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ABSTRACT

Themain focus of this work is to use machine learning and data mining techniques to

address some challenging problems that arise from nuclear data. Specifically, two problem

areas are discussed: nuclear imaging and radiation detection. The techniques to approach

these problems are primarily based on a variant of Artificial Neural Network (ANN) called

Convolutional Neural Network (CNN), which is one of the most popular forms of ’deep

learning’ technique.

The first problem is about interpreting and analyzing 3D medical radiation images

automatically. Amethod is developed to identify and quantify deformable image registration

(DIR) errors from lung CT scans for quality assurance (QA) purposes. The method includes

the process of preparing a CT scan dataset for machine learning model training and testing,

design of a 3D convolutional neural network architecture that classifies registrations into

good or poor classes and a metric called Registration Error Index (REI), which gives us a

quantitative measure of registration error. The method achieves 0.882 AUC-ROC on the

test dataset. Furthermore, the combined standard uncertainty of the estimated REI by our

model lies within 11%, with a confidence level of approximately 68%.

The second problem is about automatic radioisotope identification in real-time. A

comparison of five different machine learning models is presented for gamma spectroscopy

at a wide variety of testing conditions. Moreover, Hybrid Neural Network (HNN) was

developed specifically for gamma-ray spectra data. Three different methods for feature

extraction were tested as well. Experiments on MCNP simulated spectra suggest that

HNN can achieve 2-12% higher F1 score at difficult testing conditions compared to best

performing traditional ML models and obtains 93.33% F1 score during evaluation.
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1. INTRODUCTION

1.1. MACHINE LEARNING

Machine learning (ML) is a field of study that gives computers the capability to

learn without being explicitly programmed. New computing technologies and availability

of the significant amount of digital data created the opportunity to develop more advanced

MLmethods than the past. While many of the algorithms have been around for an extended

period, the ability to apply complex mathematical models to big data, over and over, faster

and faster, is a relatively recent development. ML algorithms are useful where it is difficult

to program a mathematical problem straightforwardly. Some of the ML applications that

have seen success in recent years include computer vision, natural language processing,

medical diagnosis, self-driving cars, customer demand prediction, fraud detection, email

filtering, and others.

The term machine learning was first used by Arthur Samuel (Samuel, 1959). Tom

Mitchell (Mitchell, 1997) provided a formal definition of ML: "A computer program is said

to learn from experience E with respect to some class of tasks T and performance measure

P if its performance at tasks in T, as measured by P, improves with experience E." This is

more of an operational definition in nature than cognitive reasoning. This also represents

the same idea as Alan Turing suggested in his article (TURING, 1950) that the question

"Can machine think?" should be replaced with "Can machines do what we can do?". This

implies that the ML concept is mostly learning from experiences rather than building an

actual "thinking" machine.

ML algorithms build mathematical models that are based on some sample data,

known as "training data." When the correct label of the training data is known in prior,

the models can be trained in a supervised manner, otherwise can also be trained in an
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unsupervised fashion. Some of the most commonly used machine learning algorithms

includeNaiveBayes, Linear/Logistic Regression, Artificial Neural Network, Support Vector

Machine, K-Nearest Neighbour, Decision Tree, Random Forest, K-means Clustering and

others. These algorithms are general-purpose methods and work on various representations

of data.

Based on the pattern of training data, different MLmodels with different capabilities

were developed in the past. Traditionally, the most common type of data found in ML

applications is in structured format, meaning data that are highly organized in a relational

manner such as, data presented in a spreadsheet logically, is an example of structured data.

On the other side, unstructured data type is everything else that is not structured, including

image, video or audio data. This kind of data is information-rich, but not as organized

as structured data, For computers, structured data is far more easier to understand than

unstructured data cases.

1.2. DEEP LEARNING

Deep learning (DL) is a form of machine learning that takes advantage of modern

computing hardware in order to train largeMLmodels using a significant amount of training

data. DL methods are based on artificial neural networks, and recently achieved high

performance in unstructured data cases (i.e., computer vision, language processing related

problems). With the availability of sufficient amount of training data, DL methods can

achieve near human-level accuracy at specific prediction tasks, including, image recognition

(Russakovsky et al., 2015), which would be otherwise challenging with a traditional ML

algorithm. DL methods also require much less pre-processing of data, which makes them

an attractive option as an ML technique.

Though DL methods are promising techniques, they require a vast amount of train

data to generalize sufficiently well. In contrast, traditional ML algorithms, such as Gradient

Boosted Decision Trees (GBDT) or Support Vector Machine (SVM) are simpler, more
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Figure 1.1. A relational diagram of Artificial Intelligence (AI), Machine Learning (ML)
and Deep Learning (DL)

explainable methods than DL, and can work well with a little amount of train data. These

methods are suitable for structured data cases, and widely used in real-world applications.

Figure. 1.1 shows a relational diagram between Artificial Intelligence (AI), ML and DL

fields.

1.3. DISSERTATION OVERVIEW

This dissertation presents two areas of ML applications that address both unstruc-

tured and structured data problems. The unstructured data case is analyzing nuclear images

and the structured case is about automated radiation detection from gamma-spectra.

The first study presents an automatic algorithm for Quality Assurance (QA) on lung

CT scan images. For example, if a patient is going through radiation treatment, CT scans

are taken at different times in order to compare the changes happened inside the lung,

because of the treatment. When two such CT images are brought together into alignment

for comparison, that process is known as Deformable Image Registration (DIR). Computer

algorithms are usually used to perform automated DIR. DIR algorithms do not produce

acceptable results at every time, requiring a QA tool that is capable of identifying DIR

errors. We have presented a method to identify registration errors made by DIR algorithms,

using the DLmethod. Convolutional neural networks were employed to train the model. We
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show that, even with a limited amount of train data, DL methods show promising results in

challenging conditions. Moreover, we show a method to quantify registration error, called

Registration Error Index (REI). The method developed can be applied to image registration

problems from other domains or even for other body-parts.

The second study presents an MLmethod for automated detection and identification

of radioisotopes using gamma-ray spectra. Gamma spectrum data is usually stored in an

organized manner and can be viewed as structured data. Moreover, spectrum peak energies

are sequentially related to each unique radioisotope. We have developed ML methods that

maximize the use of information from gamma spectra by using hybrid neural networks. We

have compared fiveMLmodels at different conditions and show that algorithms designed to

address problems with a distinct pattern, such as gamma spectra, can produce more accurate

and reliable results than traditional generalized methods.

The dissertation is organized in the following sections:

1. Related Works on Machine Learning: In this section, relevant ML algorithms for

this dissertation study cases are described, More importantly, Convolutional Neural

Network (CNN) is discussed in detail, along with other Artificial Neural Network

methods, such as, Fully Connected Neural Network (FCNN) and Recurrent Neural

Network (RNN). Apart from DL methods, a traditional decision tree based method,

GBDT is also discussed.

2. Quality Assurance of Medical Image Registration with Convolutional Neural Net-

work: This section describes the method of registration QA algorithm. More specif-

ically, the process of training dataset construction from medical 3D images, method

of training a 3D CNN, a method for error quantification and discussions on the

advantages and limitations of the algorithm is presented.
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3. Automated Radioisotope Detection using Hybrid Neural Networks: This section

discusses some traditional methods of automated radioisotope detection algorithms,

their limitations, and hypothesis on improving the methods. Next, we have described

the method of designing hybrid neural networks for gamma spectra data. Further,

we have presented a comparative study of three traditional methods and two newly

developed hybrid methods.

4. Conclusion: Finally, we conclude the dissertation by summarizing the findings in the

studies.
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2. RELATEDWORKS ON MACHINE LEARNING

This section describes necessary backgrounds on several machine learning meth-

ods that would make this dissertation self-contained. More importantly, Artificial Neural

Networks (ANNs) are described in detail. Among ANN methods, Fully-connected Neural

Network (FCNN), Convolutional Neural Network (CNN) and Recurrent Neural Network

(RNN) are discussed. Other supervised ML methods, such as Gradient Boosted Decision

Tree (GBDT) is also reviewed.

2.1. ARTIFICIAL NEURAL NETWORK

Artificial Neural Network (ANN) is one of the most widely used machine learning

methods in recent years. ANNs have been successfully applied in many disciplines, such

as computer vision, language processing, time-series prediction, anomaly detection, fraud

detection, weather prediction, playing board and video games, and many more.

An artificial neuron, commonly referred to as a "perceptron" (Rosenblatt, 1961),

is a computational unit that receives information from another perceptron, manipulates

it and pass the processed information to the next perceptron. When several perceptrons

are connected systematically, they form a network-like structure. With the help of an

optimization and training algorithm, the network can memorize or generalize patterns from

complex data representations. Typically, artificial neurons are connected in layers. These

connections are called ’edges’ and edges have weights that adjust during a training process.

The term ’training’ is also referred to as ’learning’ in some literature. Figure. 2.1 shows a

schematic diagram of a perceptron and its connections.
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Figure 2.1. Schematic diagram of an artificial neuron or a ’perceptron’

There are several varieties of ANNs that are applied in practice to address different

kinds of machine learning problems. Majority of the ANN approaches are supervised in

nature, meaning they need a labeled dataset for training. Fully-connected Neural Network

(FCNN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are

some of the most common ones and described in the following sections.

2.1.1. FullyConnectedNeuralNetwork. Fully-connectedNeuralNetwork (FCNN)

is the classical form of neural networks. Artificial neurons are arranged in a layer-wise man-

ner, and each neuron in one layer connects to all neurons in the next layer. An FCNN with

only one hidden layer can approximate any non-linear function. Typically, there is one input

layer, one output layer, and there can be multiple hidden layers. Hidden layers produce an

abstract representation of input vectors, which is more meaningful to the output layer. With

the increasing number of neurons and the hidden layers, the number of connections and

learnable parameters increases significantly. FCNNs can distinguish data that is not linearly

separable. FCNN was a popular machine learning solution in the 1980s, but after that,

they faced stiff competition from a much simpler method, Support Vector Machine (SVM).

Figure. 2.2 shows a schematic diagram of a classical FCNN and its weight connections.
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Figure 2.2. A simplified graph of classical fully connected neural network

2.1.1.1. Training algorithm - backpropagation. Backpropagation (BP) is a tech-

nique to train ANNs efficiently by following a gradient descent approach. Gradient descent

calculates the gradient of the error with respect to the networks modifiable weights. BP

exploits the chain rule in a recursive manner and updates weights of a neural network

iteratively until it can perform the task for what it is being trained. BP works in four steps:

1. Forward pass

2. Loss calculation

3. Backward pass

4. Weights update

Gradient of error between two neurons, i and j , compared to the true label can be

estimated by,

∂Ep

∂w ji
=
∂Ep

∂opj

∂opj

∂w ji
(2.1)

where, Ep is the loss function that is optimized during training, w ji is the weight between i

and j and opj is the predicted value of target p.
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Figure 2.3. Some example activation functions that are commonly used in artificial neural
networks (datawow.io, 2019)

2.1.1.2. Activation functions. Activation functions are used to calculate the output

in a layer of a neural network. These functions usually scale the output of a neuron between

0 to 1 or reduce the complexity of numbers by discarding some less important values. Some

example activation functions are presented in Figure. 2.3.

2.1.2. Recurrent Neural Network. The idea behind the Recurrent Neural Network

(RNN) is to make use of sequential information. Traditional FCNN assumes that all

inputs are independent of each other. But for many tasks such as speech recognition or

text understanding, consideration of sequential relationship is very important for building

predictivemodels. Unlike FCNNs, RNNs have temporal connection between neuronswhich
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Figure 2.4. A simplified graph of recurrent neural network

makes them suitable for exploiting sequence relationship. RNNs have shown great success

in Natural Language Processing (NLP) tasks (Graves, 2013; Graves et al., 2014; Hermann

et al., 2015a; Mikolov et al., 2013; Sutskever et al., 2014) in the recent years. Figure. 2.4

shows a schematic diagram of a RNN and its connections.

