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ABSTRACT

The ubiquitous adoption of portable smart devices has enabled a newway of commu-

nication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal

devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Net-

work (MANET), traditional MANET solutions are ill-equipped to accommodate message

delivery in DTNs due to the dynamic and unpredictable nature of people’s movements and

their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic conges-

tion and are inherently chaotic and arduous. This manuscript proposes approaches to handle

message delivery in notably sparseDTNs. First, the ChitChat system [69] employs the social

interests of individuals participating in a DTN to accurately model multi-hop relationships

and to make opportunistic routing decisions for interest-annotated messages. Second, the

ChitChat system is hybridized [70] to consider both social context and geographic infor-

mation for learning the social semantics of locations so as to identify worthwhile routing

opportunities to destinations and areas of interest. Network density analyses of five real-

world datasets is conducted to identify sparse datasets on which to conduct simulations,

finding that commonly-used datasets in past DTN research are notably dense and well con-

nected, and suggests two rarely used datasets are appropriate for research into sparse DTNs.

Finally, the Catora system is proposed to address congestive-driven degradation of service in

DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality

messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion

through strategic buffer management and message removal. Through dataset-driven simu-

lations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating

delivery in sparse DTNs and Catora unencumbered by congestive conditions.
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SECTION

1. INTRODUCTION

Smartphones have become a new accessory for many individuals, carried inside

pockets and purses everywhere their owner goes. Forecasts predict that, by 2024, approxi-

mately 8.4 billion smartphones will be online, with an estimated 92% of the world’s popula-

tion havingmobile broadband coverage to drive further adoptions of these devices [32]. This

overwhelming distribution of wirelessly-connectable mobile devices has garnered interest

from researchers seeking novel approaches to capitalize on their abundant availability. One

particular area of interest investigates how to establish a network between only these smart-

phones, carried around by people, without relying on a connection to the Internet. Such a

network has been interchangeably referred to by several names in research literature, such

as a Delay/Disruption Tolerant Network [119, 120] (used in this report, abbreviated DTN),

Mobile Opportunistic Network [3, 66, 111, 128], Intermittently Connected Networks [104],

Pocket Switched Network [71, 108, 124], and so on. Within this network, the establishment

of connections between nodes is dictated by people’s mobility over time; when two nodes

come within close proximity to each other, their devices are able to wirelessly connect.

There are plenty of interesting applications that are possible in such an environment, as is

detailed in the following subsections.

1.1. APPLICATIONS

1.1.1. Disaster Communications. Natural and man-made disasters can severely

damage or completely destroy an area’s communication infrastructure, preventing a timely

and coordinated response from rescue personnel [6, 76, 89]. It takes time to roll out a
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temporary infrastructure – time which may be crucial in preventing further loss of life. With

people already carrying smartphones, an emergency network could activate to immediately

begin the retrieval and distribution of information. Examples of disaster-related information

may pertain to severity of building damage, the location of isolated and injured people, or

the contamination of air and water supplies.

1.1.2. AdHoc Battlefield Communications. An active battlefield is hardly a place

to expect a secure and reliable communication infrastructure [4]. Strategic movements

and enemy attacks require that any sort of communication infrastructure have protection,

redundancy, and mobility to enable communication. Military vehicles, having electricity

produced from diesel/gasoline engines, may act as mobile base stations to receive and

transmit information about the situation at hand. Foot soldiers are able to move away from

these vehicles to closer examine a point of interest, gather intelligence, and disseminate

orders or warnings. By equipping soldiers with wirelessly-communication devices and

visual, audio, and environment sensors, the turn-around between intelligence gathering and

strategic response can be greatly reduced.

1.1.3. Offloading Traffic from Overloaded Networks. Locations where many

people crowd together can overwhelm a wireless base station for that area. This can

happen in both urban areas – e.g. San Francisco [115] – and rural areas – e.g. outdoor-

oriented Music Festivals [51]. One option to alleviate such overloading is to provision more

infrastructural resources to that area. This approach may not be economically feasible,

though, due to the transient nature of such overloading events. In these areas, locally

relevant information does not need Internet connectivity for successful distribution. Instead,

information such as venue programming changes and emergency alerts can be distributed

in a peer-to-peer fashion between the devices in that area [110, 122].

1.1.4. Floating Content. Geosocial network applications such as Tinder and Air-

Drop provide users with content and social connection opportunities specifically relevant

to their geographic location. However, these applications require an Internet connection to
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retrieve such content, and mobile devices must report their location to submit and retrieve

content for their area. This approach opens up the possibility of location spoofing as a

means of accessing content without the user being in the area. One way to maintain the

locality and isolation of such information is to deploy it as floating content, where data

is physically located in the location where it is relevant [28, 74]. Content can be stored

in stationary dropboxes (e.g. a WiFi router equipped with adequate long-term storage) or

virtual dropboxes, where the content is exchanged between and cached within devices en-

tering and leaving an area. This method of content posting and retrieval permits devices to

exchange content only when a direct connection can be made with a dropbox, thus requiring

nearby proximity. The content is said to float in that particular area, adding a new aura of

experience and entertainment to that area.

1.1.5. Network Connectivity for Developing Communities. In some environ-

ments, it is economically infeasible to provide an Internet connection through the instal-

lation of necessary infrastructure [37]. Such environments could be rugged and hostile

settlements (e.g. camps leading to the peak of Mount Everest), widely distributed low-

density population centers – e.g. scattered villages in rural South Africa [34] – along rivers

for pollution monitoring [107] – and deep within the wilderness for animal tracking [99].

These areas may still benefit from Internet connectibility, even if the latency for delivery is

orders of magnitude longer than what is available in more developed regions. Assuming

a stream of people are arriving and leaving the area, each traveler can act as a carrier for

content requests and delivery, thus providing connectivity at a significantly lower cost than

dedicated infrastructure. In a sense, this approach would mimick a local library in terms

of content requests and delivery delays, which was the source of knowledge for several

millenia before the invention of the Internet.
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1.2. CHALLENGES WITH MANET SOLUTIONS

Considering these applications, one may question whether solutions for Mobile

Ad Hoc Networks (MANETs) could be adopted. A MANET is characterized as a set

of communication-able nodes, each with its own ability of movement, deployed to serve

some networking functionality that would otherwise be cost prohibitive for traditional

infrastructure installation. Indeed, a Delay Tolerant Network is a specialization of the

more generic MANET definition. However, the solutions proposed to provide MANET

functionality are not practical in a DTN environment based on their implicit assumptions.

Consider, for example, on-demand routing protocols forMANETs– e.g. AODV[75],

DSR [50]. When a message is generated at a source node for some destination, the first step

of an on-demand routing protocol is to discover a path to the destination. This is accom-

plished in three phases: route request, route reply, and route maintenance. When there is

no known path to the destination, the source will begin the process of discovering a route

by contacting its neighbors, who contact their neighbors, and so on until the destination is

located. Once the destination is found, a reply is generated to notify the sender of the route,

following the reverse path of the request. This reply also provides a caching opportunity to

all other nodes receiving the reply, who may record the path for later use. However, due

to the mobility of participating nodes, the topology of the network may change, rendering

some cached routes obsolete. When this happens, route maintenance occurs, allowing for

the network to self-heal and for cached routes to be updated, albeit at the cost of additional

overhead.

In order for route request and route reply to work, it is implicitly assumed that the

path between the source and the destination will last long enough for (1) route discovery

to reach the destination, (2) a route reply to backtrack back to the source node, and (3) the

message to traverse through the path. Once it is known, the nodes along the path will receive

the message and pass it along without any concern of long-term queuing/storage. This is

a tough requirement to achieve for a network composed of smartphones carried by people.
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The communication range of these devices is limited by their antenna length, government

regulations on their transmission power, and the available battery capacity. In order for a

DTN to be instantaneously connected requires a sufficient density of people. However, the

mobility of these participants may rapidly change the topology of the network, rendering

path discovery useless before any of its phases are complete. In reality, the network is more

likely to be highly partitioned with many disjointed, small connected subgraphs scattered

across the network’s geographic area. As a result, messages may need to be stored until

such a time as a bridge between connected subgraphs is formed. Simply put, past MANET

solutions are crippled by the amplified mobility and network disconnections of a DTN.

Because of these challenges, solutions for aDTNmust embrace and exploit the nature

of human mobility, acknowledge the technological limitations of smartphones, and tolerate

unpredictable, long delays for message delivery, and limited knowledge. This manuscript

seeks to explore how researchers have dealt with such issues, provides an understanding of

what remains to be addressed, and proposes our own solutions for accommodating message

delivery in sparse DTNs.

1.3. CHARACTERISTICS OF DTNS

Delay Tolerant Networks are differentiable from other network architectures by the

more frequent occurrence of disconnections between established channels of two nodes.

Many other network types are often assumed to have some sufficient degree of stability and

availability of communication channels between nodes; DTNs make no such assumption.

Communication between nodes in a DTN may fluctuate more aggressively through time

than what would be expected in other networks.

DTNs are derived from themore generalOpportunisticNetwork (ON),which is itself

derived from themore generalWireless Ad-hoc Network (WANET). The primary difference

between DTNs and other ONs is the primary cause of connections and disconnections:
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mobility. When two people move to become sufficiently close1, a connection between their

devices may be formed to open a channel for communication. Likewise, when they move

away from each other, communication ceases. These connections and disconnections are

opportunistic, implying that their formation and destruction has some degree of stochasticity

and some degree of chaos, introducing uncertainty in predicting their occurrence. ONs are

seperated from the more general WANETs by the degree to which uncertainty prevents

connection predictability. The following two examples illustrates how a DTN may be

different from some other type of ON/WANET.

Example 1: A network composed of polar-orbitting satellites and grounded re-

ceivers will have connections established due to a satellite passing through the portion of

its orbit in the sky above the receiver. Disconnections occur due to the satellite progressing

beyond the line-of-sight of the receiver or due to obstructions such as large buildings or

underground tunnels. Thus, in order to accomplish network functionality, participating

nodes should expect to store data for some period of time until the next connection will

occur. Likewise, applications using this data should expect extended delays in its delivery.

Although this network is a ON, it would not strictly be considered a DTN due to the avail-

ability of a contact plan – i.e. the guaranteed recurrence of connections at known intervals.

The strong predictability of connections and disconnections allows for many important

networking metrics to be calculated with increased certainty, such as the expected delay of

data delivery, the transmission speed of the established channel, the theoretical upper bound

on the channel’s capacity, and an upper bound on necessary queuing storage.

Example 2: A network composed of wirelessly-connected mobile devices, carried

by people, will have connections established due to two people coming within close prox-

imity. Disconnections primarily occur when the two people move away from each other.

Due to the unpredictable nature of human mobility, it is unknown when and for how long

two nodes will be within communication range of each other. This prohibits a node from

1Sufficiently close would be defined by the wireless communication radius of both devices.
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knowing how long it must store a message. Likewise, if a node does not know which other

node it will connect with next, it also cannot know if a path to the destination will even

exist to the destination. This network is an ON because it relies on opportunities to achieve

network functionality, and further is considered a DTN due to the aforementioned uncer-

tainties. When a connection opportunity arises, a message-holding node must determine if

it will use this opportunity to forward its message to the encountered node.

These two examples highlight characteristics that can be used to differentiate one

type of Delay Tolerant Network from another, as well as differentiating one type of Oppor-

tunistic Network from another. Example 1, for instance, has intrinsic predictability of when

future connections will be formed. A schedule for message transmissions can be computed

based on the satellite’s orbital model, and resource allocation can be planned in advance of

network deployment. By being able to predict future connections, the method of construct-

ing delivery paths becomes a problemmodeled by the quickest trans-shipment problem [33]

or a mixed integer linear program [113, 135], which would allow traditional networking

protocols to be trivially modified. Example 2, on the other hand, does not have such a

luxury of predictibility due to human mobility. Fall [33] enumerates four types of DTNs

with different characterizations of the causes of frequent interruptions: Terrestrial Mo-

bile Networks, Exotic Media Networks, Military Ad-Hoc Networks, and Sensor/Actuator

Networks. Each of these network types may be further classified by the predictability of

interruptions (e.g. a Terrestrial Mobile Network of buses has symmetry and predictabil-

ity due to fixed routes, whereas one of taxis has no guarantee of repetitive or predictable

motion) and in the directionality of communication (e.g. military communications with a

submarrine may only be one way due to its covert radio silence). In this manuscript, the

focus is on reviewing recent advancements in Terrestrial Mobile Network characterised by

opportunistic and unpredictable connections.
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1.3.1. TemporalModel of a DTN. The traditional modeling of networks as graphs

requires augmentation to accurately describe a DTN [16]. Instead of a graph G = 〈V, E〉

representing the network, a Time-Varying Graph (TVG) G = 〈V, E,T , ρ, ζ〉 is required,

whereV is the set of nodes; T ⊆ T is a timespan within the temporal domain T representing

the lifetime of the network; E is the set of edges representing network connections that exist

at some time instant during T ; ρ : E × T → {0, 1} is a presence function that indicates

whether a given edge exists at a given time instant; and ζ : E × T → T is a latency

function that indicates the time duration needed to traverse the given edge starting at the

given timestamp. The state of connectivity of the network depends on the locations of

individuals at a given time. The set of edges {e | e ∈ E, ρ(e, t0) = 1}, denoting the edges

in the network at time t0, may be considerably different when compared to the set of edges

{e | e ∈ E, ρ(e, t1) = 1} at some other time t1 > t0. Between t0 and t1, people have moved,

connections have been broken, and new connections have been formed. Thus, the topology

of the network could be radically different at different periods of time.

To accomplishmessage delivery in aDTN, the definition of a path between two nodes

u and v is often insufficient due to the scarsity of contemporaneous connections between

nodes. Here, a path is defined as a sequence Pu,v = (e1 = {u,w′} , e2, ..., eω = {w′′, v}), such

that:

• The nodes for each edge are nodes in the graph – i.e. u,w′,w′′, v ∈ V

• Each edge of the path is an edge in the graph – i.e. ∃ ei ∈ E ∀ ei ∈ Pu,v

• Each pair of consecutive edges shares a common node – i.e.

|ei ∩ ei+1 | = 1 ∀ei ∈ Pu,v, 0 < i < ω
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Rather, a journey connects two nodes through multiple hops that span time, and at each

time instant the multi-hop path between the nodes is not necessarily connected. Formally,

a journey Ju,v in G is a sequence of timestamped edges

Ju,v =
(
〈e1 = {u,w′},T1 = (ts

1, t
e
1)〉, 〈e2,T2〉, . . . , 〈eω,Tω〉

)
such that:

• The nodes u and v are on the first and last edges, respectively – i.e. u ∈ e1, v ∈ eω

• Each edge is connected during the defined time duration – i.e. ρ(ei, t) = 1 ∀ t ∈ Ti

• An edge along the journey is open sometime after the previous edge – i.e.

ts
i+1 ≥ ts

i + ζ(ei, ts
i ) for all 0 < i < ω.

Let m = 〈tc, td, payload〉 be a message, where tc ∈ T is message’s creation time,

tk ∈ T , td > tc is the time when the message is no longer useful, and payload is the content

of the message. A message m is deliverable from a node u to another node v through G

if and only if there exists a journey Ju,v such that the message is created before the first

connection ends and expires after the last connection begins – i.e. tc < td
1 and td > ts

k .

1.3.2. Requirements for Successfully Delivery. In order for a message to pass

through aDTN, each nodemust adopt the store-carry-forward paradigm ofmessage delivery

and make best-effort decisions for routing. In this paradigm, a node stores a message in its

buffer, carries it as it moves about, and, upon encountering a neighbor, decides whether to

forward the message. This process brings about several bottlenecks.

• Buffer space: How much buffer space is available in each node to carry these

messages? This attribute depends on the size of each message, the frequency at which

messages are created, the duration of time a message is carried until it is dropped,

and the aggressiveness of nodes forwarding messages to encountered neighbors.



10

• Channel capacity: Howmuch channel capacity is available when two nodes connect

with each other? This attribute depends on the power consumption, duration of time

two nodes are connected, the distance between two nodes, and the overhead of the

protocol used for communication.

• Battery capacity: How much energy does a node have to dedicate to wireless

transmissions? Smartphones are not solely used to relay messages between other

devices, and it would otherwise be undesirable if a phone’s battery was depleted in

doing so.

• Delivery delay: How much time will the recipient(s) of a message have to wait

until it is delivered? This depends on many complex factors, a few of which are the

geographic distance between the source and the destination, the number of participants

in the network, and the amount of time each relay must carry the message before

forwarding it on further to the next worthwhile neighbor.

Several forwarding strategies have been adopted by proposed solutions for DTNs.

Some schemes will simply push amessage to all encountered neighbors not already carrying

a message. These strategies are known as flooding schemes. Although one may think this

approach would be able to provide the highest guarantee of delivery in a DTN, this approach

runs this risk of triggering network congestion [49].

Another strategy is to have nodes make calculated decisions on to whom a message

should be forwarded, whether it be single-copy forwarding (i.e. at most one copy of a

message resides in the network at any time) or a multi-copy forwarding (i.e. when a node

forwards a message to a neighbor, it retains a copy for future forwarding opportunities).

Implicitly, this strategy requires a node to have someknowledge onwhich to base its decision.

Without the availablility an Internet connection nor contemporaneous paths, knowledge of

the global state of the network is unavailable to each node. This prohibits nodes from

computing optimal routing plans; instead, the knowledge available to each node is limited
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to that it has learned and stored locally or that it can learn from its connected neighbors.

However, this stored knowledge must be accurate to some degree. If this knowledge pertains

to currently open connections in the network, it can quickly become stale due to frequent

changes in network topology. If it pertains to predicting future connections, there is a chance

the future connection will not occur. Thus, if a node is to rely on local knowledge within

itself and its neighbors, knowledge recording mechanisms must be designed in such a way

that can indicate whether an encountered neighbor is a worthwhile candidate. Section 2.1

details how recent proposals have designed such mechanisms.

1.4. PERFORMANCE METRICS

In order to evaluate the effectiveness of a proposed DTN routing scheme and make

comparisons between other schemes, it is important to understand certain performance

metrics. In their surveys on DTNs, Abdelkader et al [2], Cao and Sun [12], and Liu et al [65]

describe three metrics (defined below) that are commonly used in DTN routing simulations:

(1) delivery ratio; (2) delivery latency; and (3) overhead ratio. In addition to these three,

hop counts have also been demonstrated as an important metric to optimize [1, 125]. These

metrics are important for evaluating DTNs and many past proposals have used them to

compare their contribution against other state-of-the-art approaches.

1.4.1. Delivery Ratio. When n messages are created for dissemination in a DTN,

and r messages are successfully delivered, then the delivery ratio for the given experiment

is r
n . A higher delivery ratio indicates more messages were able to reach their destination.

1.4.2. Hop Count. The hop count, also called the path length, of a delivered

message is defined as the number of nodes that relayed a message over the first journey that

reached the message’s destination. For the r messages that are successfully delivered, the

reported metric is often the average number of edges in the delivering journey for each. For

single-copy forwarding schemes, the hop count of a delivered message is approximately

proportional to the amount of power consumed to deliver the message. For multi-copy
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forwarding schemes, the propagation pattern forms a tree with the source as its root. The

hop count for multi-copy forwarding schemes is the distance from the root node to the

destination node, which only accounts for a subset of the number of forwards.

1.4.3. Delivery Delay. Assume that r messages are successfully delivered in a

DTN. For each message mi of the r delivered messages, let ∆ti be the duration of time

between message mi being created and it arriving at its destination. The average delivery

delay for the experiment is defined as

1
r

r∑
i=1
∆ti

Should all messages pass along their globally optimal paths of earliest arrival time, then

the average delivery delay is optimal as it implies all messages were delivered as fast as

possible within the simulated network.

1.4.4. Overhead Ratio. DTNs are derived from the more general Opportunistic

Network (ON), which is itself derived from the more general Wireless Ad-hoc Network

(MANET). For multi-copy forwarding schemes, the overhead ratio gives an idea of the

resource costs that are needed to successfully deliver messages, and only applies to multi-

copy strategies. When a message m is forwarded from a node s to its neighbor t, an

additional copy of m is created, thus occupying additional buffer space and consuming

power for transmission. These resources are non-renewable; regardless if m is successfully

delivered, the resources consumed to disseminate m throughout the network have been

consumed.

Assume that n messages are created in a DTN. For each message mi of the n

messages, let ci be the number of times message mi was forwarded through a channel. The

overhead ratio for the experiment is defined as

1
n

n∑
i=1

ci
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An overhead ratio of 1 is optimal for minimizing resource consumption. It implies all

delivered messages were delivered in only one hop on a channel between the source node

and the destination node. Typically, an overhead ratio is expected to be > 1, and a

comparison between two routing algorithms, all other factors remaining equal, would have

the router with the lesser overhead ratio being favored2.

1.4.5. Caveats ofMetric Interpretations. The above-mentionedmetrics may con-

flict with one another when evaluating a DTN forwarding scheme. For instance, assuming

the absense of network congestion, a flooding approach is able to achieve both an optimal

delivery delay and delivery ratio in a DTN at the cost of increased overhead. Overhead can

only be reduced by preventing some nodes from using an opportunistic connection with a

neighbor to pass along a message. By placing restrictions on which connections to use, a

lower delivery ratio and an increased delivery delay is to be expected. It is thus important

that, when interpretting and comparing results, one metric should be allowed to vary while

all other metrics are held stationary. For example, if two schemes are able to achieve the

same delivery ratio, then the scheme with the lower overhead ratio or the lower average

delivery delay is favored. Determining which performance metric is favorable, however,

depends on the application specifications.

2Favoring the router that consumes less resources is typical, but not absolute. Some routing strategies are
more favorable because of their reduced latencies or increased delivery ratios, albeit at the cost of consuming
more resources.
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2. LITERATURE REVIEW

2.1. PROPOSED SOLUTIONS TO DTN ROUTING

In this section, the state-of-the-art DTN solutions are categorized and briefly de-

scribed. The focus here is to detail what types of knowledge has been demonstrated as

useful for DTNs, and how this knowledge is gathered within the confines of a DTN to en-

able nodes to make informed forwarding decisions. One area of focus has looked into topics

from social network analysis, such as centrality (Section 2.1.1) and community detection

(Section 2.1.1). Another draws from online social networks, using a node’s explicit friend

list (Section 2.1.3) and social profiles (Section 2.1.4) to bootstrap network functionality

without waiting for opportunistic training to complete.

2.1.1. Centrality. Centrality is a measurement tool originating from graph theory

and social network analysis [23]. It provides a scalar measure of how important a node’s

presence is in its network. There are many flavors of centrality that have been proposed,

each providing a different point of view of a node’s importance. Degree centrality measures

the number of direct links made to a particular node. In an opportunistic network, a node

with a high degree centrality is one that is characterised with having contacted many other

nodes, whereas one with a low degree centrality would be a characteristic of a recluse.

Closeness centrality reflects the distance between a node and all other nodes in the network

based on the shortest paths connecting the two. Nodes with a high closeness centrality are

said to be able to contact other nodes quickly, while nodes with low closeness centrality

must rely upon long paths in order to reach others in the network. Betweenness centrality

for a node measures the number of times the node falls on the shortest paths between two
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other nodes in the network. When considering information flows within the network, a

node’s betweenness centrality indicates how influential that node is in facilitating the flow

of information if it is assumed that information always flows through a shortest path.

A DTN-appropriate variation on the betweenness centrality is proposed by Zhang

et al [128], which specifically targets a specific pair of nodes – e.g. a message carrier and

the destination of the message – instead of just a single node. For a given pair of nodes

s and d, the destination-aware betweeness centrality is calculated as the sum of ratios of

the number of shortest journeys passing through s and ending at d over the total number of

shortest paths ending at d.

Probabilistic centrality is investigated by Wu et al [118], where they propose the

reachability probability centrality between two nodes. This metric considers the probability

that two nodes are reachable over journeys of any length from 1 to k. This is built on the

baseline probability of a direct contact, as calculated from ratio of the average contact rate

between two nodes over the sum of averages across all pairs of nodes.

With many centrality metrics to draw upon, some researchers have questioned which

serves a more effective role in facilitating DTN routing. Socievole et al. [98] investigated

how degree centrality, eigenvector centrality, and egocentric betweenness centrality affected

the performance of their proposed router. Their findings show that degree centrality pro-

vided better delivery ratios, followed closely by a properly tuned eigenvector centrality.

Betweenness centrality, however, performed the worst out of their simulations. Although it

performed worst, small networks have it performing better than large networks.

Degree centrality is calculated in BUBBLE Rap [42], where a message bubbles up

through the network reaching more popular nodes until it enters the destination’s commu-

nity. Once there, the forwarding strategy shifts its focus from global degree centrality to

community-centric degree centrality (i.e. degree centrality with nodes of that community).

Hui et al. postulate that a node’s popularity within its community is a more effective metric

for reaching a message’s destination than the node’s global popularity when the node shares
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a community with the destination. In order for each node to know its popularity, each

computes two centrality metrics for themselves: a local community-focused centrality and

a global centrality.

Rango et al [83] extend this idea by computing node centrality using different

inputs and adding time variability. This centrality metric, called the Fused Online and

Offline Centrality (FOOC), is computed by considering bothmeasurements on opportunistic

contacts in the DTN as well as explicit social-ties founds in online social networks. This

metric varies across certain time windows, allowing it to fluctuate based on changes in a

node’s sociability through time. Additionally, the influence of DTN and online contacts on

a node’s FOOC can be tweaked in real-time based solely on the node’s local information.

When a node recognizes that it is not meeting many others, it will put less emphasis on its

online contacts and more emphasis on the nodes it directly meets.

Another approach to proposing a centrality suitable for DTNs is proposed by Zhou et

al [136]. Similar to FOOC, the time-ordered cumulative neighboring relationship (TCNR)

centrality is computed by analyzing a node’s connectivity in the network at consecutive

time-frames in the network’s operation. However, it differs significantly by considering

multi-hop journeys as part of its computation, whereas previous DTN-applied centrality

metrics have only considered direct, single-hop encounters. The TCNRs of each node is

calculated based on the average and variability of time durations between contacts with all

other nodes in the network during specific time windows, whether the contacts be direct

or through journeys. Each of the centralities for each time window is then aggregated

to produce a single scalar value. Zhou et al propose three such aggregation methods:

(i) averaging the centralities, (ii) a linear-decay weighing of the centralities, and (iii) an

exponential-decay weighing of the centralities. The last two methods favor the centralities

that occur earlier in the network, and thus offer a better chance to facilitate message delivery.
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2.1.2. Communities. Communities are an artifact derived from people’s desire to

socialize [36], and are exploitable for DTN functionality [84]. They are characterised

as a tightly-connected group of nodes in a network, with each community having more

intracommunity connections than intercommunity connections. This leads to one node

having more connections with members of his communities than with nodes outside of

his communities. Additionally, a node will more likely have future connections with other

members of his community than with members outside. This characteristic lends itself to

assisting in the delivery of messages in DTNs; if a message destined for node d can be

delivered to some individual who is a member of a community of d, then the possibility

of a successful delivery increases. Indeed, having community information is useful for

many DTN schemes, as has been demonstrated in recent investigations [10, 42, 59, 130].

When nodes are aware of communitiy formations and a destination’s membership in these

communities, they are able to decide to whom a message should be forwarded when contact

opportunities arise. It’s as simple as asking “which communities do you belong to?"

To exploit communities, nodes must first know about their existence, their bound-

aries, and their membership. BUBBLE Rap [42] accomplishes this by having nodes

explicitly label themselves with one of their affiliated communities. When a message is

created in a DTN, its header includes the destination’s ID as well as the communities with

which she is a member. This information might be unavailable, as was the case with

BUBBLE Rap’s performance evaluation. Centralized community detection was needed,

after which labels were explicitly assigned to each node as input for their simulations.

Even if people are aware that they are a member of some communities (e.g. a Volleyball

team for their interdepartment company games), they may be unaware that they are part of

other unconventional communities (e.g. a group of commuters taking the subway to work

each morning). Detection of these communities must be performed based on the contact

information accumulated by each node’s participation in the network.
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In [59], the SEBAR algorithm employs k-clique communities to distribute social

energy to nodes, which in turn is used to make routing decisions. The social energy metric

is dynamically computed based on the duration of a contact between two nodes, and some of

the energy1 generated is shared with the other nodes residing in their communities. It also

exhibits decay in the form of a sliding window average of past and current energy values so

as to maintain up-to-date accuracy on a node’s social activity. When considering message

forwarding, upon creation of a message, the source caps the number of permitted message

copies, with the router halving this amount for each node that receives a copy. A two-phased

routing strategy, similar to that of BUBBLE Rap, is adopted based on the location of the

message at each juncture. If the message is outside of all of the destination’s communities,

the message carrying node forwards the message to its neighbor if the neighbor has a higher

social energy. Once the message has reached a node that shares a community with the

destination, the second phase only forwards to other nodes also within a community of

the destination, specifically to those that are members of communities with higher social

activity than the message carrier.

Zhang and Cao [130] consider the temporal relevance of community formation,

with an emphasis on detecting the dividing line between multiple communities that are

spatially and temporally correlated. They identify two scenarios that may hinder community

detection in a time-varying network: false mixture, and false separation. A false mixture of

two communities occurs when, through the process of detecting communities in a network,

two logically separate communities are merged due to spatial and temporal overlap and

common nodes. This may occur on a college campus, for example, when one class is

dispersing and the next class is taking their seats. A false separation, on the other hand,

1The authors adopt the term energy as a quantity produced by a contact between nodes as an analog to the
energy produced by particals colliding in partical physics. It is not to be confused with the impression that a
node contact creates actual thermodynamic energy.
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is the division of a ground-truth community due to weak member connections. The time-

varying nature of DTNs makes community detection through traditional methods, requiring

static graph representations of the network, susceptible to improperly divided communities.

To accomplish accurate community detection in the disconnected environment of a

DTN, Zhang and Cao propose the Contact-burst-based Clustering Method (CCM) for the

real-time detection of communities within a DTN. Since contacts are instantaneous (e.g.

observing a beacon broadcast from a neighbor), contact observations are merged into a

contact burst TB = [ts, te], starting at time ts and ending at time te, if each instantaneous

contact is within λ time units of the next. Contact bursts are then merged to form clusters.

Two contact bursts Tb1 and Tb2 are merged if (1) they share a common node, and (2) their

temporal overlap, represented by the Jaccard similarity S(Tb1,Tb2) over their time durations,

exceeds a threshold γ.

S(Tb1,Tb2) =
|Tb1 ∩ Tb2 |

|Tb1 ∪ Tb2 |

The merging of clusters requires internode exchanging of cluster information, and continues

until the largest similarity between all known clusters cannot exceed γ.

