
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2020

Computational model for neural architecture search Computational model for neural architecture search

Ram Deepak Gottapu

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Systems Engineering Commons

Department: Engineering Management and Systems Engineering Department: Engineering Management and Systems Engineering

Recommended Citation Recommended Citation
Gottapu, Ram Deepak, "Computational model for neural architecture search" (2020). Doctoral
Dissertations. 2866.
https://scholarsmine.mst.edu/doctoral_dissertations/2866

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2866?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMPUTATIONAL MODEL FOR NEURAL ARCHITECTURE SEARCH

by

RAM DEEPAK GOTTAPU

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

SYSTEMS ENGINEERING

2020

Approved by

Dr. Cihan H Dagli (Advisor)
Dr. Ruwen Qin

Dr. Benjamin Kwasa
Dr. Zhaozheng Yin
Dr. Donald Wunsch

Copyright 2020

RAM DEEPAK GOTTAPU

All Rights Reserved

iii

ABSTRACT

A long-standing goal in Deep Learning (DL) research is to design efficient architec-

tures for a given dataset that are both accurate and computationally inexpensive. At present,

designing deep learning architectures for a real-world application requires both human ex-

pertise and considerable effort as they are either handcrafted by careful experimentation or

modified from a handful of existing models. This method is inefficient as the process of

architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning archi-

tecture design through a modeling procedure. In particular, it first introduces a framework

that treats the deep learning architecture design problem as a systems architecting problem.

The framework provides the ability to utilize novel and intuitive search spaces to find effi-

cient architectures using evolutionary methodologies. Secondly, it uses a parameter sharing

approach to speed up the search process and explores its limitations with search space.

Lastly, it introduces a multi-objective approach to facilitate architecture design based on

hardware constraints that are often associated with real-world deployment.

From the modeling perspective, instead of designing and staging explicit algorithms

to process images/sentences, the contribution lies in the design of hybrid architectures that

use the deep learning literature developed so far. This approach enjoys the benefit of a single

problem formulation to perform end-to-end training and architecture design with limited

computational resources.

iv

ACKNOWLEDGMENTS

I would like to express my heartful thanks to my advisor, Dr. Cihan Dagli, since

it has been a great honor and privilege working with him and with the group, and for his

conscientious guidance throughout my five years of research life. I would also like to thank

my committee members, Dr. Ruwen Qin, Dr. Benjamin Kwasa, Dr. Zhaozheng Yin, Dr.

Donald Wunsch for their perceptive suggestions during my study and research.

Thanks go to all the faculty and staff at the EMSE department as well for their efforts

to create an efficient and friendly working environment in SESL lab. I would also like to

thank my family and friends for their endless motivation and support to me.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

SECTION

1. INTRODUCTION. 1

1.1. MOTIVATION . 1

1.2. CHALLENGES . 2

1.3. ENCOURAGING PROGRESS. 3

1.4. OUTLINE OF CONTRIBUTIONS . 3

1.5. LIMITATIONS OF USING THIS APPROACH . 4

2. LITERATURE REVIEW . 5

2.1. DEEP LEARNING HISTORY . 5

2.1.1. Lenet-5 . 6

2.1.2. AlexNet . 7

2.1.3. ZFNet . 7

2.1.4. VGG and GoogLeNet . 7

2.1.5. Observations for Very Deep Architectures . 9

2.1.6. ResNet . 10

2.1.7. Identity Mappings in Deep Residual Networks . 11

vi

2.1.8. Wide Residual Networks . 11

2.1.9. ResNext . 11

2.1.10. Deep Neworks with Stochastic Depth . 11

2.1.11. DenseNets. 13

2.1.12. Takeaways from the Models . 13

2.2. ARCHITECTURE SEARCH APPROACHES . 14

2.2.1. NAS . 14

2.2.2. NASNET. 14

2.2.3. ENAS . 15

2.2.4. DARTS . 16

3. THEORITICAL BACKGROUND. 19

3.1. SUPERVISED LEARNING . 19

3.2. BACKPROPAGATION . 21

3.3. REGULARIZATION . 23

3.3.1. L2 Regularization . 23

3.3.2. Dropout . 24

3.4. CONVOLUTIONAL NEURAL NETWORK . 25

3.4.1. Conv Layer . 25

3.4.2. Pool Layer. 26

3.4.3. ConvNet Architectures . 27

3.5. RECURRENT NEURAL NETWORK . 27

3.6. LONG SHORT-TERM MEMORY. 29

3.7. TRAINING SUMMARY . 30

4. SYSTEM ARCHITECTING APPROACH FOR DEEP LEARNING 32

4.1. OUTLINE . 32

4.2. RELATED WORK. 34

vii

4.3. FRAMEWORK . 35

4.3.1. Encoding . 35

4.3.1.1. Operation encoding . 36

4.3.1.2. Interface encoding . 36

4.3.2. Sampling . 37

4.3.3. Architecture Evaluation and Trade-off . 38

4.4. CASE STUDY. 38

4.4.1. Dataset . 38

4.4.2. Modelling the Architecture Using Framework . 39

4.4.2.1. Encoding . 39

4.4.2.2. Genetic algorithm for search strategy . 41

4.4.3. Experiments and Results . 42

4.4.4. Results on CIFAR-10 Dataset . 46

4.4.5. Additional Experimentation on CIFAR-100 . 46

4.5. DISCUSSION . 47

4.5.1. Feasible Architectures . 48

4.5.2. Limitations . 48

4.5.3. Discussion . 48

5. EFFICIENT ARCHITECTURE SEARCH FOR DEEP NEURAL NETWORKS . . 49

5.1. OUTLINE . 49

5.2. RELATED WORK. 51

5.3. APPROACH . 52

5.3.1. Parameter Sharing . 52

5.3.2. Encoding . 54

5.3.3. Regularized Genetic Algorithm. 55

5.4. EXPERIMENTS AND RESULTS . 56

viii

5.5. DISCUSSION . 59

6. MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH VIA NSAGA-II . . . 60

6.1. OUTLINE . 60

6.2. RELATED WORK. 62

6.3. MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA) 62

6.4. SEARCH STRATEGY AND ENCODING . 64

6.5. EXPERIMENTS AND RESULTS . 65

6.6. DISCUSSION . 67

7. CONCLUSION AND FUTURE WORK . 69

7.1. CONCLUSION . 69

7.2. FUTURE WORK . 69

APPENDIX . 70

REFERENCES . 77

VITA . 80

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1. Two architectures trained on MNIST dataset. 2

2.1. Histogram plots showing the evolution of architecture performances over the
last couple of years. 6

2.2. LeNet architecture. 6

2.3. AlexNet architecture . 7

2.4. ZFNet architecture. 8

2.5. VGGNet architectures of different versions/layers. 8

2.6. Complete architecture design of GoogLeNet. 9

2.7. Performance of "plain deep CNN networks" at two different depths. 10

2.8. Residual mapping for ResNets. 10

2.9. ResNet architecture. 10

2.10. Improved ResNet. 11

2.11. Wide ResNet. 12

2.12. ResNext architecture.. 12

2.13. Deep architectures trained by randomly dropping layers. 12

2.14. DenseNet architecture. 13

2.15. NAS with reinforcement learning.. 15

2.16. NasNet template. 16

2.17. NasNet results. 16

2.18. Graph representation of cells in ENAS approach. 17

2.19. An overview of DARTS. 17

3.1. An example of backpropagation along a computational graph. 21

3.2. Dropout Neural Net Model. 24

3.3. CNN model. 25

x

3.4. RNN architecture designs. 28

3.5. LSTM Equations.. 29

4.1. Illustration of neural architecture search method. 33

4.2. Outline of NAS framework. 35

4.3. Encoding for wide architecture. 36

4.4. Encoding for deep architecture.. 38

4.5. Samples from CIFAR-10 dataset.. 39

4.6. Pre-Detemined architecture designs. 41

4.7. Interface mutation on a deep design. 42

4.8. Operation mutation on a deep design. 42

4.9. Interface mutation on a wide design. 43

4.10. Operation mutation on a wide design.. 44

4.11. Model of best architecture found on CIFAR-10 dataset with an error rate of
4.61%. 46

4.12. Model of best architecture found on CIFAR-100 dataset with an error rate of
22.64%. 47

5.1. The representation of parameter sharing between three different architectures. . . 53

5.2. Chromosome example. 54

5.3. Overall template design. 55

5.4. Steps of Regularized Genetic Algorithm (RGE). 56

5.5. e-block of best architecture . 57

5.6. Plot showing the evolution of architectures. 58

6.1. Comparison of inference times for NVIDIA GTX and K80.. 61

6.2. NSGA-2 Algorithm.. 64

6.3. Parameter sharing for NSGA-II. 65

6.4. Progress of the Pareto front of NSGA-II during architecture search. 66

xi

LIST OF TABLES

Table Page

4.1. Table showing layers and their capabilities . 40

4.2. Results showing the performance of framework on CIFAR-10 with respect to
state of the art models . 45

4.3. Results showing the performance of framework on CIFAR-100 with respect to
state of the art models . 47

5.1. Error rates % on CIFAR datasets . 58

6.1. Comparison ofNSGA-Netwith otherNASmethods onCIFAR-10 for different-
sized models. 68

1. INTRODUCTION

1.1. MOTIVATION

The last few years have seen much success of deep neural networks (DNNs) in

many challenging applications such as image recognition, speech recognition, and machine

translation. DNNs learn by using multiple levels of representation, obtained by composing

simple but non-linear modules that each transform the representation at one level (starting

with the raw input) into a representation at a higher, slightly more abstract level [16]. With

the composition of enough such transformations, very complex functions can be learned

fromdata using a general-purpose learning procedure. The key aspect of deep learning is that

the composition, placement, and connectivity between the modules within the architecture

play an important role in regard to its performance. For example, Figure 1.1 shows two

2-hidden layered architectures with their performances and total trainable parameters. The

architecture on right has better performance even though it uses less parameters than on

the left because of its complex connectivity and composition. As deep learning models

generally consist ofmultiple layers (evenmore than 100 in some cases [8, 9, 12]), architecting

them to find a design that gives optimal performance is an arduous task and requires a lot

of expert knowledge and ample time. It is therefore not surprising that in recent years,

techniques to automatically design these architectures have begun gaining popularity. These

methodoligies usually build a search space and evolve the design within the constraints of

the space to eventually find an optimized architecture [19, 22, 24, 34, 35]. This dissertation

investigates the state-of-the-art techniques used for designing deep learning models and

present new approaches to improve the automation. Concretely, the research is focused on

searching large search spaces both quickly and efficiently to produce optimal architectures

for a given dataset.

2

Figure 1.1. Two architectures trained on MNIST dataset. Both are trained with learning
rate: 0.01, batch size: 62, epochs: 70. The architecture on right uses more connections
between layers with compressions. This gives better performance with fewer parameters
when compared with the architecture on left.

1.2. CHALLENGES

Even though it is evident that deep learning models learn by extracting features

at multiple levels, the exact approximation that happens within different layers is difficult

to understand, much less tune the architecture based on that. As such it is essential

that the search space used to build efficient architectures must accommodate the complex

interactions while having finite number of combinations so that the search algorithm can

find the best suitable combination for the given dataset. In addition to search spaces, deep

learning networks are often associated with huge computation as the trainable parameters

range from hundreds of thousands to millions. Therefore, any search associated with them

involves training each modified architecture from scratch which is highly computationally

expensive and not feasible for practical applications. In order to be able to perform search

efficiently, novel search approaches are necessary to control the computation costs so that

they can be applied for any given dataset.

3

1.3. ENCOURAGING PROGRESS

Despite the difficulty of the task, there is a rapid progress in the area of architecture

search. In particular, the state-of-the-art models related to architecture search have been able

to find efficient designs using novel search spaces while being computationally efficient. For

example, the initial designs used as many as 800 GPUs to search for an efficient architecture

[34] while the latest models use only 1 GPU with similar performance [19, 22].

1.4. OUTLINE OF CONTRIBUTIONS

The approaches in this dissertation improve upon the existing state-of-the-art deep

learning models in the field of search space and computational requirements. Sections 2

and 3 provide necessary background related to the concepts presented in this dissertation.

Section 4 presents a generalized platform which uses system architecting principles

to find an efficient deep learning architecture. System architecting approaches are generally

used for developing very complex systems with multiple objectives. Therefore, it is a

provides a very optimal way to experiment with different search spaces, objectives and

even participating layers. The platform described in this part will be used in the following

sections.

