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ABSTRACT

Electrical Resistivity Tomography (ERT) and Multi-channel Analysis of Surface
Waves (MASW) methods were used to image the subsurface in Kkarst terrain in the
southeast of Missouri. A SuperSting R8 system was used to acquire the ERT profiles; a
multi-channel engineering seismograph was used to acquire the MASW data. The latter
data were used to constrain and verify the ERT interpreted depth to top-of-rock and soil
thickness. The ERT data were used to delineate the soil/rock interface and to identify zones
of anomalously high moisture content within the bedrock.

The primary objective of the research was to determine the cause of identified zones
of high moisture content within the bedrock and to differentiate anomalously conductive
zones that were mostly “man-made” from those that were mostly of “natural” origin. Field
observations and air photographs were used for this purpose.

Herein, seven ERT profiles are presented. Five (5) of the low resistivity bedrock
anomalies identified on these ERT profiles are classified as primarily “man-made”; the
other four (4) are classified as primarily “natural” in origin. Based on the assessment of
the entire ERT data set, it is concluded that there are no significant statistical differences
between the ERT signatures of the “man-made” and “natural” zones of high moisture
content. Determinations about the cause of low resistivity zones identified on ERT data is

best done based on field observations and air photographs.
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1. INTRODUCTION

Electrical resistivity tomography (ERT) and multi-channel analysis of surface
waves (MASW) have proven to be indispensable geophysical technologies for studying
regions dominated by carbonate rocks, such as in the southern Missouri region. These
techniques provide reliable results and save time and money (Al Saaideh, 2017;
Nwokebuihe, 2014).

Surface and subsurface water flow are the primary factors that shape the surface
and subsurface topography in regions characterized by carbonate rocks. Water flow causes
the development of karstic features such as sinkholes, underground drainage systems, cave
systems, and solution-widened joints. Karstic features, particularly sinkholes, are known
for the significant damage they cause to properties, establishments, and structures; the
pollution of groundwater and subsurface soil they facilitate, and the roles they have played
in the loss of human life, especially in collapse sinkholes. In order to create safer, long-
term roads, dams, buildings, structures, and landfills, karst regions require careful
investigation and assessment (Kidanu et al., 2016; Bashir et al., 2018; Bansah & Anderson,
2018; Obi, 2016 and Alfugara, 2017).

This PhD research includes the use of electrical resistivity tomography (ERT) and
multi-channel analysis of surface waves (MASW) methods. The ERT method was used to
map subsurface conditions in the study area, including the nature and extent of karst
features, seepage pathways, the depth to top-of-rock, soil and rock engineering properties,
and soil and rock moisture content and thickness. The primary objective is to identify zones

of anomalously high moisture content which have been created due to man-made activities



2
versus natural causes. The MASW method was used to map the variations in shear strength
and the engineering properties of soil and rock. It was used also to constrain and verify the

interpretation of the ERT data.

1.1. STUDY OBJECTIVES
1. Differentiate soil and rock based on ERT and MASW data;
2. Map the depth to top-of- rock and soil thicknesses in the study area;
3. Determine the engineering properties (shear-wave velocity) of soil and rock;
4. Map variations of the moisture content in the subsurface;
5. Identify causes of moisture variation in the subsurface;
6. Map seepage pathways in the subsurface;
7. Determine the nature and extent of karst features in the study area; and
8. Differentiate zones of anomalously high moisture content due to man-made

activities versus natural causes.

1.2. IMPORTANCE OF THE RESEARCH
1. The study enhances understanding the nature and causes of moisture variations in
the subsurface in karst terrain;
2. The research demonstrates the moisture variations are due to both man-made and
natural causes;
3. Moisture variations due to man-made or natural causes will be differentiated, if
possible;

4. The research confirms that geophysical methods are cost-effective and more



3
definitive than traditional subsurface investigation methods (boreholes and
trenching);

5. Maps the seasonal variations in moisture content; and
6. Demonstrate that these imaging tools can be used to identify areas where karst

features could develop.

1.3. PREVIOUS STUDIES

The study area is in Springfield plateau in southwestern Missouri. The plateau
consists, in part, of 150 to 270 ft. of Burlington-Keokuk Formation carbonate rock.
ERT and MASW are important geophysical techniques used to study subsurface conditions
in regions of carbonate rocks. These regions are prone to the development of karstic
features that constitute serious hazards and threats to people, property, soil, groundwater,
and development (Kidanu et al. 2016., Al Saaideh, 2017; Bansah and Anderson, 2017 and
Bashir et al., 2018), (Figure 1.1).

Considering the risks and hazards of karst features, Al Saaideh (2017) conducted
a research study of a landfill in southwestern Missouri. ERT and MASW methods were
used in this study.

The study identified probable sources of groundwater seepage pathways through
and beneath the fly ash landfill and mapped the variations in moisture content above and
below the fly ash liners.

The ERT image (Figure 1.2) suggests that some of the run-off from the flanks of
the fly ash landfill seep into the soil and rock, primarily near the toe of the landfill along

pathway 4.



Flgure 1 1 2006 Photographof a collapsed sinkhole with a damaged house in lea |
Missouri (Anderson, 2006).
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Figure 1.2. Seepage pathways highlighted in red, blue, and purple in a 3D electrical
resistivity image of the subsurface along ERT traverse in a study in southeastern Missouri
(Al Saaideh, 2017).

The study suggests that moisture seeps into joints in the rock more vertically than
horizontally. Zones of high moisture content are characterized by resistivity values less

than 125 Q-m. These zones are generally indicative of very moist, weathered, and/or

fractured rock or moist residual soil. The interpretation concluded that there was no
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groundwater seepage or flow within or in proximity to the landfill and that there was no
potential hazard of groundwater contamination.

Bansah and Anderson (2017) conducted research in southwestern Missouri to
determine factors other than the dissolution of carbonates or evaporation of bedrock that
could trigger or assist in the formation of sinkhole features. By using ERT, 3D surface
terrain models, historical images, and borehole logs, they were able to conclude that
anthropogenic activities were the major driving factors for the formation of karst features.

In a similar study, Kidanu et al. (2018) used a GIS-based spatial analysis, site-
specific geophysical data (ERT and MASW), and borehole data to identify the physical
factors that influence the formation and distribution of sinkholes. Their research
determined that the relatively low resistivity values (sinkholes) in their study area are
attributed to vertical seepage and associated piping of fine-grained soils through
preexisting fractures that are often widened by dissolution. They further suggested that the
sinkhole in their study developed along a natural north-south surface drainage pathway and
that the subsurface structure of the sinkhole depicts a vertical zone of moisture flow and
associated soil piping. From the nature of the overburden material and the characteristics
of the sinkhole, they concluded that the sinkhole is predominantly a cover-subsidence
sinkhole (gradual subsidence). Kidanu et al.’s (2018) findings of the gradual subsidence
sinkhole type were confirmed by Alfugara (2017) in the same southwestern Missouri
region.

In an arid region investigation, Youssef et al. (2016) studied sinkholes that
developed in Saudi Arabia during the humid season. These sinkholes were reactivated

recently by natural and anthropogenic factors. Urban development encroached into the



6
natural seasonal channels, causing the diversion of flood waters into low-lying
topographies and enhanced seepage of water into the subsurface. EI Aal, A. A. (2017)
identified and characterized near-surface cavities in the limestone of the Tuwaiq Mountains
in Riyadh, KSA.

Expansion in agriculture caused the withdrawal of fossil water from deep aquifers
to the surface and urbanization utilized domestic water, which indirectly reactivated the

karst formation processes and resulted in sinkhole collapses.



2. STUDY AREA

2.1. LOCATION
The study area is in the southwestern part of Missouri (Figure 2.1). It is part of the

Springfield Plateau, which is a sub-province of the Ozark Plateau physiographic region.

o
ILLINOIS
Springfield
O
Kansas City :
(o) Columbia
o O °
Lawrence St. lE)OUIS

MISSOURI

Study area Mark Twain
National Forest

Springfield
o

#

Fayetteville
o

Figure 2.1. The study area in Missouri (Google Earth).

2.2. PHYSIOGRAPHIC & GEOLOGICAL SETTING
The study area is in the Springfield Plateau, which is a part of the larger Ozark
Plateau (Figure 2.2 and Figure 2.3). The shallow bedrock generally consists of thick

Mississippian-age Burlington-Keokuk limestone (Middendorf et al., 1987), which is a
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cherty limestone that overlies the Ordovician and Cambrian-aged strata. The strata gently

dip westward. The displacements of the faults existing in the area are less than 50 ft. The

weathering process widely affected the limestone strata creating irregular surfaces that are

covered by the residuum of the cherty clay, which exceeds 40 ft in some locations (Figure

2.4).
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Modified from Thom and Wilson ( 1980)
Base map data provided by MSDIS (2009) and MDC (2007a)
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I Mississippi Lowlands
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Figure 2.2. Natural divisions and sections of Missouri state
(http://www.mdc.state.mo.us/nathis/natcom/natdiv/).