Chen and Lou [19] propose another two-phased Community Aware Routing (CAR)

protocol that considers expected encounter rates of nodes and the time-to-live (TTL) of the

messages they carry. While a message is outside of the destination’s communities, nodes

rapidly try to spread copies of the messages to others such that the new recipient is in a

community not yet carrying the message. With each forwarding, the number of replicas

that are allocated to the new recipient is devised proportional to the expected number of

community contacts of the two nodes within the remaining life of the message. Once the

message has arrived within a community containing the destination, a strategy similar to

BUBBLE Rap pushes the message copies to nodes with more frequent intra-community

contacts. Unlike past systems, though, the system has a contingency for when a node can

no longer make additional message copies – i.e. the total number of permissible message
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copies has been reached in the network. When this occurs, the single copy of the message

is forwarded to whichever node has a higher likelihood of encountering the destination or

one of its communities.

With community memberships and time occurrences known with these proposed

systems, the periodic recurrence of communities can further be detected to assist with

message delivery. If a node can accurately predict the formation of a community within a

future time frame, this node can then decide if forwarding a message to another community

is worthwhile. When considering a message’s destination, the node carrying the message

is aware of the destination’s communities. The node is also aware of the membership lists

of these communities and the time in which they meet and ajourn. This information lends

itself to calculating the relay capability of one community to another community based on

the shared membership between those communities. With this information, a node meeting

another node in adjacent communities can decide to forward its message if the communities

of the neighboring node have higher relay capabilities to the destination than the current

node’s.

These solutions, however, require either centralized computation of community

membership and knowledge of predictable node behavior, or a lot of data overhead in order

to detect communities in a real-time and opportunistic manner. This overhead adds to an

already constrained network environment and leads to the possibility that some nodes may

be unable to access up-to-date information for their forwarding decisions. To address this,

Bulut et al. [10] propose a community detection and routing system that does not require

network-wide distribution of community knowledge. Instead, nodes only need to exchange

information with their connected neighbors.

Nodes deployed with Friendship Based Routing [10] construct their communities

by considering elapsed time between contacts with other nodes in the network. For each

node u, its friendship community Fu is defined as the set of nodes {v1, v2, ...} that meet

two conditions for set membership. The first condition considers the social pressure metric
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Figure 2.1. Illustrative example for calculating the Relative Social Pressure Metric (RSPM)
from [10] based on historic contact information. In this example, node j would be calculating
RSPMi,k | j based on the interactions with i that immediately precede interactions with k.

(SPM) of v relative to u, denoted

SPMu,v =
1
T

∫ T

t=0
f (t)dt

where T is the time frame in which contacts are considered, and f (t) is how much estimated

time remains until node u and v will next make contact. If 1
SPMu,v

> τ for some threshold

τ, then v is in Fu. The second condition considers 2-hop contacts. If node v is a friend

of u, and w is a friend of v, then node w and u are friends through v. To capture this,

relative social pressure metrics (RSPM) are used, represending the average expected delay

of message delivery if a message came from u, passed through v, and was destined for w.

RSPMu,w |v =
1
T

n∑
x=1

∫ ta,x

0
(tb,x + ta,x − t)dt

Here, n is the number of times a (v,w)-contact immediately follows a (u, v)-contact during a

time frame T . Refer to Figure 2.1 for a visual example of ta,x and tb,x . Of these consecutive-

contacts, ta,x is the duration of time between the x-th and (x + 1)-th (v,w) contacts, and tb,x

is the time between the (u, v) end and the x-th (v,w) beginning for the x-th pair. For w to

be considered an indirect close friend of u, and thus included in Fu, both 1
RSPMu,w |v

> τ and
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1
SPMu,v

> τ must be satisfied.

Fu =

{
v |

1
SPMu,v

> τ

}
∪

{
w |

1
RSPMu,w |v

> τ and
1

SPMu,v
> τ

}
With these communities known within each node, a node u carrying a message

destined for node d will hand off its message to a neighbor node v if and only if (1) v and d

are friends (i.e. d ∈ Fv) and (2) v is a closer friend to d (i.e. 1
SPMu,d

< max
(

1
SPMv,d

, 1
RSPMv,d |∗

)
for any RSPMs involving v as the source friend).

When timely delivery of messages is important, the time in which a community

assembles is crucial for making community-based routing decisions. The above-mentioned

Friendship Based Routing [10] did indeed divide historic training data by the time frame

in which they occurred. Each friendship communitity is thus time-dependent and stored

for later querying. Thus, a node carrying a message can ask a connected neighbor which

communities they are members of, and make a forwarding decision knowing the receiving

node will likely meet the destination before the message expires.

2.1.3. Friendship. As social beings, people form strong friendships that result in

regular encounters and longer times spent within close proximity. These traits are desirable

when messages are being forwarded in a DTN. If a node is friends with the destination of

a message, which is carried by someone they encounter, the exchange of the message to

the destination’s friend would intuitively strengthen the possibility of successful delivery.

Several investigations have acknowledged this, leading to attention placed on how well

friendship graphs improve DTN message forwarding. For instance, Socievole et al. [97]

found the degree centrality of an individual’s Facebook profile is highly correlated with

their degree centrality from physical proximity. This finding suggests that a DTN could be

bootstrapped for immediate routing decisions by using an online social network to calculate

degree centralities of participating nodes. Their findings also suggested that betweenness
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centrality, eigenvector centrality, and closeness centrality had little to no correlation between

the social networks. Thus, these metrics would need to be calculated within the confines of

the DTN in order to be used.

In [98], an analysis of multiple social network graphs is performed to determine

which social network graph has promising influence on successful forwarding. Similar

to the motivation of [97], the goal in their analysis is to rely less on long-term learning

of social patterns through opportunistic connections, and instead bootstrap the network

by using social information that exists in other social networks. Their analysis considers

two networks: the social graph formed from the Facebook friend lists of participating

nodes, and a graph formed from the nodes’ explicit interests. Their findings suggest that

centrality measurements from the opportunistic network are still needed, but the addition

of other social network graphs improves successful delivery when compared to relying

solely on centrality measurements. Specifically, the explicit interests of participating nodes

can be used to predict future contacts in the network. Likewise, a very social node who

has a message’s destination as an explicitly listed friend is very likely to meet with that

destination. Centrality is still found to be the most important factor in making opportunistic

forwarding decisions, but complementing centrality with other social network information

boostes a node’s decision making abilities.

Kim and Han [54] propose the Multi-path Routing for Heterogeneous-sized data

(MRH) router that considers both the size of the messages being forwarded and the type

of relationships between encountered nodes: whether they are friends or just opportunistic

encounters. Friendship is determined based on the length of the contact; contacts that are

too short are considered pass-by contacts, suggesting the encounter was not between two

friends; conversely, contacts that are sufficiently long are considered to be between friends.

Given these contact durations, nodes will compute and update three utility scores over

time: a node’s social tie score with a particular node is calculated by the average multi-hop

minimum social contact duration between the two nodes; a node’s social popularity score is
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calculated by the average of all friendship-based contact durations of the node; and a node’s

non-social popularity score is calculated by the average of all pass-by contact durations.

Using these, the MRH router will forward smaller messages to pass-by contacts that have

a higher non-social popularity with others. For larger messages, a contact between friends

will result in a message being forwarded if the neighbor has either a higher social tie to the

destination or, both having equal social ties, if their social popularity is higher.

2.1.4. Social Interests and Profiles. Apart from a friendship graph, online social

networks also offer other details forming a social profile of a particular individual: where

they live, what topics interest them, their favorite music, etc. The intuition behind using

these social profiles is based on the notion that people will tend to meet others with shared

interests more often than they would with dissimilar interests. These personal details have

been investigated in a few works to see if they improve a node’s ability to make forwarding

decisions in a DTN. Primarily, when a message-carrying node encounters another node, a

comparison between the two’s social profiles is performed. This comparison would then

result in the message-carrying node deciding if the encountered node should receive the

message.

In [114], the social tie strength between nodes is considered in a two-phased broad-

cast scheme with the objective of decreasing delivery latency without incurring flooding-

based resource consumption. During the first phase, called Weak tie-driven forwarding,

nodes who act primarily as bridges between communities (who are identified based on their

weak social ties) spread a message to other bridges. When message-holding nodes estimate

that the message has sufficiently been seeded across the network, the scheme switches into

the second phase, called Strong tie-driven forwarding, where message holders forward the

message to very popular nodes so as to quickly spread the message to all nodes within its

community.
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The social tie strengths used in [114] are calculated for each node-pair based on a

linear combination of the number of contacts between the two nodes and their social profile

similarities. The contact numbers and the social profile information are recorded and

exchanged during a training phase of the network. Social profile similarities are defined as

the number of differences between two individuals in specified categories, such as favorite

food, home town, employer, etc. For example, a node u with the social profile 〈female,

Paris〉 and a node v with the social profile 〈female, London〉 have a social distance of 1,

whereas u and another node w with the social profile 〈male, New York City〉 would have a

social distance of 2.

In SANE [71], unicasting and interest-casting is accomplished through the usage

of social profile comparison. In order to represent an individual’s social profile, Mei et al

adopt a vector representation 〈v0, v1, · · · , vm〉, where, among m unique social descriptors,

the value vk represents a binary weight to which the kth descriptor describes the individual.

For instance, consider Bob, who lives in San Francisco and likes Chinese food, and Linda,

who lives in Boston but doesn’t like Chinese food. The adopted approach to represent their

social profile would first start with assigning indices to each descriptor. In the example’s

case, the index 0 would be assigned to Lives in San Francisco, 1 to Lives in Boston, and

2 to Likes Chinese Food. Then, Bob’s social profile could be represented as 〈1, 0, 0〉, and

Linda’s social profile as 〈0, 1, 1〉.

The forwarding decision adopted in SANE is based around how similar an encoun-

tered node’s social profile is to the topics that describe the message under consideration.

Similar to each participating node having a social profile of the form 〈v0, v1, · · · , vm〉, so

too does each message have metadata of the form 〈v0, v1, · · · , vm〉. When a node u, carrying

a message d, meets a node v, u calculates the cosine similarity the social profile of v and

the message metadata of d, which is the cosine of the angle formed by the two vectors if

they were vectors in an m-dimensional space. If this angle is larger than some minimum

threshold, u will forward the message to v. For the interest-casting approach, where many
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nodes in the network wish to receive messages of topics that interest them, the cosine

similarity would represent how interested the individual is in the message. In the unicasting

approach, the metadata of a message is the social profile of the message’s destination. Thus,

if an encountered node has a high similarity value to the message, it is predicted that this

individual is more likely to meet up with the destination than some other individual with a

much lower similarity.

The Social Identity-aware Opportunistic Router (SIaOR) [112] considers both the

social profiles of nodes and their social influences when making routing decisions. Social

profiles are generated not solely from a user’s online social media profile, but rather are

dynamically generated based on the metadata of the content they produce, such as that

stemming from object recognition in photos or significant keywords in messages. Social

influence is computed using the nodes’ encounter ratio to each other relative to all of the

encounters for a particular node and their trust degree – the ratio of the number of messages

a node forwards from its neighbor over the number of messages it received from its neighbor.

When nodes encounter one another, they update their social influences, either growing or

decaying depending on the new trust degree toward their neighbor, and compute a routing

utility relative to each carried message as a power-law weighted product of the potential

recipient’s social similarity to the message’s destination and their own social influence on

their neighbor. Should the neighbor have a higher utility score for the message, the carrier

will forward a copy.

2.1.5. Geographic Routing. Beyond social network based approaches, geographic

information has been investigated as a means for DTN routing. Generally speaking, geo-

graphic routing through a network focuses on the specific locations of sources, intermediate

relays, and destinations [56]. Of course, this requires that this knowledge be available.

Within the confines of a DTN, however, a node carrying a message destined for a des-

tination may be unable to look up their location when an opportunistic contact occurs,

and any a priori information on the destination’s whereabouts may be inaccurate due to
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their unobservable movements. Zhang et al [129] propose the Mobility Prediction-based

Routing (MPR) protocol, which models the probability that a node will move from one area

to another, and stay within that region for a given period of time, by a time-homogeneous

semi-Markov process. Using this process, a message-carrying node will forward a message

to the encountered neighbor with the highest probability of encountering the message’s

destination for as much time as is needed to successfully transfer the message. MobiT [123]

is proposed for trajectory-based routing in Vehicular DTNs, where it is assumed that there

exists some infrastructure for message delivery such as moving service vehicles and static

road-side units (RSUs). The service vehicles collect the trajectories of participating vehi-

cles in the network and centralize them at RSUs, which then use the trajectories to make

routing schedules for messages. Messages are delivered through the network over partici-

pating vehicles in such a way as to deliver messages to RSUs located where a destination is

traveling to before the destination arrives.

Many of the state-of-the-art works for DTN-based geographic routing have, in one

way or another, extended the Spray-and-Wait (SaW) algorithm [100]. The most common

characteristics of these routers is that the number of message copies that are permitted in

the network is capped at some pre-determined quantity, after which no further copies are

permitted to be created, and the routing algorithms operate in two phases: the first phase

consists of the spraying of messages to as many nodes as possible, and the second phase

consisting of discriminatory forwarding of the remaining message copy to qualified nodes,

dropping the message from the sender’s buffer, and traversing through the network until

either the message arrives at its destination or the message is dropped, either to make room

for more important messages or to delete expired ones. Zhang et al [127] propose the Speed

Adaptive Multi-Copy Routing (SAMCR) algorithm that follows this paradigm for Vehicular

DTNs (VDTNs) with sparsely-available, statically located road-side units (RSUs). SAMCR
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considers an encountered neighboring node to be qualified if the node has a greater relative

velocity. Other works, like those that follow, consider geographic information beyond

simple velocity.

Cao et al [13] propose the Geographic-based Spray-and-Relay (GSaR) router to

use historic locations, velocities, and encounter rates of nodes. Each node is assumped

to have initial historic information pertaining to location, velocity, and encounter rates

of some nodes throughout the network. This information bootstraps the network, and is

progressively updated and further disseminated to others opportunistically. When a node

comes in contact with a neighbor, it will iterate over its messages in an order dependent on

whether location information of the router is available: in its absence, the order is based on

the age and number of remaining replicas available for the message (younger messages with

more remaining replicas are favored), and routing operates exactly as specified in Spray-

and-Wait. Should the location information be available, the message ordering is based on

the likelihood that the traveling encountered neighbor will encounter the destination, based

on projections of movement, before the message expires (higher likelihood results in higher

priority). To compute this, the message carrying node computes the possible range of

movement that the destination for each message could have traveled since its location was

last recorded, given the historic speed of the destination. Then, given this range and the

traveling direction of the encountered neighbor, half of the permissible message replicas

will be handed off if the neighbor will be within this range faster than the message holder.

Similar to GSaR, the Location-Aided Controlled Spraying (LACS) router is pro-

posed by Hang et al as another extension on Spray-and-Wait that considers location in-

formation [39]. Again, it is a two-phased router split between a spraying phase followed

by a decisive single-copy forwarding strategy. When a message carrying node encounters

another node, the expected remaining throughput of the channel is computed based on the

other node’s relative velocity, channel transmission speed, and the distance between the

two nodes. Using this, messages are iterated over, with one being skipped if it cannot
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be transmitted during the contact’s remaining time. If a message can be transmitted, the

node’s router decides if it will be transmitted. For messages with remaining copies left,

transmission is carried out, with half of the messages being transmitted if the nodes are

traveling in opposite directions (in a binary-spraying manner) or only one message copy if

the nodes are traveling in a similar direction (single-copy relaying manner). However, when

only one message copy remains, it would be relayed to the neighbor only if the neighbor is

expected to encounter the destination sooner than the carrier. This is computed based on a

semi-Markov model that is used to predict the location of the destination node, along with

the velocity of the two nodes.

2.2. SIMULATING DTNS

To demonstrate the effectiveness of a DTN forwarding scheme, many researchers

have simulated a DTN and gathered statistics from the simulations, such as those outlined

in Section 1.4. These simulations require input datasets that describe the time-evolving

nature of the network topology. This can come from two sources: real-world datasets or

synthesized datasets. In this section, available datasets and models for synthesizing the data

needed to simulate a DTN are listed and described.

2.2.1. Contact Traces. When it comes to characterising real-world datasets usable

for DTN simulation, the majority of datasets available are contact traces. A contact trace is a

dataset that includes records pertaining to when, and betweenwhom, a contact has occurred.

These datasets have typically been produced by dispensing a wirelessly-enabled device to

many individuals that periodically broadcast a beacon to all neighboring devices, who in

turn reply to announce their presence. The contact traces available have been generated

through neighbor detections using the Bluetooth protocol, which has an intended range of

10 meters for most mobile phones and Bluetooth accessories [116].



30

One of the most widely used datasets is the MIT Reality Mining Dataset [29, 31]. In

the Reality Mining dataset, data from approximately 100 participants, a mixture of students

and faculty, was collected over a ninemonth period. Each participant was given a Bluetooth-

equipped smartphonewith special software to regularly collect contextual information. This

data included proximity of nearby Bluetooth devices, phone application usage, call and text

message logs, the ID of the nearest cellular tower and the status of the phone, each collected

once ever 6 minutes. Additionally, each participant was surveyed for information pertaining

to perceived friendships, research group affiliation, personal attributes, academic status,

their home’s neighborhood, and details on their lifestyles.

The Haggle Project [92] produced four contact trace datasets from different envi-

ronments, three of which are applicable for simulating a DTN: the Cambridge dataset, and

the INFOCOM 2005 and 2006 datasets. The records in these datasets were gathered from

Bluetooth-equipped iMotes that recorded the MAC addresses of the devices responding to a

node’s periodic beacon. Each of these devices is said to have an approximate wireless range

of 30 meters, with some more powerful iMotes having around 100 meters. In addition to

having mobile iMotes carried by individuals, this project also installed stationary iMotes in

points of interest such as within local pubs, commercial areas, and often frequented areas

within a conference venue.

A recent shift in the data collected in these studies has bundled in social profile and

online social networks with the proximity datasets. Kim and Gerla [53] generate a contact

trace using two types of information commonly available fromonline social network services

(in their case, Instagram): friendship lists, and geographic locations. First, the geolocations

of 80 users was gathered from their posts to the social media site to build mobility patterns

of each user. Then, for each user, the list of their followers is collected, with each follower

receiving their own mobility pattern. From this collection of mobility patterns, a contact

trace was generated considering two factors: a contact occurred if two users (i) one user

was a follower of the other, and (ii) they both visited locations that were in close proximity
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to each other. The INFOCOM 2006 dataset [17], as part of the series of Haggle Project

datasets, includes some basic social profiles of its participants, including the languages they

speak, their current affiliations, the school in which they completed their studies, and a list

of academic topics in which they are interested. The SocialBlueConn dataset [14] provides

proximity data, Facebook friendship relations, and self-declared interests for 15 students at

the University of Calabria over 7 days. The SIGCOMM 2009 dataset [78, 80, 81] contains

the social profiles of the participants, along with providing a platform for users to create

and disseminate messages over the DTN. These datasets have helped researchers evaluate

DTN routing schemes to consider other factors influencing predictable social connections.

It should be noted that these datasets exhibit some flaws in that the results extracted

from simulations employing them may not generalizable. This comes from the datasets’

small sizes and the lack of diversity of the participants. Consider the INFOCOM 2005

and 2006 datasets and the SIGCOMM 2009 dataset. These datasets are composed of the

attendees of an academic conference over the short period of 3 to 4 days. The mobility

of these individuals is limited between the few closely-located rooms where talks are held

and the corridors, which are often the congregation area for many attendees especially

during coffee breaks. This environment results in a high density of people, thus bringing

to question how partitioned the network is at any given time. Additionally, with every

attendee having primarily academic backgrounds, there is little diversity in their social

characteristics. So too is this a flaw of the MIT Reality Mining dataset. These issues

encourage the exploration of other methods for simulating DTNs that offer controllable

network parameters and diversity in their participant population.

2.2.2. Synthetic Mobility Models. The limited availability of real-world datasets,

as well as the potential bias intrinsic to those available, limits the generality of results

observed in proposed DTN routers. Most of the above mentioned contact traces have a

small number of participants, all of whom serve various roles in an academic environment.

Additionally, with fixed datasets brings the lack of controllable parameters in the simu-



32

lated environment. Thus, synthesis of datasets is also appropriate to widen the available

expirements that can be conducted. Sensitivity analysis cannot be conducted using these

datasets to observe, for instance, the effect of the scaling up the number of participants on

the successful delivery of messages.

Many simulations on DTN performance have relied upon simple mobility models

for participating nodes. Rhee et al. [85] argues that many of these mobility models, such

as Random Waypoint, Random Walk, and Brownian Motion, do not accurately reflect

true human mobility even on an aggregated statistical level. Through their analysis of

fine-grained GPS trajectories from over a hundred volunteers, they find the flight-time,

pause-time, and intercontact-time distributions of these trajectories show similarities to

those seen in spatially-bounded Levy walks. They then suggest the use of a Levy-walk

based mobility model as a means of simulated node movements in a MANET and DTN

environment. Levy walks are also used by [10]. Here, the nodes would have an ordered

list of other communities that they would visit. They would travel from one community to

another with some random speed, and when inside the community would meander about

using a random walk, thus mimicking a Levy walk. When a randomly selected time passed,

they would move on to the next community. They also incorporate a probability that a node

would deviate from their itinerary and visit some other community. Once the deviation from

their itinerary is complete, the node would return to their normal path. However, Bulut et al.

acknowledge their suggestion lacks the spatial-temporal characteristics and social contexts

that influence actual human movement.

To address these short-comings, the Small Worlds in Motion (SWIM) mobility

model [57] has been proposed to mimick mobility patterns in people. The SWIM model is

designed on the intuition that people consider two conflicting factors when deciding where

to go: the location’s distance from home, and the location’s popularity. To calculate a

node’s movement, a two-dimensional plane is split up into equal-sized squares representing

locations of interest. Each node has assigned to it a home location, and each node computes
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a weight for all other locations in the plane that is used as the probability of visiting that

location. This weight depends on the location’s distance and the location’s popularity as

observed by the node during its most recent visit to that location. Each person has their

own preference, either preferring to travel to popular locations regardless of distance, or

preferring to stay local, which is built into a node’s calculation of each location’s weight.

When a node chooses a location, it travels at a speed proportional to its distance and, upon

arriving, calculates the waiting time via a truncated power-law distribution. This waiting

time reflects the tendancy for people to spend a lot of time at a few locations, and short

periods of time at many locations.

One shortcoming of the SWIMmobility model is that it appears to reflect movement

without a strict schedule. During the weekends, people may be more free to choose their

next locations, but during the work week a node is more likely to travel from home to work.

This shortcoming of SWIM is addressed in the Home-cell Community-based Mobility

Model (HCMM) [9], which is designed mimick the cyclical, home-to-work-to-activity-to-

home nature of human mobility. This model is similar to the SWIM mobility model with

the exception that one location other than a node’s home has a high probability of being

visited, and being stayed at for a long duration. The probability of another location being

the next selected waypoint is nonuniform, dependent on the distance to that location from

the current location as well as a node’s social connection to that location.

2.2.3. GPS Trajectory Datasets. Another type of dataset useful for DTN simula-

tions are those providing the geographic trajectories of individuals and vehicles. This type

of dataset is characterised by timestamped location records, where each record in a trajec-

tory lists who is where – their geographic location, such as a GPS latitude and longitude

– at what time. By going over the trajectories of many individuals, a contact trace can be

constructed based on the proximity of individuals at a given time. When two individuals

are within some radius of each other, a contact would occur between them.
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Microsoft’s GeoLife GPS trajectory dataset [132, 133, 134] is one such dataset. In

this dataset, the locations of 182 users over a period of five years was recorded by GPS

recievers carried as the participants traveled in the city of Beijing, China. This dataset

contains 17,621 trajectories covering 1,282,951 kilometers over a period of 50,176 person-

hours, with 91.5% of the trajectories having sequential records every 1 to 5 seconds or

every 5 to 10 meters [131]. Thus, this dataset provides a fine granularity in time and spatial

movements.

Nokia’s Mobile Data Challenge (MDC) [55, 58] dataset is another dataset providing

GPS trajectories of users. It similarly captures the trajectories of 185 individuals over a

period of a year and a half in the city of Lausanne, Switzerland. Considering a trajectory

to be a consecutive sequence of locations of a particular user where no two consecutive

points are more than 10 minutes apart, the MDC dataset provides 761,463 trajectories

covering 1,795,349 kilometers over 46.5 person-years. The participants were recruited via

snowball sampling in two phases: the first phase consisted of an initial set of volunteers,

and the second phase added individuals with a social association to those in the first phase.

Ultimately, the resulting dataset is comprised of 38% women and 62% men, with roughly

two-thirds falling within the 22-33 year-old age group [58]. In addition to GPS trajectories,

the dataset also provides rich metadata such as the participants’ demographics, call and text

message records, phone book and calendar entries, mobile application usage, and observed

Bluetooth encounters.

2.3. UNADDRESSED PROBLEMS

Most of the proposed works discussed have focused on exploiting gathered knowl-

edge in deciding when messages should be forwarded. This knowledge is either pre-loaded

on a node at the ignition of a DTN or is gradually learned over time as a node encounters

others and exchanges information. The information gathered are primarily artifacts of the

social constructs of the people carrying each device. Based on the comparisons conducted
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on these new solutions and on solutions designed for the more general DTN, exploting so-

cial properties is shown to improve performance more than relying solely on opportunistic

contact metrics (e.g. contact frequency, intercontact time, and contact duration). How-

ever, there remains some challenges that have remained unaddressed in the field of DTN

functionality.

2.3.1. The Unaddressed Challenges of a Sparse DTN. The datasets described

in Section 2.2.1 provide a glimpse into the real-world social interactions of the people

contributing contact records. These datasets have been the primary driver of evaluations and

comparisons of many new DTN solutions. However, the results extracted from simulations

using these datasets are not generalizable. This comes from the datasets’ small sizes and

the lack of diversity of the participants. With the INFOCOM 2005 and 2006 datasets and

the SIGCOMM 2009 dataset, the population of participants is small and homogeneous in

their professions, and the connectivity of the resulting network may be quite high with their

activities being confined to a conference venue. In other words, there is concern of the

density of these networks.

A notable challenge that has seemingly been untested is the effects of network

sparsity. In this context, sparsity refers to the extremely low occurrence of contacts between

pairs of nodes over time. This may be attributed to short-rangewireless communication, low

participation of individuals relative to an area’s population density, or a wide geographical

distribution of participating individuals. For instance, the GeoLife dataset [132, 133, 134]

exhibits sparsity due to its participants being widely scattered across the city of Beijing.

Even though Beijing is an area with a high population density, those individuals who

provided their trajectories are often too far away from even the closest neighbor to form a

connection with one another. To the best of our knowledge, only one previous study [72]

has test their DTN routing system using the GeoLife dataset.
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2.3.2. Congestion and Network Degredation. Another challenge is the handling

of network congestion within a DTN. Here, congestion is considered the full consumption

of resources that ultimately leads to higher delivery latencies, lower successful deliveries,

and more wasted resources on relaying messages that otherwise would not be successfully

delivered [94, 96, 103]. Most works have assumed the sufficient availability of resources

such that congestion is never experienced. There are numerous factors that lead to con-

gestion, some of which are typical in sparse networks: slow transmissions, shorter-range

communication, small storage buffers, larger message sizes, higher-frequency message cre-

ation, and fewer nodes available to relay messages to name a few. I postulate that there

exists a horizon in the space of network properties that defines a boundary between normal

and degraded performance. As of now, it remains unidentified.

The possibility of congestion arising warrants the investigation of strategies to avert

or properly tolerate it. One such strategy is to only forward messages to others that have a

high likelihood of reaching their destinations through the selected relays. As was discussed

earlier in this section, many systems have been proposed for this. Be that as it may, these

proposals have not explicitly been evaluated under congested conditions. Other strategies

may be adopted to augment said systems. Buffer management can be employed to alleviate

degradation through strategically removing messages from full buffers, thus making space

for those that are predicted to be deliverable. Replication control can prevent saturation in

storage buffers and transmission channels by capping the number of message copies that can

exist at any time in the network. For messages that exhibit redundancy – not in the terms of

redundant message copies, but in terms of exceedingly similar information being created by

independent sources – a redundant message dropping or consolidation/aggregation system

can reduce the amount of space occupied and the amount of bandwidth consumed for that

information to be delivered.
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PAPER

I. CHITCHAT: AN EFFECTIVE MESSAGE DELIVERY METHOD IN SPARSE
POCKET-SWITCHED NETWORKS

D. McGeehan, D. Lin, S. Madria

ABSTRACT

The ubiquitous adoption of portable smart devices has enabled a new way of

communication via Pocket Switched Networks (PSN), whereby messages are routed by

personal devices inside the pockets of ever-moving people. PSNs provide opportunities

for various interesting applications such as location-based social networking, geolocal

advertising, and military missions in active battlefields where the central communication

tower is unavailable. One key challenge of the successful roll-out of PSN applications is

the difficulty of achieving high message delivery ratio due to the dynamic nature of moving

people and spatial-temporal sparsity in such networks. In this paper, we propose a novel

message routing approach, called ChitChat, which exploits users’ direct and transient social

interests via discriminatory gossiping to penetrate messages deeper into the network. Our

approach enables message carriers to make opportunistic and distributed routing decisions

based on the likelihood a potential message receiver will meet individuals that have a

high chance to forward the message to the destination. Our experimental results have

demonstrated that our approach achieves higher delivery ratios against the two more recent

state-of-the-art algorithms, while maintaining a lower communication overhead against

flooding and reducing the amount of time messages remain idle in buffers.
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1. INTRODUCTION

The ubiquitous adoption of portable smart devices (e.g., smart phones and smart

watches), along with the provisioning of technology to allow long-range device-to-device

communication as proposed in emerging 5G specifications [5], provides an opportunity

for exploring Pocket Switched Networks (PSN) [6, 13, 17]. A PSN is a type of Delay

Tolerant Network (DTN) in which messages are routed by personal devices carried inside

the pockets of ever-moving people. Figure 1 portrays this type of network environment. As

people move about, their mobile devices connect with one another when they are within

wireless communication range, and data packets may be exchanged while the connection

lasts [7, 17]. The challenge that lies in effectively utilizing these mobile devices as message

disseminators results from the volatility and sparsity in network connectivity, primarily

due to limited resources, low node densities, long inter-contact times between nodes, and

security restrictions on message passing.

Figure 1. An example of a Pocket Switched Network. Solid arrows indicate movement of
device holders, and dashed lines indicate established connections and message forwarding.

For example, soldiers in an active battlefield carrying wireless-equipped tablets can

act as nodes in a temporary ad-hoc network in case the primary communication network

is destroyed. However, the ad-hoc network may suffer extreme congestion due to the

high velocity of information and the frequent disconnections between exchanging devices.
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Each connection can only transport a finite quantity of information, and thus to prevent

catastrophic congestion, a message should only be routed through a connection if it will

likely reach its intended destination because of the connection.