Section 5 introduces a parameter sharing approach which greatly reduces the com-

putation during the architecture search process. The approach focuses on modifying the

existing parameter dimensions as per the requirement instead of creating new parameters

for each architecture generated during the search process.

Section 6 extends the NAS to multi-objective problem where the optimal architec-

tures are designed based on device configurations in addition to validation accuracy.

4

1.5. LIMITATIONS OF USING THIS APPROACH

Although the approaches presented in this dissertation are capable of searching

efficient architectures, it is still not capable of finding perfect architectures for a given

dataset. For instance, the weight modification approach presented in Section 5 is able to

reduce the computation time required to perform the search. However, it ignores the fact

that no two architectures use the parameters in the same fashion. This shows that there

is still a room for improving the way the parameters are shared during the search process.

In addition to that, the approaches presented in this dissertation only improve the search

process but they do not increase the current best accuracies. Therefore, in order to build a

perfect classification model for any given dataset, it is mandatory that more robust search

designs are required.

5

2. LITERATURE REVIEW

This section insvestigates the progressmade in designing deep learning architectures

by describing howdifferent contributions helped the transition into neural architecture search

approaches. It also descrbes state-of-the-art search spaces and techniques used for current

architecture search designs.

2.1. DEEP LEARNING HISTORY

The history of deep learning algorithms starts with the MARK I Perceptron in 1957

by Frank Rosenblatt which uses a weight, bias and update rule to solve a binary classification

problem. Later in 1960,Widrow andHoff developed Adaline/Madaline using the concept of

stacking to generate multi-layer perceptrons which closely resembles the modern day neural

networks. In 1986, Rumelhart introduced backpropogation which gave a principled way to

train the multi-layered perceptrons and neural networks [25]. However, these approaches

were not popularly used as they are not suitable for large problems mainly due to lack of

computation during that time. In 2006, Hinton et al. showed that it is possible to train a

deep neural network if sufficient computation is provided [10]. Finally around 2010-2012

(see Figure 2.1), with the improvements made in computational resources (GPUs), the first

strong results for deep learning architectures were produced in acoustic modelling [20],

speech recognition [6] and image classification [15]. Since then a significant amount of

research was made towards the exploration of deep learning architectures to design more

efficient architectures.

This dissertation mainly concentrates on the exploration part of the architectures

specifically for images (CNNs) and natural language (RNN/LSTM) to some extent, as they

are the most popular applications. The following sections describe different case studies

6

of CNNs from 1998, which led to state of the art models. Many of these models used

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as a standard reference as

shown in Figure 2.1.

Figure 2.1. Histogram plots showing the evolution of architecture performances over the
last couple of years. Each architecture was a winner of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in respective years.

2.1.1. Lenet-5. It is the first instantiation of CNNby LeCunwhichwas successfully

used in practical application i.e. digit recognition [17]. It used the format: [CONV-POOL-

CONV-POOL-FULLY CONNECTED-OUTPUT] as shown in Figure 2.2.

Figure 2.2. LeNet architecture. The architecture was used for MNIST dataset and the first
practical application of CNN model [17].

7

2.1.2. AlexNet. It is the first large scale CNN designed by Krizhevsky which out-

performed all the previous non-deep learning based algorithms by significant margin in

IMAGENET classification challange [15]. It is also responsible for starting the research

related to CNN architecture design. The architecture as shown in Figure 2.3, consists of 8

layers and was trained on IMAGENET dataset (which has 227x227x3 images) using two

GTX 580 GPU each with only 3GB memory.

Figure 2.3. AlexNet architecture. The architecture was separated into two parallel processes
to distribute the computation [15].

2.1.3. ZFNet. It is the winner of 2013 IMAGENET challange and developed by

Zeiler and Fergus [33]. It has the same structure as AlexNet but with improved hyper-

parameters. Figure 2.4, show the overall implementation of ZFNet. This implementation

showed that it is possible to significantly improve the architecture performance just by

tuning the hyper-parameters.

2.1.4. VGG and GoogLeNet. In 2014 IMAGENET challange, there are two im-

portant architectures that are very close in terms of performance. The VGGNet [28] by

Oxford university consisted of 19 layers deep (significantly deeper than previous models)

and uses small filters (3x3) instead of large filters (say 7x7) unlike its predecessors. They

showed that a stack of three 3x3 conv filters has the same effective receptive field as one

8

7x7 conv filter but has added advantage of more non-linearities. Figure 2.5 shows different

version of VGG net. Note that the results in [28] are achieved after using ensembles of

different versions.

Figure 2.4. ZFNet architecture. It shows the tuning of hyperparameters [33].

Figure 2.5. VGGNet architectures of different versions/layers. The best results were
obtained by taking ensembles of one/many versions [28].

9

Similar to VGG net, the GoogLeNet [30] is also a deep network with 22 layers

but designed for computational efficiency. The efficiency was achieved by stacking up

inception modules instead of convolutional layers as shown in Figure 2.6. The inception

module consists of multiple layers in parallel built on top of single input layer whose outputs

are concatenated depth-wise at the concat node. It used only 5M parameters (which is 12x

less than AlexNet). Note that the naive inception module is very computationally expensive

(uses 854M ops). In order to reduce the computational complexity, they used 1x1 conv

(also called bottleneck layers) to reduce the feature depth.

Figure 2.6. Complete architecture design of GoogLeNet. The architecture is made of
multiple inception modules stacked on top of each other [30].

2.1.5. Observations for Very Deep Architectures. Since deeper architectures are

capable of giving high accuracies, the authors in [8] tried to further increase the depth

without increasing the width. The plots in Figure 2.7 show that the 56 layered network has

bad performance when compared to 20 layer network in both training and validation error.

In order to overcome this problem, they hypothesized that the degraded performance may

be related to optimizing very deep networks and they used the concept of blocks which

contain residual mapping instead of direct mapping as shown in Figure 2.8. This ensures

better information flow in very deep architectures during optimization which led to the

development of ResNet.

10

Figure 2.7. Performance of "plain deep CNN networks" at two different depths. Both
training and test plots show degraded performance with the increase in depth [8].

Figure 2.8. Residual mapping for ResNets. [8].

2.1.6. ResNet. Similar toGoogLeNetwhich increased thewidth of the architecture,

the ResNet [8] increased the depth of the architecture using the hypothesis defined above i.e.

it used 152 layers with blocks having 1x1 and 3x3 convolutions and residual connections as

shown in Figure 2.9. In 2015 IMAGENET challange, it beat all the previous architectures.

Figure 2.9. ResNet architecture. The skip connections act as identity mappings [8].

11

Improvements on ResNets: There are many architectures that were developed based

on ResNet aiming to further improve the performance. These models did not participate in

IMAGENET challenge but they did provivide improved results on the dataset.

2.1.7. Identity Mappings in Deep Residual Networks. In this paper [9], the

authors improved ResNet block by creating more direct path for propagating information

throughout network (see Figure 2.10). The addition of activation improved the performance

of ResNet.

Figure 2.10. Improved ResNet. The identity mappings in ResNet blocks have additional
layers. [9].

2.1.8. Wide Residual Networks. In this architecture [32], the authors argued that

that very deep residual networks has a problem of diminishing feature reuse, which makes

these networks very slow to train. To avoid this, they used wider residual blocks (FxK filters

instead of F filters in each layer) as shown in Figure 2.11.

2.1.9. ResNext. In this architecture [31], the authors tried to combine the inception

module and ResNet block to get a design with fewer parameters. A ResNext block is shown

in Figure 2.12. This design secured 2nd place in the 2016 ILSVRC challange.

2.1.10. Deep Neworks with Stochastic Depth. Since very deep networks also

suffer from vanishing gradient probles, the authors in this paper [13] used short networks

during training. This is achieved by randomly dropping a subset layers of a very deep

12

Figure 2.11. Wide ResNet. Modifications made on filters for the blocks used in ResNet
architecture [32].

Figure 2.12. ResNext architecture. It shows the combination of ResNet and Inception
module [31].

network during each training pass and bypassing them with identity function as shown in

the Figure 2.13. However, during the test time, the complete architecture is used. This

approach allowed to train very deep networks (beyond 1200 layers) while also reducing the

training time.

Figure 2.13. Deep architectures trained by randomly dropping layers.

13

2.1.11. DenseNets. In this architecture [12], each layer is connected to every other

layer in the network as shown in the Figure 2.14. This approach alleviates vanishing

gradient, strengthens feature propagation and encourages feature reuse. The architecture

not only beat all the previous designs in performance but did it with significantly lower

parameters.

Figure 2.14. DenseNet architecture. It shows blocks with all possible connections between
its layers [12].

2.1.12. Takeaways from the Models. The following points describe the overall

observations from different models:

• Tuning the parameters improves model accuracy.

• Increasing width increases learning capability.

• Bottleneck layers improve computational efficiency.

• Increasing depth eventually degrades the accuracy.

• Increasing depth with residual connections allows us to create deeper networks with-

out degrading accuracy to a certain extent.

• Innovative connections between the layers improve accuracy

14

2.2. ARCHITECTURE SEARCH APPROACHES

From the models described above, it is now clear that there are many factors that

influence the overall performance of an architecture for a given dataset. Also, manual

search approaches considering all the above mentioned discoveries is not feasible because

of the large search space associated with it. For example, designing a hybrid 100+ layer

architectures while choosing appropriate depth, width, filter composition and connections

among them will have millions of combinations and manual search is not possible to get an

optimal architecture considering all the factors for a given dataset. Therefore, a learning to

learn approach is essential in order to find efficient architectures using the available choices.

The popular approaches used in this regard are the evolutionary algorithms (EA) and

reinforcement learning (RL). Many attempts were made to design efficient architectures

using these algorithms [12,13,14] but they were not able to perform better than man-

made architectures. One reason for such performance can be attributed to computational

requirements as each new architecture generated in the search process has to be trained from

scratch which is both time consuming and expensive.

2.2.1. NAS. In [34], the authors conducted a massive experiment using reinforce-

ment learning with 800 GPUs to search for efficient architecture that can out perform all

the man made architectures. The experiment took 24 days using all GPUs with the goal of

finding the best filter dimensions, filter layers and connections for each layer in a fixed length

architectures (15 layers). The resulting architecture did not out perform DenseNet [12] but

was able to produce results very similar to it. Figure 2.15 shows the first automatically

generated architecture that was able to compete with human-designed architectures.

2.2.2. NASNET. The above experiment showed that it is possible to design efficient

architectures using learning to learn process. However, the approach is not feasible as it

required huge computational resources. In order to reduce the computation required for

searching the architectures, the authors in [35] came up with a new search space call neural

architecture search (NAS) where, instead of searching the complete architecture, they used

15

Figure 2.15. NAS with reinforcement learning. It is the first architecture designed using
evolution from reinforcement learning [34].

cell based approach. The search is applied with respect to these cells which are stacked

upon each other in a pre-determined architecture as shown in Figure 2.16. Figure 2.17

shows the normal cell and reduction cells that are learnied using this search space. The

normal cells maintain the dimensions of input while the reduction cell acts as pooling layer.

This approach also uses reinforcement learning to evolve the population. The experiment

took approximately 48 hours using 400 GPUs which is significant improvement over the

previous approach. Even though it is still not feasible for general usage because of the

number of GPUs it used, it is the first architecture that was able to out perform all the man

made architectures.

2.2.3. ENAS. Finally in [22], the authors present efficient neural architecture search

using parameter sharing. The approach uses the same RL approach, but instead of training

each new architecture from scratch, they considered each operation as a node in a graph and

the goal is to find the optimal sub-graph (see Figure 2.18). Therefore, whenever a particular

node is selected, it uses the previously trained weights instead of training from scratch.

16

Figure 2.16. NasNet template. Pre-determined design for architecture search [35].

Figure 2.17. NasNet results. Cells designed from improved search space for NasNet [35].
Computation reduced from approx 800 GPUs to 400 GPUs.

This gave performance similar to that of NAS but used only 1 GPU. This is a massive

improvement from previous approaches since we are able to find efficient architecture using

only one GPU which is feasible for general purposes.