2.1.3. Convolutional Neural Network. Convolutional neural network (CNN) is

a class of deep neural network that have revolutionized many areas of machine learning

including computer vision such as image classification (Goodfellow et al., 2013; He et al.,

2016a,b; Hinton and Salakhutdinov, 2006; Krizhevsky et al., 2012; Sermanet et al., 2013;

Szegedy et al., 2016), object detection (Girshick et al., 2016; He et al., 2014; Redmon et al.,

2016; Ren et al., 2015), image segmentation (Chandra and Kokkinos, 2016; Chen et al.,

2017; Jegou et al., 2017; Kayalibay et al., 2017; Long et al., 2015; Moeskops et al., 2017;

Peng et al., 2017; Zhao et al., 2017) and speech recognition (Kalchbrenner et al., 2014)

related problems.
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CNNs are regularized version of multi-layer perceptrons and primarily successful in

unstructured data cases such as image, video or audio related problems. CNNs can extract

abstract representations of input data that contains spatial or temporal relationship, and

they are also known as ’shift-invariant’ or ’space invariant’ neural networks. Convolutional

networks require many training data to generalize well.

CNNs usually needs little prepossessing compared to other image recognition al-

gorithms. The network learns features by convolution operation, which otherwise would

be hand-engineered. CNNs can replace the process of extracting hand-engineered features,

which makes them an attractive option for data sets with an intricate pattern or sequence.

Below the building blocks of a CNN are discussed.

2.1.3.1. Convolutional layer. Convolutional layer is the most important building

block of a CNN. This layer consists of learnable filters (or kernels) that produce an activation

feature map of the input volume. The filters convolve across the input space and compute

the activation maps by taking a dot product between the filter and the input receptive field.

Finally, the learned filters activate when it sees some similar pattern in the input data and

detects the presence of a signal. By stacking all the activation maps next to each other,

several abstract representations of the input data can be obtained. Figure. 2.5 shows the

process of generating feature maps using convolutional kernels.

2.1.3.2. Activation layer. ReLU, abbreviated as Rectified Linear Unit, is the most

commonly used activation function for CNNs. It’s a function such that,

f (x) = max(0, x) (2.2)

ReLU effectively removes the negative entries from an activation map and sets them

to zero. It is a non-linear activation and usually preferred for convolutional network training

because they are several times faster than other activation functions such as hyperbolic tan-

gent, or sigmoid and yet does not compromise much of the generalization ability. Figure. 2.6

shows the operation of ReLU activation function.
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Figure 2.5. An example of generating feature-maps from input data using a convolutional
kernel

2.1.3.3. Pooling layer. Pooling is another important concept in CNNs. Pooling

layer downsamples data non-linearly by selecting a segment/sub-region from the input and

taking the maximum or average from that segment. The segments are generally non-

overlapping, and max-pooling is one of the common forms of the pooling operation. The

Figure 2.6. An example of ReLU activation function
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Figure 2.7. An example of downsampling operation by max-pooling technique

main purpose of pooling operation is to gradually downsample the input data so that the

filters/kernels can operate at different resolutions of the data. Pooling layers can operate

independently on the activation maps.

An important advantage of pooling layer is that it gradually reduces the input space,

making the network operate in a decreased spatial size. This helps in learning more kernels

at lower trainable parameters andmemory cost. Traditionally, A CNN is trained by inserting

pooling layers between successive convolutional layers. Figure. 2.7 shows an example of

max-pooling operation.

2.1.3.4. Fully connected layer. Fully connected layers of neurons can be employed

after several convolutions, activation, and pooling layers. These fully connected layers

learn from the final convolutional representations of input data and are similar to FCNN

architecture.

2.1.3.5. Loss layer. ’Loss layer’ is usually the final or output layer of a neural

network. It specifies how a training algorithm penalizes the difference between the predicted

and true label. A loss function estimates the error at each training iteration, and the training

algorithm works on minimizing the loss. Some commonly used loss functions include

cross-entropy (CE), mean squared error (MSE), hinge, and others. Loss functions are

chosen based on classification requirements. Softmax and sigmoid are the two commonly

used activation functions for the loss layer. Figure. 2.8 shows the activation maps of the

input at different layers of a CNN.
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Figure 2.8. Activations of a convolutional neural network at different layers (stanford.edu,
2019 (accessed July 7, 2019)

If a vector of n predictions generated from a sample of n data points, and Y is the

vector of observed values of the variable being predicted, then the within-sample MSE of

the predictor is computed as,

MSE =
1
n

n∑
i=1

(
Yi − Ŷi

)2
(2.3)

The standard softmax function σ : RK → RK is defined by the formula,

σ(z)i =
ezi∑K

j=1 ezj
for i = 1, . . . ,K and z = (z1, . . . , zK) ∈ R

K (2.4)

2.1.3.6. Hyperparameters. The parameters that need to be defined before training

a neural network are commonly termed as hyperparameters. For CNNs, some of the

hyperparameters include the number of filters, filter size, number convolution layers, number

of pooling layers and shape, connection type between layers, and some others. These

parameters usually depend on dataset type and size and need empirical trials for finding a

working set of hyperparameters.
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2.1.3.7. Regularization. To successfully train a neural network, it often needs

regularization to prevent overfitting. Some of the regularization method includes dropout

(Srivastava et al., 2014a), drop-connect (Wan et al., 2013), l1 or l2 regularization and others.

Dropout works by simply not updating the weights of a certain percentage of neurons at

each iteration during training. This method prevents learning every possible pattern from

input data, which reduces the possibility of overfitting.

Another successful method of increasing generalization of the neural network is data

augmentation. Augmentation is the act of creating more training data by applying simple

transformations/shift to the original data (i.e., random crop, translation, rotation, brightness

shift, contrast shift, and among others). This technique works as a regularizer as neural

network sees more data from different perspectives and tries to generalize among all the

train data.

2.2. GRADIENT BOOSTED DECISION TREES

Gradient boosted decision trees (GBDT) is one of themost popular machine learning

algorithms for regression and classification tasks in recent years. GBDT achieves state of

the art results in the prediction tasks where data is in ’structured’ form, meaning data is

presented in a highly organized tabular format (unlike image, speech, or text).

Gradient boosting is based on the idea that an ensemble of weak learning models,

such as decision trees, can produce better results than a single model. It builds the model

in a stage-wise fashion and generalizes by optimizing a loss function. Figure. 2.9 shows a

simplified schematic diagram of a decision tree.

A weak hypothesis or a weak learner is defined as one that predicts at least slightly

better than random choice. Hypothesis boosting is the idea of filtering observations, leaving

the simple observations that a weak learner can handle, and further focuses on more difficult

observations. The first realization of boosting algorithm was AdaBoost, an acronym for
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Figure 2.9. A simplified graph of a decision tree

Adaptive Boosting (Freund et al., 1999). The weak learners in AdaBoost were decision

trees, called decision stumps. Predictions were made by a majority vote of weak learners,

weighted by their accuracy. AdaBoost was further generalized by treating it as a numerical

optimization problem, where the objective was to minimize the loss using a gradient descent

like procedure.

In general, GBDT is an algorithmic approach to split a dataset based on different

conditions (i.e., if-else-then). The more complex the data pattern, the GBDT algorithm

finds more ways to assign conditions on the data. These models do not consider any

sequential relationship between input data points. Some of the popular gradient boosting

algorithm using decision trees include Light Gradient Boosting Machine (LightGBM) (Ke

et al., 2017), CatBoost (Prokhorenkova et al., 2018) and XgBoost (Chen and Guestrin,

2016) methods. There are several parameters in a GBDT model that needs to be defined to

prevent overfitting on data, such as number of trees, tree depth, number of leaves, number

of observations per split, minimum improvement to loss are some of the most important

ones.
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3. QUALITY ASSURANCE OF MEDICAL IMAGE REGISTRATIONWITH
CONVOLUTIONAL NEURAL NETWORK

3.1. BACKGROUND AND SECTION OUTLINE

Image registration, the process of identifying corresponding features between two

images in order to bring the images into alignment, has become a critical basic task

in radiotherapy. Many applications rely on image registration, including image guidance,

adaptive radiotherapy, multi-modality segmentation, and image-based assessment of therapy

response.

Deformable image registration (DIR) ismoving into the clinic for automated calcula-

tion of cumulative delivered dose for assessing the quality of treatment. However, regardless

of which DIR algorithm is used for assessing cumulative dose, there is a lack of useful qual-

ity assurance (QA) tools and processes. Phantoms and publicly-available datasets are useful

for algorithm validation and benchmarking, but cannot be used to directly infer the quality

of an individual patient registration in the clinic. Deformably-mapped contour comparison

and landmark analysis are useful, but also time-consuming and therefore not appropriate

for first-line QA. Many clinics, therefore, fall back on manual, visual review of registration

results. However, time and clinical resources are limited for such manual, intensive review

of every registration performed for every patient. Instead, a first-line QA process is desired

that can automatically assess the quality of the registration, and flag questionable results for

in-depth review by a physicist, physician, or other experts.

One of the challenges in registration QA is to develop an evaluation method that

describes the true underlying registration quality, rather than the noise (Pluim et al., 2016).

Various image similarity measure algorithms like the sum of squared difference (SSD),

mutual information (MI), correlation ratio or least squares are found in the literature to

express the quality of registration. However, the similarity of intensity is not an appropriate
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Figure 3.1. Registration result in one pair of corresponding slices from CT scans of
two patients. The colors magenta and green are used in a complementary color overlap
to represent matching quality in two corresponding slices after registration. Here, the
registration result in the lung parenchyma for patient A might be acceptable because of the
good alignment in the soft tissue region, even though there is misalignment in the bony
structures. Conversely, the registration result for patient B might not be acceptable in the
parenchyma as the soft tissues did not align well. A registration QA tool should be capable
of identifying mismatched regions in both registration settings.

measure of accuracy (Rohlfing, 2012). To quantify local registration accuracy measure-

ment, researchers have introduced and utilized the concept of target registration error (TRE)

(Datteri and Dawant, 2012; Eppenhof and Pluim, 2018; Fitzpatrick and West, 2001; Fitz-

patrick, 2009; Gierga et al., 2008; Latifi et al., 2013; Ma et al., 2007; Moghari et al., 2008;

Neylon et al., 2017; Seginer, 2011) or landmark registration error (LRE) (Muenzing et al.,

2012). One way to approximate TRE in the non-rigid setting is to measure the physical dis-

tance between corresponding landmark points in the registered image pair, also commonly

known as landmark distance error (LDE) (Fischer et al., 2010). Landmarks can be manually

annotated by experts or semi-automatically generated (Murphy et al., 2011a). Therefore, a

quality measure derived from TRE is a more preferred method for expressing registration

error as it considers physical/anatomical misalignment. Figure. 3.1 shows two examples of

misalignment after registration between an image pair.
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This work describes the feasibility of using a deep learningmethod to flag suspicious

registration results for review by an expert or for re-registration. The goal is to develop a

registration QA approach which can be used to infer registration quality across important

regions of the anatomy rapidly. Here, we have used 3D convolutional neural networks (3D-

CNN) to estimate registration error inside the lung parenchmya of pulmonary CT scans by

classifying sub-regions (patches) from a full CT scan into acceptable or unacceptable classes

of registration quality. In this work, we propose three major contributions: (a) a method

to prepare the dataset for registration accuracy evaluation, (b) a 3D-CNN architecture

that is computationally efficient and fast, and (c) a method to quantify registration error

called registration error index (REI). In the following sections, we describe relevant works,

methods of our algorithm, experimental procedure, and evaluation.

