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ABSTRACT

Biological networks carry out vital functions necessary for sustenance despite en-

vironmental adversities. Transcriptional Regulatory Network (TRN) is one such biological

network that is formed due to the interaction between proteins, called Transcription Fac-

tors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional

robustness in the face of perturbation or mutation: a property that is proven to be a result

of its underlying network topology. In this thesis, we first propose a three-tier topological

characterization of TRN to analyze the interplay between the significant graph-theoretic

properties of TRNs such as scale-free out-degree distribution, low graph density, small

world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the

role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological

robustness as well as information spread in TRNs.

With the understanding of the TRN topology, we explore its potential use in design

of fault-tolerant communication topologies. To this end, we first propose an edge rewiring

mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes,

called hubs, while preserving its other significant graph-theoretic properties. We apply the

rewired TRN topologies in the design of wireless sensor networks that are less vulnerable

to targeted node failure. Similarly, we apply the TRN topology to address the issues of

robustness and energy-efficiency in the following networking paradigms: robust yet energy-

efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection

framework for smart city applications and a data transfer framework deployed over a fog

computing platform for collaborative sensing.
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1. INTRODUCTION

Biological systems are characterized by certain key properties which are a direct

consequence of evolution. They adapt to changing environment, exhibit high resilience to

failures and attacks, and collaboratively accomplish complex tasks, while making minimum

use of available resources. Researchers in different domains of computer science are

exploring such properties, which aid the living organisms in combating survival challenges.

In recent years, there have been examples ofmodeling biological systems in handling

communication networks and optimization problems [1]. The first example that comes to

mind is that of slime mold Physarum polycephalum. The slime mold is a single-celled

amoeboid organism which has a tendency of foraging for food sources using shortest

paths. This unique characteristic of Physarum has been extrapolated in the design of

efficient transport networks with minimum average distance between node pairs [2]. Also,

researchers tapped into swarm intelligence-based algorithms like the foraging habits of ants

(that make use of a chemical called pheromone). The objective behind these algorithms is

to conceive distributed systems, where individual components can interact with one another

and their environment. Finally, it is known that the immune system of living organisms can

detect the slightest aberrations in the environment and learn from past experiences. Taking

cue from immune system of mammals, researchers have formulated the Artificial Immune

Systems (AIS) which can be utilized to solve computational problems [3].

There have been a few attempts to survey the existing literature in bio-inspired net-

working, defined as a class of strategies for efficient and scalable networking under uncertain

conditions [1]. Dressler et al. discussed the different challenges in the design of next gen-

eration network architectures such as scalability, heterogeneity, need for infrastructure-less

wireless communications. They delineated the different ways of modeling a computing

application on a biological phenomenon, followed by different bio-inspired techniques such
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as swarm intelligence, ant colony optimization, routing, epidemic spread, activator inhibitor

system, etc. Forbes discussed how bio-inspired computing transcends artificial neural net-

works and genetic algorithms and enters into DNA computing and biological hardware

[4]. Kotteeswaran discussed how living cells structure and functioning can be applied in

membrane computing, finite automata, etc. [5]. Meisel et al. explored the possible overlaps

in biology and computer networks research such as parallelism, innate fault-tolerance [6].

Figure 1.1. Chromosome, DNA and gene.

The robustness of a biological network called transcriptional regulatory network

(TRN) in the face of mutation or noise has been a key area of interest in computational

biology [7]. Studies show that the robustness of TRNs can be ascribed to its underlying

network topology [8]. In this thesis, we make an effort to apply the innate robustness of

TRNs in the design of fault-tolerant and energy efficient computer network architectures

and protocols by exploiting the various standard graph-theoretic attributes of TRNs such as

scale free out-degree distribution, abundance of subgraphs calledmotifs, low graph density,

small world property, etc. We discuss such graph-theoretic properties of TRNs, including

the implications of its motif abundance. Specifically, we discuss the association between

topological robustness of TRNs and its motif abundance, identify the metrics in literature

that quantify motifs and discuss how such metrics can lead to smart networking solutions.

Let us now provide a brief background of TRNs.
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1.1. CHROMOSOME, DNA AND GENE

Geneticmaterial of any living organism is containedwithin the cell nucleus in thread-

like structures called chromosomes. These chromosomes are composed of molecules of

deoxyribonucleic acid (DNA), and segments of DNA are called genes (Figure 1.1). In

living cells, protein synthesis takes place thorough a process called gene expression. In

other words, a gene in DNA is expressed (or "turned on") when it makes the protein it

specifies. The first step in gene expression is called transcription. It involves copying

a gene’s DNA sequence to make an RNA molecule. Let us briefly go over the steps in

transcription:

• An enzyme called RNA polymerase binds to a sequence of DNA called the promoter,

found near the beginning of a gene. RNA polymerase then separates the DNA strands,

providing the single-stranded template needed for transcription.

• One strand of DNA, the template strand, acts as a template for RNA polymerase. As

it "reads" this template one base at a time, the polymerase builds an RNA molecule

out of complementary nucleotides.

• Sequences called terminators signal that the RNA transcript is complete. Once they

are transcribed, they cause the transcript to be released from the RNA polymerase.

In eukaryotic cells, once the RNA is processed to make final product, called a

messenger RNA (or mRNA), a process called translation takes place, in which the mRNA

is read to build a proteins containing a specific series of amino acids.

1.2. TRANSCRIPTION FACTORS

Transcription factors (TFs) are proteins that regulate the transcription of genes.

Transcription factors can be activators and repressors.
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• Activators are TFs that activate transcription. They may help the RNA polymerase to

bind to the promoter.

• Repressors impede the process of transcription, Repressorsmay get in theway of RNA

polymerase, preventing them from binding to the binding sites, called promoters.

Figure 1.2. Transcriptional Regulatory Network (TRN). Graph theoretic representation of
TRN and snapshot of E. coli transriptional regulatory network (taken from [9]).

1.3. TRANSCRIPTIONAL REGULATORY NETWORKS

Transcriptional regulatory networks (TRNs) are represented as directed, signed

graphs inwhich nodes represent genes or transcription factors (TFs) and edges correspond to

enhancing or inhibitory regulations betweenTFs and target genes [10]. Positive and negative

signs on directed edges of a TRN correspond to enhancing and inhibitory regulation,

respectively [11]. Figure 1.2 shows a simple graph representation of the transcriptional

regulatory network, where the nodes labeled X is a regulating gene/TF and Y is a regulated

gene as well as a snapshot of TRN of a unicellular organism E. coli. Moreover, there is

evidence to show that the edges between the regulating and target nodes are weighted, and

these weights indicate the strength of regulation [12].
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1.4. DATASET

The validated and nearly complete TRNs of E. coli and S. cerevisiae were extracted

from GeneNetWeaver [11]. The human and mouse TRNs were obtained from the TRRUST

database [13, 14]; these two TRNs catalogue the partially known validated interactions

between TFs and genes in these two organisms. The orders and sizes of the four TRN

topologies considered in this work are summarized below:

Table 1.1. TRN graphs.

TRN type E. coli S. cerevisiae human Mouse
No. of nodes 1565 4441 2862 2456
No. of edges 3758 12873 8427 6490

Note that the complete information of the sign (i.e. up or down regulation) and

magnitude of influence of TFs on their target genes is not available in these datasets. As

mentioned before, we consider TRNs as signed and directed graphs.

1.5. MOTIVATION

Biological systems are characterized by certain key properties which are a direct

consequence of evolution. They adapt to the changing environment, exhibit high resilience

to failures and attacks, and collaboratively accomplish complex tasks, while making mini-

mum use of available resources. These natural survival mechanisms are a result of millions

of years of evolution. As a consequence, it is believed that mimicking these properties can

lead to effective solutions in various fields of computing.

In recent years, there have been examples ofmodeling biological systems in handling

communication networks and optimization problems [1]. The first example that comes to

mind is that of slime mold Physarum polycephalum. The slime mold is a single-celled

amoeboid organism which has a tendency of foraging for food sources using shortest

paths. This unique characteristic of Physarum has been extrapolated in the design of
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efficient transport networks with minimum average distance between node pairs [2]. Also,

researchers have tapped into swarm intelligence-based algorithms like the foraging habits

of ants (that make use of a chemical called pheromone). The objective behind these

algorithms is to conceive distributed systems, where individual components can interact

with one another and their environment. Finally, it is known that the immune system of

living organisms can detect the slightest aberrations in the environment and learn from past

experiences. Taking cue from immune system of mammals, researchers have formulated

the Artificial Immune Systems (AIS) which can be utilized to solve computational and

mathematical problems [3]. We now turn our focus to the common challenges faced by the

large scale communication network topologies. They include:

• Dynamic nature: The future networking architectures need to be dynamic w.r.t node

behaviors, traffic and bandwidth demand patterns, channel and network conditions.

• Resource constraints: As newer services are incorporated in the network, there will

exist demands for higher bandwidth capacity and energy overhead.

• Infrastructure-less architecture: Centralized solutions for wireless sensor networks,

delay tolerant networks, mobile ad hoc networks are no longer viable because of

unprecedented growth in network size.

• Heterogeneous architecture: Future large-scale networks will possess a large range

of network elements, requiring varied levels of modeling and realization of network

hierarchies.

• Component failures: Most real-world networks are prone to component failures,

either due to energy depletion, hardware fault or physical damage.

It is believed to be possible to come up with smart and scalable networking solutions

that meet the aforementioned challenges. To this end, there exists this emerging field called

bio-inspired networking, defined as a class of bio-inspired strategies for efficient and scalable
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networking under uncertain conditions. The primary goal in bio-inspired networking is to

design energy-efficient and robust information dissemination systems. In our context,

we define robustness as the ability of the network to carry out information flow despite

component (i.e. node or link) failures.

1.6. RESEARCH GOALS

This thesis addresses two broad research topics: (1) identification of topological

attributes of TRNs and (2) apply attributes to design robust, energy-efficient communication

network solutions (Figure 1.3).

1.6.1. Structure and Topology. We propose a three-tier topological characteriza-

tion of TRN to analyze the interplay among the myriad graph-theoretic properties such as

scale free out-degree distribution, low graph density, abundance of subgraphs called motifs,

preferential attachment, small world property, and TF-gene regulation. We then identify the

fatal flaw in TRN topology: vulnerability to failure of well-connected nodes, called hubs.

In addition, we come up with a computational model that can influence (i.e. activate or

deactivate) a specific set of genes in TRN.

1.6.2. Applications in Bio-inspired Networking. We have applied the graph-

theoretic properties of TRNs in the design of different networking solutions, such as:

1. Wireless Sensor Networks (WSN): We propose an efficient WSN topology that is

resilient to random and targeted node failures.

2. Disaster Response Networks (DRN): We design an energy-efficient and robust DRN

topology that enables seamless communication through a makeshift network in the

absence of primary communication infrastructure.

3. Internet of Things (IoT) networks: We introduce a TRN-based distributed IoT-based

data collection framework for smart city application that combines Quality of Infor-

mation (QoI) with energy efficiency.
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Figure 1.3. Breakdown of the research goals.

4. Data Transfer Framework in Fog Computing Platforms: We introduce a data transfer

framework that consists of a robust network of fog nodes and mobile devices.

We explore myriad facets of networking while designing topologies for the above

networks, such as source to sink data delivery, communication delay, network lifetime,

quality of data reported at the base station, regulation of device energy levels, etc.

1.6.3. Summary of Contribution. Here is a summary of contributions of my

dissertation:



9

• We propose a three-tier topological characterization to study the interplay between

the varied graph theoretic properties of TRNs such as low graph density, scale free out-

degree distribution, abundance of motifs, preferential attachment, TF-gene regulation

and robustness against random failure.

• We study how FFL motifs render topological robustness by creating multiple com-

munication pathways as well as acting as the most efficient spreaders of information.

• TRNs can act as templates for design of energy-efficient and robust wireless sensor

networks, disaster response networks, IoT-Net as well as fog networks.

• We conceive a computational framework that can effectively identify potential drug

targets in TRNs.

• TRNs can further inspire design of several smart networking solutions such as a bio-

inspired routing protocol. Furthermore, analysis of the hub-and-spoke architecture

and signed FFL motifs in TRNs can lead to new insights into TRN topology.
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2. LITERATURE REVIEW

In this section, we briefly discuss the existing literature on the structure and topology

of TRN and its application in wireless sensor networks. In addition, we discuss the existing

routing protocols in delay tolerant networks and disaster response networks and how it

serves as a motivation for the construction of a bio-inspired disaster response network.

2.1. MOTIF ABUNDANCE

Network motifs are statistically over-represented subgraphs that are simple building

blocks of complex networks [15, 16]. Motifs play important functional role in the TRN, like

controlling the gene expression by moderating the responses to fluctuating external signals.

From a biological standpoint, motifs can be considered to be input-output devices which

require inputs like heat, nutrients and pressure and produce outputs like regulation signals

that act upon the targets. Based on the duration and intensity of regulation, the motifs

could control some of the vital functions in the living organisms [17]. It is noteworthy that

the frequency of motifs in complex networks such as TRN when compared to the random

network, is particularly high [18, 19, 20, 21] (as we shall discuss shortly after).

Motif detection tools: There exist a variety of tools to detect network motifs. Two

popular tools are MFINDER [22] and MAVISTO [23]. While MFINDER is capable of

detection of network motifs, MAVISTO is equipped with a visualization tool to capture

the presence of a motif in a network by a force-directed graph layout algorithm. Wernicke

et al. put forward a scalable and fast motif detection tool, called FANMOD [24], that is

capable of handling colored vertices and edges to model different kinds of node interactions

such as finding motifs in protein-gene interaction networks. In FANMOD, the subgraphs

are grouped into isomorphic subgraph classes based on canonical graph-labeling algorithm
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NAUTY [25]. It then calculates the frequency of subgraph classes in a user-specified

number of random graphs generated from the original network by switching edges between

vertices. More details about other existing motif detection tools can be found in [26].

Let us discuss the most abundant motifs and some of their functional roles.

1. Feed forward loop (FFL): The Feed Forward Loop (FFL) is known to be one of

the most abundant and significant motifs in the transcriptional regulatory networks

[27, 28]. Figure 2.1(a) shows the FFL, where TFs S and I regulate the expression of

geneT . S is the general TF, I is the specific TF andT is the effector operon. Evidently

S regulates T directly and indirectly (via I). There are two categories of FFLs: (a)

coherent (b) incoherent. The sequence of +/− signs will determine whether the FFL

is coherent or incoherent. The coherent and incoherent FFLs have different functional

roles in the TRN.

(a) (b)

Figure 2.1. Feed Forward Loop. (a) Feed Forward loop (FFL) motif with different FFL
motif centrality roles (b) Left: TF S regulates TF I, and S and I jointly regulate T ; right: S
and I regulate T .

A FFL is called coherent if the direct effect of the general TF S on the effector operon

T , has the same sign as the indirect effect through the specific TF I. Incoherent FFLs

have the opposite signs for the two different paths.

It is important to note, while calculating the net effect of activation and inhibition

one may make use of basic mathematics rule of product of two signs. If we calculate

the product of like-signs (+ and +; − and −) we get a net positive result, analogously,
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product of unlike signs (+ and −) yield net negative result. This leads to 8 types

of FFLs, as depicted in Figure 2.2: four each belonging to coherent and incoherent

categories.

Figure 2.2. Coherent and incoherent FFLs.

The FFL has two input signals, the inducers, S1 and S2, which are molecules that

activate or inhibit the activity of S and I (Figure 2.1(b) (left)). Depending on whether

they are coherent or incoherent, the FFL motifs have specific information-processing

roles by regulating the activation of target gene T defined by the time (called response

time) it takes a gene product to reach its steady-state level [19]. Incoherent FFLs act

as accelerators, i.e., they provide a mechanism for speeding up the responses of T ,

whereas the coherent FFLs lead to delay in the response of T when compared against

direct regulation (shown in Figure 2.1(b) (right)).

Abundance of FFL in TRN: As per FANMOD, out of 455152 3-node subgraphs enu-

merated in human TRN, approximately 5850 motifs are FFLs or motifs possessing

FFLs as building blocks. Abundance of FFL exceeds the other triangular motif in

TRN, which is the cyclic triangle Feedback Loop (FBL) (as shown in Appendix A

Section 1).
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Figure 2.3. Motifs in TRN. Top Left: Dense overlapping regulon, Top right: bi fan, Bottom
Left: Simple Input Module, Bottom Right: auto-regulation.

2. Dense overlapping regulons (DORs): These motifs constitute a set of regulating

genes Si and target genes Ti set in the form of a bipartite graph. They are called

dense because they are present in cascades or layers as depicted in Figure 2.3(top

left). The DORs are responsible for a number of biological functions like carbon

utilization, growth and stress response [29]. We often consider a 4-node sub-motif of

DOR Figure 2.3(top right) to be a single entity in a cascade of DOR. These are called

bi fan.

Abundance of bi fan in TRN: As per FANMOD, out of 43995531 4-node subgraphs

enumerated in human TRN, approximately 132481 motifs are bi fans or possess bi

fans as building blocks.

3. Single Input Modules (SIMs): This is a motif which has a single regulating TF

S which regulates a number of genes Si [30, 31]. The name, single input module

explains that there is only one regulator. The key characteristic of this motif is that

all the target genes are either activated or all are repressed. Also, the regulating gene

is capable of regulating itself. As shown in Figure 2.3 (bottom left), regulator S has a

self-loop. The primary biological role of the SIM is to cause the collective expression

of multiple genes, even though the regulator may have varying activation threshold

for different target genes.
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4. Auto-regulation: When a gene binds its own promoter (Figure 2.3 (bottom right))

and activates itself we call it positive auto-regulation, and when it represses itself it

is called negative auto-regulation [32]. Simulations on boolean network models of

TRN have shown that robustness and stability of TRN correlates with frequency of

auto-regulation in the network [33]. E. coli, S. cerevisiae, human and mouse TRNs

have 110, 0, 24 and 28 auto-regulation motifs, respectively.

2.2. WIRELESS SENSOR NETWORK

In the domain of wireless communication, there exists specific type of networks,

called wireless sensor networks (WSNs), consisting of small, resource-constrained and

battery-powered sensor devices that are deployed over an area of interest, to collect and

deliver critical information in a wide variety of applications, such as environmental moni-

toring, health-care, target tracking and disaster management. Sensor nodes collect samples

from the environment, process them, and forward the results over multiple hops to the sinks

[34]. WSNs exhibit several functional similarities with TRNs [35]. First, the function-

ing of a WSN is greatly affected by the data sampled from the sensing field, similar to

how environmental factors (such as the concentration of chemicals) impact the working of

TRNs [36]. Second, communications in WSNs are subject to link failures which depend

on multiple factors, like the distance between sensor nodes, temporal fluctuations of the

wireless channel and interference. Likewise, TRNs are affected by stochasticity inherent

in bio-chemical functioning of cells and organelles, as well as interference generated by

alterations in the properties of molecules, for instance, due to molecular crowding [37].

Finally, nodes in WSN can fail due to hardware faults or battery depletion, but the network

still remains functional as long as one sink can be reached by remaining nodes. Similarly,

TRNs are robust against the random removal of nodes since important nodes remain reach-

able, despite other node or link failures due to external perturbations (e.g., chemicals) [38].

Such nodes correspond to the attractors in the dynamic state transition space, i.e., the states
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eventually reached by the system [39], [40] [41]. Just as robustness in TRNs depends on

attractors, robustness in WSNs relies on the reachability of sink nodes [42]. Taking the

analogies between WSNs and TRNs into consideration, Nazi et al. conceived an approach

to design efficient WSN graphs that exploit robust signal transmission properties of TRN.

They proposed a bio-inspired node deployment solution in WSNs [43], [44] that mimics the

TRN topologies; however such a strategy does not work on randomly deployed WSNs. To

address this, attempts were made to construct bio-inspiredWSNs, by establishing a rigorous

correspondence i.e., a one-to-one mapping between the nodes in a already deployed WSN

and TRN graph [45], [46]. Such a mapping was achieved by means of graph embedding

under the optimization criterion of minimizing the interference between different nodes.

While the resultant bio-inspired WSNs exhibit high packet delivery rate and low network

latency, its scalability is greatly constrained by the inherent topological characteristics of

the input TRN graph.

There are two other interesting works in the application of TRN in WSN. First,

Markham et al. have conceived a target tracking application, called discrete GRN (dGRN)

that is inspired from the manner in which the cell regulate their behavior based on the

local level of protein concentration and protein diffused from neighbor cells [47]. They

experimentally show that the proposed framework is particularly beneficial in scenarios

where nodes must tune their sampling rates to track a moving target with a certain accuracy.

The efficacy of the dGRN framework is evaluated both in a simulation environment, and in

a real environment with eight T-Mote Sky nodes tracking a light-emitting target. Second,

Byun et al. employed the principles of TRN to design a self-organizing control for WSN

that meets both the requirements of energy-efficiency and delay guarantee [48]. Here, each

sensor node schedules its state autonomously according to the controlled gene expression

and protein concentration of the proposed TRN model. They carried out simulation exper-

iments to show that the proposed approach achieves good performance in meeting delay

requirements and conserving energy in WSN systems.
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2.3. DISASTER RESPONSE NETWORKS

Existing research in both DRNs and DTNs have primarily focused on intelligent

routing protocols for achieving high packet delivery [49] and enhancing energy effi-

ciency [50, 51, 52, 53, 54, 55]. Epidemic routing [49] is the simplest routing that replicates

and transmits messages to every encountering node, thereby achieving highest packet de-

livery, while consuming significant amount of energy. Inter Contact Routing protocol

(ICR) [50] attempts to control message replication and transmission by estimating route

delays and delivery probabilities, by exploiting recurrent mobility and contact patterns of

survivors and responders. Cluster based Topological Routing (CTR) [51] utilizes naturally

occurring survivor groups and minimizes the number of data transmissions, by allowing

survivor nodes to only communicate with their respective well-connected group representa-

tives, called exemplars. PROPHET [52] estimates the high delivery predictability routes to

the destinations using history of encounters and transitive property of meeting with nodes.

MaxProp [53] calculates the probabilities of message delivery from meeting frequencies

and sorts the messages in the transmission buffer accordingly. Spray and Wait [54] initially

limits the number of message replications (spray phase); then each node waits for an oppor-

tunity of direct message delivery to the destination node (wait phase). Readers may refer to

survey articles [56, 57] for a complete understanding on DTN routing protocols.

Recently few topology control approaches [58, 59, 60] have been proposed forDTNs.

The authors in [58] and [59] aim to build a sparse structure from the original graph such

that (i) the network is connected over time; and (ii) the total energy cost of the structure

is minimized. Finally, the authors in [60] aim to construct a spanning tree such that it

minimizes the energy cost and satisfies the time delay threshold.
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The aforementioned works either attempt to improve packet delivery and/or enhance

energy efficiency of the network. However, network robustness against component failures,

which is a key requirement for DRNs, has remained largely unaddressed. This motivates

us to design a novel bio-DRN topology that addresses both energy efficiency and network

robustness, without compromising the desired QoS.

2.4. SMART CITY BASED INTERNET-OF-THINGS (IOT) NETWORK

There are very few works in existing literature that address IoT-based data collection

frameworks. Jaiswal et al. [61] proposed a model for the sensors to monitor medical

data and transfer patient data to gateway. Almeida et al.[62] proposed an approach to use

the IoT devices to collect and manage data related to the elderly behavioral changes that

can potentially be early signs of cognitive impairments. In [63], the authors introduced

a IoT-based framework for offloading industrial meter data to the cloud storage for data

processing. Capponi et al. [64] proposed a distributed data collection mechanism for smart

city application.

2.5. MCS-BASED DATA ACQUISITION FRAMEWORKS

These frameworks in MCS can either be application-specific or general-purpose.

Application-specific frameworks, such asGasMobile [65] and NoiseMap [66], are designed

to cater to only one type of application at a time. These frameworks have been developed to

monitor air and noise pollution, respectively. On the contrary, general-purpose frameworks,

like Google, have the capability to serve many applications at the same time. BLISS [67]

implements an online learning algorithm to collect general-purpose data. The framework

optimally assigns tasks to the users in lieu of rewards, subject to constraint of a fixed

budget. Wang et. al [68] proposed an energy efficient algorithm for uploading the sensed

data by classifying users into two categories: (i) users who use LTE/4G/3G through data
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plans with mobile operators and (ii) users who use free-of-charge networks like Wi-Fi or

Bluetooth. For the first category, the proposed approach attempts to minimize the energy

cost during data uploading. In [69], the authors propose an energy efficient data delivery

by piggybacking the sensed data with voice calls. Liu et al. [70] define a new routing

mechanism for data delivery in MCS systems to counter user selfishness. Data delivery is

enabled through opportunistic communications and is forwarded in a delay-tolerant fashion

only by cooperative, non-selfish nodes.

Few works have used the paradigm of fog computing in MCS. In CARDAP [71]

and CAROMM [72] the fog platform has been used to perform distributed data analytics.

Fiandrino et al. [73] exploit the computing capacity of the fog platform for efficient user

recruitment and task completion in participatory MCS systems. In contrast, this work uses

fog devices for Wi-Fi GO selection and energy efficient data transfer to the MCS platform.

2.6. SELECTION OFWI-FI DIRECT GROUP OWNER

This is one of the main functionalities in establishing Wi-Fi direct groups. Some

works in literature have proposed various GO selection strategies for efficient data sharing

among devices in the proximity. WD2 [74] algorithm automatically selects best GO based

on the Received Signal Strength Indication (RSSI) measurement. It operates in standard

Wi-Fi direct mode by which each device collects the RSSI reading from nearby devices, and

a GO Intent (GI) value is calculated based on such collected measurements. The devices

then exchange their GI values during the discovery phase and the one that exposes the

highest GI value creates the group. In [75], authors account for GO selection based on

residual energy, implying that candidates for best GO will vary with time. In [76], three

different approaches to select GO were proposed: (i) the device with the highest ID in the

surroundings; (ii) the peer that has the shortest average distance from the other nodes; (iii)

the node with less mobility with respect to its neighbours. However, considering a single

metric is not sufficient to manage the complex dynamic involving mobility of the nodes.
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WFD-GM [77] incorporates mobility of nodes and improves the earlier works by

defining a suitability index for GO selection based on four factors - amount of available

resources of the local device (e.g., battery level, free CPU, freememory), the current number

of peers discovered in proximity, the capacity of the node (i.e., the number of incoming

connections that the device can still accept), and the stability index, which provides a

measure of the ability of the node to create a long-lasting group (i.e., a group that will not

be rapidly destroyed due to the local node mobility). In [78], authors propose three policies

for electing suitable GO of Wi-Fi direct groups - static grouping (SG), point of interest

grouping (PG), and dynamic grouping (DG). However, in this work, we formulated a fitness

score based on mobile device user’s activeness property in using the MCS platform, his/her

promptness in executing recent tasks, and residual energy of the device to select Wi-Fi

direct GO.
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3. THREE TIER TOPOLOGICAL CHARACTERIZATION OF TRN

In this section we discuss the key topological properties of a TRN. We utilize the

three tier topological characterization of a TRN [79, 80] to visualize some of the graph

properties. This characterization is a simplified representation of the hierarchical structure

of TRNs discussed in existing literature. Gerstein et al. studied the network interactions

of different TFs and mRNAs in humans on the basis of properties such as connectivity,

motifs, etc. [81]. Similarly, Bhardwaj et al. employed breadth-first search (BFS) to form

a hierarchy of TFs based on regulating-regulated TF relationships to identify the master

regulators in E. coli and S.cerevisiae TRNs [82]. Finally, Ma et al. [29] proposed the

five-level hierarchy of TFs and operons in E. coli.

The three tier topological characterization classifies the TRN nodes into three tiers

based on in- and out-degree distribution. The three tiers are:

• Tier 1 nodes with only out-degree edges

• Tier 2 nodes with in- and out-degree edges.

• Tier 3 nodes with only in-degree edges

We discuss the node and edge distribution across the three tiers in E. coli, S. cere-

visiae, human andmouse TRN. This topological characterization illustrates that information

flow in the TRN takes place from the hubs (high degree TF nodes in tiers 1 and 2) to the

non-hubs (tier 3 genes).

3.1. NODE AND EDGE DISTRIBUTION

We tabulate the distribution of nodes and edges within and across tiers in Tables 3.1

and 3.2.



21

Figure 3.1. Three tier topology and out-degree distribution in TRN. The directed edges
indicate potential edges across and within the three tiers (taken from [79, 80]); Right:
Out-degree distribution of human TRN on a log log scale.

3.1.1. Node Distribution. Table 3.1 shows that tiers 1 and 2 make up the smaller

fraction of nodes in E. coli, S. cerevisiae, human and mouse TRN. As shown in Figure 3.1

(left), all nodes containing self-loops belong to tier 2. It is noteworthy that tier 3 of TRN

holds the vast majority of TRN nodes: 88.6% in E. coli, 96.4% in S. cerevisiae, 72.2% in

human and 66.3% in mouse.

Table 3.1. Percentage of nodes in each tier of E. coli, S. cerevisiae, human and mouse TRN.

E. coli S. cerevisiae human Mouse
Tier 1 4.1 0.7 12.9 14.8
Tier 2 6.2 2.8 14.8 18.8
Tier 3 89.7 96.4 72.2 66.3

3.1.2. Edge Distribution. The arrows in Figure 3.1(left) are indicative of the pos-

sible direction of edges within and across tiers. Only possible edges in TRN are between

tiers 1→ 2, 1→ 3, 2→ 2 and 2→ 3. Self-loops, if any, are found in tier 2. We summarize

the percentage of edges between each of the tier nodes in Table 3.2. Note that in all TRNs,

well over 50% of total edges are between tiers 2 and 3.
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Table 3.2. Percentage of edges in each tier pair in E. coli, S. cerevisiae, human and mouse
TRN.

Tier pair E. coli S. cerevisiae human Mouse
(1→ 2) 0.5 0.5 4.0 6.2
(1→ 3) 10.3 11.0 11.1 10.5
(2→ 2) 8.0 3.3 18.3 27.8
(2→ 3) 81.0 85.1 66.5 55.3

3.2. GRAPH PROPERTIES

In this section we discuss the following interesting topological properties of TRN:

(1) scale free out-degree distribution, (2) low graph density, (3) small world property,

(4) motif abundance, (5) clustering tendency, (6) robustness to random node failures and

vulnerability to hub node failures, (7) TF-gene regulation and (8) preferential attachment.

Note that the first six of these properties (1 - 6) are visualized using the three tier topological

characterization (illustrated in Figure 3.1(left)).

3.2.1. Scale Free Out-degree Distribution. A scale free network is one whose

degree distribution follows a powerlaw. (A powerlaw distribution has the functional form

P(k) = Ak−γ. Here, A is a constant that ensures that the P(k) values add up to 1 and

the degree exponent γ is usually in the range 2 < γ < 3). Such networks possess a few

well-connected nodes, called hubs, that have high connectivity, while most of the nodes

have a lower degree of connectivity [83, 84].