2.2.4. DARTS. Following ENAS, the authors in [19] proposed DARTS: Differen-

tiable Architecture Search which used a differential optimization approach by converting

the NAS into a bi-level optimization problem. This is achieved by continous relaxation of

discrete architecture representation and performing search using gradient descent. Once the

17

Figure 2.18. Graph representation of cells in ENAS approach. The computation reduced
from 400 GPUs with 2 day training to 1 GPU with 1 day training [22].

architecture is designed, the continous representation is converted back to discrete archi-

tecture. This approach also used parameter sharing and was able to produce slightly better

results than ENAS. Figure 2.19 shows the steps used in DARTS.

Figure 2.19. An overview of DARTS. (a) Operations on the edges are initially unknown.
(b) Continuous relaxation of the search space by placing a mixture of candidate operations
on each edge. (c) Joint optimization of the mixing probabilities and the network weights by
solving a bilevel optimization problem. (d) Inducing the final architecture from the learned
mixing probabilities. [19].

18

Considering all these improvements in architecting deep learning models, it is

obvious that the direction of research is towards using efficient learning to learn approaches.

This dissertation provides solutions to further improve the search speed and also to search

large search spaces more efficiently.

19

3. THEORITICAL BACKGROUND

This section provides a brief introduction to all the concepts and algorithms used

in this dissertation. For a more thorough and slower-paced introduction on deep learning,

please refer to [7].

3.1. SUPERVISED LEARNING

Supervised learning is a branch of machine learning that performs a mapping 5 :

- → . using a set of collected examples, where - is input space and . is output space. In

case of images, - ∈ collection of images and . ∈ corresponding labels which are labelled

manually.

Objective: Consider a training dataset of n samples {(G1, H1) (G2, H2)...(G=, H=)}

made up of independent and identically distributed (i.i.d) samples from a data generating

distribution �; i.e. (G8, H8) ∈ � ∀ 8. If ! (Ĥ, H) is some loss function that calculates the

disagreement between predicted label Ĥ8 = 5 (G8) for some 5 ∈ � and true label H8, then the

objective is to find 5 ∗ ∈ � which satisfies:

5 ∗ = argmin
5 ∈�

�(G,H)∼�! (5 (G), H) (3.1)

In other words, the goal is to find a function 5 ∗ that minimizes the expected loss

over the data generating distribution �.

Limitations and Assumptions: Unfortunately, the optimization problem defined in

Equation 3.1 is unmanageable as it is not possible to have access to all possible elements in

� and therefore cannot evaluate the expectation (�) without making unrealistically strong

20

assumptions on �, !, 5 . However, under the i.i.d assumption we can approximate the

expected loss in Equation 3.1 above with sampling by averaging the loss over available

training data.

5 ∗ = argmin
5 ∈�

1
=

=∑
8=1

! (5 (G8), H8) (3.2)

In other words, the loss is optimized only over training samples and hope that it is

a good proxy equation that closely resembles the actual objective equation in Equation 3.1.

Example: Neural Network Classification

In order to understand the objective function described in Equation 3.2, consider the

neural network which consists of # data points each with dimension of � and three possible

classes �. The prediction for the network will be: 5 (G) = ,2 C0=ℎ(,)
1 G + 11) + 12

where,2 is a x� matrix (� = 3 in this example). The output 5 (G) will therefore be a 3-

dimensional vector. Note that it is common practice to represent the output vector as logits

by passing them through a softmax function when dealing with classification problems.

The softmax function takes a vector z as input and outputs the same dimensional vector

?, where ?8 = 4I8∑
:=1 4

I:
. Note that the vector z can contain arbitrary real-valued quantities,

but the vector ? is normalized so that all of its values are in the range 0-1 and they sum to

1. This vector ? is essentially the prediction (Ĥ8) from the network and the correct label H

is a 3-dimensional vector that is all 0 except for a single 1 at the index of true class (E.g.

[0,0,1] for class 3). The most commonly used loss function for classification problem is

cross-entropy loss as shown in following equation.

! (Ĥ, H) = −
 ∑
:=1

H: ;>6Ĥ: = −;>6ĤH = 1 (3.3)

21

where the first equality is the actual cross-entropy definition and second equality is a

simplified form for classification. Since the interpretation of the network output is a

probability distribution for �=3 different classes, the minimization in Equation 3.2 is

basically the minimization of negative log probability of correct class.

3.2. BACKPROPAGATION

By evaluating the gradients of the loss function and using stochastic gradient descent

(SGD) to minimize the loss, it is possible to find a mapping function 5 ∈ � which

can map - → . consistent with the training data. This section describes the process

of backpropagation which efficiently computes gradients of scalar valued functions with

respect to their inputs. For any feed forward network including deep neural networks,

the prediction yĤ for any input G is made by passing the information forward through the

network. During training, the forward pass continues onward until it produces a scalar cost

value. The backpropagation, allows the information from the cost to flow backwards in

order to compute the gradients. Consider the example shown in Figure 3.1.

Figure 3.1. An example of backpropagation along a computational graph.

22

During forward pass G and H take on specific (numerical) values and the vector (or

scalar) I is computed using some fixed function (e.g. I = GH). Notice that it is possible

immediately compute the Jacobian matrices 3I/3G and 3I/3H of this transformation using

calculus, because of the knowledge of what function I is computing in the forward pass.

These tell us what first order influence G and H have on the value of I. The value I goes off

into a computational graph and eventually at the end of the graph the total loss 6 (a scalar)

is computed. The backward pass proceeds in the reverse order, recursively applying the

chain rule to find the influence of all inputs of the graph on the final output. In particular,

this computational unit finds out what 36/3I is, telling us how I influences the final graph

output. The chain rule states that to backpropagate this we should take the global gradient

on I, 36/3I and multiply it onto the local gradients for each input. For example, the global

gradient for G will become 36/3G = 3I/3G 36/3I . If G, I are vectors then this is a single

matrix-vector multiplication. The gradient is then recursively chained, in turn, through the

functions that produced the values of G and H until the inputs are reached. In neural network

applications, the inputs we are interested in are the parameters, and their gradient tells us

which way they should be nudged to decrease the loss.

Computational Graph Representation: Instead of thinking of the computational

process of a Neural Network as a linear list of operations it is more intuitive to think about

the function from inputs to outputs as a directed acyclic graph (DAG) of operations, where

vectors flow along edges and nodes represent differentiable transformations that consume

some number of vectors and combine them to one vector that then flows to other nodes.

Most implementations of backpropagation organize the code base around aGraph object that

maintains the connectivity of operations (also called gates, or layers) and a large collection

of possible operations. Both Graph and Node objects implement two functions: forward()

and backward(). The Graph’s forward() iterates over all nodes in the topological order

and calls their forward(), and its backward() iterates in the reverse order and calls their

backward(). Each Node computes its output with some function during its forward() call,

23

and in backward() it is given the gradient of the loss function with respect to its output

and returns the ’chained’ gradients on all of its inputs. Here the ’chained implies taking

the gradient on its output and multiplying it by its own local gradient (the Jacobian of

this transformation). This gradient then flows to its children nodes that perform the same

operation recursively. As a last technical note, if the output of a node is used in multiple

places in the graph then correct behavior by the multivariable chain rule is to add the

gradients during backpropagation along all branches. This would be handled in the Graph

object.

3.3. REGULARIZATION

Unfortunately, optimizing Equation 3.2 instead of Equation 3.1 poses challenges.

For instance, consider a function 5 that maps each G8 in the training data to its H8 but

returns zero everywhere else. This would be a solution to Equation 3.2 (for any sensible

loss function ! that achieves a minimum value when H = Ĥ), but we would expect very

high loss for all other points in � that are not in the training set. In other words, we would

not expect this function to generalize to all (G, H) ∼ �. An additional concern is that there

may be many different functions that all achieve the same loss under Equation 2.2 (so there

is no unique solution), but their generalization outside of the training data could vary. If

there is only training data then the challange is to choose among an entire set of 5 ∈ �

that all achieve the same loss in Equation 3.2? Both of these concerns can be alleviated by

using regularization. There are a couple of regularization types in machine learning, but

the followin are popular in deep learning.

3.3.1. L2 Regularization. This regularization works by adding the term ' to the

objective:

5 ∗ = argmin
5 ∈�

1
=

=∑
8=1

! (5 (G8), H8) + '(5) (3.4)

24

where ' is a scalar-valued function that encodes preference for some functions over others,

regardless of their fit to the training data. This addition can be partly justified as following the

principle of Occam’s razor, which could be stated as: ’Suppose there exist two explanations

for an occurrence. In this case the simpler one is usually better’. Put in another way, the

regularization is a measure of complexity of a function. Together with the regularization

term, the objective in Equation 2.3 encourages simple solutions that also fit the training data

well, and its intended effect is to some extent compensate for the discrepancy between the

objective in Equation 3.2 and Equation 3.1.

3.3.2. Dropout. The key idea is to randomly drop units (along with their connec-

tions) from the neural network during training as shown in Figure 3.2. This prevents units

from co-adapting too much. During training, dropout samples from an exponential number

of different ’thinned’ networks. At test time, it is easy to approximate the effect of averaging

the predictions of all these thinned networks by simply using a single unthinned network that

has smaller weights. This significantly reduces overfitting and gives major improvements

over other regularization methods.

Figure 3.2. Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers.
Right: An example of a thinned net produced by applying dropout to the network on the
left. Crossed units have been dropped.

25

3.4. CONVOLUTIONAL NEURAL NETWORK

Convolutional neural networks (CNNs) are a class of deep neural networks designed

for handling data with some spatial topology (e.g. images, videos, sound spectrograms in

speech processing, character sequences in text, or 3D voxel data). In each of these cases

an input example G is a multi-dimensional array (i.e. a tensor). CNNs use relatively

little pre-processing compared to other supervised learning methods. This implies that the

network learns the filters that in traditional algorithms were hand-engineered which gives a

major advantage over other traditional algorithms.

Figure 3.3. CNN model. Illustration of convolving a 5x5 filter (which we will eventually
learn) over a 32x32x3 input array with stride 1 and with no input padding. The filters are
always small spatially (5 vs. 32), but always span the full depth of the input array (3). There
are 28 x 28 unique positions for a 5 x 5 filter in a 32 x 32 input, so the convolution produces
a 28 x 28 activation map, where each element is the result of a dot product between the filter
and the input. A convolutional layer has not just one but a set of different filters (e.g. 64
of them), each applied in the same way and independently, resulting in their own activation
maps. The activation maps are finally stacked together along depth to produce the output
of the layer (e.g. 28 x 28 x 64 array in this case).

3.4.1. Conv Layer. The core computational building block of a Convolutional

Neural Network is the Convolutional Layer (or the CONV layer) which takes an input tensor

and produces an output tensor by convolving the input with a set of filters. For instance,

consider the example shown in Figure 3.3. The input is a color image with dimensions

26

32x32x3 while the choice of filter is 5x5x3 (= 75 parameters which are trainable). The

convolution happens by sliding the filter across the spatial points of the input tensor (one

step at a time i.e. stride = 1) and computing the dot product between local values of - and

F. This produces an activation map which will have the dimension 28x28x1. It is common

to use multiple such filters in each layer (say 32) and the output will have a dimension

of 28x28x32. Also, for very deep CNNs (which is common for CNNs) it is necessary to

maintain the dimensions so as to be able to stack multiple layers. For this purpose, the input

at each layer is padded with a border of zeros. If a pad of 2 is added to the input tensor G in

Figure 3.3 and the convolution is performed with same stride value (stride = 1), the resulting

activation will have the same height and width as that of input tensor x i.e. 32x32x32. As

the complete architecture is optimized using loss, each filter will develop the capacity to

look for certain local features in the input tensor G. Steps performed during conv operation:

1. Input a tensor G with dimensions,1x�1x�1

2. Define configuration of conv: stride B, pad ?, number of filters and spatial extent

of filter �.

3. Produce a activationmapwith dimensions,2x�2x�2 where, = (,1−�+2%)/(+1,

�2 = (�1 − � + 2%)/(+ 1 and �2 = .

3.4.2. Pool Layer. In addition to convolutional layers, to further control overfitting

it is common to use pooling layers that decrease the size of the representation with a fixed

downsampling transformation (i.e. without any parameters). In particular, the pooling layers

operate on each channel (activation map) independently and downsample them spatially.

A commonly used setting is to use 2x2 filters with stride of 2, where each filter computes

the max operation (i.e. over 4 numbers). The result is that an input tensor is downscaled

exactly by a factor of 2 in both width and height and the representation size is reduced by a

factor of 4, at the cost of losing some local spatial information.