The geology in the study area is described by Middendorf et al. (1987) as pure,

shallow marine calcium limestone of organic origin of the Mississippian-aged Burlington-

Keokuk, which reaches a thickness of 200 ft and is widely affected by weathering (Figure

2.5 and Figure 2.6).


http://www.mdc.state.mo.us/nathis/natcom/natdiv/

Figure 2.3. The zr Plateau sub-divisions
(http://gotbooks.miracosta.edu/geology/images2/ozarks.jpg).

BEDROCK SURFACE
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BEDDING PLANE e l 1 1

}

Figure 2.4. This figure shows the soil mantle on the weathered bedrock
(Anderson, 2016).
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Soil in the area was identified as clay residuum. In the area of southwest

Springfield, the soil is mapped as cherty clay residuum consisting of clay loam to silty clay

loam containing sub-angular to angular fragments of chert, up to one foot in diameter as
individual clasts and relict cherty layers (James et al., 1992).

Vandike (1993) summarized the sequence stratigraphy of the formation of the study

area. Table 2.1 is detailing the system, series, group, formation, and thickness, indicating

that the thickness of Burlington carbonate rocks, which represent the Osagean Series of the

Mississippian System top, varies between 150 to 270 ft.

D77 i 47
- W

CLAY / MUD
l SHALF
] UMESTONE
| DOLOMITE
SANDSTONE
DIORITE
W riYouTE
B GcranTE

Figure 2.5. Geologic map shows the distribution of different rock units in Missouri.
About 59% of the state is underlain by thick carbonate rock units that host a wide variety
of karst features. (http://upload.wikimedia.org/wikipedia/commons/
a/al/Missouri_Geology Primary_Rock_Types_v1.png).
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Figure 2.6. The figure shows thecherty clay, near surface thickness and the weathering
processes (Anderson, 2016).

2.3. HYDROLOGY OF THE STUDY AREA

The source of groundwater for all aquifers is precipitation. When rain falls, some
of it is absorbed by plants and soil, some drains into streams, some evaporates, and the
remainder seeps downward into aquifers, recharging them (Figure 2.7). Groundwater
moves through the hydrologic cycle as part of a dynamic flow system from recharge areas
to discharge areas. Groundwater discharge areas include oceans, streams, lakes, and
wetlands. Streams that flow during periods of little rainfall are fed by groundwater.
Sinkholes are then formed as the result of the solution or erosion of rocks below
groundwater and the collapse or subsidence of subsurface caves, where limestone, marble,

dolomite, gypsum, salt and other rocks have been carved and shaped by water.

2.4. FORMATION OF KARST TERRAIN
Karst is described by the Houston Advanced Research Center (Veni, G. et al. 2015)
as a unique land formation characterized by springs, caves, and sinkholes formed when

carbon dioxide enriched water dissolves limestone and dolomite rock.
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Table 2.1. Geologic and stratigraphic units in Greene County (Vandike, 1993).

System Series Group Formatio Thicknes
n s (ft)
Burlington-Keokuk Formation | 150-270
- Elsey Formation 25-75
(58]
(5]
< g Reeds-Spring Formation 125
= o
§ Pierson Formation 90
= Kinkerhookian | Chouteau Northview Formation 5-80
Compton Formation 30
Cotter Formation 600
Jefferson-City Formation
Ruobidoux Formation 150
=
'S - Upper Gasconade
S 3 Dolomite 350
-8 g DL -~
S o =S Lower
S S B Gasconade
g E Dolomite
& £  Gunter Sandstone 25
Member
Eminence Formation
500
Upper Potasi Formation
= Derby-Doerun Formation
5 2 : .
IS = Davis Formation 150
= =
S) L
Bonneterre Formation 200
Lamotte Formation 150

Precambrian

Crystalline
rock
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Groundwater

Fault
Figure 2.7. Conceptual model, showing hydrologic cycle in karst areas

(http://augustacountyalliance.org/wp-content/uploads/2014/09/
Augusta-County-Karst-101.pdf).

The development of caves involves acid waters that form when rainwater dissolves
carbon dioxide particles in the atmosphere to form weak carbonic acid (partially

dissociated acid), which is described by the following equation:

CO, + H,0 <= H,C0, <= HCO, + H*

carbon dioxide + carbonic acid bicarbonate +
water hydrogen jon

1)

The mild acidic water readily dissolves the calcium of the limestone, marble and
dolomite and percolates through the surface joints and fractures to reach the groundwater,
forming the various features that are recognized as karst features, such as depressions,
recessions, basins, pits, and natural wells.

Sinkholes can be created by collapse, the gradual subsidence of a subterranean

cavity, or a combination of the two. At some point during the process of cave development,
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these caves come very close to the ground’s surface and the rock cannot support its own
weight, which results in the formation of collapse sinkholes (Figure 2.8).

Another sinkhole formation mode occurs when water from rain or floods percolates
into the subsurface and creates small depressions as a result of the removal of surface
material (piping). The depressions collect concentrated water and accelerate the dissolution
of the carbonate rocks. The dissolved material functions as in-fill material for the
subsurface fractures and joints when the clay particle sizes are filtered out of the seeping

rainwater (Obi, 2016).

Sinkhole Development

1

Over time, the underground The void continues to grow Eventually, the structural
void becomes larger as soil and stope upward toward integrity of the overlying
and rock from above fall the surface. material is breached and a
into the cavity and are sinkhole forms.

washed away.

creating bedrock voids.

Figure 2.8. Stages of the sinkhole formation process
(Missouri Department of Natural Resources web site).

Through this process of piping, which occurs during the irregular seepage of water
due to the existence of natural constraints such as fallen trees or anthropogenic factors
such as roads and parking lots, depressions are created, which are considered to be the main
factor in creating sinkholes that turn into ponds and wetland (Figure 2.9).

Sinkhole depressions in the Ozark can range from few inches in diameters and a

few feet deep to over 1,000 ft wide and over 100 ft deep.
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Granular sediments A column of overlying  Dissolution and The slow downward

spall into secondary  sediments settles into infilling continue, erosion eventually forms

openings in the the vacated spaces (a forming a noticeable small surface depressions

underlying carbonate process termed depressionintheland 1 inch to several feet in

rocks “piping” surface depth and diameter
Overturden

(mosty ) 4

Figure 2.9. Formation of cover-subsidence sinkhole
(https://water.usgs.gov/edu/sinkholes.html
Cover-subsidence sinkhole).
A study in the Ozarks found that about 95% of all the mapped sinkholes were
solutional and less than 5% were collapse sinks (Porter and Thomson, 1975). Due to the

commonality and importance of sinkholes in Missouri, the Department of Natural

Resources maps and regularly updates these features (Figure 2.10).

o o
EXPLANATION
o
e ~ @® Collapses
- £

e Sinkholes (data from
Missoun Department of
Natural Resources, 2007

Figure 2.10. The figure shows sinkholes distribution in Missouri
(Missouri Department of Natural Resources, 2007).


https://water.usgs.gov/edu/sinkholes.html
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3. STUDY METHODS

3.1. ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

Electrical resistivity tomography emerged from early studies on electrical
resistivity properties of rock, soils and fluids.

3.1.1. Theory. The theory and principles are well defined using two to four
electrodes to measure subsurface properties. These studies go back to the 1920’s but were
of very limited use because of the limitation of handling large data. By the advent of
powerful computers, near surface geophysical survey’s using electrical resistivity methods
became possible and these surveys focused on characterizing soils, types of rocks,
formation thickness, fracturing, jointing, faulting, contamination, delineating fills, finding
voids, and mapping large scale geologic features
(http://geophysicalservices.com/electrical-resistivity-tomography-imaging-supersting-
ohmmapper-032517/).

The empirical relationship between the resistance (R) of a cylindrical-shaped body
of uniform resistance, which receives a current (I) in a simple electric circuit, was derived
by George Simon Ohm and is known as Ohm’s Law, and is written as:

V=IR 1)

Ohm’s Law is the key principle to the electrical resistivity tomography (ERT),
which is described by the environmental protection agency (EPA) as the distribution of
electrical potential in the ground surface around a current carrying electrode, which
depends on the resistivity and distribution of the surrounding soil and rock (Environmental

Protection Agency, 2018) (Figure 3.1).
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Figure 3.1. Simple electrical circuit illustrating Ohm’s Law and the ERT principle
(SEG wiki - SEG.org).

This relationship is derived from Ohm’s Law, where (R) is the resistance of a
cylindrical resistor body of uniform resistivity; (1) is simple current passing through the
cylinder, and (V) corresponds to the change in potential, such that:

AV=RI (2)

By replacing values for 47 and the current (1), the value of resistance R could be
obtained (Gibson & George, 2003). Another approach is used to obtain the potential
difference, using the dissipation of electrical current within infinite homogeneous space.

