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ABSTRACT

Multiscale nature of a biological system span at many order of magnitudes in

time and space. Molecular interaction at lower scale is connected with the higher scale

behavior of tissue or organism. Integrating the dynamics and information at different

time and space can give a fundamental physiological understanding of the higher level

phenomena. But complex features, functions, interconnectivity between different scales

and lack of information on the fundamental physiological property make the model difficult

and computationally challenging. The multiscale modeling approach can bridge the gap

between different scale by a systemic integration of the complex dynamic behavior.

Here, the focus is on developing multiscale modeling approaches to study the dy-

namic behavior of tissue. First, a multiscale spatiotemporal model is designed to investigate

the tissue scale dispersion and penetration of nanoparticles from lower scale particle-cell

interaction. The results obtained suggest that the size of nanoparticles may play less signif-

icant roles in tissue scale penetration and dispersion. The effect of nanoparticle size is less

prominent due to the presence of particle-cell interaction and advection. This scalable spa-

tiotemporal model can simulate the dynamics of drug delivery particles in the extracellular

domain of a tissue.

Furthermore, a parallel framework is developed to study the collective behavior of

the cell population in a tissue architecture from their intracellular and extracellular reaction

kinetics. The framework canmodel population dynamics at the tissue scale from a single cell

biochemical reaction network accurately and efficiently. Finally, the framework’s capability

is demonstrated by simulating a full-scale model of bacterial quorum sensing, where the

dynamics of a population of bacterial cells is dictated by the intercellular communications

in a time-evolving growth environment.
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1. INTRODUCTION

1.1. BACKGROUND AND LITERATURE SURVEY

Multiscale nature is the inherent property for any biological system. The physiologi-

cal functions and dynamics of a biological system occur at a different magnitude of time and

space. Time required to occur any physiological phenomena (e.g.: molecular interaction

or cellular death) span from nanoseconds (10−9s) to years (108s) while the space is span

from molecular scale (10−10m) to organism scale (1m) (Figure 1.1) [1]. The dynamics of

a biological system at a lower scale is stochastic due to randomness and fluctuation in a

short time scale. On the other hand, the dynamics at higher scales are more deterministic

due to a large number of species and a longer time scale. It is challenging to integrate the

dynamics and information at different scales due to the interconnectivity and hierarchical

structure of a biological system. Interactivity can occur at the same scale (e.g., intracellular

protein-protein interaction) or across different scale (e.g., interactions between ligand and

receptor expressing a gene to cause cellular death). So, it is difficult to experimentally

observe the phenomena at different time and space at the same time as well as to develop a

mathematical model to study the complex dynamic behavior.

The biological system often required hypothesis and experimentation to connect the

link between the intracellular molecular interaction scale to the scale of cell population

behavior and beyond [2]. Multiscale modeling approach can simulate the multiscale nature

of a biological system quantitatively. The primary purpose of multiscale modeling is not

only tomodel the systematmultiple scales but also to conserve the information and dynamics

between different scales. So, the model at higher scale will preserve the physiological data

of lower magnitude and the model at a lower level will conserve the phenomenological

information at a higher scale.
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Figure 1.1. Different scales in the biological systemand correspondingmodeling approaches
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The computational approach for multiscale modeling required several simulation

approaches as different scale and time are involved. There exist several strategies to traverse

and connect the link between different spatial and temporal scale usingmultiscale modeling.

One plan is to observe the features at a high level and deduce the fundamental nature and

mechanism from there to lower range. This approach is known as Top-down [3]. The main

advantage of the Top-down approach is that the initial level is directly backed up by data.

So, the hypothesis can include more fundamental property stepwise from a higher level

to a lower level based on initial data. The models are easy to grasp, and mechanisms are

relatively simple. The top-down approach usually tries to do the reverse engineering to get

the underlying mechanism at a lower scale. But higher-level phenomena are interconnected

with different pathways of molecular interaction towards the lower level. Sometimes,

there can be multiple phenomena for a single mechanism or single mechanism for various

behavior. It is difficult to deduce a specific fundamental explanation and mechanism for

the system as there is no direct connection to the physiological parameters. The models are

mainly phenomenological. Another strategy is to observe the behavior at different temporal

and spatial scale starting from the fundamental level ofmolecular interactions and dynamics.

It is known as Bottom-up [4]. The Bottom-up modeling approach tends to simulate the

individual components and their interactions directly. Although themethod gives a complete

understanding of the system from fundamental features to higher level dynamics of the cell

population, assembling such model from signaling network of molecular interactions to

higher scale is challenging. Due to the lack of knowledge of the biochemistry of a specific

cell type, it is necessary to speculate the molecular component and signaling mechanism in

most of the cases. Again, different networks at the molecular scale or signaling pathways

are interconnected.

To assemble a minimal network which will give observed phenomena at a higher

level is quite complicated. Most of the time the model is system specific and does not reflect

the real-time representation of the cellular biochemistry. Because of the interconnectivity
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between different network or signaling pathways and lack of knowledge of biochemistry,

Bottom-up model may face ambiguity at the fundamental level. So, it is required to invest

a lot of care while constructing the first layer at a low scale. Sometimes, it is difficult to

grasp, and the simulations are computationally intensive. Bottom-up modeling approach

can remove the gap between lower scales to higher scales of a biological system. These

models can be used to study the emerging properties of a considerable number of interacting

components at a molecular scale. Bottom-up approaches are robust and adaptive. It unveils

the features of a biological system at a fundamental level and opens up new directions for

experiments.

All the phenomena at tissue or organ scale are based on the molecular interaction

in inside, surface and extracellular environment of the cell. Normally, the model can

make predictions based on the available parameters acquired from experiments. Due to the

presence of different spatial and temporal scale for the biological system, it is difficult to

represent the model with the experimentally observed parameter directly. System biology

is driven by hypothesis [5, 6]. Small scale experiments are performed for different levels.

Then a hypothesis is necessary to link the gap between different scales. The detailed

mechanical insight of the system is observed by constructing a systematic model based

on the observed data and hypothesis. Over time the molecular interaction networks are

becoming more complex. It became difficult to extract the information on molecular and

population dynamics at the different casual and temporal hierarchy. It is necessary to make

a hypothesis and use phenomenological parameters to link different scales. For instance,

cellular birth, death, and proliferation occur at longer time scale compare to the molecular

interactions. Normally, the information associated with intracellular signaling pathways is

processed within minutes. However, the death, division, and proliferation for eukaryotic

cells can take hours. During that time, the mother cell split into two daughter cells while

the major parts are modified and duplicated. If we want to explain the behavior of the

cell population from the molecular interactions, then it is necessary to hypothesize how
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cellular birth, death, and proliferation rate is connected with the molecular interactions.

Modeling of cellular biochemistry involving cellular death, division or phenotype in more

detail from the molecular scale will deepen our understanding of how cell process and

make a decision. But the size of the model will increase as well as the computational

cost for simulating the whole system. Multiscale modeling approach can address this issue

by increasing computational efficiency and scalability. This has been used to study tissue

engineering [7], tumor growth [8], neural systems [9, 10], cardiovascular fields [11] and

other physiopathological processes [12–16].

The computational and mathematical description at different scale of a biological

systems can bemodeled by deterministic, discrete and rule-based, and stochastic approaches.

These models can help us to explore and connect the gap between different scale of system

biology. Some of the current modeling approaches are ordinary differential equations

(ODEs) [17], partial differential equations (PDEs) [18], chemical master equation (CME)

[19], Langevin equation, linear programming [20, 21], Boolean network [22], agent based

model [23, 24], Petri Nets [25], Potts model [26, 27], finite state automata [28], models

based on genetic variations [29] and so on.

Differential equations mainly model deterministic approaches (e.g., ODEs, PDEs

or coupled ODEs). ODE models are suitable to simulate the kinetics for small scale

intercellular and intracellular networks [30]. Due to their simplicity, thesemodels arewidely

used to model the continuous dynamics of the time-varying effect of complex biological

processes [31, 32]. Some ODEmodels can also incorporate cell to cell interactions [17, 33].