Another example considers a commercial application of PSNs, whereby businesses

broadcast sale advertisements and coupons to patrons passing near their storefronts. How-

ever, individuals interested in the business’s products or services may not frequently visit

the store’s location. Users are willing to accept and distribute these advertisements to their

friends and neighbors to increase the chance they will receive the ones they are interested in,

but sophisticated forwarding strategies must be adopted so as to not burden the users with

depleted battery life and not disengage themwith copious amounts of irrelevant information.

One key challenge of PSNs is the difficulty of achieving high message delivery

ratios with finite lifetimes [6, 13, 18]. We believe this challenge is exacerbated in networks

characterized by spatial-temporal sparsity. Spatial-temporal sparsity refers to the sparse

connections among participating nodes in a PSN primarily due to (1) the geographic

distances between each other, (2) the duration of time between connection opportunities,

and (3) security or non-cooperative nature of nodes carrying messages. Moreover, in a PSN,

there is no prior knowledge as to when connection opportunities will arise for messages

to make the next hop along their journey. When an opportunity does occur, it is also

challenging to make the optimal decision on whether to forward messages. Numerous

constraints limit how many messages to forward, including varying bandwidth, limited

buffers within each device, and restricted lifetime of messages.

Although there have been many previous algorithms for data dissemination in PSNs

[1, 2, 4, 6, 7, 10, 11, 13, 17, 18, 23], none of them tackles the sparsity challenge that exists

in a real world PSN environment. Existing works assume high node densities in a PSN such

as a concentrated meeting environment [3, 15, 16], which limits their adoptions in a wider

range of applications.
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In this paper, we propose a novel message routing approach, called ChitChat, which

is designed to conquer the spatial-temporal sparsity problem in PSNs. Our approach

leverages an important characteristic of PSNs, which is that the devices are carried by

peoplewhosemovements are guided by their social interests, roles, and responsibilities. Our

proposed ChitChat system implements sophisticated strategies for nodes (mobile devices

carried by people) to exchange, aggregate, store, and disseminate the social profiles of

encountered individuals, allowing individuals to utilize this increasingly rich information

to judge whether a current opportunistic channel has high likelihood to lead to a successful

message journey.

More specifically, when two nodes connect with each other, they chitchat to ex-

change the following two kinds of information: (i) direct social interests, which is the

metadata, or the set of keywords, that describe the encountered node’s interests, roles, and

responsibilities (e.g. social interests such as “photography" and “gourmet cooking", or

role-specific metadata such as “MANET researcher", “military intelligence officer"); and

(ii) transient social relationships, which is aggregated information of the social interests of

the people that the node has encountered before. Our approach allows the social interests

to be dynamically expanded, refined and aggregated in real-time into the richer transient

social relationships so as to capture multi-hop relationships.

For example, if Alice meets Bob reliably, and Bob meets Janet reliably, then Alice’s

transient social relationships should be influenced by Janet’s even if Alice and Janet have

never met and have no common interests. To more precisely model the weight of multi-hop

relationships, we have carefully designed a temporal growth and decay model that ensures

the freshness of these transient social relationships while also maintaining an upper bound

on storage complexity. Our experimental results on a real world dataset verify that the use

of such multi-hop relationship modeling helps achieve significant improvement on message

routing in sparsely-connected PSNs.
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The contributions of this paper are summarized as follows:

• We propose the ChitChat routing algorithm to address the impact of spatial-temporal

sparsity on message delivery in PSNs. Our approach is able to facilitate nodes in a

PSN to make intelligent decisions on which nodes to forward a message copy, even

in situations where the journey between the source and destination has high social

network distance.

• We propose a novel way of modeling and maintaining multi-hop transient social rela-

tionships by taking into account the time durations of connections and disconnections.

This model maintains the accuracy and freshness of social relationship information

residing within each node, building a solid foundation for making informed message

routing decisions to overcome the constrained connectivity in sparsely-connected

PSNs. It also permits users to change their social interests through time while still

participating in the network.

• We evaluate the performance of the ChitChat protocol by using a real dataset, the

GeoLife dataset [20, 21, 22], which provides diverse and fine-grained human trajec-

tories over a period of five years. We compare the performance of ChitChat against

two recent state-of-the-art PSN algorithms [10, 13], which have been selected as

they perform better than many others. The experimental results demonstrate that

our proposed ChitChat achieves better message delivery ratios without flooding-level

communication overhead.

The rest of the paper is organized as follows. Section 2 presents a formal definition

of the Pocket Switched Network environment, along with our proposed ChitChat protocol.

Section 3 reports the experimental results. Section 4 reviews existing message routing

protocols in PSNs. Finally, Section 5 concludes the paper.
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2. CHITCHAT ARCHITECTURE AND ROUTING PROTOCOLS

In this section, we first present the problem statement, and then provide an overview

of our proposed ChitChat system. After that, we elaborate the detailed algorithms that

reside within the ChitChat system.

2.1. PROBLEM STATEMENT

In this work, we consider the following characteristics of a PSN. Nodes in a PSN

are users who have smart pocket devices that are equipped with the ChitChat system, which

automatically connects to other devices that are within the communication range. Each user

has his/her own social profile as defined in Definition 1 and 2. Accordingly, when a user

sends a message, the message is annotated with appropriate metadata keywords (a subset

of all social interests) that describe the topic or content of the message. Figure 1 provides a

diagram of how a PSN operates.

Definition 1. (Social Interest). A social interest is represented as SI〈SID, kw〉, where SID

is a unique ID to identify the social interest and kw is the keyword that describes the content

of this social interest.

Definition 2. (Social Profile). Let u be a user in a PSN and SPu be his/her social profile.

The social profile of user u is a set of social interests, i.e., SPu〈SID1, SID2, · · · , SIDk〉.

For example, suppose that there are three types of social interests: SI1〈001,

‘hiking’〉, SI2〈002, ‘photography’〉, SI3〈003, ‘gourmet cooking’〉. If Alice’s social in-

terests include ‘hiking’ and ‘gourmet cooking’, her social profile can be represented as

SPalice〈001, 003〉. When Alice visits her favorite outdoor equipment store and learns of

their coupons and sales, she may pass along these coupons to her friends when they next

meet.
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In considering the military application of PSNs, a patrolling soldier may become

aware of the movement of enemy tanks and the location of ammunition stockpiles. In this

situation, the social interest would be ‘ammunition location’ and ‘tank movement’, and

a message can be reported back to Ground Intelligence Officers with expressed roles for

tracking ammunition stockpiles and tank movements.

The proposed ChitChat system supports the following unicast and multicast scenar-

ios in a PSN environment.

• Unicast: A sender sends a message to a designated message receiver. In this case, the

sender knows the message receiver’s ID and annotates the message to reflect content

the recipient would be interested in.

• Multicast: A sender sends a message to a group of users whose social interests match

a message’s metadata keywords. In this case, the sender does not need to know the

message receivers’ IDs.

Messages are distributed in a multi-copy fashion. When a node connects with a

neighbor, the node may create a replica of a message he/she is carrying and forward that

replica to the neighbor. The sending node retains a copy of the message, only deleting it

when its time to live (TTL) has expired, when the node successfully delivers a copy of the

message to the destination, or when its buffer is saturated and room is needed for other

messages with better delivery potential.

2.2. AN OVERVIEW OF THE CHITCHAT SYSTEM

Our ChitChat system consists of two major components with associated storage

buffers as shown in Figure 2: (i) Real-time Transient Social Relationship (RTSR) modeling;

and (ii) Message Routing. The overall data flow in the ChitChat-equipped PSN is as follows.

When two users come within communication range, the ChitChat system will first invoke

the RTSR module. The RTSR module will automatically exchange the two users’ current
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Figure 2. Architectural diagram of the ChitChat system within each node. The ChitChat
system consists of two components, each backed by an associated datastore: the Real-time
Transient Social Relationships, and the Message Router. Here, Alice and Bob connect
with one another, initiating the ChitChat system. (1) Alice exchanges her Transient Social
Relationships (TSRs) with Bob, and vice versa. Once this chitchat is completed, (2) Alice
decides which messages (if any) to forward to Bob and builds a bundle out of her messages
〈mi, · · · ,mk〉. Likewise, Bob builds a bundle out of his messages 〈m j, · · · ,ml〉. These
bundles are then forwarded to each other, and added to the recipient’s message buffer.

Transient Social Relationships (TSRs), resulting in an adjustment in their TSRs based on

a growth-decay model as presented in Section 2.3. Then, the ChitChat system will invoke

the message routing component to exchange a selected subset of messages carried by the

two users based on the analysis results of their revised TSRs.

The Real-time Transient Social Relationship modeling aims to represent the evolu-

tion of each user’s social interests impacted by the people that they encounter. The message

routing can then select better message forwarders based on their Transient Social Relation-

ships. For example, Alice is interested in gourmet cooking. She may have friends with

the same interest, who also have friends with the same interest, and so on. It would then

be promising to ask Alice to help forward messages (e.g. recipes, photographs, sales on

special knives, etc) tagged with ‘gourmet cooking’ so that the messages will have a higher

likelihood of reaching its designated receiver(s) with the same interest. A more complicated

case is the following. Although Alice is not interested in ‘photography’, she may reliably
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encounter people in the network who have this interest. In this case, it may also be helpful

to improve message delivery by having Alice as an intermediate carrier for messages tagged

with ‘photography’. In what follows, we elaborate the algorithms drivings these forwarding

decisions.

2.3. REAL-TIME TRANSIENT SOCIAL RELATIONSHIP MODELING

As aforementioned, the Real-time Transient Social Relationship (RTSR) modeling

function is invoked when two users are within communication range in a PSN. The two users

will exchange their current transient social relationships (TSRs) as defined in Definition 3

and then adjust it to reflect their most recent multi-hop social relationships with other users

in the network.

Definition 3. (Transient Social Relationship). The transient social relationship of a

user u at timestamp t is represented as TSRu〈(SID1, w(SID1, t)), (SID2,w(SID2, t)), ...,

(SIDk,w(SIDk, t))〉, where SIDi is the ID of a social interest and w(SIDi, t) ranges from 0

to 1 that indicates the weight of the social interest SIDi at time t.

We now present how to obtain the social interests for the Transient Social Relation-

ships (TSRs) and how to compute their weight. At the beginning of the whole network

(denoted as timestamp t0), each user’s TSRs are the same as his/her social profile with

the weight of each TSR set to the medium weight of 0.5. For example, given Alice’s so-

cial profile SPalice〈001, 003〉, her initial TSRs at timestamp t0 will be TSRalice〈(001, 0.5),

(003, 0.5)〉.

Later, when users encounter each other, they conduct the following three steps to

adjust their TSRs: (1) each one computes his/her own latest TSRs based on a decay model;

(2) exchange their TSRs; (3) each one computes the growth of his/her TSRs based on a

growth model. Without loss of generality, we consider u and compute its current TSRs as

follows.



46

Suppose that user u enters the communication range of some users at the same

timestamp ts where ts − t0 ≥ 1. The ChitChat system will first compute the current weight

of each social interest in each user’s TSRs by using the decay function defined in Equation

1.

wu(SIDi, ts) =



wu(SIDi, td,i)

β · (ts − td,i)
,

if SIDi < SPu;
(wu(SIDi, td,i) − 0.5)

β · (ts − td,i)
+ 0.5,

if SIDi ∈ SPu.

(1)

The intuition behind the above decay function is that the longer a user is disconnected to

those holding a positive weight for the social interest SIDi, the less likely this person will

be able to successfully deliver a message with this social interest. Specifically, Equation 1

considers two cases: (i) SIDi < SPu means the social interest is not part of the user’s social

profile; and (ii) SIDi ∈ SPu means the social interest is in the user’s social profile. The

decay equation ensures that the weight of social interests from the user’s social profile will

never decrease below 0.5. In both cases, td,i denotes the latest timestamp that the user was

connected with some user with a positive weight for SIDi, implying that at time (td,i+1) they

disconnected. The time difference (ts − td,i) is a positive integer representing the number of

seconds that has passed since u was last in contact with another user with a positive TSR

weight for SIDi. The longer the user remains disconnected from users with SIDi, the lower

the TSR weight of SIDi will be, whereby 1/
(
β · (ts − td,i)

)
is the factor by which the weight

undergoes decay. The parameter β is introduced to adjust the speed of decay such that

β ≥ 1. It is worth noting that in the case when a user remains connected to someone with

a positively-weighted TSR for SIDi, the value of td,i is equal to ts. In such case, there is no

need to compute the decay for this social interest since it has been continuously reinforced

up to ts.
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At timestamp ts +1, user u will exchange his/her positively-weighted TSRs, consist-

ing of only the social interests with positive weights, with the users v1, · · · , vk who newly

connected to u at time ts. Likewise, each neighbor v1, · · · , vk will exchange their TSRs with

u. They will not exchange TSRs again for the duration of their uninterrupted connection.

Here, the timestamp ts + 1 ensures that only users who stay in contact with each other for

at least one time unit will be considered during the social interest growth phase. Then, the

weight of each social interest SIDi in u’s TSRs will be modeled as a function of the current

timestamp tc (s.t. tc > ts) according to Equation 2.

wu(SIDi, tc) = min{1,wu(SIDi, ts) + ∆} (2)

∆ =
∑
v∈ν

wv(SIDi, ts) · (tc − ts)

ψi,u,v
(3)

In Equation 3, wu(SIDi, ts) denotes the weight of SIDi in u’s TSR at time ts; ν denotes the

set of users in the communication range of u at time tc, and wv(SIDi, ts) denotes the TSR

weight of a user v ∈ ν at time ts when they start their interaction. The min function ensures

that the growth would not exceed the upper bound. The growth function takes into account

three factors: (i) the users’ social interest weight (i.e., wu, wv) at the beginning of their

interactions; (ii) the duration of the interaction, i.e., (tc− ts); and (iii) the appropriate growth

dampening factor ψi,u,v which, as detailed below, is dependent on whether SIDi is a social

profile resident or an induced TSR of both u and v. Regarding the first two factors, the

higher the TSRweight and the longer the users remain in contact increases the growth of the

corresponding TSR weight, i.e., the more likely that a message annotated with that social

interest will be delivered. As for the third factor ψi,u,v, its value is determined based on the

residency of the social interest SIDi in u’s and v’s social profile. In particular, we identify

the following six cases in descending order of their impact on the social relationships in a

PSN, i.e., the movement of users in PSN is driven by their social interests, or users with

similar social interests may gather together more often.
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• ψi,u,v = 1: This refers to the case when the social interest SIDi is a direct social interest

of both u and v, meaning SIDi is in both of their social profiles (i.e. SIDi ∈ SPu and

SIDi ∈ SPv). In such case, u’s TSR for SIDi will have no dampening due to ψi,u,v,

obtaining the most growth to reflect the high likelihood they can forward messages

annotated with SIDi.

• ψi,u,v = 2: This refers to the case when SIDi is in user u’s social profile but not user

v’s. Rather it is a TSR that user v obtained when interacting with others.

• ψi,u,v = 3: This refers to the case when SIDi is not user u’s social profile, but is in user

v’s. Since SIDi is not a direct social interest for user u, the growth of its TSR weight

is less than previous cases.

• ψi,u,v = 4: This refers to the case when SIDi is neither user u’s nor v’s social profile.

Both u and v obtained this TSR from encountering others. This means there is some

chance for user u and v to meet the people with this social interest, but the chance

may be small since it is not these two users’ direct interest.

• ψi,u,v = 5: This refers to the case when SIDi is in user v’s social profile and is a

weightless TSR in u (i.e. wu(SIDi, ts) = 0). In such case, user u will expand its TSR

by including this new social interest with a relatively low initial weight.

• ψi,u,v = 6: This refers to the case when SIDi exists only as an induced TSR of user

v (i.e. SIDi < SPu∪SPv, wu(SIDi, ts) = 0, and wv(SIDi, ts) > 0). This is the weakest

case, yielding the least likelihood of message delivery for messages with this interest,

and hence it is given the highest dampener.

To have a better understanding of the algorithm, let us step through an example as

shown in Figure 3.
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Figure 3. Illustrative example for calculating a Transient Social Relationship (TSR) given
connections and disconnections. (a) Alice’s TSR corresponding to the interest ‘hiking’. She
has this TSR as part of her social profile, and thus its weight cannot go below 0.5. (b) This
diagram demonstrates the connections between Alice, Bob, and Carl that influence the TSR
weights in Figure 3a and 3c. (c) Alice’s TSR corresponding to the interest ‘photography’.
She is not directly interested in traveling as it is not in her social profile. However, she
interacts with people directly interested in it, and thus has a TSR with weight between 0
and 1.

Alice starts off with a social profile SPalice〈001, 003〉 to express her interest in

hiking and gourmet cooking. Thus, her TSR (shown in Figure 3a) begins at 0.5. She

meets Bob at time t1, who also has ‘hiking’ in his social profile (i.e. SPbob〈001〉), which

causes her ‘hiking’ TSR to grow according to Equations 2 and 3, with the dampening factor

ψ001,alice,bob = 1. At time t2, Bob disconnects from Alice, resulting in her ‘photography’

TSR to begin decaying according to Equation 1. Enough time passes for her TSR to fall back

to 0.5. Then, at time t3, Alice encounters Carl, who is interested in hiking and photography
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Table 1. Table of Symbol Descriptions

Symbol Description
u The node executing the algorithm
tc Current timestamp of algorithm execution

ts,v The timestamp when v most recently connected to u

td,i
The most recent timestamp when u was connected to

a neighbor with non-zero TSR for SIDi
ν All nodes connected to u at time tc
νtc Nodes who newly formed a connection to u at time tc
v Some connected neighbor of u

SIDi The unique identifier for the ith social interest
SPu The social profile of node u, defined in Def. 2

wu(SIDi, t) User u’s TSR weight for social interest SIDi at time t
TSRu The Transient Social Relationships for user u (Def. 3)

β Adjustable parameter to control rate of decay
ψi,u,v Growth rate dampener, defined by Def. 3

(i.e. SPcarl 〈001, 002〉). This causes Alice’s TSR for ‘hiking’ (Figure 3a) to undergo growth

with a dampener of ψ001,alice,carl = 1. Likewise, a TSR for ‘photography’ is induced in

Alice (Figure 3c) with a growth dampener of ψ002,alice,carl = 5. At time t4, Alice reconnects

to Bob, causing a spike in the growth rate of her ‘hiking’ TSR. Eventually, it maxes out

with a weight of 1. At time t5, Bob disconnects from Alice. However, since Alice is still

connected to Carl, her TSR for ‘hiking’ and ‘photography’ does not undergo decay. Only

when Carl disconnects at time t6 do both TSRs undergo decay.

Algorithm 1 summarizes the main steps of the Real-time Transient Social Relation-

ship modeling.

Our modeling ensures the following properties.

Theorem 1. Let u be a user and TSRu be the user’s Transient Social Relationships. For

any SIDi ∈ TSRu and any timestamp t such that t > t0, then 0 ≤ wu(SIDi, t) ≤ 1.

Theorem 2. Each node has a storage complexity of O(N(b + log N)) for TSRs.

Due to constricted space limitations, the full proofs for Theorems 1 and 2 are

provided in [12].
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Algorithm 1 Real-time Transient Social Relationship Modeling: A new connection is
established between node u and nodes νtc = {v1, · · · , vk} at time tc.
1: procedure Connect(u, νtc )

. Decay TSRs according to Eq. 1
2: for each SIDi ∈ SPu do
3: if td,i == tc then . No decay to wu(SIDi, tc)
4: wu(SIDi, tc) = wu(SIDi, td,i)

5: else if SIDi ∈ SPu then
6: wu(SIDi, tc) =

wu(SIDi, td,i) − 0.5
β · (tc − td,i)

+ 0.5

7: else
8: wu(SIDi, tc) =

wu(SIDi, td,i)

β · (tc − td,i)
9: end if
10: end for

. Exchange current TSRs with new neighbors.
11: for each node v ∈ νtc do
12: Send TSRu to v

13: Receive TSRv from v

14: ts,v = tc
15: end for

. Grow TSRs according to Eq. 2
16: for each SIDi ∈ all received and cached TSRs do
17: ∆ =

∑
v∈ν

wv(SIDi, ts,v) · (tc − ts,v)

ψi,u,v
18: wu(SIDi, tc + 1) = min{1,wu(SIDi, tc) + ∆}
19: end for
20: end procedure

2.4. CHITCHAT ROUTING PROTOCOL

The message forwarding phase occurs after TSRs are updated. Since each node

may hold a set of interest-tagged messages, and each node has limited message storage

and forwarding capabilities, it is critical to determine which message to forward to which

neighboring node so that the overall delivery rate is not penalized. To achieve this, we

propose the following routing protocol (shown in Algorithm 2) that leverages the knowledge

carried by the newly updated TSRs.
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The routing protocol takes as input a user u who wants to forward a message msg

that has social interests msg.SIDs = 〈SID1, · · · , SIDm〉, and a set of users ν = 〈v1, · · · , vn〉

who are within user u’s communication range and just completed exchanging TSRs with

u. First, u will check if the designated message receiver (in the unicast case) is among

the neighboring nodes. If so, u will pass the message only to the receiver and moves on

to other messages. Otherwise, the protocol will proceed as follows. User u will rule out

those neighboring nodes whose message buffer are full, and thus are unable to receive any

more messages. For each remaining neighbor vk ∈ ν, user u will select all of vk’s TSRs

that match msg’s social interests, and then compute the sum of their weights (line 9 in

the algorithm). Note that u will use the neighbors’ TSRs as they were after their decay,

but before their growth, to avoid recursive consideration. These TSRs have already been

obtained by u during the RTSR phase (i.e. Algorithm 1) and no more communication is

needed here.

Next, user u will compare the sum of the weights of the message’s social interests

(denoted as Su) in its own TSRs (line 8) with that of the neighbor’s (denoted as Svk ). If

Svk > Su, the neighbor vk may be more interested in this message or a more viable carrier

for other interested users, resulting in user u forwarding the message to vk .

Since we are considering a sparsely-connected network, it is possible that user u has

very few neighbors and none of the neighbors’ Svk is greater than Su. In such case, so as

to not penalize the message delivery rate, user u will still try to forward the message to the

neighbor with the highest Svk , if all the following conditions are met:

• User u’s buffer is full. That means if u does not forward the message msg now, u may

not be able to take in new messages even if they are of great interest to u.
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Algorithm 2 ChitChat Routing Algorithm: Node u decides to which connected neighbors
in ν to forward the message msg at time t
1: procedure SendMessage(u, msg, ν)
2: for vk ∈ ν do
3: if msg.destination == vk then
4: Forward msg to vk
5: u.messages = u.messages − msg
6: end if
7: if msg < vk .messages then
8: Su =

∑
SIDi∈msg.SIDs wu(SIDi, t)

9: Svk =
∑

SIDi∈msg.SIDs wvk (SIDi, t)
10: if Svk > Su then
11: Forward msg to vk
12: end if
13: end if
14: end for
15: end procedure

• The time before msg expires is equal to its estimated delivery time, as shown in the

following Equation 4, where tmsg
exp is the message’s expiration time and E(tmsg

del ) is the

estimated delivery time based on statistic information. In this case, if u does not

forward the message, the message will likely never reach its destination. Note that

this condition is only needed in the unicast scenario.

tmsg
exp − tc = E(tmsg

del ) (4)

• Svk in the selected neighbor must not be zero, implying this neighbor has at least

some interest or delivery capability for this message. Otherwise, it could be a waste

of energy and buffer space to forward this message to a user with no interest in it.

This edge case is considered only after message forwarding of Algorithm 2 results in no

messages being forwarded.
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3. PERFORMANCE EVALUATION

In this section, we first introduce the experimental settings and then report the

experimental results.

All experiments were conducted in the ONE simulator [9] version 1.5.1 RC2. We

compare our ChitChat system with one benchmark algorithm (i.e., Epidemic [18]), and two

recent related works SEDUM [10] and SANE [13].

In the experiments, we evaluate the performance of each algorithm by using the

GeoLife GPS trajectory dataset [20, 21, 22]. The GeoLife dataset consists of the trajectories

of 182 users over a period of five years in the city of Beijing, China. Specifically, the dataset

contains 17,621 trajectories covering 1,282,951 kilometers over a period of 50,176 person-

hours [19]. Each trajectory consists of a temporal sequence of latitude and longitude points,

recording how a user moved during the period of time their GPS device was active.

Although the GeoLife dataset provides the best available dataset for unbiased move-

ments of people, each day over the entire five year period provides only trajectories for

up to 28 users. Each of these users are scattered across the city of Beijing and rarely

come within close proximity to each other. In order to form a network to evaluate and

compare the aforementioned routing protocols, trajectories from the same person occurring

on different days were gathered together and treated as unique individuals. For example,

if Alice contributed a GPS trajectory for Monday, Tuesday, and Friday, then the modified

GeoLife dataset used for these experiments would present three users moving about on the

same day: AliceMonday, AliceTuesday, and AliceFriday. This view changes the GeoLife

dataset from spanning five years with 182 unique participants into a dataset spanning one

day (24 hours) with 9,797 unique trajectories. From this, we then isolate the trajectories

consisting of at least two hours of contiguous recordings and at least 500 unique location

records, which constitutes approximately 63.2% of the unique trajectories (6,193 out of

9,797 unique trajectories). The resulting dataset provides a node density of approximately
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Table 2. Default Experimental Settings

Configuration Default Experimentation Values
Number of Participants 2,000

Freq. of Location Reporting 1/5 sec−1

Pool of Social Interest Keywords 200
No. of Defined Social Interests 25 per node

Transmission speed 250 kBps
Transmission radius 300 meters

Buffer capacity 500 MB
Message TTL 10 hours

Freq. of Message Creation 1/60 sec−1

Message size 1 MB
Simulated time 24 hours

SANE Relay Threshold 0.25
SANE Message Replicas Unbounded
SEDUM Epoch Duration 1 sec
SEDUMWeight Constant 0.2
SEDUMMessage Replicas Unbounded

16 to 20 nodes per square kilometer throughout the day. These modifications of the dataset

have no effect on the movements of the individuals, and thus preserves the intrinsic natural

human mobility properties.

It is worth mentioning that many past works have used spatially dense datasets for

experimental evaluation. Additionally, these datasets are typically constrained to a special

event at a specific location and not sufficient to represent general human daily mobility. For

example, the INFOCOM 2006 [16] dataset has 76 participants moving within an academic

conference venue of approximately only 80 meters by 40 meters, resulting in the density as

high as 20,000 people per square kilometer. Likewise, the SIGCOMM2009 [15] dataset has

similar number of participants, density, and conference venue locality. In these datasets, the

participants attending the conference are away from their hometowns, thus influencing their

habitual movements. The MIT Reality Mining dataset[3] does not provide the information

needed to compute node density, but with only a cohort of college students and faculty

contributing data, there is concern that their movements might be biased towards academic



56

life. It is because of these reasons that we chose the GeoLife dataset in our experiments.

The GeoLife dataset records a broader range of human mobility during a much longer time

period, thus better representing users’ movement in their socially habitual manner.

Since the GeoLife dataset contains no social profiles of its participating users, we

generate a set of social interests per user selected uniformly out of 200 predefined social

interests such as ‘gourmet cooking’, ‘hiking’, ‘photographing’, etc. To evaluate the routing

protocols, we also randomly generatemessages in the network as follows. For eachmessage,

we randomly select its sender and receiver among users, and keep the pairs for which there

is at least one shared social interest. Then, we randomly select a subset of social interests

from the chosen destination to attach to the message. The total simulation time covers 24

hours of GPS trajectory replay, and one message is generated every 60 seconds.

To compare the performance of each chosen algorithm, we adopt the following per-

formance metrics: (i) message delivery ratio; (ii) the average number of hops to deliver a

message; (iii) the average time messages resided in each node’s buffer before being deleted;

and (iv) the average replication overhead2. In what follows, we report the performance

results of the unicast versions of these protocols due to the lack of multicast simulation in

the ONE simulator. Unless otherwise stated, the settings in Table 2 were used across all ex-

periments conducted. We used the default settings for SANE and SEDUM as recommended

in [13] and [10], respectively.

3.1. EFFECT OF THE NUMBER OF USERS IN THE NETWORK

In the first round of experiments, we evaluate the routing performance of all the

algorithms by varying the total number of users in the network from 2,000 to 6,000 with

corresponding user density ranging from 5 to 20 per square kilometers, respectively. This

round of simulations investigates the behavior and performance of each algorithm under

2The average replication overhead is defined in the prepackaged MessageStatsReport class of the ONE
simulator [9]. It is calculated as c = r−d

d , where r is the total number of message transmissions that occurred
in the simulation, and d is the number of messages that were successfully delivered to its destination.
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Figure 4. Effect of user participation on performance. The legend in the last graph applies
to all.

varying user sparsity. Intuitively, a decrease in the number of participants results in a lower

user density, thus varying the network’s sparsity. Figure 4 reports the results. It is not

surprising to see that Epidemic achieves the highest delivery ratio since it floods messages

to every node encountered. Our proposed ChitChat is the second best, achieving 2.5 times

higher delivery ratio than SANE andmore than 5 times higher delivery ratio than SEDUMat

a fraction of the cost of Epidemic flooding. This is because ChitChat effectively utilizes the

Transient Social Relationships of encountered nodes to identify the nodes that have higher

likelihood of delivering messages. However, SANE considers only direct social interests

between two users and SEDUM considers only the duration of interaction time, which are

not effective enough in sparse networks.
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Regarding the number of hops to deliver a message (Figure 4(b)), although SANE

and SEDUM require the smallest number of hops, it does not mean they operate with

more efficiency. Rather, the low hop counts are attributable to their ability to only deliver

to nearby nodes, failing to deliver to nearly 80% of the created messages. The buffer-

space efficiency of the algorithms can be observed from Figure 4(c), which shows the

time a message needs to be kept in a node’s buffer. Our proposed ChitChat has the

shortest buffer occupancy time for each message. This again indicates that ChitChat makes

intelligent message forwarding decisions so that message buffers do not needlessly fill,

which could lead to catastrophic congestion that might prevent the delivery of messages with

better delivery likelihoods. More importantly, ChitChat also has very low communication

overhead compared to Epidemic as shown in Figure 4(d). Both SANE and SEDUM have

low communication overhead too because their algorithms are designed to route messages

which can be reached within a few hops in a dense network. The sparsity of the network

causes their algorithm to rarely forward messages before they expire.

3.2. EFFECT ON TRANSMISSION RANGE

In the second round of simulations, we evaluate the routing performance in a subset

of 2,000 users by varying the communication range from 10 meters to 1,000 meters3.

