Proc. SPIE 0372, Physics and Engineering in Medical Imaging, 1982. 

 



 

 

84 

[32] D. Drouin, A. R. Couture, D. Joly, X. Tastiet, V. Aimez, and R. Gauvin, “CASINO 

V2.42-A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy 

and Microanalysis Users,” Scanning, vol. 29, pp. 92–101, 2007. 

[33] J. T. Goorley et al., “MCNP6 user’s manual,” 2013. 

[34] S. COMSOL AB, Stockholm, “COMSOL Multiphysics® v.5.4 COMSOL AB, 

Stockholm, Sweden.” [Online]. Available: ww.comsol.com. 

[35] L. Solymar and D. Walsh, Electrical properties of materials, 8th ed. Oxford 

University Press, 2010. 

[36] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential 

Physics of Medical Imaging , 3rd ed. Wolters Kluwer Health, 2012. 

[37] R. Behling, Modern Diagnostic X-Ray Sources. 2015. 

[38] J. Shan, O. Zhou, and J. Lu, “Anode thermal analysis of high power microfocus 

CNT x-ray tubes for in vivo small animal imaging,” Med. Imaging 2012 Phys. Med. 

Imaging, vol. 8313, p. 83130O, 2012. 

[39] V. E. Cosslett and R. N. Thomas, “Multiple scattering of 5-30 keV electrons in 

evaporated metal films II: Range-energy relations,” Br. J. Appl. Phys., vol. 15, no. 

11, pp. 1283–1300, 1964. 

[40] R. Whiddington and J. J. Thomson, “The Transmission of Cathode Rays through 

Matter,” Proc. R. Soc. London. A., vol. 86, pp. 360–370, 1912. 

[41] J. R. Young, “Dissipation of energy by 2.5–10 keV electrons in Al2O3,” J. Appl. 

Phys., vol. 28, no. 5, 1957. 

[42] M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, “ESTAR, PSTAR, and 

ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for 

Electrons, Protons, and Helium Ions (version 1.2.3),” National Institute of Standards 

and Technology, Gaithersburg, MD., 2005. [Online]. Available: 

http://physics.nist.gov/Star. 

 



 

 

85 

[43] G. G. Poludniowski and P. M. Evans, “Calculation of x-ray spectra emerging from 

an x-ray tube. Part I. Electron penetration characteristics in x-ray targets,” Med. 

Phys., vol. 34, no. 6Part1, pp. 2164–2174, 2007. 

[44] W. J. Oosterkamp, “The heat dissipation in the anode of an X-ray tube,” Philips Res. 

Rep., vol. 3, pp. 49–59, 1948. 

[45] E. S. M. Ali and D. W. O. Rogers, “Benchmarking EGSnrc in the kilovoltage energy 

range against experimental measurements of charged particle backscatter 

coefficients,” Phys. Med. Biol., vol. 53, no. 6, pp. 1527–1543, 2008. 

[46] E. S. M. Ali and D. W. O. Rogers, “Energy spectra and angular distributions of 

charged particles backscattered from solid targets,” J. Phys. D. Appl. Phys., vol. 41, 

no. 5, 2008. 

[47] E. S. M. Ali and D. W. O. Rogers, “Quantifying the effect of off-focal radiation on 

the output of kilovoltage x-ray systems,” Med. Phys., vol. 35, no. 9, pp. 4149–4160, 

2008. 

[48] Z. Wen, N. J. Pelc, W. R. Nelson, and R. Fahrig, “Study of increased radiation when 

an x-ray tube is placed in a strong magnetic field,” Med. Phys., vol. 34, no. 2, pp. 

408–418, 2007. 

[49] J. Freudenberger and L. Werner, “X-Ray Tube with a Backscattering Electron 

Trap,” US 2012/0170715A1, 2012. 

[50] R. Zhou, X. Zhou, X. Li, Y. Cai, and F. Liu, “Study of the Microfocus X-Ray Tube 

Based on a Point-Like Target Used for Micro-Computed Tomography,” PLoS One, 

vol. 11, no. 6, pp. 1–12, 2016. 