Table 3.1 shows that tier 1 and tier 2 nodes collectively account for approximately

less that 10% of total nodes inE. coli and S. cerevisiae and less than 35% nodes in human and

mouse, but possess all the out-degree edges. Conversely, tier 3 nodes make up most of the

nodes in both TRNs but have zero out-degree. Since a few nodes have a disproportionately

high out-degree, TRNs are out-degree scale free in nature. In Figure 3.1 (right), we have

the degree distribution of human TRN on a log-log scale showing a clear powerlaw.
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3.2.2. Low Graph Density. In a directed graph G(V, E), we can define graph

density D on a scale of 0 to 1, as:

D =
|E |

|V | × (|V | − 1)
(3.1)

Using the above equation, D = 1 indicates a complete directed graph and D = 0

corresponds to an empty graph. TRN is also characterized by low graph density [85]. As a

validation, we use Eq. 3.1 to show that the graph density of TRN is very low (Table 3.3).

Reason: The only possible directed edges in TRN, exist between tiers 1→ 2, 1→ 3,

2→ 2 and 2→ 3. The tier 3 nodes, which account for almost 90% nodes in the network,

have no edges among them, explaining why TRNs have low graph density.

Table 3.3. Density of TRN graphs.

TRN type E. coli S. cerevisiae human Mouse
D 0.0015 0.00065 0.0010 0.0010

3.2.3. Small World Property. A small world network is one where it is possible

to travel from one node to another in a limited number of hops [86]. Small world networks

tend to possess a small diameter 1 [87].

Since information flows unidirectionally from tier 1 to 3 (as shown using the three

tier topology), TRNs are weakly-connected graphs where every node is not reachable from

every other node (i.e. undefined diameter). Thus, we use two metrics to demonstrate the

small world property of TRN: (1) diameter of undirected TRN and (2) average shortest

path from tier 1 to 3 nodes (defined below).

1Graph diameter (D) is the greatest distance between any pair of vertices. It is calculated by finding the
largest shortest path among all pair of vertices i.e., D = maxu,v∈V d(u, v), where d(u, v) is the shortest path
length between nodes u and v.
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Given graph G(V, E), V = t1 ∪ t2 ∪ t3, tier 1 nodes t1 = {u1
1, u

2
1, · · · }, tier 3 nodes

t3 = {u1
3, u

2
3, · · · }, average shortest path < d > is defined as:

< d >=
1
|P |

∑
ui1

∑
ui3

d(ui
1, u

i
3) (3.2)

In the above equation P is the number of (u, v) node pairs such that u ∈ t1, v ∈ t3

and v is reachable from u.

Table 3.4. Diameter (D) and average shortest path (<d>) of TRN.

TRN type E. coli S. cerevisiae human Mouse
D 9 6 9 10
<d> 2.6 4.6 4.3 4.8

We intuit from the three-tier topology that the expected number of hops from a tier

1 to a tier 3 node should be 2 (tier 1→ tier 2, tier 1→ tier 3). Table 3.4 shows the diameter

(D) of the undirected TRN and its average shortest path (<d>). Note that the maximum

diameter of the undirected TRN is 10. More importantly, the maximum average shortest

path (Eq. 3.2) of TRN is 4.8, which is a direct demonstration of the small world property

of a TRN [88, 89].

3.2.4. High Clustering Tendency. We argue that the abundance of motifs in TRNs

is a consequence of its tendency to form dense, tightly-knit groups, called clusters. The

clustering tendency of any node u in an undirected graph G(V, E) is measured in terms of

its clustering coefficient, given by:

CC(G, u) =


0, if δ(u) < 2

2×t(u)
δ(u)×(δ(u)−1), otherwise

(3.3)

In Eq. 3.3, t(u) is number of triangles node u participates in and δ(u) is its degree.

The average clustering coefficient (ACC) of the undirected graph G is given by:
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ACC(G) =
1
|V |

∑
u∈G

CC(G, u) (3.4)

Eq. 3.3 elucidates that ACC is directly proportional to the number of triangles in an

undirected graph. Table 3.5 shows that ACC of TRN is over 80 times that of E-R random

graphs of same order and approximately same graph density.

Table 3.5. FFL count and average clustering coefficient.

E. coli R-E.coli Yeast R-Yeast human R-human Mouse R-Mouse
FFL 4798 18 4115 30 5850 23 2714 29
ACC 0.2110 0.0033 0.0830 0.0015 0.1200 0.0017 0.0970 0.0026

Relationship between motif abundance and clustering: This high ACC of TRN is

commensurate with its motif abundance. The motifs (primarily the FFLs and bi fans) do

not appear in isolation; they form dense clusters [90, 91, 92]. Investigation on the E. coli

TRN topology indicate that there are 42 Feed Forward Loops (FFLs), that form six FFL

motif clusters. (Appendix B Section 2 enumerates the FFLs across the three tiers in TRNs.)

Similarly 208 bi fan motifs participate into two clusters. Table 3.5 shows that in addition

to ACC, the number of FFL motifs in TRNs are significantly higher than their random

counterparts.

Table 3.6. Percentage of positive (P), negative (N) and unknown (U) edges in TRN.

TRN type P N U
E. coli 53.20 41.10 5.50

S. cerevisiae − − −

human 33.51 20.45 46.03
Mouse 40.28 19.18 40.52
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3.2.5. TF-Gene Regulation. We have discussed in Section 1.3 that TRNs are

signed networks. The edges can be positive or negative, depending on the mode of in-

teraction between the TF/TF or TF/ target gene. However, the information of the edge signs

is not complete. Table 3.6 shows the number of positive, negative and unknown edge signs

in each TRN. Note that the edge signs for S. cerevisiae TRN is not available.

3.2.6. Preferential Attachment Growth Model. We have discussed in Section

3.2.1 that TRNs have a scale free out-degree distribution. One approach to construct such

networks is to employ a preferential attachment growth model, wherein when a new node

is inducted into a network, it prefers to get attached to a node which has higher degree of

connectivity [84].

As a consequence to preferential attachment, the hub nodes tend to acquire more and

more links as the network grows. The implication of the existence of preferential attachment

is that the hub node is the most preferred candidate of attachment for a new node. The

probability of addition of an edge between a new node N and an existing node of u of

degree ku, p(k), is either linear in the degree of node (i.e. p(u) = ku∑
v∈V kv

) or it is nonlinear

(i.e p(u) = kγu∑
v∈V kγv

). There has been efforts to study the motif distribution of TRN with

randomized networks generated by linear and nonlinear preferential attachment approaches

[91, 93]. The preferential attachment-based topologies possessed FFLs that compared well

in terms of abundance to the overall TRN of E. coli.

3.2.7. Robustness Against Random Node Failure and Vulnerability to Hub

Node Failures. Robustness of a biological system is typically defined as the ability of the

organism to retain its characteristic traits (called phenotype) in the face of genetic change

(i.e. mutation) [94]. We are more interested to address robustness of TRNs from a graph

theoretic standpoint. In our prior work, we define network robustness as the ability of the

network to carry out information flow under node and link failures [95].
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(a) (b)

Figure 3.2. Random vs. targeted node failure. (a) Number of connected components in
random vs. targeted node failures (b) Size of largest connected components in random vs.
targeted node failures.

From our discussion in Section 3.2.1 we are aware that the TRNs exhibit scale free

out-degree distribution. Scale free networks are inherently resilient to the failure of random

nodes, yet vulnerable to the failure of hub nodes [96, 97]. The targeted failure or removal of

the hub nodes in tiers 1 and 2 of the three tier topology is likely to knock off the majority of

the poorly connected tier 3 nodes. Recall that approximately 90% nodes in TRN reside in

tier 3. Nodes randomly picked for removal are most likely to belong to tier 3, which when

removed, should not affect the overall connectivity of the TRN [79].

Taking cue from the known measures of network robustness [98, 99], we carry

out a simple experiment wherein we knock off 0.1 − 1% (1) randomly chosen nodes in

human TRN and (2) targeted nodes chosen with likelihood equal to their degree. Figure

3.2(a) and 3.2(b) shows that the targeted node failure results in the network fragmenting

into significantly higher number of components as well as lower size of largest connected

component as compared to its random counterpart.
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3.3. INFERENCES

In this section we identify the significant topological attributes of Transcriptional

Regulatory Networks (TRNs) such as scale free out-degree distribution, low graph density,

small world property, high clustering tendency leading to the abundance of subgraphs called

motifs, TF-gene regulation, preferential attachment and robustness against random node

failure. In the subsequent sections, we shall see how each of these graph-theoretic properties

can motivate the design of robust, energy-efficient networking solutions.
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4. ROLE OF MOTIFS IN TOPOLOGICAL ROBUSTNESS
AND INFORMATION FLOW

We have introduced the notion of motifs in Section 2.1. Let us now try to study

their role in topological robustness and information flow within TRNs. From our earlier

discussion, we have established that motifs are elementary circuits that may play vital

role in robust information exchange. It has been shown that the bi fan motif renders

dynamic stability in biological networks [100]. The robustness rendered by motifs in the

event of topological or dynamical perturbation has been studied in [101]. The authors in

[102] explain the role of positive feedback loops in TRN robustness, while [103] show that

negative auto-regulation motif affects the mutational robustness of TRN. Our previous work

attempted to exploit the inherent robustness of TRNs to design fault-tolerant wireless sensor

network (WSN) topologies [45][104], focusing on the following fundamental similarities

between a TRN and WSN: First, WSN nodes sample data from their sensing fields, just

like genes exchange protein signals from the environment and neighbor genes. Second,

WSN communication is critically impaired by node and link failures and interference, just

as TRNs are affected by stochasticity in bio-chemical functioning of cells and alteration in

molecular properties, leading to interference in signal exchange [37].

Apart from the above aspects, we are attempting to broach two other unanswered

questions pertaining to FFL motifs: (a) their function in information flow in TRNs; and (b)

their organization as building blocks leading to the formation of TRNs. We seek answers

to both of these questions on the basis of certain networking yardsticks depicted in the flow

diagram shown in Figure 4.1. Most of our experiments were carried out at a node level

considering TRN nodes with high FFL motif participation, called motif central nodes. In

this paper, we explore the purpose of FFLs in TRNs in the following order:
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1. Role of FFLs in enabling efficient communication and fault-tolerance in TRNs.

2. The topological structure of TRNs with FFLs as building blocks.

3. The functional role of nodes with high FFL participation.

Let us now take a closer look at each of these directions. In Figure 4.1, we illustrate

the summary of the different roles of FFLs in TRNs and the associated metrics that were

used to analyze them.

• First, we define communication efficiency as a measure of how rapidly a node/motif

can spread information to as many number of nodes in the network. As shown in Fig-

ure 4.1, we characterize rapidity of information spread through a widely used metric

called network efficiency, defined as the average of the inverse of shortest path lengths

[90, 105] and enumeration of number of paths created as a result of the FFL motif

for details). Also, to capture the spreading potential of a node/motif we utilize the

susceptible-infected-recovered (SIR) epidemic model. We also use centrality metrics

such as closeness, betweenness and degree centralities, to corroborate our findings

on information spreading potential of motif central nodes. Next, we define fault-

tolerance as the ability of a network to continue communication despite component

failure (such as a set of nodes) [106]. To quantify fault-tolerance, we gauge how the

network efficiency and epidemic spread are affected when specific nodes are knocked

off the network. Our earlier work on bio-inspired networking enabled wireless sensor

networks to mimic a TRN topology for routing packets resulting in high communi-

cation efficiency and fault tolerance to random node/edge failures [107, 108, 109]

leading to an indirect quantification of these TRN properties.

• Second, considering that FFL motifs can influence the information spread in TRNs,

we analyze the topological structure of TRNs to identify their logical communication

architecture comprising individual FFL units. As shown in Figure 4.1, we revisit
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two node-level metrics: (i) a characterization of TRN nodes into three tiers based on

degree distribution (see Section 3) and (ii) FFL motif centrality of nodes. Based on

these metrics, we find answers to questions such as connectivity, distance and among

different classes (or roles A, B and C) of FFL motif central nodes, as well as their

position in the three-tier hierarchy. Note that considerable effort has already gone into

the analysis of the hierarchical structure of TRNs. Gerstein et al. studied the network

interactions of different TFs and mRNAs in humans on the basis of properties such

as hubs vs. non-hubs, connectivity, motifs, etc. [81]. Similarly, Bhardwaj et al.

employed breadth-first search (BFS) to form a hierarchy of TFs based on regulating-

regulated TF relationships to identify the master regulators in E. coli and S.cerevisiae

TRNs [82]. Finally, the five-level hierarchy of TFs and operons in E. coli proposed

by Ma et al. [29] is the closest to our proposed three-tier characterization. However,

since the three-tier topology effectively combines the notions of motif centrality and

degree centrality at a node level, it can help to (i) identify and differentiate between

nodes with high degree (called hubs) and those with high FFL motif centrality on the

basis of information spread and fault-tolerance (in Section 4.2) and (ii) explain the

topological organization of TRN w.r.t. FFL motifs (in Section 4.2.3).

• Third, based on the role of FFL motif central nodes in information spread and

topological organization of TRNs, we look for biological validation on the functional

properties of motif central nodes in published literature. Figure 4.1 shows that

we refer to the following three well-studied metrics to aid us in identifying these

functional roles: motif clustering diversity, k-shell property and biological pathways.

Motif clustering diversity (MCD) identifies the participation of a node in unique

clusters of FFL motifs and has been proven to serve as a measure of TFs that serve

as global regulators controlling the transcription of several genes. Another metric

of importance is the participation of a motif central node in biological pathways,

which may show their roles in signal transduction, metabolism or gene regulation.
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Figure 4.1. Goals and methodology of the proposed research.

Next, the k-shell value (or k-value) of a node quantifies whether it is located at the

core (or periphery) of a network. Since nodes with high k-value were shown to be

effective information spreaders, we study whether TFs with high k-value are also

global regulators. We also validate our intuition that different classes of motif central

nodes serve the function of regulators (from a communication efficiency angle) and

cellular stress response (from a fault tolerance perspective).

Finally, we combine the three aforementioned aspects of FFLs and their roles in

TRNs and draw some inferences on the network and biological implications of our findings.

In network implications, we come up with a hub-and-spoke representation of the TRNs
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comprising motif central nodes that can lead us to new efficient network communication

protocols. The purpose of biological implications is to briefly discuss the effects of different

types of motif central nodes in the context of disease biology.

4.1. MOTIFS IN TOPOLOGICAL ROBUSTNESS

Let us consider aWSN graph Gw(Vw, Ew)where the nodesVw represent sensors, and

edge e(i, j) ∈ Ew exists if two nodes i and j are within transmission range of one another,

and TRN graph denoted by Gg(Vg, Eg). Following [45][104], we define a mapping function

M : G′w → G′g, where G′g(V
′
g, E

′
g) and G′w(V

′
w, E

′
w) are subgraphs of Gg and Gw respectively,

such that (u, v) ∈ E′g exists if and only if there exists a path between M(u) and M(v) in G′g.

Here G′g is themapped-TRN subgraph and the corresponding G′w is termed bio-WSN. While

this embedding approach does not provide an exact mapping between all bio-WSN and TRN

subgraph nodes, bio-WSNs have already been shown to preserve the node connectivity and

motif abundance properties of TRN subgraphs. Therefore, the information flow in bio-WSN

graphs may be considered to be an effective representation of signal propagation in TRNs.

Simulations have shown that bio-WSNs exhibit significant improvement in packet delivery

rate, network latency and lifetime over Erdös Rényi random graph-basedWSNs, even under

node and link failures. However, a major limitation to our previous work is that it fails to

explain which specific graph attribute of TRN is responsible for such improvement.

We believe that knowledge of the specific graph property that lends topological

robustness to TRNs could be extended to design other robust networks that mimic the

robustness of TRNs. Thiswork is the first step in that direction, wherewe graph-theoretically

explore the role played by motifs in information flow in TRNs. In particular, we (i) analyze

why a 3-node subgraph called Feed Forward Loop (FFL) typifies robust signal propagation

via TRN motifs, (ii) utilize centrality metrics to show how motifs affect the topological

robustness and resilience of TRN and corresponding bio-WSN subgraphs and (iii) validate
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our findings through graph-theoretic and simulation experiments. In our study, we define

robustness as the ability of a network to carry out information flow under node and link

failures, and resilience as its ability to preserve shortest path lengths despite such failures.

4.1.1. KnownFunctions ofMotifs. Herewewill first introduce some of the known

functional and topological roles of motifs in a TRN.

Motifs as signal propagating circuits: Motifs are elementary circuits for signal prop-

agation that aid in gene transcription leading to protein synthesis [110]. They play the role

of filters, pulse generators, response accelerators and temporal pattern generators.

Figure 4.2. Triplets. (a) Open Triplet and (b) Closed Triplet.

Clustering tendency of TRNs: We define a connected triplet as three nodes that are

connected by either two undirected edges (open triplet) (Figure 4.2 (a)) or three undirected

edges (closed triplet) (Figure 4.2 (b)). The average clustering coefficient (ACC) measures

the clustering tendency of an undirected graph, and is calculated as the ratio of the number

of closed triplets to the total number of connected triplets.

Table 4.1. Comparison of ACC of undirected TRN and Erdös Rényi Random Graphs.

Graph RandomE E. coli TRN RandomY Yeast TRN
Triangles 11 1405 26 3750
ACC 0.0015 0.211 0.001 0.083

Clearly, nodes with high clustering tendency belong to well-connected neighbor-

hoods. In E. coli and Yeast TRNs we have two directed triangles: cyclic triangle called

Feedback Loop (FBL) and the more frequent acyclic triangle called Feed Forward Loop
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(FFL), as illustrated in Figure 4.4 (a). Table 4.1 shows that undirected E. coli and Yeast

TRN graphs possess significantly more triangular motifs than Erdös Rényi random graphs

of similar sparseness as E. coli (RandomE ) and Yeast (RandomY ), thus exhibit higher ACC.

Communication Pathway Alternatives:Motif structures often possessmultiple paths

between a pair of nodes. For instance in the motif structure S1 illustrated in Figure 4.4 (b),

there are three paths between nodes 1 and 4, namely p1 = {1, 2, 4}, p2 = {1, 3, 4} and

p3 = {1, 2, 3, 4}. Therefore, the multiplicity of such paths among node pairs should allow

TRN graph to remain connected despite failures of nodes and links.

Figure 4.3. Inter-motif correlation plot. A point (x, y) exists in the scatter plot in row i and
column j, if a node participates in x Mi motifs and y Mj motifs.
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4.1.2. Motif and Motif Central Nodes. Based on two criteria, we select the sim-

plest subgraph, i.e. the Feed Forward Loop (FFL), that typifies the role of motifs in

topological robustness of TRN. FFLs are also the building blocks of larger motifs in TRNs

(as shown in Appendix A Section 2).

1. The motif must be statistically significant so that its properties are applicable to TRN

and its subgraphs.

2. It should participate inmultiple paths among node pairs sincemultiplicity of pathways

influences network connectivity during node or link failures.

Existence of motif central nodes: We estimate the threemost frequent 3-nodemotifs

(labeled M1, M2 and M3 in Figure 4.3), using the network motif detection tool called

FANMOD [24]. M1, M2 and M3 are all subgraphs of another 3-node motif FFL (labeled

M4) in Figure 4.3. To understand whether there exist a set of nodes that participates in

high number of motifs M1 to M4, we plot a 4 × 4 inter-motif correlation graph (shown in

Figure 4.3). A point (x, y) exists in scatter plot in row i and column j, if there is a TRN

node participating in x Mi motifs and y Mj motifs. High inter-motif correlation coefficient

(lower triangle of Figure 4.3), especially among dissimilar motifs M1, M2 and M3, confirm

the existence of a few nodes, called motif central nodes, that participate in many M1 to M4

motifs and are likely to control the information flow in TRN.

Feed Forward Loop (FFL) as chosen motif: Let us consider the insights for the

choice of FFL motifs in our study. First, we have discussed in Section 4.1.1 that trian-

gular motifs are responsible for the high clustering tendency of a graph, and also, nodes

with high clustering coefficient belong to well-connected neighborhoods. FFLs, being the

most abundant triangular TRN motifs, are likely to participate in multiple paths (between

other node pairs). Second, FFL is the most elementary TRN motif to have two paths from
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node S to T : one direct path (shown in green in Figure 4.4 (a)) and the other via I (shown

in red), again alluding to the fact that such cascades of FFLs participate in high number of

paths.

Taking these points into consideration, we take FFL as our chosen motif. As shown

in Appendix A Section 2, frequent 4, 5 and 6-node motifs in E. coli and Yeast have FFL as

building blocks.

Figure 4.4. Subgraphs to analyze FFL based centrality. (a) FFL (b) Subgraph S1 (c)
Subgraph S2.

4.1.3. Evaluation Metrics. In this section we introduce some centrality metrics

in order to study the role of FFLs in robust information flow. Section 4.1.3.7 elaborates

on our intuition behind these metrics in analyzing robustness and resilience rendered by

motifs. We explain the metrics using subgraphs S1, S2 (Figures 4.4 (b) and (c)). In rest of

the paper, we use the term motif interchangeably with FFL. These metrics are applicable to

any directed graph G(V, E) where e(i, j) ∈ E is a directed edge from node i to node j.

4.1.3.1. Node motif based centrality (NMC). Here we introduce the metric used

to gauge the participation of a node in FFL motif.

4.1.3.1.1. Directed Triplet:. For each combination of i, j, k ∈ V , directed triplet is

calculated as:
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δ(i, j, k) =


1 i f e(i, j), e( j, k), e(i, k) ∈ E

0, otherwise

Since both E. coli and Yeast TRNs are directed graphs, δ(i, j, k), δ( j, i, k) and

δ( j, k, i) are not equal.

4.1.3.1.2. NodeMotif Centrality (NMC). is the number ofmotifs a node participates

in. Given that FFL is the motif of our study, NMC of node i is calculated as follows:

N MC(i) =
∑
j,k∈V

δ(i, j, k) + δ( j, i, k) + δ( j, k, i) (4.1)

In graph S1 in Figure 4.4(b), N MC(1) = 1 and N MC(2) = 2. We define Motif

central nodes (C) as a set of nodes with NMC greater than median NMC of the graph G.

4.1.3.2. Path and node betweenness centrality. Simple path is one in which no

node is visited more than once. Two paths between a node pair are called independent if

they contain no common nodes except source and destination nodes. In graph S1 in Figure

4.4(b), p1 = {1, 2, 4} and p2 = {1, 3, 4} are independent paths from node 1 to 4.

For each node pair i, j ∈ V , we define a family of sets, called independent path groups

I(i, j), such that each member, denoted by Il(i, j) (0 < l ≤ |I(i, j)|), is a maximal set of

mutually independent paths between i and j. For any l, m, where 0 < l,m ≤ |I(i, j)|, l , m,

there exists at least one path in Il(i, j) that is not independent to at least one path Im(i, j).

For instance, for node pairs 1 and 6 in graph S2 (Figure 4.4(c)), we consider four paths:

p1 = {1, 2, 6}, p2 = {1, 3, 6}, p3 = {1, 4, 6} and p4 = {1, 2, 5, 6}. These paths can

be assigned to two member sets of independent path group I(1, 6) = {I1(1, 6), I2(1, 6)}:

I1(1, 6) = {p1, p2, p3} and I2(1, 6) = {p2, p3, p4} such that p1 ∈ I1(1, 6) and p4 ∈ I2(1, 6)

are not independent. Evidently, any given path may belong to several member sets of an

independent path group. In the above example, paths p2 and p3 belong to both member sets

I1(1, 6) and I2(1, 6) in I(1, 6).
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4.1.3.3. Path centrality (PC). is the number of simple paths between all pair of

nodes that a given node intercepts. Given that p(i, k | j) is number of simple paths between

nodes i and k that pass through node j, PC( j) =
∑

i,k∈V p(i, k | j).

4.1.3.4. Independent path centrality (IPC). is number of independent paths be-

tween all node pairs that a node intercepts. We define IPC( j) =
∑

i,k∈V
∑

l |Il(i, k | j)|. Here

|Il(i, j |i)| = 0 and |Il(i, j | j)| = 0, and |Il(i, k | j)| is number of times a node j occurs in a

member path of set Il(i, k | j), such that node j is neither source nor target in member paths.

4.1.3.5. Node betweenness centrality (NBC). is the fraction of total shortest paths

between any node pairs that pass through a given node. For any i, k ∈ V , let σ(i, k) be

the number of shortest (i, k)-paths and σ(i, k |n) is the number of those (i, k)-paths passing

through node n, then we define NBC(n) = σ(i,k |n)
σ(i,k) .

Betweenness Index (BI(P)) is the ratio of the sum total NBC of a set of nodes P to

sum total NBC of all the nodes in a graph. BI(P) can be written as follows:

BI(P) =
∑

i∈P NBC(i)∑
j∈V NBC( j)

(4.2)

4.1.3.6. Network efficiency and data forwarding index. Let us briefly discuss the

metrics that help gauge data forwarding in a network.

4.1.3.6.1. Network Efficiency. measures the average shortest path. For any graph

G, efficiency η(G) is:

η(G) =
1
T

∑
i, j∈V

1
d(i, j)

(4.3)

where, T = Number of existing paths among all node pairs and d(i, j) = Shortest

path length from node i to node j

Since efficiency considers reciprocal shortest path length between node pairs, higher

η(G) implies lower average shortest path. Let n f % nodes be randomly removed from graph

G resulting in a graph Gn f . We calculate percentage drop in efficiency due to (increase
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in average shortest path length on) failure of n f % nodes as Uη(Gn f ) = 100 × (1 − η(Gnf )

η(G) ).

Analogously, we calculate percentage drop in efficiency due to failure of e f % edgesUη(Ge f )

using similar formulation.

4.1.3.6.2. Data Forwarding Index (DI(P)). , similar to BI(P), is the ratio of the sum

of data packets forwarded by a set of nodes P to sum of packets forwarded by all nodes in a

graph. For any graph, DI(P) can be written as follows:

DI(P) =
∑

i∈P No. of Packets Forwarded by i∑
j∈V No. of Packets Forwarded by j

(4.4)

Both BI(P) and DI(P) attempt to gauge the collective participation of a set of nodes

P in the shortest paths and information flow among other node pairs in G.

4.1.3.7. Robustness and resilience. Newman et al. have defined network robust-

ness in terms of the number of independent paths between node pairs [111]. This notion

of independent paths is in keeping with Menger’s theorem of Vertex Connectivity, which

states that minimum number of vertices whose removal disconnects two nodes is equal to

the maximum number of pairwise vertex-independent paths [112]. We see in Figure 4.4(b)

that there are two independent paths between nodes 1 and 4, and therefore, at least two

nodes (2 and 3) must be removed to disconnect 1 and 4.

Let us discuss how the three centrality metrics, defined in Section 4.1.3, can help

assess the robustness rendered by a node. First, if a node has high PC and IPC indices,

it is highly likely to participate in network traffic flow. Also, from Menger’s theorem on

vertex connectivity, we infer that nodes with high IPC offer more topological robustness

against failures. Second, nodes with higher NBC intercept many pairwise shortest paths,

again facilitating information flow with minimum delay.

With regard to resilience, removal of a certain fraction of nodes or links from any

graph is likely to result in the increase in shortest path length between other node pair. As

pointed out in Section 4.1.3, an increase in average shortest path length of a graph would
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result in a drop in network efficiency. We define graph resilience as its ability to preserve

network efficiency when a certain fraction of nodes or links fails. We intuit that w.r.t. each

FFL motif, the failure of the direct link between source S and target T causes the shortest

path length between S and T to increase only by a single hop (Figure 4.4(a)).

Figure 4.5. Centrality correlation. Cases (a) and (b): NMC vs. PC and IPC for E. coli
Cases (c) and (d): Yeast bio-WSN and TRN subgraphs.

4.1.4. Experimental Results. In this section we discuss the results from graph-

theoretic and simulation experiments, performed on 50 E. coli and Yeast TRN subgraphs

(acquired using GeneNetWeaver [11]) and corresponding bio-WSNs, of sizes 50, 100,

150, 200 and 250 nodes. PC, IPC and N MC are calculated using the Python NetworkX

Library [113]. The number of packets forwarded, motif participation, path or independent
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path participation for any node depend on the size and density of a graph. Thus in our

experiments, we normalize each metric (PC, IPC, N MC or number of packets forwarded)

for each node, by the aggregate sum of that given metric for the entire graph.

4.1.4.1. Graph-theoretic analysis. In the first two experiments we seek first-hand

topological evidence of the functional role of motifs in forming robust pathways of signal

propagation. In Section 4.1.3.7, we have discussed reasons why PC and IPC are effective

metrics for robustness rendered by any node. Here we plot PC and IPC against NMC, for

each node in Yeast and E. coli bio-WSNs and TRN subgraphs. We then apply nonlinear

regression to obtain best fit lines from the scatter plot.

Figure 4.6. NMC vs. Packet Forwarding in Yeast bio-WSNs.
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Plots in Figure 4.5 shows that for both, bio-WSN and TRN subgraphs, PC (Cases

(a) and (b)) and IPC (Cases (c) and (d)) increases with NMC, showing that motifs indeed

form pathways for information flow. It is noteworthy that in all the cases, regression lines

grow steeper for larger bio-WSN and TRN subgraphs. Therefore, we infer that participation

of motif central nodes in information flow grows with graph size.

4.1.4.2. WSN simulations. For each of the 250 Yeast bio-WSNs, we run simula-

tions on OMNET++ Castalia [114] for a duration of 10 minutes. We use Collection Tree

Protocol (CTP), which is a distance vector routing protocol used for WSN communication

[115]. Here 5% of the nodes with highest in-degree are selected as sink nodes.

Figure 4.7. Participation of set of motif central nodes in shortest paths (dotted line) and
packet forwarding (solid line) in Yeast bio-WSNs during 4 cases. (a) Random edge failure
(b) Random node failure (c) Motif central edge failure (d) Motif central node failure.

4.1.4.2.1. Packet forwarding of motif central nodes. Given that bio-WSN graphs

preserve the node connectivity of TRN, information flow via packet forwarding in bio-WSN

graphs is quite analogous to the protein signal propagation in TRN.Here we analyzewhether
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the NMC of a node has any bearing on its packet forwarding. Figure 4.6 shows that the

increase in NMC causes an overall increase in packet forwarding index. We conclude that

high packet forwarding of motif central nodes is a consequence of their high PC indices.

4.1.4.2.2. Packet forwarding of motifs during node or link failure. This experiment

explores whether the motif central nodes (C) continue to provide pathways for signal

propagation in four failure cases: (a) random edge failure, (b) random node failure, (c)

motif central edge failure and (d) motif central node failure. Motif central edges or links,

similar to motif central nodes, are defined as a set of edges with motif centrality greater

than median motif centrality of all edges in a graph. In each case, we calculate the average

BI and DI of C in Yeast bio-WSNs according to Eq. (4.2) and (4.4). The plots in Figure

4.7 indicate that motif central nodes consistently participate in over 70% shortest paths and

50−65% of packet forwarding, for all failure cases of random and targeted nodes and links.