But parameter estimation is a bottleneck for ODEmodels. Parameters can be obtained using

Particle SwarmOptimization (PSO) orGeneticAlgorithm (GA). But for larger scale network

ODE models become computationally expensive with decrease efficiency. The time scales

for ODE models are also high and normally start from microsecond. The system becomes

computationally intensive if the time goes beyond microseconds. Normally, ODE models

are used to study and explore the macroscopic properties. When spatial aspect and other
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features of cellular behavior (e.g., association, dissociation, charge) are incorporated in

ODE models, it became PDE models. For instance, if a molecule or particle is diffusing in

space, the model becomes a PDEmodel of reaction-diffusion equations. Reaction-diffusion

equations have been used in modeling spatial distribution of signaling molecule [34], cell

to cell communication [35], pattern formation [36], cardiovascular system [37] and so on.

PDEs can evaluate the spatiotemporal properties of a biological process.

In the molecular scale, stochastic phenomena are apparent due to thermodynamic

fluctuations. This stochastic nature may play a significant role in cellular and tissue scale

dynamics. Mathematically, the stochastic noise strength of a system is inversely propor-

tional to the square root of the total number of molecules. So, the deterministic model

needed the molecule number to be high enough to diminish the effect of noise. But in a

biological system, the particles are distributed in space and concentration is low. Thus,

the deterministic models may yield a misleading result and do not represent a real bio-

logical system. Stochastic or probabilistic models can account the random fluctuations of

these systems. Gillespie stochastic simulation algorithm (SSA) is a widely used stochastic

approach. The algorithm treats each reaction as Markov transition and simulates the as-

sociated chemical reactions. Direct Gillespie stochastic algorithm gives exact solution but

the method is computationally intensive. Tau-leaping method is an improved version of

Gillespie SSA to speed up the simulation. But the process has an underlying assumption

and give an approximation of the exact solution. Chemical master equation (CME) also

provides the precise solution of stochastic reactions. CME can be reduced to a chemical

Langevin equation for a large number of molecules. These equations are in the form of a

stochastic differential equation. Despite the reduction of CME to the Langevin equation,

the system remains computationally intensive.

Probabilistic models can investigate the stochastic dynamics of molecular inter-

action. Many of the tools are incorporated with the stochastic algorithm in addition to

deterministic process to simulate the molecular dynamics in temporal scales. The fluc-
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tuations and noise in the molecular dynamics in temporal scale can also be modeled by

implementing Gillespies Monte Carlo algorithm [38, 39]. [40] describes an approach to

model the stochastic nature of single molecules. For a large set where the fluctuation av-

erages out, stochastic nature of the system can be neglected. Stochastic simulations are far

too computationally expensive than deterministic simulation. So, depending on the system

sensitivity, an appropriate approach can be selected. But at the same time, the stochastic

fluctuation can also affect a parameter in another scale. For example, stochastic change at

molecular level can affect the collective behavior of the cell population. The variation in

the expression of the protein copy number is observed depending on the accessibility of

the DNA of different cells [41]. This randomness can affect the response of cells due to an

external signal.

At present, discrete and rule-based models are widely used. These models can

represent a biological system by spatially and temporally discrete methods. These methods

are computationally cheap and do not require distinct functions. In a discrete particle

model, particles, molecules or atom is considered individually and can be represented by

either deterministic or stochastic models. Some of the modeling approaches are Molecular

dynamics (MD) [42], Monte Carlo (MC) [43], Direct simulation of Monte Carlo (DSMC)

[44], Lattice Boltzmann (LB) [45], Brownian dynamics (BD) [46]. In MD, the interparticle

potential is evaluated based on the fundamental solution of a particle of motion. MC is a

molecular modeling tool focuses on the mapping of the system based on stochastic Markov-

based framework. DSMC and LB are used to solve fluid-related systems. BD algorithm

can simulate the dynamics of molecules and particles in a solution. So, BD algorithm has

been widely used in modeling the distribution and penetration of extracellular signaling

molecules and drug delivery nanoparticles. In a discrete agent-based model, the overall

system is represented by a set of rules. So, it is known as rule-based or agent-based

modeling. Petri nets (PN) is an agent-based model focusing on modeling dynamic discrete

events. The mathematical model of PN is based on graphical representation to simulate the
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gene regulatory networks [47], signaling pathways [48] and metabolic pathways [49, 50].

But the graphical representation for the complex biological system is still difficult to study

as the system and approach are too primitive. Finite state automata models are focused on

the consequence and transition of the state of an element. The state of a certain element is

based on rules, state of that element and state of the neighboring elements. The Boolean

network is a random network model with discrete state and time of an element. Boolean

function determined the state of an element. It also requires random inputs. Boolean

network is used to model gene networks [51] and cell cycle control [52]. Potts model is the

general form of Ising model. It is capable of simulating the dynamics of cell population due

to mechanical contact and shape of neighboring cells [26, 27, 53]. The elements of Potts

model can have multiple state.

Agent-based modeling focuses on the interaction and actions of autonomous agents

and simulate the whole system. The multiscale agent-based model can address some of the

limitations of the above models. Usually, in the agent-based model, a cell is considered

as an individual agent. But a protein, a molecule or an organism can also be regarded as

an agent. In the multiscale agent-based model, the dynamics of each cell can be derived

from fundamental features (e.g., signaling or regulatory network) and can be connected

with the higher scale collective behavior of cell population. It can also incorporate different

temporal scales such as the dynamics of intracellular signaling molecule at short time scale,

cellular birth, differentiation or apoptosis in medium time scale and the response of drug

delivery at longer time scale [54]. So, agent-based modeling has been widely used to model

the multicellular communication, dispersion of particles, population of migrating cells,

immune response or excitable tissues.

Figure 1.1 shows different scales in the biological system spanning from single pro-

tein to organism scale and their associated modeling approaches (as discussed before). In

this dissertation, tissue scale dynamics are considered as higher scale phenomena. Experi-

mental data at tissue scales are widely studied, and we have a better understanding of those.
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But the underlying fundamental features at the molecular scale are still clouded. The pene-

tration and dispersion of nanoparticles and signaling molecules in the extracellular domain

of a tissue architecture are connected with the intracellular biochemical reactions of cells.

Again, the dynamics of cell population depends on the microscopic scale gene expression

rates to macroscopic scale collective behavior of cells. On top of that cellular death, divi-

sion, growth, and heterogeneity impose intrinsic and extrinsic noise on the system. These

are the key parameters to consider in the design of a drug delivery system. The complexity

of modeling from the microscopic scale to tissue scale and connect them efficiently have

been a major challenge. Modeling of such scheme is computationally challenging as well.

To address that the Bottom-up approach is taken to study the extracellular and intracel-

lular behavior of a Tissue architecture. Since different components of cells are involved

with different space and time, several computational models are developed to study the

multiscale property of the system quantitatively. The extracellular behavior can be inves-

tigated considering molecular scale (e.g., drug molecule) or nanoscale (e.g., drug delivery

nanoparticles) as a fundamental scale. From there we can study the effect of size, shape and

charge distribution of molecules or nanoparticles on tissue scale. The fundamental scale to

study the collective behavior of the cell can be the intracellular signaling pathways at the

molecular level. Here, multiscale spatiotemporal modeling approaches have been adopted

to understand the intracellular and extra-cellular behavior of tissue architecture and address

the current challenges and limitations. The following procedures in this dissertation are

essential to fully understand and connect the multiscale behavior of any biological process

and thus overcome the barrier to design a successful drug delivery system.

In tissue scale, the critical phenomena are the distribution of signaling molecules

and particles in the extracellular domain, interaction between particle and cell, cellular

uptake of signaling molecules, intracellular reactions and collective behavior of cells. A

wide range of space and time is involved in tissue scale as discussed earlier. Each of

the phenomena is incorporated with its own hierarchical structure, and several models are
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necessary to understand the whole dynamics and their underlying interconnectivity. The

multiscale agent-based models can address these challenges. First, a multiscale model is

developed to realistically capture the transport behavior and cellular interactions of particles

or molecules. In many aspects, a biological tissue can be compared with a heterogeneous

porous media. Particle motion through the interstitial space of biological tissue is subject

to advection, diffusion, and interaction with the cell boundaries. Tissue-scale particle

distribution may occur over hours. However, the process is ultimately determined by the

microscale adhesion and interaction of particles with the cell boundaries. Bridging these

spatiotemporal phenomena at distinct spatial and temporal resolutions in a model could be

computationally expensive. At a fundamental scale, BD algorithm is incorporated to include

the randomness, and the tissue scale phenomena are modeled based on Stoke’s equation.