3.2. RELATEDWORKS

Several methods have been reported in the literature to quantify registration errors

in medical images. Some of them serve as general purpose algorithms, while others are

problem specific. This previous work in automatic image registration quality assessment

can be divided roughly into unsupervised and supervised approaches. In the unsupervised

approach, an assessment of quality is made based on the data without using a learning

method. In the supervised approach, a training dataset with a known estimation of reg-

istration quality is used to train a model to infer registration quality in an unseen, new

dataset.

Unsupervised approaches include that by Datteri et al. (Datteri et al., 2015), who

proposed a method that uses a ’registration circuit’ to measure the quality of registration.

They have claimed that their measure of registration quality correlates well with true target

registration error (TRE), and can be used to reduce registration errors in different algorithms.

Additionally, Saygili et al. (Saygili et al., 2016) proposed a method that does not require

ground truth to estimate registration error and is independent of the registration algorithm
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used. They have extracted various image features inside a voxel to match local patterns

between the registered image pairs. They have reported a good agreement between local

errors with their estimated error. Furthermore, Saleh et al. (Saleh et al., 2014) proposed

a DIR performance metric called the distance discordance metric (DDM), that measures

registration uncertainty using a statistical sampling technique on deformation vector fields

(DVFs). The main limitation of this method is that it requires at least four registered images

for the calculation.

In supervised approaches, Neylon et al. (Neylon et al., 2017) reported a method

that estimates DIR performance using a 3-layer deep neural network. They created a

simulated head-neck dataset with ground truth annotations. Image similarity metrics (ISM)

were calculated and fed into the neural network to estimate TRE. They have reported 95%

accuracy within a single voxel to quantify DIR error.

Supervised registration quality estimation specifically for lung CT scans, has been

studied aswell. For example,Muenzing et al. (Muenzing et al., 2012) proposed a supervised

machine learning approach to estimate lung CT registration errors from statistical image

features. Features were calculated from manually annotated landmark points to distinguish

local alignment patterns. They classified the registration quality into three classes: good,

poor and wrong alignment and reported 90% accuracy. They have used this method to

further boost the performance of existing DIR algorithms (Muenzing et al., 2014). Another

approach proposed by Sokooti et al. (Sokooti et al., 2016) is a regression forest basedmethod

to estimate registration errors in synthetically deformed chest CT scans. The authors have

shown that regression is also a viable option to quantify errors as compared to classification

(Muenzing et al., 2012). Moreover, the authors claim an accuracy of 93.4% when they

tested the algorithm to classify registrations incorrect, poor or wrong classes. Recently,

Eppenhof et al. (Eppenhof and Pluim, 2018) proposed a sliding window 3D-CNN based

approach to estimate registrations errors on lung CT scans. They have used synthetically

deformed pair of a CT scan to train the network on 33x33x33 patches. They have evaluated
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their approach on two standards: against a known, synthetic deformation field, and against

manually annotated landmark points. They have reported a root-mean-square deviation of

0.51 mm from gold standard errors and 0.66 mm from ground truth landmark errors.

These previous supervised methods have been developed using hand-engineered

features. However, it is challenging to utilize the full potential of a large amount of data

by standard feature engineering-based methods, as it is more difficult to construct useful

features which scale across imaging modality, registration algorithm, the magnitude of

anatomical change, and body site. Recently, deep learning based methods have become

more popular, as they can take advantage of the available data. Significant improvements

have been reported in computer vision related problems by using convolutional neural

networks (CNN) (Russakovsky et al., 2015), which are well suited for medical image

processing. Eppenhof et al. have employed convolutional neural networks to learn features

predictive of registration accuracy (Eppenhof and Pluim, 2018). They used 3D-CNN

and demonstrated model performance in the same deformation setting (breathing motion),

achieving an impressive 0.66 mm predictive accuracy.

In this study, we use 3D convolutional neural networks to learn features to predict

registration accuracy from image patches. We have trained our algorithm on publicly

available pulmonary CT scans with one type of deformation (breathing motion), and tested

it on in-house measured pulmonary CT scans with different anatomical change (day to day

change in anatomy). To design a 3D-CNN for this purpose, we have closely re-implemented

Eppenhof’s (Eppenhof and Pluim, 2018) 3D-CNN architecture as a reference standard and

compared its performance with ours. We show comparisons that our architecture performs

with significantly less number of trainable parameters, which enables our approach to

predict registration accuracy in the out of sample setting of different anatomical change.
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3.3. MATERIALS AND METHODS

Below we describe the two separate lung CT datasets that were used for training and

evaluating our method.

3.3.1. Training Dataset: DIRLAB 4DCT Dataset. Training dataset was gener-

ated from the publicly available http://www.dir-lab.com/DIRLAB 4DCT dataset that has

images from ten patients. Each 4DCT scan contains five 3DCT images that cover the

respiratory cycle between inhalation and exhalation. Out of ten patients, five were free

of any lung disease (Castillo et al., 2009) and the remaining five were treated for thoracic

abnormalities (Castillo et al., 2010). Images have either 256x256 or 512x512 voxels in-

plane and between 94 to 138 slices. In-plane voxels have cross-sectional area of 0.97x0.97

to 1.16x1.16 mm2. The thickness of all voxels is 2.5 mm. For each 4DCT image, only

the extreme inhale and exhale pair were made available for registration. The images were

provided with 300 expert annotated landmark points distributed in the lung parenchyma

each as ground truth (GT) for evaluation.

3.3.2. Testing Dataset: 4D Lung CT Dataset. Testing data for this work was

gathered from patients treated with locally advanced non-small cell lung cancer at Virginia

Commonwealth University (Guy et al., 2018a). 4DCT or breath-hold scans of 17 patients

were acquired during their course of radiotherapy on an institutional review board approved

protocol after informed consent. The 4DCT patient data is also publicly available in the can-

cer imaging archive as part of the https://wiki.cancerimagingarchive.net/display/Public/4D-

Lung4D-Lung Dataset (Hugo et al., 2017). Image pairs were extracted for each patient.

The simulation CT was selected as the baseline image and a mid-treatment CT selected

from multiple re-simulation CTs acquired weekly during treatment. Note that all patients

in this dataset had atelectasis (partially collapsed lung) with observed large anatomical

changes due to resolution or progression of the atelectasis. The mid-treatment image was

the one showing typically the largest amount of anatomical change, which represents a very

different type of deformation than that seen in the DIRLAB dataset.
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All images have 512x512 voxels in-plane, and the number of slices ranges from

98 to 155. In-plane voxels have resolutions between 0.98x0.98 to 1.37x1.37 mm2. Slice

thickness ranged from 2 to 3 mm. For landmark generation, isiMatch software developed by

Imaging Sciences Institute of the University Medical Center Utrecht (Utrecht, Netherlands)

(Murphy et al., 2011a)was used, as described inGuy et al. (Guy et al., 2018a). Furthermore,

the landmark sets underwent a rigorous QA process and were verified by an experienced

physician (Guy et al., 2019). On average, there were 169 landmarks per patient, with

a standard deviation of 31. Testing data differed from training data in the way that it

had large anatomical deformations compared to training data as described above, and

that landmarks were annotated by different experts. Therefore, testing data represented a

different deformation condition than in the training data.

3.3.3. Quality Assurance Algorithm. This section describes the method to quan-

tify registration error between two sets of 3D volume images which have been registered

with an arbitrary registration algorithm R. We employ a supervised deep learning approach,

building a model to predict registration quality (based on LDE) from a pair of registered

images. For training data, we determine registration quality based on thresholded mean

LDE within a sub-volume as the ground truth and sub-volumes (patches) extracted from the

registered images as the inputs. A neural network is used to construct the model. For infer-

ence of registration quality, a new pair of registered images is input into the model, which

extracts sub-volumes from the images over the entire region of interest, infers registration

quality for each sub-volume, and then reports registration quality for each sub-volume. Use

of a sub-volume-based rather than a full image-based model was selected to maximize

re-use of the imaging data, which should reduce the need for unique patients in the model

training. This approach has been employed elsewhere, for example, in dictionary-based

image reconstruction and other deep learning approaches.
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For proof of principle, we assume pairwise registration between two images of the

same modality, with a single transformation which deforms a moving image to match a

fixed image. The fixed image is defined as I f (®x) and the moving image as Im(®h(®x)), where

the transform ®h(®x) maps 3D points ®x in the fixed image domain to the point ®y moving

image domain, ®y = ®h(®x). I f (®x) represents the fixed image that does not go through any

transformation during registration, while Im(®h(®x)) represents the moving image which goes

through transformation according to a DIR algorithm R to align with I f (®x). The details of

the registration algorithm R are described in section 3.3.4.1.

To calculate LDE between I f (®x) and Im(®h(®x)) after registration, wemeasure physical

distance (in mm) between the set of k landmark positions identified by an expert in the

moving image and the position of the corresponding landmark after registration by R, such

that,

LDE = | |yk − y′k | | (3.1)

where y′k is the expert-identified position of landmark k in the moving image and yk is the

registration-mapped position of the landmark in the moving image.

To quantify registration error between two images, one can calculate the probability

of error in each voxel of the registered volume image (regression problem). For quality

assessment, classification of a patch into acceptable and needs review meets our needs, so

we treat the problem as a classification problem and classify sub-volumes inside the full

image into good (acceptable) or poor (needs review) quality classes. Based on preliminary

experiments, we have chosen a sub-volume of size 32x32x32 inside the lung region of the

CT scan to be classified based on its mean LDE value. Finally, we compute the overall

registration quality of a patient’s CT scan, registration error index (REI), by the following

formula,
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REI =
Ngood

Ntotal
(3.2)

where Ntotal is the total number of sub-volumes and Ngood is the number of acceptable

registered sub-volumes in the registered image.

3.3.3.1. Image pre-processing. One of our objectives was to develop an algorithm

invariant to image intensities and resolution. For example, in clinical cases, images may

come from different scanners and different settings, which may affect the performance of

a computer algorithm. To satisfy this goal, we have rescaled the image intensity values

between 0 to 1 based on the input image’s real data type (e.g., 8-bit, 16-bit or 32-bit)

(Lowekamp et al., 2013). Moreover, different images might have a different spatial reso-

lution (e.g., voxel size) in all x,y,z directions. Standard practice is to resample the images

to 1x1x1 mm3 voxel resolution. However, we chose not to normalize the spatial resolu-

tion as different resolution images provide us a natural way for incorporating variations

(augmentations) during neural network training.

The images were normalized according to the formula (Lowekamp et al., 2013):

Iout(x,y,z) = (Iin(x,y,x) − Iin,min)
(Iout,max − Iout,min)

(Iin,max − Iin,min)
+ Iout,min (3.3)

3.3.3.2. Training dataset construction. One method of generating training and

testing samples is by using a sliding window approach, that propagates through the CT

volume (Eppenhof and Pluim, 2018) and generates sub-volumes. In this study, we have

chosen random sampling of sub-volumes from the registered images to generate samples.