4.1.4.2.3. Resilience rendered by motifs. In our previous experiments we have seen

that motif central nodes participate in bulk of information flow in TRNs and bio-WSNs

during myriad failure conditions. We now revisit our insight regarding structure of FFL

motif: failure of direct link from source (S) to sink node (T) offers an indirect path which

is only a single hop longer. We intuit that high frequency of FFLs should lead to little

increase in average shortest path due to failures and consequent preservation of network

resilience. This experiment on resilience is therefore an extension of Case (a) and Case

(b) in experiment 2 of Section 4.1.4.2. We plot the percentage drop in efficiency (Uη) and

percentage drop in motif count, due to failure of random nodes and random edges in Yeast

TRNs, bio-WSNs and Erdös Rényi random graphs.

We observe that in most cases, random graphs, characterized by notably fewer

motifs than TRNs (as shown in Table I), undergo maximum drop in efficiency (depicted

with dotted lines in Figures 4.8 Cases (a) and (b)). Combining results of Sections 4.1.4.2.2.
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Figure 4.8. Efficiency and motif drop under node failure. Under failure of (a) n f % random
nodes (b) e f % random edges.

and 4.1.4.2.3., we infer that motifs participate in communication paths in TRN and bio-

WSNs. They also preserve network resilience by minimizing increase in average shortest

path lengths under node or link failures.

4.2. COMMUNICATION EFFICIENCY AND FAULT-TOLERANCE

In this section, we explore other facets of FFL motifs from the standpoint of com-

munication efficiency and fault-tolerance. First, we observe how the network efficiency is

affected when the role A and B motif central nodes are knocked off from the TRN. Second,

we use the SIR epidemic model to demonstrate the information spreading potential of role

A and B motif central nodes. It is interesting to observe how the results differ when the

same experiments are repeated with the selection of random nodes as well as nodes with

high out-degree (i.e. hubs). We carry out five types of node selection:

• Random node: Select randomly from the node set of each TRN topology.
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• Role A motif central node: Select nodes based on a likelihood proportional to their

role A FFL motif centrality. In any TRN topology G, the probability of selection of

node u with role A motif centrality δA(u) is given by δA(u)∑
v∈V δA(v)

.

• Role B motif central node: Select nodes based on a likelihood proportional to their

role B FFL motif centrality. The probability of selection of node u with role B motif

centrality δB(u) is given by δB(u)∑
v∈V δB(v)

.

• Total motif central node: Select nodes based on a likelihood proportional to their total

FFL motif centrality (i.e. sum total of roles A, B and C). Probability of selection of

node u with motif centrality δ(u) is given by δ(u)∑
v∈V δ(v)

.

• Hub node with low role A motif centrality: Select nodes with high out-degree and

low role A motif centrality, i.e. with likelihood proportional to ratio of node out-

degree to role A motif centrality. Thus, in any TRN topology G, the probability of

selection of node u with role A motif centrality δA(u) and out-degree dO(u) is given

by dO(u)/δA(u)∑
v∈V dO(v)/δA(v)

.

We remove 0.1%, 0.2%, · · · , 0.5%, nodes from the input TRN graph using each of

our node selection strategies and measure how the network efficiency changes in the event

of node failures. Figure 4.9(a) shows that failure of random nodes and hub nodes of low

role A motif centrality cause the least drop in network efficiency, followed by role B motif

central node and total motif central nodes, in human TRN. The failure of role A motif

central nodes cause the maximum drop in network efficiency.

Figures 4.9(b) and 4.9(c) show the plots for the mean evolution of infected nodes in

human TRN for β
γ < 1 and β

γ > 1. Information flows the fastest for role A motif central

nodes, followed by total and role B motif central nodes. Random node failure and hub

nodes with low role A centrality have the least spread. Thus, role A motif central nodes

are better information spreaders than hub nodes with low role A motif centrality in a TRN

particularly when β
γ > 1, showing that the role A nodes retain infection for longer duration.
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Figure 4.9. Motif central nodes in information spread. (a) Percentage of network efficiency
during node failure in human TRN; Infection propagation using SIR model in human TRN
for (b) β

γ < 1 (β = 0.02, γ = 0.1) (c) β
γ > 1 (β = 0.1, γ = 0.02) (d) Fraction of total simple

paths created in TRN by FFL motifs

4.2.1. Motif Central Nodes: Good Spreaders of Information. Let us discuss

potential reasons from a graph-theoretic standpoint that make motifs good information

spreaders in TRNs.

4.2.1.1. Centrality. We next evaluate the correlation between role A motif central

nodes and the graph centrality metrics such as degree, closeness and betweenness. For

each correlation, we find the scatter plot and apply nonlinear regression to obtain best fit

lines. The plots show that there is a moderate to strong correlation between normalized role

A motif centrality (NMC) and normalized betweenness, degree and closeness centrality

values corroborating that role A motif central nodes are good information spreaders.
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Figure 4.10. Interplay between FFL motif centrality and tiers. (a) Distribution of FFL
motifs across the three tiers in TRNs (b) Classification of high motif central nodes across
tiers; role A, B and C participation; X axis: Nodes in tier 2 arranged in the non-decreasing
order of motif centrality; Y-axis: Frequency of role A, role B and role C motif centrality
(c) FFL motif centrality < 100 and (d) FFL motif centrality > 100

4.2.1.2. K-shell decomposition. Kitsak et al. showed that the most efficient infor-

mation spreaders are located in the inner core of the network (i.e. high k−value as defined

in Appendix A Section 4), fairly independently of their degree [116]. The relatively high

correlation between role A motif centrality and k-shell property evidences that the role A

motif central nodes belong in highly-connected neighborhoods in TRNs, making them rapid

information spreaders.
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4.2.2. Participation of FFL Motifs in Simple Paths in a TRN. We apply our

proposed heuristic (see Appendix A Section 3) with maximum considered path-length

pLimit = 3, 4, 5 on TRNs of E. coli, S.cerevisiae, human and mouse TRN topologies. Our

results show that the direct and indirect links of FFL motifs are responsible for creating a

majority of the paths in TRNs (Figure 4.9(d)).

4.2.3. Topological Organization of TRN w.r.t FFLs. We are interested in study-

ing the nodes of a TRN based on the types of motif centrality (role A, B and C) and also their

topological organization in the three tier TRN architecture. We define high motif central

nodes as nodes with FFL motif centrality greater than or equal to 100; although this cut-off

is arbitrary, it roughly accounted for ∼ 1 − 2% of the TRN nodes. In this section, we use

the abbreviation NMC to denote total node motif centrality (δ).

4.2.3.1. Distribution of FFL motifs across tiers. Considering the direction of

edges across tiers, we infer that FFL motifs can exist in the forms (a) T1 → T2 →

T2, (b)T1 → T2 → T3, (c) T2 → T2 → T2 and (d) T2 → T2 → T3. Figure 4.10(a)

depicts that majority of FFL motifs exist among T2→ T2→ T3 and T2→ T2→ T2.

4.2.3.2. Most high NMCnodes belong to tier 2. In Figure 4.10(b), we classify the

high motif central nodes across tiers to show that maximum number of FFL motif central

nodes belong in tier 2.

4.2.3.3. Most nodes in tier 2 have both role A and B properties. The TRN nodes

(excluding those with non-zero FFL motif centrality) are ranked in increasing order of FFL

motif centrality. The role A, B and C participation is calculated for two cases: (i) FFL motif

centrality < 100 and (ii) ≥ 100 in TRN. In Figures 4.10(c) and 4.10(d), we show that, for

both cases, tier 2 nodes predominantly possess role A and B properties.

4.2.3.4. Average distance betweenmotif central nodes. The average shortest path

(between all pair of nodes having motif centralities ≤ 25) tends to decrease as the motif

centrality value increases, suggesting that the higher motif central nodes are closer to one

another in the TRN topology (heat map in Figure 4.11(a).
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Figure 4.11. Relationship among motif central nodes. (a) Average distance between motif
central nodes in human TRN (b) Intermediary nodes connecting high FFL motif central
nodes (c) Average participation of high motif central nodes in tier 2 in each others’ motif
clusters (d) Large number of FFL motif central nodes are directly connected

4.2.3.5. High NMC nodes are connected by low NMC nodes as intermediaries.

We next generate 10 discrete levels (0.1, 0.2, · · · , 1.0) of FFL motif centrality with respect

to the maximum FFL motif centrality in the topology. For instance, if a node belongs to

level 1.0, it implies NMC is between 90− 100% of the maximum NMC in the TRN. Figure

4.11(b) shows that the low motif central nodes (belonging to level 0.1 and 0.2) serve as

intermediary nodes connecting high node motif central nodes belonging in tier 2, although

a notable number of intermediate nodes are high NMC nodes (i.e. belong to level 1.0).
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4.2.3.6. High motif central nodes belong in each others’ clusters. Gorochowski

et al. [117] showed that FFL motifs in complex networks exist in clusters, i.e. there exists a

great deal of overlap in terms of shared nodes between a pair or set of FFL motifs. For any

node u, we define its motif cluster as the subgraph consisting of the set of nodes and edges

participating in a FFL motif with u.

We find the top 10 motif central nodes and estimate the average participation of high

NMC nodes from tier 2 in each others’ motif clusters. Figure 4.11(c) shows that, on a scale

of 0 to 9, the average participation of high NMC nodes is around 5 which is considered very

high in [117], showing that high motif central nodes often participate in the same FFL as

other high motif central nodes.

4.2.3.7. Large number of high motif central nodes are directly connected. We

create subgraphs consisting of high motif central nodes and edges connecting them. Figure

4.11(d) shows that particularly in mouse and human TRNs, many motif central nodes are

directly connected to one another.

4.2.4. Functional Properties of Motif Central Nodes. For each of the four TRN

topologies, we first rank the top 10 FFL motif central nodes in tier 2 that do not feature in

the top 10 high degree nodes. We then analyze their functional properties in light of their

role A and B properties. We do not include role C because they are indicative of regulated

rather than regulating entities. We take into account another metric, the motif clustering

diversity (MCD) (discussed in Materials and Methods Section 4.1).

4.2.4.1. Motif Clustering Diversity (MCD). Gorochowski et al. argued that motif

central nodes within a FFL motif cluster may have a high connectivity but their interactions

are often restricted to within the motif cluster, making them unlikely to play a broader role

in coordination of many functions across the system. Thus, nodes spanning motif clusters,

quantified by a metric called motif clustering diversity (MCD) (defined in Appendix 1

Section 4) of many different types might play a key role in coordination and thus, are

important to the system. High MCD value signifies their role as global regulators [117].
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4.2.4.2. K-shell decomposition. Kitsak et al. [116] showed that nodes with high

k− shell value (defined in Appendix 1 Section 4) makes it a likely candidate for fast spreader

of information.

We analyze the functional properties of such high motif central (and low degree

central) nodes for human (Table 4.2) TRNs; similar results were also obtained for E. coli,

S.cerevisiae and mouse TRNs and are included in Appendix 1 Section 5. For each high

NMC node, we report role A and B centralities, MCD values (higher MCD values correlate

with global regulators which in turn correlates with being good information spreaders), and

the number of signalling pathways (defined in Appendix 1 Section 4) they participate in.

We also report the signalling pathway participation of each node from the KEGG database

[118] which is an indirect way of highlighting their information spreading potential. While

role A motif centrality closely correlates with the information spreading potential of a node,

fault tolerance is better quantified by the role B centralities. Finally, we discuss some

findings from published literature on the fault tolerance achieved by some of these high role

B motif central nodes.

Human TRN: Functional properties of high motif central nodes in human TRN

similarly demonstrate both role A and role B properties (Table 4.2). All of these high motif

central (and low degree central) nodes exhibit high MCD values and hence act as global

regulators. Since signalling pathways in human TRN are better documented in KEGG,

we found a better correspondence of large signalling pathway involvement for these nodes

barring some cases such as GATA1. In the following, we similarly report the involvement

of seven of these nodes in fault tolerance from published literature as a means for biological

validation. Again, we also document the k−shell values of the TFs/genes. We observe

majority of the nodes reported in Table 4.2 possess the highest k−shell value in the network

(equal to 11), while GATA1 and GATA3 have k−shell values equal to 9 and 10, respectively.
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Table 4.2. Functional properties of high motif central nodes in human TRN.

Roles
TF/Gene A B MCD KEGG Pathways k-value
ESR1 248 245 12 8 11
HIF1A 130 208 12 11 11
FOS 98 161 12 42 11

HDAC1 182 103 12 14 11
BRCA1 86 144 12 7 11
EGR1 105 163 12 7 11
STAT1 86 108 12 26 11
GATA1 82 94 11 0 9
RB1 88 73 12 89 11

GATA3 67 83 12 5 10

• Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53,

are key to normal development and play critical roles in disease, including ischemia

and cancer [119] thereby confirming the role B property of HIF1α.

• HDAC1 links early life stress to schizophrenia-like phenotypes thereby exhibiting

role B properties. Early life stress (ELS) is an important risk factor for schizophrenia

and authors in [120] show that ELS in mice increases histone-deacetylase (HDAC)

1 levels in brain and blood; although altered Hdac1 expression in response to ELS

is widespread, increased Hdac1 levels in the prefrontal cortex are responsible for the

development of schizophrenia-like phenotypes. In turn, administration of an HDAC

inhibitor ameliorates ELS-induced schizophrenia-like phenotypes.

• BRCA1 regulates oxidative stress and this may be another mechanism in preventing

carcinogenesis in normal cells [121] thereby exhibiting role B properties.

• Some of the earliest studies implicating ST ATs in mediating cell stress responses

were performed in cells exposed to UV light. Further analysis showed that STAT1

could be phosphorylated directly by p38 MAPK in vitro. Thus, the MAPK and
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STAT pathways appear to converge during periods of cellular stress. In another study,

UV light caused STAT1 tyrosine phosphorylation, nuclear accumulation, and DNA

binding in keratinocytes. Together, these studies raise the possibility that ST ATs

can be activated in a ligand-independent manner during cellular stress, resulting in

the activation of STAT-dependent target genes [122] thereby showcasing their fault

tolerance properties.

• STAT1 is a master regulator of Pancreatic Îš-Cell Apoptosis and Islet Inflammation

[123] which also demonstrates its fault tolerance property.

• GATA-1 is a master regulator of erythropoiesis. Its role in regulating erythroid-

specific genes has been extensively studied, whereas its role in controlling genes that

regulate cell proliferation is less understood [124]. Thus, GATA-1 may serve the dual

roles of both A and B motif centralities.

• The role of GATA3 protein in the control of the cellular and molecular response of

human keratinocytes exposed to a 1 cGy dose of X-rays was investigated in [125] and

underlines its role B properties.

4.3. INFERENCES

In this section, we corroborate biological studies that have shown motifs to be

robust signal propagation pathways. Our experiments show that dominant 3-node FFL

motifs not only contribute to the clustering by forming dense clusters, but also render

robustness by creating independent paths. Graph theoretic and simulation experiments on

TRN and corresponding bio-WSN topologies show that the motif central nodes participate

in bulk of the information flow, even under failure of random and targeted nodes and links.

Finally, WSN simulations depict that multiplicity of alternate communication paths in motif

structures preserve average shortest path length during node and link failures than that of

Erdös Rényi random graphs of the same sparseness. We believe that node motif centrality
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(NMC) could be applied in the context of systems biology to gather in-depth knowledge

of signal flow dynamics in TRNs. In the future, we shall explore the significance of motif

centrality measures in other complex network topologies.
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5. TOPOLOGICAL ENHANCEMENT OF TRN BY EDGE REWIRING

We know that TRNs are characterized by the abundance of well-connected nodes,

called hubs. (It must be mentioned here that certain networks exhibit a property called

rich-core by virtue of which there exists a group of densely connected nodes. We discuss in

Appendix 2 Section 1 that despite the presence of hubs, TRNs do not possess rich cores.)

Our discussion in Section 3.2.7 reveals that TRN graphs are vulnerable to the failure of

well-connected nodes. As shown in Table 5.1, over 35% nodes in tiers 2 and 3 have in-

degree 1. Such nodes stand a chance of being knocked off the network in the event of

failure of well-connected nodes. In an attempt to overcome this limitation, while preserving

its graph properties such as low graph density, motif abundance and scale free out-degree

distribution, we perform edge rewiring on existing E. coli and Yeast graphs.

Table 5.1. Percentage of tier 2 and 3 nodes with in-degree 1 in E. coli and Yeast TRN.

Tier 2 Tier 3
No. % No. %

E. coli 47 24.6% 538 36.2%
Yeast 31 35.0% 1554 36.2%

Definition: Edge rewiring is the process of addition and removal of edges in a graph,

such that the total number of edges in rewired graph is same as that in original network.

In other words, for any input directed graph GO(VO, EO), the rewired graph GM(VM, EM)

meets the following three criteria:

1. The number of nodes in original and rewired graphs are equal i.e. |VO | = |VM |.

2. The number of edges in original and rewired graphs are equal i.e. |EO | = |EM |.
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3. The set difference between the edge set of original and rewired graph is non-empty i.e.,

|EO − EM | > 0. This condition ensures that the rewired graph GM is not completely

identical to the original TRN GO.

Edge rewiring involves two steps: (A) Edge addition and (B) Edge deletion. Broadly

speaking, given an input TRN graph (GO), α number of edges are added to ensure that all

tier 2 and 3 nodes are connected to at least 2 nodes from tiers 1 and/or 2. Following this, α

edges must be removed to meet Criterion 2 of edge rewiring. We now discuss the details

of the edge addition and edge deletion. All notations used in course of edge rewiring have

been enlisted in Table 5.2.

Table 5.2. Table of notations.

Symbol Meaning
GO(VO, EO) Original TRN
GA(VA, EA) Augmented TRN
GM(VM, EM) Rewired TRN
α No. of edges added during edge

addition
CC(G, u) Clustering coefficient of node u in

undirected graph H
δO(u) Out-degree of a node u
δI(u) In-degree of a node u in G
∆

j
I In-degree distribution of graph G j

f j
i Frequency of nodes with in-degree

i in graph G j (superscript j is op-
tional)

mdG
I Maximum in-degree of G

ψG Number of FFL motifs in G
σ(e(u, v)) Edge motif centrality of edge

e(u, v)
ςG List of edge motif centralities in G
tG
i List of nodes in ith tier of G
χG List of sink nodes : tG

1 ∪ tG
2

EG Path count index of G
ηG Network efficiency of G
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5.1. EDGE ADDITION

Edge addition ensures that every tier 2 and 3 node is connected to at least 2 nodes from

tier 1 and/or tier 2. We base the edge addition mechanism on preferential attachment, which

is a growth model for scale free networks like TRN [126]. We introduce the preferential

attachment model hereafter.

We have already introduced the notion of preferential attachment growth model in

Section 3.2.6. We find the probability of a newly added node to share an edge with existing

node u with out-degree δO(u) as:

π(u) =
δO(u)∑

w∈V δO(w)
(5.1)

Evidently the use of the preferential attachment growth model will ensure that the

resultant graph after edge addition, termed augmented TRN (GA), will continue to retain the

scale-free out-degree distribution (one of the key TRN properties we intend to preserve).

Figure 5.1. Preferential attachment list LU .

Algorithm description: Edge addition algorithm generates a preferential attach-

ment list LU consisting of tier 1 and 2 nodes. The frequency of each node u in LU is equal to

its out-degree δO(u) (Lines 2 - 8), as also illustrated in Figure 5.1. For each tier 2 and 3 node

v in list LV (consisting of nodes with in-degree δI < 2), we introduce an edge between v and

a randomly selected node u from LU , based on the formulation of preferential attachment

(Eq. 5.1), as shown in Lines 9 - 15. Hence, all the nodes in tiers 2 and 3 of augmented TRN

GA have in-degree of at least 2.
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Algorithm 1 Edge Addition Algorithm
1: procedure
2: α = 0, LU = ∅, LV = ∅

3: GA = GO
4: for u ∈ VA do
5: if δI(u) < 2 and u < tier 1 of GA then
6: LV .append(u)
7: if δO(u) > 0 then
8: LU .append([u for i = 1 to δO(u)])
9: for v ∈ LV do
10: while True do
11: u = random(LU)

12: if e(u, v) < EA then
13: EA = EA ∪ e(u, v); LU .append(u)
14: α = α + 1
15: break

Time Complexity: The for loop in Line 4 iterates |VA | times. The random function

used in Line 11 selects an unique element each time from LU . Since the minimum δI of any

node v in LV is 1, the while loop (Line 10) iterates at most twice so we encounter u such that

e(u, v) < EA. Thus, time complexity of the edge addition algorithm isO(2× |VA |) = O(|VA |).

5.2. EDGE DELETION

In order to meet criterion 2 of edge rewiring, we need to remove α = |EA | − |EO |

edges from GA. It is imperative to maintain three constraints during edge deletion.

5.2.1. 2-connectivity. Edges can only be removed from nodes with in-degree δI >

2, since the removal of any other edge would cause nodes from tiers 2 and 3 in rewired

TRN GM to have in-degree less than 2. As an example, Figure 5.2 shows the in-degree

distribution of Yeast TRN subgraph of 400 nodes, where the gray area represents edges

participating in nodes with δI ≤ 2. Edges can only be removed from the white region under

the curve. Evidently, this needs to be an important consideration while carrying out edge

deletion from the augmented TRN.
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5.2.2. Dynamics of Degree Distribution. Deletion of an edge with in-degree i + 1

decreases the frequency of in-degree i+1 (denoted by fi+1) by 1 and increases the frequency

of in-degree i (denoted by fi) by 1 in the in-degree distribution curve (Figure 5.3). Therefore,

the number of edges of any in-degree i available for removal depends on the frequency of

available edges of in-degree i as well as i + 1.

Figure 5.2. In-degree distribution of augmented Yeast TRN subgraph of 400 nodes.

5.2.3. Robustness Due to FFL Motifs. FFL motifs have been proven to play a

significant role in rendering topological robustness to TRN in the following two ways [127]:

Figure 5.3. Dynamics of in-degree distribution due to edge deletion.

5.2.3.1. Robustness due to independent paths. Two paths between a node pair

are called independent if they contain no common nodes, except source and destination

nodes. For instance in graph G, shown in Figure 5.4(a), there are 3 independent paths

between nodes 1 and 2, namely {1→ 3→ 2}, {1→ 2} and {1→ 4→ 2}. According to

Menger’s theorem on vertex connectivity, the minimum number of vertices whose removal

disconnects two nodes is equal to the maximum number of pairwise vertex-independent
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paths between them [112]. For example in graph G, at least two nodes (3 and 4) must be

removed to disconnect nodes 1 and 2. (Note that {1→ 2} is also an independent path but,

being an edge, it has no intermediate nodes to disconnect.) Since the FFL motif contains

two independent paths connecting source node S to target node T (as shown in Figure

5.4(b)), abundance of FFLs ensures topological robustness in TRNs by offering multiple

alternative communication pathways.

Figure 5.4. Robustness due to FFLmotifs. (a) Example graphG with edgemotif centralities
shown in circles (b) Two paths marked in different colors from source S to target T in FFL.

5.2.3.2. Increase in shortest path length. Node or link failures in any graph may

increase the shortest path length between pairs of existing nodes, or it may make them

unreachable from one another. In case of FFLs, the failure of direct links between source

S and target T causes the shortest path length between S and T to increase only by a single

hop. Hence, abundance of FFLs makes TRNs robust by minimizing the increase in shortest

path length during failures of nodes.

Combining points (a) and (b) we infer that FFL motifs contribute to topological

robustness of TRNs by providing multiple, short communication pathway alternatives,

despite node failures.

In order to meet the core requirements of edge rewiring, it is crucial that we in-

corporate the above constraints in the edge deletion algorithm. For instance, as per the 2-

connectivity constraint, each tier 2 and 3 node has in-degree 2. Consequently, 2-connectivity

would make the rewired TRN more robust against failure of well-connected nodes. Simi-
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larly, dynamics of degree distribution should help delete edges from GA, while preserving

the in-degree distribution of TRN. Finally, the notion of robustness due to FFLmotifsmakes

it imperative to preserve them in course of edge deletion.

In the following sections, we first discuss a simply greedy edge deletion approach and

highlights its drawbacks. We then propose an improved dynamic edge deletion approach.

5.3. GREEDY EDGE DELETION

In this algorithm, we remove α number of edges with minimum motif centrality

from GA. Going back to the example of graph G shown in Figure 5.4, we prefer to preserve

e(1, 2) because σ(e(1, 2)) is the highest. We also attempt to incorporate 2-connectivity and

dynamics of degree distribution.

Algorithm 2 Greedy Edge Deletion
1: procedure
2: for i = 3 to md do
3: Calculate Ti using Eq. 5.2 , j = 0
4: Sort edges in dlisti in non-decreasing order of motif centrality ς
5: dlist = sort(dlist, ς, i)
6: R = ∅
7: while Ti > 0 and j < |dlisti | do
8: dlisti, j is the j th edge of dlisti
9: e(u, v) = dlisti, j
10: if e ∈ EA and δI(v) > 2 then
11: EA = EA − e;
12: Ti = Ti − 1;
13: R = R ∪ e
14: j = j + 1
15: dlist = updateDlist(dlist, R)

Algorithm description: Greedy edge deletion takes as input (i) the augmented TRN

GA(VA, EA), (ii) maximum in-degree of GA, (denoted by md), (iii) a data structure dlist,

where each entry dlisti contains all edges incident to nodes with in-degree i arranged in the

non-decreasing order of σ-value (as shown in Figure 5.5) and (iv) list of motif centrality
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of all edges in GA, denoted by ς = (σ(e1), σ(e2), · · · , σ(e|EA |)). The for loop in Line 2

traverses 3 to md. (Note that removing any edge from node with δI ≤ 2 will violate 2-

connectivity constraint.) For each in-degree i, we remove Ti edges from dlisti. The process

of determination of Ti (Line 3), for all i < md, has been discussed hereafter. The while loop

stops when Ti edges of dlisti are removed or all edges in dlisti have been traversed. Each

removed edge e is added to a removed list R (Lines 7 - 14). In function updateDlist we

add each e(u, v) in removed list R to dlistδI (v) (Line 15). Finally, the edges in each dlisti

are re-sorted in the non-decreasing order of σ for subsequent i values (Line 5).

Determination of Ti: An important step in the edge deletion is the determination

of Ti, which denotes the number of edges of in-degree i to be removed. Note that i in Ti

ranges from 3 to md because we are only removing edges from nodes with in-degree greater

than 2. The value of Ti is dictated by frequency of available edges of in-degree i and i + 1

(denoted by fi and fi+1, respectively). This is due to the fact that the removal of an edge with

in-degree i + 1 causes an increase in the frequency of nodes with in-degree i (as discussed

in Section 5.2.2). Therefore, Ti is given by:

Ti =
a × fi + (1 − a) × fi+1

D
× α, (5.2)

where (i) a is a scale constant lying between 0 and 1 which determines the weightage of fi

and fi+1 and (ii) D is the normalizing constant given by D =
(
a
∑md

i=3 fi + (1 − a)
∑md

i=4 fi+1)
. Note that fi+1 = 0 when i = md. In our experiments, we consider a = 0.5.

Time complexity: The i−loop in Line 2 also iteratesmd−2 times. The determination

of Ti step has complexity O(1). In Line 5, sorting the edges in the non-decreasing order

of ς incurs complexity O(|EA | lg |EA |). In Lines 7 - 14, the while loop removes Ti edges,

incurring cost of O(|EA |). Finally, the function updateDlist in Line 15 has a cost of

O(|EA |). Thus, the total complexity of the greedy edge deletion algorithm is O((md − 2) ×

|EA | lg |EA |) = O(|EA | lg |EA |).
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Figure 5.5. Data structure dlist for greedy edge deletion.

5.4. DYNAMIC EDGE DELETION

There exists few important issues with the greedy edge deletion. We introduce a

notion called obtainability, which is crucial for understanding one of the issues in the greedy

edge deletion approach, leading up to dynamic edge deletion.

5.4.1. Obtainability. Let us consider directed graphs G1 and G2 such thatV(G1) =

V(G2) and E(G2) ⊂ E(G1). Now we define in-degree distribution of graphs G1 and G2 as

∆1
I = ( f

1
1 , f 1

2 , · · · , f 1
md) and ∆

2
I = ( f

2
1 , f 2

2 , · · · , f 2
md), respectively. Here md is the maximum

in-degrees of G1 and f j
i is the frequency of nodes with in-degree i in graph G j , respectively.

Definition 4: Given two directed graphs G1 and G2 with in-degree distributions ∆1
I

and ∆2
I , we define ∆

2
I as obtainable from ∆1

I if it is possible to obtain G2 by deletion of one

or more edges from G1.

Figure 5.6. Example of obtainability. Graph G1 (Left) and G2 (Right).
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For instance, in Figure 5.6 we consider two directed graphs G1 and G2. G2 is formed

by deletion of edge e(1, 3) in G1. In such as case, ∆2
I = (1, 2) is said to be obtainable from

∆1
I = (0, 3).

Effect of obtainability on in-degree distribution: Let us consider three directed

graphs G1 (Figure 5.7 (left)), Gin (Figure 5.7 (middle)) and G2 (Figure 5.7 (right)), such

that G2 and Gin are obtainable from G1 by deletion of 3 edges. In Figure 5.7, we observe

that ∆1
I = (0, 3, 1), ∆

in
I = (0, 4, 0) and ∆

2
I = (2, 2, 0). We intuit that exists a relationship

between ∆1
I and ∆

2
I .

From our discussion in Section 5.2.2, we know that deletion of edge with in-degree

i+1 decreases the frequency of in-degree i+1 by 1 and increases the frequency of in-degree

i by 1 in the in-degree distribution curve. Given any in-degree K (where 0 ≤ K ≤ md), the

removal of edges from nodes with in-degrees K + 1 to md must affect fK .

Let us analyze the relationship between f in
K and f 2

K w.r.t f 1
K for any arbitrary value

of K (say K = 0).

• In Figure 5.7. if e(2, 4) is removed from G1 we obtain Gin. As e(2, 4) is removed,

f in
2 = f 1

2 − 1 = 1− 1 = 0 and f in
1 = f 1

1 + 1 = 3+ 1 = 4. Any change in f2 and f1 flow

into f0, i.e. f in
0 = f 1

0 +
∑md

i=1( f
1

i − f in
i ) = 0 + (1 − 0) + (3 − 4) = 0.

• Similarly, if e(3, 1) and e(1, 2) are removed from Gin, we obtain G2. Then, f 2
0 =

f 1
0 +

∑md
i=1( f

1
i − f 2

i ) = 0 + (1 − 0) + (3 − 2) = 2.

Figure 5.7. Edge deletion and obtainability. Directed graphs G1 (left), intermediate graph
Gin (middle) and G2 (right).
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Thus, if ∆2 is obtainable from ∆1, the relationship between f 1
K and f 2

K is given by

f 2
K = f 1

K +
∑md

i=K+1( f
1

i − f 2
i ), for any 0 ≤ K ≤ md.

Note: In Figure 5.7, since G2 is obtainable from Gin, the same relationship exists in

the in-degree distribution of Gin and G2 as well. Let us formalize this idea in the following

lemma.

∆2
I is obtainable from ∆1

I if f 2
K = f 1

K +
∑md

i=K+1( f
1

i − f 2
i ), where f 2

i ≤ f 1
i and

0 ≤ K ≤ md.

Let us consider in-degree distribution of G1, ∆1
I = f 1

0 , f 1
1 , · · · f 1

md , and in-degree

distribution of G2, ∆2
I = f 2

0 , f 2
1 , · · · f 2

md .