The simulation of BD algorithm over large scale and time is computationally intensive as

well. So, BD algorithm is modified by time-adaptation. Here, a time-adaptive Brownian

Dynamics (BD) simulation algorithm is developed. Then the algorithm is combinedwith the

Method of Regularized Stokeslets (MRS) [55]. The integrated algorithm enabledmultiscale

simulation of particle transport under both advection and diffusion in a heterogeneous porous

system. The time-adaptive feature captured particle-cell interactions at high resolutionwhile

allowing efficient computation. This multiscale model is used to study the mechanistic

features of the experimental result of Wong et al. [56] and Tang et al. [57]. Their

experimental data represents the distribution of different size drug delivery nanoparticles.

The hypothesis based on the experimental result is that the distribution of nanopar-

ticles may differ in in vivo and in vitro condition due to particle size and particle-cell

interaction. Drug-delivery nanoparticles are subject to a variety of transport barriers in

biological tissues [58, 59]. To overcome these barriers, significant research efforts have

been made over the years to study the principles of drug-delivery nanoparticle design [60].

The key nanoparticle design features that have been widely studied are particle size, ge-

ometry, and surface-attached targeting molecules [61]. Among these, the size of a particle
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is believed to have significant effects on its immune clearance, transvascular delivery, and

intra-tissue dispersion and penetration [61, 62]. The particle-cell interaction due to the

presence of cells may also play an important role in the distribution of nanoparticles in the

extracellular domain.

Then a second multiscale modeling framework is developed to connect the tissue

scale collective behavior of cells to the intracellular and extracellular reaction network.

The fundamental scale in this framework is based on the signaling pathways derived from

interacting molecules and reactions. Normally, the molecules of the signaling pathways of

the reaction network is modeled as featureless entities. Their molecular interaction is well

defined by the laws of the mass of action, and ODE models can be used to study such cases.

Insights from the structural analysis of molecules and nanoparticles can be incorporated in

the signaling pathways as ligation of the receptor, ligand on specific binding sites. Some

existing software tools can generate full reaction network and mathematical description of

the multimolecular complex from specified bimolecular reactions [63–66]. But the system

required the quantitative data of enzymatic reactions, association and dissociation rate for

specific binding sites as input. Lack of availability of the quantitative data is the current

bottleneck of the system. There exist other software tools to quantitatively simulate the

molecular dynamics of signaling pathways at different temporal scale [64–74]. These

tools are easy to use as technical aspects (e.g., Differential rate equation) are integrated

into the system. For example, a parallel software framework, using discrete agent-based

simulation, has been proposed in [75]. It models the behavior of a large cell population

and updates molecular concentration using coupled Partial Differential Equations (PDE). A

coarse-grained parallel approach is implemented in [76], to perform independent stochastic

simulation. In [39], a C++ based stochastic and multi-scale simulation toolkit is proposed

for the chemically reacting system. The performance of Gillespie Stochastic Simulation is

accelerated in [77] using Graphics Processing Units (GPUs). A parallel algorithm for off-

lattice individual-based models of multicellular populations is presented in [78]. Gillespie’s
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First Reaction is applied in [79] to present a stochastic simulation software framework for

biochemical reaction networks. A graph-based model for parallel, distributed and portable

applications is introduced in [80], and finally, a parallel algorithm is designed in [81],

focusing on simulation of reaction-diffusion based system. Most of the tools are still not

able to address and connect all the spatial and temporal scale as the computational and

conceptual cost is high. Only a few of them can perform the spatial simulation to connect

the gap between subcellular distribution and signaling network in a small volume. Most

of the tools assumed a well-mixed system. So, the distribution of the molecules can be

considered homogeneous and heterogeneous aspect of spatial distribution can be neglected.

But in this case, system specific mathematical description is necessary. Also, the system

will not represent a real biological system.

Here, a scalable parallel framework is developed to realistically simulate a biological

system in tissue scale conserving the efficiency and accuracy. It provides a unique capability

to systematically expand a single-cell biochemical network model into a cell population

model. Using a message passing interface (MPI) [82] or multiprocessing [83] parallel

algorithm, the models can bridge cellular processes to the temporal molecular events in

signaling and gene transcription. Direct Gillespie SSA is used to model the single cell

reaction network in fundamental scale. This model gives the exact solution mathematically

but computationally intensive. So, this model is incorporated into a multiscale parallel

framework to speed up the simulation.

In an unconventional approach, the framework launches parallel simulations on a

single-cell biochemical network model and then treats each stand-alone parallel process as

a cell object. Under the MPI/multiprocessing scheme, each parallel process behaves like an

agent or software object of an agent-based model [84], and together, all parallel processes

represent the cell population. Cellular heterogeneities can be introduced in the population

by creating parallel processes with distinct parameter values or initial conditions. The

cell objects (parallel processes) are communicated, synchronized, and controlled remotely
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using MPI/multiprocessing communications. The cell objects evolve through death and

division based on the state variables representing intracellular network species. The death

of a cell object is simulated by terminating the process. The division of a cell is simulated

by creating a new process (daughter cell) from an existing process (mother cell). Cellular

attributes and memory can be passed from one process to another (mother to daughter)

during the cell division process.

To implement the above scheme, a model is broken down into two separate computer

programs. One program describes the cellular processes (cell death, division, or changes

in the phenotypes) and their dependencies on the intracellular network species. In the

other program, a complete biochemical network model describing the intracellular events

is defined. Then communication between these two programs in a server-client fashion to

connect the cellular processes and the intracellular network is enabled.

The separation of the cellular and intracellular molecular-scale processes into two

programs provides modularity and versatility in model development. It permits a signaling

pathway or gene transcription network model to be defined separately and then readily

expanded into a population model. This distributed framework can enable scalable model

development considering computationally expensive mechanistic details at the single-cell

level.

Finally, the efficiency and scalability of our framework are analyzed with a real-time

example of bacterial Quorum Sensing (QS). Large population of bacteria communicates

with one another by releasing signaling molecules, called autoinducers, into the environ-

ment. Bacteria are also capable of sensing the environmental autoinducer concentration

and regulating the expression of certain specific genes in a coordinated manner. This

mechanism of communication and mutual regulation is called Quorum Sensing (QS) [85].

Communication via QS has been observed in a wide range of bacteria species, such as

marine bacteria (like Vibrio fischeri) and pathogenic bacteria [86, 87].
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Since each cell responds uniquely to its environment, any cellular regulation and

signaling are prone to stochastic fluctuation. There have been attempts to study how

the population of bacteria achieve coordinated gene expression, despite such noise [88].

Sequential stochastic modeling of QS considers all reactions within the system, one reaction

at a time. It makes modeling of a large population of cells significantly more expensive,

concerning time and computational resources. [86].

Let us consider an example of bacterial growth in rich media, where inter-cellular

communication may be assumed to be negligible. Such a system can be implemented in

parallel due to the absence of significant dependency among the cells. However, in the case

of QS, cellular interaction via autoinducers plays a pivotal role in the coordinated behavior

of the system. An ideal parallel QS framework must, therefore, incorporate, both, modeling

accuracy of molecular (especially autoinducer) concentration, as well as efficiency in terms

of time and resource utilization. Among the aforementioned literature, only [81] takes

cellular interaction via environment into consideration. However, even that work neither

discusses the inevitable trade-off between the parallelism and accuracy, nor the capability

of accurately modeling population dynamics due to cell birth and death.

In this dissertation, the first step is taken towards developing a scalable parallel

framework for modeling biochemical network that meets both the requirements of accuracy

and speed-up. This framework is applied to model QS in bacteria, where each cell is

a process that exchanges messages with the master (or coordinator) process. It incorpo-

rates a simple approximation to maintain the uniformity of the environmental parameters.

Simulation experiments show that this framework captures the dynamics of molecular con-

centration as accurately as the standard sequential QS model [86]. This system is analyzed

in light of how sampling interval affects the overall accuracy and variation of computation

overhead due to varying concentration of molecules. It is also discussed how this framework

handles evolution due to cell birth and death. This framework exhibits higher speed-up and

more balanced CPU usage when compared to the sequential model. Furthermore, cellular
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heterogeneity and phenotypic variability are incorporated by sampling the QS system pa-

rameters from Gaussian distribution. It is noteworthy that existing literature on QS [86][89]

has modeled up to a population of 240 cells, whereas the proposed framework has been used

to simulate a population of 2000 cells. Scalability experiments are performed on 50 cores

of Forge high-performance computing clusters built on Rocks 6.1.1, while other analyses

are performed in Ubuntu 14.04 system with 8 CPUs.