Similar to the simulations in Section 3.1, the motivation for this round of simulations is to

observe the effect of variable network sparsity on the behavior and performance of each

protocol. As shown in Figure 5(a), the delivery ratio of all approaches increases with the

communication range because expanded communication ranges yield better likelihoods to

find proper forwarding nodes. Epidemic still achieves the highest delivery ratio and our

proposed ChitChat is the second best in all cases. It is interesting to see that ChitChat

has a relatively stable performance when the communication range grows quite large (more

3It is worth noting that 1,000 meters of communication range may not be possible in a real PSN, and is
considered here to test the extreme behavior of all approaches.
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Figure 5. Effect of transmission radius on performance. The legend in the last graph applies
to all.

than 500 meters) while SEDUM and SANE’s delivery ratios continue to improve. This

indeed indicates the effectiveness of the Transient Social Relationship modeling in the

ChitChat. The transient social relationships already consider the social impact of users

residing multiple hops away and hence the unrealistic expansion of communication ranges

is not necessary. In other words, ChitChat is more suitable to PSN applications than

existing works, where communication range among devices are typically limited to small

proximities.

As for the average number of hops per message, we observe that ChitChat requires

fewer number of hops with the increase of the communication range. The reason is

straightforward: when communication ranges are large, multi-hop paths become shorter

because fewer intermediate nodes are needed to reach a destination. However, SANE and

SEDUM have constantly low number of hops (1 to 3) which is due to their ability to
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Figure 6. Effect of message lifetime on performance. The legend in the last graph applies
to all.

only deliver messages that are not far from the destination. As for the buffer time and

communication overhead, our ChitChat again achieves the shortest buffer time and low

communication overhead. The reasons are similar to that for the first round of experiments.

3.3. EFFECT OF MESSAGE LIFETIME

Next, we examine how message lifetimes affects the performance of each algorithm.

We vary the messages’ lifetimes from 1 hour to 20 hours. As shown in Figure 6(a), the

delivery ratio of SANE and SEDUM continues to increase with the increase of message

lifetimes, while both Epidemic and ChitChat reach plateaued performance early on. This is

because Epidemic floods messages to all neighbors and the delivery ratio will not change

if there is no path between a sender and its destination, as is common in sparse PSNs, no

matter how long the messages are kept in the buffer. Similar for ChitChat, its plateaued
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Figure 7. Effect of the number of social interests per user.

performance implies ChitChat is making well-informed forwarding decisions. However, the

increase of the delivery ratio with the message lifetime in SANE and SEDUM reflect their

limitations on identifying promising forwarding nodes. When message lifetimes are short,

SANE and SEDUM are unable to find the right nodes to forward the messages. In Figure

6(b), we can also see that SANE and SEDUM require more hops per message when their

delivery ratio increases (i.e. more messages with longer paths have been delivered), which

conforms to our explanation in previous experiments. In addition, the buffer occupancy

time is growing with message lifetimes as expected, and ChitChat’s cost still remains 1/3 of

Epidemic in all cases.

3.4. EFFECT OF SOCIAL INTERESTS DISTRIBUTION

Finally, we evaluate the effect of nodes’ social interests declarations on the per-

formance of the only two approaches that use the social interests: ChitChat and SANE.

Specifically, we vary the number of social interests associated with each user from 5 to

100 out of a predefined 200 unique social interests. As shown in Figure 7, the increase of

the social interests per user does not affect SANE much whereas it slightly degrades the

performance of the ChitChat. This is because SANE considers only the social interests of

two interacting users, but ChitChat takes into account the social interests belonging to users
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multiple hops away. In the ChitChat system, the more social interests per user, the larger

number of social interests will be held in the Transient Social Relationships by each user,

which in turn complicates forwarding decisions. However, it is worth noting that even in

the extreme and almost unrealistic case where each user has 100 unique social interests,

ChitChat still outperforms SANE by delivering two times more messages.

4. RELATEDWORK

Many unique PSN routing algorithms have reported in past works. Epidemic rout-

ing [18] provides an upper bound for the number of successfully delivered messages as well

as a lower bound on the delivery delay if one assumes light traffic or infinitely fast data

transmission and unlimited buffer sizes. This is not a reasonable assumption, however, as

past work [8] has shown that assuming finite transmission speeds and buffer sizes can result

in network degradation when using Epidemic. Thus, for the sake of reducing the resources

consumed, any routingmechanism that is deployed needs to identify if a connected neighbor

is a worthwhile candidate for message forwarding, and if so, which messages should be

forwarded.

Initial pioneers in the field of PSN routers have been quite simple, yet effective at

delivering messages at a fraction of the cost of Epidemic-level flooding. PRoPHET [11]

makes intermediate message forwarding decisions based on the observed probability that an

intermediate node will meet with the destination, and maintains the freshness of these prob-

abilities through the use of a weighted, convex combination of past and current probabilities.

BUBBLE Rap [6] has messages bubble up through the network to higher-centrality nodes,

reaching more popular nodes until it enters the destination’s community. Once there, the

forwarding strategy shifts its focus from global centrality to community-centric centrality,

i.e., centrality with nodes of that community. Hui et al. reckon a node’s popularity within

its community is more effective at reaching the destination than the node’s global popularity

when the node shares a community with the destination.
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Whereas PRoPHET calculates contact probabilities based on the rate of contacts per

time period, the SEDUM router [10] expresses a similar metric by using continuous contact

durations between any two nodes during a time period. This metric is then used to make

message forwarding decisions between a message carrier and an intermediate node. The

message carrier forwards a message to another node if the recipient has a higher utility with

the destination than the current carrier. Utilities are also transitively spread throughout the

network in an opportunistic manner, only being passed between nodes when connections

are established. This permits an intermediate node to have a high utility with another node

even if the two nodes never directly meet. Rather, the two nodes meet indirectly through

one or more intermediate relays.

Whereas the foundational work on PSN routers has focused on probabilistic meet-

ings between two nodes, a recent shift focuses on exploiting social artifacts. The SANE

algorithm [13] requires each individual to hold a binary string of equal length that can be

translated into the set of unique keywords that describe the user’s interests. When two indi-

viduals meet, a message carrier computes the cosine similarity of its social interest vector to

its neighbor’s social interests, and decides to forward the message if the similarity exceeds

a predefined threshold. To the best of our knowledge, this work is the first to investigate the

affect of social interests as a decisive characteristic in message forwarding in sparse PSNs,

and is thus offers a fair comparison for our proposed work.

These past works have limitations on successfully delivering messages in spatial-

temporal sparse environments, where users are sparsely distributed throughout a geographic

area or few members of that area are participating in the PSN. The evaluations of past works

have primarily been conducted on very dense datasets, such as those showing the contact

traces of academic attendees of a conference [15, 16] or students’ movements through a

college campus [3, 14]. Sparse networks have not been investigated extensively, such as is

present in metropolitan environments where a small subset of the population is participating

in the network. Thismakes it unlikely that short paths exist between a source and destination.
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Rather, geographically distant individuals are connected by longmulti-hop paths, withmany

intermediate nodes, spanning long periods of time. With probabilistic routing [10, 11], the

chances of an intermediate node having ever contacted the destination is very slim under this

scenario. What is needed for a network with these characteristics is a routing mechanism

that can successfully percolate social relationship information throughout the network, thus

permitting routing decisions to occur in a sparsely-connected network.

5. CONCLUSION

In this paper, we present a novel routing protocol, the ChitChat system, for sparsely-

connected Pocket Switched Networks (PSNs), which exist in many real applications. Our

proposed ChitChat system successfully models multi-hop social relationships via a novel

decay-growthmodel and enables each participating node to make informed decisions during

message routing. Our experimental study with a real world dataset demonstrates the supe-

riority of our proposed approach compared to recent existing efforts, in that our ChitChat

system achieves high delivery ratio with much lower communication overhead and shorter

buffer occupancies.

As part of our future work, we have multiple of avenues to investigate. Of primary

interest is to evaluate how well ChitChat performs when people’s social profiles exhibit

various distributions and geographic correlations of interests. Additionally, we will also

evaluate the effectiveness of ChitChat’s multicasting capabilities to broaden its adoption

in more potential applications. Finally, it would be interesting to investigate the real-time

augmentation of message metadata annotations. Such an application would greatly assist

battlefield reconnaissance and intelligence gathering by speeding up the turn around between

raw field data to rich intelligence acquisition, thus facilitating faster turn around in wartime

strategies.
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II. EFFECTIVE SOCIAL-CONTEXT BASED MESSAGE DELIVERY USING
CHITCHAT IN SPARSE DELAY TOLERANT NETWORKS

D. McGeehan, S. Madria, D. Lin

ABSTRACT

Delay Tolerant Networks (DTNs) have garnered much interest with the wide-spread

adoption of portable smart devices capable of wirelessly connecting with one another, thus

enabling the formation of a network for opportunistic data dissemination. This type of

network is useful in a variety of applications where other form of network communication

strategies are unavailable, such as an on-the-ground tactical military network in an active

battlefield or an emergency network formed immediately after a catastrophic disaster. DTNs

also provide opportunities for various other interesting applications such as location-based

social networking, interests-based data dissemination, and geolocal advertising. One per-

sistent challenge for DTNs is achieving sufficient message delivery due to the dynamic,

unpredictable, and opportunistic nature of inter-device connections; this challenge is exac-

erbated when such connections are sparsely available. In this paper, a novel social-context

based message routing system, called ChitChat, is proposed with the focus on message

delivery through sparsely-connected DTNs. ChitChat is a hybrid geographic/data-centric

routing system designed to exploit each user’s social (or mission) interests to opportunis-

tically learn of multi-hop paths through the network, and to derive the social semantics

of geographic locations using user travel itineraries and multi-hop social relationships. In

turn, this information is used to make distributed routing decisions based on the likelihood

an encountered node will connect with others capable of successfully delivering a message.

An analysis of network sparsity is conducted against five real-world datasets. Through sim-
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ulations using the two highest-sparsity real-world datasets, ChitChat is capable of achieving

more successful deliveries against three recent state-of-the-art DTN routing schemes while

incurring lower costs against flooding.

1. INTRODUCTION

The ubiquitous adoption of portable smart devices (e.g., smart phones and smart

watches), along with the provisioning of technology to allow now long-range device-

to-device communication (such as using radio communication) provides an opportunity

for exploring Delay Tolerant Networks (DTN) [1, 12, 25, 32] – a type of Mobile Ad-Hoc

Network in whichmessages are routed by personal devices carried by ever-moving people in

a highly intermittent environment like an active battlefield or a region impacted by a disaster.

Figure 1 portrays this type of network environment where, as people move, their mobile

devices connect with one another when they are within wireless communication range, and

data packets may be exchanged while the connection lasts [13, 32]. The challenge that

lies in effectively utilizing these mobile devices as message disseminators results from the

volatility and sparsity in wireless network connectivity, primarily due to limited resources

(i.e., battery and storage), low node densities, long inter-contact times between nodes, and

security restrictions on message passing.

For example, soldiers in an active battlefield carrying wireless-equipped tablets can

act as nodes in a temporary ad-hoc network in case primary communications are destroyed.

However, the ad-hoc network may suffer extreme congestion due to the high velocity of

information and the frequent disconnections between exchanging devices. Each connection

can only transport a finite quantity of information, and thus to prevent catastrophic conges-

tion, a message should only be routed through a connection if it will likely reach its intended

destination because of the connection.
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Figure 1. An example of a Delay Tolerant Network. Solid arrows indicate movement of
device holders, and dashed lines indicate established connections and message forwarding.

Another example considers a commercial application of DTNs, whereby businesses

broadcast sale advertisements and coupons to patrons passing near their storefronts [34].

However, individuals interested in the business’s products or services may not frequently

visit the store’s location. Users are willing to accept and distribute these advertisements

to their friends and neighbors to increase the chance they will receive the ones they are

interested in, but sophisticated forwarding strategies must be adopted so as to not burden

the users with depleted battery life and to not disengage them with copious amounts of

irrelevant information.

One key challenge ofDTNs is the difficulty of achieving highmessage delivery ratios

with finite lifetimes [12, 25, 33]. This challenge is exacerbated in networks characterized by

spatial-temporal sparsity. Spatial-temporal sparsity refers to the sparse connections among

participating nodes in a DTN primarily due to (1) the geographical distances between each

other, (2) the duration of time between connection opportunities, and (3) security or non-

cooperative nature of nodes carrying messages. Moreover, in a DTN, there is no prior

knowledge as to when connection opportunities will arise for messages to make the next

hop along their journey. When an opportunity does occur, it is also challenging to make the
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optimal decision on whether to forward messages. Numerous constraints limit how many

messages to forward, including varying bandwidth, limited buffers within each device, and

restricted lifetime of messages.

Although there have been many previous algorithms for data dissemination in DTNs

[4, 7, 10, 12, 13, 19, 21, 22, 25, 32, 33, 35, 39], none of them tackle the sparsity challenge

that exists in a real world DTN environment. Existing works implicitly assume high node

densities in a DTN such as a concentrated meeting environments [9, 27, 30] or other

social gatherings, with evaluations of such systems relying solely on synthetic or real-world

datasets exhibiting this property. This limits their adoptions in a wider range of applications.

In this paper, we propose a novel message routing approach, called ChitChat, which

is designed to conquer the spatial-temporal sparsity problem in DTNs. Our approach

leverages an important characteristic of DTNs: the devices are carried by people, whose

movements are guided by their social interests, roles, and responsibilities. Our proposed

ChitChat system implements sophisticated strategies for nodes (mobile devices carried by

people) to exchange, aggregate, store, and disseminate the social profiles of encountered

individuals along with opportunistically learning about the geographic social landscape of

their environment in a distributed, decentralized manner. This allows individuals to utilize

increasingly rich information to judge whether a current opportunistic channel has high

likelihood to lead to a successful message journey.

More specifically, when two nodes connectwith each other, they chitchat to exchange

the following information: (i) direct social interests, which is the metadata, or the set of

keywords, that describe the encountered node’s interests (social or mission related), roles,

and responsibilities (e.g. social interests such as “photography" and “hiking", or role–

specific metadata such as “firefighter", “military intelligence officer"); (ii) transient social

relationships, which is aggregated information of the social interests of the people that

the node has encountered before; and (iii) geographic social heatmaps, which describe

various locations of interest in terms of the social interests of visiting individuals. Our
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approach allows the social interests to be dynamically expanded, refined, and aggregated in

real-time into richer transient social relationships so as to capture multi-hop relationships,

and permits the learning of social semantics of various locations and/or of nodes, both in

ways that accommodate the constraints in DTNs.

For example, if Alice and Bob connect reliably, and Bob and Janet connect reliably,

then Alice’s transient social relationships should include Janet’s social interests even if Alice

and Janet have never connected earlier and have no common interests. To more precisely

model the weight of multi-hop relationships, we have carefully designed a temporal growth

and decay model that ensures the freshness of these transient social relationships while also

maintaining an upper bound on storage complexity. Alice is also able to learn more about

the social semantics of her environment from both Bob and Janet, even if she has never

visited some locations therein. Locations visited by nodes are annotated with social interests

and are stored on a node’s local map. When nodes come in contact with one another, they

exchange maps containing both their own visited locations and the locations visited by

previously encountered nodes to enrich and expand their own knowledge of locations in

their environment.

The contributions of this paper are summarized as follows:

• We propose the ChitChat routing algorithm to address the impact of spatial-temporal

sparsity on message delivery in DTNs. Our approach is able to facilitate nodes in a

DTN to make intelligent decisions on which nodes to forward a message copy, even

in situations where the journey between the source and destination has high social

network distance.

• We propose a novel way of modeling and maintaining multi-hop transient social rela-

tionships by taking into account the time durations of connections and disconnections.

This model maintains the accuracy and freshness of social relationship information

residing within each node, building a solid foundation for making informed message
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routing decisions to overcome the constrained connectivity in sparsely-connected

DTNs. It also permits users to change their social interests through time while still

participating in the network.

• We propose a novel method for learning the social semantics of various locations

through the use of node itineraries - the paths that they travel between locations of

interest - and the transient social relationships of people visiting locations along these

itineraries. This approach provides valuable knowledge for nodes to decide if an

encountered node can deliver messages to locations commonly visited by interested

individuals, even if the encountered node has no interest in such messages.

• We analyze the network densities of five real world datasets: the INFOCOM 2006

dataset [30], the SIGCOMM 2009 dataset [27], the MIT Reality Mining dataset [9],

Microsoft’sGeolife dataset [36, 37, 38], andNokia’sMobileDataChallenge dataset [17,

18]. To the best of our knowledge, this analysis is the first attempt to quantify and

compare the sparsity of these datasets as a means of determining whether their use in

simulations is appropriate for research into DTNs. Our findings suggest that INFO-

COM 2006 and MIT Reality Mining, both widely used to conduct DTN simulations,

are quite dense compared to the other three, which have rarely been used. This

suggests that handling sparse DTNs is an unaddressed field of research.

• As a result of the network density analysis, we evaluate the performance of the

ChitChat protocol using two real world datasets exhibiting the highest sparsity, Mi-

crosoft’s GeoLife dataset and Nokia’s Mobile Data Challenge dataset, both providing

diverse and fine-grained human trajectories over time periods spanningmultiple years.

We compare the performance of ChitChat against three recent state-of-the-art DTN

algorithms [19, 21, 25] that have been selected based on their improved performance

over their predecessors. The experimental results demonstrate that our proposed

ChitChat achieves better message delivery ratios without incurring flooding-level
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communication overhead. Thus, we conclude that multi-hop relationship modeling

and location semantics help achieve significant improvements on message routing in

sparsely-connected DTNs.

The rest of the paper is organized as follows. Section 2 presents a formal definition

of the Delay Tolerant Network environment, along with defining our proposed ChitChat

system. Section 3 presents the network density analysis of the five real world datasets,

followed by the evaluation of simulation results using the twomost sparse datasets. Section 4

reviews existing message routing protocols in DTNs. Finally, Section concludes the paper.

2. CHITCHAT ARCHITECTURE AND ROUTING PROTOCOLS

In this section, we provide a formal discussion of the ChitChat system. We first

present preliminary definitions of entities used by the proposed ChitChat system in Section

2.1, followed by a discussion on the modules and algorithms of this system. Our ChitChat

systemconsists of threemajor componentswith associated storage buffers as shown in Figure

2: (i) Opportunistic Geographic Social Heatmap (OGSH) modeling; (ii) Opportunistic

Transient Social Relationship (OTSR) modeling; and (iii) Message Routing. Each of these

modeling approaches is to be appropriate for the limitations and restrictions of DTNs.

When two users come within communication range, the ChitChat system will first invoke

the OGSH module to exchange the two users’ current Geographic Social Heatmaps (GSHs)

as defined in Section 2.2. Upon receiving its neighbor’s GSH, a node will merge it into its

own. Following this, each node calls their OTRS module to update, exchange, and merge

their current Transient Social Relationships (TSRs). Section 2.3 defines the procedures for

this process, and proves there is an upper bound to the storage needed for this subsystem.

Finally, the ChitChat system will invoke the message routing component to exchange a

selected subset of messages carried by the two users based on the analysis of their revised

TSRs and GSHs, as defined in Section 2.4.
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Figure 2. Architectural diagram of the ChitChat system within each node, employing Op-
portunistic Geographic Social Heatmaps, Opportunistic Transient Social Relationships, and
the Message Router. Here, Alice and Bob connect with one another, initiating the ChitChat
system. Alice exchanges (1) her Geographic Social Heatmap (GSH, see Definition 8) and
(2) her Transient Social Relationships (TSRs, see Definition 6) with Bob, and vice versa.
Once this chitchat is completed, (3) Alice decides which messages (if any) to forward to
Bob and builds a bundle of these messages 〈mi, . . . ,mk〉. Likewise, Bob builds a bundle
of his messages 〈m j, . . . ,ml〉 to send. These bundles are then forwarded to each other, and
added to the recipient’s message buffer.

2.1. PRELIMINARY DEFINITIONS

In this work, we consider the following characteristics of a DTN. Nodes in a DTN

are users who have devices like smart phones equipped with the ChitChat system, which

automatically connects to other devices that are within communication range, using such

technologies as Bluetooth, WiFi Direct, or Google Nearby. Each user has his/her own social

profile (see Definition 4 and 5), itinerary (see Definition 7), and geographic social heatmap

(see Definition 8). The messages that a user carries are each annotated with appropriate

metadata keywords (a subset of all social interests) that describe the topic or content of a

particular message. Figure 1 provides a diagram of how a DTN operates.

Definition 4. (Social Interest). A social interest is represented as a tuple 〈SID, kw〉, where

SID is a unique ID to identify the social interest and kw is the keyword that describes the

content of this social interest.
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Definition 5. (Social Profile). Let u be a node in a DTN and SPu be its social profile. The

social profile of u is a set of social interests, i.e., SPu = {SID1, SID2, . . . , SIDk}.

For example, suppose there are three types of social interests: 〈001, ‘hiking’〉,

〈002, ‘photography’〉, and 〈003, ‘firefighter’〉. If Alice’s social interests include ‘hiking’

and ‘photography’, her social profile can be represented as SPalice = {001, 002}. When

Alice visits her favorite outdoor equipment store and learns of their coupons and sales, she

may pass along these coupons to her friends when they next meet.

The social context in which the ChitChat is deployed need not necessarily be strictly

recreational interests. In considering the battlefield application of DTNs, a patrolling

soldier may become aware of the movement of enemy tanks and the location of ammunition

stockpiles. In this situation, the social interest (i.e., mission interest) could be ‘ammunition

location’ and ‘tankmovement’, and amessagewould be reported back toGround Intelligence

Officers with expressed roles for tracking ammunition stockpiles and tank movements. For

a disaster deployment of a DTN, social interests such as ‘flooded road’, ‘gas leak’, and

‘stranded civilians’ could be deployed.

Definition 6. (Transient Social Relationship). The Transient Social Relationships of a node

u at timestamp t is represented as

TSRu = 〈〈SID1,wu(SID1, t)〉, 〈SID2,wu(SID2, t)〉, . . . , 〈SIDk,wu(SIDk, t)〉〉

where SIDi is the ID of a social interest and wu(SIDi, t) is the weight of the social interest

SIDi for user u at time t such that 0 ≤ wu(SIDi, t) ≤ 1.

Whereas a node’s Social Profile indicates the personal social interests of the node,

its Transient Social Relationships (TSRs) act as indicators of whether this node could

reliably forward messages having content relevant to a particular social interest to other

nodes sharing that interest. It is intended to offer insights on the ever-evolving multi-hop

relationships, whether direct or indirect, that nodes have with each other.
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Continuing with the example following Definition 5, recall that Alice’s social profile

is SPalice = {001, 002}, representing her interests in hiking and photography. Further,

assume Alice spends more time with her photography friends than her hiking friends, and

is married to a firefigher who often invites his coworkers into their home. Although she

is not personally interested in firefighting, her close association with individuals interested

in ‘firefighter’ induces her TSR for ‘firefighting‘. Specifically, Alice’s TSRs at some

timestamp could be TSRalice = 〈〈001, 0.65〉, 〈002, 0.95〉, 〈003, 0.325〉〉. Her direct interest

in photography and hiking leads to the relevant TSRs having higher weights than that of

‘firefighter’. Furthermore, since she spends more time with her photography friends than

her hiking friends, her ‘photography’ TSR weight is higher than that for ‘hiking’. Finally,

since she lives with her firefighter husband, and his coworkers often visit, her ‘firefighter’

TSR weight is moderately above 0. The exact formula for calculating TSR weights is

defined in Equations 1– 3 of Section 2.3.

Definition 7. (Itinerary). An itinerary of a node u is a sequence of tuples

I = (〈x0, y0, t0〉, 〈x1, y1, t1〉, . . .)

where xi, yi represents the ith longitude and latitude, respectively, of the itinerary and ti

represents the time when u will be at the ith location.

Suppose Alice is traveling from her home (located at (0, 0)) at 8:00AM to work

(located at (2, 4)) by 8:20AM. Following her normal daily commute, her itinerary would be

(〈0, 0, 8:00AM〉, 〈1, 0, 8:10AM〉, 〈1, 4, 8:15AM〉, 〈2, 4, 8:20AM〉), with the middle two tu-

ples representing intermediate locations along the way (e.g. stoplights, subway stations). It

is assumed this itinerary is readily available from such offline sources as amobile application

providing directions to some destination or from historic traveling patterns.
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Definition 8. (Geographic Social Heatmap). A geographic social heatmap is a set of social

staypoints G =
{
Si, Sj, . . .

}
, where a social staypoint S = 〈x, y,C〉 is a location (x, y)

annotated with a set of weighted social IDs C =
{
〈SIDi,wi〉, 〈SID j,w j〉, . . .

}
.

A geographic social heatmap expresses a node’s understanding of the social land-

scape surrounding it, and is constructed based on the social profiles and itineraries of an

individual node and the heatmaps of the nodes it opportunistically encounters. In the run-

ning example on Alice, her geographic social heatmap would contain the social staypoints

〈0, 0, {〈001, 1.0〉, 〈003, 1.0〉}〉 and 〈2, 4, {〈001, 1.0〉, 〈003, 1.0〉}〉 - i.e., there is a social stay-

point for each endpoint of Alice’s itinerary, (0, 0) and (2, 4), with each staypoint annotated

with Alice’s entire social profile with weights equal to 1.0 – {〈001, 1.0〉, 〈003, 1.0〉}. This

is only a simple example, and doesn’t consider the influence of other encountered nodes

on the contents of Alice’s geographic social heatmap. The next section provides a more

thorough explanation of this concept.

The ChitChat system operates on the initial condition that participating nodes have

defined a social profile with their direct social interests. From these, the Transient Social

Relationships and Geographic Social Heatmaps of each node are initialized from a cold-

start (i.e., having no TSRs or GSHs defined) of the system. Through their encounters with

others, TSRs and GSHs are exchanged to evolve those of each node to more accurately

represent their social relationships and the location semantics of their environment. As a

requirement for this system to operate, a node must voluntarily consume their own resources

and share their TSRs and GSHs with one another, and are motivated to do so in exchange

of benefiting from the network’s functionality – i.e. a participating node would receive

relevant messages through the network and will have its own messages relayed through the

aid of others. Nodes that do not share their social information or resources do not benefit

from the network, as a key requirement for ChitChat’s routing algorithm (see Algorithm 6)

is the knowledge of the potential relay’s TSRs and itinerary strength.
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2.2. OPPORTUNISTIC GEOGRAPHIC SOCIAL HEATMAP MODELING

The OGSH modeling aims to provide each node with a view of the social landscape

of their surroundings, and likewise can be used to select better message forwarders among a

node’s encounters. For example, Alice is traveling to her favorite Thai restaurant in a plaza

that also houses a toy store and a candy store. Since she has visited this restaurant before,

her geographic social heatmap would contain a social staypoint for the plaza with SIDs

for ‘toys’, ‘candy’, and ‘discount clothing’. When her device connects to Bob’s device,

they exchange their GSHs. Referencing Alice’s GSH, Bob could decide it is promising

to forward a message about candy to Alice since she will be in the general vicinity of an

area frequented by candy lovers. Algorithm 3 defines the procedure for opportunistically

constructing and expanding each node’s GSH.

The intuition behind this opportunistic modeling of GSHs stems primarily from the

disconnected nature of DTNs. While there exist online sources for the social semantics of

various locations (e.g., Google Places, Foursquare City Guide), an Internet connection is

required to query these services. This is likely unavailable within a DTN, and as such this

paper assumes its absence. Secondarily, these services only provide semantics of locations,

not necessarily the people who visit these locations. For example, a hospital would have

social IDs such as for ‘medicine’, ‘surgery’, and ‘nurse’. However, if a significant number of

individuals visit with a shared interest of ‘baseball’, then the hospital might be a worthwhile

destination for messages about baseball. The aforementioned online services do not provide

this type of associative semantics.

In Algorithm 3, two nodes u, v are connected to one another and intend on enhancing

their own GSH by learning from their neighbor. First, u obtains its current itinerary, GSH,

and TSR (lines 2–4). From its itinerary I, u constructs two social staypoints, S0 and S1,

representing the origin and destination of u’s current travel, respectively, and annotates them
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Algorithm 3Opportunistically merge two Geographic Social Heatmaps when a connection
occurs between nodes u and v.
1: procedure MergeGSH(u, v)
2: I ← u.getCurrentItinerary ()
3: Gu ← u.getGSH ()
4: TSRu ← u.getTSR ()

. Construct social staypoints for the itinerary endpoints
5: S0 = 〈I.startPoint.x, I.startPoint.y,TSRu〉

6: S1 = 〈I.endPoint.x, I.endPoint.y,TSRu〉

. Integrate itinerary endpoints to GSH
7: MergeStaypointIntoGSH (S0,Gu)

8: MergeStaypointIntoGSH (S1,Gu)

9: Gu → v . Send the updated GSH to v

.Merge v’s GSH into u’s GSH
10: Gv ← v.getGSH ()
11: for each S ∈ Gv do
12: MergeStaypointIntoGSH (S,Gu)

13: end for
14: end procedure
15:
16: procedure MergeStaypointsIntoGSH(S, G)

. Grab the staypoint in G that is nearest in location to S.
17: Snn = G .nearestNeighbor (S)
18: if distanceBetween (S, Snn) > dmax then

. If the staypoints are sufficiently close, merge them
19: S′← new SocialStaypoint
20: S′.x ← 1

2 · (Snn.x + S.x)
21: S′.y ← 1

2 · (Snn.y + S.y)
22: S′.C ←

{〈
SIDi,w

′
i

〉
| SIDi ∈ Snn.C ∪ S.C,w′i ← max (wi(S),wi(Snn))

}
. Replace the existing staypoint with the merged one

23: G .remove (Snn)

24: G .add
(
S′

)
25: else

. If the staypoints are far apart, add the new staypoint
26: G .add (S)
27: end if
28: end procedure
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with u’s TSRs (lines 5 and 6). These staypoints are then merged into u’s GSH using the

MergeStaypointIntoGSH function (lines 7 and 8), explained later. u sends the updated

GSH to v (line 9), and then receives and merges v’s GSH into its own GSH (lines 10–13).

The purpose for annotating S0 and S1 with TSRu and then merging them into Gu

is to bootstrap a node’s initial, empty GSH and to inform individuals encountered in the

future that a person (in this case, u), with the weighted social interests in TSRu, is a visitor

of those locations. Additionally it alleviates the requirement of u to explicitly divulge its

current itinerary to its neighbor. u passes along its GSH Gu to v, who merges Gu into Gv

(through its own execution of Algorithm 3), thus opportunistically learning about the types

of people who visit various locations defined in Gu. In the future, when v connects with

another person w, w will transitively know that a user with social interests of TSRu were

connectable at the locations of S0 and S1.