Let us begin with graph G1 and remove ( f 1
md − f 2

md) edges incident to nodes of

in-degree md. The resultant graph has distribution ( f 1
1 , f 1

2 , · · · , f 2
md−1, f 2

md), where f 2
md−1 =

f 1
md−1 + ( f

1
md − f 2

md).

If, in the same graph, we remove ( f 1
md−1− f 2

md−1) edges incident to nodes of in-degree

md−1, we obtain distribution ( f 1
1 , f 1

2 , · · · , f 2
m−2, f 2

m−1, f 2
md), where f 2

md−2 = f 1
md−2+( f

1
md−1−

f 2
md−1) + ( f

1
md − f 2

md) =
∑md

i=md−1( f
1

i − f 2
i ).

Finally, for all i = md − 2,md − 1, · · · ,K + 1,K , if we continue to remove ( f 1
i − f 2

i )

edges of in-degree i, we obtain in-degree distribution ( f 1
0 , f 1

1 , · · · , f 2
K, f 2

K+1 · · · , f 2
md), where

0 ≤ K ≤ md and f 2
K = f 1

K +
∑md

i=K+1( f
1

i − f 2
i ).

5.4.2. Issues with Greedy Edge Deletion. Let us now understand the following

drawbacks with the greedy edge deletion algorithm.

5.4.2.1. Determination of optimal Ti. The formulation of Ti in Eq. 5.2 is a greedy

approach, where Ti is proportional to the fi and fi+1. However, from the precept of

obtainability (discussed in Section 5.4.1) it is clear that fi is affected by any change in

fi+1, fi+2, · · · , fmd . It follows that the determination ofTi during edge deletion should ideally

incorporate the notion of obtainability. Therefore, we now formulate determination of Ti as
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a nonlinear optimization problem with the objective of preserving in-degree distribution of

original TRN (GO) by minimizing the squared error between the in-degree distribution of

GO (denoted by ∆O
I ) and GM (denoted by ∆M

I ), with obtainability as one of the constraints.

argmin
∆M
I (3:)

md∑
i=3
( f M

i − f O
i )

2 (5.3)

s.t.
md∑
i=0

f M
i × i =

md∑
i=0

f O
i × i (5.4)

f A
2 +

md∑
i=3
( f A

i − f M
i ) = f M

2 (5.5)

f M
i ≤ f A

i ∀i = 3 to md (5.6)

• The objective function (Expression 6.6) minimizes the squared error between the

in-degree distribution of original and rewired TRN. Note that we do not change

frequency of nodes with in-degrees 0 to 2, as we ensure that all tier 2 and 3 nodes

have in-degree at least 2. This optimization returns ∆M
I (3 :) = f M

3 , f M
4 , · · · , f M

md . We

then calculate Ti = f O
i +

∑md
j=i+1( f

O
j − f M

j ) − f M
i (∀i = 3, 4, · · · ,md).

• Given any directed graph G(V, E), |E | =
∑md

i=0 fi × i Constraint 5.4 ensures that the

number of edges in GM and GO are be same (Criterion 2 of edge rewiring).

• Constraint 5.5 guarantees obtainability of rewired TRN from augmented TRN GA.

In absence of this constraint, we cannot ensure that ∆M
I returned by optimization is a

valid in-degree distribution obtainable from GA.

• As a consequence of edge addition, the frequency of nodes with in-degree 2 increases

in rewired TRNs (as shown in Figure 5.8). Additionally, the frequency of nodes with

in-degree greater than 2 in rewired TRN is less than that in original TRN graph.

Constraint 5.6 reflects this redistribution of node frequency among in-degrees in

rewired TRNs.
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Figure 5.8. Generic form of in-degree distribution of original and rewired TRN.

5.4.2.2. Change in motif centrality. In Figure 5.9, we consider an edge e(u, v)

that participates in L number of FFL motifs. We intuit that the removal of e(u, v) reduces

FFL motif count of graph G by L. We formalize this notion in Lemma 5.4.2.2.

Given any directed graph G(V, E) with FFL motif count ψ(G(V, E)), the number of

FFL motifs ψ(G(V, E)) lost due to elimination of any e ∈ E from G exactly equals the edge

motif centrality of e given by σ(e(u, v)), i.e. ψ(G(V, E)) − ψ(G(V, E − {e})) = σ(e(u, v)).

Figure 5.9. Change in motif centrality due to edge deletion. Edge motif centrality
σ(G, e(u, v)) = L; Removal of e(u, v) transforms L FFL motifs into open triplets.

From definition 2, we know that e(u, v) participates in σ(e(u, v)) FFL triangles. It

follows that removal of edge e transforms σ(e(u, v)) FFLs into open triplets (Figure 5.9

shows the removed edge e(u, v) in red), causing the loss of σ(e(u, v)) FFL motifs from G.

Therefore, ψ(G(V, E)) − ψ(G(V, E − {e})) = σ(e(u, v)).

Given any directed graph G, removal of the edge with the lowest σ during each step

of edge deletion preserves the optimal number of FFL motifs.
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Let us consider a directed graph G. Let the graph with maximum FFL motif count

obtained after deletion of i edges from G be denoted by iG
l . At this point, let us now

consider two distinct alternatives of edge removal on iG
l :

1. Delete the edge with lowest σ (denoted by ie
l) from iG

l . From Lemma 5.4.2.2, we

know that σ(ie
l) FFL motifs will be lost. Therefore, we have ψ(i+1Gl) = ψ(iG

l) −

σ(ie
l).

2. Delete any edge besides the one with lowest σ (denoted by ie
l̂) from iG

l . We have

ψ(i+1Gl̂) = ψ(iG
l) − σ(ie

l̂).

Since σ is the lowest, σ(ie
l̂) < σ(ie

l), ψ(i+1Gl) > ψ(i+1Gl̂). Therefore, the removal

of α edges with least σ at each step preserves the optimal FFL motifs.

From Lemma 5.4.2.2 and Corollary 5.4.2.2, we deduce that (i) deletion of each

edge e reduces the FFL motif count of the graph by σ(e) and (ii) optimal FFL motifs are

preserved by deleting the edge with the lowest σ. Now recall that the greedy edge deletion

approach does not update the σ of edges after each deletion. Since it does not necessarily

delete the edge with the lowest σ, it may not preserve the optimal number of FFL motifs,

necessitating an improved dynamic edge deletion approach.

Figure 5.10. Dynamic Edge Motif List DL.
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5.4.3. Dynamic Edge Deletion Algorithm. In this algorithm, the key objectives

are to (i) delete optimal α =
∑md

i=3 Ti edges (where Ti is determined using non-linear

optimization), and (ii) preserve maximum number of FFL motifs at each edge deletion step

(using Lemma 3). We solve the nonlinear least squares optimization using the Python SciPy

library [128]. We discuss the steps in dynamic edge deletion algorithm.

Algorithm description: Dynamic edge deletion algorithm maintains a list of motif

centrality of edges ς and a Dynamic EdgeMotif List DL (Figure 5.10), where, for each edge

e, there is a list of edges that share a FFL motif with e. Given the value of T (determined by

nonlinear least squares optimization) and α, the algorithm finds the edge with the lowest σ

by invoking f indLowestMoti f Edge(ς), el(u, v) (Line 4). The edge el(u, v) is eligible for

deletion if it meets two conditions: (1) δI(v) exceeds 2 and (2) TδI (v) is more than 0. If the

eligibility conditions are satisfied, TδI (v) is decremented and el is removed from GA (Lines

5 - 7). Finally, function adjustE MC is invoked to update the σ of all edges affected by

the deletion of el . Specifically, σ of each edge in DLel is decremented by 1. This update

ensures that we remove α least motif central edges el in each step to preserve the maximum

FFL motifs in GM (Line 8). The algorithm terminates when α edges are removed.

Algorithm 3 Dynamic Edge Deletion
1: procedure
2: i = 0
3: while i < α do
4: el(u, v) = f indLowestMoti f Edge(ς)
5: if TδI (v) > 0 and δI(v) > 2 then
6: TδI (v) = TδI (v) − 1
7: GA.remove_edge(el)

8: ς = adjustE MC(DL, el, ς)
9: i = i + 1
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Time complexity: The while loop iterates α times. Within each iteration, function

f indLowestMoti f Edge traverses the edge-list finds the edge with lowest σ in O(|EA |)

time, and adjustE MC decrements σ of each edge in DLel by 1 in O(|EA |). Therefore, the

overall complexity of dynamic edge deletion is O(α × |EA |).

5.5. COMPARATIVE ANALYSIS OF GO AND GM

We first compare the original and rewired TRNs across all graph orders in terms of

the four graph metrics. Since the motivation behind edge rewiring is to preserve the graph

attributes of original TRN, while remedying its vulnerability to failure of well-connected

nodes, we explore how similar original and rewired TRNs are to one another. The results

in Table 5.5 present the combined average scores the four graph metrics of both TRNs.

Graph generation: For both E. coli and Yeast, we utilize GeneNetWeaver to generate

50 subgraphs each of sizes 100, 200, 300, 400 and 500 nodes. Each generated subgraph

has approximately the same graph density as original E. coli and Yeast TRN topology. For

each original E. coli and Yeast TRN subgraph we use Python Networkx library [129] to

generate an E-R random graphs of approximately same graph density.

5.5.1. Diameter. It is the measure of the longest shortest path between any pair of

nodes in a given graph. Since, TRNs are weakly connected directed graphs, we calculate

the diameter of undirected TRN subgraphs. Results show that the average diameter of

undirected rewired TRNs are slightly lower than original TRN subgraphs.

5.5.2. AverageClusteringCoefficient (ACC). ACCof dynamically rewired TRNs

is the highest, followed by greedily rewired TRNs. From our discussion in Section 3.2.4,

we know that high ACC warrants high FFL motif preservation.

5.5.3. Assortativity. It is a measure of the tendency of nodes to attach to other

similar nodes. The assortativity coefficient [130] of any directed graph G is based on the

Pearson Correlation Coefficient. It is calculated as:
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r =

∑
i, j(Ai, j −

kik j

2m ) × xi x j∑
i, j(κi, j ki −

kik j

2m ) × xi x j

(5.7)

Here A is the graph adjacency matrix of directed graph G, ki is degrees of node i,

κi, j is Kronecker function, xi is a scalar associated with node i and m is the total number

of edges. The value of r is a score ranging from -1 (disassortative) to +1 (assortative).

Scale-free networks are usually disassortative because the preferential attachment growth

model causes edge addition between a poorly connected and well-connected node [130].

Although the edge addition algorithm follows preferential attachment growth model, edge

deletion causes some well-connected nodes to lose poorly-connected neighbors. Thus, the

rewired TRNs are slightly more assortative than the original TRN subgraphs.

5.5.4. Degree. Average degree of dynamically rewired TRN is slightly more than

original and greedily rewired TRNs.

Note: The average diameter and degree tend to increase with graph order, we

normalize each average diameter and degree score of each subgraph by the order of graph.

From the summary of scores of four graph metrics in Table 5.3, we conclude that

original and rewired TRNs are topologically similar.

Table 5.3. Graph properties of original and rewired TRN.Average (a) diameter (b) clustering
coefficient (c) assortativity (r) and (d) degree

Diam. ACC r Deg.
Original 0.022 0.140 −0.286 0.034
Greedy 0.020 0.187 −0.233 0.034
Dynamic 0.020 0.194 −0.231 0.036

5.6. EXPERIMENTAL RESULTS

We analyze the topology of original and rewired E. coli and Yeast TRN, both

greedy and dynamic, in light of certain graph and simulation experiments. We compare the

performance of TRN against E-R random graphs of roughly same graph density as TRN.
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Reason for using E-R random graphs as benchmark: For TRN-inspired WSNs our

initial objective was to compare the proposed topologies to other standard topologies of

similar graph density. Unlike other standard topologies like k-connected or scale free, it

is possible to control the density of the random topologies by regulating the probability of

edge existence p.

5.6.1. Graph Experiments. Let us analyze the results for the graph experiments.

5.6.1.1. Degree distribution. We show the average in and out-degree distributions

of original and rewired E. coli and Yeast TRN subgraphs. For each subgraph of original,

greedy and dynamically rewired TRN, in and out degree distributions are normalized by

degree sum. Figure 5.11(a) and 5.11(b) show the mean curves of normalized in and out

degree distribution of all TRN subgraphs.

Figure 5.11. Degree distribution due to rewiring. (a) Normalized average in-degree and
(b) Normalized average out-degree distribution of E. coli and Yeast TRN subgraphs. The
dotted line shows that in-degree distribution of rewired TRN peaks at in-degree 2.

In Figure 5.11(a) we observe that the in-degree distribution curves of greedily and

dynamically rewired TRNs peak at in-degree 2 (shown in dotted line). This is a direct

consequence of edge rewiring where all tier 2 and 3 nodes are connected to at least 2 nodes

from tiers 1 and 2. Recall, the purpose of minimization of squared error discussed in Section

5.4.2.1 is to ensure that the in-degree distribution of dynamically rewired TRN is close to

that of original TRN. We measure the degree of deviation of in-degree distribution curve of

any rewired subgraph from that of original TRN subgraph using the notion of Root Mean
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Square Deviation (RMSD):

RMSD(∆1
I,∆

2
I ) =

√∑md
k=3( f

1
k − f 2

k )
2

md − 2
(5.8)

We observe that average RMSD(∆GO

I ,∆GM

I ) for greedily and dynamically rewired

TRN are 0.01128 and 0.00126, respectively. Thus, deviation in in-degree distribution of

dynamically rewired is nearly 10 times less than that of original TRN subgraphs, bearing

out the importance of the nonlinear optimization employed during dynamic edge deletion.

Figure 5.11(b) shows that dynamically and greedily rewired TRN subgraphs both

preserve the out-degree distribution of original TRN subgraphs.

5.6.1.2. Motif preservation. We compare the number of FFL motifs preserved by

all the topologies. The results (Figure 5.12(a) and 5.12(b)) show that dynamically rewired

E. coli and Yeast TRN, patently preserve the highest number of FFL motifs, followed by

greedily rewired TRNs.

Figure 5.12. FFL motif preservation due to rewiring. Original and rewired (a) E. coli and
(b) Yeast TRNs and E-R random graphs.

5.6.1.3. Robustness. We compare the robustness of the original TRN, rewired

TRN and E-R random graphs in terms of following metrics: average network efficiency,

path count, number of connected components and size of largest connected component.

Studies show that E-R random graphs exhibit robustness against targeted failures, whereas

original TRNs, like all scale free graphs, are robust against random failures. We expect the

rewired TRNs to retain the best traits of E-R random graphs and TRNs [83].
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Normalization: The scores for each of the four robustness metrics increase with the

order of input graph. Therefore, in order to obtain a unified metric for all graph orders, the

score for any graph is normalized by the order of the graph.

Failure of Random and Targeted nodes: We remove 4%, 8%, 12%, 16% and 20%

nodes. Given any input graph, we consider two kinds of failures:

• Random Failure: Nodes to be removed are randomly chosen from the node set of the

graph.

• Targeted Failure: We term nodes in tiers 1 and 2 with out-degree greater than median

out-degree of the graph, as hubs. Nodes to be removed are chosen from the hub set.

For the following experiments, the edge directions in each subgraph are reversed;

tier 2 and 3 nodes are source nodes and hubs are the destination nodes. The results reflect

the combined average of both E. coli and Yeast TRN subgraphs.

5.6.1.4. Network efficiency. It is a measure of the average shortest path length

between all pairs of source and sink nodes. For any directed graph G(V, E), it is given by:

E =
1
φE

∑
u∈V,

v∈χ,u,v

1
d(u, v)

(5.9)

Here (i) χ is the set of sinks, (ii) φE is the number of source-sink pairs calculated as

|(u, v) : u ∈ V, v ∈ χ, u , v |, and (iii) d(u, v) is the shortest path length between any node

pair u, v ∈ V .

Recall that we discuss in Section 5.2.3 that the abundance of FFL motifs provide

multiple short path alternatives in TRNs. While comparing the network efficiency E of the

four topologies, we consider source-to-sink shortest paths of a limited number of hops. As

an example, we show E w.r.t paths of length at most 4 in Figure 5.13(a) and 5.13(b). Results

show that dynamically rewired TRN subgraphs exhibit significantly better E than original

and greedily rewired TRNs.
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Note that random graphs exhibit better E than TRN graphs as the percentage of

targeted nodes failure tends to 20%. This is due to the fact that the number of source-

destination paths in scale free networks like TRNs decrease, as the hub nodes are knocked

off the graph. In contrast, majority of nodes in E-R random graphs have average degree.

Thus E-R random graphs are less affected by targeted node failures, making them exhibit

steady E during targeted failures.

Figure 5.13. Average network efficiency. (a) Random and (b) Targeted node failure.

5.6.1.5. Path count index η. It measures the average number of simple paths

between all pairs of source and sink nodes that are connected by at least one path. For any

directed graph G(V, E), it is given by:

η =
1
φη

∑
u∈V,

v∈χ,u,v

P(u, v) (5.10)

In Eq. 5.10, (i) P(u, v) is the number of simple paths between any node u ∈ V and

v ∈ V and (ii) φη is the number of source-sink pairs connected by at least one path i.e.

|(u, v) : u ∈ V, v ∈ χ, u , v,G.has_path(u, v)|.

Figures 5.14(a) and 5.14(b) show that η value of dynamically rewiredTRNsubgraphs

is the highest for both targeted and random node failures. Once again E-R random graphs,

by virtue of its average degree nodes, exhibit steady η during targeted failures.
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Figure 5.14. Average normalized path count. (a) Random and (b) Targeted node failure.

5.6.1.6. Number of connected components. Node failures will cause any graph

to disintegrate into multiple connected components. Since the basis of robustness in our

work is the ability of a graph to stay connected despite failures, we compare the number of

connected components in the TRN and E-R random subgraphs during random and targeted

node failures.

Figure 5.15. Normalized number of connected components. (a) Random and (b) Targeted
node failure.

Figure 5.15(a) shows that rewired TRNs disintegrate into the fewest component

during random failures. Once again, the E-R random graphs exhibit least vulnerability to

targeted node failure (Figure 5.15(b)).

5.6.1.7. Size of largest connected component. We explore how the size of largest

connected component is affected by random and targeted node failures. We observe that the

size of largest connected component of rewired TRN is marginally better than E-R random

graphs and original TRNs, in the event of random node failure (Figure 5.16(a)).



78

The TRN graphs, due to its susceptibility to failure of targeted nodes perform

poorly compared to E-R random graphs, albeit the rewired TRNs still retain larger giant

components compared to original TRN subgraphs (Figure 5.16(b)).

Figure 5.16. Size of largest connected component. (a) Random and (b) Targeted node
failure.

From the above experiments it is clear that dynamically and greedily rewired TRNs

outperform original TRN subgraphs under all four robustness metrics under all conditions.

5.6.2. Simulation Experiments. In order to show the efficacy of the enhanced

(i.e. rewired) TRN topology in real-world networks, we designed wireless sensor network

(WSN) topologies based on original TRN subgraphs, rewired E. coli and Yeast TRN and

E-R random graphs. We implemented WSN topology on OMNET++ Castalia simulator

[114]. The simulationswere performed on 50 subgraphs of 300 nodes. Each experiment was

repeated 5 times. Following are the details of the simulation setup. (Additional simulation

details are summarized in Table 5.4.)

Routing protocol: We follow theCollection Tree Protocol (CTP) [115], a tree-based

distance vector routing protocol designed for sensor network communication.

Choice of Sink Nodes: The CTP protocol is a routing protocol where data is trans-

ferred from the source to the sink nodes, via a routing tree. CTP fits the TRN topologies

since it becomes easy to model the hub nodes as sinks. To this end, the edge directions are

reversed; the tier 3 nodes become the source nodes and the tier 1 nodes (with high incoming

edges in the reversed graph) are the sink nodes. On an average, 5% hub nodes in each

network are considered as sinks.
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Table 5.4. Simulation Parameters.

Parameter Value
Carrier frequency 2.4 GHz
Data transmission rate 250 Kbps
Transmission power level 0 dBm
Transmission, Reception,
Sleep power

57.42mW, 62.0mW,
1.4mW

Receiver Sensitivity -95.0 dBm
Initial energy of nodes 18720 J

Node deployment and communication: In order to generate WSN topologies based

on the four topologies, let us consider any input subgraph (of original TRN, rewired TRN or

E-R random graph) Gg(Vg, Eg) and already deployed WSN topology Gw(Vw, Ew), where the

coordinate of node u ∈ Vw is given by Cu. In course of this mapping procedure between Gg

and Gw, we generate subgraphmapped-WSN G′w (V ′w ⊂ Vw and E′w ⊂ Ew) and mapped-TRN

G′g (V ′g ⊂ Vg and E′g ⊂ Eg). Specifically, we define a simple greedy algorithm inspired

from [45] to find a one-to-one mapping between a node pair x ∈ E′g and w ∈ E′w if for

each e(u, x) ∈ E′g there exists e(v,w) ∈ E′w, where u is already mapped to v. The details of

the mapping algorithm has been covered in Section 3 of Appendix B. It returns a mapping

function m : Vg → Vw. Each node u in mapped-WSN G′w is deployed in position Cu.

Moreover, each mapped node in G′w maintains a list of neighbor nodes to refrain from

transmission or reception of data packets from non-neighbors in its vicinity.

In order to realize a TRN topology Gg (of 300 nodes), we consider a randomly

deployed Gw of 400 nodes in an area of 100× 100 sq. meters. An edge exists between each

node pair of Gw if the they are within a range of 60 m. Given each graph Gg, we invoke

above mapping algorithm to generate the mapped-WSN G′w. In Table 5.5, we estimate the

average percentage of nodes in Gg that are mapped to Gw. We observe that there is no

notable improvement in percentage of mapped nodes when we have Gw in excess of 400

nodes, since some nodes with poor reachability in Gg remain unmapped.



80

Deployment area: The nodes are deployed on a simulation area of 100 × 100 sq.

meters.

Simulation time: Each simulation is carried out for 1800 seconds.

Failure model: Like in Section 5.6.1, we consider three scenarios: (a) no node

failure (b) random node failure and (c) targeted node failure. In case of targeted and random

failures 4% nodes are removed from each topology after every 300 seconds.

Table 5.5. Average percentage of nodes Gg mapped for each topology type.

E. coli Yeast
Original 95.0% 96.5%
Greedy 95.9% 95.9%
Dynamic 94.4% 96.2%
Random 93.6% 94.6%

Metrics: We consider two metrics (a) Average Packet Delivery Ratio (PDR): It is

the ratio between the number of packets received by all the sink nodes to the total number

of packets generated by all the nodes and (b) Average Latency-to-PDR ratio: Latency is

the time taken by a data packet to travel from source to a preassigned sink node. However,

we observe that network latency alone is not adequate to gauge communication delay, as

it is often negligible when majority of data are not forwarded due to unavailability of

source-destination paths. Therefore, instead of considering average latency, we evaluate

latency-to-PDR ratio for our experiments.

Figure 5.17. Packet delivery ratio. (a) E. coliWSN (b) Yeast WSN.
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5.6.2.1. PDR. Figure 5.17(a) and 5.17(b) show that dynamic TRNs exhibit the

highest PDR, while PDR for greedily rewired TRN is higher than original TRN, E-R

graphs.

Figure 5.18. Network latency. (a) E. coli WSN (b) Yeast WSN.

5.6.2.2. Latency-to-PDR ratio. Figure 5.18(a) and 5.17(b) show that the Latency-

to-PDR ratio of original, greedy and dynamic E. coli and Yeast TRN are comparable,

whereas E-R random graphs possess a very high latency-to-PDR ratio.

We infer that the WSN simulation results corroborate our graph robustness exper-

iments. The rewired TRNs exhibit a notably higher PDR at comparable latency, under

both random and targeted failure conditions. (Another perspective behind the observed

WSN performance in rewired TRNs has been discussed in Section 4 of Appendix B.)

Thus, rewired TRNs are indeed an effective choice for design of robust and efficient WSN

topologies.

5.7. INFERENCES

In this section we analyzed the topologies of both E. coli and Yeast TRN in terms

of the three tier topology. We discussed that E. coli and Yeast TRN are vulnerable to

the failure of well connected nodes. To remedy this vulnerability, we introduced an edge

rewiring mechanism, consisting of edge addition and edge deletion. We discussed the

edge addition and then the greedy edge deletion algorithm with its drawbacks. We then

formulated the dynamic edge deletion algorithm as a nonlinear least squares optimization
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problem. We showed that edge rewiring preserves the key graph properties such as scale

free out-degree distribution, motif abundance and graph sparseness. We then carried out

through graph and simulation experiments to show that dynamically rewired TRNs not only

exhibit the highest FFL motif count, but also outperform greedily rewired TRN, original

TRN and E-R randomgraphs in terms of four robustnessmetrics, namely network efficiency,

preservation of short source-sink paths and preservation of largest connected components,

in events of random and targeted node failures. Finally, we demonstrated that rewired TRNs

can be applied to real-world communication networks by performing WSN simulations

on OMNET++, where dynamically and greedily rewired TRN-based WSNs exhibited the

highest packet delivery at comparable network latency compared to other topologies.
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6. A BIO-INSPIRED PROBABILISTIC DATA COLLECTION FRAMEWORK
FOR PRIORITY-BASED EVENT REPORTING IN IOT ENVIRONMENTS

Over the last decade, unprecedented rise in population and unplanned land usage has

led to the lack of sustainability in urban environments. Smart cities aim at using Information

and Communication Technology (ICT) to develop energy-efficient applications, augmented

with automated decision making, to support various public services in urban spaces. The

paradigm of the Internet-of-Things (IoT) is considered to be a key enabler of such ICT-based

smart city applications. It is an interconnection of a wide array of devices with sensing,

computing, and actuation capabilities. IoT also creates a sense of pervasive computing

by enabling devices to communicate with other devices and users via smartphones and

wearables, as well as with application platforms hosted in cloud via backbone networks.

Energy-efficient smart-city applications require the energy-constrained IoT devices

to operate over long durations without compromising the quality of sensing, processing,

and transferring the collected data [131], implying that the lifetime of IoT devices are

critical. The devices are often deployed at remote locations and their limited energy gets

dissipated while sensing the environment and communicating the sampled data via wireless

communication technologies, such as 3G/4G/LTE, WiFi, ZigBee, or Bluetooth/BLE [64].

It may not be always feasible to replenish their batteries or replace them with fully-charged

devices on-the-fly. Quality of reported data is also essential, since the actuation which the

application platform triggers (based on sporadically received information) will be erroneous

and unproductive to the end users.

Clearly, sensing and reporting environmental events are important tasks of IoT-

based data collection framework. In this paper, we leverage TRNs to design energy-

efficient and QoI-aware data collection framework, called bioSmartSense+, for smart city

applications based on self and neighbor regulation mechanisms in TRNs. We formulate

an optimization problem to select a subset of IoT devices for sensing and reporting tasks,
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by satisfying energy-efficiency and QoI requirements. After proving NP-completeness of

the optimization problem, we propose a sub-optimal algorithm by customizing a heuristic

for theMaximum Weighted Independent Set (MWIS) problem. Let us look at the additional

features of the proposed framework.

1. We consider a more realistic scenario where an event has prespecified priority. This

enables the IoT devices (with limited residual energy) to conserve energy by prefer-

entially reporting the high priority events.

2. We present a realistic probabilistic sensing model and comprehensively studies the

effects this model has on the performance of the framework.

3. We consider a network of heterogeneous IoT devices with varying event sensing

capacities and energy consumption rates. We model this diversity by designing

varying device deployment profiles and study its effect on average residual energy

and event reporting.

4. We validate by generating events from a real data set on traffic alerts.

5. Given a constrained system energy budget, we experimentally demonstrate how bioS-

martSense+ enhances network lifetime over the preliminary bioSmartSense frame-

work using both synthetic as well as real event distributions.

6.1. BIO-INSPIRED SYSTEMMODEL

In this section, we describe the system model for the proposed framework.

6.1.1. Transcriptional Regulatory Networks. We represent a TRN as a directed

graph Gg(Vg, Eg) where Vg are TFs/genes and Eg are regulatory interactions between

TFs and genes. More details on the graph theoretic properties of TRN can be found

in [95, 132, 133]. Broadly, there are four possible types of regulation in TRN:
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Figure 6.1. Bio-inspired system model.

1. Activation (+): Increase in concentration of the TF increases the gene’s concentration.

2. Repression (−): Increase in concentration of TF decreases gene’s concentration.

3. Dual (+−): The regulating entity may activate or inhibit concentration of target gene.

4. Self-regulation: The regulating entity may activate or inhibit its own gene activity.

6.1.2. System Components. This work pertains to a network of IoT devices in

smart city applications. We partition an urban area in a smart city into several grids, each

of which is equipped with IoT devices D = {d1, d2, d3, · · · } for sensing events related to

environment and traffic. Figure 6.1 captures one such grid. The events sensed by the IoT

devices are reported to a remote application platform, called the base station.

We define time epoch as a temporal window at which vital processes take place in

the system of IoT devices. Time epoch, defined as t (= tr + ts + tb + tt x), is partitioned into

four steps which are as follows:

1. Device energy regulation (tr): Each device exchanges control messages (termed

regulatory messages) and modulate their sensing intensity (termed energy level).

2. Event sensing (ts): Each device senses the different events taking place in its sensing

range.
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3. Device-base station beacon exchange (tb): Each device sends out beacon messages to

the base station notifying it of the unique identification of the events sensed as well as

energy level, based on which the latter decides whether the device should participate

in event reporting.

4. Information transmission (tt x): The devices chosen to report the events to the base

station carry out transfer of complete event information.

We discuss the major components of our system as follows:

1. IoT device: Each device di is an energy-constrained node capable of probabilisti-

cally sensing events in radius rd (see Section 6.3.2.2), which are processed and conditionally

reported to the base station using WiFi, Bluetooth low energy (BLE) or ZigBee protocols.

Each IoT device interacts with others in its sensing range through control (or regulatory)

messages. We term the set of IoT devices D together with its communication links, as the

IoTNet topology. IoTNet is an undirected graph Gw(Vw, Ew), where Vw = d1, d2, ..., dm

represents the set of IoT devices and an edge {di, d j} ∈ Ew exists if two devices di and

d j are within communication range of one another. Moreover, each device has an event

sensing intensity (termed energy level), lying in range [0, 1]. We assume (in accordance

with [134]) that at a higher energy level, a device can sense data at higher sampling rate

leading to better sensing accuracy. However, operating at higher energy causes larger rate

of dissipation of device’s residual energy. IoT devices are capable of two types of energy

regulations, called neighbor regulation and self regulation (details given in Section 6.2.2).

2. Event: Set of events is defined as E = {e1, e2, e3, · · · }. An event ek ∈ E (marked

in red in Figure 6.1) is sensed by one or more IoT device(s). Given that the devices report

traffic (or environmental) information, each event is assigned a priority score between 1

(low priority), for e.g., ’road closure’, and 5 (high priority), for e.g., ’major accident’. Note

that any two events in roughly the same location and same time epoch are considered one

and the same.
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3. Base Station: It is a central application platform that processes event reported

by the IoT devices. It has a higher sensing range (rB) compared to the IoT devices, and is

capable of bidirectional communication.