By employing random sampling, we were able to generate a reasonable amount of class-

balanced training samples from each image pair, which is important for CNN training. We

have chosen sub-volumes from 100 random locations inside the lung region for each image

pair. Sampling was controlled to ensure that enough landmarks were found within a region

to generate a reasonable estimate of mean LDE. A minimum of 5 landmarks were required
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Figure 3.2. Training sample preparation. (a) a slice from the fixed image I f (®x), (b)
corresponding slice from the registered moving image Im(®h(®x)), (c) volume view of a fixed
patch I f , j(®x), (d) volume view of corresponding patch the moving image Im, j(®h(®x)) from
same location as I f , j(®x), (e) subtracted view of (c) and (d). Neural network input is a
composite image of (c), (d), and (e), (f) a sub volume inside the full image.

in each sub-volume, or a new random sample was drawn.I f , j(®x) and Im, j(®h(®x)) are the j − th

sub-volumes from I f (®x) and Im(®h(®x)), respectively. To construct the input samples for the

neural network, we formed a composite image of three sub-volumes: I f , j(®x), Im, j(®h(®x))

and absolute difference of these two images, |I f , j(®x) − Im, j(®h(®x))|. Therefore, each input

sample was a four-dimensional array of shape 32x32x32x3. Figure. 3.2 shows the process

of creating training and testing samples.

3.3.3.3. Neural network architecture. Some of the challenging aspects of select-

ing a 3D-CNN are high computation cost requirement, size of training data required for

generalization, and lack of pretrained networks for domain-specific problems in medical

imaging. Different CNN architecture designs were investigated by various research groups

to address medical imaging problems (Dou et al., 2016, 2017; Eppenhof and Pluim, 2018;

Ghafoorian et al., 2017; Kamnitsas et al., 2017; Sokooti et al., 2017). A well-designed

architecture should be computationally efficient, without overly compromising on the ac-
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curacy. In this study, we have investigated two CNN architectures, and have compared

the performance between them. One architecture was adapted and re-implemented from

Eppenhof’s (Eppenhof and Pluim, 2018) proposed model (model B in Figure. 3.3), and we

treat this model as our reference model. This network was slightly modified to work as

a classification model, whereas the original implementation was for the regression model,

and it has around 1.3M trainable parameters. Next, we have experimented with a six-layer

neural network (model A in Figure. 3.3) that has around 308K trainable parameters. Input

for the 3D-CNNwas a 4D image (3 channel image of 3D sub-volumes) where the first chan-

nel came from the fixed image, the second channel from the transformed moving image,

and the third channel from the mathematical subtraction between the above two images,

as described above. For convolution, 3x3x3 kernels were used. After every convolutional

layer, feature maps were down-sampled by 2x2x2 max-pooling layers, except for the last

convolutional layer. We have also extracted additional feature maps by four consecutive

2x2x2 average-pooling of the input layer and concatenated it to the same sized feature maps

from the convolutional layers. This additional feature of pooling was aimed to improve

the performance, providing a better means of information flow. We have extracted bottle-

neck features from the last convolutional layer by global max-pooling operation (96 feature

maps). Finally, a fully-connected layer of 32 neurons was used before the classification

layer.

3.3.3.4. Trainingmethod. The neural networkwas trained using theAdam (Kingma

and Ba, 2014) optimizer, and binary cross-entropy was used as the loss function. The

network was trained for 50 epochs with the batch size of 32 samples. Different image

augmentations, such as random rotation, random translation, and random flip were used

to increase the generalization ability of the neural network. Batch normalization (Ioffe

and Szegedy, 2015) was also used to improve training performance. Dropout (Srivastava



28

Figure 3.3. Neural network architectures. model A - from this work, model B - reference
(Eppenhof and Pluim, 2018)

et al., 2014b) and L2 regularizer was applied to prevent overfitting. The hyperparameters,

such as learning rate, number of convolution layers, number of filters were chosen from

experimental results.

3.3.4. Experiments. This section describes the process of experiments and param-

eters used.

3.3.4.1. Registration. Using the SimpleElastix toolkit (Marstal et al., 2016), b-

spline based DIR was performed to register the moving to the fixed image, for each image

pair. To generate a large number of registrations with varying quality, the hyperparameters

of the registration were also randomly sampled for each registration. Sampled hyperpa-

rameters included: the similarity metric [SSD, MattesMutualIn f ormation], the weight

between the similarity term and a regularization term [100, 106], final b-spline grid spacing
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[2, 20] mm, and number of random samples for stochastic gradient descent based opti-

mization [2000, 10000]. All registrations were performed using the similarity cost plus the

regularization cost in a multiresolution framework (four levels of 8, 4, 2, 1x downsampling)

where both b-spline grid size and image resolution were downsampled, with automatic pa-

rameter estimation, and with 256 iterations per resolution level. Transform bending energy

was used as the regularization term.

This random sampling of registration hyperparameters and image region can be

used to generate a substantial number of registrations with only moderate correlation as

judged by the wide variation of registration quality as measured by registration accuracy

(see Figure. 3.5). We have created 100 registration pairs out of the 10 patient images

available for the training set and 33 pairs out of the 17 patients available for the test set.

3.3.4.2. Landmarks. By registering and applying the resulting transformation to

the landmark in one image, the expected location of the landmark in the other image is

generated. This expected location can be compared to the known location, and the distance

calculated as an estimate of registration error in the region surrounding the landmark,

known as the landmark distance error. In this dataset, the registration (dis)accuracy for a

given registration was represented by the mean landmark distance error over all landmarks

contained within the sampled fixed image region.

3.3.4.3. Train and test set generation. Training set Rather than having hundreds

of millions of image pairs available, we made samples by extracting sub-volume patches

from the ten image pairs available from the DIRLAB 4DCT dataset. Due to the similarity of

lung parenchyma across patients at the patch level, and with the ability to vary registration

quality by altering the registration hyperparameters, we are able to generate a large number

of samples for training. First, each sample was generated by randomly selecting an image

pair from one of the ten patients. Next, a 32x32x32 voxel region was randomly selected

from the end of the inhalation image, and set as the fixed image. As mentioned previously,

this region was tested to ensure at least five landmarks were present for the stability of
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Figure 3.4. Example of training sub-volume patches

LDE estimation. The same region from the end of the exhalation image was selected as

the moving image, and both images were saved to disk. For the current dataset, 100 sample

sub-volume pairs were generated per patient. Therefore, we have generated a total of 10,000

patches for training.

Testing set Testing set was generated in the same way as the training set, but using

VCU Lung CT data. Out of 33 registrations, we have generated 3,300 patches for testing.

To set a threshold for classifying registered sub-volumes as good, or poor quality,

we can use the histogram of registration accuracy in Figure. 3.5 as well as estimation of

acceptability for clinical use. Registrationswithmean landmark distance error below 3.5mm

were assigned as ‘good ’registrations. This threshold is similar to voxel size, which is a

reasonable goal for registration accuracy for clinical use and is supported by the histogram



31

Figure 3.5. Histogram of registration accuracy (mm), DIRLAB and VCU dataset.

analysis. Selection of a different threshold would require re-training of the model, but not

re-registration or re-sampling of the data. Figure. 3.4 illustrates four example patches at

varying mean LDE.

3.3.4.4. Implementation. We have used keras (Chollet et al., 2015) deep learning

library for neural network construction and training. The algorithm was tested on both CPU

and GPU based machines. It took about 72 hours to train the network for 50 epochs using

an Intel 8-core i7 processor. When an NVIDIA Titan X GPU was used along with the CPU,

training time was reduced to 48 hours. No significant speedup was observed while using

a GPU, as 3D image processing was heavily carried out on CPUs, and thus it became a

limiting factor for the GPU to get data from CPU.
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Figure 3.6. AUC-ROC curve for model A and B on DIRLAB and VCU test data

3.4. RESULTS

Wehavemeasured the performance of our method in terms of AUC (Area Under The

Curve)-ROC (Receiver Operating Characteristics) curve. AUC-ROC is one of the standard

metrics used for evaluating the performance of classification models. The curve is plotted

having true-positive rate against the false-positive rate. AUC-ROC value can range from 0

to 1. The higher the value, the better the model is at distinguishing between classes. We

have evaluated our model in two stages. At first, we have trained the models using 70% of

DIRLAB data and tested it on remaining 30% of data. Both model A and model B achieved

about 0.98 AUC-ROC. Next, we have tested the same models on VCU data and recorded a

performance of 0.882 for our model (model A) and 0.867 for the reference model (model

B). Therefore, our model outperforms the reference model by 1.02% AUC-ROC with 4.3

times fewer parameters. This improvement mostly comes from the carefully designed CNN

architecture, realistic data augmentation, and overfit prevention strategies. Figure. 3.6 shows

the AUC-ROC plot for all test cases.



33

Figure 3.7. Ground truth REI vs. Estimated REI on VCU dataset.

Table 3.1. Effect of data augmentation on VCU test set

Data Augmentation AUC-ROC CPU time(sec)
No augmentation 0.865 60±10
Train 0.872 60±10
Train + Test(5X) 0.882 180±20

Effect of data augmentation is shown in Table. 3.1. We have experimented with both

train and test time augmentations. Data augmentation improved the performance close to

2% compared to without augmentation. During testing, predicting a patch using multiple

augmentations similar to train (i.e., random rotation, translation, flip) provided a substantial

performance gain. However, by applying test time augmentation five times, computation

time increased nearly three times.

Additionally, we have evaluated our method using REI (Registration Error Index).

Figure. 3.8 shows both quantitative and qualitative comparison between ground truth and

estimated classes. We have presented three examples of patient cases where registration
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error was respectively low, high, and estimated REI differs most from ground truth REI.

REI values can range from 0 to 1, where 1 represents a perfectly acceptable registration,

and 0 represents an unacceptable registration. We have only classified 100 patches within

the lung volume to calculate REI. This approach made our method fast yet reliable for

registration quality quantification. From Figure. 3.8 (I) and (II), a good agreement between

ground truth(GT) and estimated REI was observed. For Figure. 3.8 (I), GT and estimated

REI was 0.90 and 0.92 respectively, and for (II) it was 0.39 and 0.40 respectively. However,

for (III), we observed a relatively high gap between GT and estimated REI (0.81 and 0.53).

Finally, we plotted GT REIs against the estimated REIs for all the registrations in

VCU dataset. Top chart of Figure. 3.7 shows the actual values of GT and estimated REIs,

where the bottom chart shows the relative error between them. GT REI values for VCU

dataset ranged from 0.99 to 0.39, and estimated values ranged from 0.99 to 0.37. The

combined standard uncertainty (i.e., measured standard deviation) of the estimated REI

lies within (True REI±0.11) (i.e., ±11% from GT REI value) with a level of confidence

of approximately 68%. Moreover, estimated REI values were higher than GT REI values

for most of the registrations (73% of the registrations), which implies that our model has

less probability to predict a poor registration as good than in reverse. This observation is

essential, as in clinical practice, it lowers the risk of clearing a poor registration for further

use without the review of an expert.

3.5. DISCUSSION

In this section, we have presented a method that estimates registration error from

3D volume images. This is a supervised machine learning algorithm which learns from

expert annotated images. Specifically, we have utilized annotated landmark points to

calculate mean LDE for different sub-volumes(patches) inside the lung region. Then the

LDE measures were used as ground-truth for training a 3D-CNN model which classifies



35

Figure 3.8. REI estimation. (I) An example registration where error was low. First row
represents 3 slices of same scan at different depths with ground truth error heat-map. Second
row represents the same 3 slices with predicted error heat-maps. The heat-maps show the
probability of registration error in respective slices. (II) An example where error was high.
and (III) An example where estimated REI differs most from ground truth REI

a patch as good (acceptable) or poor (needs review) class. Our proposed 3D-CNN model

showed promising results on out-of-train dataset images while training on a relatively small

number (i.e., ten patient scans from DIRLAB dataset) of image pairs.