The MergeStaypointIntoGSH function operates to expand a user’s GSH G with

the given staypoint S by either adding S to G (line 26) or aggregating the location and the

weighted social IDs of S with that of a pre-existing nearby staypoint (lines 17–24). The

purpose for doing so is two-fold. First, less storage space and lower computational time for

staypoint lookups is required for a set composed of merged staypoints in comparison to that

of the original set. Second, and more importantly, the merging of a location-cohesive set

of staypoints and their weighted social interests provides a summary of the types of people

that visit the connectable vicinity a social staypoint. These individuals likely have diverse

yet partially overlapping interests, and thus their presence within the connectable vicinity

of a staypoint should be reflected in the GSH. To accommodate this, a new staypoint S

that is within dmax meters of an existing staypoint Snn are merged. The merged staypoint

S′ is located halfway between the two staypoints S and Snn (lines 20 and 21), and has the

weighted social interests of both staypoints, with each social interest’s weight being that

which is larger (line 22). The pre-existing social staypoint is then replaced by the merged

social staypoint (lines 23 and 24).
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Current Locations

Itineraries

Geographic Social Heatmaps

Alice

Bob

Carl

Figure 3. Illustrative example of opportunistic Geographic Social Heatmap (GSH)merging.
Alice, Bob, and Carl know their itineraries, TSRs, and initial GSHs. Through encountering
one another, a more thorough view of the social landscape is learned through exchanging
and merging GSHs with one another.

Figure 3 illustrates an example of opportunistic modeling of GSHs among three

people: Alice, Bob, and Carl. Initially, each of them know their current itinerary and TSRs,

and initialize their GSHs to contain two social staypoints: one for the starting point of their

own itinerary, and one for the ending point. Both social staypoints are annotated with their

own TSRs. Once in travel, Alice first encounters Bob, and each of them exchange their GSH

and merge the other’s into their own. Since both Alice and Bob are traveling to a location

very close to one another, the pre-existing social staypoints are merged together, creating

a new social staypoint midway between the two original ones and with the larger of the

two’s weighted social interests. In essence, when Alice encounters Bob, both of their GSHs

are syncronized. Alice and Bob continue their journeys, disconnecting from one another.

Shortly thereafter, Bob encounters Carl. Again, both Bob and Carl exchange GSHs and

merge them. Carl is now aware of Alice’s influence on the social staypoint representing the
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end of her itinerary, albeit without directly contacting her. Bob and Carl continue along

their journeys. The final scenario of this example has Alice and Carl directly meeting. They

exchange and merge GSHs, and then continue onward. Ultimately, in this scenario, all three

have syncronized GSHs.

2.3. OPPORTUNISTIC TRANSIENT SOCIAL RELATIONSHIP MODELING

TheOpportunistic Transient Social Relationship (OTSR)modeling aims to represent

the evolution of each user’s social interests as impacted by the people that they encounter.

Message routing can then select better message forwarders based on their TSRs. For

example, Alice is interested in gourmet cooking. She may have friends with the same

interest, who also have friends with the same interest, and so on. It would then be promising

to ask Alice to help forward messages tagged with ‘hiking’ (e.g. routes, photographs,

sales on special equipment, etc) so that the messages will have a higher likelihood of

reaching their designated receiver(s) with the same interest. Alternatively, Alice may not

be interested in ‘photography’, but she reliably encounters people who are. In this case,

message delivery may be improved by having Alice as an intermediate carrier for messages

tagged with ‘photography’.

Much like the opportunisticmodeling ofGeographic Social Heatmaps in Section 2.2,

the opportunistic modeling of Transient Social Relationships is primarily motivated by the

unavailability of an Internet connection to query online sources for social interests of

individuals and their friends. Another motivating factor is the capturing of associations

between nodes based on physical proximity. Indeed, services such as Facebook offer

individuals the ability to describe their interests and to infer their social relationships from

a user’s social graph. However, they do not provide information about physical proximity;

two individuals with a social connection may live on opposite sides of the world and never

meet one another. Additionally, these services miss out on the proximity between strangers

who may not necessarily socially interact with each other, such as a group of commuters
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on a subway every morning. Regardless of the social connection between individuals, their

close proximity offers opportunities for their mobile devices to transfer messages and gather

information to aid in the effectiveness of message delivery.

As aforementioned, the OTSR modeling function is invoked when two users are

within communication range in a DTN. The two users will exchange their current transient

social relationships (TSRs) as defined earlier in Definition 6 and then adjust it to reflect

their most recent multi-hop social relationships with other users in the network.

We now discuss the procedure for obtaining the social interests for the TSRs and

how to compute their weight. Upon the network’s initialization (denoted as timestamp t0),

each user’s TSRs are the same as his/her social profile, with the weight of each TSR set to

the medium weight of 0.5.

wu(SIDi, t0) =


0 if SIDi < SPu;

0.5 if SIDi ∈ SPu.
(1)

For example, given Alice’s social profile SPalice = 〈001, 003〉, her initial TSRs at timestamp

t0 will be TSRalice = 〈〈001, 0.5〉, 〈003, 0.5〉〉.

Later, when users encounter each other, they conduct the following three steps to

adjust their TSRs: (1) each one computes his/her own latest TSRs based on a decay model;

(2) exchange their TSRs; (3) each one computes the growth of his/her TSRs based on a

growth model. Without loss of generality, we consider u and compute its current TSRs as

follows.

Suppose that user u enters the communication range of some users at timestamp ts

where ts − t0 ≥ 1. The ChitChat system will first compute the current weight of each social

interest in each user’s TSRs by using the decay function defined in Equation 2.
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wu(SIDi, ts) =



wu(SIDi, td,i)

β · (ts − td,i)
,

if SIDi < SPu;(
wu(SIDi, td,i) − 0.5

)
β · (ts − td,i)

+ 0.5,

if SIDi ∈ SPu.

(2)

The intuition behind the above decay function is that the longer a user is disconnected to

those holding a positive weight for the social interest SIDi, the less likely this person will

be able to successfully deliver a message with this social interest. Specifically, Equation 2

considers two cases: (i) SIDi < SPu means the social interest is not part of the user’s social

profile; and (ii) SIDi ∈ SPu means the social interest is in the user’s social profile. The

decay equation ensures that the weight of social interests from the user’s social profile will

never decrease below 0.5. In both cases, td,i denotes the latest timestamp that the user was

connected with some user with a positive weight for SIDi, implying that at time (td,i+1) they

disconnected. The time difference (ts − td,i) is a positive integer representing the number

of seconds that has passed since u was last in contact with another user with a positive

TSR weight for SIDi. The longer the user remains disconnected from users with SIDi, the

lower the TSR weight of SIDi will be, whereby 1/
(
β · (ts − td,i)

)
is the factor by which the

weight undergoes decay. The parameter β is introduced to adjust the speed of decay such

that β ≥ 1. It is worth noting that in the case when a user remains connected to someone

with a positively-weighted TSR for SIDi, the value of td,i is equal to ts. In such case, decay

is not computed as it has been continuously reinforced up to ts.

Lemma 1. If a social interest is in a node’s social profile, and its TSR weight at the last

time of growth is between 0.5 and 1, then the decayed TSR weight is bounded between

0.5 and the previous value. Formally, if SIDi ∈ SPu and 0.5 ≤ wu(SIDi, td,i) ≤ 1, then

0.5 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i), ∀t ≥ td,i ≥ t0 after decay (Eq. 2).

Proof.
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Base: At time t0, td,i = t0 and wu(SIDi, t0) = 0.5 by Equation 1.

Inductive: Assume td,i > t0 and 0.5 ≤ wu(SIDi, td,i) ≤ 1. Let t ≥ td,i be the time a

connection is established with u, kicking off the TSR decay. If t = td,i, then no decay will

occur. Thus, assume t − td,i ≥ 1.

wu(SIDi, t) =
(wu(SIDi, td,i) − 0.5)

β · (t − td,i)
+ 0.5 by Eq. 2

0.5 ≤ wu(SIDi, td,i) ≤ 1

=⇒ 0 ≤ wu(SIDi, td,i) − 0.5 ≤ 0.5

β ≥ 1 and t − td,i ≥ 1 =⇒ β · (t − td,i) ≥ 1

=⇒ 0 ≤
wu(SIDi, td,i) − 0.5

β · (t − t0)
≤ wu(SIDi, td,i) − 0.5

=⇒ 0.5 ≤
(wu(SIDi, td,i) − 0.5)

β · (t − t0)
+ 0.5 ≤ wu(SIDi, td,i)

∴ 0.5 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i)

Lemma 2. If a social interest is not in a node’s social profile, and its TSR weight at the

last time of growth is between 0 and 1, then the decayed TSR weight is bounded between

0 and the previous value. Formally, if SIDi < SPu and 0 ≤ wu(SIDi, td,i) ≤ 1, then

0 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i), ∀t ≥ td,i ≥ t0 after decay (Eq. 2).

Proof.

Base: At time t0, td,i = t0 and wu(SIDi, t0) = 0 by Equation 1.
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Inductive: Assume td,i > t0 and 0 ≤ wu(SIDi, td,i) ≤ 1. Let t ≥ td,i be the time a

connection is established with u, kicking off the TSR decay. If t = td,i, then no decay will

occur. Thus, assume t − td,i ≥ 1.

wu(SIDi, t) =
wu(SIDi, td,i)

β · (t − td,i)
by Eq. 2

β ≥ 1 and t − td,i ≥ 1 =⇒ β · (t − td,i) ≥ 1

0 ≤ wu(SIDi, td,i) ≤ 1 and β · (t − td,i) ≥ 1

=⇒ 0 ≤
wu(SIDi, td,i)

β · (t − td,i)
≤ wu(SIDi, td,i)

∴ 0 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i)

Corollary 1. If a TSRweight is between 0 and 1 after itsmost recent growth, then the decayed

TSRweight is bounded between 0 and the previous value. Formally, if 0 ≤ wu(SIDi, td,i) ≤ 1,

then 0 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i), ∀t ≥ td,i ≥ t0 after decay (Eq. 2).

Proof. Corollary 1 trivially follows Lemma 1 and 2.

At timestamp ts +1, user u will exchange his/her positively-weighted TSRs, consist-

ing of only the social interests with positive weights, with the users v1, . . . , vk who newly

connected to u at time ts. Likewise, each neighbor v1, . . . , vk will exchange their TSRs with

u. They will not exchange TSRs again for the duration of their uninterrupted connection.

Here, the timestamp ts + 1 ensures that only users who stay in contact with each other for

at least one time unit will be considered during the social interest growth phase. Then, the

weight of each social interest SIDi in u’s TSRs will be modeled as a function of the current

timestamp tc (s.t. tc > ts) according to Equation 3.

wu(SIDi, tc) = min{1,wu(SIDi, ts) + ∆} (3)
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∆ =
∑
v∈ν

wv(SIDi, ts) · (tc − ts)

ψi,u,v
(4)

In Equations 3 and 4, wu(SIDi, ts) denotes the weight of SIDi in u’s TSR at time ts, ν denotes

the set of users in the communication range of u at time tc, and wv(SIDi, ts) denotes the

TSR weight of a user v ∈ ν at time ts when they start their interaction. The min function

ensures that the growth would not exceed the upper bound. The growth function takes into

account three factors: (i) the users’ social interest weight (i.e., wu, wv) at the beginning of

their interactions; (ii) the duration of the interaction, i.e., (tc − ts); and (iii) the appropriate

growth dampening factor ψi,u,v which, as detailed below, is dependent on whether SIDi is a

social profile resident or an induced TSR of both u and v. Regarding the first two factors, the

higher the TSRweight and the longer the users remain in contact increases the growth of the

corresponding TSR weight, i.e., the more likely that a message annotated with that social

interest will be delivered. As for the third factor ψi,u,v, its value is determined based on the

residency of the social interest SIDi in u’s and v’s social profile. In particular, we identify

the following six cases in descending order of their impact on the social relationships in a

DTN, i.e., the movement of users in DTN is driven by their social interests, or users with

similar social interests may gather together more often.

• ψi,u,v = 1: This refers to the case when the social interest SIDi is a direct social interest

of both u and v, meaning SIDi is in both of their social profiles (i.e. SIDi ∈ SPu and

SIDi ∈ SPv). In such case, u’s TSR for SIDi will have no dampening due to ψi,u,v,

obtaining the most growth to reflect the high likelihood they can forward messages

annotated with SIDi.

• ψi,u,v = 2: This refers to the case when SIDi is in user u’s social profile but not user

v’s. Rather it is a TSR that user v obtained when interacting with others.

• ψi,u,v = 3: This refers to the case when SIDi is not user u’s social profile, but is in user

v’s. Since SIDi is not a direct social interest for user u, the growth of its TSR weight

is less than previous cases.
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• ψi,u,v = 4: This refers to the case when SIDi is neither user u’s nor v’s social profile.

Both u and v obtained this TSR from encountering others. This means there is some

chance for user u and v to meet the people with this social interest, but the chance

may be small since it is not these two users’ direct interest.

• ψi,u,v = 5: This refers to the case when SIDi is in user v’s social profile and is a

weightless TSR in u (i.e. wu(SIDi, ts) = 0). In such case, user u will expand its TSR

by including this new social interest with a relatively low initial weight.

• ψi,u,v = 6: This refers to the case when SIDi exists only as an induced TSR of user

v (i.e. SIDi < SPu∪SPv, wu(SIDi, ts) = 0, and wv(SIDi, ts) > 0). This is the weakest

case, yielding the least likelihood of message delivery for messages with this interest,

and hence it is given the highest dampener.

Algorithm 4 summarizes the main steps for the modeling Opportunistic Transient

Social Relationships. To have a better understanding of the algorithm, let us step through

an example as shown in Figure 4. Alice starts off with a social profile SPalice〈001, 003〉 to

express her interest in hiking and gourmet cooking. Thus, her TSR (shown in Figure 4a)

begins at 0.5. She meets Bob at time t1, who also has ‘hiking’ in his social profile (i.e.

SPbob〈001〉), which causes her ‘hiking’ TSR to grow according to Equations 3 and 4, with

the dampening factor ψ001,alice,bob = 1. At time t2, Bob disconnects from Alice, resulting

in her ‘photography’ TSR to begin decaying according to Equation 2. Enough time passes

for her TSR to fall back to 0.5. Then, at time t3, Alice encounters Carl, who is interested

in hiking and photography (i.e. SPcarl 〈001, 002〉). This causes Alice’s TSR for ‘hiking’

(Figure 4a) to undergo growth with a dampener of ψ001,alice,carl = 1. Likewise, a TSR for

‘photography’ is induced in Alice (Figure 4c) with a growth dampener of ψ002,alice,carl = 5.

At time t4, Alice reconnects to Bob, causing a spike in the growth rate of her ‘hiking’
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1

½

0 t1 t2 t3 t4 t5 t6t0

(a) Alice’s TSR corresponding to the interest ‘hiking’. She
has this TSR as part of her social profile, and thus its weight
cannot go below 0.5.

t0 t1 t2 t3 t4 t5 t6

 

(b) This diagram demonstrates the connections between Al-
ice, Bob, and Carl that influence the TSR weights in Fig-
ure 4a and 4c.

t1 t2 t3 t4 t5 t6t0

1

½

0

(c) Alice’s TSR corresponding to the interest ‘photography’.
She is not directly interested in traveling as it is not in her
social profile. However, she interacts with people directly
interested in it, and thus has a TSR with weight between 0
and 1.

Figure 4. An example of the growth and decay of a Transient Social Relationship caused
by connections and disconnections with others.

TSR. Eventually, it maxes out with a weight of 1. At time t5, Bob disconnects from Alice.

However, since Alice is still connected to Carl, her TSR for ‘hiking’ and ‘photography’ does

not undergo decay. Only when Carl disconnects at time t6 do both TSRs undergo decay.

Lemma 3. If the TSR weights for two nodes u and v are bounded between 0 and 1,

then applying growth to u’s TSR weight bounds it between its previous weight and 1.

Formally, if Equation 3 is computed assuming tc − ts ≥ 1, 0 ≤ wu(SIDi, ts) ≤ 1 and

0 ≤ wv(SIDi, ts) ≤ 1∀v ∈ ν, then wu(SIDi, ts) ≤ wu(SIDi, tc) ≤ 1.



91

Algorithm 4 Execute the OTSR module to decay and then grow the node u’s TSRs based
on the current time tc and u’s neighbors νtc = {v1, · · · , vk}.
1: procedure UpdateTSRs(u, νtc , tc)

. Decay TSRs according to Eq. 2
2: for each SIDi ∈ TSRu do
3: if td,i == tc then . No decay to wu(SIDi, tc)
4: wu(SIDi, tc) = wu(SIDi, td,i)

5: else if SIDi ∈ SPu then
6: wu(SIDi, tc) =

wu(SIDi, td,i) − 0.5
β · (tc − td,i)

+ 0.5

7: else
8: wu(SIDi, tc) =

wu(SIDi, td,i)

β · (tc − td,i)
9: end if
10: end for

. Exchange current TSRs with new neighbors.
11: for each node v ∈ νtc do
12: Send TSRu to v

13: Receive TSRv from v

14: ts,v = tc
15: end for

. Grow TSRs according to Eq. 3
16: for each SIDi ∈ all received and cached TSRs do
17: ∆ =

∑
v∈ν

wv(SIDi, ts,v) · (tc − ts,v)

ψi,u,v
18: wu(SIDi, tc + 1) = min{1,wu(SIDi, tc) + ∆}
19: end for
20: end procedure
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Proof.

wu(SIDi, tc) = min{1,wu(SIDi, ts) + ∆} by Equation 3

∆ =
∑
v∈ν

wv(SIDi, ts) · (tc − ts)

ψi,u,v
by Equation 4

ψi,u,v ≥ 1 and tc − ts ≥ 1 and 0 ≤ wv(SIDi, ts) ≤ 1

=⇒
∑
v∈ν

wv(SIDi, ts) · (tc − ts)

ψi,u,v
≥ 0 =⇒ ∆ ≥ 0

=⇒ wu(SIDi, ts) ≤ wu(SIDi, ts) + ∆

wu(SIDi, ts) + ∆ ≤ min{1,wu(SIDi, ts) + ∆} ≤ 1

∴ wu(SIDi, ts) ≤ wu(SIDi, tc) ≤ 1

Our modeling ensures the following properties.

Theorem 3. Let u be a user and TSRu be the user’s Transient Social Relationships. The

TSR weight for any social interest is bounded between 0 and 1 at all times after network

initialization. Formally, for any SIDi ∈ TSRu and any timestamp t such that t > t0, then

0 ≤ wu(SIDi, t) ≤ 1.

Proof.

Base: Assume that at time t > t0, td,i = t0, implying that user u has made its first connection

to its neighbors νt = 〈v1, · · · , vk〉. Thus, by Equation 1, its TSR weights are either 0 or 0.5

for social interests either absent from or within its social profile – i.e. wu(SIDi, t0) = 0 or

wu(SIDi, t0) = 0.5. With this, Corrolary 1 guarantees that, after decay is applied (lines 2 to

10 in Algorithm 5), the TSR weight wu(SIDi, t) is lower-bounded by 0 and upper-bounded

by the previous weight value – i.e. 0 ≤ wu(SIDi, t) ≤ wu(SIDi, t0). Then, the TSRs of the

neighboring users in νt are used to induce growth in wu(SIDi, t +1), according to lines 16 to

19 in Algorithm 5. Here, Lemma 3 guarantees that wu(SIDi, t + 1) is lower bounded by the

previous (decayed) value, and upper bounded by 1 – i.e. wu(SIDi, t) ≤ wu(SIDi, t + 1) ≤ 1.
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Because of this, and with Lemma 1 and Lemma 2 lower-bounding a TSR by 0, we know

that 0 ≤ wu(SIDi, t + 1) ≤ 1. Therefore, after the first initiation of Algorithm 5, the final

value of a TSR weight is bounded between 0 and 1 – i.e. 0 ≤ wu(SIDi, t + 1) ≤ 1. This

would also be the case for every other connected neighbor in νt .

Inductive: At time t (t > t0), assume td,i > t0, implying that user u has made previous

connections that have induced decay and growth. At time t, user u connects with its

neighbors νt = 〈v1, · · · , vk〉, where we assume both u and its neighbors’ TSR weights are

bounded between 0 and 1 – i.e. 0 ≤ wu(SIDi, td,i) ≤ 1 and 0 ≤ wv(SIDi, td,i) ≤ 1 for each

connected neighbor v ∈ νt . Then, Corrolary 1 guarantees that, after decay is applied (lines 2

to 10 in Algorithm 5), the value of wu(SIDi, t) is lower-bounded by 0 and upper-bounded

by the previous weight value – i.e. 0 ≤ wu(SIDi, t) ≤ wu(SIDi, td,i). Likewise, Lemma 3

guarantees that wu(SIDi, t + 1) is lower bounded by the previous (decayed) value, and upper

bounded by 1 – i.e. wu(SIDi, t) ≤ wu(SIDi, t + 1) ≤ 1. Therefore, after Algorithm 5 is

applied, the TSR weight is bounded between 0 and 1 – i.e. 0 ≤ wu(SIDi, t + 1) ≤ 1. This

would also be the case for every other connected neighbor in νt .

Theorem 4. Each node has a storage complexity of O(N(log(N + 1) + b)) for TSRs.

Proof. There are N unique social interests that users may define in their social profiles.

Each social interest ID requires log(N + 1) bits of storage. Each TSR weight is bounded

between 0 and 1 as proven in Theorem 3. The storage complexity of a TSR weight is thus

defined by the bit-precision b allocated for the weights. Thus, each TSR id-weight pair

occupies log(N + 1) + b bits of storage.

The TSR weights of each node are aggregates of the TSRs of the nodes one has

encountered. If all N social interests are defined throughout the social profiles across all

nodes, and if a user connects to all other nodes participating in the PSN, then the user will

have TSRs for all N social interests, consuming O(N(log(N + 1) + b)) bits of storage.
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With nodes sharing information that may be sensitive with one another, one concern

of this system’s employment is the preservation of the nodes’ privacy. This topic is out of

the scope of this paper, but is left as future work in Section 5.1.

2.4. CHITCHAT ROUTING PROTOCOL

At a timestamp tc when a node is connected to others, it will commence its GSH and

TSR updates based on its current neighbors. Afterward, it will attempt to forward messages

as deemed appropriate by its routing algorithm. These steps are defined in Algorithm 5,

with the specifics of the routing algorithm defined in Algorithm 6.

Algorithm 5 A new connection is established between node u and nodes νtc = {v1, · · · , vk}

at time tc, initiating the Opportunistic Geographic Social Heatmap and Opportunistic Tran-
sient Social Relationship modules.
1: procedure Connect(u, νtc , tc)

. Update u’s GSH according to Alg. 3
2: for each v ∈ νtc do
3: MergeGSH (u, v)
4: end for

. Exchange current TSRs with new neighbors.
5: UpdateTSRs

(
u, νtc, tc

)
. Consider u’s messages for relaying to neighbors.

6: for each msg carried by u do
7: AttemptMessageForward

(
u,msg, νtc

)
8: end for
9: end procedure

The ChitChat system supports the following unicast and multicast scenarios in a

DTN environment.

• Unicast: A sender sends a message to a designated message receiver. In this case, the

sender knows the message receiver’s ID and annotates the message to reflect content

the recipient would be interested in.
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• Multicast: A sender sends a message to a group of users whose social interests match

a message’s metadata keywords. In this case, the sender does not need to know the

message receivers’ IDs.

Messages are distributed in a multi-copy fashion. When a node connects with a

neighbor, the node may create a replica of a message it is carrying and forward that replica

to the neighbor. The sending node retains a copy of the message, only deleting it when its

time to live (TTL) has expired, when the node successfully delivers a copy of the message

to the destination, or when its buffer is saturated and room is needed for other messages

with better delivery potential.

The message forwarding phase occurs after GSHs and TSRs are updated. Since

each node may hold a set of interest-tagged messages, and each node has limited message

storage and forwarding capabilities, it is critical to determine which message to forward

to which neighboring node so that the overall delivery rate is not penalized. To achieve

this, we propose the following routing protocol in Algorithm 6 that leverages the knowledge

carried by the newly updated GSHs and TSRs.

The routing protocol takes as input a node u that wants to forward a message m that

has social interests msg.SIDs = {SID1, . . . , SIDm}, and a set of nodes ν = {v1, . . . , vn} that

are within u’s communication range and just completed exchanging GSHs and TSRs with

u. First, u will check if the designated message receiver (in the unicast case) is among the

neighboring nodes. If so, u will immediately pass the message only to the receiver and

move on to other messages. Otherwise, the protocol proceeds as follows. Node u will rule

out those neighboring nodes whose message buffer are full, and thus are unable to receive

any more messages, and those who already hold m in their buffers. For each remaining

neighbor vk ∈ ν, node u computes vk’s TSR strength STSR(vk) (line 8) and itinerary strength

SI(vk) (line 13), relative to the message of interest, and compares them with its own. If

either of vk’s TSR strength or itinerary strength is greater than u’s, then the message will

be forwarded.
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Algorithm 6 ChitChat Routing Algorithm: Node u decides which connected neighbors in
ν to forward the message msg to at time t.
1: procedure AttemptMessageForward(u, msg, ν)
2: for vk ∈ ν do
3: if msg.destination == vk then
4: Forward msg to vk
5: u.messages = u.messages − msg
6: else if msg < vk .messages then
7: STSR(u) =

∑
SIDi∈msg.SIDs wu(SIDi, t)

8: STSR(vk) =
∑

SIDi∈msg.SIDs wvk (SIDi, t)
9: if STSR(vk) > STSR(u) then
10: Forward m to vk
11: end if
12: SI(u) ← ComputeItineraryStrength (u,msg)
13: SI(vk) ← ComputeItineraryStrength (vk,msg)
14: if SI(vk) > SI(u) then
15: Forward m to vk
16: end if
17: end if
18: end for
19: end procedure
20: procedure ComputeItineraryStrength(u, m)
21: SI(u) ← 0
22: G ← u.getGSH ()
23: I ← u.getCurrentItinerary ()
24: Itc ← {〈xi, yi, ti〉 | 〈xi, yi, ti〉 ∈ I, ti > tc}
25: for S ∈ Itc do
26: for Snn ∈ G .nearestNeighbors (S, 3) do
27: d ← max (1, distanceBetween (S, Snn))

28: for SIDi ∈ msg.SIDs do
29: SI(u) ← SI(u) + Snn.getSocialWeight (SIDi) /d2

30: end for
31: end for
32: end for
33: return SI(u)
34: end procedure
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Both a node’s TSR strength and itinerary strength relative to a message are measure-

ments of a node’s potential capability to pass along the message to interested parties. The

TSR strength is the sum of the node’s TSR weights corresponding to the social tags of the

message (lines 7 and 8). Recalling back to Section 2.3, a high weight value of one particular

TSR of a node reflects that node’s consistency in encountering others with a similarly high

TSR weight. Thus, a message carrier encountering a node with a higher TSR strength for a

message would do well to forward the message.

The itinerary strength of a node to amessage is a conceptually different measurement

of a node’s delivery capability. Whereas the TSR strength is constructed based on node

contacts, the itinerary strength is constructed based on node locations. Pulling from a node’s

current itinerary and opportunistically-learned Geographic Social Heatmap, the itinerary

strength is the distance-weighted sum of the social weights for the areas through which a

node will soon be traveling, only pertaining to those social weights that correspond to social

tags of the message. The ComputeItineraryStrength procedure in Algorithm 6 defines

the steps in calculating a node’s itinerary strength relative to a given message. When a

node u is determining whether to forward a message m to its neighbor v, both u and v will

compute their own itinerary strengths relative to m, and v will share its strength with u

(line 13). This definition permits the computation of a node’s itinerary strength without

requiring the divulging of its current itinerary to its neighbor.

Without loss of generality, let u be the node computing its own Itinerary weight. u

initializes its weight SI(u) to 0 and grabs a reference to its current GSH (lines 21 and 22),

followed by obtaining the points along its itinerary that have not been visited yet (lines 23–

24). For each of these remaining points in the itinerary, the three social staypoints defined

in u’s GSH that are nearest to the itinerary point are obtained and iterated over (line 26).

The subset of social weights on these staypoints, corresponding to the tags on the message,
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are then weighted by the inverse-squared distance between the itinerary point and the social

staypoint and added to SI(u) (lines 26–31). Execution ends with the computed itinerary

strength being returned (line 33).

The inverse-squared distance weighting of the social weights is necessary due to

the opportunistic nature of a node’s GSH. A node does not have global knowledge of the

exact social markup of every location in the DTN’s coverage area. Rather, this information

is fragmented and learned opportunistically. In order to compute an arbitrary location’s

social weights, the three nearest social staypoints are obtained from a node’s GSH, and their

weights are used to induce the social weights of the queried location. If a social staypoint is

very close, then the inverse-squared distance weight will be higher than those further away.

Thus, the social weights of closer staypoints will have greater influence on the queried

location than those of further staypoints, more accurately estimating the social markup of a

given region as best as is permissible.

3. PERFORMANCE EVALUATION

In this section, we first introduce the experimental settings that were used for testing

and comparing the ChitChat system with other state-of-the-art systems. Then, we present

the network density analysis on five real-world datasets that are useful for simulating DTNs.

Finally, we report the results of our simulations.

All experiments were conducted in the ONE simulator [16] version 1.6.0. We

compare our ChitChat system with one benchmark algorithm (i.e., Epidemic [33]), and

three recent related works: SEDUM [21], SANE [25], and SEBAR [19]. Additionally, the

proposed implementation of ChitChat in [24], upon which this paper’s ChitChat is based

and expands, is compared for observing improvements on performance.

In the experiments, we evaluate the performance of each algorithm by using two

real GPS trajectory datasets: Microsoft’s GeoLife GPS trajectory dataset [36, 37, 38] and

Nokia’s Mobile Data Challenge dataset [17, 18]. Within both datasets are GPS trajectories
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consisting of timestamped sequences of latitude and longitude points, recording how a user

moved during the period of time their smart device was active. The GeoLife dataset consists

of the trajectories of 182 users intermittently over a period of five years in the city of Beijing,

China. TheMobile Data Challenge (MDC) dataset similarly captures the trajectories of 185

users over a period of a year and a half in the city of Lausanne, Switzerland. Defining a

trajectory to be a consecutive sequence of locations of some user where no two consecutive

points are more than 10 minutes apart, the Geolife dataset provides 41,543 trajectories

covering 1,282,951 kilometers over 2.8 person-years; the MDC dataset provides 761,463

trajectories covering 1,795,349 kilometers over 46.5 person-years.