1.2. MOTIVATION AND OBJECTIVE

First, a multiscale spatiotemporal model is developed to study the distribution and

penetration of particles or molecules and their interaction with cells. Two earlier studies

quantitatively investigated the effects of particle size on the efficacy of tissue delivery and

penetration of drug-delivery nanoparticles [56, 57]. Nonetheless, the mechanistic aspects

of these effects remain poorly understood. Earlier, an experiment by Wong et al. [56]

indicated enhanced tissue penetration as a result of particle size reduction. Later, Tang

et al. [57] reported similar effects from particle size variation but their experimental

data revealed significantly narrower tissue distribution profiles and penetration of particles.

Moreover, in Tang et al. [57], the effects of particle size variation appeared relativelymodest.

These apparent disparities motivated us to develop a multiscale model and mechanistically

interrogate particle size effects on their efficacy of tissue distribution and penetration. The

two studies above carried out investigations in different experimental settings. Wong et

al. [56] employed in vitro experiments involving cell-free collagen tissue. On the other

hand, the experiments of Tang et al. [57] were conducted in in vivo tumor tissues. So, an

investigation was carried out about how these two experimental settings might affect the

intra-tissue transport behavior and penetration efficacy of nanoparticles of different sizes.

Using the model, experimental data reported in Wong et al. [56] and Tang et al.

[57] was analyzed. The analysis revealed how the different tissue conditions in these two

experimental studies could lead to distinct particle distribution profiles and size effects.
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Results and analysis indicate that particle size effects may appear pronounced in a cell-free

tissue system, such as collagen matrix, often employed in in vitro microfluidic studies. In

the absence of particle-cell interaction and under pure diffusion, particle size may have

more dramatic effects on the tissue distribution and penetration efficacy of nanoparticles.

However, in in vivo physiological conditions, the barriers imposed by the interstitial cells

may moderate the effects arising from the particle size difference. In Section 2, it is

shown that that particle-cell interaction imposes significant transport barriers and serves as

a critical determinant of distribution and penetration efficacy of nanoparticles.

Again, cell fate decisions and phenotypes are determined by the subcellular molecu-

lar events in signaling and gene transcription [90–92]. The collective behavior and evolution

of cells are linked to these subcellular events. Nevertheless, most of the cell population

models are decoupled from signaling and gene transcription. A key challenge to mod-

eling multicellular systems considering signaling and gene transcription is the multiscale

nature of the problem. Cell death, division, and evolution take place at a longer time scale

compared to intracellular biochemical transformations in signaling and gene transcription.

Bridging these multiscale phenomena in a model is imperative to mechanistically study cel-

lular development and evolution. So, a second multiscale parallel framework is developed

to bridge the gap between intracellular biochemistry to population dynamics at tissue scale.

The framework is demonstrated with two example models. In one model, cells are

treated as independent objects. In the other model, cellular dependency by incorporating

cell-to-cell communications is considered. Using the former model, the computational

performance of the MPI/multiprocessing formulation is analyzed. This model is also used

to demonstrate how MPI/multiprocessing could be used to model a temporally-changing

growth environment and link it to a multicellular system of evolving cell populations. The

latter model is utilized to show how MPI/multiprocessing could be used to model cellular
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interdependencies arising from cell-to-cell communication in an evolving cell population.

Finally, the framework is validated demonstrating the accuracy and efficiency for bacterial

quorum sensing.

1.3. DISSERTATION STRUCTURE

This dissertation is organized as follows. Section 2 presents the methodology and

results of a multiscale modeling study of particle size effects on the tissue penetration

efficacy of drug-delivery nanoparticles. Section 3 discusses the proof of concept for

multicellular models bridging subcellular biochemistry to population dynamics. Section

4 shows the efficiency and scalability of a scalable parallel framework for multicellular

communication based on a real-time example in bacterial quorum sensing. Finally, Section

5 closes the dissertation with concluding remarks and future recommendations.
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2. A MULTISCALE MODELING STUDY OF PARTICLE SIZE EFFECTS ON
THE TISSUE PENETRATION EFFICACY OF DRUG-DELIVERY

NANOPARTICLES

In this Section, a multiscale spatiotemporal model is discussed to study the dis-

tribution of particles or molecules in biological tissue. The mechanism and dynamics of

particle distribution in tissue architecture have a different scale of space and time. In the

fundamental scale, molecular interaction, particle-particle interaction, particle-cell inter-

action and particle uptake by the cell are the significant physiological phenomena. They

are connected to tissue scale dispersion and penetration. Experiments are performed to

observe the distribution and penetration of particles in in vivo and in in vitro condition. But

the fundamental explanation for the observed experimental results is yet to be adequately

understood. So, a Bottom-up approach is adopted here to study the tissue scale phenomena

from the fundamental scale. This multiscale spatiotemporal model is developed focusing

on the experimental results of Wong et al. and Tang et al. [56, 57]. Their result shows the

size effect of nanoparticle distribution in biological tissue. So, the nanoscale is selected as

a fundamental scale. But the model is generic and applicable to other range of space and

time as well.

This multiscale model links microscale particle-cell interactions and adhesion dy-

namics to tissue-scale particle dispersion and penetration. The model is based on a time-

adaptiveBrownianDynamics algorithmwhich accelerate theBrownian dynamics algorithm.

Method of regularized Stokeslets is used for themathematical description of the system. The

combination of both of these models can account for the advection, diffusion, and cellular

uptakes of particles. The experimental result of Wong et al. and Tang et al. [56, 57] show

that particle size is a key parameter in drug-delivery nanoparticle design. It is believed that

the size of a nanoparticle may have significant effects on its ability to overcome the transport

barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a
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multiscale model, this work investigates particle size effects on the tissue distribution and

penetration efficacy of drug-delivery nanoparticles. This multiscale model can consider a

particle with a certain size and account for effect arising from particle size in particle-cell

interaction and dispersion.

Based on the published experimental works that investigated particle size effects in in

vitro and in vivo tissue conditions, the effects of particle size in the intra-tissue dispersion and

penetration is analyzed. Results show that impact of particle size may appear pronounced in

an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the

effects of particle size could be relatively modest. A detailed analysis of how particle-cell

interactions may determine the distribution and penetration of nanoparticles in biological

tissue is provided here. This work suggests that the size of a nanoparticle may play a less

significant role in its ability to overcome the intra-tissue transport barriers. Results show

that experiments involving cell-free tissue systems may yield misleading observations of

particle size effects due to the absence of advective transport and particle-cell interactions.

This Section is organized as follows. In Section 2.1, a detailed description of the

methodology used in the adaptive Brownian dynamic algorithm is provided. In Section

2.2, results and comparison with experimental and theoretical data are presented. Section

2.3 describes a detailed discussion on the current limitation and future perspective of the

model. Finally, this Section is concluded with remarks in Section 2.4.

2.1. METHODS

2.1.1. Materials and Methods. Below, the simulation approach together with the

model of nanoparticle transport in biological tissues is described. The model is written in

C++.

2.1.2. Domain Representation of Biological Tissue. The computational domain

in this model represents a two-dimensional rectangular tissue section (Figure 2.1). The

entire domain is reffered by Ω, and its left, lower, and upper edges by Ω1, Ω2, and Ω3,
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Figure 2.1. The MRS calculated force and velocity fields in a rectangular tissue section.
(A) The red arrows represent force vectors at discrete locations along the domain edges and
cell boundaries. The black arrows represent velocity vectors in the interstitial space. (B) A
zoomed-in view of the velocity vectors in the interstitial space and near the cell boundaries

respectively. The rectangle is considered sufficiently wide such that the right edge can be

ignored. The bottom-left corner of the domain (Ω1 ∩ Ω2) represents the origin, and any

point x ∈ Ω represents a position with respect to this origin. The left edge, Ω1, represents

a porous capillary wall from where nanoparticles enter into the tissue space. The entry

points of particles, x ∈ Ω1, are selected randomly along this edge. The horizontal distance

to the right with respect toΩ1 represents tissue depth (labeled as X-distance in (Figure 2.1).