Training on DIRLAB dataset and testing on VCU dataset provided us an opportunity

to evaluate the strengths and weaknesses of our proposed algorithm in a more realistic

manner. As expected, we have observed a drop in performance in the VCU test set compared

to DIRLAB test set (AUC-ROC 0.98 to 0.88). There are several reasons that might explain
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this result. First, we trained the model using only inhale and exhale pairs of CT scans

(DIRLAB data), while the VCU data consists of images of different treatment days and

contained larger deformations between scans compared to DIRLAB. Second, the landmark

annotation schema between the two datasets differs (300 landmarks per scan in DIRLAB

compared to 169 on average in VCU, landmarked by different physician experts using

different software tools for annotation). Third, the registration algorithms used between

DIRLAB and VCU dataset were different. For DIRLAB, a conventional b-spline algorithm

with standard intensity-based cost function was employed using SimpleElastix (Marstal

et al., 2016), while for VCU, an in-house developed algorithm ’CALIPER’ (Guy et al.,

2018a) was applied. VCU variations were therefore highly underrepresented at training,

and we observed the drop in performance partly because of this reason. However, by

comparing the testing methods, we can conclude that even if the unseen testing data came

from very different environments and patient conditions, our method generalized well in

challenging scenarios.

We carried out several experiments to find a computationally efficient neural net-

work architecture. An input patch size of 32x32x32 worked best in our experiments. A

smaller patch size (i.e., 16x16x16) contains less context information and also achieved lower

accuracy during training. Moreover, it is difficult to train a deep neural network with small

image size, as max-pooling operation quickly reduce the feature map in CNNs. On the

other hand, by using larger patches (i.e., 64x64x64), we found it not favorable to localize

registration errors on lung scans as this is a relatively large area to calculate mean LDE. As

experts may need to look for registration errors on relatively small radiation treated areas,

we have found it optimal to use 32x32x32 patches for training and testing. Furthermore, we

were able to reduce the number of trainable parameters compared to a competing method

(Eppenhof and Pluim, 2018) by designing a modified CNN on 32x32x32 input size.
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We have also experimented with different input image processing techniques. We

used a 3-channel input for the model training where the first channel came from the fixed

image, second from the moving image and third from the absolute difference of the fixed and

moving image. Training with only the first two channels performed little lower (accuracy:

0.916) compared to all 3-channel input (accuracy: 0.924). The third channel can also be

viewed as an attention map for the CNN, which provides meaningful information related to

registration error with very little additional computation cost. We have also experimented

with adding deformation vector field (DVF) as a channel. However, it did not contribute to

the validation accuracy significantly. To make the pipeline simple, we did not incorporate

any DVF information in training as the CNN was strong enough to extract features from the

raw inputs.

There are a few works reported in the literature to address registration QA based on

supervised approaches (Eppenhof and Pluim, 2018; Muenzing et al., 2012, 2014; Neylon

et al., 2017; Sokooti et al., 2016). Most of the supervisedmethods either use hand engineered

features (Muenzing et al., 2012, 2014; Sokooti et al., 2016) or lack studies on real clinical

data (Neylon et al., 2017). A more recent work by Eppenhof et al. (Eppenhof and Pluim,

2018) is a closely relevantmethod to our approach that used a 3D-CNN to predict registration

error without the need for any engineered feature calculation. Similar to our method, they

used a patch size of 33x33x33 for training and testing. However, their method did not

require any expert annotation for training, which was a favorable advantage. They created

the registration image pairs from a single image by synthetically deforming it into two

images. This was a potential drawback of their algorithm as synthetic transformations may

not represent the variations that occur in clinical cases. To address this issue, we created our

training dataset from clinical CT scan pairs that would be registered. Image pairs generated

from a matching setting (e.g., inhale-exhale pair, synthetic pair from a single image) may

provide high accuracy while this performance may not hold for other settings (e.g., image

pair before and after radiation treatment).
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Furthermore, our study provides an in-depth analysis of inter-setting variability

during testing. Using a smaller network with fewer parameters, but the similar performance

was selected to prevent overfitting and enable our network to generalize to out-of-sample

data. This was demonstrated, as described above, by good performance on a very different

dataset under different registration conditions. Moreover, to account for inference time,

we preferred a classification approach over the regression approach used by Eppenhof et

al., as it requires less time while providing similar information to guide clinical review

of unacceptable registration results. In our test cases, we estimated registration quality

by using only 100 sub-volumes, which took 60 ± 10 seconds for every registration pair.

Therefore, our method provides an improved pipeline for registration QA by mimicking real

clinical scenarios in a practically applicable manner.

One of the major limitations of this study was that it needed expert annotation for

training. Expert annotation is costly, and opinion can vary person to person, although

there are methods to improve throughput and reduce annotation time per case (Guy et al.,

2018b; Murphy et al., 2011b). If there were not enough examples, an algorithm could

incorporate some unwanted biases. Even though our algorithm learned reasonably well

from a limited number of patient images, we can observe the effect of bias from Figure. 3.8

(III). Qualitative interpretation of this patient case suggests that there are mismatches in

different areas inside the lung region. Our model estimated a high error even though the

mismatched portion might be relevant/irrelevant to an expert. In practical scenarios, these

discrepancies can be quickly settled with expert knowledge as this type of cases lie in the

gray area between acceptable and needs review classes.

3.6. REMARKS

Our proposed method is general, fast, scanner type independent and can be ex-

tended to various other image registration problems. Our experiments suggest that it is not

required to have thousands or millions of images available for training a deep neural network
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successfully for this task. Our model was trained on only a handful of annotated images

and performed reliably in a different test setting. Moreover, our method can be applied

to images of different organs or body parts as well (i.e., brain, abdomen, nervous system),

although this would likely require additional site-specific training data. A similar approach

applies to MRI, PET, SPECT images and also for multi-modality images, although this

would similarly require additional training data.
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4. AUTOMATED RADIOISOTOPE DETECTION USING HYBRID NEURAL
NETWORKS

4.1. BACKGROUND AND SECTION OUTLINE

Automatic radioisotope identification in real-time is important in a wide variety of

applications including prevention of nuclear terrorism (Connor et al., 2016; Mucci, 2016;

Sanada and Torii, 2015), monitoring of environmental contamination (Hosoda et al., 2016;

Rangaswamvi et al., 2018; Uekusa et al., 2015) or medical data analysis (Sahiner, 2017).

Different types of radioactive materials are screened during a radiological search operation,

such as, Special Nuclear Materials (SNM) (e.g., high enriched uranium, weapons-grade

plutonium), medical isotopes (e.g., patients recently treated with radiation/nuclear medicine

may contain Iodine-131 or Technetium-99), industrial isotopes (e.g., Cobalt-60, Selenium-

75 is used for gamma radiography and non-destructive testing) or Naturally Occurring

Radioactive Materials (NORM) (e.g., Carbon-14, Tritium). The search teams rely on

automatic algorithms that provide feedback about the presence of any radiation anomaly.

However, accurate identification of radioisotope is difficult in practice and complicated by a

large variation in background conditions, poor resolution of radiation detectors, calibration

shift, overlapping photo-peak energies, source strength, shielding conditions and among

others. Therefore, in addition to design better hardware, a sophisticated computer algorithm

is also a needed tool for automatic detection of radioactive materials.

The problem considered in this study assumes that the radioisotope detection system

is travelling in a search vehicle. Unlike stationary type systems, mobile systems need to be

lightweight, small-sized and consume as less power as possible. These create limiting factors

in choosing the hardware. It is preferable that the detector would have high efficiency and

low cost. Though semiconductor detectors (i.e., HPGe) provide superior energy resolution,

crystal scintillator detectors are preferred where efficiency and portability are essential. For
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example, thallium-doped sodium iodide detector, NaI(Tl), is a common choice as a portable

detector because of its reasonable cost. However, NaI detectors have relatively weak

energy resolution and temperature dependence, which makes it weak to resolve many of the

photopeaks in a spectrum (Stinnett et al., 2017). Nonetheless, sophisticated algorithms can

still provide the possibilities to improve the detection performance (Blackadar, 2005) from

low-resolution detector data.

Recently published articles show impressive results in automatic isotope identifica-

tion methods (Bobin et al., 2016; Elmaghraby et al., 2019; He et al., 2018; Kamuda et al.,

2017; Zhang et al., 2019) using artificial neural networks. Most of the studies reported their

experiments in a simplified laboratory setting, which led to high accuracy results. Further-

more, the performance of these algorithms can be limiting where low computation cost is

desired. A little amount of reported work discussing mobile radiation detection systems

and their different testing conditions make it unsuitable to judge a particular state-of-the-art

method in this study area (Stinnett et al., 2017). Therefore, more studies are needed to

improve detection accuracy assuming real-life environment and real-time scanning.

In this work, we report a supervised method that learns from gamma spectra using

Hybrid Neural Network (HNN) models. Specifically, we have developed two hybrid neural

networks, HNN1 and HNN2, where former is the combination of FCNN and CNN and later

is FCNN and RNN.We have compared the HNNmodels with three other (FCNN, RNN, and

Gradient boosted decision trees (GBDT)) ML models to evaluate our method. Moreover,

we compared three different feature calculation methods (i.e., automatic, semi-automatic,

manual) that are relevant to gamma spectroscopy. Finally, the robustness and stability of

the techniques were evaluated at different testing conditions.
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4.2. RELATEDWORKS

Automatic radioisotope detection algorithms can be roughly categorized into two

types, condition-based and machine learning based approaches. In condition-based meth-

ods, an isotope can be identified by measuring the photo-peak energy information from the

gamma spectrums. This does not require any training method, and usually, physics-based

rules were applied for identification. On the other hand, in machine learning based ap-

proaches, gamma spectrums and their respective isotope type need to be known in advance

in order to train a predictive model. Then the trained model can be used to estimate the

probability of the presence of a radioisotope in an unseen environment.

Some of the condition based approaches (Burr and Hamada, 2009) include simple

library comparison methods (Alamaniotis et al., 2013; Batdorf et al., 2009), region of

interest (ROI) methods, template matching methods (Mitchell and Harding, 2014) and

some others (Runkle et al., 2006). In the library comparison method, the centroid energy of

each photo-peak is considered, but not the area or branching ratio. A slight shift in detector

response or calibration may result in inaccurate detections. In the ROI method, one or

multiple ROIs were selected from each nuclide. One of the major drawbacks of this method

is that it fails if different nuclides contain overlapping ROIs. In the template matching

method, a few example spectrums of different radioisotopes were generated at varying

strength and/or background conditions and then matched with a test spectrum. Condition-

based approaches did not usually produce reliable results in real-time applications (Burr

and Hamada, 2009; Sullivan et al., 2007).

Machine learning approaches have been investigated in radioisotope identification

for nearly three decades. In this approach, artificial neural networks (ANN), support vector

machine (SVM), nearest neighbors, decision trees, bayesian, normalized cut are some of the

successfully applied methods. However, ANNs, such as fully-connected neural networks
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Figure 4.1. Block diagram of a conventional radioisotope detection algorithm

(FCNNs) are most commonly used in interpreting radiation data as they usually provide

higher accuracy than other methods (Bobin et al., 2016; Elmaghraby et al., 2019; He et al.,

2018; Kamuda et al., 2017; Zhang et al., 2019).

A classical approach to train machine learning models using gamma-ray spectra is to

use the numerical values from each channel of the spectrum directly (Bobin et al., 2016; Kim

et al., 2019; Sahiner, 2017). Some researchers have also investigated feature engineering

approaches like taking wavelet transform (Stinnett et al., 2017) or discrete cosine transform

(He et al., 2018) of the spectra and feed the feature vectors to the machine learning models.

However, feature calculation can be time-consuming during the development phase and also

computationally costly at deployment, which makes some of the algorithms less attractive in

real-time applications. Figure. 4.1 illustrates a classical approach of radioisotope detection

algorithm.