The approach considers that the current travels radially from an origin. Using a radius of
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(r) and a surface area of 2m® for the current travel distance and equipotential area,

respectively, we obtain the resistance at any point from the source as:

r p
kB=»r (2nr2) = 2 ©

This resistance is related to Ohm’s Law in the form:

V=R =1(3) )

This above relationship applies to obtaining the potential difference between any
two points, provided that the medium is homogeneous. The following equation expresses

this relationship:

=1 [(zjm) N (2751‘2)] - (é_fr) [(%) - (%)] ©

The equation could be rewritten in terms of p as:

2V 1 6
- Dlem

rl)  \r2

The resistivity (p) we obtain is an apparent resistivity, because it represents the
resistivity of homogeneous medium (i.e. theoretical), unlike the heterogeneity of natural
earth material.

Practically a direct current is applied between the electrodes that are implanted in
the ground to measure the difference of potential between other additional electrodes that
do not carry current. The relationship between the distributed potentials and the ground
resistivity and their distributions is the basic factor in interpreting the resistivity
distributions. The resistivity of soil and rock is governed primarily by the amount of pore
water, its resistivity, and the arrangement of the pores. For this reason, there are wide

ranges in resistivity for any soil or rock type (Figure 3.2).



19

resistivity (ohm-m)
0.01 0.1 1 10 100 1,000 10,000 100,000
massive;sulfides | | l
shield
m ‘gmlw' e T e unweathered rockg
(llgmom: mafic felsic mottied duricrust
saprolite { w weathered layer
(meta: )
clays gravel and sand
T [ | glacial sediments
tills
shales sandstone conglomerate
sedimentary rocks
salt water fresh water
[ | T— water, aquifers
|| | I seaice ! 1 1
100,000 10,000 1,000 100 10 1 0.1 0.01
conductivity (mS/m)

Figure 3.2. Typical range of resistivity of rocks and soils (Palacky, 1988).

Soil type or lithology cannot be directly interpreted form resistivity values, but
zones of distinctive resistivity can be associated with specific soil or rock units, based on
local field or drill-hole information.

The principle problem of resistivity surveying is the use of apparent resistivity
values from field observations at various locations and electrode configurations to estimate
the true resistivities of the various earth materials and to spatially locate the boundaries
below the surface.

A dipole-dipole array was used for this study owing to its high sensitivity to lateral
changes in resistivity. The array uses closely spaced electrode pairs to measure the
curvature of the potential field, which is good for mapping vertical structures, such as dykes
and cavities.

Schlumberger is another array that operates with four aligned electrodes; the outer

two electrodes are current source providers while the inner two electrodes are potential
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receivers. The potential electrodes are slightly separated (< 1/5 of current electrode
spacing) and kept in a fixed position at the center of the array, while the current electrodes
have a larger separation during the survey to obtain the minimum observed voltage. The
potential electrode spacing could be adjusted along with the constant current electrode
spacing to detect the proximal heterogeneities or lateral resistivity changes around the
potential electrodes.

The Wenner array (Figure 3.3) is the third common array that utilizes four equally
spaced and aligned electrodes. This is considered an advantage for the Schlumberger array
and a disadvantage for the Wenner, since it is faster in the field to move the two current
electrodes of Schlumberger than to move the four electrodes of the Wenner array between
the successive observations. In addition, the Schlumberger array is more robust in
distinguishing lateral from vertical variations in resistivity. A major advantage of the
Wenner array is that it allows for data minimization and requires less attention to
equipment sensitivity.

Dipole-dipole was preferred over Schlumberger and Wenner for its high sensitivity
to lateral changes in resistivity and ability to map the vertical structures.

To investigate the change in resistivity at greater depths, the spacing between
electrodes is increased to allow more current to flow deeper, which causes the apparent
resistivity to become increasingly like the average resistivity of the earth over a greater
range of depths. This relationship is plotted as apparent resistivity versus electrode spacing
to indicate vertical variations in resistivity. The smaller the spacing between electrodes, the
closer the apparent resistivity is to that of the surface material; the larger the spacing

between electrodes, the more the apparent resistivity is to that of the bedrock.
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Figure 3.3. The most common array types generally employed in electrical resistivity
surveys (http://old.acogok.org/geophysical-tutorial).

The relationship between the electrode spacing and the apparent resistivity of layer
1, 2, and 3 is illustrated in (Figure 3.4). As shown in this illustration, more than 50% of the
current induced by array 1 flows through layer 1; hence the value of apparent resistivity
determined using array 1 is close to that of layer 1. About 50% of the current induced by
array 2 flows through layer 2; hence the value of apparent resistivity determined using
array 2 is close to that of layer 2.

More than 50% of the current induced by array 3 flows through layer 3; hence the
value of apparent resistivity determined using array 3 is close to that of layer 3.

As the electrode spacing increases, more current flows at greater depths, and the
value of apparent resistivity (pa= (2na)¥) becomes increasingly like the resistivity of the

earth at greater depths.
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Figure 3.4. The relationship between depth and electrode spacing
(Wightman, 2004).

3.1.2. Data Acquisition. SuperSting R8 system was used to acquire the data
needed to generate 2D and 3D electrical resistivity images of the subsurface (Figure 3.5).

The system consists of a control unit, passive cables, 12-volt battery, metal stakes,
and a switch box. The system can be interconnected to many electrodes, but only four
electrodes can be active at a time.

For a dipole-dipole data collection, the system is set to use two electrodes as current
electrodes that inject current into the ground and two electrodes as voltmeter electrodes
that measure the resulting voltage. The electrode pairs are separated by a pre-determined
distance. A known current is transmitted by the SuperSting control unit into the subsurface,
while the unit records the corresponding potential difference (Figure 3.6). The apparent
resistivity will then be calculated for the pre-determined distance (a) using the equation [pa

= (nn (n+1) (n+2) a) (AV/]))].
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Figure 3.5. The setup of an ERT system. (a) The ERT SuperSting unit for data
acquisition. (b) The dipole-dipole array configuration
(https://archive.epa.gov/esd/archivegeophysics/
web/html/resistivity_methods.ht).
The apparent resistivity (pa) for all separations between electrodes is then

calculated, and a profile for the apparent resistivities is plotted as a function of the midpoint

and the number of electrodes (n) (Figure 3.7).

control

N interconnected electrodes
unit

"1 12 V1 v2

Figure 3.6. Dipole-dipole interconnected electrodes
(Neil Anderson, 2017, lecture notes).
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Figure 3.7. Profile plotted from data acquired using (n) number of electrodes at pre-
determined distance of (pa) (Sharma, P. 1997).

3.1.3. Data Processing. Electrical resistivity tomography (ERT) data were
acquired using RES2DINV software that transforms the ERT data acquired along the
traverses into two and three dimensional (2D and 3D) electrical resistivity images of the
subsurface. The RES2DINV software inverts the actual pseudosection data using a
tomographic approach, transforming it into a 2D or 3D resistivity image of the subsurface.
The processing sequence is explained in Figure 3.8.

3.1.4. Data Interpretation. Data interpretation is a complicated process. It
combines the skillfulness of the interpreter, the data, and the environmental factors related
to location, time, geology and weather conditions. Contrast in resistivity and detection of
anomalies are major guides in data interpretation. For example, an air-filled cavity in a host
rock will have a higher resistivity than the host rock; however, if the cavity is water-filled,
its resistivity could be comparable to that of the host rock. On the other hand, if the host
rock is resistive and the water in the cavity is saline, then the cavity will have a lower

resistivity than the host rock.
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Figure 3.8. Flow chart describing the resistivity inversion process (Society of Exploration
Geophysicists of Japan, 2004).

According to Anderson (2015), moist clays in the Springfield area are typically
characterized by resistivity values < 125 Q-m, and dry soil is typically characterized by
resistivity values > 125 Q-m. Resistivity values of fractured rock with moist piped clay-fill
are typically < 125 Q-m, while the resistivity of moist weathered and/or fractured rock is
typically >125 Q-m but < 600 Q-m. The resistivity for intact rock is typically > 600 Q-m

(Table 3.1).

Table 3.1. Typical resistivity values for different subsurface materials
(Anderson, 2015).
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3.2. MULTI-CHANNEL ANALYSIS OF SURFACE WAVES (MASW)

Surface waves disperse in a way that allows geophysics to analyze the
transformation using post-processing software.

3.2.1. Theory. Multi-channel analysis of the surface waves is the process of
studying how surface waves change (disperse) as they propagate across a site, i.e. how the
seismic energy changes as it progresses along an array of geophones
(http://geophysicalservices.com/masw-surveys-acquisition-data-processing interpretation-
091717/).

MASW geophysical method assist in measuring the stiffness of the subsurface
material. The method responds to the contact between bedrock and unconsolidated soil and
could map weathered zones at the top bedrock. It responds also to variations in density,
porosity and cementation, and is used in locating the problematic karst features and voids.