The mobile nanoparticles is treated as circular objects with a defined size (radius) and each

cell as a stationary circle of 10 µm radius. Cells are populated at non-overlapping random

positions in the domain. The cells occupy 40% area of the domain area. This aggregate area

occupied by the cells is referred as Λ. The remaining 60% area represents the interstitial

space, which is referred to as Γ. The boundary of any cell i ∈ {1, 2, · · · , n} is referred as

Pi, and the region it occupies as Ai. Therefore Λ = (∪n
i=1Pi) ∪ (∪

n
i=1 Ai). Thus, the entire

computational domain, Ω is equal to (∪3
i=1Ωi) ∪ Γ ∪ Λ.
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2.1.3. Nanoparticle Velocity. To evaluate nanoparticle velocities in the domain,

the approach of Rejniak et al. [93] is adopted. At any position x ∈ Ω, the velocity of a

nanoparticle is represented by the local fluid velocity v(x) (rejniak2013role). As in [93],

the simulation is computed v(x) using the Method of Regularized Stokeslets (MRS) [55].

The MRS [55] has been used to model complex solid-fluid interactions in a variety of

Stokes flow systems [94–98]. Here, for completeness, a brief description of the MRS and

its implementation in this model is provided.

2.1.3.1. TheMethod ofRegularized Stokeslets (MRS). TheMRS is a Lagrangian

approximation of the Stokes equations. It provides a convenient framework to avoid singu-

larities associated with the fundamental solutions of the Stokes equations. Because of this

property, the method is particularly useful for modeling Stokes flow associated with irregu-

lar geometries or non-smooth boundaries. The Stokes equations in two or three dimension

are as follows:

µ
∂2u

∂2x
= ∇P − f

∇ · u(x) = 0

In the above equations, µ is the fluid viscosity; x is a position vector; f is force; and P is

pressure. u(x) is the local fluid velocity vector at x. The Stokes equations can be solved for

a single point force at x0, f = f0δ(x − x0), where δ(x) represents the Dirac delta function.

µ
∂2u

∂2x
= ∇p(x) − f0δ(x − x0)

∇ · u(x) = 0

The solution of the above equations represents the velocity u(x) at x due to the single point

force at x0. This solution, however, is singular at the point of application of the force (i.e.,

|u(x)| → ∞, as x → x0). To avoid this singularity, the MRS avoids direct use of the
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point force f0δ(x − x0) in the Stokes equations. Instead, it approximates (regularizes) the

point force into a smooth, radially-symmetric force centered at x0: f0φ(x − x0). With this

regularized force term, the Stokes equations take the following form:

µ
∂2u

∂2x
= ∇P(x) − f0φε (x − x0) (2.1)

∇ · u(x) = 0 (2.2)

The function φε (x) is known as cutoff function, which represents a spatially-symmetric

sphere or blob of radius ε in the domain space. The regularized force f0φε (x − x0) takes

the maximum value at the center (x0), and decays smoothly towards the surface of the blob.

The cutoff function satisfies the constraint
∫ +∞
−∞

φε (x)d(x) = 1. As ε → 0, φε (x) → δ(x),

and the regularized force approaches the point force.

For an appropriate choice of the cutoff function φε (x), Equation 2.1 and 2.2 can

be solved to evaluate the fluid velocity u(x) due to the regularized point force centered at

any arbitrary position x0 in the fluid. Unlike the Stokes solution, the resulting velocity is

non-singular at x0.

Now, the force field over the entire domain can be represented by a collection of

N discrete point forces located at different points in the domain. If fk located at xk for

k ∈ {1, 2, · · · , N} represents such a point force, its contribution at x can be represented

as uk(x). By solving Equation 2.1 and 2.2, uk(x) for k ∈ {1, 2, · · · , N} can be evaluated.

Then, the net velocity at x, v(x), can be evaluated simply by linear superposition of the

solutions corresponding to the N discrete forces: v(x) =
∑N

k=1 uk(x)

2.1.3.2. Force and velocity calculation. Following Rejniak et al. [93] and Tlupova

et al. [99], the value of φε (x) is chosen as φε (x) = 2ε4

π(r2+ε2)3
, where r = |x |. The solid

boundaries of the tissue domain is discretized into N = 6, 700 discrete points. The solid

boundaries include the three domain edges (Ω1, Ω2, and Ω3), and the boundaries of the

circular cells, Pi for i ∈ {1, 2, · · · , n}. For the above cutoff function, the solution of Equation



23

2.1 and 2.2 is:

uk(x) = −
fk

8πµ

(
ln

(
r2 + ε2) − 2ε2

r2 + ε2

)
+

1
4πµ

1
r2 + ε2

[
fk .

(
x − xk

) ] (
x − xk

)
. (2.3)

For the entire collection of the N discrete forces, the net velocity v(x) is obtained by linear

addition of the solutions:

v(x) =
N∑

k=1
uk(x)

=

N∑
k=1

{
−

fk

8πµ

(
ln

(
r2 + ε2) − 2ε2

r2 + ε2

)
+

1
4πµ

1
r2 + ε2

[
fk .

(
x − xk

) ] (
x − xk

)}
. (2.4)

However, to obtain v(x) using Equation 2.4 (or uk(x) using Equation 2.3), the unknown

point forces, fks, at the N discrete points needs to be evaluated first. To evaluate the fks,

a no-slip boundary conditions (uk = 0) is selected at the lower and upper domain edges

(Ω2 and Ω3), and the cell boundaries Pi for i ∈ {1, 2, · · · , n}. As mentioned previously,

the left domain edge Ω1 represents the particle or fluid entry points (the porous wall of

a vascular capillary). At Ω1, the boundary condition was set as uk = 1 ĵ µm/second,

where ĵ represents a unit vector towards the tissue depth (parallel to Ω2 or Ω3). Thus, for

the N discrete points, a system of N independent linear equations from (Equation 2.4) is

obtained. The left hand-side (u(x)) of these equations were defined (either 0 or ĵ), whereas

the right-hand side contained the N unknown force terms fks. Using the GSL package

(https://www.gnu.org/software/gsl/), this system of linear equations is solved to evaluate

the unknown fks at the N discrete points. Then these force terms are plugged into Equation

2.4 to evaluate the velocity vector v(x) at any arbitrary position x in the interstitial space of

the domain.
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In Figure 2.1, the force vectors, fks are represented by red arrows. The length

and direction of each red arrow represent the relative magnitude and direction of the

corresponding force vector at the indicated point. The velocity vectors at different points of

the interstitial space are represented by black arrows. The length and direction of each black

arrow represent the relative magnitude and direction of the fluid (nanoparticle) velocity at

the indicated point.

2.1.4. Nanoparticle Diffusion. The diffusion constants of the nanoparticles are

calculated based on the Einstein-Stokes equation:

D =
KBTp

6πµa
(2.5)

where D is diffusion constant of a particle, KB is the Boltzmann constant, Tp is temperature,

µ is viscosity of the interstitial fluid, and a is radius of the particle.

2.1.5. Time-Adaptive Simulation Algorithm. In the BD algorithm, the nanopar-

ticles are considered as independent and mutually non-interacting in a biological tissue.

This consideration is based on the fact that drug-delivery nanoparticles can reach a target

tissue at small quantities. Typical particle concentration in a biological tissue is expected

to be small. Therefore, it is less likely that their mutual interaction can have a significant

impact on their transport behavior over other factors, such as fluid flow, collision with the

cell boundaries, and cellular uptake. Because particles are considered independent, the

model allows independent simulation of one particle at a time.

Figure 2.2 illustrates the time-adaptive scheme of the algorithm. The algorithm

is summarized in a pseudocode in (Figure 2.3). In the algorithm, particles are advanced

adaptively with time steps ∆tm ≥ ∆t ≥ δt, where ∆tm and δt represent the largest and

smallest permissible time step, respectively. During the simulation, in each BD step, the

algorithm first computes R, which is the distance between the center of a particle and its

nearest interaction point on a solid boundary (Figure 2.2). The solid boundary can be any
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Figure 2.2. Illustration of the time-adaptive BD algorithm. (A) Particle motion in the bulk
fluid. The small green circle represents a nanoparticle, and the large gray circles represent
cells. The radius of the dashed circle, R, represents the distance between a particle’s current
position and its nearest cell boundary. In the bulk fluid, particle jump S is taken adaptively
so that |S | < R. |S | is determined by the time step ∆t: S = Sv + Sd, where Sv = v∆t
(displacement due to advection), and Sd =

√
4D∆te (displacement due to diffusion). (B)

Particle motion near a cell boundary. |S | is determined by a constant but fine resolution
time step δt = 10−3 seconds. The cell boundary represents a sticky wall that captures or
reflects a colliding particle with probability ρ and 1 − ρ, respectively

of the three domain edges or cell boundaries. It then attempts to move the particle based

on the largest permissible step ∆tm. It computes a possible jump: S = Sv +
√

4D∆tme,

where Sv = v∆tm represents displacement due to advection, Sd =
√

4D∆tm represents

displacement due to diffusion (Figure 2.2), and e represents a unit vector with random

orientation. Velocity v and diffusion constant D are computed using the MRS and Einstein-

Stokes equation, as detailed in the previous sections. If the jump length |S | is smaller

than R, the move is accepted, and the particle position is updated accordingly. If the move

based on ∆tm is rejected, the algorithm attempts to move the particle based on a new time

step ∆ta < ∆tm. This time step ∆ta is obtained by solving |v |∆ta +
√

4D∆ta = R. It then
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Figure 2.3. Pseudocode for the simulation algorithm

computes: S = v∆ta +
√

4D∆tae. The algorithm then compares |S | with the particle radius

a. If |S | > 4a (i.e., the distance between the particle and a cell is at least twice the diameter

of the particle), the move is accepted and the particle position is updated accordingly.