27

3.4.3. ConvNetArchitectures. Finally, a convolutional network is built by stacking

convolutional layers and possibly introducing pooling layers to control the computational

complexity of the architecture. A typical convolutional neural network architecture that

processes images might take the form [INPUT, [CONV, CONV, POOL] x 3, F C, F C].

Here, INPUT represents a tensor of a batch of images (e.g. [100 x 32 x 32 x 3] for a batch

of 100 32 x 32 color images) CONV is a convolutional layer with 3x3 filters applied with

padding of 1 and stride of 1, POOL stands for a typical 2x2 filter max pooling layer with

stride of 2, and FC are fully-connected layers, where the last one computes the logits of

different classes just before a softmax classifier. In this architecture the spatial size of the

input is reduced by a factor of 2 in both width and height after each POOL layer, so after

the third POOL layer the spatial size of the representation along width and height would be

4x4.

3.5. RECURRENT NEURAL NETWORK

In many practical applications the input or output spaces contain sequences. For

example, sentences are often modeled as a sequence of words, where each word is encoded

as a one-hot vector (i.e. a vector of all zeros except for a single 1 at the index of the

word in a fixed vocabulary). A recurrent neural network (RNN) is a connectivity pattern

that processes a sequence of vectors {G1, ..., G) } using a recurrence formula of the form

ℎC = 5\ (ℎC−1, GC), where 5 is a function that we describe in more detail below and the same

parameters \ are used at every time step, allowing us to process sequences with an arbitrary

number of vectors. The hidden vector ℎC can be interpreted as a running summary of all

vectors G until that time step and the recurrence formula updates the summary based on

the next vector. It is common to either use ℎ0 = 0, or to treat ℎ0 as parameters and learn

the starting hidden state. The precise mathematical form of the recurrence (ℎC−1, GC) → ℎC

varies from model to model as shown in Figure 3.4.

28

Figure 3.4. RNN architecture designs. An ordinary neural network (left) might take an
input vector (red), transform it through some hidden layer (green), and produce an output
vector (blue). In these diagrams boxes indicate vectors and arrows indicate functional
dependencies. Recurrent neural networks allow us to process sequences of vectors, for
example: 1) at the output, 2) at the input, or 3) both either serially or in parallel. This is
facilitated by a recurrent hidden layer (green) that manipulates a set of internal variables ht
based on previous hidden state ℎC−1 and the current input using a fixed recurrence formula
ℎC = 5\ (ℎC−1, GC), where \ are parameters we can learn.

That is, the previous hidden vector and the current input are concatenated and

transformed linearly by the parameters , . Note that this is equivalent to instead writing

ℎC = C0=ℎ(,GℎGC +,ℎℎℎC−1), where the two matrices ,Gℎ,,ℎℎ concatenated horizontally

are equivalent to the matrix , above. These equations omit the additional bias vector for

brevity. The tanh nonlinearity can also replaced with ReLU. If the input vectors GC have

dimension � and the hidden states dimension � then, is a matrix of size [� x (� + �)].

Interpreting the equation, the new hidden states at each time step are a linear function of

elements of GC , ℎC−1 and squashed by non-linearity. The vanilla RNN has a simple form,

but unfortunately, the additive interactions are a weak form of coupling [32,33] between the

inputs and the hidden states and the functional form of vanilla RNN leads to undesirable

dynamics during backpropagation [6] (In particular, the gradients tend to either vanish or

explode over long time periods). The exploding gradient concern can be alleviated with a

heuristic of clipping the gradients at some maximum value [7], but the RNNs still suffer

from the vanishing gradient problem.

29

3.6. LONG SHORT-TERMMEMORY

The LSTM [8] recurrence is designed to address the limitations of the vanilla

RNN. Its recurrence formula has a form that allows the inputs GC and ℎC−1 interact in a

more computationally complex manner that includes multiplicative interactions, and the

LSTM recurrence uses additive interactions over time steps that more effectively propagate

gradients backwards in time [8]. In addition to a hidden state vector ℎC , LSTMs also

maintain a memory vector 2C . At each time step the LSTM can choose to read from, write

to, or reset the cell using explicit gating mechanisms. The precise form of the update is as

shown in Figure 3.5.

Figure 3.5. LSTM Equations.

Here, the sigmoid function sigm and tanh are applied element-wise, and if the input

dimensionality is � and the hidden state has � units then the matrix, has dimensions [4�

x (�+�)]. The three vectors 8, 5 , > ∈ '� are thought of as binary gates that control whether

eachmemory cell is updated, whether it is reset to zero, andwhether its local state is revealed

in the hidden vector, respectively. The activations of these gates are based on the sigmoid

function and hence allowed to range smoothly between zero and one to keep the model

differentiable. The vector 6 ∈ '� ranges between -1 and 1 and is used to additively modify

the memory contents. This additive interaction is a critical feature of the LSTMs design,

because during backpropagation a sum operation merely equally distributes gradients. This

30

allows gradients on the memory cells 2 to flow backwards through time uninterrupted for

long time periods, or at least until the flow is disrupted with the multiplicative interaction

of an active forget gate.

Example: Character-level Language Modeling. Character-level language models

are a commonly studied interpretable testbed for sequence learning. In this setting, the

input to the RNN is a sequence of characters from some text (e.g. ’cat sat on a’) and the

network is trained to predict the next character in the sequence (’m’ in this example, the

first letter of ’mat’). Concretely, assuming a fixed vocabulary of characters we encode

all characters with -dimensional one-hot vectors {GC}, C = 1, ...,), and feed these to the

network to obtain a sequence of �-dimensional hidden vectors {ℎC}. To obtain predictions

for the next character in the sequence we further project the hidden states to a sequence of

vectors {HC}, where HC = ,HℎC and ,H is a [x �] parameter matrix. These vectors are

the logits of the next character (so the probabilities are obtained by passingthese through a

softmax function) and the objective is to minimize the average cross-entropy loss over all

targets.

3.7. TRAINING SUMMARY

Data preparation. First, obtain a dataset that is made up of a set of pairs (G, H)

where G is some input example and H is a label. The data is then split into three folds,

commonly a training, validation and test fold (common proportions could be 80%, 10%,

10% respectively). The training fold is used for optimizing the parameters with backpropa-

gation, the validation fold for hyperparameter optimization, and the test fold for evaluation

(discussed below in more detail). Data preprocessing. Preprocessing the data can help im-

prove convergence of neural networks [5]. For images, common preprocessing techniques

involve standardizing the data (subtracting the mean and dividing by the standard deviation

individually for every input dimension of G), or at the very least subtracting the mean. It is

31

critical to estimate these statistics only on the training data, and using these fixed statistics

to process the validation and test data, as this appropriately simulates the deployment of the

final system into a real-world application.

Optimization. A default recommendation is to use Adam [4] for optimization, with

learning rates of approximately 1e3, the coefficient of first moment of 0.9 and second

moment 0.99. It is often beneficial to anneal the learning rate during the course of training

by approximately a factor of 100 by the very end of training, but it is common to decay the

first time only after half of the training is finished. During optimization it is almost always

a good idea to use Polyak averaging [7], where we keep track of an averaged parameter

vector \0E6 (e.g. \0E6 = 0.999\0E6 + 0.001\) after every parameter update and use \0E6 to

compute the validation performance and when saving the model checkpoint to file.

32

4. SYSTEM ARCHITECTING APPROACH FOR DEEP LEARNING

This section introduces the framework required to simplify the steps necessary to

perform the neural architecture search. It also presents a case study showing the use of

framework to effectively explore large design space by automating certain model construc-

tion, alternative generation, and assessment. The framework exploits the system architecting

principles for exploring different types of deep learning architectures related to computer

vision and natural language processing. It provides the architect necessary capabilities to

modify the search space, participating layers and objectives based on the requirements.

The application of framework to find an optical architecture for CIFAR-10 dataset

show the evolution of neural architectures with minimized human participation. Despite

significant computational requirements, it is now possible to design architectures as good

as a state-of-the-art models simply by defining the search space, layers and objectives.

Experimental results show that evolving architectures on a well defined search space can

produce multiple architectures that are on par with state-of-the-art models while removing

the manual hours spent on designing the architecture. These results also show that there is a

promise to further the improve the overall architecture search by improving the evolutionary

process.

4.1. OUTLINE

With the success of recent neural architecture search (NAS) approaches in deep

learning, it is evident that the evolved designs are capable of outperforming the humanmade

designs. So far, all the NAS approaches use almost identical search spaces and optimized

on objective/s to produce an optimal architecture. In general, the neural architecture

search (NAS) consists of three phases as shown in Figure 4.1. (1) The search space (()

encapsulates the logical representation of different architectures that are possible using the

33

defined operations. The range of values used for representing different architectures depends

on the architect. The current NAS approaches either use binary format or integer format

to define the architectures. (2) The search strategy defines the optimization technique and

responsible for building the graphs for different architecture based on the search space (().

The most popular search strategies include genetic algorithms, reinforcement learning and

differential approach. (3) The performance evaluation performs training & validation. It

also calculates the overall objective value which is used by the search strategy to generate

better architectures. This step is the most time consuming part of the entire search process

as each architecture is trained and validated for a set of epochs. Once the architectures

are evaluated, the validation accuracy is combined with other objectives to get an overall

objective score. This process is repeated until a stopping criteria is reached.

Figure 4.1. Illustration of neural architecture search method. The search strategy generates
an architecture from search space (. The performance is calculated using the performance
evaluation method and the value is returned to the search strategy.

While this approach is successful on standard datasets such as CIFAR-10/100 and

IMAGENET, the real-world application of these approaches usually face farmore constraints

in the form of computational complexity, resources and time. Therefore, it is essential to

have the capability to change the parameters of NAS depending on the requirements of the

architect. This implies that for successful application of NAS on new datasets, there should

be (1) Fleible architecture search space: Based on the dataset and available computation,

the architect should have the freedom to specify the search space rather than to use a space

that is constrained to a block. The framework presented in this section allows the architect

34

to explicitly design the search space based on problem requirements. (2) Multi-objective

capability: Models that are designed for deployment on real-world devices are generally

less expensive in terms of computation. This is achieved by having a trade-off between

the accuracy and compute. To facilitate this process, the framework incorporates multi-

objective optimization such that the designed models follow the trade-off constraints. (3)

Flexible layer combinations: Based on type of deep learning model and dataset features,

the choice of layers may vary in terms of filter size, number of filters and type of layers.

The framework provides this capability to the architect by inputting the layer configurations

before the start of the search process.

4.2. RELATEDWORK

System architecting approaches, applied in design, analysis and optimization have

flourished in various domain specific disciplines [4, 14, 21]. Our approach aims to use

these capabilities in the field of deep learning to reduce the human effort required to design

the architectures by considering each layer as a system and finding optimal connectivity

between input and output.

The idea of using evolution to learn neural networks dates back to 2001[11]. At-

tempts were made to design or optimize neural networks using evolutionary algorithms,

reinforcement learning and other machine learning approaches[23, 29]. In recent years,

these approaches resurfaced as the deep learning architectures became deeper thereby in-

creasing the search space significantly. Initial approaches include the design architectures

that can overcome theman-mademodels[2, 26, 27]. The prominent feature of these attempts

is to design complete architectures and optimize them based on the validation accuracies.

Since it included the design of complete architecture, they are computationally expensive

and also they did not have much success when compared to the state-of-the-art models

except for [2, 24].

35

In order to reduce the computational complexity and be able to search for optimized

architectures in the design space, it is more advantageous to build a novel search space

that has the capability to do both. In [35], the authors showed that by using a small and

efficient search spaces, we can build highly efficient architectures. Our approach takes

inspiration from [35] and [24] to develop a search space that is capable of designing very

deep architectures. By using a system architecting approach, we can have the desired search

space for multiple objectives [1, 5] which is more generic.

4.3. FRAMEWORK

The systems architecting approach to build a framework for NAS is implemented in

four phases as shown in Figure 4.2. The configuration of each phase will define the overall

NAS problem that needs to be solved.

Figure 4.2. Outline of NAS framework. The encoding defines the search space for the
architectures. Themutation generates new architectures based on search space and objective
values. The multi-objective function calculates overall objective value based on different
objectives provided by the architect. Lastly, the trade-off defines helps the architect to
choose the most optimal solution.

4.3.1. Encoding. Since deep learning models can be viewed as stack of computa-

tional blocks that define layer wise computation, each layer can be encoded using a unique

representation. Similarly, the inputs to each layer can just be the output of previous layer

36

[3] or outputs of multiple layers as in [4]. Therefore, the entire encoding scheme of the

architecture is a combination of both operation encoding (�>?B) for layer wise operations

and interface encoding (�8 5) for connectivity between the layers.