[51] M. M. Nasseri, “Determination of Tungsten Target Parameters for Transmission X-

ray Tube: A Simulation Study Using Geant4,” Nucl. Eng. Technol., vol. 48, no. 3, 

pp. 795–798, 2016. 

[52] L. Tavora, E. J. Morton, and W. B. Gilboy, “Design considerations for transmission 

x-ray tubes operated at diagnostic energies,” J. Phys. D. Appl. Phys., vol. 33, pp. 

2497–2507, 2000. 



 

 

86 

[53] P. Kandlakunta, A. Thomas, Y. Tan, R. Khan, and T. Zhang, “Design and numerical 

simulations of W-diamond transmission target for distributed x-ray sources,” 

Biomed. Phys. Eng. Express, vol. 5, no. 2, p. 025030, 2018. 

[54] E. J. Grant, C. M. Posada, C. H. Castaño, and H. K. Lee, “A Monte Carlo simulation 

study of a flat-panel X-ray source,” Appl. Radiat. Isot., vol. 70, no. 8, pp. 1658–

1666, 2012. 

[55] E. J. Grant, C. M. Posada, C. H. Castaño, and H. K. Lee, “Electron field emission 

Particle-In-Cell (PIC) coupled with MCNPX simulation of a CNT-based flat-panel 

x-ray source,” Med. Imaging 2011 Phys. Med. Imaging, vol. 7961, p. 796108, 2011. 

[56] D. Chen et al., “Transmission type flat-panel X-ray source using ZnO nanowire field 

emitters,” Appl. Phys. Lett., vol. 107, no. 24, 2015. 

[57] A. Plankensteiner and P. Rödhammer, “Finite Element Analysis of X-Ray Targets,” 

Proceedings 15th International Plansee Seminar, 2001. [Online]. Available: 

https://www-plansee-

com.azureedge.net/fileadmin/user_upload/Finite_Element_Analysis_of_X-

Ray_Targets.pdf. 

[58] R. Behling, “The MRC 200: A new high-output X-ray tube,” Medicamundi, vol. 35, 

no. 1, pp. 57–64, 1990. 

[59] R. Behling, “Medical X-ray sources now and for the future,” Nucl. Instruments 

Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 873, 

pp. 43–50, 2017. 

[60] R. Behling and F. Grüner, “Diagnostic X-ray sources—present and future,” Nucl. 

Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 

vol. 878, no. May 2017, pp. 50–57, 2018. 

[61] R. Behling, “Perfomance and pitfalls of diagnostic x-ray sources: an overview,” 

Med. Phys. Int. J., vol. 4, no. 2, pp. 107–114, 2016. 

[62] R. Cierniak, X-Ray Computed Tomography in Biomedical Engineering. Springer, 

2011. 



 

 

87 

[63] W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol., vol. 51, no. 13, 

2006. 

[64] L. W. Goldman, “Principles of CT and CT technology,” J. Nucl. Med. Technol., vol. 

35, no. 3, pp. 115–128, 2007. 

[65] V. Russo, M. Garattoni, F. Buia, D. Attinà, L. Lovato, and M. Zompatori, “128-slice 

CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation 

time and iterative reconstruction in terms of image quality and radiation dose,” Eur. 

Radiol., vol. 26, no. 2, pp. 359–369, 2016. 

[66] M. Yanagawa et al., “Thin-section CT of lung without ECG gating: 64-detector row 

CT can markedly reduce cardiac motion artifact which can simulate lung lesions,” 

Eur. J. Radiol., vol. 69, no. 1, pp. 102–107, 2009. 

[67] B. Desjardins and E. A. Kazerooni, “ECG-Gated Cardiac CT,” Am. J. Roentgenol., 

vol. 182, pp. 993–1010, 2004. 

[68] E. G. Solomon, B. P. Wilfley, M. S. Van Lysel, A. W. Joseph, and J. A. Heanue, 

“Scanning-beam digital x-ray (SBDX) system for cardiac angiography,” in SPIE 

Medical Imaging 1999 Conference, 1999. 

[69] P. R. Schwoebel, J. M. Boone, and J. Shao, “Studies of a prototype linear stationary 

x-ray source for tomosynthesis imaging,” Phys. Med. Biol., vol. 59, no. 10, pp. 