If |S | ≤ 4a, the algorithm attempts to move the particle based on the smallest

permissible step δt: S = vδt +
√

4Dδte. The move is accepted if the new particle position

falls in the interstitial space (Γ). However, if the new position falls outside the domain edges,

or in any of the cell regions (Λ), the algorithm treats it as a collision with the corresponding

domain edge or cell boundary. In the former case, the particle is reflected by the domain

boundary. In the latter case, the particle is captured or reflected by a cell boundary, as

discussed in the next section.

2.1.6. Particle Interaction with Cell Boundaries. The cell boundaries are con-

sidered as sticky walls that can capture or reflect a hitting nanoparticle with a defined

probability (Figure 2.2 B). Because a cell is much larger in size than a particle, a cell

boundary is treated as a flat surface when a particle collides with the boundary (Figure 2.2
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B). As mentioned in the previous section, a particle can hit a cell only when it is in the

vicinity of a cell and advanced by the finest time step δt = 10−3 seconds. This time step

size requires any colliding particle to be within a few nanometers of a cell boundary. When

a particle hits a cell, it is either captured with probability ρ, or reflected into the fluid with

probability (1 − ρ) (Figure 2.2 B). The value of ρ determines the rate of particle capture

(uptake) by cells.

It should be noted that particle capture or uptake by a cell may involve complex

biophysical and biochemical processes. These processes can be influenced by many factors,

such as van der Waals force [100], particle surface charge effects [101], particle surface

modification by corona formation [102–105], and molecular recognition by the receptor

proteins in the cell membrane [106–109]. Explicit consideration of these different factors

may be possible if quantitative information about their relative importance and molecular

mechanisms of the recognition processes are known. Here, a simple approach is taken

where the probability parameter ρ implicitly accounts for the lumped effects from the

various factors that may influence particle capture by cells. For example, a particle with

a small ρ in the model may represent a particle with a bare surface with a poor affinity

for the cell membrane. On the other hand, a particle with a large ρ may represent a

particle with a modified surface (functionalized with a targeting ligand, for example) with

a high affinity for the cell membrane because of the molecular recognition by membrane

proteins[101, 106–109].

2.1.7. Model Parameters Values. Table 2.1 lists the model parameters and their

values. In the model, cells have a typical radius of 10 µm. Nanoparticles have a radius

of 100 nm if a different size is not specified explicitly. Tissue porosity (Γ/Ω) is 0.60.

The probability of particle capture per collision with a cell (ρ) is varied between 0.01 and

1. Physiological temperature (37 oC or 310 K) was used in the Einstein-Stokes equation

to calculate particle diffusion. The remaining parameters, fluid viscosity (µ), entry fluid

velocity (vin), and regularization constant (ε) are based on [93]
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Table 2.1. Model parameter values

Parameter Value Reference
Cell radius, r (µm) 10 This work
Nanoparticle radius, a (nm) 10–100 This work
Tissue porosity, α 0.6 This work
Particle capture probability, ρ 0.01–1 This work
Fluid viscosity, µ (cP) 2.5 [93]
Temperature, Tp (K) 310
Entry fluid velocity, vin (µm/s) 0.05–1 [93]
Regularization constant, ε (µm) 0.5 [93]

2.2. RESULTS

2.2.1. Size Effects of Nanoparticles in an In Vitro Cell-Free Tissue. In drug-

delivery experiments, it is a common practice to employ cell-free tissue systems as a

substitute of an in vivo physiological tissue. First, investigated particle size effects on the

distribution and penetration of nanoparticles in such in vitro tissue systems. As mentioned

previously, the experimental work of Wong et al. [56] studied the effects of particle size in

a cell-free collagen matrix (Figure 2.4 A). In contrast, Tang et al. [57] investigated particle

size effects in in vivo tumor tissues (Figure 2.4 B). The collagen matrix used in Wong et

al. [56] was devoid of cells and advective transport. An experiment in the study compared

the tissue distribution and penetration efficacy of 10 and 100 nm particles. Both particle

sizes displayed a broad dispersion across the tissue system. However, the smaller particles

revealed a significantly deeper penetration (Figure 2.4 A).

The experimental observation of Wong et al. [56] can be explained with a simple

theoreticalmodel. Comparing the tissue domainwith a semi-infinite plane in one dimension,

the solution of the following equation describes the time-dependent concentration profile

(probability density function) of a single particle in the domain:

∂G
∂t
= D

∂2G
∂2x
+ δ(x)δ(t) (2.6)
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Figure 2.4. Experimental data adapted from two earlier works [56, 57]. (A) Data from
Figure 3H of Wong et al. [56]. The figure compares distribution of 100 nm (red) and 10 nm
(black) nanoparticles in collagen in an in vitro experiment. (B) Experimental data adapted
from Figure 5d of Tang et al. [57]. The figure compares tumor tissue distribution of 200
nm (red) and 50 nm (black) particles in an in vivo experiment

where the source term (product of the Dirac delta functions) represents the initial particle

location at the origin. D is the size-dependent diffusion coefficient (Equation 2.5). The

solution of this equation is G(x, t) = (1/
√
(πDt))exp(−x2/4Dt). The solution is similar

to a Gaussian distribution in an infinite domain with the exception that the peak height is

1/
√
(πDt)) instead of the corresponding Gaussian peak 1/

√
(4πDt)), and the solution is

valid only in the right half plane (x ≥ 0). Figure 2.5 A represents this analytical solution for

three different particle sizes. The diffusion coefficient of each particle size was calculated

based on the Einstein-Stokes formula (Equation 2.5) and the physical properties of the

interstitial fluid listed in Table 2.1. Figure 2.5 B shows corresponding results from the

simulation for two different particle sizes (10 and 100 nm). The inset of Figure 2.5 B shows

the normalized curves for a direct comparison with the fluorescence data in [56] (Figure 2.4

A).
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Figure 2.5. Particle size effects in a cell-free system. (A) Theoretical model (Equation 2.6)
and (B) simulation considering pure diffusion. (C) Theoretical model (Equation 2.7) and
(D) simulation considering a small advection (0.05 µm/s) and diffusion

In a biological tissue, however, it is unlikely to have a purely diffusive motion of

particles. In the presence of a small flow (advection) to the right, particle distribution can

be described by the following equation:

∂G
∂t
= D

∂2G
∂2x
− v

∂G
∂x
+ δ(x)δ(t) (2.7)

where v is a constant velocity in the X-direction. The solution of this equation, G(x, t) =

(1/
√
(πDt))exp(−(x − vt)2/4Dt), is shown in Figure 2.5 C for v = 0.05 µm/s. Corre-

sponding simulation result is shown in Figure 2.5 D. The distribution peaks are shifted by

a distance vt, as expected. Based on this result, in a cell-free system, it may take only few

hundred seconds for a particle to travel tissue-scale distances (few hundred microns). Con-

trary to this, the in vivo distribution in Tang et al. [57] (Figure 2.5 B) clearly indicates that

particles travel at a much slower pace in a physiological tissue condition perhaps because

of the transport barriers imposed by the cells.
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Figure 2.6. Predicted particle size effects in the presence of cells. The panels represent the
following conditions: (A) pure diffusion and cells; (B) advection, diffusion, and cells. All
simulations were carried out considering ρ = 0.01. The fluid velocity at the tissue entry
(left edge) was assumed v = 1 µm/s [93]

2.2.2. SizeEffects of Particles in InVivoTissueConditions. Next, an investigated

was performed on how particle size may impact the tissue distribution and penetration

efficacy in a physiological tissue condition. It was interesitng to analysis the experimental

result in the in vivo tumor tissue distributions reported in Tang et al. [57] (Figure 2.4 B).