These datasets were further processed so as to permit the simulation of a network

with varying participation of a city’s population. Compared to Beijing’s population of

approximately 21.5 million and Lausanne’s population of approximately 138 thousand

individuals, the number of participants present in these datasets is significantly small. Each

of these users were scattered across the cities and rarely come within close proximity

to each other. In order to form a network to evaluate and compare the aforementioned

routing protocols, trajectories from the same person occurring on different days were

gathered together and treated as unique individuals. For example, if Alice contributed

a GPS trajectory for Monday, Tuesday, and Friday, then the processed datasets used for

these experiments would present three users moving about on the same day: AliceMonday,

AliceTuesday, and AliceFriday. This view, which we call the daily slicing of the datasets,

changes the number of participants in each dataset that are available for the simulations:

the processed GeoLife dataset presents 11,149 unique individuals, and the processed MDC

dataset presents 41,931 unique individuals. From this, we then isolate the trajectories

consisting of at least two hours of contiguous recordings and at least 500 unique location

records that occur within the core metropolitan area of each city. This approach produces

datasets that constitute approximately 60%of the unique individuals from theGeolife dataset

(6,656 out of 11,149 unique trajectories) and approximately 14.9% from the MDC dataset
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(6,259 out of 41,931). The resulting datasets provide a node density of approximately 16

to 20 nodes per square kilometer throughout the day. These modifications to the datasets

preserve the statistical properties of human mobility based on the findings in [2] and [29].

In [2], Barbosa et. al. survey the literature on human mobility models and cite multiple

studies that observe human mobility exhibiting the statistical properties of Lévy walks.

Further, Rhee et. al. performed a similar daily slicing on four GPS trajectory datasets and

found the statistical properties of Lévy walks were preserved in the processed datasets [29].

Since the GeoLife and the MDC datasets contain no social profiles of their partic-

ipating users, social profiles are randomly generated from a set of 200 predefined social

interests with SID values of 1, 2, ..., 200. Since the ChitChat system does not consider the

semantic meaning of social interests, the keywords associated with each social interest are

simply “1”, “2”, ..., “200”. Social profiles of each node are generated by uniformly selecting

k social interests with replacement out of the pool of 200, where k = 25 unless otherwise

stated in discussion. A particular node has the same k social interests in their profile for all

simulations in which they participate where k remains constant across simulations. Each

user’s Transient Social Relationships are initialized from their social profiles, with each

weight being initialized following Equation 1. TSR weight decay and growth is conducted

throughout the simulation following Equations 2 and 3–4, respectively, as defined by Algo-

rithm 4. We also randomly generate messages in the network as follows. For each message,

we randomly select its sender and receiver among the participants, and keep the pairs for

which there is at least one shared social interest. Then, we randomly select a subset of social

interests from the chosen destination to attach to the message. The total simulation time

covers 24 hours of GPS trajectory replay, and one message is generated every 60 seconds.

To compare the performance of each chosen algorithm, we adopt the following

performance metrics: (i) message delivery ratio – the ratio of number of messages delivered

to the number of messages created; (ii) the average network penetration for messages – the

average number of hops to deliver eachmessage; (iii) the network’s throughput – the number
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of messages that can be delivered per hour; (iv) the total number of forwarding attempts

made, reflecting the amount of power each system used; and (v) the average overhead cost

ratio. The average overhead cost ratio is defined in the prepackaged MessageStatsReport

class of the ONE simulator [16], which is the number of copies of all messages that were

necessary to deliver the number of messages that were delivered. It is calculated as c = r−d
d ,

where r is the total number of message transmissions that occurred in the simulation, and

d is the number of messages that were successfully delivered to its destination. Whereas

message delivery ratio, network throughput, and overhead cost are employed for measuring

a DTN’s quality of service [1], also observing the network penetration and number of

forwarding attempts allow for a deeper insight on each system’s operations in achieving

their quality of service. These performance metrics are evaluated when certain control

parameters are varied, as has been previously used in past DTN research [1]: the number

of users in the network (i.e., node count), the transmission range of these nodes, and the

message lifetimes (i.e., time-to-live). Additionally, the length and diversity of social profile

sizes was varied to observe any changes in system performance.

In what follows, as others, we report the performance results of the unicast versions

of these protocols due to the lack of multicast simulation in the ONE simulator. Unless

otherwise stated, the settings in Table 1 were used across all experiments conducted. We

used the default settings for SANE, SEDUM, and SEBAR as recommended in [25], [21],

and [19], respectively, with the exception of the maximum number of message replicas,

which we permit to be unbounded to fairly compare ChitChat with these other systems.

3.1. SPARSITY ANALYSIS OF REAL-WORLD DATASETS

It is worth mentioning that many past works have used spatially dense datasets for

experimental evaluation. Additionally, these datasets are typically constrained to a special

event at a specific location and not sufficient to represent general human daily mobility. For

example, the INFOCOM 2006 [30] dataset has 76 participants moving within an academic
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Table 1. Default Experimental Settings

Configuration Default Experimentation Values
Number of Participants 2,000 nodes

Freq. of Location Reporting 1/5 sec−1

Social Profile Sizes 25 per node
Available Social Interests 200

Transmission speed 250 kBps
Transmission radius 50 meters

Buffer capacity 500 MB
Message TTL 10 hours

Freq. of Message Creation 1/60 sec−1

Message Size 1 MB
Simulated time 24 hours

SANE Relay Threshold 0.25
SANE Message Replicas Unbounded
SEDUM Epoch Duration 1 minute
SEDUMWeight Constant 0.2
SEDUMMessage Replicas Unbounded

SEBAR τ Parameter 1 minute
SEBAR p Parameter 0.9
SEBAR ξ Parameter 0.2

SEBAR Community Overlap 14
SEBAR Community Duration 30 mins

SEBAR Message Replicas Unbounded

conference venue of approximately only 80 meters by 40 meters, resulting in the density as

high as 20,000 people per square kilometer. Likewise, the SIGCOMM2009 [27] dataset has

similar number of participants, density, and conference venue locality. In these datasets, the

participants attending the conference are away from their hometowns, thus influencing their

habitual movements. The MIT Reality Mining dataset [9] does not provide the information

needed to compute node density, but with only a cohort of college students and faculty

contributing data, there is concern that their movements might be biased towards academic

life.
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To better understand the sparsity of these datasets, we analyzed the temporal reach-

ability of all five previously mentioned datasets. At a high level, this analysis quantifies the

the density of a time-evolving network by measuring the percentage of node pairs that are

connected through fragmented, multi-hop paths. Our analysis adopts the formal foundations

proposed in [3, 5].

First, we cover some preliminary formal definitions based on those proposed in [5].

A Delay Tolerant Network may be cast as a Time-Varying Graph (TVG) G = (V, E,T , ρ, ζ),

whereV is the set of nodes, T ⊆ T is a timespan within the temporal domain T representing

the lifetime of the network, E is the set of edges representing network connections that exist

at some time instant during T , ρ : E × T → {0, 1} is a presence function that indicates

whether a given edge exists at a given time instant, and ζ : E ×T → T is a latency function

that indicates the time duration needed to traverse the given edge starting at the given

timestamp. A journey connects two nodes through multiple hops, where at each time instant

the multi-hop path between the nodes is not necessarily connected. Formally, a journey Ju,v

in G is a sequence of timestamped edges
(
〈e1 = {u,w′},T1 = (ts

1, t
e
1)〉, 〈e2,T2〉, ..., 〈ek,Tk〉

)
such that u ∈ e1, v ∈ ek , ρ(ei, t) = 1∀ t ∈ Ti and ts

i+1 ≥ ts
i + ζ(ei, ts

i ) for all 0 < i < k. Let

m = 〈tc, td, payload〉 be amessage, where tc ∈ T is message’s creation time, tk ∈ T , td > tc

is the time when the message is no longer useful, and payload is the content of the message.

A message m is deliverable from a node u to another node v through G if and only if there

exists a journey Ju,v such that tc < td
1 and td > ts

k – i.e., the message is created before the

first connection ends and expires after the last connection begins.

We next define the density of a TVG as proposed in [3]. Given a TVG G =

(V, E,T , ρ, ζ) and some timespan T ′ = [ti, t j] ⊆ T , the transitive closure of G during T ′

is CT ′ = (VT ′,JT ′), where VT ′ ⊆ V is the set of nodes that were active in G during any

time t ∈ T ′, and JT ′ = {(u, v) | ∃ Ju,v s.t. ts
1 > ti, td

k < t j} where ts
1 and td

k are the starting

and ending time of the journey, respectively. Essentially, the transitive closure of a TVG

during a certain timespan is the set of journeys existing, and the nodes participating, in the



104

INFOCOM06 MITReality SIGCOMM09 MDC Geolife
Dataset (Beginning to End)

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k 

De
ns

ity
Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

Ne
tw

or
k 

De
ns

ity

INFOCOM06
MITReality
SIGCOMM09
MDC
Geolife

Figure 5. Network densities of the DTNs formed by five datasets: INFOCOM06, MIT
Reality Mining, SIGCOMM09, Microsoft’s Geolife, Nokia’s MDC. On the left, network
density is plotted over the duration of each dataset. Each data point represents the number
of the journeys existing in a 20-minute span of the network, starting some time after the
beginning of the datset, over the size of a complete network formed by all active nodes. The
right plot shows the average network density across the entire dataset.

network during that timespan. The density of the transitive closure C = (V,J) is |J |

|V|(|V|−1)

– i.e., the proportion of the node pairs that are connectable through journeys over the size

of a complete graph composed of active nodes.

Given these definitions, Figure 5 displays the density of the networks formed by

the five datasets described previously. The INFOCOM 2006 dataset, SIGCOMM 2009

dataset, and the MIT Reality Mining datasets all exhibited connections based on Bluetooth

proximity; thus, if a node detected the presence of another, it can be inferred that the two

nodes were within 10 meters of each other. For the Geolife and MDC datasets, we used the

daily-sliced versions of each dataset with a random sampling of 2,000 users, and connections

between nodes were inferred when two nodes were within 50 meters of one another.

In Figure 5, each datapoint represents the number of journeys that exist in a 20-

minute span of the network, starting from various times after the beginning, over the size of

the network were it completely connected. It is apparent that the INFOCOM 2006 dataset

has the highest density across time, with an average network density of 79.3%. The second

highest is MIT Reality Mining dataset at certain times, but overall it exhibited an average

network density of 22.7%. The two least dense (i.e., most sparse) datasets are Nokia’s MDC
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Figure 6. Effect of user participation on performance. The top figures use the Geolife
dataset, while the bottom figures use the MDC datasets. Note that ChitChat* is this paper’s
proposed system, whereas ChitChat refers to the preliminary implementation proposed
in [24].

andMicrosoft’s Geolife, with average densities of 1.3% and 0.3% respectively. It is because

of these properties that we chose the GeoLife and MDC datasets in our experiments. These

datasets record a broader range of human mobility during a much longer time period, thus

better representing users’ movement in their socially habitual manner, and are not biased

toward academic life as is the case for the other three datasets.

3.2. EFFECT OF THE NUMBER OF USERS IN THE NETWORK

In the first round of experiments, we evaluate the routing performance of all algo-

rithms by varying the total number of users in the network from 250 to 6,000. This round of

simulations investigates the behavior and performance of each algorithm under varying user

sparsity. Intuitively, a decrease in the number of participants results in a lower user density,

thus influencing the network’s sparsity as fewer nodes come sufficiently close to each other
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Figure 7. Effect of transmission radius on performance. The top figures use the Geolife
dataset, while the bottom figures use the MDC datasets. The legend in the top-right graph
applies to all graphs. Note that ChitChat* is this paper’s proposed system, whereas ChitChat
refers to the preliminary implementation proposed in [24].

to form connections. Figure 6 reports the results of these simulations. It is not surprising to

see that Epidemic achieves the highest delivery ratio since it floods messages to every node

encountered. This results in messages reaching deeper into the network and increasing the

overall resource consumption to operate the network. Direct Delivery achieves the lowest

delivery ratio since message forwards do not occur between nodes unless a message’s des-

tination is encountered directly. In turn, Direct Delivery has the lowest network penetration

and overhead costs, and intuitively the highest latency.

Our proposed ChitChat is the best performing system besides Epidemic in terms of

successful deliveries by achieving up to 64.3% of Epidemic’s performance for the MDC-

based network and up to 68% for the Geolife-based network. As for overhead costs,

ChitChat consistently requires approximately half of the costs associated with Epidemic.

This is due to ChitChat selectively choosing which messages to send to which encountered

nodes, rather than indiscriminately forwarding all to every neighbor, thus resulting in
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a reduction in overhead and resource consumption. The selection process for message

forwarding is able to choose, in a best effort manner considering the constraints of a DTN,

better nodes to receive the messages. When compared to the preliminary verion of ChitChat

proposed in [24], which did not consider node itineraries nor geographic social heatmaps, the

improved ChitChat exhibits increases in its delivery performance of up to 12.2% (MDC)

and up to 10.3% (Geolife) while increasing overhead by up to 13.3% (MDC) and up to

25.1% (Geolife). Thus, the introduction of node itineraries and opportunistically-learned

geographic social heatmaps offers an improvement in delivery performance, albeit at the

cost of additional overhead. ChitChat’s successful deliveries exceeds that of the other three

routing algorithms: SEBAR (up to 2x more successful deliveries for MDC and up to 58.4%

more for Geolife), SANE (up to 17.1% more for MDC and up to 25.5% more for Geolife),

and SEDUM (up to 56.1% more for MDC and 45% more for Geolife). SANE considers

only direct social interests between two users and SEDUM considers only the duration of

interaction time, which are less effective in sparser networks.

Regarding the number of hops to deliver a message (Figure 6(b)) and the resource

costs (Figure 6(c)), a lower value does not necessarily imply efficient operation of a router.

Although SEDUM, SANE, SEBAR are shown to require lower overhead and fewer hops,

and their costs decrease as the number of users increases, it does not mean they operate with

more efficiency. Rather, the low hop counts observed for SANE, SEDUM, and SEBAR

are attributable to their ability to only deliver to nearby nodes, failing to deliver messages

that are destined for nodes residing deeper in the network. Similarly, the lower overhead

is attributable to them not attempting many message forwards, which is detremental to

message delivery within a sparse DTN.
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3.3. EFFECT ON TRANSMISSION RANGE

In the second round of simulations, we evaluate the routing performance in a subset

of 2,000 users by varying the communication range from 10 meters to 1 kilometer4. Similar

to the simulations in Section 3.2, the motivation for this round of simulations is to observe

the effect of variable network sparsity on the behavior and performance of each protocol.

As shown in Figure 7(a), the delivery ratio of all systems increases with the communication

range as expanded communication ranges yield increasing likelihoods of finding proper

forwarding nodes. Epidemic still achieves the highest delivery ratio, and our proposed

ChitChat is the second best in all cases. It is interesting to see that, for both datasets, the

performance of ChitChat stabilizes when the communication range reaches 250 meters,

while all others continue to grow. This indicates the effectiveness of the modeling of

Transient Social Relationships and Geographic Social Heatmap in the ChitChat system,

and suggests that the need to further improve communication ranges is not necessary to

boost performance when employing ChitChat. This is also apparent when observing the

throughput of the network – the number of messages that are delivered per time unit – as

is depicted in Figure 7(b). With ChitChat, achieving a certain target throughput requires

a smaller radius of communication when compared to the other systems. This, in turn,

indicates that less power would be needed for wireless transmissions, which is a critical and

finite resource for battery-powered smart devices.

As for the average number of hops per message in Figure 7(c), we observe that

ChitChat is able to reach deeper into the network than others, and the depth it needs to reach

decreases with the increase of the communication range. The reason is straightforward:

when communication ranges are large, multi-hop paths become shorter as fewer intermediate

nodes are needed to reach a destination. However, SANE, SEDUM, and SEBAR do

not exhibit this decreasing behavior, but rather remain consistent. This suggests they

4It is worth noting that 1 kilometer of communication range may not be possible in a real DTN, and is
considered here to test the behavior and performance of all approaches under extreme network conditions.
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Figure 8. Effect of message lifetime on performance.

reuse the same network paths for delivery, and are unable to capitalize on newly-available

edges to more efficiently deliver messages. Conversely, ChitChat’s modeling of multi-hop

relationships allows it to exploit these new edges to find shorter journeys to a message’s

destination.

In Figure 7(c), the throughput of the network is plotted against the changing of

transmission ranges. Similar to the stabilizing depicted in Figure 7(a), the ChitChat system

is able to reach a throughput that is higher than all other systems without demanding a larger

communication range.

3.4. EFFECT OF MESSAGE LIFETIME

Next, we examine how message lifetimes affect the performance and behavior of

each algorithm. Figures 8(a)–(c) shows the results of this suite of simulations as the

message lifetimes range from 5 minutes to 20 hours. This suite of simulations emulates the
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reachability of nodes within the network given that a certain duration of time is provided to

reach them, and thus offers a glimpse of the degree of delay tolerance that DTN applications

must adopt to operate.

A common pattern in these graphs is a plateauing of the dependent variables as

message lifetimes are increased. As is evident from the message penetrations by Epidemic

(Figure 8(b)), starting at one hour, messages cannot reach beyond 8-hops from the source on

average. This is a property of the networks induced by the two datasets: at any given time,

the number of new encounters that a node makes stagnates after about an hour. Waiting

any longer does not bring new encounters that would otherwise offer opportunities to reach

other disconnected parts of the network. Rather, messages are only deliverable within a

node’s local neighborhood, and for timespans longer than one hour, the set of nodes that are

encountered by a given node remains consistent.

This property appears to harm the performance of SANE, SEDUM, and SEBAR.

As depicted in Figure 8(b), SEBAR and SEDUM are unable to send messages beyond two

hops into both networks after one hour, and SANE is unable to send messages beyond four

hops. However, ChitChat’s penetration of the network continues to increase as a message’s

lifetime extends up to 10 hours, and in turn its successful deliveries also increase. This is

due to the dynamic growth and decay of ChitChat’s TSR modeling, and the introduction of

opportunistically-learned GSHs also leads to improvements above ChitChat’s predecessor.

ChitChat’s dynamicTSRs andGSHs allow a node to recognize that an encountered neighbor,

who may not have appeared qualified to receive a message during an earlier encounter, has

become qualified because of its new itinerary or its other encounters during the elapsed

timeframe. This is apparent in Figure 8(c), which plots the number of forwarding attempts

made by all nodes given the message lifetimes. Although nodes are encountering many

of the same nodes over and over again, both versions of ChitChat continue to make more

forwarding attempts as messages lifespans increase. SANE, SEDUM, and SEBAR do

not; their forwarding attempts stagnate after about five hours, as does their number of
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Figure 9. Effect of social profile sizes on performance.

successful deliveries. SANE relies on static social profiles to make its routing decisions; if

an encountered neighbor isn’t qualified once, it won’t be qualified later. The same goes for

SEDUM and SEBAR.

3.5. EFFECT OF SOCIAL INTERESTS DISTRIBUTION

Finally, we evaluate the effect of nodes’ social interests declarations on the perfor-

mance of the two systems that use the social interests: ChitChat and SANE. Specifically,

we vary the number of social interests associated with each user from 5 to 100 out of a pre-

defined set of 200 social interests. The motivation for this is to consider the scenario where

users restrict the number of social interests they share, perhaps due to privacy concerns,

or the population of participants exhibits rather homogeneous social interests, perhaps due

to these systems being deployed to a specific target audience with many shared interests.

As shown in Figure 9(a), ChitChat exceeds SANE in successful deliveries in all cases,

with increases in deliveries as social profile sizes increase. However, with ChitChat these
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Figure 10. Influence of various factors on delivery latency.

increases to successful deliveries taper out at larger social profile sizes, even though the

number of forwarding attempts (Figure 9(b)) and overhead costs of the network (Figure 9(c))

grows more rapidly. These results are due to social profile homogeneity: the total number

of available social interests remains constant, but as the number of social interests per node

increases, so too do their social profiles become more homogeneous as nodes share more

social interests in common. In turn, the selectivity of ChitChat to make intelligent rout-

ing decisions goes into decline as it observes more nodes that appear qualified to deliver

messages. This is apparent from the increases in forwarding attempts and overhead costs.

In other words, these findings suggest that ChitChat consumes more resources when the

diversity and distinctiveness of the network’s participants declines.

3.6. DELIVERY LATENCIES

Message delivery latency – the amount of time between a message’s creation and

its successful delivery – is an important factor for DTNs in determining how tolerant

applications must be to delays. As such, this section explores the latencies observed in

Figures 10(a)–(d) for the simulations described before. The Epidemic scheme and the
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Direct Delivery scheme obtain the lowest and highest latencies, respectively, and offer

referential bounds on the performance of more sophisticated systems. Observing these,

the Geolife-induced network exhibits higher and tighter bounds on latency than the MDC-

induced network. This is attributable to the sparsity of these networks, as was discussed in

Section 3.1; Geolife has a greater degree of sparsity than MDC, thus leading to messages

taking longer to traverse the network to reach their destinations.

As depicted in these figures, the ChitChat system is able to obtain a lower latency

than all other non-flooding systems, with some scenarios having the average difference

between ChitChat and Epidemic being as low as 20 minutes. This achievement is primarily

due to the journeys through which messages were delivered. ChitChat’s employment of

Transient Social Relationships, node itineraries, and Geographic Social Heatmaps results

in it taking advantage of certain connections that other systems may ignore, including those

occurring earlier in a message’s lifetime. By sending a message through these connections,

there is a higher likelihood the message will reach its destination earlier.

4. RELATEDWORK

4.1. ROUTING STRATEGIES FOR DTNS

Many unique DTN routing algorithms have reported in past works. Epidemic

routing [33] provides an upper bound for the number of successfully delivered messages as

well as a lower bound on the delivery delay if one assumes light traffic or infinitely fast data

transmission and unlimited buffer sizes. This is not a reasonable assumption, however, as

past work [15] has shown that imposing finite transmission speeds and buffer sizes can result

in network degradation when using Epidemic. Thus, for the sake of reducing the resources

consumed, any routingmechanism that is deployed needs to identify if a connected neighbor

is a worthwhile candidate for message forwarding, and if so, which messages should be

forwarded.
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Spray and Wait [31] accomplishes controlled overhead costs by imposing a hard

limit on the number of message copies that are permitted throughout the network. It quickly

distributes a strict limit of message replicas to intermediate nodes and then waits for one of

them to reach the destination and deliver the message. PRoPHET [22] makes intermediate

message forwarding decisions based on the observed probability that an intermediate node

will meet with the destination, and maintains the freshness of these probabilities through

the use of a weighted, convex combination of past and current probabilities. BUBBLE

Rap [12] has messages bubble up through the network to higher-centrality nodes, reaching

more popular nodes until it enters the destination’s community. Once there, the forwarding

strategy shifts its focus from global centrality to community-centric centrality, i.e., centrality

with nodes of that community. Hui et al. reckon a node’s popularity within its community

is more effective at reaching the destination than the node’s global popularity when the node

shares a community with the destination.

Recent developments have adopted other metrics based on those previously men-

tioned for choosing intermediate message relays. Whereas PRoPHET calculates contact

probabilities based on the rate of contacts per time period, the SEDUM router [21] expresses

a similar metric by using continuous contact durations between any two nodes during a time

period. The message carrier forwards a message to another node if the recipient has a

higher utility with the destination than the current carrier. Utilities are also transitively

spread throughout the network in an opportunistic manner, only being passed between

nodes when connections are established. This permits an intermediate node to have a high

utility with another node even if the two nodes never directly meet. Rather, the two nodes

meet indirectly through one or more intermediate relays. Expanding on BUBBLERap’s use

of centrality, the DAS router [35] utilizes the destination-aware betweenness centrality to

route messages, and further uses this metric to dynamically cap the permissible number of
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copies of these messages. Encountered nodes that reside on fewer multi-hop shortest-paths

to a message’s destination are permitted to relay fewer copies of the message than those that

have more multi-hop paths, thus curbing message delivery overhead.

Another recent shift in DTN research focuses on exploiting social artifacts. Commu-

nity membership and detection has been the primary focus of several works [4, 10, 12, 19],

whereby forwarding to a node may occur if the node is within a community shared with

the destination. In [19], the SEBAR algorithm adopts the social energy routing metric that

grows and decays by direct encounters between nodes and is influenced by the duration

of these contacts and the social activity of the nodes’ communities. When two nodes en-

counter one another, a quantity of social energy is generated. This energy is then partially

applied directly to the node and partially distributed to nodes within its communities. Social

energies undergo decay in a similar manner as adopted by PRoPHET. When considering

message forwarding, the number of copies of each message is capped and halved at each for-

warding, and a two-phased routing strategy is adopted similar to SEDUM.While a message

is outside of all of the destination’s communities, a node carrying the message considers

its neighbor’s social energy; if the neighbor has a higher social energy than the message

carrier, the message will be forwarded. Once the message has reached a node within a

community of the destination, the second phase only forwards to other nodes also within a

community of the destination, specifically to those that are members of communities with

higher social activity than the message carrier.

The SANE algorithm [25] requires each individual to hold a binary string of equal

length that can be translated into the set of unique keywords that describe the user’s interests.

When two individuals meet, a message carrier computes the cosine similarity of its social

interest vector to its neighbor’s social interests, and decides to forward the message if the

similarity exceeds a predefined threshold. To the best of our knowledge, [25] is the first

to investigate the utility of social interests as a decisive measure in message forwarding in

DTNs, and thus offers a fair comparison for our proposed work.
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In our previous study [24], the modeling and dissemination of transient social

relationships served as an effective means to facilitate message delivery in sparse DTNs.

However, it did not consider whether participants were traveling to locations that may

benefit from receiving certain messages. The addition of location information has been

demonstrated as an effective factor for DTN routing [11], with routing decisions being

made with the consideration of where people are traveling to in the near future. In this

work, we extend our previous study [24] to augment the ChitChat system by considering

both a node’s transient social relationships and their current travel itinerary, and propose

a distributed method for learning the social semantics of locations within the network’s

geographic area of operation.

4.2. INTRINSIC DENSITY OF PREVIOUSLY EVALUATED DATASETS

These past works have limitations on successfully delivering messages in spatial-

temporal sparse environments, where users are sparsely distributed throughout a geographic

area or few members of that area are participating in the DTN. The evaluations of past

works have primarily been conducted on either dense real-world datasets, such as those

showing the contact traces of academic attendees of a conference [27, 30] or students’

movements through a college campus [9, 26], or synthetic datasets ranging in their degree of

sparsity. As analyzed in Section 3.1, the confines and constituents of these datasets produce

networks that have a significantly high population density and frequent contacts between

participants, resulting in higher temporal reachability of the networks. Table 2 summarizes

the datasets used by the surveyed DTN routers and the resulting densities of the dataset

populations. Of note, most strategies are evaluated against the academic conference-based

datasets [10, 12, 19, 23, 25, 28] that are confidened to conference venues with the highest

density of nodes. Five strategies employ the MIT Reality Mining dataset [4, 7, 10, 12, 19]

consisting of students and faculty on a college campus, where students of the same discipline

are likely to encounter one another through their daily course schedules. Those systems
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Table 2. Summary of Dataset Usage and Density of DTN Routers

Router Dataset Nodes Network Area Node Density
Epidemic [33] Synthetic 50 1500m × 300m (0.45 km2) ≈ 111/km2

PRoPHET [22] Synthetic 50 1500m × 300m (0.45 km2) ≈ 111/km2

Synthetic 60 3000m × 1500m (4.5 km2) ≈ 13/km2

SimBet [7] MIT Reality 100 Unknown (≈ 0.672 km2)* ≈ 149/km2

BUBBLERap [12] INFOCOM06 76 80m × 40m (0.0032 km2)* ≈ 23750/km2

MIT Reality 100 Unknown (≈ 0.672 km2)* ≈ 149/km2

MobiClique [28] SIGCOMM09 76 82m × 69m (≈ 0.0057 km2)* ≈ 13333/km2

DSG-N2 [4] MIT Reality 100 Unknown (≈ 0.672 km2)* ≈ 149/km2

Gao et. al. [10] INFOCOM06 76 80m × 40m (0.0032 km2)* ≈ 23750/km2

MIT Reality 100 Unknown (≈ 0.672 km2)* ≈ 149/km2

SEDUM [21] Synthetic 150 2000m × 2000m (4 km2) 38/km2

SANE [25] INFOCOM06 76 80m × 40m (0.0032 km2)* ≈ 23750/km2

Synthetic 200 1000m × 1000m (1 km2) 200/km2

Machado et. al. [23] SIGCOMM09 76 82m × 69m (≈ 0.0057 km2)* ≈ 13333/km2

SEBAR [19] INFOCOM06 76 80m × 40m (0.0032 km2)* ≈ 23750/km2

MIT Reality 100 Unknown (≈ 0.672 km2)* ≈ 149/km2

DAS [35] Synthetic 128 Unknown extent/area N/A
*Dimensions and area of network activity is estimated based on the dimensions of the
conference venue or college campus.

employing synthesized networks [21, 22, 25, 33] exhibit varying degrees of sparsity, but

do not present statistical properties that match human mobility. Specifically, the models

used to synthesize the movement of nodes follow various random walk strategies such as

Random Waypoint (RWP) [13, 22, 33] and models derived from it, such as Manhattan

Walks [21] and community-based mobility models [22, 25]. RWP-based movement models

have been shown to favor more frequent pairwise contacts between nodes over those found

in real-world datasets, resulting in lower routing delays and higher throughput by an order

of magnetude [29]. Thus, even though some of these exhibit a similar degree of sparsity

as is focused on in this paper, the statistical properties of the employed models remains

inconsistent with those found in real-world datasets and may not exhibit movement patterns

that are representative to socially-motivated people.
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As such, sparse networks formed by natural human mobility have not been investi-

gated extensively, such as is present in metropolitan environments where a small subset of

the population is participating in the network. This makes it unlikely that short paths exist

between a source and destination. Rather, geographically distant individuals are connected

by long multi-hop paths, with many intermediate nodes, spanning long periods of time.

With probabilistic routing [21, 22], the chances of an intermediate node having ever con-

tacted the destination is very slim under this scenario. Community-based routing [4, 10, 12]

may suffer in a similar manner if an intermediate node does not share any communities

with a message’s destination. What is needed is a routing mechanism that can successfully

percolate social relationship information throughout the network, thus permitting routing

decisions to occur in a sparsely-connected network.

5. CONCLUSION AND FUTUREWORK

In this paper, we present a novel social-context aware routing protocol, the ChitChat

system, for sparsely-connected Delay Tolerant Networks (DTNs), which exist in many

real applications like battlefield or disaster response for timely situational-awareness. Our

proposed ChitChat system successfully models multi-hop social relationships via a novel

decay-growthmodel, introduces amethod for opportunistically learning the social semantics

of locations using node itineraries, and enables each participating node to make informed

decisions during message routing. Our analysis of the network densities of five real world

datasets identified the two most widely used datasets for DTN research form considerably

dense and connected networks, which suggests the problem of network sparsity in DTNs

has not been previously addressed. Our experimental study using ONE simulator with two

sparse real world datasets demonstrates the superiority of our proposed approach compared

to recent existing efforts, in that our ChitChat system achieves higher successful deliveries

with reduced communication overhead (thus reduced energy usage).
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As part of our future work, we have multiple of avenues to investigate. Of primary

interest is to evaluate how well ChitChat performs when people’s social profiles exhibit var-

ious distributions and geographic correlations of interests. With a recent shift in research

toward DTN security, topics such as trust, incentives, fault detection, and provenance have

inevitable problems that require investigating [6, 8, 14, 20] for applications in a battlefield

environment. As a future work, ChitChat may be extended with attribute and role-based

access policies for more effective data dissemination in battlefield and disaster manage-

ment environment. Another topic of interest is to investigate the real-time augmentation of

message metadata annotations. Such an application would greatly assist battlefield recon-

naissance and intelligence gathering by speeding up the turn-around between raw field data

to rich intelligence acquisition, thus facilitating faster turn around in wartime strategies.