6.2. PROPOSED BIOSMARTSENSE+ FRAMEWORK

In this section, we discuss the details of the proposed bioSmartSense+ framework.

6.2.1. IoTNet to TRN Mapping. As discussed in Section 3, TRN possesses few

graph theoretic properties that render fault-tolerance and self-organization. bioSmart-

Sense+ endeavors to exploit these attributes to develop an energy-efficient data collection

framework. To this end, we map the IoTNet to TRN, using the mapping technique proposed

in [44] [45]. It generates a subgraph of the IoTNet that has been proven to preserve the

intrinsic graph robustness of TRN.

Given an IoTNet Gw(Vw, Ew) and a TRN graph Gg(Vg, Eg), the mapping algorithm

yields a one-to-one node mapping function M : Gmw → Gg such that Gmw(Vmw, Emw)

is a directed mapped-IoTNet topology, where Vmw ⊂ Vw and Emw ⊂ Ew. An edge

{di, d j} ∈ Emw exists if and only if there is a path between M(di) and M(d j) in Gg.

Illustrative example as well as the analysis of running time of the mapping algorithm has

been covered in the preliminary version of this work [135].

6.2.2. TRN-based Energy Level Regulation. For any edge {u, v} in a directed

graph, u and v are termed the predecessor and successor nodes, respectively. Likewise,

each IoT device di can possess a list of predecessor and successor nodes, given by φ(di)

and η(di), respectively. As mentioned earlier, we consider two kinds of TRN-based energy

level regulations:

Neighbor regulation: At every regulation phase tr , an IoT device di sends regulatory

messages to η(di) and receive regulatory messages from φ(di). Based on received messages,

device di subsequently regulates its energy level (lt
di
) at time instance t + 1, with the
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following update rule: lt+1
di
=

∑
v∈φ(di) κ ×W(d j, di) × lt

di
. Here W is the edge weight i.e.,

W : W(d j, di) → {+,−}, ∀{d j, di} ∈ Gmw and κ is a rate constant that dictates the extent of

positive or negative regulation of a di by its predecessors.

Self regulation: This is the other type of regulation where di monitors its own energy

level ldi . The idea behind this is that if a di keeps high ldi over a prolonged time, it will

consume high sensing energy; conversely, if it has low ldi over time, quality of events sensed

will deteriorate. To find a balance, if ldi exceeds upper bound Uth or drops below lower

bound Lth for a duration of over r I, it is reset to a baseline bth.

6.2.3. Sub-optimal Selection of Sensing Devices. We discussed in Sections 6.1.2,

IoTNet is an energy-constrained network. It is to be noted that a energy-constraint network

can provider longer periods of uninterrupted service only if its residual energy is expended

judiciously. In this work, we assume that the total permissible energy consumption of all

the IoT devices is upper capped by B. Thus, we define network lifetime as the time instance

when the collective energy consumed by sensing and reporting of all devices exceeds the

predefined energy budget B.

In the context of smart city application, network longevity alone is not enough. It

is imperative to ensure quality of service (QoS) of the IoTNet. Thus, the proposed bioS-

martSense+ framework aims at maximizing the quality as well as quantity of events sensed

and reported at every time epoch. Specifically, given an event set E = {e1, e2, · · · , en}, a

set of devices D = {d1, d2, · · · , dm} and an overall residual energy budget Et =
∑m

i=1 ε
t
di

at time epoch t, where εt
di
is the residual energy for device di, bioSmartSense+ conserves

energy by refraining from prompting all the IoT devices to report events to the base station.

Instead, a near-optimal subset of IoT devices are intelligently chosen to report their events.

The chosen devices satisfy two conditions: (i) Quality: its energy-level is higher enough

to guarantee superior accuracy of reported events, and (ii) Quantity: it has sensed a high

number of events during the last time epoch.
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We term this as the problem of Device Selection for Quality and Uninterrupted

Information Dissemination (DSQUID). It is formally defined as follows:

(DSQUID). Select non-redundant event information from a set of devices, such that

both the quality and quantity of the disseminated information are maximized, subject to

constraint on the overall network residual energy budget.

6.2.3.1. NP-Completeness of DSQUID. Asmentioned above, E is the set of events

whose information will be used in the present time epoch to select reporting devices. Let

D be a collection of device contributions D1,D2, · · · ,Dm, where Di comprises the events

sensed by device di in the present time epoch.

Without loss of generality, we can simplify the DSQUID problem by assuming

D∗ ⊆ D, such that (1) each event in E is contained in at most one subset in D∗, and (2)

each event in E is contained in at least one subset in D∗. Condition (1) ascertains that no

two devices who have sensed the same event are selected, while condition (2) ensures that

information for all events sensed in the current time epoch are reported. Thus, the problem

reduces to finding D∗.

In [135], we have shown that there exists no polynomial time solution that finds the

set of device contributions exactly covering the set of events. In essence, the DSQUID

problem is NP-complete. To prove this, we reduce a classic NP-complete problem, known

as the Exact Cover [136], to the DSQUID problem.

(Exact Cover Problem). Given a collection S of subsets of a set X , an exact cover

of X is a sub-collection S∗ of S that satisfies two conditions:

• The intersection of any two distinct subsets in S∗ is empty, i.e., the subsets in S∗ are

pairwise disjoint. Thus, if Si,Sj ∈ S
∗, then Si ∩ Sj = ∅.

• The union of the subsets in S∗ is X , i.e., the subsets in S∗ cover X . Thus, ∀Si ∈ S
∗,⋃

i Si = X .
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We do the following construction. Let each xi ∈ X correspond to an event ei ∈ E . Then

S = {S1,S2, ...,Sm} maps to D = {D1,D2, ...,Dm}, such that Si corresponds to Di.

The mapping can be shown in polynomial time. Thus, the set D∗ discussed earlier now

corresponds to S∗. Hence, if we can find D∗ in polynomial time, we can also solve the

Exact Cover problem in polynomial time. As the DSQUID problem is NP-complete, at

best we can find a sub-optimal solution.

6.2.3.2. Heuristic to solve DSQUID problem. The heuristic for finding a sub-

optimal solution for the DSQUID problem is motivated by the approximation algo-

rithm [137] proposed for the Maximum Weighted Independent Set (MWIS) problem. It

has been used to find the maximal weighted independent sets in the topology graphs of

wireless networks [138].

Let G = (V, A, ω) be a simple weighted undirected graph, where V is the set of

vertices, A is the set of edges, and ω is the vertex weighting function such that ω : V 7→ R+,

ω(u) ∈ R+ for all u ∈ V , ω(S) =
∑

u∈S ω(u) for any nonempty set S ⊆ V and the set of

positive reals R+. A subset I ⊆ V is an independent set of G if for any two vertices u, v ∈ I,

{u, v} < A. An independent set I of G is maximum if there is no independent set I′ of G

such that ω(I) < ω(I′).

In the DSQUID problem, our objective is to choose a minimal set of devices which

has collected better quality information (QoI) for maximum number of events, while ensur-

ing non-redundancy of events reported. Such choice enables dissemination of information

of nearly all events occurred in the current time epoch with higher degree of accuracy,

subject to the constraint that the energy dissipated does not exceed an overall residual en-

ergy budget. The weighing (fitness) function for device selection needs to incorporate both

quantity (i.e. sensing of different events) and quality (i.e. accuracy in generated report) of

contribution.
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For the MWIS problem, Sakai et al. [137] proposed a generalized weighted greedy

algorithm, called GW M AX . It is an extension of the existing GM AX algorithm that selects

a vertex of maximum degree, removes it and its neighbors from the graph, and iterates this

process on the remaining graph until no vertex is remaining, implying the set of selected

vertices is an independent set. GW M AX has an approximation ratio of at least 1
∆
, where

∆ denotes the maximum degree of the given graph G(V, A, ω). It generalizes the vertex

selection rule as: Select each vi (0 ≤ i ≤ |I | − 1) that satisfies

∑
u∈NGi

(vi)

ω(u)
deg(u)(deg(u) + 1)

≥
ω(vi)

deg(vi) + 1
(6.1)

where, NGi (vi) is the set of vertices adjacent to vi in the subgraph Gi and deg(vi) is the

degree of vertex vi. This implies that the vertex weight normalized by its degree plus 1

forms the selection criteria for all the vertices, and the one which has maximum normalized

weight gets selected.

In the beginning of the GW M AX algorithm, a set I is initialized to be an empty set,

and the weight of each node in G is evaluated with Eq. (6.1). Then, the GW M AX iteratively

selects a node vi using maximum value in G and adds vi to I, until no node can be selected.

In each iteration, when a node vi with maximum value in G is selected, G is updated as

a subgraph of Gi induced by V − NGi (vi). In addition, reevaluation of the weights in the

current subgraph is carried out using Eq. (6.1). We will use a variant of the GW M AX

heuristic as the device selection criteria in the DSQUID problem.

6.2.4. DSQUID Algorithm. Consider an event set E = {e1, e2, ..., en} and device

set D = {d1, d2, ..., dm}. We undertake a graph transformation to create an undirected

weighted graph G(D, A, ω′), where the set of vertices denote the D and an edge {di, d j}

exists if both di and d j have sensed the same event. If a device di has degree k inG(D, A, ω′),

it implies that the di has sensed the same event(s) as k other devices. The vertex weight

ω′ (discussed below) is a weighing function indicative of the quality and quantity of events
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sensed by a device. The primary purpose of this graph transformation is to identify unique

devices for event reporting that have the least overlap in events sensed. In Figure 6.2, we

show the graph transformation of the IoTNet (shown in Figure 6.1), which serves as an

instance of the DSQUID problem at a certain time epoch. We run the GW M AX algorithm

on G to identify the subset of nodes selected for event reporting.

Figure 6.2. Graphical transformation of the DSQUID problem.

6.2.4.1. Vertex weighing function. The bioSmartSense+ framework strives to

maximize both the quality as well as quantity of the events reported to the base station.

At time t, for each device di in the transformed graph G, we define ω′(di) as a weighted

function of the quality of events sensed (given by QoI index qt
di
) and quantity (nt

di
), as:

ω′(di) = σ · nt
di + (1 − σ) · q

t
di (6.2)

Here σ (s.t. 0 ≤ σ ≤ 1) denotes the preference factor which controls the importance

attached to quality and quantity. Note that σ depends on contextual information, such as

the location, temporal biases, etc. If the IoTNet environment needs to tackle higher event

occurrence rate, σ can be set to a larger value. Conversely, if the event occurrence is

sporadic, a smaller σ is the preferred choice. Let us define the expected QoI index.
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Recall that we expect that the quality of the data samples collected to be contingent

on the instantaneous energy level of any device di (lt
di
) lying in range [0, 1]. To this end, we

apply the following non-linear relationship [134] to quantify QoI index:

qt
di = α · (l

t
di )

β (6.3)

Here α (0 < α < 1) is the attainable QoI index, given that the energy level lt
di
is maximum;

β (0 < β < 1) is the discounting factor. Both α and β are subject to variation depending on

application as well as the spatial and temporal aspects of the sensing environment.

6.2.4.2. Energy consumed by IoT devices. Let us denote the devices selecting for

event reporting as D∗ (D∗ ⊂ D). At each epoch, any di ∈ D∗ needs to perform both sensing

and reporting tasks, making its total energy dissipation:

ε t
di∈D∗ = lt

di∈D∗ · (δ1 + nt
di∈D∗ · δ2) + δ3 (6.4)

Here, δ1 is a constant measure of energy expended by di in idle mode and sensing, δ2 is

the constant energy to transmit one event, and δ3 is the fixed energy to activate transmitter

radio.

The devices not selected for event reporting (D \ D∗) need not activate radio nor

transmit and their total energy dissipation in time epoch t is given by:

ε t
dj∈D\D∗ = lt

dj∈D\D∗ · δ1 (6.5)

The application of theGW M AX algorithm solution on the DSQUID over a total time epoch

T solves the following optimization:

maximize
|D∗ |∑
i=1

ω′(di)

subject to
T∑

t=1

©«
|D∗ |∑
i=1

ε t
di∈D∗ +

|D\D∗ |∑
j=1

ε t
dj∈D\D∗

ª®¬ ≤ B
(6.6)
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In summary, the DSQUID problem essentially creates a schedule of devices for

event reporting, with the objective to maximize quality and quantity of events reported,

while ensuring the overall energy consumed is confined within a budget B. The steps

involved are summarized below:

1. Generate a transformed graph G(D, A, ω′) from an instance of the DSQUID problem.

2. Utilize the GW M AX algorithm to find the independent set I (schedule of devices)

for event reporting.

6.2.5. Communication Protocol. The communication protocol dictates how mes-

sages are exchanged (1) among IoT devices and (2) between the base station and IoT devices.

At the energy regulation phase, each device carries out its TRN-based energy regulation.

Given r (short for regulatory) and t is the present time epoch, a device sends a message of

format 〈r, device_ID, energy_level,t〉 to its successor devices and regulates its own energy

level (see Section 6.2.2). Moreover, in the IoT device-base station beacon exchange phase,

there are three steps:

Step-1:Adevice sends out a beaconmessage to the base station listing the unique IDs

of events sensed. The format of the beacon is 〈sb, device_ID, energy_level, [event_IDs]〉,

where the type of message is sb (short for sensing device-to-base station).

Step-2: The base station uses Eqns. (6.2) and (6.3) to find the ω′(di) for every IoT.

The IoT devices are chosen to report the events to the base station using DSQUID algorithm.

Following this, the chosen IoT devices receive beacons asking them to send the complete

event information to the base station.

Step-3: The selected devices send the complete event information to the base station.
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6.3. AUGMENTED CAPABILITIES IN BIOSMARTSENSE+ FRAMEWORK

In this section, we discuss the new capabilities that have been included in the

bioSmartSense+ framework to conceive realistic sensing and reporting mechanisms under

heterogeneous device deployment.

6.3.1. Event Reporting Based on Priority. The events which occur in a smart city

setting can have varying priorities. For instance, a traffic event pertaining to a potential

road hazard due to pothole has a low priority, while a major road accident will have a high

priority. The IoT devices chosen for reporting the events to the base station are drained of

data transmitting energy. Instead of reporting all the sensed events, we intuit, the energy-

depleted devices can bemade to report the K highest priority events only to conserve energy.

Thus, attaching a priority score to an event may help these devices to carry out preferential

reporting and prevent unnecessary energy dissipation.

We assign a priority score to each event on a scale of 1-5, where 1 is the lowest and

5 is the highest priority score. Each IoT device sorts the sensed events in the decreasing

order of priority score. At time epoch t = 0, we define energy g, as the percentage of spent

energy equals 0 and it can potentially report all sensed events. Over time, as g (0 ≤ g ≤ 1.0)

increases, the device performs preferential reporting top-priority events. Since there is an

inherent non-linearity in preferential data reporting mechanism, the Inverse Gompertz (IG)

function [139] has been used for modeling preferential reporting:

G(A, B,C, g) = 1 − A · e−B·e−C ·g (6.7)

In Eq. (6.7),G(A, B,C, g) is the fraction of top priority events reported and g is the percentage

of spent energy, both pertaining to a particular IoT device di, which has sensed E i
s events

in the last time epoch. The Gompertz parameter B controls the length of time for which
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the curve steadily maintains its highest value, C determines the rate of decay of the curve,

and A is the upper asymptote which is fixed at 1. Thus, in absolute terms, device di reports

K(= ∗G(A, B,C, g) ∗ |E i
s |) highest priority events.

(a) Displacement Parameter: B (b) Decay Parameter: C

Figure 6.3. Variation of Inverse Gompertz parameters.

Figure 6.3(a) illustrates the effect of parameter B (of Eq. (6.7)) on the initial value of

the fraction of top-priority events reported, before the latter enters into the exponential decay

phase. For a fixed decay rate (considered to beC = 0.2), this parameter acts as a discounting

factor to the highest proportion of events reported. The choice of its value depends upon

whether any location or at a given temporal window, the probability of occurrence of top

priority events is high. Higher value of B enables reporting of majority of such events. In

contrast, if the likelihood is low, it can be set to a smaller value.

Parameter C controls the rate of decay in the fraction of top priority events reported,

lower bounded by 0, as shown in Figure 6.3(b). We considered B = 1000 to study the

varying effects of the growth parameter. For higher values of C, the reporting rate drops

rapidly with relatively lower percentage of spent energy. Thus, if any location or time slot

has higher likelihood of occurrence of top priority events, the IoTNet administrator can
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set a lower C to collect reports of majority of the events at the expense of device energy.

However, if the likelihood is on the lower side, then a higher C will drop the reporting rate

sharply and prevent further dissipation of energy.

6.3.2. Sensing Model. In our preliminary data collection framework, bioSmart-

Sense [135], we assume that the IoT devices follow the boolean sensing model. Here,

we study and incorporate another sensing model, called the probabilistic sensing model,

to conceive a more realistic sensing mechanism and at the same time achieve comparable

energy efficiency and event reporting rate. The following subsections delineate the two

sensing models.

6.3.2.1. Boolean sensing model. Boolean (deterministic) sensing model is the

simplest and most commonly used sensing model [140]. In this model, if an event in the

network field is located within the sensing range R of sensor node S, then it is assumed that

it is covered/detected by the sensor S. The sensing area of S is defined by a circumference

of radius R, centered at its location. Formally, boolean sensing model is defined as follows:

C(d) =


1, if rd ≤ R

0, Otherwise
(6.8)

Where, C(rd) is the coverage probability of an event that has occurred at an euclidean

distance of rd units from the location of the sensor. This model does not incorporate the

environmental setting such as obstacles in the vicinity or the strength of the emitted signal

on the task of sensing [141].

6.3.2.2. Probabilistic sensing model. The probabilistic sensing model [142] is a

realistic extension of the boolean sensingmodel. This model is motivated by the fact that the

quality of sensing gradually decreases with increasing distance from the sensor. Therefore,

the coverage function needs to be expressed in probabilistic terms. In this work, we use the

Elfes sensing model [143] to quantify the sensing probability.
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(a) Sensing Radius Depletion Rate (b) Fraction of Energy Spent

Figure 6.4. Parameters of the Elfes sensing model.

According to this model, the probability that a sensor detects an event to a distance

rd is given as:

C(rd) =



1, if rd < Rmin

e−z(d−Rmin)
g
, if Rmin ≤ rd < Rmax

0, if rd ≥ Rmax

(6.9)

where, Rmin defines the sensing radius within which all events are sensed, Rmax is the sensing

range of the device in excess of which no events are sensed. Note that when Rmin = Rmax ,

this model is reduced to the boolean sensing model. Parameters z and g are adjusted

according to the physical properties of the sensor. We assume that device heterogeneity

depends on these two parameters. Intuitively, we term these parameters as the sensing

radius depletion rate and the fraction of energy spent till the last time epoch, respectively.

In Figure 6.4(a), we study the effect of parameter z on the sensing probability for a

fixed value of parameter g = 0.5. It is evident that for lower sensing radius depletion rate,

the device can detect larger proportion of events even if the distance rd is on the higher side.

Conversely, higher z causes rapid decay in the detection probability for relatively lesser

distance.
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Figure 6.4(b) shows the variations of the sensing probability under different fractions

of spent energy g. It is to be noted that for a fixed depletion rate z = 0.7, the detection

probability drops sharply if the device battery is completely drained out (g = 1.0). On

contrary, the detection probability slowly amortizes over greater distances if the device has

spent only 10-25% of its residual energy.

6.4. EXPERIMENTAL RESULTS

We develop a customized discrete event simulator based on Python Simpy li-

brary [144]. We validate the proposed framework through experiments on synthetic as

well as real data detailed in Sections 6.4.1.1 and 6.4.1.2, respectively. We compare the

results with a state-of-the-art data collection framework proposed from the perspective of

smart city applications [64], which, to the best of our knowledge, is the only work that

aligns with our proposed data collection framework.

Table 6.1. Simulation parameters for bioSmartSense.

Parameter Symbol Value (default)
No. of IoT devices N 100
Deployment region - 2 × 2 sq. km
Energy budget Be 6 × 105J
Initial energy of IoT device E 15 × 103J
Device memory M 500 MB.
Simulation duration T 100 min.
Self regulation energy level thresholds Lth,Uth, bth 0.2, 0.8, 0.6
Random event generator mean m 40
Dist. btwn. event and IoT device rd −

QoI preference factor σ 0.5
QoI parameters α, β 0.8, 0.8
Min. and max. event sensing radius Rmin,Rmax 30, 100 m
Inverse Gompertz parameters A, B, C 1.0, 1000.0, 0.2
Coverage function parameters z, g 0.7, 0.5
Packet reception, sensing energy et , es 0.011, 3.68 J
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(a) Spatial Event Distribution (b) Priority-wise Event Frequency

Figure 6.5. Boston street data acquired from Waze.

6.4.1. Simulation Setting and Parameters. We create a deployment area of 2× 2

sq. km, where 100 IoT devices, equipped with WiFi connectivity, are deployed at random

points. The minimum and maximum event sensing radii of IoT devices, Rmin and Rmax are

30 and 100 meters, respectively. Each IoT device di possesses rechargeable battery energy

capacity εdi = 15 × 103 J. Note that the cumulative energy budget B = 6 × 105 J, in excess

of which operations of sensing and reporting tasks are stopped. In our experiments, unless

otherwise stated, all parameters follow the default value summarized in Table 6.1.

6.4.1.1. Events generated using random data. In this case, events occur at ran-

dom locations within the deployment region and their frequency in each epoch follows an

exponential distribution X ∼ exp(m), where m is the mean. For every event we construct

a boundary with a fixed radius of r meters. If an event is sensed by two or more devices

whose locations are within the former’s boundary, then we assign the same event identifier

to the latter. Each experiment has been done on 50 different simulated data instances.

6.4.1.2. Event generation using real data. Wegenerate another set of events using

a week’s real data on traffic related events spanning over 100 boroughs (names withheld in

the interest of space) in Boston, MA, USA. This data has been shared by Google’s Waze
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(www.waze.com) and has been used in our previous works [145] [146]. However, as the

data is currently unavailable in its original source, we share a part of it in the public domain

(https://github.com/satunr/StreetData.git). The details of the data have been summarized in

Table 6.2.

Table 6.2. Details of Waze data.

Field Value
Number of events 34, 490
Event priority 1 (low) - 5 (high)
Types of events
(with priority)

hazard on road(3), accident major (5), road
closed construction (1), road closed hazard
(2), hazard on road car stopped (2), jam stand
still traffic (3), hazard on road object (3), acci-
dent minor (5), hazard on shoulder car stopped
(1), hazard on road pot hole (2), road closed
event (1), hazard on road construction (1), ma-
jor hazard on road (5), jam moderate traffic
(3), hazard weather freezing rain (5), hazard
on shoulder missing sign (1), hazard on shoul-
der animals (5), jam heavy traffic (4), hazard
on shoulder (5), hazard weather (5), hazard on
road ice (5), hazard weather fog (5)

Number of bor-
oughs

102

Latitudinal extent 42.26 to 42.38
Longitudinal
extent

−71.175 to −71.025

We divide the Boston region into 4 × 4 spatial grids of equal sizes. Figure 6.5(a)

shows the event distribution of the data set, where different colors signify the priority of

the events in the region. Note that the grids are named (in black circles) row-wise from

bottom left to top right and X andY axis correspond to latitude and longitudes, respectively.

Figure 6.5(b) shows the frequency distribution of events of different priority.
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For each grid x in the deployment region, wemaintain an ordered 5-tuple (ex
p1
, ex

p2
, · · · , ex

p5
),

where ex
pi is the frequency of events with priority i. Here also we use exponential distribu-

tion X ∼ exp(m) to model the number of events generated over time. In each time epoch

t, the grid location and priority type of X(t) events are generated. While generating each

event, the following steps are considered:

1. Select a random grid x with a probability commensurate with the number of events

that took place in the grid as per the Waze data i.e., px =

∑5
i=1 expi∑16

x=1
∑5

i=1 expi

2. In grid x, select an event of priority type i with a probability commensurate with the

frequency of events of type i that took place in the selected grid x i.e., pi =
epx

i∑5
j=1 expj

(a) Average Residual energy (b) Fraction of Events Sensed

Figure 6.6. Effect of preferential event reporting.

6.4.2. Effect of Preferential Event Reporting. The Inverse Gompertz (IG) func-

tion allows the IoT device to select the top K highest priority events to be reported. As a

consequence, bioSmartSense+ conserves energy, while preferentially reporting the highest

priority events to the base station.

Figures 6.6(a) and 6.6(b) show that for both cases of simulated as well as real data,

the use of the Inverse Gompertz (IG) function leads to a marginally improved overall energy

efficiency while reporting a higher fraction of high priority events. Note that the devices
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whose residual energy are conserved by employing the IG function are those that are selected

to report events to the base station. The devices selected for event reporting only constitute

a small fraction of total IoT devices in the system, therefore the improvement in the overall

residual energy of the system is marginal (see Figure 6.6(a)). However, when we consider

the mean residual energy of devices selected for reporting devices, the improvement is

significant (refer Figure 6.7(a)). It shows that the IG function causes a notable improvement

in the residual energy for the devices reporting events generated from simulated and real

data.

(a) Effect of IG on Reporting Devices’ Energy (b) Effects of Dist. and Spent Energy on sens-
ing

Figure 6.7. Augmented capabilities of bioSmartSense+.

6.4.3. Effect of Probabilistic Sensing on Event Coverage. Given the distance

between the location of event and IoT device (rd), the probability of event sensing C(d)

(Eq.(6.9)) is affected by the fraction of spent energy g as wen as rd . We now analyze the

variation in C(d) for different rd and g. Given z = 0.5, Figure 6.7(b) shows two scenarios.

With the increase in rd , if the value of g is low (shown in dark green), the drop in Cd with

negligible; conversely, if g is high (shown in light green), the decline in Cd is also high.

6.4.4. Effect of Device Heterogeneity on Event Reporting. In [135], we assumed

that the IoT devices possess identical configuration w.r.t. memory as well as energy con-

sumption rate. We consider amore realistic setting where IoT devices are heterogeneous and
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have varying system configurations in terms of device memory (M), energy consumption

rate for sensing (δ1) and sensing radius depletion rate (z). To realize device heterogeneity,

we consider three device types, details of which are depicted in Table 6.3.

Now, we take three deployment profiles containing different proportions of Type-1,

2, and 3 devices. Let Profile-1 have (10%, 10%, 80%), Profile-2 have (10%, 80%, 10%), and

Profile-3 have (80%, 10%, 10%) IoT devices of three types. Therefore, Profile-1, which is

dominated by low efficiency devices, is expected to show lowest event sensing and reporting

at the expense of low sensing energy consumption. Analogously, the other two profiles have

medium and high event sensing and reporting potential, respectively.

Table 6.3. Configuration of Heterogeneous Devices.

Rate (z) Sensing energy (δ1) Memory (M)
Type-1 0.05 3.68 J 500 MB
Type-2 0.50 1.40 J 100 MB
Type-3 1.0 0.70 J 50 MB

Figures 6.8(a) and 6.8(b) show the average residual energy and number of unique

events reported over time, under event prioritization scheme. As expected, the plots depict

that theProfile-1which possesses the maximum number of low efficiency devices consumes

least energy. However, due to redundancy in event sensing, the difference in event reporting

by Profile-3 is only marginally higher than Profile-1. We performed the same experiment

without IG event prioritization. The results are similar (not shown here), though the average

residual energy are marginally higher and number of events reported is marginally lower as

expected.
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(a) Average Residual Energy (b) Number of Unique Events Reported

Figure 6.8. Results on device heterogeneity.

6.4.5. Effect of Probabilistic Sensing. The probabilistic or Elfes sensing model is

more realistic in capturing the event sensing potential of a IoT device. Recall that, unlike

the boolean model, in Elfes, the events occurring at a distance in the range [Rmin, Rmax] are

only sensed with a probability (as defined by Eq.(6.9)). Thus, we intuit that probabilistic

sensing may fail to sense certain events occurring around the devices.

(a) Sensing Models (b) Network Lifetime (in minutes)

Figure 6.9. bioSmartSense+ Vs. bioSmartSense.

Figure 6.9(a) shows the comparison of the number of unique events sensed by the

system using the Elfes and boolean sensing models on the Waze data. Clearly, the curves

for boolean and Elfes are almost overlapping, implying that very few events are lost as a
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result of probabilistic sensing. This is because a single event is typically sensed by several

IoT devices. As a consequence, if a device fails to sense a certain event due to probabilistic

sensing, another device is likely to sense it. We infer that regardless of boolean or Elfes

sensing, bioSmartSense+ is capable of sensing events with similar effectiveness.

6.4.6. Effect of Event Priority on Network Lifetime. In this experiment we study

how the longevity of the IoTNet under bioSmartSense+ (i.e., IG function-based prioritized

event reporting). We consider the overall network energy budget be B = 3 × 105 J. Recall

that the simulation is revoked once the total energy expended for sensing and reporting

exceed B. We show the effect of IG based event prioritization on the network lifetime

(defined in Section 6.2.3). Figure 6.9(b) shows that for both real and simulated data, the IG

function improves the overall network lifetime.

6.4.7. Comparison with the State-of-the-Art. We compare bioSmartSense+with

the distributed data collection proposed by Capponi et al. [64]. Unlike bioSmartSense+,

their distributed framework considers sensors embedded in hand-held devices. We compare

bioSmartSense+ with two distinct data collection policies [64] using the events generated

from Waze data: (i) Collector Friendly Policy (CFP) which maximizes data collection

utility, and (ii) Smartphone Friendly Policy (SFP) which emphasizes on energy efficiency

of smart devices over event reporting.

Figure 6.10(a) shows that the average residual energy of bioSmartSense+ (BIO+)

is significantly larger than CFP and SFP. Clearly, the inclusion of the IG function-based

event prioritization leads to an improvement in energy efficiency. Moreover, note that the

curves corresponding to CFP and SFP are not linear due to non-uniform event distribution

in the real data set. Consequently, different IoT devices report varying number of reports

to the base station, incurring varying communication overhead. The plot corresponding to

bioSmartSense+ is near-linear because only a small fraction of devices are chosen to report

sensed events to the base station and their individual variations in residual energy has little

effect on overall residual energy.
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(a) Average Residual Energy (b) Number of Unique Events Reported

Figure 6.10. Comparison with state of the art.

In Figure 6.10(b), we show that bioSmartSense+ exhibits the highest event reporting

rate through most of the simulation duration. However, the residual energy decreases with

time, our framework attempts to conserve energy by invoking the IG function for selective

reporting of high priority events. Consequently, we observe a noticeable drop in the number

of reported events.

6.5. INFERENCES

In this section we propose a probabilistic data collection framework for priority-

based event reporting in IoT-based environments, called bioSmartSense+. The proposed

framework is capable of saving energy of IoT devices with limited residual energy, by

allowing them to preferentially report high priority events. We compare the effects of a

boolean sensing and a more realistic probabilistic (Elfes) sensing model on the performance

of bioSmartSense+. Furthermore, our rigorous experimental study on real as well as syn-

thetic data demonstrate that when compared to state-of-the-art data collection frameworks,

bioSmartSense+ exhibits high priority-based event reporting at a considerably low event

reporting energy cost, thereby maximizing network lifetime. In the future, we shall extend

this work to incorporate mobility of IoT devices.
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7. BIO-INSPIRED DISASTER RESPONSE NETWORK

In this section, we conceive a novel energy-efficient yet robust DRN topology, which

is inspired from biological networks, namely transcriptional regulatory networks (TRNs).