Park et al. (2005) stated that the multi-channel analysis of the surface waves method
deals with surface waves in the lower 1 Hz to 30 Hz frequencies, particularly for Relight
waves. The method also explores a much shallower depth range of investigation (e.g., a
few to a few tens of meters).

The principle of (MASW) is built on the seismic wave theory, which itself is
dependent on the idea of elastic waves that travel at speeds determined by the physical
properties of the media within which these waves travel (Parasnis, 1997). The elastic
behavior of materials and the velocity of waves are derived from Hooke’s law, which states
that the strain (6) of an object is directly related to the stress (s) applied to the object.
Stressed material could reach a point where it permanently loses its elasticity, but if it did

not reach that point, then a relationship exists between stress and strain named elastic
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modulus (E) (Callister Jr., 2001), given by the equation:
o = e€E. (7
The wave propagation in a media depends on the ability of the particles of this
media to elastically deform under different type of stress, such as compressional or shear
stress. The wave velocity (v) is directly related to the frequency of the wave (f) and the
length of the wave (A), as shown in equation:
v = fA (8)
The wavelength (1) is the distance between two consecutive peaks or wave troughs.
The frequency of a wave is the reciprocal of the wave period (z), which is the duration
required to complete one wave oscillation:

ol ®
T

A
i. e. the wave velocity v = - (10)

Seismic waves consist of two types: body waves and surface waves (Figure 3.9).
Body waves are non-dispersive and travel through a given media at a speed that is
proportional to the material density and modulus.

Body waves travel in a longitudinal or transverse manner relative to the travel
direction. The longitudinal waves are called P-waves or compression waves, and the
transverse waves are the S or shear-waves. P-waves transfer energy through media by
compressing and dilating particles.

In an S-wave, particles move perpendicular to the direction of wave movement.

Generally, in a homogeneous environment, the velocity is expressed by the equation:
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_ material elastic modulud
V= material density (p) (11)

Seismic waves are naturally produced during earthquakes, thunder, or tidal waves.
Artificially, these waves are generated using active sources, or can passively be acquired.

The propagation velocity of the seismic Raleigh and love waves is dependent on
the shear-wave velocity (Vs) of the earth material (the stiffness of earth material), a
property known by the term, dispersive.

The MASW method utilizes this dispersive property to map the stiffness of earth
material in terms of shear velocity (Vs) to obtain a desired depth (1D) or depth and location

(2D).

P wave Body waves
compressions

expansions

S Wave

wavelength

undisturbed , \ e
medium TR

Surface waves

Rayleigh Wave Love Wave

Figure 3.9. The seismic body waves A and B and surface waves C and D
(Park et al., 2005).

The MASW system generally determines the shear-wave velocity (Vs) of earth

material at a frequency range of 3Hz -30 Hz. MASW is a high energy method and
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possesses an excellent ability to removing noise from body waves and surface waves,

including Relight waves.

IRl

Direction of wave propagation
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Figure 3.10. Retrograde, elliptical particle motion of Rayleigh Wave
(Van Der Hilst, 2004).
The MASW method images waves using the wave-field transformation method into
a well-defined energy dispersion pattern. The MASW method is widely used as an efficient

geophysical method to delineate and map the topographic boundary between soils and

bedrock, based on the shear velocity (Table 3.2).

Table 3.2. Shear wave velocity (Vs) of some earth materials
(NEHRP, 1997, National earthquake hazards reduction program).

Earth Material

Average Shear-wave Velocity
>5000 ft/sec (> 1500 m/sec)
2500-5000 ft/sec (750-1500 m/sec)
Very dense soil and soft rock 1200-2500 ft/sec (360-750 m/sec)

600-1200 ft/sec (180-360 m/sec)

<600 ft/sec (<180 m/sec)
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A general illustration for the theoretical MASW active system setting, data
collection, and data processing is illustrated in Figure 3.11.

3.2.2. Data Acquisition. In general, a typical field setting for acquiring MASW
data consists of twenty-four low-frequency geophones (4.5 Hz), which are usually used
and positioned at predetermined distances. The distances are related to the shortest
wavelength (Amin) of the light at the desired depth of investigation. The length of the

receiver spread (D) directly relates to the longest wavelength (Amax) that can be analyzed.

Figure 3.11. Active MASW field survey (http://www.masw.com/DataAcqgisitiom.html).

The longest wavelength (Amax) determines the maximum depth of investigation.
These relationships hold as: (zmax): D = Amax ~ zmax. The site and type of active source
can cause some variations in these relationships (Figure 3.12). This figure shows the
source-receiver configuration. The most important parameters in the MASW are the source
offset (x1) and receiver spacing (dx). The source offset is set at a predetermined distance

from the nearest geophone.



31

Figure 3.13 display the equipment and an actual field setup. The equipment consists
of sledgehammer, metal plate to concentrate signal, measuring tape, geophones, battery,
connection unit, cables, and a field laptop.

3.2.3. Data Processing. The acquired MASW data is processed using the Kansas
Geological Survey (KGS) software package SurfSeis. The software transforms the data
into a 1D shear velocity profile by extracting the fundamental-mode dispersion curves
(velocity vs frequency) to obtain a 1D shear-wave depth profile. The second processing
stage involves the generation of a frequency vs phase velocity dispersion curve from the
acquired Rayleigh wave field data, using the wave-field transformation and modified
wave-field transform. The resulting curve is transformed into a 1D depth vs shear-wave
velocity profile from which the elastic properties, density, and thickness of layers in the

subsurface are obtained (Figure 3.14).

Figure 3.12. Definition of a source-receiver configuration and increment of the
configuration (Park et al., 2005).
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Park, C. B. et al., (2005) and the Kansas Geological Survey concisely summarized

the MASW method as (1) obtaining the shot gathers, (2) extracting the dispersion curves,
and (3) inverting the dispersion curves to get the (1D) depth and/or the surface and depth

(Figure 3.15 and Figure 3.16).

Connection Unite

Field Laptop Battery

Figure 3.13. MASW equipment’s and tools.
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Figure 3.14. MASW surface wave data set transformed into a 1-D shear-wave velocity
profile of the subsurface (Park, 2006).
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Figure 3.15. A step-by-step approach for data processing and analyzing MASW profiles
(Kansas Geological Survey).
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Figure 3.16. Overall procedure for the 2-D shear-wave velocity map with the MASW
survey (https://www.researchgate.net/publication/228977208 _

MASW _horizontal_resolution_in_2D_shear-velocity _Vs_mapping/figures?lo=1).
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3.2.4. Data Interpretation. Interpretation of geophysical data (including MASW
data) generally involves many factors. The interpreter’s knowledge of the study area and
its geology, stratigraphy, climate, topography, and development history will have a positive
impact on the interpretation of the data, and on the study goals and objectives.

The MASW interpretation involves the careful consideration of the relationship
between shear-wave velocities and depth to realistically model the subsurface.

Interpretation should consider the use of more than one geophysical method to
complement each other, due to some inherent limitations in methods, equipment, and the
variation of environmental factors.

Although variations in shear-wave velocities could occur within short distances in
natural conditions, it is still advantageous to have a general idea about shear-wave
velocities from previous studies as a reference. In situations where anomalously low or
high values are obtained during data acquisition, these values could raise concern and
suggestions in investigating the acquired data, calibrating the equipment, or conducting

confirmatory studies.
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4. DATA ACQUISITION AND PROCESSING

4.1. ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

The electrical resistivity system used for this survey was the SuperSting RS,
manufactured by Advanced Geosciences, Inc.

4.1.1. ERT Data Acquisition. The complete field system consists of the
transmitter/receiver SuperSting R8 instrument console, switch boxes, two 12V power
supply batteries, passive cables and metal stakes. 168 electrodes were fixed on the pinned
metal stakes in a straight line from both sides from the centered SuperSting R8 (Figure
4.1). The electrodes were spaced at 5 ft. intervals along each traverse. The desired

maximum depth of investigation was 100 ft.

e
Cables and electrodes 12-Volt Batteries Metal stakes

Switch Box

Process of ERT Acquisition

Control Unit (SuperSting RS8)

Figure 4.1. The equipment used for ERT data collection.

ERT profiles were acquired along more than hundred separate traverses in the study

area. The traverses were oriented either west to east or north to south. The spacing between
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adjacent parallel traverses was nominally 100 ft. Thirteen (13) representative examples of
ERT profiles are presented herein, some of which were selected to illustrate the major

factors that contributed to the observed resistivity anomalies in the subsurface. (Figure 4.2).

(ERT) Traverse #10 |
- - ‘ (ERT) Traverse #11
’ (ERT) Traverse #3
Lk (ERT) Traverse #2 ! \
[ (,ER L> Tcavesse s — - - v (LRJ) Traversuq \
-y

(ERT) Traverse 8

S V

¢ \°
=
’— H FRl) Traverse #12
(F.RT_) Traversefs :
#-~ - o4

J
|
| -

\ )

(ERT) Fu@e(se #6

g:)

(ER T ) Traverse #5

. | \_
\.
. /
ek b (ERT) Traverse #13
ERT Traverses
Google Earth

2000 ft

——— o

‘ (ERT) Traverse #7

Figure 4.2. The location of ERT traverses presented in this study.