� = �>?B + �8 5 (4.1)

4.3.1.1. Operation encoding. The operation encoding is represented in a sequen-

tial format as whose length is equal to the number of layers on which the search is applied.

If $ represent the set of chosen operations, the encoding is given by

�>?B = [>(1)8 , >
(2)
8
, >
(3)
8
, ..., >

(!)
8
] (4.2)

where 8 ∈ $ and ! is the number of layers.

Figure 4.3. Encoding for wide architecture. It is the same formulation used in state-of-the-
art NAS approaches.

4.3.1.2. Interface encoding. The interface encoding (�8 5) defines the connectivity

among the layers. So far, state-of-the-art deep learning models are based on two types:

(1) wide models such as inception & googleNet and (2) deep models such as ResNet

and DenseNet. Combining both of these designs explodes the search space and it becomes

37

difficult to find optimal architecture using reasonable computation. To prevent such scenario,

the framework uses either a wide design or deep design based on the architect’s requirement.

Since both these designs have significant differences in connectivity, the framework provides

unique encoding approach for both of them as descibed below:

Wide Design: The wide design is used in almost all of the state of the art NAS

approaches [12]. Each operation chooses only one input from the set of available options

to generate a complete architecture as shown in Figure 4.3. In general, only two previous

layers ℎC and ℎC−1 are used to design the overall NAS layer. Therefore, the choice of inputs

can be represented by unique integers for each layer. If) represents the set of previous

layers, the general formulation for wide design interface encoding is given by

�8 5 = [2(1)9 , 2
(2)
9
, 2
(3)
9
, ..., 2

(!)
9
] (4.3)

where 9 ∈) and ! is the number of layers.

DeepDesign: The deep design capability in this framework is inspired by the popular

ResNet[16] and DenseNet[17] architectures. Unlike wide design, deep architectures have a

lot of interconnections and it is difficult to represent the architectures using integer format.

Therefore, a one-hot encoded approach is more suitable as shown in Figure 4.4. In this

encoding, the presence of connection is represented by 1 while 0 represents no connection.

The formulation for deep design is given by

�8 5 = [(?1), (?1, ?2), ..., (?1, ?2, ..., ?!)] (4.4)

where ? ∈ 0/1

4.3.2. Sampling. The main idea of the sampling is to (1) generate feasible archi-

tectures based on search strategy and encoding. (2) improve architecture design using past

knowledge and prevent local minima.

38

Figure 4.4. Encoding for deep architecture.

4.3.3. Architecture Evaluation and Trade-off. Each new architecture generated

using the sampling process is trained and evaluated on validation accuracy by default. The

optimal architecture is therefore the one which has highest validation accuracy. If additional

objectives are added, the architect is responsible for identifying the trade-off between the

validation accuracy and other objectives. Section 6 discusses this concept in detail.

4.4. CASE STUDY

In this section, the proposed NAS framework is used to design a dense architecture

for an image classification problem to demonstrate the effectiveness of framework for finding

optimal architecture. For the sake of quantitatively comparing the performance with the

state-of-the-art models, only validation accuracy is used as the overall objective.

4.4.1. Dataset. The CIFAR-10 dataset is a collection of images each consisting of

one of the 10 different classes - airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,

and trucks. It consists of 60,000 32x32 images that are uniformly distributed among all

classes (6000 images for each class) and is commonly used to develop deep-learning object

detection algorithms. Because of the low resolution images (32x32), the CIFAR-10 dataset

allows the architects to test different types of algorithms and compare their performance

with minimal computation. Figure 4.5 shows few examples of CIFAR-10 dataset.

39

Figure 4.5. Samples from CIFAR-10 dataset.

4.4.2. Modelling the Architecture Using Framework. The image classification

models generally consist of different types of layers that provide different capabilities to the

overall architecture. Table 4.1 shows the capabilities provided by different layers that are

used in CNN. The goal is to use the capabilities of the layers mentioned in Table 4.1 and

design a hybrid architecture that can give optimal performance i.e. maximum validation

accuracy.

4.4.2.1. Encoding. As shown in Figure 4.2, the first step in using the framework

is choose an encoding format for the architecture search. Since the current objective is to

design a deep and dense model, it uses the encoding format defined in Equation 4.1 where

�8 5 uses a deep design.

40

Table 4.1. Table showing layers and their capabilities

System/Layer Linear
transformation

Non-linear
transformation Regularization Parameter scaling

convolutional layer x - - -
pooling layer x - - -
activation layer - x - -

dropout - - x -
batch-normalization - - x x

In addition, as described in Section 2.2.2, using architecture search on a pre-

determined template is more computationally feasible than on complete architecture. There-

fore, the current architecture search is performed on the template as shown in Figure 4.6.

The search process is applied only on a small part of the architecture called e-block. The

e-blocks are separated by a transition layers which offer the necessary hierarchy necessary

for the overall architecture.

Equation 4.2 shows that encoding requires a set of pre-defined operations which

can be used in the architecture search. Based on the literature developed so far, each

convolutional layer in a CNN design is often accompanied by a Relu activation - dropout

with a probability of 0.8/1 and batch normalization. Therefore, the possibility of generation

different operations for the search space lie in the convolutional layer.

If a convolutional layer is represented by conv_F_ℎ_= where F is filter width, ℎ is

filter height and = is number of filters. For this case study, the F, ℎ ∈ [1, 3, 5, 7] while = ∈

[12, 24, 33, 34]. This generates a total of 62 unique operations $ such that >8 ∈ {1-62} in

Equation 4.2.

41

Figure 4.6. Pre-Detemined architecture designs. The top model was used for evolution and
the bottom model was used to train complete architecute.

4.4.2.2. Genetic algorithm for search strategy. The second step in the framework

is to design a search strategy for performing the architecture search. Some of the popular

search strategies include genetic algorithms, reinforcement learning and differential ap-

proaches. This dissertation uses genetic algorithms as they are relatively simple to use and

require less hyper-parameters as compared to other techniques.

Genetic algorithms are a type of evolutionary algorithms that are inspired by the

theory of natural evolution. It reflects the process of natural selection by choosing only

the fittest individuals for reproduction in order to give offspring for next generation. The

individuals are represented by a genotype and the algorithm produces the offspring either by

mutation or crossover. From the frameworks perspective, each sampled encoding represents

a genotypewhich can be identified as a unique deep learningmodel and the evolution implies

the generation of new offspring models from the best performing models.

Mutation: The mutation process of an architecture (�), involves changing only a

single random bit @8. This is done to preserve the good properties of a survived architecture

while providing an opportunity of trying out new possibilities. Since the gene representing

the architecture has both binary and integer values, the change is performed based on

location of the bit. If the location of the bit represents a binary format, the the bit is

flipped. For the case of integer format, a new value is chosen from the available range of

values. Figures 4.7,4.8, 4.9 and 4.10 show examples of different possible mutation based

on encoding formats.

42

Figure 4.7. Interface mutation on a deep design.

4.4.3. Experiments and Results. In this section, we describe the experiments

conducted to learn e-blocks using the method mentioned above. We used CIFAR-10 dataset

to learn multiple top performing e-blocks. All our experiments were performed using an

NVIDIA TITAN X GPU.

Figure 4.8. Operation mutation on a deep design.

43

Figure 4.9. Interface mutation on a wide design.

The search process took over 2 weeks using a single GPU and covered 500 architec-

tures. We ran our approach for 50 generation with a population size of 10. The crossover

and mutation operations are performed in such a way that repeated architectures are not

generated.

Pre-Processing on CIFAR-10: The CIFAR datasets consist of colored natural images

with 32×32 pixels. CIFAR-10 (C10) consists of images drawn from 10 classes. The

training and test sets contain 50,000 and 10,000 images respectively, and we hold out

5,000 training images as a validation set. We adopt a standard data augmentation scheme

(mirroring/shifting) that is widely used for this datasets [12,17,18,32]. For pre-processing,

we normalize the data using the channel means and standard deviations. For the final run

we use all 50,000 training images and report the final test error at the end of training.

44

Training conditions: Throughout the evolution process, we train each architectures

using stochastic gradient descent (SGD) with a learning rate of 0.1 and batch size of 64.

We also observed that running each architecture of 25 epochs gave optimal results. Data

augmentation was applied on the dataset so that each architecture will learn on noisy data.

Evolution: After defining the configuration of framework, it makes use of evolution-

ary search to find an optimized architecture for the given dataset. The approach starts with

a random population whose fitness (objective) values are calculated. The top-n accuracies

are then used to generate offspring using mutation operations. These steps are repeated for

= iterations until the stopping criteria is achieved.

Figure 4.10. Operation mutation on a wide design.

45

Table 4.2. Results showing the performance of framework on CIFAR-10 with respect to
state of the art models

Method Depth Params CIFAR-10
Network in Network[11] - - 8.81
All-CNN[12] - - 7.25
Deeply Supervised Net[18] - - 7.97
FractalNet[19] 21M 38.6 5.22
ResNet[8] 110 1.7M 6.61
Wide ResNet[32] 16 11M 4.81
ResNet (pre-activation)[9] 164 1.7M 5.46
DenseNet[12] 100 0.8M 4.51
e-block@1 100 1.2M 5.23
e-block@2 100 2.8M 4.61

To be able to evolve the e-block using the genetic algorithm, we encoded the complete

e-block into a binary chromosome. The chromosome for an e-block has the structure shown

in Figure 4.4. If 2 is the number of choices and 3 is the depth of the e-block, then the total

length of the chromosome is given as =∗2+ (3 ∗ (3+1)/2) where = is the number of options

in each choice. The first half of the equation defines the number of bits required to choose

the layer configuration details while second half of the equation defines the inputs. The

inputs to each layer can be any number of inputs from previous layers concatenated along

the dimensional axis. Therefore, all the skip connections will be covered in this layer.

Figure 4.11 shows the top-performing e-block obtained from our experiments. Note

that the final generation yields multiple top performing architectures. We observed that all

these architectures can be tuned to maximize their accuracies. We consider the top two

e-blocks and use them for comparison. We call these blocks e-block@1 and e-block@2

whose accuracies and parameters (in millions) are on par with the top human designed

architectures.

46

4.4.4. Results on CIFAR-10 Dataset. For the task of image classification on CI-

FAR datasets, we used three e-blocks separated by a transition layer (see Figure 4.6). The

test accuracies of the best architectures are reported in Table 4.2 along with other state-of-

the-art models. As can be seen from the Table, architecture using e-block@1 and e-block@2

with data augmentation achieves a performance that is similar to state-of-the-art models.

Figure 4.11. Model of best architecture found on CIFAR-10 dataset with an error rate of
4.61%.

4.4.5. Additional Experimentation on CIFAR-100. In addition to CIFAR-10, the

framework is also used to design a architecture on CIFAR-100 dataset which has 100 classes

instead of 10. The experimental setup is shown below

Table 4.3 shows that the framework was able to achieve competitive accuracy using

only 1 GPU.

47

Table 4.3. Results showing the performance of framework on CIFAR-100 with respect to
state of the art models

Method Params (M) C100
ResNet (reported by [3]) 1.7 27.22

Wide ResNet 11 22.07
With Dropout 1.7 20.50

ResNet (pre-activation) 36.5 24.33
DenseNet 0.8 22.27

e-block@C100 3.7 22.64

Figure 4.12. Model of best architecture found on CIFAR-100 dataset with an error rate of
22.64%.

4.5. DISCUSSION

This section defines the handling of certain constraints that are associated with the

NAS process.

48

4.5.1. Feasible Architectures. During the search process (evolution), there is a

possibility to end up with architectures that are not feasable. For example, dimension of

output became less than 1 due to too many pooling layers. Such architectures are allocated

a fitness value of -1 by default to prevent the generation of such architectures.

4.5.2. Limitations. Even though our approach is capable of producing deep and

efficient architectures, the size of each e-block is pre-determined. In our experiments we

used the size of 12, however, if we need to experiment with different size e-block after each

transition layer, the entire search process has to be repeated.

4.5.3. Discussion. In this section, we showed the possibility of using system archi-

tecting methodologies for designing deep learning models. The approach allows the user to

define his own objectives and find the best suitable deep learning model while optimizing

all the objectives. Note that we did not use the latest approaches for the architecture search

as our main intention is not to improve the accuracy but to show the possibility of using

system architecting for deep learning.