One of the significant limitations of FCNNmodels is that they do not consider input

data points (i.e., feature vectors) as sequentially related, whereas gamma spectrum photo-

peaks posses relationship among them. Therefore, FCNNs can not exploit full information

of gamma spectrums, and better methods need to be investigated.
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Recent developments deep learning achieved significant performance gain in com-

puter vision-related problems (Krizhevsky et al., 2012; Russakovsky et al., 2015), as well

as speech (Graves et al., 2013) and text (Hermann et al., 2015b) recognition problems.

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are the most

successful methods for unstructured data types (i.e., visual imagery, audio, text), where

they can exploit the sequential information (i.e., temporal/spatial relationship) of the data.

Unlike FCNNs, CNNs or RNNs usually need a large amount of training data to produce

satisfactory results.

4.3. MATERIALS

4.3.1. Dataset Description. The gamma-ray detector data for this study was ob-

tained from publicly available website www.challenge.gov (NNSA, 2019), an US govern-

ment initiative for research and development purposes. Several US federal and non-federal

agencies partnered together to generate the data (i.e., National Nuclear Security Admin-

istration, NASA, Los Alamos National Laboratory, Oak Ridge National Laboratory and

Lawrence Berkeley National Laboratory). The dataset contains simulated radiological

search data that would be typically generated by moving through the streets along a mid

sized US city.

For the simulations, Monte Carlo N-Particle code (C.J.Werner, 2018) was employed

to generate data files in a time-series manner. A standard NaI(Tl) detector with 7.5%

resolution at 661 keV, traveling in a search vehicle, was assumed. Traveling speed of

the detector can vary between 1 to 13.4 meters per second. Radioisotope type, strength,

shielding conditions, and background conditions (the type of roadways/buildings/structures

present) may differ from case to case as well. In total, 9700 data files with publicly known

ground truth were provided in the dataset. A schematic diagram of the simulation setup is

shown in Figure. 4.2.
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Figure 4.2. Schematic diagram of the MCNP simulation (NNSA, 2019)

4.3.2. Radioisotope Types. The dataset contains six different types of source com-

binations: Highly enriched uranium (HEU), Weapons-grade plutonium (WGPu), Iodine

(131I, a medical isotope), Cobalt (60Co, an industrial isotope), Technetium (99mTc, a medical

isotope) and a combination of 99mTc and HEU. A normalized spectrum of these sources in

both shielded and unshielded conditions are presented in Figure. 4.3.

The sources represent both harmless medical/industrial isotopes and threatening

weapon producing isotopes. These radioisotopes contain one or more closely overlapping

photo-peaks, and some of the crucial photo-peaks can appear at very low energies (<200

keV). Low energy peaks can be highly suppressed by shielding materials, making the

detection task more challenging in real-time. Table 4.1 shows the number of time-series

data files for each radioisotope.
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Table 4.1. Number of radiological search data files in the simulation dataset

ID Source type No. of samples
0 Background 4900
1 HEU 800
2 WGPu 800
3 131I 800
4 60Co 800
5 99mTc 800
6 HEU + 99mTc 800

4.4. METHODS

First, gamma spectrums were created from time-series detector data. Next, three

different methods were applied for feature extraction from the spectrums for machine

learning model training. Then, five different machine learning models were tested for

radioisotope classification performance. Below we describe these processes in relevant

sections.

4.4.1. Training Samples Generation. Simulation data in this study was generated

in a way that photon energies(keV) were recorded while the detector was in motion (i.e.,

time-series data). If a source was present in a case, it can be identified from a relatively

small fraction of the time-series data. Therefore, small segments of the data were selected

for creating the gamma spectrums.

Ideally, the most desirable segment size would be the minimum number of counts or

time needed for a detector to identify the presence of a source. However, as this calculation

depends on the source type, intensity, shielding condition and also the traveling speed of the

detector, it is challenging to find the exact number of counts or time required for constructing

the preferred sized segment or time-window.
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Figure 4.3. Simulated spectrum of the five radioisotopes (HEU, WGPu, I-131, Co-60,
Tc-99m) using a NaI(Tl) detector. From the spectrums it is observed that, radioisotopes
posses overlapping peak energies and many of the important peaks appear below 200 keV.

To approach this optimization problem, time-series segments of different acquisition

times were collected. Time-windows were ranged from 0.2s - 20s counts. If a source was

present, we have collected six segments from near source location; otherwise, six segments

from random locations were gathered. Figure. 4.4 shows a schematic diagram of the training

sample generation process. Approximately 60000 training spectrums were generated from

9700 time-series data available. About half of the spectrums did not contain any source.

Rest half of the spectrums equally represented the six sources.

4.4.2. Feature Selection. Three different types of features were extracted from the

gamma-spectrums for machine learning models input and for comparison. The features

were chosen such that they represent automatic (i.e., SC), semi-automatic (i.e., DCT) and

manual (i.e., PR) feature extraction methods.
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Figure 4.4. The process of training spectrums generation from time-series detector data

4.4.2.1. Spectrum counts (SC). SC features are the number of counts in each

channel of the gamma spectra. This features can be interpreted as raw data as no explicit

feature calculation was carried out on this method. For the experiments, 100 channel spec-

trums were used, and SC features were fed to machine learning models after normalization

and scaling of the channel counts. We refer to this method ’automatic’ as the features are

essentially raw data without

4.4.2.2. Discrete cosine transform (DCT). DCT converts a signal into the fre-

quency domain, and the transformation kernel is a cosine function as presented in Eq. (4.1).

The advantage of DCT is that it can pack the energy of the spatial sequence into a few

frequency coefficients. DCT is faster and presents high compaction of energy than Fourier

transforms using only real numbers. DCT is successfully used in image/audio compression

techniques, and it is also found to be useful in radioisotope detection algorithms (He et al.,

2018). In total, 128 feature vectors were extracted from 100-channel gamma spectrums

using DCT. We refer to this method ’semi-automatic’ as one still needs to find out which

transform method may work well for gamma spectroscopy.
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t(x, u) = C(u)

√
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2N
C(u) =


1√
2

u = 0

1 other
(4.1)

where u is an integer in the range of 0 to N − 1

The spectrum can be considered as a N dimensional vector of y, then y(x)[x =

0, 1, 2, ...N − 1] are the discrete signals of the spectrum. The signal of the Y (u) spectrum

can be expressed by Eq. (4.2).

Y (u) = C(u)

√
2
N

N−1∑
x=0

y(x) cos
(2x + 1)uπ

2N
(u, x = 0, 1, 2 . . . N − 1) (4.2)

4.4.2.3. Peak ratios (PR). In this method, 51 numerical features were calculated

from the gamma-spectra based on the peak ratios. Bin counts of important energy val-

ues(keV) associated with the sources considered in this study (Table 4.2) were used to

calculate peak-to-peak ratios (4.3) and peak-to-compton ratios (4.4). These ratios play an

important role in radiation detection and measurement methods and provide useful infor-

mation to distinguish between different radioactive sources (Knoll, 2010). Next, we have

joined the 51 peak-ratio features with the 100-channel counts to create 151 feature vector

for machine learning model training. We refer to this method ’manual’ as the peak ratios

are handcrafted features and depend on the radioisotope to be identified. Calculation of

these features does not increase the computational burden significantly but still helps in

extracting meaningful information from a gamma spectrum.

Peak to peak ratio =
countsp

countsre f
(4.3)

Peak to compton ratio =
countsp

countscomp
(4.4)
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Table 4.2. Peak energies considered for PR feature calculation

ID Source type Ref. peaks (keV) Other peaks (keV)
1 HEU 511, 585 17, 97, 187, 2615
2 WGPu 381, 407 33, 61, 77, 101, 207, 653
3 131I 365 31, 81, 185, 285, 637
4 60Co 1173, 1333 -
5 99mTc 141 19, 45, 321
6 HEU + 99mTc 141, 511, 585 17, 19, 45, 97, 187, 321

where, countsp represents counts under an important photo peak P for source X, countsre f

represents counts under the reference photo peak for source X and countscomp represents

average counts of compton platue for peak P of source X.

Reference peak was determined such that this peak should appear in both shielded

and un-shielded conditions for a specific source.

4.4.3. Classifiers. Five different classifiers were tested in this study for comparison.

Four of the classifiers were neural network based and the other one was decision tree based.

4.4.3.1. Fully-connected neural network (FCNN). FCNNs are classical type of

neural networks and studied extensively in automated radioisotope identification algorithms

(Elmaghraby et al., 2019; Kamuda et al., 2017; Olmos et al., 1992; Wiedner et al., 2017;

Zhang et al., 2019; Zhao et al., 2017). Artificial neurons in FCNN are connected depth-wise

(or layer-wise), creating abstract representation of input data. FCNNs do not assume any

sequential relationship among the data points, as the neurons do not have a connection in

the temporal direction.

In this study, we have re-implemented an FCNN model adapted from the work of

He et al. (He et al., 2018). The FCNN consists of one hidden layer with eight neurons, and

we consider this as a baseline model.
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Figure 4.5. Schematic diagram of (a) FCNN and (b) RNN model

4.4.3.2. Recurrent neural network (RNN). Unlike FCNN, neurons in RNNs ex-

hibit temporal connections, which makes them useful for sequence learning applications

(Graves, 2013; Graves et al., 2014; Hermann et al., 2015a; Mikolov et al., 2013; Sutskever

et al., 2014). We have implemented a RNN based on long short-ter memory (LSTM)

(Hochreiter and Schmidhuber, 1997) cells. LSTM provides a solution for vanishing gra-

dient problem in RNNs. The RNN has 2-hidden layers before the classification layer.

Hyperparameters, such as the number of hidden layers and LSTM cells were optimized

experimentally. Figure. 4.5 shows schematic diagram of FCNN and RNN models.

4.4.3.3. Hybrid neural network 1 (HNN1). Recent developments in deep learning

and convolutional neural networks (CNNs) achieved significant performance gain in com-

puter vision-related problems (Russakovsky et al., 2015). CNNs are known as automatic

feature extractors from data. By principal, CNNs generate internal representations from

the full sequence of data. CNNs performance is well studied in unstructured data cases

(i.e., images, videos, speech); however there is a lack of studies about their capabilities in

structured data cases (i.e., tabular data).
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Figure 4.6. Schematic diagram of hybrid neural network architectures

Inspired by the working principle of CNNs, we have designed a hybrid neural

network 1 (HNN1) architecture that consists of CNN and FCNN structures. First, 64

convolutional feature vectors were leaned from the input features by a 2-layer CNN. Next,

these 64 features were added to the original input features to produce a larger feature space.

These feature vectors were then fed to a 2-layer FCNN to produce final predictions. The

HNN1was trained end-to-end, like a single model. Figure. 4.6 shows the schematic diagram

of HNN1 architecture.

4.4.3.4. Hybrid neural network 2 (HNN2). HNN2 is mostly similar to HNN1,

except it uses RNN layers instead of convolutional layers for feature extraction. A two-layer

RNN with LSTM cells was employed on this architecture. RNN layers are responsible for

extracting sequence information from the data. Figure. 4.6 shows the schematic diagram of

HNN2 architecture.
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Table 4.3. Parameter optimization for GBDT model

Parameter Search range for optimization
Max. bin size 20-300
Number of leaves in each tree 1-20
Min. data in leaf 1-20
Max. depth of tree 1-20
Bagging fraction 0.2-1.0
Feature fraction 0.1-1.0

The neural network models were implemented using python language and Keras

(Chollet et al., 2015) deep learning library.

4.4.3.5. Gradient boosted decision trees (GBDT). Decision tree is an algorithm

that finds ways to split a dataset based on different conditions. It is a tree-like model of

decisions and consequences. The algorithm can usually contain if-else-then statements.

Gradient boosted version of decision trees (GBDT) is an ensemble of several weak models

like several basic decision trees.