This in vivo data indicated a modestly deeper penetration by the smaller particle but the

tissue distribution profiles of the particles were significantly different from those observed

in the cell-free collagen sample in [56] (Figure 2.4 A). Both particles revealed narrow and

overlapping peaks, suggesting a relatively poor tissue dispersion and penetration compared

to the cell-free system. Two different scenarios were investigated in the presence of cells.

In one case, only cells and diffusion were included but no advection (Figure 2.6 A). In the

other case, cells, diffusion, and advection were included (Figure 2.6 B). This latter condition

could be a more practical representation of a biological tissue.
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Comparing Figure 2.6 with Figure 2.5, the presence of cells in the model had

a dramatic effect on the penetration depth. The dispersion of both the 100 and 10 nm

particles were significantly reduced under pure diffusion (Figure 2.6 A) as well as under

advection and diffusion (Figure 2.6 B). The predicted distributions in Figure 2.6 B are

qualitatively consistent with the experimental observations of Tang et al. [57]. Consistent

with the experimental data, the model shows that the peaks of the 10 and 100 nm particle

distributions align at the same location though the smaller particle distribution shows a tail

stretched further to the right.

Comparing Figure 2.5 with Figure 2.6, a cell-free in vitro system may provide

inaccurate information as to how the particle size affects the distribution and penetration of

nanoparticles in biological tissues. Figure 2.5 indicates the 10 nm particles are significantly

more efficient in tissue dispersion, consistent with the experiment of Wong et al. [56].

However, Figure 2.6 indicates the difference between the 10 and 100 nm particles may be

less pronounced in a real tissue system, where particle motions could be hindered by their

interaction with the cell boundaries.

The analysis above indicates that cell-surface adhesion and capture of particles may

significantly compromise the particle size effects in in vivo physiological conditions. In

a cell-free system, particle size effects could be more significant due to the unrestricted

diffusion, which is directly determined by particle size. In contrast, in the presence of cells,

diffusion plays a less significant role. Therefore, in vivo interstitial transport behavior of

particles could be predominantly determined by the barriers imposed by the cell boundaries.

Next the model was used to capture the experimental data of Tang et al. [57] (Figure 2.4 B).

A direct fit between the model and the data was not possible due to the missing information

on the exact experimental time frame and tissue properties, which include cell density and

interstitial fluid properties, fluid velocity, and particle capture rate by cells. The system

was simulated for 10,000 seconds and attempted to match the position of the distribution
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Figure 2.7. Comparison between simulation and experiment. The open circles represent the
experimental data of Figure 2.4 B (plotted in a different scale). The filled circles represent
simulation. (A) Particle size is 200 nm. (B) Particle size is 50 nm

peaks for the two particle sizes reported in [57]. The match between the simulation and

data (Figure 2.7) required variations in the inlet fluid velocity (v in ) and the probability of

particle capture per collision (ρ), leading to v in = 4 µm/s and ρ = 0.001.

The small value of ρ indicates that a particle gets captured after many contacts

(collisions) with the cell boundary. At this range of ρ, it is found that the particle distribution

profiles were less sensitive to the value of ρ in the simulations. The distributions were

primarily determined by the fluid velocity and duration of the simulation. It should be

noted that the parameter ρ does not capture the possibility of particle dissociation (reversible

binding). Replacing this simple probabilistic construct based on ρ with more mechanistic

details of particle uptake [110] and complementary quantitative experiments might shed

light on particle uptake rate by cells in biological tissues.

2.2.3. Effects of Cellular Uptake Rate on Tissue Dispersion and Penetration.

Previous analysis led to further investigate how cells influence the tissue distribution of

particles. In Figure 2.8, the effects of ρ was investigated on the tissue penetration efficacy
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Figure 2.8. Predicted effects of cellular uptake rates on tissue distribution of nanoparticles.
(A) Mean depth of tissue penetration by particles as a function of ρ. The mean depth of
penetration represents the average of the horizontal positions (X-coordinate) of 16,000 sim-
ulated particles in 104 seconds after their tissue entry. (B) Histograms showing distribution
of the nanoparticles. Each histogram corresponds to a different value of ρ, as indicated in
the figure legend

of 100 nm nanoparticles. Figure 2.8 A shows the mean depth of penetration as a direct

function ρ. Figure 2.8 B shows the tissue distribution profiles at different values of this

parameter. As seen in the figures, the penetration depth and the distributionswere insensitive

in the range 0.1 < ρ < 1. However, there was a noticeable change in the penetration depth

and distributions in the range ρ < 0.1.

The results above indicate a non-linear relationship between the cellular uptake rate

and tissue penetration depth. This nonlinearity could reflect the fact that the overall rate

of cellular uptake is determined not only by ρ but also by the mean number of collisions

a particle makes with the cell boundaries. If a particle on average makes C number of

collisions with any cell boundary, the probability that it will get captured is ρC. As for

example, with ρ = 0.1 and C ≥ 10, particle can get captured with probability 1 upon its

encounter with a cell. Therefore, a further increase in ρ beyond 0.1 could have little impact
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Figure 2.9. Representative travel paths of simulated nanoparticles. (A) Travel paths of
100 nanoparticles in the tissue domain. The particles are of identical size (100 nm radius).
(B) A zoomed-in view showing a single particle travel path and its interaction with a cell
boundary. Panel B corresponds to the small region in Panel A marked by a rectangle

on the overall capture rate. This adaptive algorithm takes fine-resolution time step (δt) near

the solid (cell) boundaries, as discussed in Materials and Methods. As illustrated in Figure

2.9, the fine resolution δt = 103 second near the cell boundaries allows a particle to make

many collisions with a cell before it gets captured. Therefore, the actual rate of cellular

uptake could be high even though ρ is small. In the simulations, the default value of ρ is

0.01 (Table 2.1).

2.2.4. Model Prediction Sensitivity to Time Steps. Because the adaptive algo-

rithm selects time steps over a wide range (∆tm = 0.1 < ∆t < δt = 103s), it was investigated

that if the predictions in Figure 2.10 could be sensitive to the selection of time steps. There-

fore, the upper bound (∆tm) was varied in the range 103 s to 0.1 s to enforce different

resolution of time steps in the simulation algorithm. For each ∆tm , 16,000 nanoparticles

were simulated for 104 s and then calculated the mean depth of tissue penetration by these

particles. This analysis was carried out for different values of ρ. Corresponding plots are
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Figure 2.10. Effect of time step ∆tm variation on model predictions. (A) Average tissue
penetration by particles as a function of ∆tm . Each curve corresponds to a different value
of ρ (the probability of particle capture by a cell in a collision between the particle and the
cell.) (B) The analysis of Panel A is repeated using a non-adaptive BD algorithm based on
Rejniak et al. [93]

provided in Figure 2.10 A. As seen in the figure, the predictions remained insensitive to

the ∆tm . This robustness reflects the fact that the algorithm adapts to smaller steps when

particles are in close proximity to the cell boundaries regardless of the value of ∆tm.

However, it is important to note that ∆tm cannot be assigned an arbitrarily large

value. A smaller ∆tm is needed to approximate particle velocities to the local fluid velocity.

A large ∆tm enables the particles to advance with large steps. As a result, local velocity

fields before and after the jump could be significantly different, thus introducing larger

inaccuracies in the velocity approximation for the particles.

In Figure 2.10 B, the same analysis was performed using a non-adaptive algorithm,

where the time step size was kept constant. This fixed time-step algorithm is similar to the

algorithm of [93]. Contrary to this approach, the algorithm of Rejniak et al. [93], however,

treated particles (drug molecules) as point objects. The algorithmmoved the particles based

on a fixed time step and rejected the moves in case of a conflict with the cell positions.
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The algorithm also assumed an interaction layer of 0.25 µm around each cell periphery. A

particle was considered captured by a cell immediately upon its arrival within the 0.25 µm

interaction layer. These features were taken from the Rejniak model with the following

exceptions: 1) Instead of treating the particles as points, the particles were treated as

circular objects of 100nm radius, as in this model; and 2) Instead of assuming an immediate

particle capture within the interaction layer, a capture probability was incorporated between

0 ≤ ρ ≤ 1 in the layer. The predictions made by this algorithm at different selections of the

time step size and ρ are shown in Figure 2.10 B. Clearly, the predictions were sensitive to

the choice of the step size. This sensitivity is expected because the rate of particle capture

by cells in this algorithm should depend on the thickness of the interaction layer and the

relative choice of the time step size. For a thinner interaction layer, a particle would be less

likely to hit the layer if advanced based on a fixed step. Similarly, an increase in the time

step size would also reduce the possibility of hitting the interaction layer. Thus, the fixed

time step algorithm should underestimate the rate of particle capture (cellular uptake) and

overestimate the tissue penetration depth if a smaller interaction layer or larger time step is

chosen. Moreover, due to the fixed (and large) time step size in the algorithm of Rejniak et

al. [93], many particle moves might be rejected due to the conflicts with the cell positions.