4.1.2. ERT Data Processing. RES2DINV software was used to process the ERT
data acquired in this study. The software was used to identify and remove the bad data
(Marescot & Loke, 2004), and for the compilation of a resistivity model. The steps of the
ERT data processing are illustrated in Figure 4.3 to Figure 4.7 and accompanying text. The
steps include:

Reading the (.stg) SuperSting data file into computer, and converting the file into a

format, readable using res2dinv processing software (dat).
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Loading the (dat) file in res2dinv software and exterminating bad data points
(Figure 4.3). Bad points are caused generally by electrodes that are not properly coupled
(electrically) to the ground surface. Uncoupling could result from moisture deficiency,
damaged cables, or by shorting across the cables due very wet ground conditions. The
processing software provides guidance with respect to the removal of bad data points.

Reading the saved file and performing the default inversion to get the
pseudosection. Inversion is the process of reconstructing a model computed from the
collected data values by using a set of measurements. The pseudosection is created using
the default parameters, which includes 7 iterations.

SuperSting displays the data in meters. The display was changed to “feet” by

selecting “feet” in the data/display change setting submenu; then editing the data to reset
the inversion/damping factor values of the pseudosection.
The damping factor (A) is used as a smoothness-constrained factor in least-squares
inversion equations. The factor has a value between 0.25 and 0.05 and is set to a higher
value if the data set is noisier. Inversion, coupled simultaneously with damping, removes
the apparent variability artifacts that may arise due to overfitting noisy data to obtain a true
model of the data.

Other parameters that changed include the absolute error to RMS error and the
model cell width (changed to be half the unit of electrode spacing and setting contour
intervals) to delineate the boundaries between the different earth material. These changes
are applied to set a reasonable scale for the extended model discretization (Figure 4.4).
Following the setting of new parameters, inversion is carried on until it completes four (4)

selected iterations, (Figure 4.5).
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The iterations minimize the variation in the data RMS misfit and the model RMS
misfit during the 2D inversion of apparent resistivity data. The misfits are normalized with
respect to the value at the iteration numbers. Data are edited after the completion of
iterations and the RMS error statistics are evaluated. When the RMS is high, an effort is
made to reduce noise, and then data are reprocessed until the RMS is less than 10% (Figure
4.6). When the RMS error is < 10 %, the model is accepted (Figure 4.7).

Resistivity measurement acquired is apparent resistivity, which processed in an
inversion program to give the distribution of electrical properties of the subsurface and is
representable in a 2D (pseudosection) profile.

The Pseudosections associate the log of the values of apparent resistivity with the
(x, y) location. Location (x) is the mid-point of the measuring, electrodes, and location (y)
relates to the electrodes spacing. The data are then contoured to yield a pseudosection.

The pseudosection is the first step in assessing the quality of data; bad electrodes
are identified, and heterogeneity is visually detected. The middle section is the calculated
apparent resistivity result, and the bottom section, is the final inverse model resistivity
section (the truest representation of the true subsurface) (Figure 4.7).

The acquired ERT data are fair-to-excellent quality, particularly considering that
the data were acquired in complex karst terrain. The practices resulted in excellent quality
data, and they included the regular conduction of contact resistance tests prior to data
acquisition surveys to ensure the electrical connectivity of electrodes. Cable issues and
anomalously high resistance values were corrected in the field. The wetting of dry/or
porous soils was regularly completed during surveys when high resistance values were

initially recorded during the contact resistance tests.


https://www.subsurfaceinsights.com/tlp_electricalresistivitymethod_surveys
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Shallow and loose electrodes and stakes were checked and properly fixed. During
the actual data acquisition, output errors were viewed and continuously monitored on the
instrumentation screen. In some situations, data acquisition was terminated when
continuous high values or negative resistivity values were viewed on the instrument. In
such situations, the cables and electrodes were checked for problems and were fixed or
replaced.

Data quality is automatically assessed during processing by the software, the RMS
error is calculated, and the software determines the quality of the data and may reject it.
Generally, the quality of data is accepted and considered reliable in this study when the
RMS is less than 10%. Some of the data used in this study has RMS values < 4 %, which
is high quality data.

For the purpose of this research, several electrical resistivity tomography models
were generated from the acquired data using 168 electrodes, spaced at 5 ft. apart. Six of

these profiles were presented here below as examples (Figure 4.8 to Figure 4.13).

4.2. MULTI-CHANNEL ANALYSIS OF SURFACE WAVES (MASW)

The MASW data were acquired on the ERT traverses and mostly on a grid of 400
ft. The MASW traverses were oriented approximately parallel to the direction of the ERT
traverses. The acquisition parameters and the acquisition software setup for conducting
active MASW surveys were summarized by Park et al. (2002) in (Table 4.1) and the (Figure
4.14).

4.2.1. MASW Data Acquisition. A 24-channel seismograph equipment and 24

vertically polarized 4.5 Hz geophones were used to acquire the MASW data.


http://www.masw.com/files/PAR-02-03.pdf
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The geophones were placed in a straight line, at spacings of both 2.5 ft and 5 ft.
Data acquired using a 5 ft interval should enable (theoretically) the user to image the
subsurface to a depth in excess of 100 ft. Unfortunately, data quality, in karst terrain, often
deteriorates with longer spacings due to smearing (caused mostly by variable depth to top-
of-rock). In many instances, data acquired using a 2.5 ft spacing was superior to data
acquired using a 5 ft spacing. Two offsets were used:10 ft and 30 ft. A sledgehammer (20
Ibs.) and metal plate were used as the source for generating the surface waves.

MASW data acquired to determine the engineering properties of the subsurface to
a depth of approximately 50ft. Thirteen (13) ERT traverses were selected to be presented
in this study with MASW traverses acquired to constrain the ERT interpretation results
(Figure 4.15).

4.2.2. MASW Data Processing. Processing of acquired MASW data was
conducted using SurfSeis software from the Kansas Geological Survey (KGS). The
purpose of the processing is to generate 1D (depth) shear-wave velocity profile.

To achieve this, three processing steps are required, including the upload of the
basic field multichannel data records “shot gathers” (Figure 4.16) to the computer and
converting the data from seismograph format to KGS format, the estimation of the
fundamental-mode dispersion curves, and the inversion of these curves to obtain 1D
(depth) and velocity Vs frequency plots.

Accurate estimation of fundamental-mode dispersion curve is a critical step in
many shallow surface-wave methods (Gathers, J. I. et al., 2005). A simple multichannel
processing technique used to mute the interfering seismic waves in the shot records is used

to changes the amplitude of all or part of a trace before additional processing.
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<» ERT Traverses
MASW Traverses

Google Earth
| 2000 ft

Figure 4.15. Location of acquired ERT traverses and MASW arrays in the study area.

Noisy and erroneous traces are given zero amplitude, and data (noise) before the
first break, and the known refraction arrivals are also often reduced to zero amplitude.

The next step in MASW data processing is generating the dispersion image from
the data after the muting process. This is done directly by the software, where it calculates
phase velocities from the frequency records of the MASW data and extracts an aggregate
dispersion curve from the overtone image (Figure 4.17).

After the generation of the dispersion curve, the high mode surface wave data is
deleted to the extent possible to minimize noise, because steepness of the low frequency
section (< 1.5 Hz) of the dispersion curves creates many computational instabilities during

the inversion.
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Inversion of the curve is done by using least squares approach in the inversion
submenu of the software to generate 1D (depth) vertical shear-wave velocity profile

(Figure 4.18).

0 % W0 0 % we
Dispersion Curve (Record # « 27) s ol
(Mid-Station # = 1012 5)

2

(\/S) oex 9siON-OFeUsiS

e

50 60 70

10 20 30 40
Frequency (Hz)

Figure 4.17. Dispersion curve from each record generated for phase velocity Vs
frequency.
The inversion produces a final shear-wave velocity profile (step-ladder-shape),
model dispersion curves (solid curve) and observed dispersion curves (dotted). If the final
model dispersion curve matches the observed dispersion curve, the output shear-wave

velocity profile is assumed to be reliable.
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Figure 4.18. The dotted black line represents the observed dispersion curve as picked on
the overtone image; the blue solid line represents the model dispersion curve; the green
dotted line represents the initial curve, and the step-ladder-shape represents the final
velocity model.

Data quality is monitored during all the steps of the MASW survey. During data
acquisition, cables, electrodes and stakes were monitored for electrical connectivity and
problems associated with them. Special attention was directed to the dispersion curve
selection, and to the removal of the higher mode signal.