Gamma spectra contains conditional relationship among its energy values. For

example, an isotopemight havemultiple energy peakswhich distinguishes them fromothers.

Thus, GBDT useful in gamma spectroscopy (Barzilov and Novikov, 2015; Parkinson et al.,

2016) techniques. However, GBDTdoes not assume any sequential or temporal relationship,

which is a weakness of this model. Figure. 4.7 shows a schematic diagram of GBDT model

on a leaf wise growth method.

We have trained a GBDT model using the same input features as used in the neural

network models. LightGBM (Wang et al., 2017) library was employed for model training.

LightGBM grows trees in a leaf-wise manner where best tree grows first. It chooses the the

leaf with max delta error to grow. We have employed mean squared error as an objective

function. To limit overfitting, hyperparameters were tuned before the final experiments.

Some important parameter search space is shown in Table 4.3.

Overall experimental setup is illustrated in Figure. 4.8



54

Figure 4.7. Schematic diagram of GBDT model in leaf-wise growth method

Figure 4.8. Schematic diagram of the overall experimental setup

4.4.4. Training and Validation. We have divided the dataset into training, valida-

tion, and testing set by 80%-10%-10% ratio. Random stratified split was applied to create

the three sets. All the sets contain a balanced percentage of radioisotope samples. The

model was trained until the validation accuracy did not improve for 50 training iterations.

We had checkpointed the model weights when validation accuracy reached the maximum

value. Finally, we have reported the model performance on test data by taking the average

test F1 score among different training sessions.
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The neural network was trained using categorical cross-entropy loss function.

Adam(Kingma and Ba, 2014) optimizer was employed to minimize the training loss. Fur-

thermore, batch normalization(Ioffe and Szegedy, 2015) was applied to train the model

faster. Moreover, dropout(Srivastava et al., 2014b) was utilized to minimize overfitting of

the model.

Assuming p ∈ {y, 1 − y} and q ∈ { ŷ, 1 − ŷ}, dissimilarity between p and q can be

calculated by measuring cross entropy between them. Eq. (4.5) shows the loss calculation

method that was optimized for neural network training.

H(p, q) = −
∑

i

pi log qi = −y log ŷ − (1 − y) log(1 − ŷ) (4.5)

4.4.5. Testing. For testing, we considered time-series detector data for identifica-

tion of a source. Detector data was scanned at fixed time intervals. For this study, we have

chosen two-second intervals for scanning. The model predicted the probability of a source

using multiple different time-windows at successive positions. Multi-window prediction

strategy can also be viewed as a technique called test time augmentation (TTA). TTA usually

improves the performance of prediction algorithms; however, inference time also increases

with this method. Finally, the decision of a source being present was made if the same

source ID was detected consecutively. Further, we calculated the approximate location of

the source by taking the mid-point of consecutive detected anchor points. Figure. 4.9 shows

a schematic diagram of the testing procedure.

4.4.6. Evaluation Metric. The performance of the methods was quantified using

the F1 measure. F1 measure is a balance between precision and recall and commonly used

in multi-class classification problems. Precision can be interpreted as "how many selected

items are relevant" while recall is "how many relevant items are selected." F1 measure can

range from 0 to 1, where 1 means perfect precision and recall. Specifically, the macro-
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Figure 4.9. Multi-window prediction and voting strategy for radioisotope identification

F1 metric was used, which assigns equal importance to every class during the evaluation

despite the class imbalance. Model training was repeated 20 times to calculate the estimated

variance of the testing results.

Precision =
True positive

True positive + False positive
(4.6)

Recall =
True positive

True positive + False negative
(4.7)
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F1 =
2 · precision · recall
precision + recall

(4.8)

4.5. RESULTS

4.5.1. Effect of Train Dataset Size. AnMLmodels robustness can be evaluated by

measuring its performance on limited training data conditions. A robust model’s accuracy

should not decrease significantly with the decrease in training data samples. Moreover,

a stable model is one that demonstrates less variance in prediction performance among

different training sessions.

Figure. 4.10 demonstrates the mean F1 score of the 5 models when trained with

varying train dataset sizes (i.e., 5%, 10%, 20%, 40%, 80% of train dataset). The models

were trained and evaluated using 5-second spectrums. At 80% training size, all models

show comparable accuracy. We observe that HNN1 and HNN2 models show high F1

score at low train percentages and achieve 5-20% improvement compared to the other three

models when trained with only 5% of train data. The standard deviation for the HNN

models is below 1% for difficult training conditions (i.e., low train percentages). However,

RNN models show high standard deviation compared to others, which implies that they are

not very stable predictive models.

When we compare the three feature sets, DCT and PR sets show higher accuracy for

all models compared to SC features. DCT and PR sets provide 2-8% improvement over SC

feature at 5% training data conditions for all the models. This implies that semi-automatic

or manual feature extraction does help in the generalization of ML models.

4.5.2. Effect of Spectra Acquisition Time. Assuming a moving detector, a low

data acquisition time (i.e., 0.2s) may result in highly noisy spectra, whereas high acquisition

time (i.e., 20s) may suppress the signals. Figure. 4.11 show example spectrums of HEU+Tc-

99m radioisotope at three different acquisition times (i.e., 1s, 5s and 20s).
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(a) (b)

(c)

Figure 4.10. F1 score on test dataset predicted by five ML models, for feature set SC (a),
DCT (b), and PR (c) on different training percentages

Figure. 4.12 demonstrates a comparison among the models at varying data acqui-

sition times. HNN models show higher accuracy than other models in most of the cases.

At 0.2s acquisition time, HNN models achieve 2-12% improvement in F1 score than other

three models for all feature sets. At the 20s, we observe 1-5% improvement of HNNmodels.

HNN1 performed better than HNN2 in most of the conditions.

We also observe that PR features improved the performance of all models than the

other two feature sets. PR and DCT features achieved closely 3-5% gain in F1 score at 0.2s

spectra conditions compared to SC. All experiments were carried out using 80% train data.
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(a) 1s spectra

(b) 5s spectra

(c) 20s spectra

Figure 4.11. Example spectra of HEU+Tc-99m at 1s, 5s and 20s acquisition time

4.5.3. Run Time. Figure. 4.13 demonstrates training and testing time for all five

models. FCNN models are the fastest to train and test primarily because of their relatively

simple architecture. RNN and HNN2 take almost 120x more time to train than FCNN

models. HNN1 and GBDTmodels are five times slower than FCNNmodels during training.

During testing, neural network models run time remained constant with the increment of

training dataset size and usually faster than GBDT models. HNN1 is two times faster than

HNN2 during test time. We observed a rise in inference time for GBDT models as the
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(a) (b)

(c)

Figure 4.12. F1 score on test dataset predicted by five ML models, for feature set SC (a),
DCT (b), and PR (c) on different spectra acquisition times. 80% train data was used for the
experiments

training data increases. This is explainable as more data means more complex conditions

can be fitted with the GBDT model, and the trees grow more in depth with more states,

which in turn, increases the run time.

4.5.4. Multi-classClassificationPerformance. Figure. 4.14 demonstrates F1 score

for each individual radioisotope in the dataset for all five models. Models were trained using

80% of train data, 5s spectrums with SC feature set. We observed a relatively high accuracy

for background, I-131, and Co-60 (ID 0, 3 and 4 respectively) radioisotopes compared to the

other four combinations. Lower accuracy for HEU, WGPu, Tc-99m, and HEU+Tc-99m can
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(a) (b)

Figure 4.13. Run-time of the five models using 5s spectra acquisition time. (a) training
time, (b) testing time with increasing train data percentages

be explained by analyzing their most active peak energies. These four radioisotopes have

high activity peaks below 200 keV, which can be greatly affected by shielding conditions.

Therefore, low peak energy isotopes are relatively difficult to detect.

To compare among the models, HNNs achieve higher F1 score than other mod-

els, especially for difficult radioisotopes and combinations (HEU, WGPu, Tc-99m, and

HEU+Tc-99m). For multi-isotope scenario (ID 6: HEU+Tc-99m), HNNs achieve at least

2% improvement over the other models. Both HNN models perform comparably with a

lower standard deviation than others. Moreover, for ID 0, 3, and 4, performance for all

models are closely comparable.

Figure. 4.15 presents the confusion matrix of the 7-class classification results for

HNN1 model. As expected, the majority of the misclassifications occurred between HEU

and HEU+Tc-99m. Moreover, we observed that if a radioisotope is misclassified, it is more

probable to be identified as background than other isotopes.
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Figure 4.14. F1 score on test data for 7-class classification by fivemodels using 5s spectrums
and SC feature set

To further evaluate the classification performance of the models, we categorized

the 6 radioisotopes into 3 categories: SNM (HEU, WGPu and HEU+Tc-99m), medical

(I-131, Tc-99m) and industrial (Co-60). We observe that, detection accuracy for SNM

was improved about 2% when considered as one category. One of the reasons behind this

improvement possibly due to the peak similarity among the SNMs.

Most of the SNMs posses many of their essential photopeaks below the energy

of 200 keV. The photopeaks may overlap if the detector resolution is low, and shielding

conditions may suppress the presence of low energy peaks considerably. Therefore, detector

response is vulnerable to similar conditions for SNMs. These characteristics make them

alike for machine learning models and provide better results when considered together.

Figure. 4.16 shows the results of all fivemodels for four category classification. HNN

models present higher accuracy and lower standard deviation than other models for most of

the cases. Similar to previous results, we observe that when a category is misclassified, it

has a higher probability to be classified as background (Figure. 4.16(b)).
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Figure 4.15. Confusionmatrix for 7-class classification by HNN1model using 5s spectrums

4.5.5. Effect of Data Augmentation. Table 4.4 shows the result of data augmen-

tation using HNN1 model. Using 5 different augmentations (i.e., no. of time windows)

for training and testing, prediction results were improved for more than 1% compared to

using only 5s spectrums. Moreover, the uncertainty of the predictions became lower as the

number of augmentations was increased. However, test time augmentation would increase

the inference time as well.

4.6. REMARKS

In this study, we have compared five state-of-the-art ML methods and three sets of

feature calculation methods for automated radioisotope detection. Hybrid neural networks

(HNNs) were developed based on FCNN, RNN, and CNN architectures. It is observed
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(a) (b)

Figure 4.16. F1 score for 4-category (background (0), SNM (1), medical (2) and industrial
(3)) radioisotope identification using 5s spectrums at test dataset. (a) individual F1 score
for all five models, (b) confusion matrix for HNN1 model

Table 4.4. Effect of data augmentation for HNN1 model on test dataset

No. of augmentation Acquisition time (s) F1 score (%)
1 5 92.23 ±0.68
2 5, 10 92.71 ±0.32
3 5, 10, 20 93.04 ±0.11
4 2, 5, 10, 20 93.27 ±0.05
5 1, 2, 5, 10, 20 93.33 ±0.08

that HNN models are more accurate and robust than traditional models at a wide range of

parameter choices. Between the hybrid models, HNN1 (FCNN-CNN) showed comparable

or better accuracy than HNN2 (FCNN-RNN) model for most of the cases, while running

two times faster than the former. HNN models were evaluated based on the training dataset

size and spectra acquisition time. In both of the cases, the models show 2-12% improvement

in challenging prediction scenarios compared to best traditional models. Moreover, for hard
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radioisotope combinations, such as multi-isotopes (i.e., HEU+Tc-99m) and their parent

isotopes are detected 1-2% more accurately with HNN1 model. With data augmentation,

HNN1 model was able to achieve 93.33% F1 score in test data.

One of the limitations of this study was that only simulated spectra were used for

training and testing. The algorithm needs further verification using real-detector measured

spectra. Besides, for best performance, handcrafted feature calculation remained important.