Our work is motivated by the following structural similarities between the TRN and DRN

topologies: First, a TRN possesses few well-connected entities (usually proteins), called

Transcription Factors (TFs), that control bulk of the protein interactions within the network

[133]. Analogously, a DRN also possesses few well-connected entities, such as CC and

PoIs, which are central to its information flow. Second, a large fraction of TRN nodes

consist of regulated genes that are loosely connected to the TFs. Such regulated genes are

similar to the survivors in a DRN that make up a large part of the network and communicate

with few PoIs or CC.

In this paper we propose to utilize TRN as model for designing energy-efficient

yet robust DRN topology, termed Bio-DRN, which mimics the graph robustness of TRNs.

Specifically, the Bio-DRN is a subgraph of originally formed DRN (in short, Orig-DRN)

topology, constructed by one-to-one mapping between structurally similar genes and DRN

components (viz., survivors, volunteers, PoIs and CC). Let us briefly discuss the key

contributions of this work.

• We design, for the first time, an energy-efficient and robust DRN topology, termed

Bio-DRN, which is inspired from a biological network, i.e., TRN.

• We formulate the Bio-DRN topology construction (BioTopoC) as an integer linear

programming (ILP) optimization problem, and show that it is NP-hard.

• We propose a sub-optimal heuristic that intelligently constructs Bio-DRN through

one-to-one mapping between structurally similar genes and DRN components.
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Figure 7.1. System model. A representative post-disaster scenario. Blue, yellow, and black
colored smart devices respectively denote survivors, responders, and volunteers.

• Through extensive simulation study on a real disaster prone region in Bhaktapur,

Nepal, we demonstrate that the Bio-DRN topology notably outperforms several other

approaches (See Section 7.3 for details) in terms of both energy efficiency and network

robustness, while guaranteeing the desired quality of service (QoS) requirements, i.e.,

packet delivery ratio and network latency.

7.1. NETWORKMODEL AND ASSUMPTIONS

As shown in Figure 7.1, we consider a large-scale post disaster scenario, such as an

earthquake. We first discuss the key components, followed by the network model.

7.1.1. Key Components. Let us discuss the key players in the post-disaster sce-

nario.

7.1.1.1. Survivors. The affected individuals equipped with wireless devices, such

as smart phones, which are capable of short range ad-hoc communication (via bluetooth).

We assume that each survivor has a disaster application installed on his device (such as

Surakhshit [147]) that allows him to (a) establish ad-hoc communication, and (b) exchange

situational or rescue/relief related information in forms of text, image, audio and video.

Such survivors, either static or mobile, usually remain confined within their respective PoI
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due to unsafe outside environment [51]. There exists a certain subset of survivors, termed

volunteers, who usually move (shown as higlighted green lines in Figure 7.1) within the

vicinity of its own PoI and provide relief and services to other survivors [50].

7.1.1.2. Points of Interest (PoIs). Certain safe geographical places, such as shelter

points, schools, parks, hospitals, preexisting evacuation centers, temporary camps etc.,

where the survivors gather in the aftermath of a disaster. We assume that these PoIs possess

communication equipments, e.g., a laptop or unimpaired WiFi router/tower. Each PoI

location is fixed.

7.1.1.3. Coordination Center (CC). A controlling station that coordinates the en-

tire rescue/relief operations in the disaster area. The CC is equipped withWiFi router/tower.

All the data generated by the survivors are eventually delivered to the unique CC. The lo-

cation of CC is also fixed. For ease of presentation we consider a unique CC, however, our

proposed system model can easily incorporate multiple CCs.

(a) (b)

Figure 7.2. Three tier topology in TRN and DRN. (a) Orig-DRN: Components and three
tier communication structure. A black solid line denotes a communication link et (over
a common ad-hoc or WiFi medium) in the Orig-DRN at a time slot t. A dotted red line
denotes an indirect link via a responder., and (b) Three tier topology of TRN.

7.1.1.4. Responders. Members of rescue and relief operation groups, medical

teams, police and fire vehicles, which patrol one or more PoIs over physical paths (shown

as dotted black lines in Figure 7.1). We consider that each responder is equipped with a

wireless device (with ad-hoc mode) or a WiFi router.
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The difference between a responder and a volunteer is that a responder travels back

and forth between the PoIs and the CC, whereas a volunteer moves within the vicinity of its

own PoI. Hereafter, we refer to a survivor, volunteer, PoI, or CC (equipped with a wireless

device or a WiFi router), as a node. Note that responders are not considered as nodes, rather

they act as indirect communication links (or data mules) between two nodes in the network.

7.1.2. NetworkModel. Due to the mobility of nodes, intermittent connectivity and

failure of communication equipments (due to hardware faults or energy exhaustion), the

Orig-DRN can be modeled as a time-evolving graph. Consider the total time durationT , say

12 hours, to be divided into discrete time slots. Then, at a given time slot t ∈ H, the Orig-

DRN topology is a directed graph Gt
d = (V

t
d, E

t
d ∪ E). V t

d is the set of nodes comprising

survivors, PoIs, volunteers, and CC; E t
d is the set of communication links, where each

et(u, v) ∈ E t
d indicates that nodes u and v have come within the transmission range (over

a common ad-hoc or WiFi medium) for at least a prespecified duration of time within the

current time slot t; and E is the set of indirect links due to communication between a pair

of nodes via a responder. Hereafter we drop t from all notations, because the proposed

Bio-DRN topology is constructed from Orig-DRN (Gt
d) independently at each time slot t

(See Section 7.2) . Based on the functional roles of DRN components, the node set Vd

can be classified into three distinct tiers (as illustrated in Figure 7.2(a)): tier 1 contains the

unique CC; tier 2 comprises the set of PoIs and volunteers; and tier 3 contains the set of

survivors.

7.2. BIO-DRN TOPOLOGY

Here we formulate the Bio-DRN topology construction (BioTopoC) problem, and

show that it is NP-Hard. Then, we present a novel (sub-optimal) heuristic for the same.

7.2.1. Problem Formulation. We formulate the BioTopoC problem as an Integer

Linear Programming (ILP) optimization problem. BioTopoC aims at constructing a Bio-

DRN topology as a common subgraph of the Orig-DRN and input TRN (e.g., Yeast TRN)
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topologies, while preserving the graph properties of TRN, particularly low graph density and

motif abundance. These two graph properties of TRN are of particular interest in our context

because of the following reasons: (a) low graph density ensures fewer communication links,

which translates into fewer message replications and forwarding, and thus improved energy

efficiency, and (ii) high motif abundance renders alternative communication pathways,

which improve the topological robustness against node failures. In other words, the key

objective of BioTopoC is to construct a common subgraph (i.e., Bio-DRN topology), which

maximizes the FFL motif count and number of common edges between the Orig-DRN and

TRN topologies, in order to enhance the network robustness and energy efficiency.

To formulate the BioTopoC problem as an ILP optimization, we define a binary

variable yik that represents the binary decision to map a node vi ∈ Vg to a unique node

vk ∈ Vd (denoted by vi ↔ vk).

We introduce a second binary variable xi j which equals 1, if there is an edge ei j ∈ Eg,

and there exists an edge ekl ∈ Ed , such that vi ↔ vk and v j ↔ vl , where vi, v j ∈ Vg and

vk, vl ∈ Vd .

Finally, we define a third binary variable zi jp which equals 1, if there are three edges

ei j, e jp, epi ∈ Eg and there exists three corresponding edges ekl, elq, eqk ∈ Ed , such that

vi ↔ vk , v j ↔ vl and vp ↔ vq where vi, v j, vp ∈ Vg and vk, vl, vq ∈ Vd . In other words,

zi jp determines whether a motif exists in Vg if there exists a motif in Vd , such that each

participating node of the motif in Vg is uniquely mapped to the corresponding node of the

motif in Vd .

Expressions 7.1-7.6 show the ILP formulation. The objective function of the

BioTopoC problem has two parts. The first part maximizes the cardinality of common

edges and the second part maximizes the number of motifs between two graphs Gg and

Gd . The variables 0 ≤ α, β ≤ 1 are control parameters. Eq. 7.2 constrains the Bio-DRN

topology to have the exact number of nodes as that of Orig-DRN graph.
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Constraint 7.3(a) shows that every node in the TRN graph is mapped to at most

one node in the DRN graph. Similarly, constraint 7.3(b) depicts that for every node in

Orig-DRN graph, there is at most one node in TRN graph mapped to it.

Given yik = 1, inequality 7.4 enforces two conditions: (a) if xi j = 0, there exists no

neighbor vl ∈ N(k) (the neighbor list of node vk) such that v j ↔ vl , and (b) if xi j = 1, then,

there must exist a neighbor vl ∈ N(k) such that v j ↔ vl .

Inequalities in 7.5 show that for any node vi ∈ Vg, the binary variable (for motif

count) zi jp is 1 if ei j, e jp, and epi ∈ Eg between the mapped nodes vi, v j and vp, are also

mapped.

Finally, expression in 7.6 represent the decision variables assuming values 0 or 1.

Maximize α
∑

ei j ∈Eg

xi j + β
∑
vi ∈Vg

∑
vj ∈Vg

∑
vp ∈Vg

zi jp (7.1)∑
vk ∈Vd

yik = |Vd |, ∃vi ∈ Vg (7.2)

(a)
∑

vk ∈Vd

yik ≤ 1, ∀vi ∈ Vg, (b)
∑
vi ∈Vg

yik ≤ 1, ∀vk ∈ Vd (7.3)

xi j + yik ≤ 1 +
∑

l∈N (k)

yjl, ei j ∈ Eg, vk ∈ Vd (7.4)

zi jp ≤ xi j, zi jp ≤ xjp, zi jp ≤ xpi (7.5)

yik, xi j, zi jp, ∈ {0, 1}∀vi ∈ Vd, vk ∈ Vg, ∀ei j, ejp, epi ∈ Eg (7.6)

The BioTopoC problem is NP-hard. We provide a reduction from the Maximum

Common Edge Subgraph (MCES) problem [148]. Let us consider a generic instance of

MCES. Given two graphs G1(V1, E1) and G2(V2, E2), the goal of the MCES problem is to

determine a subgraph G12(V12, E12) of maximum number of edges, which is isomorphic to

a common subgraph of both G1 and G2.

We reduce this MCES problem to an instance of BioTopoC problem as follows.

Consider an Orig-DRN graph Gd(Vd, Ed) with Vd = V1 and Ed = E1 and an input TRN

graph Gg(Vg, Eg) with Vg = V2 and Eg = E2. Now, let us assign α = 1 and β = 0 in
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the objective function for the BioTopoC problem (see Expression 7.1). For this instance,

BioTopoC constructs a Bio-DRN graph Gbio
d (V

bio
d , Ebio

d ) that is the subgraph with maximum

number of edges common to graphs Gd and Gg. In order to prove that Gbio
d is also the

optimal solution for the MCES problem, we need to show that the additional constraint

|V bio
d | = |Vd | does not limit the solution space. However, if a node v is in V bio

d , but not in

V12, it means that v is an isolated node, otherwise it would have been included in V bio
d to

further maximize the number of common edges. As a result, by removing isolated nodes,

the solution of BioTopoC can be translated to the solution of theMCES problem. Therefore,

if we are able to solve BioTopoC in polynomial time, we are also able to solve MCES in

polynomial time. Since MCES is NP-Complete, BioTopoC is NP-hard.

7.2.2. ProposedHeuristic. In this subsection, we present a polynomial-time heuris-

tic that constructs a Bio-DRN topology, given the Orig-DRN topology and input TRN

(termed, Orig-TRN) topology.

In every timeslot t ∈ H, the proposed heuristic operates in three steps (Figure 7.3).

First, it generates reference TRN (Ref-TRN) Gre f
g , a subgraph of the Orig-TRN Gg which

acts as a template for construction of the Bio-DRN. Then, the algorithm computes Blondelś

similarity metric [149] to determine the neighbor-based similarity between each node pair

inGre f
g andGd . Finally, it utilizes the Hungarian Algorithm [150] to construct the Bio-DRN

Gbio
d , by uniquely mapping structurally similar nodes in Gre f

g and Gd , such that the overall

node pair similarity score is maximized. The details of the algorithm are presented below.

Figure 7.3. Overview of the Proposed Heuristic.

7.2.2.1. Generation ofRef-TRN(Gre f
g ). Algorithm4generates aRef-TRN,Gre f

g =

(Vre f
g , Ere f

g ), where Vre f
g ⊆ Vg, Ere f

g ⊆ Eg, and |V
re f
g | = |Vd |. An empty Gre f

g is initialized

in Line 4. In Lines 5-6, for both TRN and DRN graphs, nodes in ith tier (where i = 1, 2, 3)
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are sorted in non-increasing order of node motif centrality ∆. In Lines 8-14, the algorithm

adds any node v ∈ V2
g from Gg to Gre f

g , if there exists an unvisited node u ∈ V2
d such that

|V1
g (v)| ≥ |V

1
d (u)| and |V

3
g (v)| ≥ |V

3
d (u)|, where V1

g (v) and V1
d (u) (and V3

g (v) and V3
d (u))

denote the set of neighboring nodes of node v and u in tier 1 (and tier 3) of TRN and

Orig-DRN graphs. The node set V1
g (v) and V3

g (v) are also added to Vre f
g . This step ensures

that Gre f
g contains the most motif central nodes of sufficiently high degree, facilitating the

subsequent mapping process (Step 3). In Lines 16-19, Gre f
g is generated by adding each

edge e(u, v) to Gre f
g if e(u, v) ∈ Eg and nodes u, v belong to the mapped nodeset Vre f

g .

Algorithm 4 Generation of Ref-TRN
1: Input: Gg,Gd, ∆

2: Output: Gre f
g

3: procedure GEN-REF-TRN(Gg , Gd )
4: Initialize Gre f

g whereV re f
g = φ and E

re f
g = φ.

5: for i = 1 to 3 do
6: Sort ith tier DRN and TRN node sets, i.e., ni

d
and nig in decreasing order of motif centrality ∆, respectively

7: //Add nodes to reference TRN
8: for DRN node u ∈ V 2

d
do

9: for TRN node v ∈ V 2
g do

10: Compute the set of neighbor nodes of u in tiers 1 and 3 denoted byV 1
d
(u) andV 3

d
(u), respectively.

11: Compute the set of neighbor nodes of v in tiers 1 and 3 denoted byV 1
g (v) andV 3

g (v), respectively.
12: if DRN node u not visited and |V 1

g (v) | ≥ |V
1
d
(u) | and |V 3

g (v) | ≥ |V
3
d
(u) | then

13: V
re f
g = V

re f
g ∪ v ∪V 1

g (v) ∪V
3
g (v)

14: Mark node u as visited.
15: //Add edges to reference TRN
16: for TRN node u ∈ V re f

g do
17: for TRN node v ∈ V re f

g do
18: if u , v and edge e(u, v) ∈ Eg then
19: E

re f
g = E

re f
g ∪ e(u, v)

20: Return G
re f
g

7.2.2.2. Calculation of node similarity. Blondel’s node similarity [149] is ametric

to measure the similarity between two nodes u and v, each belonging to different input

graphs, based on the similarity scores of their respective neighbors. In our context, we

utilize the Blondel’s node similarity to perform one-to-one mapping between similar nodes

of Gre f
g and Gd belonging to the same tiers. Algorithm 5 calculates the similarity matrix

M of dimension |Vd | × |V
re f
g |. Each entry Mu,v denotes the similarity value (on the scale

of 0-1) between node u ∈ Vd and node v ∈ Vre f
g . In Lines 7-14, M is iteratively calculated

(using Eq. 7.7), until any of the two conditions are met: (i) the improvement in similarity
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score between successive iterations i and (i + 1), is less than a predetermined threshold (ε),

i.e., M i+1 −M i ≤ ε , or (ii) the prespecified maximum number of iterations maxIter (= 100

in our experiments) is reached.

Algorithm 5 Calculation of Node Similarity
1: Input: Gre f

g , Gd , maxIter , ε
2: Output: M
3: procedure GET-NODE-SIM(Gre f

g , Gd , maxIter , ε )
4: Initialize iteration count, i = 0
5: Define similarity matrix M

|Vd |×|V
re f
g |

6: Initialize M i
u,v = 0.1, ∀u ∈ Vd, v ∈ V

re f
g

7: while i ≤ maxIter do
8: for u ∈ Vd do
9: for v ∈ V re f

g do
10: Compute M̃ i+1

u,v using Eq. 7.7

11: Calculate M i+1
u,v =

M̃ i+1
u,v∑

u,v M̃2
u,v

12: if M i+1 −M i < ε then
13: break
14: i = i + 1
15: Return M

In Line 11, the updated neighbor-based node similarity value Muv is computed by

the normalization of M̃uv (obtained from Eq. 7.7) by
∑

u,v M̃2
u,v.

M̃ i+1
u,v =

∑
r :(r,u)∈Ed

s:(s,v)∈Ere f
g

M i
r,s +

∑
r :(u,r)∈Ed

s:(v,s)∈Ere f
g

M i
r,s (7.7)

7.2.2.3. Generation of Bio-DRN. After calculating node similarity, our heuristic

determines one-to-one mapping between each node u ∈ V i
d and a node v ∈ Vre f ,i

g , such

that both u, v belong to the same ith tier of their respective graphs and the sum of pairwise

similarity scores between the mapped nodes is maximized. This mapping problem can

be modeled as a well-known graph problem called minimum weighted bipartite matching

and can be optimally solved using the Hungarian algorithm [150], wherein the input is the

additive inverse of the Blondel’s similarity matrix M . The Hungarian algorithm has a time

complexity of O(|V |3), where |V | is the minimum number of nodes of both the input graphs.

Now let us briefly describe the generation of Bio-DRN topology (refer Algorithm 6).

In Line 4, Bio-DRN graph Gbio
d is initialized with Vd nodes and empty edge set. In Line 6,

Mi is defined as a sub-matrix of M for ith tier nodes. Each element in Mi (denoted by Mi
u,v)
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is an additive inverse of the similarity score between nodes u and v M i
u,v, i.e., Mi

u,v = −M i
u,v,

where u ∈ V i
d and v ∈ Vre f ,i

g . In Line 7, for each tier i, the Hungarian algorithm is invoked

to calculate the mapping function f : V i
d → Vre f ,i

g . Finally, in Lines 9-12, each edge e(u, v)

is added to Ebio
d , if (i) there exists e(u, v) ∈ Ed and (ii) a path between mapped nodes f (u)

and f (v) exists in Ere f
g , i.e., has_path( f (u), f (v)) ∈ Ere f

g . The idea behind this step is to

preserve the structural properties of TRN (i.e. Gre f
g ) by embedding an edge in Gd into a

path in Gre f
g , similar to the approach discussed in [46].

Algorithm 6 Generation of Bio-DRN
1: Input: Gd , G

re f
g , M

2: Output: Bio-DRN Gbio
d

3: procedure GEN-BIO-DRN(Gd , Gre f
g , M)

4: V bio
d

= Vd , Ebio
d
= φ,

5: for tier i = 1 to 3 do
6: Mi = {Mi

u,v |Mi
u,v ⊂ M, u ∈ V i

d
, v ∈ V

re f , i
g }

7: f = HUNG-ALG(Mi ) //Mapping Function
8: //Add edges to Bio-DRN graph
9: for u ∈ Vd do
10: for v ∈ Vd do
11: if e(u, v) ∈ Ed and has_path( f (u), f (v)) ∈ Ere f

g then
12: Ebio

d
= Ebio

d
∪ e(u, v)

Time Complexity: The input to the mapping heuristic includes the motif centrality

∆ of input TRN and Orig-DRN nodes, which incurs O(|Vg |
3) and O(|Vd |

3), respectively.

Algorithm 4 generates Gre f
g and incurs the time complexity of O(|Vd | × |Vg |). The time

complexity for Algorithm 5 is given by O(maxIter × |Vd |
4) since each computation of

Eq. 7.7 requires O(|Ed |) (= O(|Vd |
2) time, and this is repeated |Vd |

2 times. Algorithm

6 executes the Hungarian algorithm which has a time complexity of (|Vd |
3). We exclude

the computation of motif centrality of Orig-DRN and TRN nodes from the total time

complexity, since this step is executed only once. As the Ref-TRN and Orig-DRN have

the same number of nodes (i.e., |Vre f
g | = |Vd |), the total time complexity of the mapping

algorithm is O(|Vg | × |Vd | + (maxIter × |Vd |
4) + |Vd |

3).
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Discussion on the heuristic. Depending on the number of mapped nodes, the pro-

posed heuristic may not always generate the Bio-DRN topology with exactly the same

number of nodes as the Orig-DRN. Bio-DRN may have fewer nodes in the following two

scenarios:

• Unmapped nodes:For each tier i = 1, 2, 3, theHungarian algorithmmapsmin(|V i
d |, |V

re f ,i
g |).

If |Vre f ,i
g | < |V i

d |, the number of unmapped Orig-DRN nodes in the ith tier is

|V i
d | − min(|V i

d |, |V
re f ,i
g |).

• Isolated nodes: As shown in Line 11 of Algorithm 6, for each pair of nodes u and

v in the Bio-DRN, an edge e(u, v) ∈ Ed is added to Bio-DRN if there exists an path

between the corresponding mapped nodes in the Ref-TRN, i.e., e( f (u), f (v)) ∈ Ere f
g .

Given any u ∈ Vd , if there is no edge e( f (u), f (v)) ∈ Ere f
g for all v ∈ Vd , node u

remains isolated.

We address these issues in the following ways. First, all the isolated and un-

mapped nodes from Orig-DRN topology are added to Bio-DRN. Second, at most κ shortest

paths existing between each unmapped (or isolated) node and the CC in Orig-DRN is re-

tained in Bio-DRN. We take the value of κ = 2, for it preserves the low graph density of

Bio-DRN topology, while ensuring two communication pathways (or robustness) between

unmapped/isolated node and CC. At the end of these steps, Bio-DRN is a connected graph

with the same number of nodes as Orig-DRN provided that the Orig-DRN is connected.

Inferences of Orig-DRN Topology. From our discussion so far, we infer that the

proposed heuristic for the construction of Bio-DRN topology requires two topologies:

TRN and Orig-DRN. While TRN is provided as an input, Orig-DRN topology is inferred

in the following manner:

We consider that the CC, which is potentially the most well-connected entity in the

Orig-DRN, observes the Orig-DRN topology over time. Note that the collected Orig-DRN

topology information may not always be the most recent information (i.e., corresponding
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to current time slot). However, our approach for the realization of Bio-DRN topology still

remains viable and practical, thanks to the relatively steady nature of Orig-DRN over time.

Recall that Orig-DRN, though a time-evolving graph, does not change drastically from one

time slot to the next. This is mainly because the mobility of survivors, which constitutes

the majority of Orig-DRN, are restricted to a certain PoI; additionally, locations of PoIs and

CC are fixed and the responders are prespecified to patrol certain subset of PoIs. Refer to

Section 7.1 for details.

7.3. PERFORMANCE EVALUATION

7.3.1. Simulation Setting. We simulate Bio-DRN in the Opportunistic NEtwork

(ONE) simulator [151] on top of the post-disaster mobility model (PDM) as outlined in

Section 7.3.1.1. For our experiments, we consider a real disaster prone region Bhaktapur,

Nepal, over an area of 5 × 5 sq. km (see Figure 7.4). The map of Bhaktapur is extracted

fromOpenStreetMap using Overpass API [152] and then converted to theWell-Known Text

(.wkt) format using osm2wkt [153]. The .wkt file is then utilized by the PDM model in the

ONE Simulator.

7.3.1.1. Post-disastermobilitymodel. We utilize the post-disaster mobility model

originally proposed by Uddin et al. [50] to evaluate the Bio-DRN topology in a post-disaster

setting. The CC and PoIs are fixed for the entire simulation time period. Conversely, each

survivor is randomly assigned to a unique PoI and moves within the PoI’s boundary with

a speed randomly chosen in the interval [0.5 - 1.5] meters/sec, representative of typical

walking pace. Survivors wait a random time of [2 - 5]min. between successive movements.

Volunteers and responders follow the shortest pathmap basedmobilitymodel [154] between

PoIs and the CC. The speed is chosen in [2 - 10] meters/sec, while the waiting time at each

visited location is [2 - 10] min.
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Figure 7.4. Post disaster scenario. A snapshot of the post-disaster scenario. A red circle
denotes the boundary of a PoI and the red line denotes a certain prespecified route of a
responder. The larger green circle is the communication range forWiFi routers (500meters)
and the smaller one is for the ad-hoc (50 meters).

7.3.1.2. Energy consumption model. We now discuss the energy consumption

model adopted in the simulation experiments. The energy model estimates the total energy

expenditure for any node i, as described in the following.
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Figure 7.5. Bio-DRN performance 1. (a) PDR vs Time, (b) Network latency vs Time, and
(c) Perc. of alive nodes vs Time, and (d) Motif count vs Perc. of node failure.

7.3.1.2.1. Message transmission. The energy consumed by transmitting a message

m of size L, from a node i to a neighboring node j, is given by E t x(i,m) = et x × ti j , where

et x is the transmit energy per unit time, and ti j is the message transmission time, defined as

the time taken to deliver the entire message m from node i to j.
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7.3.1.2.2. Message reception. The energy consumed by i for receiving a message

m of size L, from a neighboring node j is given as Er x(i) = er x × t ji, where er x is the

reception energy per unit time, and t ji is the message transmission time.

7.3.1.2.3. Scanning for neighboring devices. The energy consumed by periodically

scanning for neighboring nodes is calculated as E sc(i) = esc × tsc, where esc is the energy

consumed per unit time and tsc is the predetermined scan time interval. Note that esc may

be up to 5 times higher than the transmission energy et x [155].

7.3.1.2.4. Idle state. The energy consumed when the node is idle, is given by

E id = eid × tid , where eid is the idle energy per unit time and tid is the idle time period.

For our experiments, we consider the following realistic energy values: et x = er x =

0.6 J (transmission/reception), esc = 3 J (scanning), and eid = 0.005 J (idle), where J stands

for Joules. The scan interval esc is pre-specified and taken as 60 seconds. Finally, each

survivor has an initial energy in the interval [0.8 - 1.2] kJ, while a volunteer, PoI or CC has

a high initial energy in the interval [3 - 5] kJ.

7.3.1.3. Routing protocol. We utilize the Epidemic routing [49], which is a stan-

dard flooding-based routing protocol in DRNs (and DTNs). According to this protocol, a

certain node replicates and forwards messages to every encountering node. As previously

mentioned, in this context the energy expenditure at a node is quantifiable by the number

of links it shares.

All the experiments, unless otherwise stated, are performed with one CC, 5 PoIs,

each with [30 - 50] survivors, [1 - 5] volunteers, and 30 responders. Each survivor generates

data traffic with a prespecified message generation rate of 1 packet per [1− 2]minutes. The

values of other important parameters are: (i) message packet size: [250 − 500] Kb (ii)

time-to-live: 1 hour, and (iii) data rate, range of ad-hoc and Wi-Fi medium: (2 Mbps, 50

meter), and (8 Mbps, 500 meter), respectively. The simulation time period H = 12 hr, and

duration of each time slot t ∈ H is 15 minutes (See Section 7.1).
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Figure 7.6. Bio-DRN performance 2. (a) Path count vs Perc. of node failure, (c) PDR vs
Num. of PoIs, (c) Network latency vs Num. of PoIs, and (d) Perc. of alive nodes vs Num.
of PoIs. A certain boxplot bar depicts the range of (PDR, perc. of alive nodes or latency)
values over time, through their quartiles. A box plot may have line extending vertically from
the box indicating variability outside the upper and lower quartiles. Outliers are plotted as
individual points.

7.3.2. Simulation Experiments. Besides Orig-DRN, we compare the energy effi-

ciency, QoS and network robustness of the Bio-DRN topology against the following three

standard network topologies:

• ST-DRN- spanning tree, constructed by removing surplus edges from Orig-DRN.

• Rand-DRN- subgraph with same graph density as Bio-DRN, created by random edge

removal from Orig-DRN.

• K-DRN- subgraph ofOrig-DRN, constructed by pruning edges, if and only if both their

end nodes have more than K neighbors. In our experiments, we consider K = 3, 5.

K3-DRN has comparable graph density as Bio-DRN, while K5-DRN is almost twice

as dense (See Table 7.1).
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Table 7.1. Edge count for 5 PoIs.

Orig-
DRN

Bio-
DRN

Rand-
DRN

ST-
DRN

K3-
DRN

K5-
DRN

No. of edges 2083 352 352 181 297 638
Avg. Diame-
ter

5.5 6 12.0 24.0 14.0 9.0

The rationale behind considering ST-DRN is that it is the sparsest DRN topology

and thereby promises the highest energy efficiency. In contrast, K-DRN with higher K will

be likely to offer higher connectivity in the event of node failures, at the expense of poor

energy efficiency.

7.3.2.1. Energy efficiency and QoS analysis. In the following subsections, we

evaluate Bio-DRN against all the aforementioned topologies, in terms of following three

performance metrics: (a) Packet delivery ratio - the fraction of total unique messages

successfully delivered at the CC to the total generated messages at the survivor nodes or

vice versa, (b) Network latency - the average delay incurred in delivering the messages from

the survivors to the CC. Recall that QoS is measured in terms of PDR and network latency.,

and (c) Energy efficient - percentage of alive nodes. We simulate the failure of 2% nodes

(except CC) after every one hour (summing up to 20% in total) to imitate random failures

due to hardware faults or environmental adversities.

7.3.2.1.1. Packet Delivery Ratio (PDR). Figure 7.5(a) shows that PDR achieved by

Bio-DRN is notably better than other topologies. This is because Bio-DRN offers multiple

paths during node failures (by preserving FFL motifs as shown in Figure 7.5(d)) between

any survivor-CC pair. Note over time (every 1 hour), 2% randomly chosen nodes are failed

in addition to the dying nodes due to energy depletion (See Figure 7.5(c)). In addition, we

observe that Bio-DRN sustains its steady PDR by ensuring that a large fraction of nodes

are alive over time (See Figure 7.5(c)). Among other topologies, ST-DRN and K3-DRN,
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the two sparsest topologies, yield poor PDR, as a result of irregular network partitions due

to node failures. Finally, we attribute the gradual decline in PDR of Orig-DRN, K5-DRN,

and Rand-DRN to the rapidly dying nodes due to energy depletion (See Figure 7.5(c)).

7.3.2.1.2. Network Latency. Figure 7.5(b) shows that Bio-DRN exhibits better net-

work latency than that of topologies with similar (or lower) graph densities, i.e., ST-DRN,

K3-DRN, Rand-DRN. This is because Bio-DRN, though sparse, preserves the small-world

property (i.e. low diameter) of TRN, which ensures short communication pathways between

survivors and CC (See Table 7.1). By the same token, ST-DRN, K3-DRN and Rand-DRN

suffer from very high network latency. Though Orig-DRN and K5-DRN offers comparable

or better latency, they suffer from poor energy efficiency (See Figure 7.5(c)).