Comparing the deviation between the model dispersion curve and observed

dispersion curve in the six examples (Figure 4.19 to Figure 4.24) presented in this research,

indicates that the quality of data is good to excellent.
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5. INTERPRETATION AND DISCUSSION

The locations of the traverses of the ERT and MASW profiles selected for
interpretation and discussion in this study of “imaging in karst terrain using the electrical
resistivity tomography and multi-channel analysis of surface waves methods” are shown

on a Google Earth image of the study area (Figure 5.1).

. (ERT) Traverse #2 f (ERT) Traverse #3

—y

? N ; s . . ‘
; = -‘MAS\V Ay ., .'_"J ;.ﬁ;‘ ERT) fravzﬂe %4
i (ERT) Trave_rs“e #1 : o ‘

| 4l F

MAx
\ & \‘

(ERT) Trayerse #6
e

Legend (\ERT) Traverse #5 f/\’) % ‘
» ERT Traverses . "\:\\/ \:
\ $

MASW Traverses

Google Earth™
2000 ft

(ER'I‘) Traverse #7
Figure 5.1. Google Earth image showing locations of the MASW and ERT traverses.
The interpretations and discussions in this study focus on seven (7) ERT profiles
and two (2) MASW data sets which collectively illustrate the signatures of both man-made
and the natural zones of anomalously low resistivity within bedrock. Anomalously low
resistivity is defined herein as rock characterized by resistivity values less than 125 Q-m.
The average resistivity values of earth material (as per Table 5.1) was used as a

guide for the ERT interpretation.
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The MASW data were acquired in proximity to the ERT traverses and used to
constrain and verify the ERT interpretations. The NEHRP shear-wave velocity

classification table for soils and rocks (Table 5.2) was used as a guide for interpreting the

MASW shear-wave velocity profiles.

Table 5.1. Typical resistivity values for different subsurface materials (Anderson, 2015).

Earth Material Resistivity, Average or Range (Q.m)

cxs
-125 <600
125

Table 5.2. Shear-wave velocity (Vs) of some earth materials (NEHRP, 1997).

>5000 ft/sec (> 1500 m/sec)
_ 2500-5000 ft/sec (750-1500 m/sec)
1200-2500 ft/sec (360-750 m/sec)
Y co0-1200 e (150-360 mysec)
<600 s (180 s

ERT Example 1:

ERT profile 1 is oriented west—east (Figure 5.1 & Figure 5.2). The superposed black
solid line represents the interpreted top-of-rock and corresponds approximately to the 125

Q-m contour interval. The contact (as interpreted) between the moist soil and the
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underlying moist soft rock (resistivity < 125 Q-m) in proximity to anomaly 1 cannot be
confidently identified on the ERT profile 1 because the moist soil and moist soft rock at
the contact depth have similar resistivity values, presumably because the shallow rock is
moist and intensely weathered with piped clay infill.

ERT anomaly 1 on the ERT profile 1 is approximately 85 ft wide at the interpreted
top-of rock (elevation 1218 ft) and narrows down to ~50 ft (elevation 1200 ft) to a depth
18 ft from the top-of-rock, with a total length of 18 ft of the anomaly. Anomaly 1 underlies
a natural stream bed running north-south (the blue lines in Figure 5.2).

ERT anomaly 1 on the ERT profile 1 is attributed to the seepage water from the
overlying stream bed into the subsurface. The anomaly as interpreted, is "natural™ in origin.
Inasmuch as the stream bed has existed for thousands of years (since glacial times), shallow
rock is believed to have been intensely weathered over time. The minimum resistivity of
ERT anomaly 1 on the ERT profile 1, as interpreted, is less than ~75 Q-m, and the overall
resistivity is between 75 and 125 Q-m. Note that the resistivity of rock in proximity to the
highlighted anomaly increases away from the anomaly and with depth of burial and is much
broader than the stream bed. This indicates that moisture flow from the stream bed is both
vertical and lateral. ERT anomaly 2 on the ERT profile 1 is approximately 50 ft wide at the
interpreted top-of-rock (elevation 1234 ft) and pinches out at a depth of ~12 ft (elevation
1223 ft) from the top-of-rock, with a total length of 12 ft of the anomaly (Figure 5.2).

Anomaly 2 underlies a roadway with drainage ditches. The contact (as interpreted)
between the moist soil and the underlying moist soft rock in proximity to anomaly 2 cannot

be confidently identified on the ERT profile 1 because the moist soil and moist soft rock at
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Google Earth
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Figure 5.2. Google Earth image showing the ERT traverse location, water pond, the
stream, roadway and drainage ditch. Interpretations are superposed
upon the ERT profile 1.

the contact depth has similar resistivity values, presumably because the shallow rock is

moist and intensely weathered with piped clay infill. The minimum resistivity of ERT
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anomaly 2 on the ERT profile 1, as interpreted, is less than ~25 Q-m, and the overall
resistivity is between 25 and 50 Q-m. Note that the resistivity of rock in proximity to the
highlighted anomaly increases away from the anomaly and with depth of burial and is much
broader than the roadway and ditches. This indicates that moisture flow is both vertical and
lateral.

ERT anomaly 2 on the ERT profile 1 is attributed to the seepage water from the
roadway and drainage ditch into subsurface. The anomaly as interpreted, is "man-made" in
origin. Since the roadway has existed for less than 50 years, it is highly unlikely that
shallow rock beneath the roadway has been intensely weathered by the seeping water
(although it probably contains piped clay). It worth noting that the “natural in origin”
anomaly 1 is larger in size and extends to a greater depth compared to the “man-made”
anomaly 2. This could be attributed, in part, to the fact that shallow bedrock beneath the
stream has probably been weathered by seeping water for thousands of years and is more
porous and permeable than shallow bedrock beneath the drainage ditches of anomaly 2. On
the other hand, as noted, anomaly 2 has lower minimum resistivity values than anomaly 1
(less than 25 Q-m). This could be attributed, in part, to the thesis that moisture and piped
clay flow more rapidly into the subsurface beneath the stream bed in anomaly 1 than their
flow into subsurface in anomaly 2. Hence, anomaly 1 is more volumetrically larger and its
minimum resistivity values are slightly higher than anomaly 2.

MASW data set 1 was acquired along the ERT traverse 1 at the 1400 ft tie point.
The shear-wave velocity for soil in the study area, as interpreted, is < 1250 ft/s, the shear-
wave velocity for soft (weathered) rock, as interpreted, is between 1250 ft/s and 2500 ft/s;

the shear-wave velocity for rock, as interpreted, is > 2500 ft/s (Figure 5.3).
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Figure 5.3. MASW shear wave velocity profile 1 illustrating soil thickness, depth to top
of weathered rock and weathered rock and top-of-rock. Velocity is in ft/s.

At the tie point, the soil thickness as interpreted on the ERT profile 1 is ~12 ft. The
soil thickness (depth to soft or weathered rock) as interpreted on the MASW shear-wave
velocity profile is ~14 ft. The interpreted top-of-rock (shear-wave velocity greater than
2500 ft/s) on the shear-wave velocity profile is at a depth of 19 ft. The difference between
the ERT and MASW estimates of soil thickness can be attributed to the fact that the ERT
estimate is based on moisture content (resistivity) whereas the MASW estimate is based
on shear strength (shear-wave velocity). Also, the MASW data were acquired using a 115
ft long array of geophones. As a result, the MASW shear wave velocity profile represents
the average shear wave velocity of the subsurface beneath the array of geophones as

opposed to representing the shear wave velocity of the subsurface precisely at the tie point.
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ERT Example 2:
ERT profile 2 is west—east oriented (Figure 5.1 & Figure 5.4). The superposed
black solid line is the interpreted top-of-rock and corresponds approximately to the 125
Q-m contour interval. The contact (as interpreted) between the moist soil and the
underlying moist soft rock (resistivity < 125 Q-m) in proximity to anomaly 1 cannot be
confidently identified on the ERT profile 2 because the moist soil and moist soft rock at
the contact depth have similar resistivity values, presumably because the shallow rock is
moist and intensely weathered with piped clay infill.

ERT anomaly 1 on the ERT profile 2 is approximately 70 ft wide at the interpreted
top-of-rock (elevation ~1220 ft) and thins at the bottom to 40 ft (elevation ~1200 ft) from
the top-of-rock, with a total length of the anomaly ~20 ft. The minimum resistivity of
anomaly 1, as interpreted, is less than 100 Q-m, but generally, the resistivity values are
between 100 — 125 Q-m. Anomaly 1 as interpreted, underlies a natural stream bed that has
probably existed for thousands of years (since glacial times), thus, shallow rock is believed
to have been intensely weathered over time (Figure 5.4). Anomaly 1 on the ERT profile 2
as interpreted, indicates that the stream bed is active, but the vertical moisture and clay
material supply is intermittent, and that the anomaly receives its major supply from the
seepage water and piped clay from lateral sources Anomaly 1 on the ERT profile 2, as
interpreted is “natural” in origin. The resistivity increases with depth of burial to more than
250 Q-m to a depth of 25 ft (elevation 1196).