49

5. EFFICIENT ARCHITECTURE SEARCH FOR DEEP NEURAL NETWORKS

This section addresses the scalability challenge of neural architecture search by

utilizing a parameter sharing approach with regularized genetic algorithm (RGE). The

key idea is to use a regularized genetic algorithm (RGE) on a pre-determined template

and discover a high-performance architecture by searching for the optimal gene. During

evolution, each model corresponding to a discovered chromosome is trained for a fixed

number of epochs to minimize a canonical cross-entropy loss on a given training dataset.

Meanwhile, the performance of the trained model on validation dataset is used as a fitness

value to perform the evolutions. Because of parameter sharing the trained weights in each

generation are carried to the next, thereby reducing the GPU hours required for maximizing

the validation accuracy. On the CIFAR-10 dataset, the approach finds a novel architecture

that outperforms the best human-invented deep architecture (DenseNet). The CIFAR-10

model achieved a test error of 4.22% with only 0.96M parameters which is better than

DenseNet of 4.51% with 0.8M parameters. On CIFAR-100 dataset, the approach was able

to compose a novel architecture that achieved 20.53% test error with 3.7M parameters which

is on par with 20.50% test error of wide ResNet with 36.5M parameters.

5.1. OUTLINE

Automatic neural architecture design has shown the capability to discover high-

performance neural networks, which are significantly better than human-designed models.

Existing methods, irrespective of whether they use reinforcement learning (RL) [8,10],

evolutionary algorithms (EA) [9] or gradient descent (GD) [11,12] rely on Neural Archi-

tecture Search (NAS) space, first published in [8]. The NAS space took its inspiration from

inception [25], a wide-architecture that has better performance than previous simple linear

architectures. [26]. In later stages, very deep architectures with skip connections such as

50

ResNet [1-4] and DenseNet [5] achieved even higher performance that inception [25]. How-

ever, in the case of automatic architecture design, the inception style (wide-architecture)

is preferred because of its transfer capability: use cells designed on a small dataset on a

larger dataset as the search process on large datasets is computationally expensive. For

example, initial approaches which did not use parameter sharing required as many as 800

GPUs and took approximately 24 days to find a single architecture using NAS space on the

CIFAR-10 dataset. Therefore, implementing a similar approach upon a larger dataset is not

feasible but by using the cells designed on CIFAR-10 inside deep architectures gave very

high accuracies. [8-12]. With the use of parameter sharing in [10], the computation time

on CIFAR-10 was reduced to approximately 18 hours, and the overall process used only

1 GPU to find an optimal architecture. Thus, the parameter sharing technique opened the

possibility to work on architecture search for deep designs without consuming a lot of GPU

hours.

The main contribution of this work is to use the search space introduced in [27]

for deep architecture design and compose a novel architecture using parameter sharing,

which is significantly better than the human-designed deep architectures. There are three

main components to achieve this: (1) Define the encoding scheme for the search space such

that its combinations correspond to different possible architectures. (2) Train the generated

architectures with training data and test the performance with validation data. The fitness

value for the RGE will be the accuracy of the trained model on validation data. (3) For

each new architecture generated during evolution, assign its parameters with most recent

trained values. If a particular parameter configuration is new, then perform initialization.

Even though the architecture design in this paper is implemented using a genetic algorithm,

it can also be implemented using reinforcement learning or gradient descent. This section

does not include the performance comparison between different optimization techniques as

its main emphasis is to show an efficient way to conduct deep architecture search.

51

The experimental results show that the top performing architectures found on

CIFAR-10 and CIFAR-100 datasets all have a performance that is significantly higher

than best human-designed deep architectures with minimal parameters. The best design on

CIFAR-10 gave a test error of 4.22% with 0.96M parameters which is better than DenseNet

with 4.51% test error and 0.8M parameters. Additionally, compared to the approach used in

[27], which requires approximately 60 days to compose a deep architecture, the technique

presented in this paper required only 2 days to design a new architecture from scratch which

is a significant improvement.

5.2. RELATEDWORK

The exploration of neural network architectures has played a vital role since their

initial discovery [20]. With the rise in popularity of neural networks, several techniques

were proposed to improve the performance of the models while keeping the parameters

to a minimum [1-5, 13-18]. Recently the design of architectures has shifted from purely

human-designs to a combination of human-knowledge and automatic approach called neural

architecture search (NAS) [6-12, 19-24].

Optimization technique: The successful optimization techniques that composed

state-of-the-art neural network designs relied on (1) reinforcement learning (2) genetic

algorithm and (3) gradient descent. Even though there is no concrete evidence which can

prove that these techniques can guarantee convergence, their application on NAS space

was able to produce high-performing architectures [8-12]. The approach presented in this

paper uses a variant of genetic algorithm called regularized genetic algorithm (RGE), first

published in [9] but reinforcement learning or gradient descent approach should also work.

Search Space: Initial attempts of automatic neural network design were not able

to generate architectures that are better than the human-made designs [21-22]. However,

the use of heavy computation for architecture search pushed the performance of automatic

architectures in recent years [6,7]. Even though the performance of the architecture improved

52

on standard datasets, it is not feasible to implement on new datasets because of the extensive

computational requirements. In [8], the NAS space was introduced to address this issue,

which used a pre-determined architecture design, and the search process got reduced to

finding the optimal cell. The approach was not only able to generate better architectures

than their predecessors but also used much fewer GPU hours. This experiment showed that

innovative search spaces are capable of reducing the computation time to some extent when

compared to the full architecture search.

Parameter sharing: Even though the NAS space reduced the computation time, it is

still not feasible to apply to new datasets as it required approximately 800 GPUs to compose

a new architecture. In [10], the architecture search is implemented using both parameter

sharing and NAS space, which reduced the number of GPUs from 800 to 1, thereby making

this approach feasible to any newdataset. Even though different architectures use parameters

differently, the results from [6, 10-12] established that parameters learned for a particular

model can be used for other models, with little to no modifications. Therefore, the approach

in this section uses parameter sharing with its architectures to compose high-performing

architectures.

5.3. APPROACH

This section describes the different techniques used in composing the high-performing

architecture. Section 3.1 describes the search space in general form, and its encoding to gen-

erate the chromosomes. Section 3.2 then introduces the regularized genetic algorithmwhich

maximizes the validation accuracy using the search space. Finally, Section 3.3 describes

the parameter sharing process, which prevents the parent architectures from discarding their

trained parameters by sharing them across the generation.

5.3.1. Parameter Sharing. The architectures generated during evolutions share the

parameters for training rather than initializing them for each mutation. Namely, if a layer

has a matching shape to one of previously trained architecture, the weights are inherited.

53

Therefore, the initial population will not have any inheritance, and the later generations will

have it from their parents, except for the mutated layer. The mutated layer will inherit if its

shape was used previously by other trained architectures. Eventually, all possible weight

configurations will have an initialization, and the convergence depends on finding optimal

chromosome using shared parameters. Figure 5.1 shows the parameter sharing between

three simple architectures. The red lines indicate the transfer of parameters whenever same

convolution configurations are used. For all the new configurations, new parameters are

initialized.

Figure 5.1. The representation of parameter sharing between three different architectures.
The yellow nodes show the initialization of parameters. The first architecture is all yellow
as there are no previous parameters. The second and third architectures have only 1 yellow
nodes as the rest of the parameters are inherited from previous architectures.

The evolutionary process and parameter training are alternatively implemented to

maintain a balance between them. The architectures train for few epochs (say 2) and

then mutated. After a few hundreds of generations (say 500), the average validation

accuracy/fitness will graduallymaximize. The evolutionwill stop either when themaximum

54

accuracy of each generation no longer improves or when any architecture achieves the state-

of-the-art accuracy. Since there is no possibility to discard any parameters, the overall

search process will be able to complete using only one GPU.

5.3.2. Encoding. The central idea of this approach is the observation that all archi-

tectures that the algorithm ends up iterating over the generations are a unique combination

of chromosomes. Figure 4.4 illustrates a generic chromosome structure. The length of the

chromosome (n) determines the length of the block, and its values denote the operations at

different layers.

The choice of operations is limited to a set of convolutions (best configurations based

on previous literature) which are derived from NAS [8]. The list below shows different

types of convolutions used in this paper. Since there are eight choices, the values of the

chromosome will have a range between 1 and 8. An example of such representation is

shown in Figure 5.2 where n=3.

Figure 5.2. Chromosome example. A simple design chosen for a chromosome with n=3
and values [1,3,5,7]. The graph shows all the possible connections between the layers. The
red lines indicate the chosen operations at each layer based on values in the chromosome.

New architectures are generated during each generation of the evolution process

based on the chromosome and pre-determined template, as shown in Figure 5.3. As can be

seen in Figure 5.3C, each layer inside the e-block is based on a set of operations apart from

the chosen convolutions. The 1x1 convolution control the dimensionality of the filters. The

55

batch normalization (BN) operations prevent the explosion of gradients during training and,

the ReLu operations provide the required non-linearity inside the architecture. Also, the

transition layers which have the form BN -> Conv 1x1 ->ReLu -> pooling, before e-blocks

provide the necessary hierarchy.

Figure 5.3. Overall template design. a) The template used for architecture search; b) each
e-block in the template has n layers which are densely connected; c) Each layer has multiple
fixed operations except for one which will be chosen based on chromosome value.

5.3.3. Regularized Genetic Algorithm. Algorithm 1 gives a summary of the evo-

lutionary algorithm used in this paper. The process starts with random initialization of

population (P), which represent random initial designs. The population size (P) is always

maintained and all architectures that conform to the search space described, are possible

and equally likely. At each generation, the algorithm samples S random models from the

population (with replacement) and selects the model with highest validation accuracy as a

parent. A new architecture, called the child, is constructed from the parent by the application

of a transformation called a mutation (described below). The new child architecture gets

trained, evaluated, and added to the population. This process is called tournament selection,

and the oldest model in the sample (S) is discarded (or killed) to maintain the population

size at P.

56

Figure 5.4. Steps of Regularized Genetic Algorithm (RGE).

Mutation: The mutation process changes a random value in the parent chromosome

to generate a child architecture. These random modifications make the genetic algorithm

traverse the search space to find an architecture that maximizes the fitness value/validation

accuracy.

5.4. EXPERIMENTS AND RESULTS

This section complements the methods in Section 5.3 with the details necessary to

reproduce the experiments. The first part describes the datasets and pre-processing used

on the datasets. The latter part describes the parameters used for RGE and training the

generated models. Finally, Table 5.1 shows a comparison with the previous best deep

architectures along with results from the approach presented in this paper.

57

Datasets: The two CIFAR datasets consist of 60k colored natural images with 32×32

pixels. CIFAR-10 (C10) consists of images drawn from 10 and CIFAR-100 (C100) from

100 classes. The training and validation sets contain 50k and 5k images respectively, and

the remaining 5k images are held as a test set. The experiments adopt a standard data

augmentation scheme that is widely used for these two datasets [13-18] and denoted by

a “+” mark at the end of the dataset name (e.g., C10+). For preprocessing, the images

were normalized using the channel means and standard deviations. During evolution, the

training and validation are implemented using corresponding datasets. The final results

were reported on the test images using the best architecture.

Figure 5.5. e-block of best architecture

Training details: The population for the RGE algorithm is set at P=100 and the

sample size S is set at 10. The weights of all the architectures are initialized uniformly

between -0.08 and 0.08. Once the RGE samples a population, a child model is constructed

using mutation and trained for 2 epochs. The validation accuracy/fitness from trained model

is used for selecting parents. The settings for training the CIFAR-10 and CIFAR-100 child

models are the same as those used in [5]: momentum Optimizer with a learning rate of 0.1,

weight decay of 1e-4, momentum of 0.9 and used Nesterov Momentum [28].

Results on CIFAR: For the task of image classification, the length of e-block is set

to N = 12. The test accuracies of the best architectures are reported in Table 5.1 along with

other state-of-the-art deep architecture models. As can be seen from the Table, a deepmodel

using e-block with data augmentation achieves an error rate of 4.22% on CIFAR-10, which

58

Table 5.1. Error rates % on CIFAR datasets

Method Params (M) C10 C10+ C100 C100+

ResNet 1.7 - 6.61 - -
ResNet (reported by [3]) 1.7 13.63 6.41 44.74 27.22

ResNet with Stochastic Depth 1.7 - 4.91 - -
Wide ResNet 11 - 4.81 - 22.07
With Dropout 1.7 - 4.17 - 20.50

ResNet (pre-activation) 36.5 11.26 5.46 35.58 24.33
DenseNet 0.8 5.92 4.51 27.15 22.27

e-block@C10 0.96 4.69 4.22 - -
e-block@2C100 3.7 - - 21.13 20.53

is slightly better than the previous deep architecture of 4.51%. Similarly, on CIFAR-100,

it achieves an accuracy of 20.53% which is on par with the previous best deep model of

20.50%.