5.1. PRIVACY OF USER SOCIAL INTERESTS

Finally, privacy preservation of a node’s TSRs and the semantic information they

represent is of great interest for those who wish to participate in the DTN without divulging

their associations (either directly through their social interests or indirectly through their

frequent encounters with others) to certain topics. The ChitChat system intrinsically offers

some degree of privacy through its representation of social interests and the exchange of

information. First, TSRs offer a degree of privacy through the uncertainty of whether a

TSR is a direct social interest of a node or if it was induced by others. For example, assume

Alice is an HIV-negative doctor who tends to the care of HIV-positive patients but she

is does not express it as an interest in her social profile. Further, in her free time she is

very engaged in photography (i.e., she has a direct social interest in it). If Bob encounters

Alice, he receives her TSRs showing high weights for both ‘photography’ and ‘HIV+’.

Following Algorithm 4, a node’s TSRs are created either from a node’s direct social interest

or from the TSRs of nodes it has previously encountered. Thus, Bob cannot confidently

deduce whether Alice is HIV-positive, nor can he deduce whether she is directly interested
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in photography. All Bob knows is that there is a strong association between Alice and

these keywords. Another intrinsic property of TSRs is that they do not necessarily have

semantic meaning that nodes can derive and understand. As shown in Definitions 6, social

interests are represented in a node’s TSRs by a unique identifier (e.g., a hexadecimal string,

an integer, etc) and not by a semantic keyword. In certain scenarios, nodes need not know

the association between an social interest identifier (SID) and its associated keyword. For

instance, a sensitive message may be encrypted and annotated with encrypted keywords that

only authorized recipients can decrypt. These encrypted keywords would be used as the

SIDs for their TSRs that are distributed through the network, with unauthorized network

participants being able to aid in the distribution of the encrypted messages without learning

of their contents. Further investigation into privacy preservation in the ChitChat system is

left for future consideration.

Although the ChitChat system has some intrinsic properties that aid in preserving

user privacy, further research is needed to demonstrate its effectiveness against attacks and

propose stronger solutions. Topics such as homomorphic encryption and secure multiparty

computation may augment the ChitChat system to eliminate these problems.
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III. CATORA: CONGESTION AVOIDANCE THROUGH TRANSMISSION
ORDERING AND RESOURCE AWARENESS IN DELAY TOLERANT

NETWORKS

D. McGeehan, S. Madria

ABSTRACT

The proliferation of wireless mobile devices encourages research into their employ-

ment to form Delay Tolerant Networks (DTN) for such applications as disaster response,

military communications, and crowdsourcing. Within a DTN, messages are exchanged

between nodes following a store-carry-forward paradigm, which is notably susceptible to

congestion and can lead to a crippling in network performance. A DTN’s time-dynamic

topology departs from traditional network definitions in its unpredictable and volatile na-

ture, thus prohibiting the effective adoption of traditional network solutions to this problem.

In this paper, the Catora system is proposed as a multi-copy message exchange and buffer

management system designed to both aid in the delivery of prioritized messages and miti-

gate congestion and its degradation. Operating around the distinct ordering of messages for

transfer, delivery, and deletion, Catora propagates messages so as to balance their dissemi-

nation, hasten the delivery of high priority messages, and avoid congestion through strategic

buffer management. Simulations using two real-world datasets demonstrate Catora’s ca-

pability to quickly deliver more messages at reduced overhead costs when compared to

benchmarks and the state-of-the-art, even when the network suffers from congestion.
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1. INTRODUCTION

As of the third quarter of 2018, at least 4.74 billion smartphones were in use

globally, with annual forecasts for 2019 to 2023 projecting an estimated 1.39 to 1.54

additional billion smartphones will be sold each year [8, 27]. With these wireless mobile

devices becoming ubiquitous throughout the world, now is an opportunity to investigate

how to piggyback from their pervasiveness to form ad-hoc networks for applications such as

disaster relief and coordination [25, 32], battlefield coordination [4], and safe and efficient

transportation [10, 20]. The challenge of effectively employing these devices results from

the volatility and sparsity of interconnectivity, primarily due to mobility, isolation, noisy

wireless communication, and limited resources. Thus, message delivery in such a network

must adopt a store-carry-forward approach, where devices store messages in their buffers,

carry them as they move, and forward them to opportunistically encountered devices. This

network is called a Delay Tolerant Network, and nodes therein may have no knowledge as

to when encounters will occur [14]. When encounters do occur, the unpredictable duration

of the connections, variable channel capacities, and finite buffer spaces require devices to

adopt sophisticated strategies in order to choose which messages are to be exchanged and

cached.

It is assumed that messages are annotated with metadata to describe their payloads,

and that nodes introducemessages into aDTN for delivery that otherwise cannot be delivered

through more stable networks. For instance, a node with a connection to external networks

may retrieve messages from them to serve the requests from other nodes in the DTN [32],

or a node may retrieve requests from a crowdsourcing platform to disseminate to nodes who

can respond to these requests [6]. Nodes may also create messages by observing real world

objects or events, such as photos of damaged buildings, or video recordings of important or

dangerous events.
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Previous algorithms for message delivery in DTNs have been proposed with a

focus on probabilistic node encounters [18], bounded resource consumption [26, 31], and

exploiting graph-theoretic and social properties of the network [11, 17]. However, these

approaches take on a node-centric approach to message routing, ignoring the contents of a

message and its priority and importance to their intended destination. Another challenge

is the degradation of service due to congestion. While traditional networks have many

strategies to detect and mitigate congestion, these cannot be readily adopted primarily due

to the fleeting and unpredictable nature of a DTN’s topology [9, 29]. DTNs are notably

prone to congestion; with messages being stored for longer periods of time, node buffers are

liable to overflow should there be too many incoming messages relative to those outgoing.

When congestion does occur, messages must either be rejected or dropped, both of which

may impact successful deliveries and latencies if not done so strategically.

As such, in this paper, we propose the Congestion Avoidance through Transmission

Ordering and Resource Awareness (Catora) system as a multi-copy message exchange

protocol and buffer management system that is both message centric and congestion aware.

Three utility metrics are proposed as a means of ordering messages into three virtual sorted

queues for the tasks of message relaying, buffer management, and message delivery. In

the transfer virtual queue, messages are organized so that their dissemination tree expands

in a bredth-first manner, thus ensuring wide and balanced dissemination to increase the

chances of final delivery without uncontrolled resource consumption. In the event of

network congestion, the buffer management virtual queue drops messages that exhibit both

low utility-to-size ratios and high dissemination status as a means of freeing up buffer

space without dropping messages unlikely to be delivered. When a message destination

is encountered, messages destined for the node are pulled from the delivery virtual queue

such that those with high utility densities are delivered early through the unpredictable

connection, thus insuring faster delivery of higher priority messages. Information on
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successful deliveries is then opportunistically disseminated throughout the network to allow

nodes to remove delivered messages from their buffers, which in turn aids in the system’s

congestion avoidance.

This paper’s contributions are summarized as follows:

• Preliminary simulations are conducted on three DTNs, one synthetic and two induced

from real-world datasets, to analyze the effects of congestion on the performance of

five well-known DTN routers. These simulations identify key network metrics that

can be used to diagnose congestion, revealing that an increase in message drops and

a decrease in buffer occupancy times of messages are signs of higher congestive

conditions. Regardless of which router is employed, increasing the load on a DTN

results in a drop in the quality of service in terms of fewer successful deliveries and

higher latencies.

• The Catora system is proposed to mitigate the effects of congestion and more ap-

propriately consume resources for prioritized message delivery in a DTN. Three

new utility metrics are proposed to construct three virtual message queues for the

tasks of message relaying, buffer management, and message delivery, promoting

balanced message dissemination, strategic congestion mitigation, and fast delivery

of high-priority messages. In addition, Catora tracks and disseminates information

opportunistically to allow for a delivered message’s immediate removal from node

buffers, thus reducing the likelihood of congestion by eliminating unneeded resource

consumption.

• Through simulations driven by two real-world datasets, Catora is evaluated against

three benchmark systems and two state-of-the-art congestion controlling systems

under varying levels of congestion. Results demonstrate that Catora outperforms

both congestion-crippledEpidemic and the state-of-the-art in terms ofmore successful
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deliveries, lower latencies, and lower resource consumption. Additionally, analysis of

the symptoms of congestion indicate it is more capable at preventing and controlling

congestion than other systems susceptible to it.

The subsequent parts of this paper are organized as follows. Section 2 summerizes

related work into DTN congestion and summarizes the contributions of both pivotal and

recent research in the field. Section 3 discusses the DTN architecture, and details the

constituents of and challenges to the problem of message delivery in a DTN. Section 4

conducts a analysis on the causes and effects of congestion through preliminary simulations.

Section 5 proposes the Catora system, first by formally defining the metrics employed by the

virtual sorted message queues followed by the algorithms employing them to drive message

routing and buffer management. Section 6 evaluates Catora in comparison to benchmarks

and two state-of-the-art DTN congestion control systems using two real-world datasets.

Finally, Section 7 concludes the paper.

2. RELATEDWORK

In this section, both pivotal and recent related work is reviewed within the realm

of DTN congestion. These works have focused on tasks of modeling congestion as well

as proposing systems to control and avoid congestion using strategies such as message

replication control, ensuring fair resource consumption, and strategic buffer management.

2.1. MODELING CONGESTION

To better understand the factors that influence congestion in DTNs and the con-

sequences faced when congestion is experienced, diverse modeling techniques have been

proposed in recent literature. Birrane [1] adopted a contact-graph based approach to model

congestion, focusing on predicting the capacity of transmission channels as a means to

diverting traffic along paths with sufficient capacity. While the network operates, nodes are
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tasked to opportunistically learn the contact graph from information in the headers of mes-

sages passing through them, inform downstream nodes of new knowledge about the contact

graph known locally to the node, and provide feedback to upstream nodes to improve on

path selection.

Another goal of congestion modeling is to derive formulas for certain metrics useful

in DTN performance. Silva et al [30] adopted percolation theory to model congestion,

whereby nodes that have sufficient buffer space are used to detect journeys (time-ordered

paths) through the network. Their model allows for the derivation of the probability that a

journey exists, which in turn defines the probability that the message can be delivered. In

doing so, their formulation permits the derivation of the average delivery latency, the average

buffer occupancy, and the average duration of time that nodes were congested. Sandulescu

et al [26] propose an online, holistic framework for determining lower and upper bounds on

the achievable throughput – i.e. the number of bits that can be delivered over a defined time

period – between any two nodes exhibiting random mobility. Their formulations depend

on the mobility of the nodes, the adopted protocol for message dissemination, and the

distribution of resources available to each node. Through analytical and simulation-driven

analysis, it is observed that resource exhaustion and a degradation in message delivery is

induced by an increasing amount of data being sent through the network.

2.2. CONGESTION AVOIDANCE AND CONTROL

Apart from modeling congestion, some proposals have investigated strategies to

avoid and control congestion. This has been motivated by observed shortcomings of

prior work. Early works implicitly rely on nodes with high network centralities to relay

messages, as these nodes are capable of contactingmany other nodes who are either message

destinations or are able to reach them [5, 11, 18]. These strategies, however, are naive to

their increased resource consumption and the possibility of introducing bottlenecks and

congestion. Intuitively, these nodes will use more of their resources in relaying messages
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than those with lower centralities. When the rate of messages flowing through the network

increases beyond their capacity, congestion occurs with overflowing buffers and saturated

connections.

To respond to this, some strategies have controlled message replication in a DTN.

Each message is permitted to be copied some number of times with each replication being

recorded in the headers of both the replicated message and the replica. A well known

strategy is Spray-and-Wait [31], which permits messages to be sprayed to other nodes until

the header value reaches 1. After this, the message must wait until a direct encounter with

its destination occurs. Jain and Chawla [13] propose a similar system to differentiate types

of traffic flowing through a DTN, with contributions to the strategic ordering of messages

for transmission.

Another approach for congestion control emphasizes fair resource consumption.

One such work is CAFé [9], which proposes two metrics on a DTN’s nodes, receptiveness

and retentiveness, to measure the degree to which a node has been utilized for forwarding in

terms of their consumed channel capacity and their buffer occupancy, respectively. Using

these metrics, a forwarding heuristic is computed on a message being considered by a

potential relay and used to route traffic away from paths that are at risk of congestion,

favoring those with ample buffer space and lower relaying delays.

2.3. BUFFER MANAGEMENT

Another strategy for controlling congestion is to use sophisticated methods for

managing congested buffers. Systems emphasizing this focus are tasked with choosing

which messages should be dropped in order to make room for other incoming messages.

Davis et al [7] pioneered the field with the proposal of four message dropping policies to

be carried out when node buffers become overloaded: drop-random, drop-least-recently

received, drop oldest, and drop-least-encountered. The drop-least-encountered policy sorts

messages based on a node’s encounters with the messages’ destinations; destinations that
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are encountered frequently will have their message higher in order. Given this ordering

of messages, a congested node drops those messages with the lowest order, representing

destinations that the node is least likely to encounter, until enough space is available to

accommodate new messages.

Many strategies thatmanage buffers focus on averting overflows fromflooding-based

routing schemes. An alternative approach is to focus on discriminatory routing schemes,

which under certain circumstances are favorable due to their reduced resource consumption

via fewer transmissions and lower buffer occupancy. Lindgren and Phanse [19] consider this

approach and propose dropping policies to complement the PRoPHET routing protocol [18].

Particularly, five dropping policies are defined: First-In-First-Out (FIFO) drops messages

froma buffer if they arrived earlier than otherswithin the buffer, motivated by the observation

that a message occupying a buffer for a long duration will likely have more opportunities to

be forwarded by others than those freshly arriving; Most-Forwarded-First (MOFO) drops

messages that have been forwarded more than others based on the observation that these

messages have a higher probability of delivery because of their higher replication status,

enabling messages with fewer replicas more time to infiltrate deeper into the network;

Most-Favorable-First (MOPR) maintains a metric for each message called its FP value that

is increased at each forward by the message’s delivery probability, and drops messages that

have the highest value for the metric to enable messages with lower FP values a change

to reach nodes with higher delivery probabilities to their destinations; Short-Lifetime-First

(SHLI) drops messages that are the closest to expire on the observation that if the destination

has not been encountered earlier, it is increasingly unlikely to be encountered before the

message expires; finally, the Least-Probable-First (LEPR) policy drops messages that have

the lowest delivery probabilities, favoring messages that are more likely to reach their

destinations through the carrying node.
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Beyond simple-metric-based buffer policies, Iranmanesh [12] propose a joint buffer

management and routing protocol similar to Spray-and-Wait [31] calledQM-EBRP, intended

to avert buffer overflow congestion. In QM-EBRP, a multi-objective utility function is

proposed that considers a message’s upper limit on the number of permitted replicas,

remaining lifetime, and the node’s encounter history in estimating the probability of delivery

and expected delivery delay. Then, the number of replicas that a node allocates to a

potential relay, along with a more restricted time to live, is varied to observe the influence

on the estimated metrics. Messages exhibiting a higher rate of change to these values

are prioritized higher for replication, while those exhibiting a lower rate of change are

dropped when congestion is imminent. The Fairness-Aware Message Forwarding (FAMF)

system, proposed by Roy et al [25], is designed to avoid an asymmetric favoring of certain

destinations to others when delivering messages in a congested DTN, that results in some

destinations receivingmoremessages them than others. To this end, a metric is computed by

considering a node’s contact probability with a message’s destination and the probability of

the message being dropped before delivery. This metric is employed in both deciding which

message to forward to which neighbor as well as choosing which messages to drop from a

congested buffer. It should be noted, though, that these systems rely on the predictability of

the occurrence and duration of an encounter with between nodes, both of which may not be

readily available or reliably estimated in an opportunistic network due to the uncertainties

of node mobility.

Apart from dropping messages, the strategy proposed by Wu et al [35] adopts

a collaborative caching technique to free up space from a full buffer for new messages

without unnecessarily dropping messages and eliminating their potential delivery. To this

end, the ICMT system tracks and opportunistically disseminates the contact history of all

nodes throughout the network so as to formulate the probability of contact between any two

pairs and assign priorities to messages based on the contact probability with its destination.
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When a buffer lacks the capacity to store new messages, the node will attempt to broadcast

and then drop its lower-priority messages to its neighbors to make space. When there are

no neighbors to broadcast to, only then will messages be dropped without relocation.

3. FORMAL DEFINITIONS AND ARCHITECTURE

Delay Tolerant Networks depart from classical network architectures due to the

network’s unpredictable, time-dynamic topology, which disconnects the network’s nodes

from each other and complicates predictions of when and between whom connections

will arise. The remainder of this section is dedicated to formalizing this network and the

requirements for message delivery.

3.1. DELAY TOLERANT NETWORK ARCHITECTURE

The primary constituents of a DTN are nodes capable of introducing messages

into the network, storing them for extended periods of time, and propagating copies to

other nodes when conditions permit. The necessary conditions for propagation are (1) the

node currently holding the message (a message carrier, or simply carrier) has an open

communication channel with some other nodes (the carrier’s encountered neighbors, or

simply neighbors); (2) at least one neighbor is an interested recipient by either expressing

interest in receiving the message or by being (one of) the message’s destination(s); (3)

the channel has sufficient capacity (i.e. it is open long enough and has a high enough

transmission speed in bits per second) through which to transmit the message successfully;

and (4) the interested recipient has enough buffer space to store the message.

Definition 9. Delay Tolerant Network: Let G = (V, E) be a graph, where V is the set of

nodes in the network and E ⊆ V2 is the set of edges between nodes, where an edge between

nodes u and v is denoted by (u, v). A Delay Tolerant Network (DTN) underlined by G is

defined by G = (V, E,L,S,B), where the network lifetime L = [t�, tΩ) specifies the time
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span in which the network is operating as defined by a starting time t� and an ending time

tΩ; the transmission speed S : E × L → R≥0 defines the number of bits per second a node

can exchange with a neighbor; the buffer size B : V → N≥0 specifies the bit-size of a node’s

message buffer.

Nodes are classified by three non-exclusive types: message sources, message car-

riers, and message destinations. Message sources introduce messages into the network for

delivery to their destinations, either by introducing the messages from external networks or

by creating new messages through observing objects and events in the real world. In this

work, it is assumed that messages introduced into the network are truthful and do not inten-

tionally introduce misinformation. Message carriers are the nodes that receive messages

from other nodes, either other carriers or message sources. A message carrier is motivated

to receive and store other nodes’ messages in its buffer, and to expend energy in transmit-

ting those messages to nodes encountered later on, so that it will have its own messages

received, stored, and delivered by other nodes. Message destinations are nodes interested

in the payload of messages on various topics, or they may be nodes with a connection to

other networks acting as gateways between these networks and the DTN.

3.2. MESSAGES

An annotated message, herein referred to as a message, is denoted by the tuple

m = (π, A,H), where the payload π is the main content of the message (e.g. a photograph,

a report), the metadata A forms a set of attributes that annotate π, and the header H tracks

network-specific properties related to themessage. Amessage is considered to have a utility,

as defined by Defintion 10.
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Definition 10. Message utility: The utility of a message m = (π, A,H) is denoted by

u (m), and is calculated as the sum of the precisions of the attributes in A:

u (m) =
∑
a∈A

ρ (a) (1)

where ρ (a) is the precision of attribute a ∈ A such that 0 ≤ ρ (a) ≤ 1.

Sincemessagesmay be created by nodes in response to observations, the annotations

that a node makes for a message may have varying precision. Multiple messages may be

created covering the same observation by different nodes, each having a unique vantage

point and observing details differently. Definition 10 accomodates this through attribute

precision, where ρ (a) = 0 is considered the least precise and ρ (a) = 1 the most precise.

The header of a message, denoted H, tracks various network-specific properties of

the message. In this paper, it is assumed to track at least two properties: the path this

message has traveled from the source, and the number of known copies of the message that

exist in the network. These properties are updated as follows.

3.2.1. Message Path.

Definition 11. Message Path: For a message m = (π, A,H), the path of m is denoted

as m.path and is defined as a sequence of nodes (n0, n1, . . . , u), where n0 is the message’s

creator, ni received a copy from ni−1 for i > 0, and u is the node carrying the specific copy

of m under inspection. The length of a message’s path is denoted as |m |path.

Upon creation by a node n0, a message’s path is simply defined as a singleton

sequence (n0). When a copy of the message is relayed from some node u to some other

node v, the path of the relayed message is appended with v, while the copy residing with u

is unchanged.
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3.2.2. Message Copy Count.

Definition 12. Message Copy Count: For a message m = (π, A,H), the copy count of

m is defined in the message’s header H as a positive integer denoted as |m |copies, where

|m |copies > 0.

Upon creation by a node, a message’s copy count is equal to 1. The process of

updating this value is as follows. Let mu reside in node u’s buffer, and let mv be a copy of

mu that is transferred from u to v. Upon completion of this transfer, the copy counts for

both messages |mu |copies and |mu |copies are incremented and equal.

For example, assume a message m is created by n0 at time t0. At time t1 > t0, a copy

m′ is made from m and transferred to node u. Later, at time t2 > t1, a copy m′′ is made from

m and transferred to node v. At time t0, |m |copies = 1; at time t1, |m |copies =
��m′��
copies

= 2;

finally, at time t2, |m |copies =
��m′��
copies

= 3 and
��m′′��

copies
= 2. The inconsistency at t2

is due to u not being notified that another copy of mn0 being made for v. Further, if no

other copies are made from m and m′, but copies are made from m′′, the values of |m |copies

and
��m′��
copies

would remain equal to 3 while
��m′′��

copies
would continue to increment in

accordance to Definition 12.

3.3. CHALLENGES OF MESSAGE DELIVERY IN DTNS

Successful delivery of messages to their destination(s) is challenging due to the

sparse and time-varying topology of a DTN, resulting in the absence of contemporaneous

paths between a message carrier and the messages’ destinations at the time a carrier receives

a message [2, 14]. Instead, message delivery relies on time-ordered paths through which

nodes propagate a message to encountered neighbors, one hop at a time, until a message

reaches its destination. In between node encounters, messages are cached in each carrier’s

buffer.
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Within some time interval inL, theremay exist multiple time-ordered paths between

a pair of nodes through which a message may travel. The existence of a time-ordered path

is a necessary, but not sufficient, condition for message delivery. For successful delivery

to occur, each node along a time-ordered path must successfully receive messages from

its predecessor, store them without dropping, and propagate them others. Acceptance

of a message requires resources that permit message delivery, such as sufficient channel

capacity between encountered nodes and sufficient buffer space to cache messages. These

are competitive resources, as other messages will also be consuming them while in transit

and within buffers.

If a node knows when encounters will occur between pairs of nodes, then a time-

ordered path can be pre-determined. This may not always be achievable, as is assumed in

this paper. Nodes move autonomously, and the inaccessibility of knowledge oracles [14],

from which information is obtainable on the network’s topology or the nodes’ locations,

complicates reliable predictions. Thus, message delivery is done in a best-effort, store-

carry-forward manner: when two nodes encounter one another, their task is to decide if

they want to receive a subset of their neighbors’ messages, and if so, which subset. Should

a node’s buffer be too full to receive a message, the node must also decide if it will reject

the incoming message or drop some of its carried messages to make room.

4. CONTRIBUTING FACTORS TO CONGESTION

Congestion within a traditional network is characterised by a node having an arrival

rate of messages that exceeds its departure rate, whereby messages begin to pool up at the

node [29]. Should this continue, the queue that temporarily stores the backlogged messages

will overflow, requiring some messages to be dropped in order to continue receiving new

ones. When a message is dropped, it potentially may no longer exist in the network, thus

effecting the network’s delivery metrics. This characterization of congestion may also

occur within DTNs, but instead of a seemingly uninterrupted flow of messages passing
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through a routing path (that which is perceived in traditional networks), the messages in

a DTN progressively move forward in the lock-gate manner of the store-carry-forward

paradigm [2, 14]. As a result, the arrival rate and departure rate of messages is bursty in

nature; messages only arrive to, and depart from, a node when it opportunistically connects

with another neighbor.

One important distinction for DTN strategies is whether a message departure results

in more space available in a node’s buffer. Those that adopt single-copy routing free up

space when a node transfers a message because it deletes its copy after it has successfully

transferred. Alternatively, for multi-copy routing strategies, this does not necessarily occur.

Rather, a node may retain a copy of a message that it hands off. This intuitively results in

more messages residing within the buffer of a node. When it becomes full, it must then

decide whether to reject new messages, or accept them at the sacrifice of dropping some of

those it currently carries [15].

Ultimately, when congestion occurs, the observable symptoms include fewer suc-

cessful deliveries, increased message drops, and higher delivery latencies [24, 34]. Various

factors have been shown to contribute to the occurrence of congestion. In [34], Wang et al

found that the rate at which messages enter the network has a dramatic influence on the ul-

timate probability of successful deliveries; too many messages degrades network deliveries

as it induces congestion rapidly, preventing deliverable messages from traversing far into

the network before being quickly dropped to make room for newer messages. Xia et al [36]

found message creation rate also affects delivery delay; when more messages are created

than the network can handle, longer latencies in delivery occur. Silva et al [30] found that

increasing the space available within buffers results in shorter durations in which nodes

are congested. Additionally, larger buffers also result in messages staying within them for

longer on average, as the availability of more space alleviates the need to drop messages

quickly.
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Below, we observe the symptoms of congestion when the frequency of message

creation varies from one every second to one every 100 seconds. To measure the quality-of-

service of the network, the observed metrics are the number of delivered messages and the

average latency for delivery. To better understand congestion, the average buffer occupancy

time – i.e. the average amount of time each message resided within a buffer before it is

dropped – and the number of dropped messages is measured.

4.1. SIMULATION SETUP

The simulations in this section employ three datasets – one synthetic, and two real-

world – that are used to simulate a DTN, and are conducted using the Opportunistic Network

Environment (ONE) simulator [16]. For the synthetic dataset, 44 nodes operate within a

4.5km by 3.4km area centered on Helsinki, Finland. Their movement is dictated by the

Random Waypoint mobility model taking the shortest path between two points following

available roadways. The set of nodes is partitioned into two groups: the first represents 40

pedestrians moving at walking speed; the second represents 4 vehicles moving between 10

to 50 km/h. Pedestrian nodes are able to wirelessly communicate with all other nodes when

their proximity is within 10 meters at a speed of 250 kbps, simulating the connectivity of

Bluetooth, whereas vehicular nodes employ two wireless technologies, one for pedestrian

communication (Bluetooth) and the other for vehicle-to-vehicle (V2V) communication

within 1 km at 10 Mbps. Pedestrians have 100 MB of buffer space to dedicate to message

storage; vehicles have 2 GB.

The two real-world datasets are the SIGCOMM 2009 contact trace dataset [21, 22,

23] and the INFOCOM 2006 contact trace dataset [3, 28]. For the SIGCOMM2009 dataset,

the Bluetooth encounters between smartphones carried by 76 attendees of the SIGCOMM

2009 conference were recorded over the course of five days. Similarly for the INFOCOM

2006 dataset, 98 iMote devices were dispersed at the INFOCOM 2006 conference: 20
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were statically located at various points of interest, and the other 78 were distributed to

conference attendees. Bluetooth encounters between the devices were recorded over four

days.

In the three simulated networks, each encounter offers the participating nodes the

opportunity to exchange messages throughout its duration. The bandwidth of connections is

set to a constant bitrate of 250 kbps. Each node is configured to have 100 MB of storage to

allocate to messages, each being 100 KB in size and having a lifespan of 5 hours. Messages

are randomly generated throughout the timespan of the simulation, with the source and

destination being uniformly selected from the participating nodes.

Fivewell-knownDTN routerswere adopted by all nodes to performmessage routing:

Spray and Wait [31], Direct Delivery, and two versions of Epidemic [33], PRoPHET [18].

The two Epidemic routers are differentiated by whether they adhere to the constraints

of a DTN: one version complies by recognizing that connections have finite bandwidth,

nodes have finite buffer space, and knowledge of a message’s delivery is only known

to nodes opportunistically; the other, labeled Epidemic*, enables all nodes to instantly

drop a message once it has been successfully delivered and dismisses the restrictions of

message sizes, permitting all messages carried by a node to instantly be exchanged during

an encounter. This is motivated so as to observe if the performance of the former Epidemic

is greatly impacted by congestion compared to other routers, and to witness the best possible

performance of a DTN using Epidemic*.

4.2. QUALITY OF SERVICE DEGRADATION

To better understand the effect of congestion on a range of networks, we investigate

the delivery ratio and delivery latency of messages in the three simulated networks. Figure 1

presents these results, with Figure 1a displaying the percentage of successfully delivered

messages and Figure 1b displaying the average latency in delivery of messages. The most

striking effect of congestion is the performance of Epidemic relative to the other routers.
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(a) Delivery Latency

(b) Delivery Ratio

Figure 1. Quality of Service for Synthetic (left), SIGCOMM2009 (middle), and INFOCOM
2006 (right)

In many past investigations on DTNs, Epidemic has typically been shown to perform the

best in terms of achieving the highest delivery ratio while also obtaining the lowest delivery

latencies. While Epidemic*, the version that ignores DTN constraints, exhibits these

properties, the more DTN-compliant Epidemic is observed to perform worse than most of

the other strategies. In the synthetic network, PRoPHET and Spray and Wait are able to

deliver a higher percentage of messages than Epidemic, with only Direct Delivery having

lower delivery ratio. So too does this affect the delivery latencies: PRoPHET and Spray and

Wait both have lower latencies than Epidemic in most cases. Similar observations are found

in the networks formed by the SIGCOMM 2009 and INFOCOM 2006 datasets, although

Spray and Wait’s performance dips below Epidemic for higher message creation intervals.

Another observation is the rapid decline in delivery ratios along with a spike in

latencies as themessage creation interval approaches 1. At lowermessage creation intervals,

messages are created in higher frequencies, resulting in more messages passing through the

network and residing within node buffers. Inflection points in these graphs suggest the point
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(a) Average Buffertime Occupancy

(b) Dropped Message Count

Figure 2. Congestion Symptoms for Synthetic (left), SIGCOMM 2009 (middle), and
INFOCOM 2006 (right)

at which congestion begins to degrade performance. In the synthetic network, this inflection

point occurs at the 20-second interval; for the real-world networks, at the 10-second interval.