2393–2413, 2014. 

[70] F. Sprenger et al., “Distributed Source X-Ray Tube Technology for Tomosynthesis 

imaging,” Proc SPIE, vol. 7622, 2010. 

[71] T. G. Schmidt, “What is inverse-geometry CT?,” J. Cardiovasc. Comput. Tomogr., 

2011. 

[72] X. Xu, J. Kim, P. Laganis, D. Schulze, Y. Liang, and T. Zhang, “A tetrahedron beam 

computed tomography benchtop system with a multiple pixel field emission x-ray 

tube,” Med. Phys., vol. 38, no. 10, pp. 5500–5508, 2011. 

 



 

 

88 

[73] T. Kim, Joshua; Lu, W; Zhang, “Dual source and dual detector arrays tetrahedron 

beam computed tomography for image guided radiotherapy,” Phys. Med. Biol., vol. 

59, no. 3, pp. 615–630, 2014. 

[74] B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and 

development,” Med. Phys., vol. 43, no. 8, pp. 4607–4616, 2016. 

[75] V. B. Neculaes et al., “Multisource inverse-geometry CT. Part II. X-ray source 

design and prototype,” Med. Phys., vol. 43, no. 8, pp. 4617–4627, 2016. 

[76] B. Gonzales et al., “Rectangular Computed Tomography using a stationary array of 

CNT emitters: Initial experimentel results,” in Proc. SPIE 8668, Medical Imaging 

2013: Physics of Medical Imaging, 2013, vol. 8668. 

[77] T. R. Mackie, B. J. Walker, and J. R. Seaton, “System and Method for Multi-Source 

X-ray- Based Imaging,” US 9,490,099 B2, 2016. 

[78] “OOPIC PRO.” 2008. 

[79] R. W. Powell, Ho C. Y., and P. E. Liley, “Thermal Conductivity of Selected 

Materials,” 1966. 

[80] G. K. White and S. J. Collocott, “Heat Capacity of Reference Materials: Cu and W,” 

J. Phys. Chem. Ref. Data, vol. 13, no. 4, pp. 1251–1257, 1984. 

[81] P. Tolias, “Analytical expressions for thermophysical properties of solid and liquid 

tungsten relevant for fusion applications,” Nucl. Mater. Energy, vol. 13, pp. 42–57, 

2017. 

[82] A. R. Kurochkin, P. S. Popel’, D. A. Yagodin, A. V. Borisenko, and A. V. Okhapkin, 

“Density of copper-aluminum alloys at temperatures up to 1400°c determined by 

the gamma-ray technique,” High Temp., vol. 51, no. 2, pp. 197–205, 2013. 

[83] A. Goldberg, “Atomic , Crystal , Elastic , Thermal , Nuclear , and Other Properties 

of Beryllium,” 2006. 

[84] “Beryllium (Be).” [Online]. Available: https://janaf.nist.gov/tables/Be-001.html. 



 

 

89 

[85] W. J. Oosterkamp, “The heat dissipation in the anode of an x-ray tube: II. Loads of 

short duration applied to rotating anodes,” Philips Res. Reports, vol. 3, no. 3, pp. 

161–173, 1948. 

[86] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential 

Physics of Medical Imaging. Wolters Kluwer, 2012. 

[87] A. Poškus, “Evaluation of computational models and cross sections used by MCNP6 

for simulation of electron backscattering,” Nucl. Instruments Methods Phys. Res. 

Sect. B Beam Interact. with Mater. Atoms, vol. 368, pp. 15–27, 2016. 

 

  



 

 

90 

VITA 

Wesley William Tucker graduated from Missouri University of Science and 

Technology in May 2016 with a B.S. in Nuclear Engineering. He received his PhD in 

Nuclear Engineering from Missouri University of Science and Technology in May 2020. 

His research during his academic career focused on design of an x-ray source for real-time 

computed tomography, as well as CT image processing. Wesley was very active in teaching 

at Missouri S&T for both undergraduate and graduate level classes. While he was an 

undergrad, he co-founded the Nuclear Science Design Team and served as the first 

president.  

 


	Design of x-ray source for real-time computed tomography
	Recommended Citation

	II