Figure 5.6. Plot showing the evolution of architectures.

59

5.5. DISCUSSION

This section shows an efficient approach to search for deep architectures. It is

the first attempt where a genetic algorithm and parameter sharing were used together

for composing architectures. The results show that this approach is indeed capable of

discovering architectures that are better than human made designs while using much less

parameters than their predecessors. However, the results were not trained to beat the state-

of-the-art results as its main focus is to show that deep search spaces are indeed capable of

generating high performance architectures. Therefore, the future work will be targeted to

generate architectures that are better than the current best architectures.

60

6. MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH VIA NSAGA-II

While the previous two sections introduced an efficient way to perform neural

architecture search (NAS), they ignored device related objectives such as inference time,

memory usage and power consumption. Finding optimal architectures based on device

related objectives is extremely important when the computing resources are limited. This

section introduces a device aware Pareto-optimal NAS that is capable of optimizing for

both device-related and device-agnostic objectives. It uses the wide search space with

parameter sharing that is defined in Section 4 on multiple objectives rather than a single

objective. Experimental results on CIFAR-10 demonstrate the effectiveness of Pareto-

optimal architectures by comparing the results on two different GPUs: (1) workstation with

NVIDIA Titan X GPU. (2) workstation with NVIDIA K80 X GPU. Compared to the results

in Sections 3 and 4, this approach provides multiple solutions which provide trade-offs

between multiple objectives.

6.1. OUTLINE

Deep Learning architectures designed using optimization techniques have demon-

strated impressive performance in many machine learning tasks like image recognition and

language modeling. While different techniques such as reinforcement learning (RL) and

genetic algorithms (GA) were be used for optimization, they all use only one objective (e.g.

accuracy) to search for optimal architecture while ignoring other important objectives (e.g

inference time).

While there is some previous work where multiple objectives were used to design

the optimal architectures, the search space is considerably small as the choices are limited

to previously designed blocks (e.g. denseblock, inception and mobilenet). In addition, the

61

search space is also computationally expensive as parameter sharing cannot be implemented.

To this end, there is a significant gap between the NAS approaches used for single-objective

and multiple objectives.

To address the above mentioned drawbacks, this section introduces a multi-objective

NAS that can perform the architecture search with both computational efficiency and mul-

tiple objectives. In this way, the architect can explore the trade-off space and select the

most suitable architecture under the specific case. Figure 6.1 shows an example different

pareto-optimal architectures designed on two different devices with two objectives. Even-

though same dataset is used for search on both devices, the results are significantly different

because of the device configuration. This shows that the approach is capable of designing

various architectures at the Pareto-front for the corresponding device.

Figure 6.1. Comparison of inference times for NVIDIA GTX and K80. Since K80 is more
powerful, the inference times are lower.

62

6.2. RELATEDWORK

Multi-objective optimization: Multi-objective optimization deals with the problems

that have multiple complementary objectives. If (represents the solution space for all

the feasible architectures and 51, 52,..., 5= represent the # objectives then the goal of

multi-objective optimization is to find a solution B ∈ (which minimizes all the objectives.

However, it is usually unlikely that only one B exists that minimizes all the objectives.

Instead, multiple Pareto-optimal solutions exist in such a way that one cannot reduce an 58

without increasing 5 9 . Formally, a solution B(1) Pareto-dominates another solution B(2) if ∀8

∈ 1,2, ..., = : 58 (B(1)) ≤ 58 (B(2)) and ∀ 9 ∈ 1,2, ..., = : 5 9 (B(1)) ≤ 5 9 (B(2)). The Pareto-optimal

solutions (∗ are exactly those solutions that are not dominated by any other B ∈ (. The set

of Pareto-optimal solutions are called Pareto-front.

Multi-objective Neural Architecture Search: Not much of the literature exist in

multi-objective NAS as most of NAS approaches focus on searching models that achieve

highest performance (e.g.classification accuracy) regardless of the model complexity. [19]

proposed to treat neural network architecture search as a multi-objective optimization task

and adopt an evolutionary algorithm to search models with two objectives, run-time speed,

and classification accuracy. However, the performances of the searched models are not

comparable to handcrafted small CNNs, and the numbers of GPUs they required are enor-

mous.

6.3. MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA)

Being a population-based approach, GA are well suited to solve multi-objective

optimization problems. A generic single-objective GA can be modified to find a set of

multiple non-dominated solutions in a single run. The ability of GA to simultaneously

search different regions of a solution space makes it possible to find a diverse set of

solutions for difficult problems with non-convex, discontinuous, and multi-modal solutions

63

spaces. The mutation operator of GA may exploit structures of good solutions with respect

to different objectives to create new non-dominated solutions in unexplored parts of the

Pareto-front. In addition, most multi-objective GA do not require the user to prioritize,

scale, or weigh objectives. Therefore, GA have been the most popular heuristic approach to

multi-objective design and optimization problems. Jones etal.[4]reported that 90% of the

approaches to multi-objective optimization aimed to approximate the true Pareto front for

the underlying problem. A majority of these used a meta-heuristic technique, and 70% of

all meta-heuristics approaches were based on evolutionary approaches.

NSGA-II: It is one of the most popular multi objective optimization algorithms with

three special characteristics, fast non-dominated sorting approach, fast crowded distance

estimation procedure and simple crowded comparison operator [2]. Deb et al. [7] simulated

several test problems from previous study using NSGA-II optimization technique, and it is

claimed that this technique outperformed PAES and SPEA in terms of finding a diverse set

of solutions [3,5].

The objective of the NSGA algorithm is to improve the adaptive fit of a population

of candidate solutions to a Pareto front constrained by a set of objective functions. The

algorithm uses an evolutionary process with surrogates for evolutionary operators including

selection, genetic crossover, and genetic mutation. The population is sorted into a hierarchy

of sub-populations based on the ordering of Pareto dominance. Similarity betweenmembers

of each sub-group is evaluated on the Pareto front, and the resulting groups and similarity

measures are used to promote a diverse front of non-dominated solutions.

Figure 6.2 provides a pseudocode listing of the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) for minimizing a cost function. The Sort-By-Rank-And-Distance

function (steps 15) orders the population into a hierarchy of non-dominated Pareto fronts.

TheCrowding-Distance-Assignment (step 12) calculates the average distance betweenmem-

bers of each front on the front itself. Refer to NSGA-2 algorithms in [23] for a clear presen-

tation of the Pseudo-code and explanation of these functions. The Crossover-and-Mutation

64

Figure 6.2. NSGA-2 Algorithm.

(steps 7 and 18) function performs the classical crossover and mutation genetic operators of

the Genetic Algorithm. Both the Select-Parents-By-Rank-And-Distance (steps 9 -14) and

Sort-By-Rank-And-Distance functions (step 15) discriminate members of the population

first by rank (order of dominated precedence of the front to which the solution belongs) and

then distance within the front (calculated by Crowding-Distance-Assignment).

6.4. SEARCH STRATEGY AND ENCODING

Even though NSGA-II deals with multiple objectives, the encoding strategy of the

algorithm is independent of objectives. Therefore, both wide and deep designs described

in Section 4 can be directly used for the search procedure. However, unlike regularized

65

genetic algorithm, NSGA-II generates multiple architectures in each generation. Therefore,

parameter sharing should be performed for each gene in the population. Therefore, if

represents the population size, then there will be equivalent unique parameter sharing,

to pass the trained parameters through the generations. Figure 6.3 shows an example of

parameter sharing across two generations.

Figure 6.3. Parameter sharing for NSGA-II. Each gene in the population has its own shared
parameters which will be forwarded to next generation.

6.5. EXPERIMENTS AND RESULTS

This section presents results for using NSGA-II on searching neural architectures

for CIFAR-10 and CIFAR-100. The implementation is done using two different settings: (i)

optimize 2 objectives and search for architectures using a wide design as defined in Section

5.1 and, (ii) we optimize 2 objectives and search for architectures based on deep design

as defined in section. The progress of architecture search for both settings is visualized

in Figure 6.4. The Pareto front improves over time, reducing the validation error while

covering a wide regime of, e.g., model parameters, ranging from 10000 to 1000000

66

We train the full model end-to-end in a single step of optimization. We initialize the

CNN with weights pretrained on ImageNet [84] and all other weights from a gaussian with

standard deviation of 0.01. We use stochastic gradient descent with momentum 0.9 to train

the weights of the convolutional network, and Adam [46] to train the other components of

the model. We use a learning rate of 1e-6 and set momentum = 0.9, decay rate = 0.99. We

begin fine-tuning the layers of the CNN after 1 epoch, and for efficiency we do not fine-tune

the first four convolutional layers of the network. Our training batches consist of a single

image that has been resized so that the longer side has 720 pixels. Our implementation uses

tensorflow [12]. One mini-batch runs in approximately 300ms on a Titan X GPU and it

takes about 1.5 days of training for the model to converge.

Figure 6.4. Progress of the Pareto front of NSGA-II during architecture search. The Pareto
front gets more and more densely settled over the course of time.

The experiment aims at solving the following multi-objective problem: minimize

the two objectives (i) performance on CIFAR-10 (expensive objective) and, (ii) number

of parameters (cheap). We think having two objectives is a realistic scenario for most

NAS applications. Note that one could easily use other, more sophisticated measures for

resource efficiency. In this experiment, we implement wide design as defined in Section

6.4. It natively handles this unconstrained, arbitrarily large search space, whereas other

methods are by design a-priori restricted to relatively small search spaces (Bender et al.,

2018; Liu et al., 2018b). Also, NSGA-II is initialized with trivial architectures rather than

67

networks that already yield state-of-the-art performance. The set of operators to generate

child networks we consider in our experiments are the three network morphism operators

(insert convolution, insert skip connection, increase number of filters), as well as the three

approximate network morphism operators (remove layer, prune filters, replace layer). The

operators are sampled uniformly at random to generate children. The experiment ran for

approximately 1.5 days on a singleGPU. The resulting Pareto front consists of approximately

100 neural network architectures.

Comparison to Published Results on CIFAR-10: We compare against different-sized

NASNets and other hand-crafted architectures. In order to ensure that differences in test

error are actually caused by differences in the discovered architectures rather than different

training conditions, we do not use stochastic regularization techniques, such as Shake-Shake

or Scheduled-Drop-Path in this experiment as they are not applicable to all networks out

of the box. The results are visualized in Table 6.1. When considering the performance

on CIFAR-10 versus the number of parameters NSGA-Net is on par with NASNets and

hand-crafted designs for resource-intensive models while it outperforms them in the area of

very efficient models (e.g., less than 100,000 parameters). We highlight that this result has

been achieved based on using only 1.5 GPU days for NSGA-Net compared to others which

took approximately 80 days.

6.6. DISCUSSION

This section presents a multi-objective evolutionary algorithm for architecture

search. The algorithm employs a NSGA-II mechanism along with parameter sharing

to speed up the training of novel architectures. Moreover, it exploits the fact that evaluating

several objectives, such as the performance of a neural network, is orders of magnitude

more expensive than evaluating, e.g., a model’s number of parameters. Experiments on

CIFAR-10 show that NSGA is able to find competitive models and cells both in terms of

accuracy and of resource efficiency. We believe that using more sophisticated concepts

68

Table 6.1. Comparison of NSGA-Net with other NAS methods on CIFAR-10 for different-
sized models.

Method Params (M) Error(%)

ResNet 1.7 6.61
ResNet (reported by [3]) 1.7 6.41

ResNet with Stochastic Depth 1.7 4.91
Wide ResNet 11 4.81
With Dropout 1.7 4.17

ResNet (pre-activation) 36.5 5.46
DenseNet-BC 0.8 4.51
NASNet@C10 3.3 2.65
ENAS@C10 4.6 2.89
PLNT@C10 5.7 2.49

DPP-Net@C10 11.4 4.36
NSGA-Net@C10 3.9 2.93

from the multi-objective evolutionary algorithms literature and using other network oper-

ators (e.g., crossovers and advanced compression methods) could further improve search

process in the future.