Future ML models are expected to be capable of eliminating the explicit feature calculation

step as this require both domain knowledge and extra computation cost.

Overall, FCNN-CNNmodels found to beworking best in the automated radioisotope

classification task. This implies that deep learning method, such as CNN, is a useful and

promising technique for gamma-ray spectroscopy. This also demonstrates that ML models

tailored to a specific problem often leads to a better generalization of the algorithms.
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5. CONCLUSIONS

This dissertation explores two application areas of machine learning where radiation

generated data was analyzed. Both of the cases were treated as classification problems.

Convolutional Neural Network (CNN) and Hybrid Neural Network (HNN) were developed

for these purposes. We conclude that deep learning methods are powerful techniques for

both image understanding and spectra unfolding problems.

In the first study, we have evaluated a method to quantify registration error from lung

CT scans using a fast and lightweight deep learning algorithm. We have built and trained

our algorithm using real-life clinical registrations, without the need for any synthetic data

generation. The method was evaluated in a challenging scenario, by training on inhale-

exhale image pairs but testing on image pairs from different treatment days, from a different

source, and with a different registration algorithm. Results show the robustness of our

algorithm despite the presence of large deformations in test data which were not present

in the training data. Our approach is general, as it learns from raw data with no feature

engineering required, which implies we can apply the same method to assess the quality of

registrations across dataset from various imaging domains and possibly even across different

body parts.

In the second study, five machine learning models were compared for their per-

formance in automated radioisotope detection problem. Hybrid neural network models

found to be more accurate in most of the cases compared to the conventional models at a

wide range of parameter choices. This implies that machine learning models tailored to a

specific problem often leads to better generalization. Furthermore, for all five models, we

observed that explicit feature calculation performed better compared to using only raw data

as features. This indicates that careful processing of data helps in building more accurate

models, which would be unique for different cases.
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Machine learning (ML) methods are useful techniques to automate varieties of tasks

in real-world scenarios. With the increasing volume of digital data, more opportunities are

creating for automated applications. ML technology is an essential tool for taking advantage

of digital data and building the future world better and safer.



APPENDIX A.

RADIOISOTOPE DETECTION PERFORMANCE IN TABLES



69

Table 1. Effect of train data percentage on F1 score for five models

Model Train
percentage

SC DCT PR
mean (%) std (%) mean (%) std (%) mean (%) std (%)

FCNN

80 93.25 0.22 93.16 0.21 93.56 0.12
40 91.65 0.38 92.51 0.26 92.55 0.22
20 89.99 0.46 91.68 0.29 91.02 0.32
10 84.91 1.10 88.36 0.28 87.45 0.88
5 75.51 3.86 84.39 0.57 81.96 1.60

RNN

80 94.19 0.29 92.91 0.28 92.93 0.63
40 89.42 4.34 91.21 0.38 91.08 0.76
20 88.83 6.11 85.58 1.33 86.76 3.77
10 80.31 8.22 78.08 2.23 82.15 1.47
5 70.03 10.45 70.13 3.15 75.10 6.18

GBDT

80 93.05 0.07 91.45 0.14 93.73 0.20
40 92.45 0.11 91.46 0.10 93.24 0.22
20 90.27 0.20 90.01 0.17 92.91 0.09
10 87.68 0.27 87.45 0.21 91.37 0.04
5 78.75 0.59 84.23 0.30 84.21 0.27

HNN1

80 94.14 0.16 94.54 0.12 94.72 0.14
40 93.39 0.23 94.05 0.26 94.16 0.19
20 92.04 0.30 93.49 0.21 93.44 0.23
10 89.55 0.67 92.10 0.35 92.10 0.35
5 85.75 1.01 88.89 1.08 89.57 0.66

HNN2

80 94.08 0.18 93.92 0.21 94.48 0.15
40 93.64 0.21 93.53 0.28 93.97 0.20
20 93.00 0.24 93.12 0.29 93.46 0.19
10 91.60 0.21 91.93 0.22 91.97 0.23
5 89.91 0.38 90.94 0.24 91.47 0.32
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Table 2. Effect of spectra acquisition time on F1 score for five models

Model Acquisition
time (s)

SC DCT PR
mean (%) std (%) mean (%) std (%) mean (%) std (%)

ANN

0.2 68.33 0.47 69.03 0.44 71.06 0.33
1 85.47 0.22 85.73 0.29 86.88 0.15
2 90.22 0.21 90.49 0.20 90.53 0.14
5 93.04 0.12 93.01 0.11 93.52 0.14
10 93.08 0.16 93.07 0.17 93.43 0.09
20 91.04 0.18 90.75 0.15 91.14 0.16

RNN

0.2 70.00 0.00 73.01 0.64 75.23 0.54
1 80.31 33.36 85.74 0.75 87.44 0.43
2 88.83 0.33 89.08 0.56 90.17 0.41
5 89.42 0.25 92.49 0.41 93.55 0.21
10 93.19 1.17 92.00 0.29 93.80 0.07
20 90.00 0.14 89.53 0.29 89.09 0.65

GBDT

0.2 73.17 0.62 71.10 0.55 76.43 0.71
1 86.01 0.27 86.62 0.15 87.56 0.14
2 90.46 0.15 90.86 0.19 91.04 0.05
5 93.71 0.21 92.13 0.11 93.87 0.07
10 93.75 0.28 91.50 0.41 93.97 0.20
20 91.50 0.20 90.01 0.23 91.96 0.09

HNN1

0.2 76.05 0.15 78.47 0.33 81.77 0.39
1 87.95 0.20 88.24 0.13 88.42 0.13
2 92.18 0.32 92.04 0.16 91.79 0.09
5 94.22 0.06 93.96 0.13 94.12 0.07
10 94.06 0.07 93.98 0.22 94.52 0.11
20 93.04 0.34 93.07 0.14 93.40 0.24

HNN2

0.2 74.85 0.29 80.19 0.32 79.70 0.28
1 86.87 0.05% 87.12 0.35 87.53 0.19
2 90.99 0.19% 90.73 0.20 91.27 0.18
5 93.28 0.09% 93.21 0.14 93.53 0.10
10 92.74 0.15% 93.01 0.19 93.21 0.17
20 92.00 0.13% 92.47 0.12 92.34 0.24
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Table 3. F1 score (%) on individual radioisotopes for five models

Model Source ID
0 1 2 3 4 5 6

FCNN mean 96.21 89.09 90.73 94.61 96.31 90.15 88.82
std 0.07 0.52 0.43 0.17 0.15 0.30 0.52

RNN mean 96.92 90.16 92.20 94.31 95.58 92.02 90.35
std 0.09 0.76 1.05 0.52 0.49 0.56 0.78

GBDT mean 96.53 90.79 90.89 94.21 96.32 91.63 90.37
std 0.09 0.70 0.39 0.37 0.25 0.29 0.34

HNN1 mean 96.81 91.35 92.50 94.82 96.30 92.77 91.76
std 0.06 0.11 0.12 0.18 0.07 0.12 0.11

HNN2 mean 96.73 90.55 92.44 95.84 95.82 92.87 91.33
std 0.09 0.80 0.67 0.27 0.22 0.38 0.33

Table 4. F1 score (%) on categorical radioisotopes for five models

Model Source category
Background SNM Medical Industrial

FCNN mean 94.92 88.13 89.00 95.96
std 0.03 0.10 0.36 0.14

RNN mean 96.79 93.42 91.85 95.48
std 0.21 1.49 2.26 0.22

GBDT mean 96.31 93.67 92.32 96.14
std 0.04 0.29 0.32 0.45

HNN1 mean 96.86 94.01 93.28 96.32
std 0.05 0.17 0.18 0.07

HNN2 mean 96.36 93.95 92.62 96.08
std 0.14 0.22 0.37 0.22
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1. PYTHON CODE FOR NEURAL NETWORKMODELS USING KERAS
LIBRARY

1 # FCNN model

2 def init_model():

3 inp = Input(shape=(len(X[0]), 1))

4

5 a = Flatten()(inp)

6 a = Dense(8, kernel_initializer="uniform")(a)

7

8 output = Dense(7, activation="softmax", kernel_initializer="uniform")(a)

9 model = Model(inp, output)

10

11 return model

12

13

14 # RNN model

15 def init_model():

16 inp= Input(shape=(len(X[0]), 1))

17

18 a = CuDNNLSTM(100, return_sequences=True)(inp)

19 a = CuDNNLSTM(20)(a)

20 a = Dense(128, activation="relu", kernel_initializer="uniform")(a)

21

22 output = Dense(7, activation="softmax", kernel_initializer="uniform")(a)

23 model = Model(inp, output)

24

25 return model

26

27

28 # HNN1 model

29 def init_model():

30 inp = Input(shape=(len(X[0]), 1))

31

32 a = Conv1D(64, 5, activation="relu", kernel_initializer="uniform", )(inp)

33 a = BatchNormalization()(a)

34 a = Conv1D(64, 5, activation="relu", kernel_initializer="uniform", )(a)

35 a = BatchNormalization()(a)

36 max_pool = GlobalMaxPool1D()(a)
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37

38 b = Flatten()(inp)

39 ab = concatenate([ max_pool , b])

40

41 a = Dense(128, activation="relu", kernel_initializer="uniform")(ab)

42 a = Dropout(0.5)(a)

43 a = Dense(128, activation="relu", kernel_initializer="uniform")(a)

44

45 output = Dense(7, activation="softmax", kernel_initializer="uniform")(a)

46 model = Model(inp, output)

47

48 return model

49

50

51 # HNN2 model

52 def init_model():

53 inp= Input(shape=(len(X[0]), 1))

54

55 a = CuDNNLSTM(100, return_sequences=True)(inp)

56 a = CuDNNLSTM(20)(a)

57

58 b = Flatten()(inp)

59 ab = concatenate([a, b])

60

61 a = Dense(128, activation="relu", kernel_initializer="uniform")(ab)

62 a = Dropout(0.5)(a)

63 a = Dense(128, activation="relu", kernel_initializer="uniform")(a)

64

65 output = Dense(7, activation="softmax", kernel_initializer="uniform")(a)

66

67 model = Model(inp, output)

68

69 return model



75

2. PARAMETERS FOR GBDT MODEL USING LIGHTGBM LIBRARY

1 params = {

2 ’bagging_freq’: 5,

3 ’bagging_fraction’: 0.6,

4 ’boost_from_average’: ’true’,

5 ’boost’: ’gbdt’,

6 ’feature_fraction’: 0.15,

7 ’learning_rate’: 0.0085,

8 ’max_depth’: 5,

9 ’metric’: ’multi_error’,

10 ’min_data_in_leaf’: 5,

11 ’min_sum_hessian_in_leaf’: 10.0,

12 ’num_leaves’: 5,

13 ’tree_learner’: ’serial’,

14 ’objective’: ’multiclass’,

15 ’verbosity’: 1,

16 ’num_class’: 7,

17 ’max_bin’: 200,

18 ’random_seed’: random_seed

19 }
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1. PUBLICATION DISCLOSURE

Sections three and four of this dissertation will be published in peer-reviewed journal

in the future. The probable journal titles are as follows:

Shaikat Galib, Hyoung Koo Lee, Christopher Guy, MatthewRiblett, Geoffrey Hugo,

A Fast and Scalable method for Quality Estimation of Deformable Image Registration on

Lung CT scans using Convolutional Neural Networks, Journal of Medical Physics.

Shaikat Galib, Palash Bhowmik , Ashish Avachat, Hyoung Koo Lee, A Compar-

ison of Machine Learning Methods for Automated Radioisotope Identification using NaI

Gamma-ray Spectra, Applied Radiation and Isotopes
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