It is likely that the resistivity in this area is controlled by the seasonal variation of
moisture content, which eventually slows weathering. Water that seems to contribute to the

low resistivity is seeping from sources and pathways at the vicinity of the stream bed.
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Figure 5.4. Google Earth image showing the ERT traverse location and the natural
depression superposed upon the ERT profile 2.
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ERT Example 3:

ERT profile 3 is oriented west—east (Figure 5.1 & Figure 5.5). The superposed black
solid line is the interpreted top-of-rock and corresponds approximately to the 125 Q-m
contour interval. The contact (as interpreted) between the dry soil and the underlying
weathered rock (resistivity > 125 Q-m) in proximity to anomaly 1 cannot be confidently
identified on the ERT profile 3 because the dry soil and weathered rock at the contact depth
have similar resistivity values, presumably because the shallow rock is weathered and
porous.

ERT anomaly 1 on the ERT profile 3 is approximately 20 ft wide at the interpreted
top-of-rock (elevation 1200 ft) and broadens to 40 ft wide at a depth of 56 ft (elevation
1144 ft) from the top-of-rock. The total length of the anomaly is 62 ft from the top-of-rock
(elevation 1200 ft and 1138 ft). The minimum resistivity values (~75 Q-m) associated with
the anomaly are observed at a depth of ~12 ft from the top-of-rock (elevation ~1188 ft).
Resistivity range of the anomaly varies between ~75 and ~150 Q-m. The resistivity of the
anomaly increases with depth of burial to more than 125 Q-m (below elevation 1138 ft).
ERT anomaly 1 on the ERT profile 3, as interpreted, underlies a natural stream bed running
north-south (the blue lines in Figure 5.5). The anomaly as interpreted, is moist weathered
rock, filled with clay. Inasmuch as the stream bed has existed for thousands of years (since
glacial times), shallow rock is believed to have been intensely weathered (Figure 5.5).

ERT anomaly 1 on the ERT profile 3 is attributed to the seepage of the stream bed
water and overlying depression into subsurface. The anomaly is interpreted as "natural™ in

origin, and it is likely that water and clay supply is not enough to impact the underlying
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Figure 5.5. Google Earth image showing the ERT traverse location and the natural

depression superposed upon the ERT profile 3.
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rock, or it drains very fast before seeping into subsurface. Moreover, the shallow rock is
likely less porous and less fractured than the underlying rock. The anomaly, as interpreted,
indicates that flow pathways are vertical and lateral, even though they are intermittent.
ERT Example 4:

ERT profile 4 is north-south oriented (Figure 5.1 & Figure 5.6). The superposed
black solid line is the approximated top-of-rock, which is extremely variable but is
generally considered to correspond to the 125 Q-m contour interval. The contact (as
interpreted) between the moist soil and the underlying moist soft rock (resistivity < 125
Q-m) in proximity to anomaly 1 cannot be confidently identified on the ERT profile 4
because the moist soil and moist soft rock at the contact depth have similar resistivity
values, presumably because the shallow rock is moist and intensely weathered with piped
clay infill.

Anomaly 1 on the north—south oriented ERT Profile 4, as interpreted, is ~15 ft wide
at the top-of-rock (1238 ft elevation). The width of the anomaly increases progressively
with depth to 80 ft at a depth of ~90 ft (elevation of 1148 ft) from top-of-rock, with a length
more than 90 ft for the anomaly (Figure 5.6). The base of the anomaly (as defined by the
125 Q-m contact) is not observed on Figure 5.6, so the maximum depth of the anomaly
cannot be determined. The minimum resistivity values (~10 Q-m) associated with the
anomaly are observed at a depth of ~47 ft from the top-of-rock. Resistivity range of the
anomaly varies between ~10 and ~50 Q-m. This feature as interpreted, is one of the
prominent west-east solution-widened joints that characterizes the study area. The joint is

clay-filled, and resistivity of the anomaly decreases further with depth to less than 10 Q-m.
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Figure 5.6. Google Earth image showing the ERT traverse location and the gravel
platform. Interpretation superposed upon the ERT profile 4.

ERT anomaly 1 on the ERT profile 4 is interpreted as “man-made” in origin.

Google earth images from 1997 to 2019 revealed that the location of the acquired ERT
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traverse 4 was occupied by buildings and structures that were established on laid-out gravel
platform. The consecutive Google earth images illustrated that the buildings were removed,
and the gravel platform diminish gradually and completely disappeared, as shown in the
most recent Google earth image (2019).

Water is flowing from west to east in the vicinity of the ERT traverse and across
the gravel platform into a north-south drainage ditch (Figure 5.6). Water and fine earth
material infiltrate the gravel platform into the jointed subsurface soft rock. Excess water
flow further east into the drainage ditch, and eventually seeps laterally and vertically into
the subsurface, causing the anomalously low resistivity values.

ERT Example 5:

ERT profile 5 is north-south oriented (Figure 5.1 & Figure 5.7). The superposed
black solid line is the approximated top-of-rock and corresponds approximately to the 125
Q-m contour interval. The contact (as interpreted) between the moist soil (resistivity < 125
Q-m) and the underlying moist soft rock in proximity to anomaly 1 cannot be confidently
identified on the ERT profile 5 because the moist soil and moist soft rock at the contact
depth have similar resistivity values (between 25-75 Q-m), presumably because the
shallow rock is moist and intensely weathered with piped clay infill.

ERT anomaly 1 on the north-south oriented ERT Profile 5 is ~35 ft wide, as
interpreted at the top-of-rock (elevation 1210 ft). The width of anomaly 1, as interpreted,
slightly broadens with depth to 60 ft at a depth of 65 ft (1150 ft elevation) from the top-of-
rock, with a length of more than 80 ft for the anomaly (Figure 5.7). The base of the anomaly
(as defined by the 125 Q-m contact) is not observed on Figure 5.7, so the maximum depth

of the anomaly cannot be determined.
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Figure 5.7. Google Earth image showing the ERT traverse location and the roads and
drainage ditch. Interpretation superposed upon the ERT profile 5.

The minimum resistivity values (less than 75 Q-m) associated with anomaly 1 are
observed at a depth of ~35 ft from the surface, at the top-of-rock. Rocks of the study area

are pervasively jointed, fractured and weathered limestones that often solution-widened
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and clay infilled. The minimum resistivity values of anomaly 1 on the ERT profile 5 as
interpreted, is less than 75 Q-m, and underlies a 25 ft wide roadway surrounding landfill.
Anomaly 1 on the ERT profile 5 as interpreted, is “man-made” in origin, is caused by
seepage rainwater, run-off, water conveyed by roads and ditches and the water drainage
system into subsurface, at the toe of the landfill via vertical and horizontal pathways.

ERT anomaly 2 on the ERT profile 5 as interpreted, is ~50 ft wide at the top-of-
rock (elevation 1200 ft) and narrows down to ~40 ft at a depth of 38 ft (elevation 1162 ft)
from the top-of-rock, with a total length of 38 ft (Figure 5.7). The contact (as interpreted)
between the moist soil (resistivity < 75 Q-m) and the underlying moist soft rock in
proximity to anomaly 2 cannot be confidently identified on the ERT profile 5 because the
moist soil and moist soft rock at the contact depth have similar resistivity values (between
50 — 75 Q-m), presumably because the shallow rock is moist and intensely weathered with
piped clay infill.

The minimum resistivity values associated with anomaly 2 on the ERT profile 5
(less than 50 Q-m) are observed at the depth of the top-of-rock. Generally, resistivities of
anomaly 2 ranges between 50 and 125 Q-m. The feature as interpreted, is one of the
prominent west-east solution-widened joints that characterizes the study area. The joint is
clay-filled, and resistivity of the anomaly increases further with depth to more than 250
Q-m.

ERT anomaly 2 on the ERT profile 5 as interpreted, is “man-made” in origin and
is caused by seepage rainwater, run-off, water conveyed by roads and ditches and the water
drainage system into subsurface, at the toe of the landfill via vertical and horizontal

pathways.
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MASW data set 5 was acquired along the ERT traverse 5 at the 500 ft tie point.

Shear-wave velocity of the soil in the study area, as interpreted, is < 1250 ft/s, and the

shear-wave velocity for the soft or weathered rock, as interpreted is > 1250 ft/s (Figure

5.8).
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Figure 5.8. MASW shear-wave velocity profile 5 illustrating soil thickness, depth to top
of weathered rock and weathered rock. Velocity is in ft/s.

At the tie point, the soil thickness as interpreted on the ERT profile 5 is ~20 ft. The

soil thickness (depth to top of weathered rock) as interpreted on the MASW shear-wave

velocity profile is ~15 ft. The difference between the ERT and MASW estimates of depth

to top-of-rock can be attributed to the fact that the ERT estimate is based on moisture
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content (resistivity) whereas the MASW estimate is based on shear strength (shear wave
velocity). Also, the MASW data were acquired using a 115 ft long array of geophones. As
a result, the MASW shear wave velocity profile represents the average shear wave velocity
of the subsurface beneath the array of geophones as opposed to representing the shear wave
velocity of the subsurface precisely at the tie point.