In the next section, the potential causes for this degradation are analyzed and identified.

4.3. ANALYSIS OF CONGESTION

Intuitively, if messages reside within buffers for extended periods of time, the risk

of a buffer becoming full increases with the rate of message creation. Longer-duration

buffer occupancies are attributable to a number of factors, such as longer message lifetimes,

larger buffer sizes, and smaller message sizes [30]. The trigger that brings an end to a

message’s occupancy is the dropping of the message from a node’s buffer, brought about

from a message being successfully delivered (and subsequently no longer needed) by the

node, the message expiring, or an overflow in the buffer. When a buffer overflows, the only

recourse is to either reject incoming messages or drop enough carried messages from the
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buffer to make space. Thus, when a message is dropped, the amount of time it resided in the

buffer from which it was dropped is defined. In Figure 2, the symptoms of buffer-overflow

congestion is investigated against the varying of message creation intervals and changes

in two measurements are observed: the average time in which messages resided in node

buffers, and the number of message drops that occurred over the simulation’s timespan.

As depicted in Figure 2a, Direct Delivery and Spray and Wait exhibit the longest

buffer occupancies in most cases, while PRoPHET and both versions of Epidemic show

the lowest. With Epidemic*, it is rather straight forward: when a message is delivered,

all nodes simultaneously drop that message from their buffer, knowing to do so through

immediately accessible global knowledge. The difference between Direct Delivery / Spray

and Wait and Epidemic / PRoPHET is due to their restrictive versus generous replication

of messages, respectively. Direct Delivery does not replicate messages at all; rather, a

message creator will only transmit a message to its destination directly. Spray and Wait

permits replication, but restricts the number of times it is permitted, after which only single-

copy forwarding may be carried out. This bounds the number of copies of a message may

reside in the network, thus restricting the number of buffers the message occupies at a given

time. Epidemic and PRoPHET do not bound the number of message copies, thus leading

to more buffers being occupied.

5. THE CATORA SYSTEM

In this section, the constituents of the Catora system are formally defined. Catora’s

operation revolves around the ordering of messages based on an intended action, such as

delivering a message to its final destination, relaying a message to a new carrier, or dropping

a message from a congested buffer. Three metrics are proposed for these various tasks so as

to impose an order on a collection of messages in the form of virtual sorted message queues:

a delivery utility, a transfer utility, and a buffer utility. The delivery utility (Section 5.1)

orders a collection ofmessages that are immediately deliverable into a delivery virtual queue
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Table 1. Catora Symbology

Symbol Summary
u, v Nodes encountering one another in a DTN

m A message
|m |bytes The size of message m in bytes
|m |path The length of m’s path (Def. 11)
|m |copies The known copy count of m (Def. 12)
dest (m) The destination node of m

Bu The message storage buffer of node u
|Bu |free The number of bytes freely available in u’s buffer

u (m) The utility of message m (Def. 10)
ud (m) The delivery utility of message m (Def. 13)
ut (m) The transfer utility of message m (Def. 14)
ub (m) The buffer utility of message m (Def. 15)

Mu,v u’s delivery virtual queue for messages to v (Def. 13)
Qu u’s transfer virtual queue (Def. 14)
D∗u u’s buffer management virtual queue (Def. 15)

so as to ensure higher utility-dense messages are delivered before the connection drops. The

transfer utility (Section 5.2) orders messages into a relay virtual queue such that those with

a higher transfer utility are transmitted to neighbors earlier than those with lower. Finally,

the buffer utility (Section 5.3) orders messages into a buffer management virtual queue such

that those with low utilities and high replication will be selected first for removal when

congestion occurs. The algorithms followed by the Catora system are defined in Section 5.4

and describe the procedures that are followed when nodes connect, disconnect, complete a

message transfer, and manage an overflowing buffer. Table 1 provides a summary of this

paper’s adopted symbology.
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5.1. MESSAGE DELIVERY ORDERING

Assume a connection is established between a message carrier u and another node

v, and u is carrying messages destined for v. With the connection’s duration being unpre-

dictable, the Catora system will immediately attempt to deliver messages destined for v in

the descending order imposed by the delivery utility.

Definition 13. Delivery Utility: The delivery utility of a message m = (π, A,H) is

denoted by ud (m), and is calculated as the quotient of m’s utility and m’s size:

ud (m) = u (m) /|m |bytes (2)

where |m |bytes is the storage size of m in bytes. The delivery virtual queue between u and

v, denoted as Mu,v, is in descending order defined by Equation 2.

Since the connection’s duration is unknown, this ordering attempts to deliver mes-

sages with high utility density relative to size before the connection drops. Per Definition 10,

assuming two messages have the same message utility, the smaller message would be trans-

ferred before the larger one. This is done so as to hasten the delivery of as many messages

as possible without potentially wasting a connection on the transfer of a large message that

is aborted due to premature connection drop.

5.2. MESSAGE TRANSFER ORDERING

Assume a connection is established between a message carrier u and another node

v, and u is carrying messages that are not currently carried by v. Because the duration of

the connection is unknown, the Catora system will add these messages to a transfer queue

in descending order of their transfer utility.
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Definition 14. Transfer Utility: The transfer utility of a message m = (π, A,H) is

denoted by ut (m), and is calculated as the quotient of m’s utility and the product of the m’s

size and m’s current path length:

ut (m) = u (m) /
(
|m |bytes · |m |path

)
(3)

where |m |path is the message path as defined by Definition 11. The transfer virtual queue

of u, denoted as Qu, is in descending order defined by Equation 3.

Similar to the delivery utility in Definition 13, the transfer utility favors messages

with high utility densities relative to their size. However, it also considers the dispersion of

the message in the network by incorporating the message’s current path length |m |path, and

strives to spread messages in a bredth-first manner. The intuition behind Equation 3 is that

messages that have not traveled far from their source are less likely to reach their destination

than messages that have, seeing as far traveling messages reside with more nodes, any of

whom may come into contact with the destination in the near future.

5.3. STORAGE BUFFER MANAGEMENT

When a node’s storage buffer becomes too full to receive new messages, messages

within the node’s buffer must be dropped so as to continue receiving new ones. The manner

in which messages are selected for dropping is decided by the buffer utility, whereupon a

node orders its carried messages and drops enough of the lowest-utility messages to make

room for an incoming message.

Definition 15. Buffer Utility: The buffer utility of a message m = (π, A,H) is denoted

by ub (m), and is calculated as the quotient of m’s utility and the product of the m’s size and

m’s known copy count:

ub (m) = u (m) /
(
|m |bytes · |m |copies

)
(4)
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where |m |copies is m’s copy count as defined by Definition 12, representing the number of

copies that are known by u to exist in the network. The buffer management virtual queue of

u, denoted as D∗u, is in ascending order defined by Equation 4.

The buffer utility of amessage is similar to the transfer utility defined inDefinition 15

in that it favors messages with higher utility densities relative to their size in conjunction

with lower dispersion in the network. Those messages that both have lower utility densities

and have been replicated more across the network are likely be to dropped. However,

instead of measuring the distance the message has traveled from its creator, it uses the

known number of copies of the message that exist in the network.

Algorithm 7 A channel is open between node u and node v at time t∈L.
1: procedure Connect(u, v)

. Opportunistic learning of delivered messages
2: Let Dv ← delivered messages known to v

3: Du ← Du ∪ Dv

4: Bu ← Bu \ Dv

5: Qu ← {〈m, v′〉|〈m, v′〉 ∈ Qu,m < Dv}

. Transfer deliverable messages
6: Let Mu,v ← {m |m ∈ Bu, dest (m) = v}

7: while Mu,v , � do
8: Let m∗ ← argmax

m∈Mu,v

{ud (m)}

9: Send m∗ =⇒ v . Send highest delivery utility message
10: Mu,v ← Mu,v \

{
m∗

}
11: Bu ← Bu \

{
m∗

}
12: Du ← Du ∪

{
m∗

}
13: Dv ← Dv ∪

{
m∗

}
14: end while

. Enqueue future transfers
15: Let Qu→v ← {〈m, v〉|m ∈ Bu, dest (m) , v, v.wants (m)}
16: Qu ← Qu ∪Qu→v

17: if Qu , � then . Send message with highest transfer utility
18: Let 〈m∗, v∗〉 ← argmax

〈m,v′〉∈Qu

{ut (m)}

19: Send m∗ =⇒ v∗

20: end if
21: end procedure
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5.4. THE CATORA PROTOCOL

At a high level, the Catora protocol is conceptually composed of four subsystems that

control the node’s behaviorwhen a connection is established, amessage has been transferred,

a node’s buffer has insufficient space to receive a message, and when a connection drops.

Each of these subsystems is defined in detail below.

5.4.1. Behavior At Connection Establishment. Assume nodes u and v connect at

some time t. At a high level, these nodes carry out the following tasks:

1. Both v and u notify each other of the messages known to have been delivered and

immediately drop those messages that are carried

2. u immediately begins transferring any messages it carries that are destined for v

according to the order of the delivery virtual queue (Definition 13)

3. u iterates over its carried messages and queues up a future transfer for each message

that v expresses interest in relaying in order of the relay virtual queue (Definition 14)

Algorithm 7 formally defines the process between two newly-connected nodes u

and v, and is executed by both nodes. First, v informs u of the message IDs it knows have

been successfully delivered (line 2), either by itself or learned from others, and incorporates

that knowledge into its own (line 3). If u carries any of these messages, it removes them

from its buffer (line 4) and cancels any associated queued transfer (line 5). Following this,

u then begins transferring any messages it carries that are destined for v for final delivery

(lines 6–14). The order in which messages are sent is dictated by the delivery virtual queue

of each message, as defined in Definition 13, where the message with the highest delivery

utility is chosen first. Once the message has been successfully delivered, the message is

removed from u’s delivery queue (line 10) and buffer (line 11), and marked as delivered

by both nodes (lines 12 and 13). This continues until all deliverable messages have been

transferred or when the connection drops.
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Concurrently, u also iterates over its other messages to determine which will be

relayed to v in the future (lines 16–20). u isolates the messages that v wants (line 15), as

dictated by the routing algorithm employed by the node. These messages are then added to

u’s transfer queue (line 16). If there are messages in u’s transfer queue, the one with the

highest transfer utility, as dictated by Equation 3, is chosen (line 18) and the transfer to the

intended recipient begins (line 19).

5.4.2. Behavior At Message Transfer. With the execution of Algorithm 7, mes-

sage transfers may be underway. When a transfer for a message m = (π, A,H) is completed,

another procedure is called for book-keeping and starting the next transfer as defined in

Algorithm 8. At a high level:

1. If there is insufficient space to store m, then Algorithm 9 is called to drop messages

and make room

2. m is added to v’s buffer with updates to appropriate header values

3. u begins its next queued transfer (if any)

Algorithm 8 A transfer of message m = (π, A,H) was completed from u to v.
1: procedure MessageTransferred(m, u, v)

. Buffer management (see Alg. 9)
2: if |m |bytes exceeds free space in Bv then
3: Call ManageBuffer (v,m)
4: end if

. Finalize message receipt
5: Increment |m |copies for both u and v.
6: Append v to m.path for only v’s copy
7: Bv ← Bv ∪ {m}
8: Qu ← Qu \ {〈m, v〉}

. Begin next transfer
9: if Qu , � then
10: Let 〈m∗, v∗〉 ← argmax

〈m,v′〉∈Qu

{ut (m)}

11: Send m∗ =⇒ v∗

12: end if
13: end procedure
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The first step of Algorithm 8 is to manage v’s buffer if there is insufficient space

for m (lines 2–4) according to Algorithm 9. Then, m’s transfer is finalized by updating the

copy count for both v’s and u’s copy (line 5), appending v to the path of the received copy

of m (line 6), adding m to v’s buffer (line 7), and removing the completed transfer from

u’s transfer queue (line 8). Finally, the next transfer in u’s transfer queue is started if there

remains transfers to begin (lines 9–12), whereby the next message with the highest transfer

utility is selected (line 10) and sent to its intended recipient (line 11).

5.4.3. Behavior At Buffer Congestion. As a message is being transferred, the

receiver stores the received message fragments in a separate buffer until the transfer is

complete, after which the message will be moved to the receiver’s message buffer. If

there is insufficient space in the buffer to store the message due to buffer congestion, then

the Catora system will remove a sufficient quantity of messages in order from the buffer

management virtual queue, as defined in Definition 15, such that enough space becomes

available. Algorithm 9 formally defines these steps.

Algorithm 9 Drop messages from Bv to provide sufficient space for storing m. Let |Bv |free
be Bv’s free space (bytes).
1: procedure ManageBuffer(v, m)
2: Let D∗v ←

{
m′|m′ ∈ Bv,

��m′��
copies

> 1,
��m′��
path

> 1
}

3: while |Bv |free < |m |bytes do
4: Let m∗ ← argmin

m′∈D∗v
{ub (m)}

5: Qv ←
{
〈m′, v′〉|〈m′, v′〉 ∈ Qv,m′ , m∗

}
6: D∗v ← D∗v \

{
m∗

}
7: Bv ← Bv \

{
m∗

}
8: end while
9: end procedure

In Algorithm 9, line 2 starts by constructing the buffer management queue to contain

a subset of v’s buffer that can be deleted, denoted as D∗v , consisting of messages that have

been relayed at least once – i.e. messages created by v that have not been relayed will not

be deleted. These messages are considered deletable because they have been replicated and

thus still have a chance for delivery through other nodes if removed from v’s buffer. In
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lines 3 through 8, this set is iterated over, with each iteration grabbing the message with

the minimum buffer utility, as defined by Equation 4, from the buffer management queue

(line 4). Since the message will be removed from v’s buffer, any queued transfers containing

this message are terminated (line 5). Then, the message is removed from both the buffer

management queue (line 6) and v’s buffer (line 7). This ends when the freespace available

in v’s buffer becomes sufficiently large to store m (line 3).

5.4.4. Behavior At Connection Drop. Because it is assumed that the duration of a

connection is unknown, a message transfer may be aborted should the transfer’s connection

drop before completion. Since the Catora system enqueues transfers between nodes at the

time of their established connection (via Algorithm 7), those transfers are dequeued upon

disconnection. Algorithm 10 formally defines these steps, removing the associated transfers

from both u’s transfer queue (line 2) and v’s transfer queue (line 3).

Algorithm 10 An existing channel between node u and node v is closed.
1: procedure Disconnect(u, v)
2: Qu ← {〈m, v′〉|〈m, v′〉 ∈ Qu, v

′ , v}

3: Qv ← {〈m, v′〉|〈m, v′〉 ∈ Qv, v
′ , u}

4: end procedure

6. PERFORMANCE EVALUATION

To evaluate the Catora system, a suite of simulations was conducted to compare its

performance to that of various benchmark systems and relevant state-of-the-art systems,

described below. For benchmarking, three systems were employed: the Direct Delivery

router, and two versions of the Epidemic router. The Direct Delivery router restricts

message relaying to only when a message’s destination is encountered by the message’s

creator. Thus, it provides a lower-bound on delivery probability and resource consumption

and an upper-bound on latency. Similar to the setup in Section 4.1, the two versions of

Epidemic are differentiated by whether they are susceptible to congestion. Traditional
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(a) Number of Dropped Messages

(b) Average Network Penetration

Figure 3. Congestion Symptoms for SIGCOMM 2009 (left) and INFOCOM 2006 (right)

Epidemic is restricted by buffer space and connection capacity when relaying messages,

and thus congestion leads to increasingly dropped messages and aborted relays. The

other version, labeled Epidemic*, disreguards all such restrictions and transfers all carried

messages to a neighbor when a connection occurs. A message is only dropped when it has

been successfully delivered, at which point every node is instantly notified of the successful

delivery and drops their copy. As such, Epidemic* is immune to congestion, and provides

an upper-bound on delivery probability and resource consumption, and a lower-bound on

latency. Epidemic, on the other hand, does not necessarily provide such bounds, but offers

a practical reference system for comparison.
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Table 2. Catora Simulation Configurations

Configuration SIGCOMM 2009 INFOCOM 2006
Number of Participants 76 nodes 98 nodes

Simulated time 5 days 4 days
Update Interval 1 second

Transmission Speed 250 kBps
Buffer capacity 100 MB

Message Lifetime 5 hours
Message Creation Interval 5–100 seconds

Message Size 25 KB – 1 MB
Message Attribute Count 20

Created Messages per Burst Up to 10

For comparing against the state-of-the-art, two congestion-mitigating systems are

used: the ICMT system [35] and the FAMF system [25]. These systems provide mitiga-

tion strategies for controlling congestion, and have been shown to outperform previously

proposed systems such as Spray-and-Wait [31], PRoPHET [18], and BUBBLE Rap [11].

Two datasets were used to simulate DTNs: the SIGCOMM 2009 contact trace

dataset [21, 22, 23] and the INFOCOM 2006 contact trace dataset [3, 28]. Both datasets

are described in detail in Section 4.1. Message creation was conducted in such a way

as to introduce redundancy in messages and to induce varying levels of congestion. To

simulate this redundancy, a burst of messages were created by a random subset of nodes

on a given topic at the same time, with each message being destined for some randomly

selected destination. To induce congestion, the rate at which these message bursts occurred

was varied between once every 5 seconds (highly congested) to once every 100 seconds

(marginal congestion). Each message of a given burst was given a random number of

attributes, with the attribute precisions being selected randomly between 0 and 1. Table 2

defines these and other variables used for the simulations.
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6.1. CONGESTION AVOIDANCE

The first part of this evaluation examines Catora’s ability to tolerate and control

congestion in the network. Figure 3 illustrates the impact of the message creation interval

on two metrics tied to congestion: message drops and the average network penetration of

messages. When a node’s buffer becomes full, it must drop carried messages in order to

continue creating new messages or receive relayed messages. As observed in Section 4.3,

the occurrence of many drops throughout the network is a sign that conditions are becoming

congestive. BecauseDirect Delivery only relaysmessages directly to destinations, it exhibits

the fewest drops and single-hop penetration – thus, it serves as a lower-bound. We omit

the performance of Epidemic* for visual clarity due to it producing measurements that are

orders of magnitude higher than other systems.

As is illustrated in Figure 3a, the number of message drops increases with the

increased frequency of message creation – as more messages are created, buffers fill up

quickly and systemsmust drop more frequently. A side effect of these drops is that messages

are unable to penetrate very far into the network, which in turn limits the network’s capability

to deliver certain messages. Figure 3b illustrates this, showing that under greater congestive

conditions, messages on average are only able to travel shorter distances into the network.

In comparison to other systems, these figures indicate that Catora is able to reduce

the symptoms of congestion from which a network suffers by performing fewer drops and

penetrating messages deeper into the network. In the INFOCOM 2006 network, it out-

performs the state-of-the-art and Epidemic by having the fewest drops. In the SIGCOMM

2009 network, its performance is best under significant congestion, only being beaten by the

FAMF system at lower congestion. These improvements come from several design factors

of the Catora system. First, the delivery notification feedback subsystem opportunisti-

cally informs nodes of when a carried message was successfully delivered, thus enabling
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these nodes to remove the message from their buffers. This has multiple benefits: buffer

space is freed to allow for receiving new messages without requiring premature drops, and

connections are used to propagate messages that have not yet been delivered.

6.2. QUALITY OF SERVICE

Next, the quality of service achieved by these services is evaluated in terms of

the percentage of successfully delivered messages (Figure 4a), the percentage of unique

topics that were successfully delivered (Figure 4b), and the latency in message delivery

(Figure 4c). Overall, these figures illustrate the degradation that occurs with congestion:

a lower delivery percentage of both messages and topics occurs when more messages are

created (and thus more messages being dropped), and the latency decreases because the

messages requiring more time are dropped before delivery.

Even with this degradation, Catora is demonstrated to suffer the least of all systems.

In Figure 4a, it is able to deliver the highest percentage of messages, even beating Epidemic

that is suffering from congestion. This is also observed with the percentage of delivered

topics, althoughCatora’s performance is approximately equal to Epidemic in the SIGCOMM

2009 network. With regard to latency, the INFOCOM2006 network showsCatora achieves a

low latency approximately equal to the lower-bound benchmark demonstrated byEpidemic*.

The SIGCOMM2009 network is inconclusive, as most systems are demonstrated to achieve

between 1 and 2 hours latency. The improvement to Catora’s performance compared to

other systems is due to two factors: its capability to avert congestion, and its transmission

ordering. As discussed in Section 6.1, Catora’s buffer management dampens the effects

of congestion by properly freeing up space for receiving more messages and reallocating

channel capacity towardmore beneficial relaying. The transmission ordering subsystem then

takes the available channel capacity and allocates it to messages in order of their delivery or
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(a) Percentage of Delivered Messages

(b) Percentage of Delivered Topics

(c) Delivery Latency

Figure 4. Quality of Service for SIGCOMM 2009 (left) and INFOCOM 2006 (right)
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transfer utility. With intermediate nodes receiving higher-quality, non-redundant messages

while the channel is up, the likelihood of these messages being relayed further into the

network and ultimately reaching their destinations also increases.

6.3. RESOURCE CONSUMPTION

Finally, the consumption of resources is analyzed in terms of the overhead ratio

required to deliver messages (Figure 5a, representing the number of message replicas

created for each delivered message), the average time in which messages occupied buffers

(Figure 5b, representing buffer consumption), and the network-wide energy consumption

(Figure 5c).

When facing congestion, it is desirable to observe lower buffer occupancy times as

it reflects that messages are not lingering within buffers for too long and not obstructing

newer messages from traveling through the network. So, too, is it desirable to observe

lower overhead ratios – if too many copies of a message linger too long in the network, both

buffer space and channel capacity is consumed so as to further propagate those messages,

potentiallyworsening congestion. With energy consumption, the finite availability of battery

power limits the operating lifetime of participating nodes, and congestive conditions can

lead to futile consumption of energy for messages that are replicated but ultimately dropped.

Figure 5a demonstrates Catora’s ability to reduce overhead in accomplishing its

improved quality of service. The results for the overhead of Epidemic* and FAMF were

orders of magnitude larger than other systems, and thus are omitted for visual clarity.

Overall, when under congestion, Catora consumes the least overhead of all systems. In

the SIGCOMM 2009 network, Catora’s overhead is lower than that of all other systems,

and remains approximately constant through varying degrees of congestion while the other

systems show significant changes. As for the INFOCOM 2006 network, although the ICMT
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(a) Overhead Ratio for Delivery

(b) Buffer Occupancy Time

(c) Network-wide Energy Consumption

Figure 5. Resource Consumption for SIGCOMM 2009 (left) and INFOCOM 2006 (right)



160

system undergoes lower overhead under light to no congestion, Catora’s overhead is lower

when under heavier congestion. Ultimately, this suggests that networks deploying Catora

need not factor in potential levels of congestion when determining energy accomodations.

As for buffer occupancy, Figure 5b shows Catora achieves a low average buffer

occupancy messages in line with Epidemic, beating out FAMF and ICMT at all levels of

simulated congestion. This is primarily due to Catora’s buffer management system. Dur-

ing congestion, messages are appropriately removed (from being delivered or expired) or

dropped (from being redundant or low quality), thus preventing them from wastefully con-

suming any more resources without significantly impacting the network’s quality of service.

Epidemic simply drops the oldest messages in a buffer to make space for new messages,

which impacts its successful deliveries comparatively (see Figure 4a and Figure 4b). This

indicates that Catora’s strategic buffer management is beneficial to networks that may be

susceptible to congestion.

Referencing [35] for the energy consumed during each message transfer (0.125

joules per transfer), Figure 5c depicts the network-wide energy consumption for each of

the evaluated systems, with Catora being shown as ideal for scenarios involving higher

congestion. Considering both the systems’ energy consumption and their achieved delivery

probability, as depicted in Figure 4a, Catora’s energy consumption is more efficient in its

ability to deliver a higher percentage of messages, while other systems consume more en-

ergy without such improvements. Of particular interest is that Catora’s energy consumption

is lower when under congestive conditions than when not. This is due to Catora’s design to

strategically manage a node’s buffer only when necessary so as to continue message prop-

agation, along with its employment of delivery notification feedback to remove delivered

messages from node buffers. Both of these strategies reduce the presence of messages in the

network, which in turn eliminates the consumption of energy that would otherwise be used

to continue propagating poor-quality or already-delivered messages. When conditions are

less congested, the Catora buffer management subsystem is called less frequently, resulting
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in more message copies persisting in the network and propagating further. While Catora

consumes more energy than ICMT and FAMF under lesser congestion, this is the cost of

achieving more successful deliveries and lower latencies.

7. CONCLUSION AND FUTUREWORK

The Catora system is proposed as a solution to combat congestion and achieve

prioritized message delivery in DTNs. Catora’s design and procedures revolve around

the newly proposed utility density metric of each message, depending on this metric and

network-specific properties of messages to construct ordered virtual message queues for

the tasks of message relaying, buffer management during bouts of congestion, and message

delivery. In doing so, the dissemination of messages through a DTN is balanced and

proportional to a message’s priority. Simulations from two real-world datasets demonstrate

that Catora is capable of outperforming two state-of-the-art congestion control systems with

regard to preventing and controlling congestion and improving quality of service – higher

delivery ratios and lower latencies – while reducing resource consumption. Even when

congestion levels begin to impact the performance of Epidemic, Catora successfully curbs

the symptoms of congestion and beats its performance.
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SECTION

3. CONCLUSION

The challenges of sparsity and congestion in Delay Tolerant Networks have been

seldom addressed in previous research, and have been the primary motivators for the

proposals presented in this document. In acknowledging that these characteristics may

exist in a real-world instance of a DTN, it becomes prudent to consider them as potentially

obstructing factors against message delivery. Two systems are proposed and evaluated to

combat these problems for social-context-based DTNs: the ChitChat system for sparse

DTNs, and the Catora system for congested DTNs.

The ChitChat system operates on the basis of social profiles, the set of keywords

representing an individual’s interests, as defined by each node in the DTN. These are

employed to construct data structures that aid in the message delivery through a sparse

DTN. First, a node’s Transient Social Relationships associates a keyword with a weight

to represent the node’s ability to reach others with a direct interest in the keyword, either

through direct contacts or indirect paths Second, the Geographic Social Heatmap provides

information on location semantics for various points of interest in a region through the use

of Social Staypoints, a collection of key-weight pairs tied to a location that permits nodes

to identify junction points for relaying messages to interested parties. These structures

are opportunistically built from a cold-start of the network (as is permissible for DTNs),

dynamically evolve to reflect changes in the network, and are employed in a decentralized

manner by the ChitChat routing algorithm to choose next-hop routing for messages when

encounters occur between nodes. Through simulations, ChitChat is shown to outperform

three state-of-the-art DTN systems in the presence of significant network sparsity.
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Adjacent to sparsity, the Catora system focuses on DTN congestion as the primary

obstacle to address, acknowledging that energy and storage resources are finitely available

and transfer opportunities are unpredictable in terms of occurrence and duration. Catora’s

operations revolve around the strategic ordering of messages based on various metrics

depending on the action to be performed: message relaying, message delivery, and buffer

management. For message relaying, messages are transferred to neighbors in order of the

transfer virtual queue so as to expand amessage’s dissemination tree in a bredth-first manner,

thus insuring wide and balanced dissemination and increase delivery likelihood. Messages

that may be immediately delivered to their destination are ordered by the delivery virtual

queue so as to expedite the delivery of high utility messages before a connection drops.

Congestion is controlled and avoided by two strategies: first, the message delivery feedback

system opportunistically drops delivered messages from the buffers of nodes carrying them;

second, the buffermanagement virtual queue ordersmessages so as to drop bloatedmessages

that have received higher dissemination over others. Both strategies free up buffer space to

allow other message flows to continue and halt the consumption of resources for messages

that no longer need it. Catora was evaluated against three benchmark systems and two state-

of-the-art congestion avoidance systems, and found to outperform in scenarios susceptible

to congestion in terms of resource consumption, successful delivery, and latency.
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4. FUTUREWORK

Working towards effective message delivery within a sparse DTN still remains a

challenging problem, and there exists many potential strategies that could be proposed

and investigated. While my previous contributions mend some holes in the tapestry of

knowledge, noticeable gaps persist.

4.1. PRIVACY

One glaring assumption for ChitChat’s operation is the willingness of nodes to share

their social interests for the aid of accurate message routing. These social interests may

represent private and sensitive information. To give an example, assume Alice works in a

hospital treating HIV-positive patients, and in her free time is very engaged in photography

(i.e., showing a direct social interest in it). If Bob encounters Alice, he will receive Alice’s

TSRs showing high weights for both ‘photography’ and ‘HIV+’. Although the ChitChat

system offers some privacy by not explicitly revealing the direct social interests of users, it is

not foolproof, and the rigorous analysis of its inherent privacy protection is beyond the scope

of the published work. Briefly, some strategies can be investigated, such as the employment

of encryption methods (e.g., homomorphic encryption, secure multiparty computation) to

hide the semantics of social interests and messages, or the substitution of sensitive keywords

with others that are semantically related but more vague/less sensitive (e.g., ‘HIV+’ could

be substituted with ‘auto-immune diseases’). The impact on performance could then be

analyzed against variations on the degree to which induced vagueness.
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4.2. INCENTIVIZATION

A fundamental assumption of both Catora and ChitChat is that nodes are willing

to expend resources for others so that they will receive the benefits of having their own

messages relayed and delivered. Essentially, both systems function on a quid-pro-quo

arrangement. This may not hold in real-world deployments, however, as some individuals

may not need a DTN to send and receive messages, and thus are not willing to participate.

Incentivizing participation is another open problem in the realm of DTN research that would

provide contributions towards an increased effectiveness in DTN deployments.

4.3. MACHINE LEARNING

Techniques from machine learning may also be of interest for improving DTN per-

formance, but their disconnected nature inhibits traditional techniques, requiring significant

quantities of data, from being adopted. The application of certain machine learning tech-

niques that are adapted for a DTN’s opportunistic nature may be applied to a number of

challenges touched upon in this manuscript. For instance, the successful delivery of mes-

sages through certain individuals, or alternatively the repeated failure of deliveries therein,

could lend itself to being used in an iterative feedback-based learning system for next-hop

node selection. Another possible avenue is the adoption of association rule learning for

identifying social interests that are frequently associated with those that are known. For

example, if Alice is interested in ‘outdoor activities’, it may be inferred that she is also

interested in ‘hiking’ or ‘kayaking’ regardless of whether she specifies these interests. Al-

ternatively, Alice’s interest in a vegetarian implies she is uninterested in meat-based cuisine,

and thus it would not be prudent to send meat-related messages to her. The foreseeable

primary challenge of these strategies lies in maintaining accuracy of these learning engines

and aggregating information from others encountered in the DTN.
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