7.3.2.1.3. Energy efficiency. Figure 7.5(c) shows that Bio-DRN exhibits notable

improvement in terms of energy efficiency compared to all standard topologies, except

ST-DRN and K3-DRN. The reasons are the following: Bio-DRN possesses (i) fewer com-

munication links, which translate into lower energy expenditure at a certain node, and

moreover, (ii) lower network diameter implying that only a few intermediate nodes con-

sume energy to transmit packets between a certain survivor-CC node pair (See Table 7.1).

Recall diameter of a graph is the length of the longest shortest path between any two node

in the considered graph. ST-DRN and K3-DRN, owing to very few communication links,

offer higher energy efficiency yet notably poor QoS (See Figure 7.5(a) and 7.5(b)), making

them unsuitable for an effective DRN topology. Note that K5-DRN, despite having twice

the number of communication links to that of Rand-DRN, offers better energy efficiency,

thanks to its significantly lower network diameter. The Orig-DRN, due to its very high com-

munication links, yields the worst energy efficiency. It is interesting to note that Bio-DRN

is the only DRN topology that excels in energy efficiency and QoS (i.e., packet delivery

and network latency), due to fewer communication links (or low graph density), and lower

network diameter.
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In order to analyze the scalability of Bio-DRN,we evaluate it against other topologies

for varying graph orders with 3, 5 and 7 PoIs. Figures 7.6(b), 7.6(c), and 7.6(d) show that

the energy efficiency, PDR and latency results for varying graph orders are consistent with

those of previous results with 5 PoIs.

7.3.2.2. Robustness analysis. Here we utilize the snapshots of all network topolo-

gies (i.e., Bio-DRN, ST-DRN etc.) corresponding to every one hour (each capturing 2%

node failure), and analyze the network robustness in terms of the following robustness

metrics: (i) Motif Count, and (ii) Path Count.

7.3.2.2.1. Motif Count. We have discussed that FFL motifs render topological ro-

bustness to TRN by creating multiple paths. Figure 7.5(d) shows that Bio-DRN preserves

high number of TRN motifs, possessing around 2 and 3 times the motif count compared to

that of standard DRN topology with approximately same (Rand-DRN and K3-DRN) and

half (K5-DRN) graph density, respectively (see Table 7.1). Evidently, the motif count in

ST-DRN is 0 due to the absence of triangles, whereas the motif count of Orig-DRN is the

highest because it is the densest DRN topology.

7.3.2.2.2. Path Count. Multiplicity of paths from any survivor node to the CC is an

effective measure of network robustness as it ensures communication in events of failures.

As shown in Figure 7.6(a), the path count in Bio-DRN is about 35, 40, and 6 times that

of Rand-DRN, K3-DRN, and K5-DRN, respectively, notwithstanding node failures. Orig-

DRN and ST-DRN exhibit the highest and lowest path count, again due to their high and

low graph densities, respectively.

Analysis. Combining the results of robustness, energy efficiency and QoS, we infer

that Bio-DRN is a promising approach for the design of the energy-efficient yet robust DRN

topology, while ensuring desired QoS requirements.
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7.4. INFERENCES

In this section, we designed an energy-efficient and robust DRN topology, termed

Bio-DRN, which is inspired from a biological network of living organisms, termed tran-

scriptional regulatory networks (TRNs). We formulated Bio-DRN topology construction

as an integer linear programming optimization problem and prove its NP-hardness. We then

proposed a polynomial time heuristic that constructs a Bio-DRN topology as a common

subgraph of the Orig-DRN and TRN topologies, by exploiting the structural similarity

between the genes and DRN components. Our simulation experiments on a real-disaster

prone region, Bhaktapur, Nepal showed that Bio-DRN retains the topological properties

of TRN. Furthermore, compared to other topologies, Bio-DRN exhibits a good balance

between energy efficiency and network robustness against node failures, while ensuring

timely data delivery. In the future, we shall explore designing faster heuristics for gen-

erating Bio-DRN topology that ensure optimal trade-off between the objectives of energy

efficiency and robustness.
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8. DATA TRANSFER FRAMEWORK OVER FOG COMPUTING PLATFORMS
IN MOBILE CROWDSENSING

Urban areas are usually densely populated with few thousands of smartphone users

spread across different geographic regions. Consequently, transferring and managing data

from a large group of users is a bottleneck for both the underlying network (consisting

of state-of-the-art Wi-Fi access points, gateways, routers, etc.) as well as the mobile

crowdsensing (MCS) platform. Thus, we envision a MCS platform that deploys a fog

computing framework across any smart city to facilitate efficient data transfer. Typically,

microservers like notebooks, laptops, etc. are used as fog devices.

In traditional settings, the task data generated by mobile devices are delivered to a

base station (hosting the MCS platform) in a multi-hop fashion. In each hop, the nearest

fog device forwards the data to another fog, until the data is transferred via the gateway fog

device. This results in greater message delay, and also keeps multiple fog nodes engaged

majority of the time causing higher energy dissipation. Moreover, as all fog devices will

not be forwarding a uniform number of requests, an issue of scalability may also arise. On

the contrary, smart city applications have to be sustainable in terms of energy efficiency and

scalability. Often the fog devices may be deployed at locations remote to the MCS platform

and their limited energy gets dissipated while communicating the sensed data via wireless

communication technologies, such as 3G/4G/LTE, Wi-Fi, etc. Furthermore, it may not

always be feasible to replenish their batteries nor replace them with fully-charged devices

on-the-fly. Therefore, it is critical to design efficient data transfer framework for fog-based

smart city applications.

Considering the need to come up with energy efficient networking solutions in smart

city applications, we propose a bio-inspired collaborative data transfer framework through

mobile crowdsensing over fog computing platforms. Specifically, we make the following

contributions in this work:
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• Identify clusters of densely connected fog devices, while optimizing cluster modular-

ity.

• Utilize a TRN-based mapping strategy to design sparse yet robust fog network topolo-

gies.

• Formulate a fitness function to identify gateway fog nodes.

• Design a weighted preference to find mobile group owners to enable collaborative

sensing through autonomous Wi-Fi direct mode.

• Perform simulation based experiments to study bioMCS in terms of energy efficiency,

robustness, load balancing and data delivery.

8.1. SYSTEMMODEL

This work proposes a framework for efficient data delivery in mobile crowdsensing

(MCS)-based smart city applications. We consider an urban space which has thousands

of users with smart hand-held devices (e.g., smartphones, tablets, wearables, etc.). MCS

platforms leverage the sensing capabilities of the mobile users to collect rich environmental

information for providing services in various domains, such as environmental monitoring,

social networking, healthcare, transportation and safety. We envision a data collection

architecture consisting of several fog devices deployed across the urban space. Moreover,

mobile users who are spatially close to one another can leverage device-to-device proximity

based sensing to save energy, network bandwidth, and reduce data duplicity. Such architec-

ture will also enable the MCS platform to reach out to remotely located mobile users, thus

enhancing the data acquisition.

Figure 8.1 depicts our systemmodel that captures an urban space, equippedwithmul-

tiple fog devices f1, f2, f3, · · · and thousands of mobile device usersM = {d1, d2, d3, · · · }.

The system model also consists of a base station which is hosting the MCS platform. The
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MCS platform assigns various sensing tasks to the mobile device owners which are partici-

patory in nature and explicitly requires users to sense and report against the assigned tasks.

The major components of our framework are as follows:

Figure 8.1. System model.

1. Fog device: A fog device fi is a rechargeable, energy-constrained node with

routing, processing, and storage capabilities. Typically they are edge devices, such as

cloudlets, capable to location-aware and low latency computing. They are equipped with

data aggregation functions to reduce the amount of information delivered to the remote back-

end servers. Multiple fog devices are deployed across geographically dispersed locations,

which can be divided into clusters based on spatial proximity. Within a cluster, one of the

fog devices is chosen as gateway based on its connectivity and residual energy. A fog device

serves as an intermediary between the mobile devices and the base station. We define an

original fog topology F , where nodes are fogs and two-way communication link exists

between a pair of fog nodes if they are in range R f .

2. Mobile device: A mobile device m j ∈ M is a energy-constrained, handheld de-

vice viz., smartphone, notebook, tablet computers, wearables, etc., which a user/participant

will possess. These devices change their positions with time and have installed the appli-

cation developed and managed by the MCS platform. The platform pushes crowdsensing

tasks through the application, which also provides interfaces for submitting data. Each

mobile device will have a preference score which combines its activeness in using the MCS
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application, promptness in accepting and executing the tasks, and residual energy. As far as

participation in the MCS tasks, the operations of a mobile device switch between two roles:

(i) Wi-Fi direct Group Owner (GO): Under this role, the mobile device is selected to be

most suitable to establish a group; (ii) Peer nodes: In this role, the mobile node voluntarily

performs Wi-Fi direct scanning to discover the GO and get attached to the group.

3. Mobility models: The mobility of the mobile devices follow two similar random

walk mobility models. In both the methods, the mobile nodes move randomly across the

deployment region with varying speed. Below are the brief descriptions of the two variants:

a. Random walk mobility model: In this model [156], at each time epoch, a mobile device

m j ∈ M at location (xu
t , y

u
t ) randomly chooses a direction θ (0 ≤ θ ≤ 2π) and random

speed vt (vmin ≤ vt ≤ vmax). Its new location at time t + 1 is:

(xu
t+1, y

u
t+1) = (x

u
t + vt × cos(θ), yu

t + vt × sin(θ)) (8.1)

If the device reaches a grid boundary, it is reflectedwith an angle determined by the incoming

direction. We also consider a special case of randomwalk mobility model in which the node

mobility is restricted to left, right, top and bottom. b. Random waypoint mobility model: A

node halts in one location for a brief period (i.e., a pause time). It then chooses a random

destination as well as a speed vt (vmin ≤ vt ≤ vmax). It then travels towards the newly chosen

destination at the selected speed. Upon arrival, the device takes a pause before repeating

the same step. Note that randomwaypoint model converges to randomwalk mobility model

when the pause time is 0 [157].

Figures 8.2(a) and 8.2(b) show the random walk and waypoint mobility on a single

device for a duration of 200 min., speed vt in range [2, 4] m/min. The pause time for the

waypoint model is 2 min.
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(a) (b)

Figure 8.2. Mobility model. Mobility of a single device for 200 min. and speed vt ranging
between [2, 4] m/min. for (a) Random walk mobility model (b) Waypoint mobility with
pause time = 2 min.

4. Task: Let a set of tasks T = {t1, t2, t3, · · · } are generated by the MCS platform

within the urban space at a particular time instant. Any task tk ∈ T (denoted by green dot

in Figure 8.1) is an alert which gets triggered by the MCS platform at a location within the

urban space. Few examples of MCS tasks are giving ratings, uploading photos and sharing

details of places of interest, and so on. In response to tasks, the mobile device users submit

reports to the MCS platform. Each task is associated with an identifier, a geographical

location information and deadline within which it can be finished.

Figure 8.3. Communication sequence after every time epoch.
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5. Base station: A base station B hosts the MCS platform which is remotely located

from the urban space (refer Figure 8.1). Its communication range (RB) is much higher

compared to that of fog devices, and it uses a plethora of communication protocols and

the backbone Wireless LAN network for bidirectional message exchange with the devices.

The base station is responsible for generating tasks at different geographical regions and

receiving reports from the mobile devices via the gateway.

We introduce the concept of time epoch, of duration τ, to delineate different processes

taking place periodically in each cycle of data transfer. It is a configurable parameter, whose

duration depends on the frequency of data samples collected by the base station. Specifically,

after every time epoch, the following processes take place: (1) base station publishes sensing

tasks; (2) peers, in mobile groups after sensing the tasks, transfer information to the GOs;

(3) GOs identify the nearest fogs and transfer the collected data to them; (4) fog devices

transfer the aggregated and non-redundant task information to gateway fog; (5) gateway

sends task data to base station (as shown in Figure 8.3).

8.2. BIOMCS FRAMEWORK

In this section, we cover the different facets of bioMCS framework. First, we

propose a bio-inspired mapping strategy that employs TRN to construct a sparse yet robust

fog network topology. We then elucidate the energy efficient data transfer from mobile

peers to base station.

8.2.1. Bio-inspired Hierarchical Mapping. We propose the hierarchical mapping

strategy that is based on our previously proposed algorithm for design of robust WSNs [45].

We first partition the fog network F into clusters of densely connected devices and apply

the mapping to each cluster. The steps in the hierarchical mapping approach are discussed

as follows:
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Figure 8.4. Bio-inspired mapping. (1) Original fog network F (2) Nodes in F are grouped
into 2 clusters (3) Mapping algorithm is applied to each cluster: edge e(3, 2) and node 5
(colored green) are unmapped (4) Mapped fog network F m.

8.2.1.1. Step 1: Graph partitioning. In this step, we apply the agglomerative

hierarchical clustering algorithm (implemented using the Python Scikit Learn library [158])

to partition the original fog network F into disjoint clusters. At the outset, each fog node

fl is a standalone cluster; thus, we have clusters c1, c2, · · · , c|V(F )| in the system. In each

iteration of the clustering, two clusters ci and c j are combined if their respective member

nodes u, v have the smallest euclidean distance i.e., min{d(u, v) : u ∈ ci, v ∈ c j}. We

iteratively generate |V(F )|, |V(F )| − 1, · · · , 2 clusters and select the cluster configuration

of the highest quality, determined by a metric called modularity (defined below). In Figure

8.4 we show 2 clusters of F .

Modularity score: Modularity is defined as the fraction of the edges that fall within

the given groups minus the expected fraction if edges were distributed at random [159].

Graphs with high modularity possess high inter-cluster distance and low intra-cluster dis-

tance. Given a graph G(V, E), we calculate modularity using the equation,
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M =
1

2|E |

∑
u,v∈V

(Au,v −
ku ∗ kv
2|E |

)δ(C, u, v) (8.2)

Here (i) A is the adjacency matrix of G, (ii) χ is a list such that χu holds cluster id

for node u and (iii) delta function δ(C, u, v) returns 1 if χu = χv and 0 otherwise. (iv) ku is

the degree of node u.

8.2.1.2. Step 2: Preprocessing for TRN-based mapping. Once F has been par-

titioned into κ clusters c1, c2, · · · , cκ, the inter-cluster edges are removed. We remove all

edges ie = {e(u, v) ∈ E(F )|χu , χv}. Next, for each cluster ci, we generate an induced

subgraph F ′i comprising nodes of that cluster. In the next step the TRN mapping algorithm

is applied to each F ′i .

8.2.1.3. Step 3: TRN based mapping algorithm. We apply the mapping algo-

rithm to induced fog network in each cluster to generate a robust yet sparse fog network

topology within each cluster.

8.2.1.4. Step 4: Graph connectivity. The hierarchical mapping algorithm gener-

ates the mapped fog topology F m by combining F m
i s by graph union (for all clusters i), and

restores the intercluster edges ie. However, the above steps may still lead to a disconnected

mapped fog topology. Thus, to ensure connectivity, we employ a connect function.

This connect function works as follows. Assume there are nc (disconnected) com-

ponents in Gmw. For each pair of components, we add an unmapped edge from F that

connects the two components. If no such edge exists, we include the shortest path from

F that connects the two components. This may entail the inclusion of unmapped nodes to

F m. As an example, consider F (shown in Figure 8.4(1)). Note that node 5 (labeled green)

is not mapped, leading to a disconnected graph. In order to obtain a connected mapped

topology F m, we restore unmapped edge e(5, 6) to F m. Therefore, this step transforms

the mapped topology into a connected topology ensuring potential communication among

different clusters (although in the present architecture we do not make use of the intercluster

links).
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8.2.2. Energy Efficient Data Dissemination. We dedicate remaining part of this

section to discuss the other aspect of bioMCS i.e., energy efficient transfer of task data by

the mobile devices to the fog devices. We also discuss how the task data is routed through

the mapped fog topology to the base station.

8.2.2.1. Gateway fog selection. Each cluster possesses a gateway fog (GF) selected

from among the fog nodes in that cluster. The GF is responsible for collecting all the task

information sensed by the mobile devices in a cluster and forwarding it to the base station.

Note that in every lth cluster, the GF device is re-selected by the base station after every

time epoch, on the basis of a fitness score, computed as follows:

ρ f = w f ×
d f

max f ′:Cf ′=l d f ′
+ (1 − w f ) ×

e f

max f ′:Cf ′=l e f ′
(8.3)

In the above equation, we estimate the fitness of fog device f based on the combined

score of normalized degree of connectivity (d f ) with other fogs in mapped fog network,

and residual energy (e f ). High degree and residual energy ensure that the GF is capable

of interacting with and acquiring task information from a large number of fogs. Note that

w f (0 ≤ w f ≤ 1) is the parameter that controls the weight attached to degree and residual

energy.

8.2.2.2. Group owner selection and group formation. Recall from the discussion

in Section 8.1, tasks are generated by the MCS platform at random locations in the urban

space. For each such task, the GF, which periodically scans for mobile devices in the

vicinity of its cluster, selects the fittest mobile device in sensing radius (Rt) of the task. The

node with the highest preference, calculated using Eq. 8.4, is selected as the group owner

(GO).

ρm = wa ×
am

maxm′:Cm′=l dm′
+ wp ×

pm

maxm′:Cm′=l pm′
+

we ×
em

maxm′:Cm′=l em′

(8.4)
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In the above equation, similar to GF fitness, we gauge the preference of mobile device

m based on the weighted sum of normalized values of three parameters activeness (am),

promptness (pm) and residual energy (em). Out of these three parameters am is in range [1, 4]

(where 4 denotes maximum activeness); pm is reset after every η time units to exclusively

consider recent response of a device to tasks. The weights wa, wp and we sum up to 1. It

is noteworthy that there can be several GOs in a cluster, depending on the frequency and

location of tasks. Each peer node scans for GOs in its communication range Rm and joins

its mobile group.

8.2.2.3. Task sensing and forwarding task information. Once themobile devices

accept the invitation to join the respective mobile groups, they are instructed to sense the

tasks. If a mobile peer m accepts the task sensing invitation and successfully senses the

tasks, its promptness score pm is incremented, otherwise it stays the same. We assume that

device m has equal probability of accepting task sensing invitation as refusing it. The sensed

task information is forwarded to the GO, who transfers it to the nearest fog device. In case

a peer device has no GO at a certain time epoch, it directly transfers the task information to

the nearest fog device. This step is particularly significant in the context of any data transfer

framework because it is imperative to ensure that no amount of task information is lost due

in the process of enforcing protocol.

Figure 8.5. Deployment of mobile and fog devices. 500 mobile devices (small brown dots)
and 50 fog devices (larger circles) deployed in a region of 500 × 500 sq. m. Different
colours on larger circles indicate different clusters.
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8.2.2.4. Task information filtering and transfer to base station. A fog device

that acquire the task information from the GOs undertakes filtering of task information.

In this step, the fog device scans all the task information in its memory by its task ID

and eliminates all the redundant task information. Following this, the task information is

forwarded to the GF, from which it is sent to the base station.

8.3. EXPERIMENTAL RESULTS

For our experiments we develop a customized discrete event simulator based on

Python Simpy library [144]. We use S. cerevisiae TRN (4441 nodes and 12873 edges)

for hierarchical mapping. We first discuss the results on robustness and energy efficiency

rendered by TRN-based mapping. Then, with regard to the fog devices, we carry out

experiments on the graph properties of mapped fog network, task filtering at nearest fog

and selection of gateway fog (GF) nodes. Finally, we study the mobility of peer devices

and different facets of group owner (GO) selection.

Simulation Setting and Parameters: We simulate a deployment region of 500 × 500

sq. m., that consists of a base station, 50 fog devices and 500 mobile devices. The

communication range of the fog devices and mobile devices are 40 and 20 m., respectively.

The base station is Wi-Fi enabled and possesses a communication range of 500 m. Figure

8.5 shows the snapshot of a graphical representation of the deployment space, where the

small and large circles are mobile devices and fog nodes, respectively; different colours of

fog nodes suggest that they belong in different clusters.

The system generates tasks at random locations and the frequency of tasks follow

exponential distribution with mean 20. The simulation duration is 50 time units.

8.3.1. Properties of Gateway Fogs (GFs). In these experiments we shall evaluate

the behavior of the GFs w.r.t. the fitness weights and fitness scores.
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(a) (b)

Figure 8.6. Properties of Gateway Fog. (a) Effect of fitness score weight on the selection
of GFs (b) Fitness of GFs vs. non-GFs.

8.3.1.1. Effect of fitness weight w f on GF selection. Recall that the fitness score

for any fog device has two components: connectivity (i.e. degree) and residual energy.

We regulate the fitness weight w f and study its effects on the selection of gateway devices.

Figure 8.6(a) shows the frequency of a node to be selected as gateway for three possible

values for w f (0.1, 0.3, 0.5). When w f = 0.1, the fitness score strongly prefers residual

energy over degree; since residual energy of a fog device diminishes over time, different

fogs get selected as GFs. This uniformity is reflected in the low standard deviation in device

selection (ρ). Conversely, for a w f = 0.5, the fitness score gives high weightage to degree,

which can only change when neighbor fogs run out of energy. Thus, few nodes with high

connectivity are preferred as GFs, resulting in high ρ.

8.3.1.2. Fitness of GF devices. From the discussion in Section 8.2.2, we know that

the nodes with the highest fitness get selected as GFs in each cluster, which channel the

task information to the base station. For a fixed fitness weight w f = 0.5, we compare the

average fitness score of GFs versus those of non-GFs, over time.

Figure 8.6(b) shows that the average fitness score of GFs and non-GFs start at 1.0

and 0.8 and drop marginally over time. Overall, the fog devices with the highest fitness get

selected as GFs.
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Figure 8.7. Task filtering vs. no filtering at fog.

8.3.2. Effect of Data Filtering at the Fog Device. We discuss in Section 8.2.2.4,

the task information sent by the group owners to the nearest fog device undergo a filtering

process where the redundant task information is eliminated. In this experiment, we compare

the number of task data copies generated under conditions of filtering and no filtering at the

nearest fog device.

(a) (b)

Figure 8.8. Effect on GO. (a) Preference score of GO vs non-GO mobile device (b) Energy
consumption of GO.

Figure 8.7 shows that the gap in the curves for task data copies for filtering and no

filtering widen over time. At the end of the simulation, the number of data copies produced

with no filtering is nearly ten times that of the filtering condition.
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(a) (b)

Figure 8.9. Effect on data delivery. (a) Velocity and (b) Pause time.

8.3.3. Effect ofMobility onDataDelivery. We analyze the effect of themovement

of mobile devices on the overall data dissemination (or delivery) of the system. We define

data delivery rate as the number of tasks generated by the system to the number of tasks

reported at base station. We vary the two parameters of random waypoint mobility model:

velocity of mobile devices (v) and pause time (π), and measure the data delivery rate.

Figure 8.9(a) shows that for a constant π of 2 minutes, the increase in v of mobile

node causes a drop in data delivery ratio at the base station. Similarly, for a constant v

of 2 m/min., increase in π enhances the data delivery rate (Figure 8.9(b)). In both cases,

high mobility among mobile nodes leads to poor data delivery rate. This is because high

mobility often causes the devices to move out of sensing range of the task assigned to it,

leading to low data delivery.

8.3.4. Properties ofMobileGroupOwners (GOs). In the subsequent experiments

we analyze the fitness and energy consumption of GOs from different standpoints.

8.3.4.1. Preference of mobile devices. We now analyze the preference score of

GOs as compared to the non-GOs over time. Recall that preference of mobile devices

is a weighted sum of activeness, promptness and residual energy. Also, the promptness



141

quotient of eachmobile device is reset to 0 after every η time epochs. We consider activeness,

promptness and residual energy weights w1 = 0.4,w2 = 0.3,w3 = 0.3, respectively; we also

study two distinct η = 5, 20.

Figure 8.8(a) shows that for both cases of η = 5 as well as η = 20, the preference

score of the GOs is significantly higher than the non GO mobile devices. Also, for η = 5,

the promptness is reset to 0 frequently, and as a consequence, the preference rises and falls

more frequently, than in case of η = 20.

8.3.4.2. Energy consumption by GOs. We study the relationship between the

selection of mobile nodes as GOs and energy consumed for forwarding task information to

nearest fog. Figure 8.8(b) shows the strong correlation between the frequency of selection

of a node as GO and its energy spent. Non-linear curve fitting (with degree 3) on the data

points (each signifying a mobile device) shows that mobile group owners tend to consume

more communication energy.

8.3.4.3. GO selection and residual energy of active devices. In Section 8.1, we

define activeness score of a node on a scale of 1 − 4, where 4 stands for highest activeness.

Figure 8.10(a) shows the residual energy and frequency of selection as GOs on the basis of

their activeness score. The result corroborates that active mobile nodes are chosen as GOs

and consequently consume high communication energy for forwarding the task information

to the nearest fogs.

8.3.4.4. Effect of GO on energy efficiency. We analyze the role of GOs in render-

ing energy efficiency to the system. We measure the average residual energy of the mobile

devices under conditions of GOs and no GOs. Figure 8.10(b) shows that the presence of

GOs lead to notably low consumption of communication energy. This is because, in the

absence of GOs, the peers consume higher energy to transmit task information using Wi-Fi

connectivity as opposed to the Wi-Fi direct used by peer devices to interact with GOs.
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(a) (b)

Figure 8.10. Group owner selection and energy consumption. (a) Variation of GO selection
and residual energy with activeness of mobile devices (b) Comparison of GO vs. no GO on
energy efficiency.

8.4. INFERENCE

In this work we proposed a bio-inspired transcriptional regulatory network (TRN)

based data transfer framework bioMCS to facilitate energy efficient task data collection

through mobile crowdsensing. The framework enables mobile devices to undergo Wi-Fi

direct-based collaborative sensing and save considerable battery energy while transferring

task information to the base station. Moreover, we assumed that the framework is deployed

over a fog computing platform, where the fog devices are used to select Wi-Fi direct group

owners, aggregate data from them, and forward it to the MCS platform hosted in the

base station. bioMCS first ensures even distribution of task load by partitioning the fog

network into clusters, and then applies the bio-inspired hierarchical mapping algorithm to

generate sparser fog topology that inherits the topological robustness of TRNs. We evaluate

our framework through extensive simulation-based experiments and demonstrate that the

bioMCS framework achieves better energy and network efficiency compared to individual

user-centric data transfer mechanism.
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There is one aspect of the proposed bioMCS framework that we are trying to address

through our current research. From our discussion in Section 8.2.1 we are aware of the

existence of the inter-cluster edges. Although, the purpose of the inter-cluster edges is

not well-defined in this work, we intuit that they may help in addressing the challenges

with decentralized data transfer between mobile nodes across clusters. Specifically, the

decentralized framework will support the mobile users to access information of a task

taking place at different clusters.
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9. ONGOING RESEARCH: A COMPUTATIONAL FRAMEWORK TO
IDENTIFY MINIMAL DRUGGABLE TARGETS IN TRANSCRIPTIONAL

NETWORKS

Specific genes play a crucial role in disease biology by affecting signaling pathways

and different cancer types. Taking inspiration from a similar framework designed to study

miRNA-miRNA regulation [160], we propose a computational framework to identify the

set of druggable spreaders in TRNs that can influence (i.e. positively or negatively activate)

specific genes. Our work consists of two phases: (1) learn the edge weights that signify the

strength of TF-gene regulation, and (2) apply influence diffusion mechanisms to identify

the minimum druggable targets.

9.1. LEARNING EDGEWEIGHTS

We discussed in Section 1.3, TRNs are signed networks. In this section, we attempt

the find the weights on the signed edges; the weights range between −1.0 signifying

maximum negative regulation to 1.0 signifying maximum positive regulation.

Figure 9.1. Schematic representation of organization of motif central nodes within tier 2 of
a TRN.
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To achieve the above objective, we consider the expression score for each TRN node

as its node weight and assume the change in expression score will flow throughout the

TRN via the directed links. Specifically, a node having a very high expression score would

propagate effect on its neighboring miRNAs. Thus, we define two ground rules:

Variables: Let Xu,v (ranging between −1.0 to 1.0) be the directed flow of influence

from node u to node v, where u, v ∈ V . Given any node v, ev be the fold-change expression,

and si
v and so

v be the incoming and outgoing slack variables (discussed hereafter).

To support our assumptions, we define the following two constraints:

• The cumulative sum of products of incoming edge-weights and corresponding ex-

pression scores of parent nodes would exceed the expression score of the target node

v by a slack variable (si
v in Constraint 9.4).

• The sum of node outgoing edge-weights of any node v can exceed its expression score

within a slack amount (so
v in Constraint 9.5).

To clarify the above rules, consider a toy network of 5 nodes (Figure 9.1). If we

focus on the central node with expression score X5, then the collective influx of expression

into the node =
∑

i=1,2 ei Xi, j and its outflow =
∑

i=4,5 ei X j,i. Then,

∑
i=1,2

ei Xi, j ≈ e3 (9.1)

∑
i=4,5

ei X j,i ≈ e3 (9.2)

The objective function is to minimize the sum of slack variables si and so over all

the nodes (Expression 9.3).

Min.
∑
v∈V

|si
v | +

∑
v∈V

|so
v | (9.3)
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s.t.
∑
u∈V

eu ∗ Xu,v + si
v = ev ∀v ∈ V (9.4)

∑
u∈V

ev ∗ Xv,u + so
v = ev ∀v ∈ V (9.5)

Range of Xu,v: Any directed edge e(u, v) can have one of three possible states: acti-

vation, repression or unknown. If the state is activation e(u, v) lies in range (0, 1.0); if it is

a repression it resides in the range (−1.0, 0.0); otherwise it can belong in range (−1.0, 1.0)

allowing the optimizer determine the nature of regulation.

Linear and nonlinear formulations: For our initial dataset, we only have the expres-

sion values of 2103 out of the 2862 nodes in Human TRN. Therefore, the above optimization

formulation becomes nonlinear in nature. In order to aid computations for the complete

Human TRN, we convert the formulation to linear. Given known and unknown expression

values Eknown and Eunknown, respectively, we set the expression value of each v ∈ Eunknown

to the mean of expression value of known nodes i.e., ev =
∑

u∈Eknown
eu

|Eknown |
(∀v ∈ Eunknown).

Drawbacks: Although these assumptions can be expressed in the form of a linear

and nonlinear optimization formulation, leading to convenient solutions, it has the following

drawbacks.

• Our proposed method relies heavily on the exact values of expression of the nodes.

Since different TRN nodes possess different expression values under different circum-

stances, there is likely to be a high variability in expression values across different

scenarios.

• The TRNs of human and mouse are incomplete i.e. all the Transcription Factor-gene

interactions are not documented. Therefore, it is difficult to arrive at accurate edge

weights.
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• The TRNs are expected to be dynamic networks with changing node weights and

edge relationships. Since our analysis is based on snapshots of TRNs, it only reflects

the steady-state values.

9.2. INFLUENCE DIFFUSION

With the knowledge of the edge weights in transcriptional networks, we now try to

devise a computational framework that will address the following question:

9.2.1. Problem. Given a set of ordered pair of target TRN nodes and desired

activation status (i.e. positive (+) or negative (−)) Q = {(q1, < +/− >), (q2, < +/− >), ...},

we attempt to come up with k causal nodes that will maximize activation of the target nodes

(with the correct sign) and minimize activation of the non-target nodes. (Note that all the

nodes in TRN not in target set are considered to possess activation status None).