ERT Example 6:

ERT profile 6 is north-south oriented (Figure 5.1 & Figure 5.9). The superposed
black solid line is the approximated top-of-rock, and generally considered to correspond to
the 125 Q-m contour interval.

The ERT anomaly on the ERT profile 6, which underlies a landfill, is ~ 775 ft wide
at a depth of 42 ft (elevation 1180 ft) from the top-of-rock (elevation 1222 ft). The anomaly
slightly broadens to ~790 ft at a depth greater than ~90 ft (elevation 1128 ft) from the top-
of-rock, with a length of more than 52 ft for the anomaly. The base of the anomaly (as
defined by the 125 Q-m contact) is not observed on Figure 5.9, so the maximum depth of
the anomaly cannot be determined. The minimum resistivity values (~10 Q-m) associated
with the anomaly, decrease with depth and are observed at a depth of ~80 ft (elevation 1142
ft) from the top-of-rock. Generally, resistivities of the anomaly range between 10 and <
125 Q-m (Figure 5.9).

The anomaly underlies a landfill, which is by design, is comprised, in part, of an
emplaced clay layer to prevent the leachate from contaminating subsurface soil and
groundwater. Landfills are covered by a thin veneer of clayey soil and grass designed to
divert rainwater run-off into a designed drainage system. The drainage system around this

landfill is clay lined and designed to divert water into the drainage pathway at the toe of
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the landfill. Some of the water in the drainage ditch seeps into the subsurface. Run-off from

the landfill also seeps into the surface through the native soil near the toe of the landfill.

1220 - §

1180 -
1160 -

140 ¢

1120 © ERT profile # 6
AAEEECIEEEN TN EEEn

oo . 10.0  50.0 125 250 600 1500 3750 9000
Resistivity in ohn.n
Figure 5.9. Google Earth image superposed upon the ERT profile 6 where water diverted
by the landfill drainage system seeps into subsurface through pervasively fractured
limestone rock. The anomaly slightly broadens below the 1180 ft elevation.

It’s likely the upper subsurface rock is less conductive than the lower subsurface
rock (below elevation 1180), since landfills are placed in locations with minimum porosity
to avoid leachate escape into subsurface.

The ERT anomaly on the ERT profile 6 is “man-made”, attributed to seepage of
diverted water off the toe of the landfill by the designed water drainage system. Water
seeps into subsurface via the natural vertical and horizontal pathways at the toe of the

landfill (Figure 5.9).
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ERT Example 7:

ERT profile 7 is west—east oriented (Figure 5.1 & Figure 5.10). The superposed
black solid line is the interpreted top-of-rock and corresponds approximately to the 125
Q)-m contour interval.

ERT anomaly 1 on the ERT profile 7 is approximately 20 ft. wide at depth 76 ft
(elevation 1117 ft) from the top-of-rock (elevation 1193 ft). The anomaly broadens to 35
ft wide at a depth greater than 86 ft (elevation 1107 ft) from the top-of-rock, with a length
for the anomaly of more than ~10 ft. The base of the anomaly, as defined by the 125 Q-m
contact, is not observed on Figure 5.10, so the maximum depth of the anomaly cannot be
determined. Resistivity values of ERT anomaly 1 on the ERT profile 7, as interpreted,
decreases with depth of burial to resistivity values less than 125 Q-m (elevation < ~1117
ft) from the interpreted top-of-rock. The minimum resistivity values are > 125 Q'm at a
depth of ~76 ft (elevation 1117 ft) from the interpreted top-of-rock (Figure 5.10).

ERT anomaly 1 on the ERT profile 7 as interpreted, is “natural” in origin, and attributed to
seepage water and piped clay vertically into subsurface from the sinkhole. This sinkhole is
likely formed during thousands of years (since ice age). North of the sinkhole is likely the
initial location where water and clay material seeped into the subsurface and caused the
sliding of the overburden. The subsurface water flow and clay has likely caused the creation
of the cover collapse sinkhole. Anomaly 1 on the ERT profile 7, as interpreted (resistivity
~125 Q-'m), is caused by seepage water of the sinkhole, which percolate porous and
fractured subsurface limestone rock. Soil thickness, as interpreted on the ERT profile 7 was
11 ft, and the top-of-rock (black line) was 11 ft. The minimum and maximum soil thickness

varies between 5 and 35 ft. respectively.
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Figure 5.10. Google Earth image superposed upon the ERT profile 7 where the collected
water in the sinkhole seeps to subsurface as shown in the figure with the corresponding
anomaly 1 on the ERT profile.

Based on the discussion and interpretation of the seven (7) ERT profile examples
of the study, Table 5.3 summarizes the “man-made” and the “natural” in origin anomaly
characteristics.

The upper width is the anomaly width at the top-of-rock and the lower is the width

at the bottom of the anomaly.
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The depth of the anomaly is measured from the top-of-rock or from where the
anomaly starts beneath the top-of-rock to the bottom of the anomaly, provided that the
anomaly is not open ended.

The minimum anomaly resistivity value is the least value interpreted and the
maximum is the highest resistivity values range.

The size of the anomaly is roughly estimated by the cross-sectional area of the
anomaly (length x width).

The time span of the anomaly, is the interpreted time of the anomaly formation,
considering that the anthropogenic activities in the study area are likely existed since ~ 50
years ago, whereas the natural anomalies has existed for thousands of years.

Hypotheses:

1- Natural in origin anomalies are larger in size than man-made anomalies.

2- Natural in origin anomalies are deeper in depth than man-made anomalies.

3- Man-made anomalies are narrower than natural in origin anomalies.

4- Man-made anomalies exist in ~50 years and the naturally occurred anomalies

existed in 1000’s of years.

Previous studies characterized the study area as intensively weathered, fractured
and jointed carbonate rocks area, and have high tendency to absorb surface moisture from
natural or anthropogenic sources.

Hypothetically, the “natural” in origin anomaly size and moisture is larger than the
anthropogenically induced anomalies but as illustrated in example 7 (Table 5.3), it is likely
that the seepage of water and clay into subsurface minimize the porosity and in-fill the

fractures and eventually less moisture and piped clay reach deeper into subsurface.



86

Human intervention in many situations caused the creation of sinkholes and the
creation of anomalously low resistivity values by the controlled water drainage systems for
the roofs of houses and buildings and domestic water supply networks and road ditches
and drainage systems of landfills.

Naturally formed anomalies in this study are mostly created due to stream beds.
These anomalies usually existed during thousands of years and are hypothetically deeper,
but in this study, as example 6 illustrates, man has disturbed the natural water flow direction
by constructing roads in three (3) directions, that has resulted in a lateral spread of
anomalously low resistivity values (Table 5.3).

Since natural anomalies in these examples, as interpreted, underlies stream beds,
its width is controlled by stream banks, rainfall intensity and the soil amount and type. Soil
particles settles on the surface forcing water to flow over stream banks, such as anomaly
lof example 1, example 2 and example 3. In these examples the anomalies are very large
at the top and decreases with depth. The man-induced anomalies are generally small such
as the anomalies associated with roads (anomaly 1 & 2, example 5). When water flow in
pre-fractured and dry subsurface, naturally the in-filled soil absorb water very fast. These
anomalies are usually narrower, but they grow larger if the joint is not large as in the case
of example 4, in which man activity caused the expansion of the upper layer.

The extended time span (thousands of years), causes wide spread of moisture and
increase in the anomaly size, as illustrated in example 1, 3 and 7; unlike the man-made,
which have limited effect. The effect could increase through time and could cause the
formation of sinkholes in these areas provided the increase in rainfall and the existence of

bad drainage.
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6. CONCLUSIONS

The primary objective of the research was to determine the cause of identified zones
of high moisture content within bedrock and to differentiate anomalously conductive zones
that were mostly “man-made” from those that were mostly of “natural” origin. Field
observations and air photographs were used for this purpose.

Herein, seven ERT profiles are presented. Five of the low resistivity bedrock
anomalies identified on these ERT profiles are classified as primarily “man-made”; the
other 4 are classified as primarily “natural” in origin. ERT anomalies that can be attributed
to natural causes, such as water-filled sinkholes and surface drainage pathways were
differentiated from anomalies that were caused by man-made factors (attributable to
surface features such as drainage ditches, gravel lots, and the engineered drainage systems
around landfills). Based on the assessment of the entire ERT data set, it is concluded that
there are no significant statistical differences between the ERT signatures of the “man-
made” and “natural” zones of high moisture content. Determinations about the cause of
low resistivity zones identified on ERT data is best done based on field observations and
air photographs.

The study formulated four hypotheses about the natural and man-made anomalies
in terms of the anomaly size, depth, the time span it took to create and width. These

hypotheses could be a future research subject to cover the entire region.
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