69

7. CONCLUSION AND FUTUREWORK

7.1. CONCLUSION

Compared to the existing literature, the approaches presented in this dissertation

have the following advantages: (1) framework to perform NAS using the user defined

templates (2) modifiable search spaces so that the architect can perform searches based

on the type of deep learning problem (3) multi-objective solutions that provide alternative

solutions for real-world deployment.

This dissertation is expected to simplify the architecture development process on

real-wold datasets thereby reducing the manual effort and computational resources. It pro-

vides a modeling tool to enhance the optimal use of computational resources by considering

multiple objectives associated with real-world scenarios.

7.2. FUTUREWORK

The approaches defined in this dissertation are focused mainly in the field of com-

puter vision classification problems. However, the deep learning has applications in many

other domains such as natural language processing and medical imaging. This implies that

the approaches presented in this dissertation can be experimented with other domains to

improve the overall capabilities of the framework. Lastly, the goal of this research is to

encourage the researches to further enhance the transition from tradition human-based deep

learning designs to search based approaches.

70

APPENDIX

DENSENET FOR ANATOMICAL BRAIN SEGMENTATION

Automated segmentation in brain magnetic resonance image (MRI) plays an impor-

tant role in the analysis of many diseases and conditions. In this section, we present a new

architecture to performMR image brain segmentation (MRI) into a number of classes based

on type of tissue. Recent work has shown that convolutional neural networks (DenseNet)

can be substantially more accurate with less number of parameters if each layer in the

network is connected with every other layer in a feed forward fashion. We embrace this

idea and generate new architecture that can assign each pixel/voxel in an MR image of the

brain to its corresponding anatomical region. To benchmark our model, we used the dataset

provided by the IBSR 2 (Internet Brain Segmentation Repository), which consists of 18

manually segmented MR images of the brain. To our knowledge, our approach is the first

to use DenseNet to perform anatomical segmentation of the whole brain.

1. OUTLINE

Quantitative analysis of brain magnetic resonance image (MRI) is necessary for the

diagnosis of many neurological diseases and conditions. For instance, abnormal shapes

of certain anatomical regions of brain have been found to be associated with many disor-

ders such as Alzheimer’s and Parkinson’s [4,5]. Segmentation i.e. labelling of each pixel

(2D)/voxel (3D) plays a critical role in this analysis which led many researchers to design

mathematical models that can accurately automate the process of segmentation. A popular

approach for segmentation before the deep learning algorithms includes the use of atlases

71

[7,8] and pattern recognition methods [6]. In order to perform anatomically accurate seg-

mentation, these methods use explicit spatial and intensity information which are manually

created features.

The explicit definition of such features can be avoided with the use of convolutional

neural networks (CNNs). CNNs have shown excellent results in many computer vision tasks

such as ImageNet [9]. In recent years, convolutional neural networks (CNNs) have become

a dominant machine learning approach for MRI segmentation because of their self-learning

ability and generalization over large amounts of data [17]. CNNs were initially used for

medical image analysis in [10-15], where they were able to provide accurate segmentations

of various abnormalities without the use of hand crafted features. This motivated the

researchers to develop many new CNN architectures for various segmentation tasks on

MRI.

CNNs have also been used for brain MRI segmentation in [16], where the authors

presented a CNN architecture to accurately segment the white matter, gray matter and

cerebrospinal fluid in infants. In addition, a number of competitions were created by

MICCAI in last few years where datasets were provided to segment different brain MRIs.

In the recent MICCAI challenges of neonatal and adult [2], the best accuracy was not

produced by single architecture. It was shown that different architectures are good at

segmenting different aspects of the brain. In [2], the authors tried to develop a more general

approach that is not biased towards one aspect of the brain. Considering the results from

all these challenges, it was obvious that there are a lot of inaccuracies in the developed

architectures and there is a lot of space for improvement.

In this paper, we present a new architecture for automated brain segmentation based

on the concept presented in DenseNet [1]. DenseNet is the present state-of-the-art CNN

architecture which gave the best results on CIFAR-10, CIFAR-100 and ImageNet datasets

using only a fraction of parameters compared to its predecessors [1]. The idea behind

DenseNet is to connect each layer to every other layer behind it to improve the information

72

Figure 1. Architecture for brain MRI segmentation.

flow within the architecture. This gives CNN the capability to make decisions based on all

of the layers rather than a single final layer. By using this approach for brain segmentation,

we perform the segmentation which can further be used to identify abnormalities in brain.

2. APPROACH

Figure 1 shows an overall schematic of our proposed architecture. Considering the

complexity of brain MRI, we use patches for inputs rather than sending the whole image as

input to the architecture. The pre-processing steps include the normalization of the MRI

images and generating concentric patches. The central pixel/voxel will be target which the

architecture has to classify using the patches. The larger patch provides spatial information

as they are large enough to understand where the central pixel is located. The smaller patch

provides the detailed information about the neighborhood of the central pixel. Figure 2

shows an example of concentric patches.

There are two parallel paths for each patch where it goes through two dense blocks.

The two paths are then concatenated and passed through a final dense block before the

classification layer. Figure 3 shows the schematic of the dense block. The layers in dense

block form a composite function [1]. It consists of three consecutive operations: batch

normalization (BN) [18], followed by a rectified linear unit (ReLU) and a 3 × 3 convolution

(Conv). The transition layers are placed in between the blocks for spatial reduction. It

consists of batch normalization and an 1x1 convolution followed by 2x2 pooling layer.

73

Figure 2. MRI with 64 and 32 size patches.

2.1. Growth Rate. An important feature in DeseNet is the use of growth rate which

describes the rate at which the size of each layers inside the dense block grows. The growth

rate regulates howmuch information is passed at each layer to the future layers. The colored

connection in Figure 3 shows how the information is passes between the layers in dense

block. For e.g., a growth rate : = 12 implies that a filter size of 12 is used for each

layer and therefore the output size of each layer will be 12 + = ∗ 12 wher = is the layer

number. Experiments have shown that a small value of : is sufficient to efficiently transfer

the information between the layers [1]. In our approach, we set the growth rate at 10.

2.2. Bottlenecks. It was shown in [19,20] that a 1×1 convolution can be introduced as

bottleneck layer before each 3×3 convolution to reduce the number of input feature-maps,

and thus to improve computational efficiency. In our approach, we used bottlenecks before

convolutional and pooling layers

74

Figure 3. Dense Block.

2.3. Compression. The compression feature reduces the number of feature maps at the

transition layer and also to improve computational efficiency. Since we used only two layers

inside each dense block, there is no advantage to use compression for reducing feature maps.

However, we observed that our architecture performs better when the compression is set at

\ = 0.5

2.4. Data. The IBSR (http://www.cma.mgh.harvard.edu/ibsr) dataset consists of 18

manually segment MR images of brain. Figure 4 shows an MRI of brain with the cor-

responding segmentation. The goal of our architecture is to perform segmentation identical

to the manual approach. The quality of our segmentation is measured using the mean dice

coefficient over the anatomical regions. All computations were run in-memory using a

single NVIDIA Tesla K40 GPU with 12GB memory.

75

3. EXPERIMENTS

We started our experiment by normalizing the given data and generating the con-

centric patches for training. The outer patches were of dimensions 64x64 and the inner

patches were of dimension 32x32. We trained our architecture for 200 epochs with a batch

size of 32 using SGD optimization. We also use l2 regularization with dropout to prevent

overfitting. The testing was done on the test images using dice coefficient. In order to get

the best architecture from training, we used early stopping to the error rate on validation

data with a patience limit of 10 epochs.

Figure 4 shows the results for few frames of a single patient. The results show that

our architecture was able to accurately segment majority of the brain tissue. The borders

show some unwanted segmentation which will be removed in future work.

The results in Table 1 show the values obtained on validation data. Here it is

observed that using compression slightly improves the accuracy of the model which is in

accordance with the DenseNet architecture. We evaluated our model on 5 test MRIs and

achieved a dice coefficient of 0.673. Note that we achieved this level of accuracy with only

0.4M parameters which is a significantly low number for CNN architectures.

Table 1. Table showing the measurment type for each KPP

Layer Configuration

Input (64 x 64 and 32 x 32) 2

Dense block (1) x 2
[
1 1
3 3

]
G2

Transition layer (1) x 2 1x1 conv and 2x2 pool

Dense block (2) x 2
[
1 1
3 3

]
G2

Transition layer (2) x 2 1x1 conv and 2x2 pool
Merge layer -

Dense block (3) x 1
[
1 1
3 3

]
G2

Transition layer (3) x 1 1x1 conv and 2x2 pool
Classification layer 4D Fully Connected

76

Figure 4. Dense Block.

4. CONCLUSION

In this section, we have performed the MRI brain segmentation using the DenseNet

architecture. The results show that our approach can accurately perform the segmenta-

tion. We plan to improve the accuracy of this approach and use it for Parkinson’s MRI

segmentation in the future work.

77

REFERENCES

[1] S. Agarwal, L. E. Pape, C. H. Dagli, N. K. Ergin, D. Enke, A. Gosavi, R. Qin,
D. Konur, R. Wang, and R. D. Gottapu. Flexible and intelligent learning architectures
for sos (fila-sos): Architectural evolution in systems-of-systems. Procedia Computer
Science, 44:76–85, 2015.

[2] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

[3] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems, pages 2546–
2554, 2011.

[4] E. Curry. System of systems information interoperability using a linked dataspace. In
System of Systems Engineering (SoSE), 2012 7th International Conference on, pages
101–106. IEEE, 2012.

[5] C. H. Dagli, D. L. Enke, N. Ergin, D. Konur, R. Qin, A. Gosavi, R. Wang, I. Pape,
S. Agarwal, R. D. Gottapu, et al. Flexible and intelligent learning architectures for
sos (fila-sos). Center for Systems and Software Engineering, University of Southern
California IN, 20, 2014.

[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Transactions on audio,
speech, and language processing, 20(1):30–42, 2012.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pages 630–645. Springer, 2016.

[10] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[11] S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94.
Springer, 2001.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, page 3, 2017.

78

[13] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision, pages 646–661.
Springer, 2016.

[14] E. Kremers, P. Viejo, O. Barambones, and J. G. de Durana. A complex systems
modelling approach for decentralised simulation of electrical microgrids. In 2010
15th IEEE International Conference on Engineering of Complex Computer Systems,
pages 302–311. IEEE, 2010.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[16] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets. In
Artificial intelligence and statistics, pages 562–570, 2015.

[19] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

[20] A.-r. Mohamed, G. E. Dahl, G. Hinton, et al. Acoustic modeling using deep belief
networks. IEEE Trans. Audio, Speech & Language Processing, 20(1):14–22, 2012.

[21] J. M. Parker. Applying a system of systems approach for improved transportation.
SAPI EN. S. Surveys and Perspectives Integrating Environment and Society, (3.2),
2010.

[22] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

[23] J. K. Pugh and K. O. Stanley. Evolving multimodal controllers with hyperneat. In
Proceedings of the 15th annual conference on Genetic and evolutionary computation,
pages 735–742. ACM, 2013.

[24] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A. Kurakin.
Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041, 2017.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533, 1986.

[26] S. Saxena and J. Verbeek. Convolutional neural fabrics. In Advances in Neural
Information Processing Systems, pages 4053–4061, 2016.

[27] T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.

79

[28] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[29] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[30] C. Szegedy,W.Liu, Y. Jia, P. Sermanet, S. Reed, D.Anguelov, D. Erhan, V.Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[31] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations
for deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pages 5987–5995. IEEE, 2017.

[32] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[33] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

[34] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[35] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017.

80

VITA

Ram Deepak Gottapu was born in India in 1988. He received a Bachelor of

Science degree in Electronics and Communications Engineering from Anil Neerukonda

Institute of Science and Technology (Andhra Pradesh, India) in 2010. He also received his

Master’s of Science degree in Systems Engineering fromMissouri University of Science and

Technology in December 2015. He began his PhD study in January 2016 in the Department

of Engineering Management and Systems Engineering at Missouri University of Science

and Technology. His research interests includeed deep learning architecture modeling,

computer vision and natural language processing. He received his Doctor of Philosophy in

Systems Engineering from Missouri University of Science and Technology in May 2020.

	Computational model for neural architecture search
	Recommended Citation

	tmp.1594299963.pdf.STlyp