9.2.1.1. Approach. Our proposed framework is based on thewell-studied influence

diffusion (ormaximization)mechanism proposed byKempe et al. in his seminal work [161].

Kempe defined the influence diffusion problem as choosing a set of individuals to target

for initial activation, such that the cascade beginning with this active set (or called causal

or seed set) is as large as possible in expectation. He went on to prove that the problem

is sub-modular in nature and the greedy algorithm is bounded by an approximation with a

factor of 1 − 1/e. In our context, influence diffusion is applied on a signed network (i.e.

TRN) [162] with a specific target set.

9.2.1.2. Algorithmic step. We model our solution on the Independent Cascade

(IC) influence maximization mechanism where the method is to begin with an empty seed

set and then iteratively add nodes with the maximum spread (averaged out over several

iterations) in the network. The process for influence spread is simple: if a random number

r ∈ [0, 1] is less than or equal to Xi, j , the activation status of node j is the product of the

activation status of node i and sign(Xi, j).

Let us now discuss the key considerations in our proposed solution:
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Figure 9.2. Three tier topological characterization.

1. Spreaders belongs in tiers 1 and 2: Recall from our discussion on three tier topology

in Section 3, all the spreaders in the TRN topology belong in tiers 1 and 2 (containing

nodes with all the outgoing edges) (Figure 9.2). Since tiers 1 and 2 account for

approximately 10% TRN nodes, we can restrict our search of causal nodes to to tiers

1 and 2. This makes the greedy search significantly more computationally feasible.

2. Gain function to gauge impact on target: In order to analyze how the chosen seed set

influences the target, we have (so far) come up with two simple cost/gain functions.

Below we describe two simple cost functions.

• Scoring 1: Let TS be the nodes in the actual target set that is correctly identified

(with the correct activation status) in the predicted target set. Similarly, let AN

be the actual set of non-target nodes and ON be the observed set of non-target

nodes. The cost function is calculated as |TS |
|Q | ∗w1+

|AN |
|ON | ∗w2, where 0 < wi < 1

(
∑
wi = 1) is the weighing factor.

• Scoring 2: Let TS0 be the intersection between the predicted and actual target

set. Similarly, let TSN be the number of nodes in TSN identified with the wrong

sign. Then, the cost function equals |TS0 |
|Q | −

|TSN |
|TS0 |

.
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(a) (b)

Figure 9.3. Prediction accuracy. (a) Cross-validation and (b) Real data.

9.2.2. Cross-validation. This is standard procedure we follow to analyze the ef-

fectiveness of the proposed heuristic. In this, we start with a set of seed nodes and run the

forward signed influence diffusion mechanism to identify the target set Q. Then, we follow

the usual backward influence diffusion to identify the seed set from the observed targets.

9.3. RESULTS

Although we have limited dataset at our disposal, we are currently generating syn-

thetic datasets to validate and refine our proposed computational framework. We obtained

the expression score values for human TRN from Expression Atlas [163]. The causal and

targeted node datasets were obtained from [164].

9.3.1. Cross-validation. In this experiment, we apply the cross-validation ap-

proach on TRNs of different orders. Our results show that the accuracy in determination of

the causal nodes range between 60 − 80% (Figure 9.3(a)).

9.3.2. Real Dataset. Our experiments on real datasets show a slightly lower accu-

racy (ranging between 40 − 70%) (Figure 9.3(b)). The reason for this performance decline

has been discussed in the next section.
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9.3.3. Challenges. The proposed computational framework suffers from two inter-

esting research challenges.

• We have discussed two possible cost functions in Section 9.2. Clearly, there could

innumerable other variants of the same function. We observe that the accuracy in

identification of the causal nodes depend heavily on the choice of cost function. The

identification of the correct cost function itself poses several research questions.

• When working with the real dataset, our framework often identifies nodes which are

not documented as causal nodes, but are their predecessors in the three tier topology.

This results in lower accuracy. However, in reality, our observed causal nodes could

well be considered to be the nodes responsible for the activation of the given target

set. We are looking into possible ways to address this problem.

• The proposed problem solution can be shown to be non sub-modular in nature. The

fact that we are unable to utilize certain known properties of submodularity, greatly

restricts the efficacy of the computational framework.
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10. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation we study the topological properties of a biological network called

Transcriptional Regulatory Network (TRN) based on a three tier topological characteriza-

tion. We analyze the properties such as abundance of Feed Forward Loop (FFL) motifs,

low graph density, scale free out-degree distribution. Our studies show that FFL motifs are

responsible for the high clustering tendency of TRNs and play an essential role in signal

transduction by creating communication pathways. Moreover, the motif central nodes are

the most efficient spreaders of information in TRNs. In addition, we come up with a com-

putational framework that identifies the most effective druggable targets in TRNs. Finally,

we apply the TRNs in the design of robust and energy-efficient wireless sensor networks,

disaster response networks and data transfer frameworks over IoT and fog computing plat-

forms. Let us now go over the unexplored areas of TRNs which can motivate new research

directions in the fields of communication and social network analysis.

10.1. BIO-INSPIRED ROUTING PROTOCOL

Our discussion in Section 5 shows that TRNs serve as an effective template for

the design of robust static WSN topologies. TRN-based WSNs achieves fault-tolerance by

maximizing FFL motifs. Additionally, our recent findings reveal that FFL motif central

nodes are themost effective information forwarders in TRNs [165]. Based on these findings,

we plan to investigate the possibility of dynamic bio-inspired routing protocols in a WSN

setting using the node motif centrality (Eq. 4.1). We can deduce that in any given FFL role

A motif centrality creates two independent paths between master regulator and regulated

node; thus, a node with high role A FFL motif centrality will potentially present several

communication pathways between any given source and sink node pairs.
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(a) (b)

Figure 10.1. Bio-inspired routing. Comparison of performance of WRP, E-TORA and Role
A motif centrality based routing (a) Packet delivery ratio (b) Average hop count.

To verify our intuition, we devise a simple bio-inspired routing strategy wherein

each node maintains information of the role A FFL motif centrality of the neighbor nodes

and choose the node with highest role A motif centrality as its next hop. We compare our

strategy with two standard routing protocols: (1) Wireless Routing Protocol (WRP) [166]

which utilizes shortest path based schemes to calculate the minimum cost routes, and (2)

Energy-aware Temporally Ordered Routing Algorithm (E-TORA) [167], which conserves

energy by taking into consideration the level of power of each node and avoids using nodes

with low residual energy. Our simulation experiment on a WSN of 50 nodes designed on a

discrete event simulation environment of Python SimPy library [144] reveals that the packet

delivery ratio (PDR) for WRP is the best followed by bio-inspired routing (Bio). This is

because WRP follows the optimal path from source to sink (Figure 10.1(a)); in terms of the

average delay in packet transfer in terms of the number of hops, Bio greatly outperforms

other strategies in all three failure conditions (Figure 10.1(b)). Our initial experiments

motivate the design of novel dynamic routing strategies where it is possible to design a

unified routing strategy which is a weighted combination of WRP, E-TORA and Bio, in

which the weights can be tweaked to meet changing requirements of the network, as in
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software defined networking. For instance, if a low data delivery delay is preferred, high

role A nodes can be preferred as next hops; conversely, the weight corresponding to WRP

can be increased to meet high data delivery needs.

10.2. HUB AND SPOKE ARCHITECTURE

The three tier characterization (see Section 3) can be utilized to identify significant

patterns in the organization among high node motif central (NMC) nodes (defined as nodes

with δ > 100, as per Eq. 4.1) in tier 2. Figure 10.2 shows a schematic representation,

where a few high NMC nodes in tier 2 (marked in blue) form cliques among themselves

while the other high NMC nodes (shown in green) are connected to some (but not all) of

the blue nodes. Note that both green and blue nodes are connected through bidirectional

edges leading to full duplex data flow. There exists a third type of node (shown in yellow)

that serve as intermediaries for information flow between the blue nodes.

Figure 10.2. Hub and spoke architecture. Schematic representation of organization of motif
central nodes within tier 2 of a TRN.

This arrangement among the high NMC tier 2 nodes is similar to a hub-and-spoke

architecture with majority of the tier 1 and 3 nodes being directly connected to high NMC

nodes in tier 2 [165]. We intuit that in such an architecture role A motif central nodes

play the role of information spreaders, while the green nodes provide fault tolerance against

failures of the blue node failures; our investigation reveals that the yellow nodes, possessing

high role B motif centrality, provide edge level fault tolerance by activating the indirect path
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of the FFLwhen the direct path is congested or error prone. We believe that the organization

of high NMC nodes in TRN can explain the robustness of TRNs and further motivate the

design of fault-tolerant communication network topologies.

10.3. BALANCED AND UNBALANCED TRIADS

In Section 2.1 we discussed coherent and incoherent FFL motifs based on the signs

on directed edges that can cause acceleration or delay in information flow in TRN. It is

worth noting that this coherence or incoherence of FFLs resembles the idea of balanced

and unbalanced triads in social networks. In a signed network where positive and negative

edges signify friendship and enmity between a node pair, three positive edges in a balanced

triad works on the following principles: the friend of my friend is my friend, the friend of my

enemy is my enemy, the enemy of my friend is my enemy and the enemy of my enemy is my

friend. Leskovec et al. studied the signed interaction among the entities in social network

to develop a theory that explains observed edge signs and the underlying social mechanisms

[168]. We intuit that the use of influence diffusion mechanisms [161, 169] in the elaborate

analysis of the FFLs can help identify influencial FFL motifs that can amplify or dampen

spread of information in signed social and biological network topologies.

10.4. DESIGN OF SMART TOPOLOGIES

Abdelzaher et al. showed that TRNs are naturally optimized for average shortest

path (Eq. 3.2) between TFs and genes [170]. In other words, TRNs will exhibit a lower

average shortest path compared to a randomized network with similar in- and out-degree

distributions. We believe that defining average shortest path in terms of FFLmotif centrality

can yield new insights into the topological robustness of TRNs. This is because, not only are

FFL motifs closely linked to TRN robustness (as shown in Section 3.2.7), but Gorochowski

et al. showed that motif clustering (defined in Appendix 1 Section 4) leads to specific
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functional properties in biological networks and nodes with high FFL motif clustering

diversity (MCD) (defined in Section 4.1) are amongst the most functionally significant

TFs/genes in TRNs in terms of information spread [117]. Thus, it is worth exploring

whether TRNs achieve efficient information dissemination by employing the high FFL

motif central edges for data flow. One way to validate this hypothesis is to re-apply the

optimization problem explained by Abdelzaher et al. [170] on several weighted versions

of TRN subgraphs, where the weight on each edge equals its reciprocal FFL edge motif

centrality. If TRNs still exhibit a lower δ than its randomized counterpart, it stands to reason

that smart network topologies can be realized by pushing the bulk of the data packets into

high FFL motif central nodes and links.



APPENDIX A.

FEED FORWARD LOOP (FFL) MOTIFS
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1. ABUNDANCE OF FFL VS. FBL

Table 1 shows the comparison in the abundance of FFL vs. FBLs in E. coli,

S.cerevisiae, human and mouse TRNs.

Table 1. Abundance of FFL and FBL motifs in TRN.

TRN type FFL FBL
E. coli 4798 12

S. Cerevisiae 4115 39
Human 7557 789
Mouse 4328 492

2. FFL AS BUILDING BLOCKS OF LARGER MOTIFS

FFLs are building blocks to larger TRN motifs, as shown in case of E. coli TRN in

Figure 1.

Figure 1. Abundant 4,5 and 6 node motifs in E. coli TRN contain FFL motifs.
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Figure 2. Path p consisting of several FFL motifs.

3. MOTIF PATH ENUMERATION

In this section, we propose a simple heuristic to analyze whether the direct and

indirect links of FFL motifs are responsible for creating a majority of the paths in TRNs.

Let us consider a path p = {u1, u2, · · · , un}. The path may contain of several FFL

motifs with e(ui, ui+1) as direct links (∀i = 1, 2, · · · (n − 1)). We know that φd(e(ui, ui+1) is

the number of nodes v such that e(ui, ui+1) is a direct link in the FFL motif (ui, v, ui+1).

For instance, in Figure 2, we have p = {1, 2, 3}, where edges e(1, 2) and e(2, 3) are

direct links to FFL motifs (1, 4, 2), (2, 5, 3). Thus, φd(e(1, 2)) = {4} and φd(e(2, 3)) = {5}.

We next apply an enumerative strategy to determine the number of paths created by

FFL motifs: given a path p, replace each direct link (ui, ui+1) by an indirect path {ui, v, ui+1}

to get a new path p′ created by FFL motifs (Algorithm Enumerative Approach).

Algorithm 7 Enumerative approach
1: procedure
2: i = 0
3: for e(ui, ui+1) do
4: p′ = {u1, u2, · · · , ui, v, ui+1, · · · , un} ∀v ∈ φd(e(ui, ui+1))

Using this enumerative approach, for p =< 1, 2, 3 >, we obtain new paths p′ =

{1, 4, 2, 3}, {1, 2, 5, 3}, {1, 4, 2, 5, 3}.

In path p = {u1, u2, · · · , un}, number of simple paths between u1 and un formed due

to FFL motifs is given by:
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Figure 3. Example subgraph G with edge φd values shown in circles.

n∏
i=1
|φd(e(ui, ui+1))| + 1 (1)

Going back to Figure 2, since |φd(1, 2)| = 1 and |φd(2, 3)| = 1, number of simple

paths between 1 and 3 = (|φd(1, 2)| + 1) × (|φd(2, 3)| + 1) = 4.

Redundancy in path enumeration: Let us now consider a subgraph G (Figure 3).

There are a total of three paths between nodes 1 and 2, i.e., p1 = {1, 3, 2}, p2 = {1, 4, 2} and

p3 = {1, 3, 4, 2}.

Although there are 3 paths between nodes 1 and 2, our enumeration equation (Eq.

1) returns 4 paths. This is because path p3 = {1, 3, 4, 2} is common to both direct links

e(1, 4) and e(3, 2) and is counted twice during path enumeration.

We infer that Eq. 1 may have redundancy in path enumeration if two motifs share

an indirect link. Based on these observations, we propose a simple heuristic to determine

the fraction of simple paths created as a result of the direct as well as indirect path of FFL

motifs. Here we present a simple illustration of the algorithm for subgraph G (shown in

Figure 3).
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Algorithm 8 Path enumeration
1: procedure

Graph G, pLimit score = C
T

2: // Calculate φ(e) for all e ∈ E(G)

3: // Total paths count

4: T = 0

5: // Total paths count created by FFLs

6: C = 0

7: for u ∈ V(G) do

8: for v ∈ V(G) do

9: P : List of simple paths between u and v of length ≤ pLimit

10: T = T + |P |

11: for p ∈ P do

12: Let p =< u, u2, u3, · · · , v >

13: P′ : All possible paths between u and v generated using φ values using

enumerate approach of length ≤ pLimit

14: C = C + |P′|

15: P = P − P′

16:

Illustrative example: Here for each pair of nodes u, v ∈ V , we consider a score as

the ratio between the number of paths produced as a result of the direct and indirect path of

FFL motifs to the total number of paths.

Paths between node pair (1, 2): There are 3 paths namely, 1→ 3→ 2, 1→ 4→ 2

and 1 → 3 → 4 → 2 all of which are generated as a result of direct and indirect path of

FFLs (1, 3, 4) and (3, 4, 2). Score: 3
3 .
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Paths between nodes (1, 3) and (1, 4): There is 1 paths namely, 1→ 3 which is not

using the direct and indirect path of FFL (1, 3, 4). Similarly, there are two paths between

1→ 4: 1→ 4, 1→ 3→ 4 that use the FFL (1, 3, 4). Scores: 0
1 and 2

2 .

Paths from node 2: Node 2 does not have any outgoing edges. Scores for node pairs

(2, 1), (2, 3) and (2, 4) are all 0
0 .

Similarly, scores for paths between node pairs (3, 1), (3, 2), (3, 4) are 0
0 ,

2
2 ,

0
1 ; and for

(4, 1), (4, 2) and (4, 3) 0
0 ,

0
1 and 0

0 .

Total score of (3+0+2+2+0+0
3+1+2+2+1+1 =)0.7 implies that 70% of the total paths between all

pairs of nodes utilize the direct and indirect paths of FFL motifs (1, 3, 4) and (3, 4, 2) in

subgraph G.

Here we propose a simple heuristic (Algorithm Path Enumeration) to determine the

ratio between total number of simple paths created by FFL motifs to the total number of

paths between all pair of nodes, while discounting the redundancy in path enumeration.

Algorithm description: It takes two input parameters: directed input graph G and

maximum considered path-length pLimit. For every pair of nodes u and v such that v is

reachable from u, it uses the Python Networkx library [171] to determine the list of simple

paths P of length ≤ pLimit. For every path p in list P, the algorithm applies the enumerative

approach to list all simple paths P′ created from path p via FFLmotifs. The heuristic handles

redundancy in path enumeration by removing all paths in P′ from P. Finally, the algorithm

returns the score as the ratio between total paths created by FFLmotifs, C, and total number

of simple paths (of length less than or equal to pLimit), T .

4. MOTIF BASED METRICS

Below are the details of the metrics used to validate the functional properties of

motif central nodes in TRN.
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Figure 4. 12 types in Motif Clustering Diversity (MCD) (taken from [117]).

4.1. MOTIF CLUSTERING DIVERSITY

For any node, one can extract all FFL motifs that contain the selected node as a

member. For all pairs of these motifs it is possible to create 12 possible configurations

(shown in Figure 4). Motif clustering diversity (MCD) is defined as the number of different

motif clustering types (i.e., configurations) that a node takes part in. Its value ranges

between 0 and 12. Gorochowski et al. showed that several high MCD nodes in a TRN act

as global regulators [117].

4.2. BIOLOGICAL PATHWAYS

A biological pathway is a series of actions among molecules in a cell that enable

interaction among genes, molecules and cells. Such a pathway can trigger the assembly of

new molecules, such as a fat or protein [172, 173]. Pathways can also turn genes on and off,

or make a cell move. There are different types of biological pathways that help in signal

transduction pathways, gene regulation and metabolism.

4.3. K-SHELL DECOMPOSITION

k-shell decomposition is the process of pruning of nodes with the lowest degree in

an undirected graph. Each step of pruning is denoted by the variable k = 1, 2, 3 · · · . After

every step of pruning, the resultant k-core subgraph is the maximal subgraph such that
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every vertex has degree at least k. The integer value k is attached to the set of vertices that

are part of the k thcore but not part of the (k+1)th core. Evidently, small k-values correspond

to nodes in the periphery of the network and the innermost network core corresponds to

large k-values.

5. FUNCTIONAL ROLE OF MOTIF CENTRAL NODES

Here we report the top 10 TFs and genes with high role A and B properties (but

not featuring in top 10 high degree nodes) in Escherichia coli (E. coli), S. Cerevisiae and

Mus musculus (mouse) TRN that play a role in fault tolerance. Additionally, we also report

the MCD and k-values of the respective TFs. It is noteworthy that most of the chosen

nodes exhibit high MCD and k-values showing their properties as global regulators and

information spreaders in the networks. Also, the highest k-value for E. coli, S. Cerevisiae

TRNs and mouse are 8 and 11, respectively.

5.0.1. Mouse TRN:. The functional properties of motif central nodes in theMouse

TRN are reported in Table 4. Each of the top nodes exhibit appreciable roleA and role B type

motif centralities. Although the signalling pathway count for some of these nodes are quite

low, they all demonstrate high MCD values to underline their role as global regulators and

information spreaders in the network. This can be because signalling pathway participation

of all these nodes have not yet been confirmed experimentally in KEGG. Of particular

note is the Crebbp gene having slightly lower MCD (of 8), but it actually does participate

in an appreciable number of signalling pathways. Since each of these nodes demonstrate

appreciable role B centralities, we showcase their involvement in fault tolerance related

pathways from published literature in the following; only five genes/TFs are reported in

this validation study while the fault tolerance of the other reported nodes have not been

confirmed yet in the literature. With regard to the k−shell value, all the nodes discussed in

Table 4 exhibit the highest k−shell value observed in mouse TRN (equal to 8), suggesting

that they are located in the network core and play a role in information spread in the network.
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Table 2. Motif centrality, MCD, pathways and k-values for Mouse TRN.

Roles
TF/Gene A B MCD Pathway k-value
Myc 70 139 12 54 8

Pou5f1 50 82 12 1 8
Nfe2l2 85 76 11 4 8
Crebbp 90 49 8 26 8
Sox2 51 62 11 2 8
Snai1 49 61 11 1 8
Ctnnb1 52 46 12 26 8
Myod1 38 45 12 0 8
Sp7 20 47 11 21 8

Cebpb 43 39 12 4 8

• The MYC proto-oncogene is a gene product that coordinates the transcriptional reg-

ulation of a multitude of genes that are essential to cellular programs required for

normal as well as neoplastic cellular growth and proliferation, including cell cycle,

self-renewal, survival, cell growth, metabolism, protein and ribosomal biogenesis,

and differentiation [174]. This demonstrates both its role A and role B properties.

• Nfe2l2 is a transcription activator that binds to antioxidant response (ARE) elements

in the promoter regions of target genes and is important for the coordinated up-

regulation of genes in response to oxidative stress and the regulation of cellular redox

conditions. It may also be involved in the transcriptional activation of genes of the

beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the

beta-globin locus control region. Hence, this TF plays a major role in fault tolerance.

• Snai1 expression has been linked to enhanced cellular survival in mouse embryos and

cell lines (Vega et al, 2004) and in the context of chemoresistance in tumours where

Snai1 expression can enhance resistance of cells to stress-induced apoptosis (Lim

et al, 2013). Snai1 expression in keratinocytes can also enhance survival following

stress (De Craene et al, 2014) [175] thereby demonstrating its role B properties.
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• When mouse myoblasts or satellite cells differentiate in culture, the expression of

myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do

not differentiate. The mechanism involved in the repression of MyoD expression

remains largely unknown. A stress-response pathway repressing MyoD transcription

was reported to be transiently activated in mouse-derived C2C12 myoblasts growing

under differentiation-promoting conditions [176] highlighting its role B property.

• SOX proteins are involved inmultiple events, frommaintenance of stem cells pluripo-

tency, to driving their terminal differentiation into specialized cell types. The SOX2

transcription factor is pivotal for early development and the maintenance of undiffer-

entiated embryonic stem cells (ESCs). This transcription factor plays a critical role

in directing the differentiation to neural progenitors and in maintaining the properties

of neural progenitor stem cells [177] thereby demonstrating both role A and role B

properties.

5.1. E. COLI TRN

• This regulation occurs even when the iron-binding site of Fur is compromised leading

to the hypothesis that Fur senses iron and pH separately. Mutations in fur render the

cell acid sensitive, butwhich component of acid stress (H+orweak acid concentration)

is countered by the Fur-regulated ASPs is not known [178].

• Acid resistance (AR) is perceived to be an important property of Escherichia coli,

enabling the organism to survive gastric acidity and volatile fatty acids produced as

a result of fermentation in the intestine. The ability to resist these acid stresses is

believed to be necessary for this organism to colonize and establish a commensal

relationship with mammalian hosts. In addition, the low infectious dose associated

with enterohemorrhagic E. coli serotype O157:H7 is attributed to its acid-resistant

nature [179].
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Table 3. Motif centrality, MCD, pathways and k-values for E. coli TRN.

Roles
TF/Gene A B MCD Pathway k-value

fur 88 133 8 26 6
gadX 88 133 12 0 6
gadE 63 91 11 0 6
gadW 39 50 7 0 6
marA 50 77 9 19 6
cpxR 71 56 2 2 5
soxS 61 36 6 0 6
fhlA 42 93 4 0 5
glnG 45 52 5 1 4
lexA 55 55 0 0 2

• mar A reported to play a role in adaptive response. This review will focus on Mar A,

SoxS and Rob of Escherichia coli. These homologous regulators are excellent exam-

ples of global regulators that are part of multiple regulatory mechanisms necessary

for the adaptive response. Mar A, SoxS and Rob, which are all members of the AraC

family of proteins, respond to many stimuli, including changing pH, the presence of

antibiotics, oxidative stressors and organic solvents, all of which threaten survival

[180].

• CpxA andCpxRwere proposed to regulate an envelope stress response thatmonitored

and mediated adaptation to misfolded, secreted proteins [181].

• SoxS protein (M(r) of only 12,900) is a direct transcriptional activator of the oxidative

stress genes of the soxRS regulon, although the possible involvement of other proteins

in transcription activation by SoxS has not been ruled out [182].

• Hyd − 3 or Fhl A itself as well as Hyd − 4 were osmosensitive or play a role in

osmoregulation. It could not be ruled out that Hyd − 4 has a crucial role in osmotic

stress response, which could result in interaction with other proteins including F0F1

to stabilize the cell turgor and maintain internal pH and ∆p [183].
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Table 4. Motif centrality, MCD, pathways and k-values for S. Cerevisiae TRN.

Roles
TF/Gene A B MCD Pathway k-value
yap6 362 369 12 0 11
Rox1 213 193 12 0 11
PHD1 176 188 12 0 11
SWI4 120 242 9 3 11
NRG1 315 46 7 0 11
MSN4 59 203 12 4 11
MSN2 159 68 9 0 11
XBP1 20 173 12 0 11
Yap1 72 125 12 0 11
GCN4 117 74 12 0 11

5.2. S. CEREVISIAE TRN

• Four top candidates, Cin5, Skn7, Phd1, and Yap6, all known to be associated with

stress response gene regulation, were experimentally confirmed to physically interact

with Tup1 and/or Ssn6 [184].

• In this work we have overtaken a study trying to obtain integrative information about

the role of the S. Cerevisiae genes I XR1, ROX1 and SKY1 in the oxidative stress

response induced by As (V), Cd (II) and cisplatin in terms of modulation of four

enzymatic activities [185].

• Msn4 is two zinc-finger transcription factor initially described as mediators of the S.

Cerevisiae general stress response because of their capacity to jointly modulate the

expression of a large battery of unrelated genes in response to a shift to suboptimal

growth conditions [186].
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• The XBP1 promoter contains several stress-regulated elements, and its expression is

induced by heat shock, high osmolarity, oxidative stress, DNA damage, and glucose

starvation [187].

• Yap1 (21) controls a large oxidative stress response regulon of at least 32 proteins

[188].

• Gcn4 Is Required for the Response to Peroxide Stress in S. Cerevisiae [189].
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1. CORE PERIPHERY PHENOMENON

Core nodes are high degree nodes that are densely connected with each other. Anal-

ogously, nodes having very few links with higher ranked nodes are considered to be a

members of the periphery. Such core-periphery property is found in social networks [190]

and internet [191].

One measure of core-periphery phenomenon in networks is the rich club coefficient

introduced by Zhou and Mondragon [192, 193]. They defined the topological rich club

coefficient as the proportion of edges connecting the rich core nodes with respect to all

possible number of edges between them. Given a degree k in a network where N>k refers

to the nodes having a degree higher than k, and E>k denotes the number of edges among

the N>k nodes in the rich club, rich club coefficient is calculated as:

φ(k) =
2 × E>k

N>k × (N>k − 1)
(1)

Evidently if φ(k) = 0 the well-connected nodes do not share any links, if φ(k) = 1

the rich-nodes form a clique.

It is known that protein-protein networks, consisting of proteins as nodes and their

interaction as edges lack rich cores because the well-connected nodes tend to reside in

different communities and do not form a direct rich club with each other [194]. Let us now

evaluate the rich club coefficient of TRNs.

Figure 1 shows the degree vs. rich club coefficient φ for TRNs. Evidently, the

rich-club coefficient does not exceed 0.4 and high degree central nodes in TRN do not form

tightly interconnected communities. Thus, both E. coli and Yeast TRNs lack the rich club

phenomenon.



171

Figure 1. Degree vs. rich club coefficient for E. coli and Yeast TRNs.

2. FFLS ACROSS TIERS

Table 1 summarizes the percentage of Feed Forward Loops (FFLs) across tiers.

Table 1. Percentage of FFLs present across tiers.

Tiers 1-2 1-3 2-2 2-3 1-2-3
E. coli 0.08% 0.0% 11.4% 86.2 % 2.2%
Yeast 0.09% 0.0% 4.9% 83.2 % 10.8%

Table 1 shows that the maximum number of FFL motifs are present between tiers 2

and 3.

3. MAPPING ALGORITHM

Here is the mapping algorithm between any input topology Gg(Vg, Eg) and already

deployed WSN topology Gw(Vw, Ew). Each node u ∈ Vw is deployed in position Cu.

Algorithm description: In Algorithm 1, Vg and Vw are ranked in the non-increasing

order of pagerank [195] (Line 1). Higher the pagerank of a node, greater is its reachability.

Thus, the intuition behind the use of pagerank in this algorithm is to find a mapping between

any u ∈ Vw and v ∈ Vg which have similar reachability from other nodes. In course of this

algorithm, we define the mapping function m : Vw → Vg. The highest ranked v ∈ Vw is
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Algorithm 9 Graph mapping algorithm
Gg(Vg, Eg), Gw(Vw, Ew),C m
Nodes Vw and genes Vg are ranked in non-increasing order of pagerank
m = ∅ v = Vw[0]
for u ∈ Vg do

if δ(u) ≤ δ(v) then m[v] = u Vg = Vg − u Vg = Vg − u break
for u ∈ Vg do

for v ∈ Vw do f lag = False

for w ∈ m do
if e(u,m[w]) ∈ Eg and e(v,w) < Ew then f lag = True break
if flag = False then m[r] = g Vw = Vw − v

Figure 2. Performance ofWSNunder failure conditions. Fraction of source nodes connected
to at least one sink nodes under conditions of (a) No node failure (b) Random failure and
(c) Targeted failure of 20% nodes.

mapped to the highest ranked u ∈ Vg if δ(u) ≤ δ(v), where δ(u) denotes the degree of a node

u (Lines 4 - 6). Subsequently, each unmapped node v ∈ Vw is mapped to u ∈ Vg, if, for each

nodew ∈ Vw mapped to corresponding nodem(w) ∈ Vg and there exists e(u,m(w)) ∈ Eg, the

corresponding edges e(v,w) ∈ Ew must exist in Ew. The mapping function m is returned.

Finally, each node u in mapped-WSN G′w is deployed in position Cu.
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4. WSN PERFORMANCE

The WSN performance of any topology depends on the availability of commu-

nication pathway between the source nodes and at least one sink. TRNs tend to preserve

comparable number of source to sink communication pathways under conditions of no node

failure, random node failure and targeted node failure of up to 20% nodes. To illustrate our

point, we estimate the average fraction of source nodes connected to at least one sink nodes

in the three TRN topologies for 50 topologies of 300 nodes.

Figure 2 shows that a large fraction of source nodes connected to at least 1 sink for

dynamic TRN is comparable to that of original and greedily rewired topologies. Conse-

quently, the performance of rewired TRN-based WSNs exhibit a 5 − 10% improvement in

PDR and network latency over its original counterpart.
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