As mentioned before, δt = 103 represents the smallest time step in this model.

Because of the no-slip boundary condition, particle motion near a cell boundary is primarily

driven by diffusion. Thus, the length of a particle jump near a cell boundary can be estimated

based on pure diffusion: | S |≈| Sd |=
√

4Dδt. For the fluid properties and temperature listed

in Table 2.1, this jump size becomes comparable to the size of the particle. Therefore, it is

a sufficiently small step size to capture the fine resolution details of interactions occurring

at the particle-cell interface.
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2.3. DISCUSSION

In this work, a multiscale Brownian Dynamics algorithm to study particle transport

behavior in biological tissues is developed. Using the approach, particle size effects on

tissue distribution and penetration reported in two experimental studies were investigated.

The analysis was focused on how these behaviors may vary in cell-free artificial tissue

systems and in vivo tissue conditions.

This multiscale algorithm can be generally applicable to modeling advection-

diffusion systems involving heterogeneous porous media. The approach implemented here

is inspired by two previous modeling works [93, 111]. Earlier, Monine et al. [111] de-

veloped a time-adaptive Brownian Dynamics (BD) algorithm to study enzyme-substrate

reaction in the plasma membrane of cells. Recently, Rejniak et al. [93] used the Method of

Regularized Stokeslets (MRS) [55] to study drug molecule transport in biological tissues.

Both these models treated the mobile particles (substrate and drug molecules, respectively)

as point particles while considering their stationary reaction or binding partners (enzyme

molecules and cells, respectively) as circular objects. In this model, the time-adaptive

feature of the Monine model was combined with the MRS. This combination enabled mul-

tiscale modeling of particle transport under both advection and diffusion while capturing

high-resolution details of particle interaction with the cell boundaries. Contrary to the point

particle assumption in the Monine model and Rejniak model, the mobile nanoparticles were

considered as spherical objects occupying space in the two-dimensional membrane.

Contrary to the general perception, this study revealed less significant effects of

particle size on their intra-tissue distribution and penetration. This analysis shows that in

vitro tissue systems, being devoid of cells and convective flow, may result in misleading

conclusions regarding the transport behavior of particles in the biological tissues. Here, the

focus was limited to particle size only. However, themultiscale algorithm can be extended to
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incorporate other design attributes of particles, such as geometry and surface ligands. This

extension will allow mechanistic interrogation of how these parameters affect the transport

behavior of particles in biological tissues.

In the model, the nanoparticles were treated as mutually non-interacting objects

and the particles do not collide or form aggregates. This consideration is based on the

assumption that physiological tissue concentrations of drug-delivery nanoparticles are small.

Apparently, there is no report on the mutual interactions of drug-delivery nanoparticles in

the physiological tissue conditions. It has been reported that 1% of intravenously injected

particles can reach the target tissue [112, 113]. Therefore, from the injection of 1 ml

solution containing 100 millionparticles/ml [114], only a 1 million particles are expected

to reach the target tissues. Thus, for 100 nm radius particles, the estimated volume fraction

of particles in the target tissues could be in the order of 109 assuming 1cm3 of tumor

tissue volume (a single tumor or many smaller tumors). At this volume fraction, their

non-specific collision is unlikely or less important considering many other cellular proteins

and biomolecules that could present at comparable amounts.

This model does not consider the effects arising from the surface charges of particles

or van der Waals forces acting between a particle and a cell. Moreover, in a body fluid,

soluble biomolecules may interact with nanoparticles and form a coating or biocorona over

the particle surface [102–105]. Formation of biocorona modifies the surface properties of

particles. At present, the quantitative aspects of biocorona formation and how it modifies

the particle surface properties and tissue interaction are not well-understood. Therefore,

rather than explicitly incorporating these other properties (van der Waals and biocorona

effects), a phenomenological parameter ρ was used in the model that accounts for a lumped

measure of the affinity of interaction between a nanoparticle and a cell. Nevertheless, for

a quantitative understanding of these other phenomena influencing tissue interactions of

particles, it is crucial to explicitly address them in a mechanistic model. The Brownian

Dynamics-based framework presented here could serve as an initial platform towards this
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direction. The framework could be extended to capture these other types of particle- and

tissue-specific physicochemical parameters. Integration of such predictive mechanistic

models with complimentary experiments could be essential for a quantitative elucidation of

these other effects on drug delivery nanoparticles in biological tissues [115].

Nanoparticle velocity was considered to be the same as the local fluid velocity while

ignoring the influence of the particles on the velocity field. It is possible that large particles

also modify the local velocity fields at the micro scale. However, nanoparticles are of the

same dimension as many cellular proteins, biomolecules, and solute particle. This model

is based on existing models where nanoparticles velocities were considered to be the same

as fluid velocities in the porous media [116–119].

This modeling approach may be expanded for spatiotemporal modeling biochemical

network systems. The rule-basedmodeling (RBM) approach [65, 120, 121] provides unique

capability to model biochemical network systems by taking into account the coarse-grained

structural details of protein molecules [122, 123]. However, most of the early RBM

tools were developed aiming at non-spatial modeling. Recently, the RBM tools Kappa

[124], Simmune [63], and BioNetGen [125] are being added with new capabilities for

spatiotemporal modeling. The molecular dynamics (MD) simulation is used to model

protein structures with atomistic details [126]. But MD can deal with very short time

scales, and not scalable for biochemical network modeling considering a large number of

species and their structural details.

2.4. REMARKS

In this Section, a multiscale spatiotemporal model is developed to address the chal-

lenges arising from multiscale nature in the extracellular domain of tissue architecture.

This multiscale simulation method is robust for mechanistic modeling of particle transport

in porous media. By combining a new time-adaptive BD simulation algorithm with the

Method of Regularized Stokeslets (MRS), this method provides a unique capability tomodel
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particle transport considering particle size and particle-cell interactions in heterogeneous

biological tissue. Using the approach, particle size effects on their distribution and pene-

tration in biological tissues have been investigated. Contrary to the general perception, this

work shows that particle size may play a less significant role in particle transport in the phys-

iological tissue conditions. In the presence of cells, the effects arising from the difference in

particle size is small. Particle-cell interactions primarily determine particle penetration and

distribution. This study underscores the roles of advective transport and cells that are often

ignored in artificial tissue systems of in vitro experiments. This scalable model can be used

to study the extracellular dynamics of nanoparticles as well as other signaling molecules

in the cellular environment. Based on the distribution of these nanoparticles and signaling

molecules cell will show their collective behavior. In the next Section, a multiscale model

is developed to study the collective behavior of cells.
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3. MULTICELLULAR MODELS BRIDGING INTRACELLULAR
BIOCHEMISTRY TO POPULATION DYNAMICS

The multiscale nature of the cell population dynamics in a tissue architecture is

another challenge in multiscale modeling of a biological system. Based on the molecular

interactions in the signaling pathways or reaction networks, the dynamic behavior of cell

population changes. The interconnectivity in signaling pathways at a fundamental scale

make it difficult to understand the behavior in tissue scale. In this Section, a framework

for the systematic development of multiscale cell population models is introduced. The

dynamics of the cell population are incorporated with a wide range of space and time. Cell

signaling and gene transcription occur at a molecular scale and faster time scales. But the

collective behavior of cells (e.g., death, division, proliferation) occurs at a macroscopic

level and longer time scales. The rate of gene transcription and production of the molecule

in intracellular space depends on the signaling molecules in the extracellular space. The

dynamics of the cells in a tissue are connected via the multicellular communication through

environment [127–130]. Bridging these multiscale events are computationally challenging.

The phenomena in tissue scale are mostly phenomenological rather than physiological.

Deducing a fundamental mechanics is difficult due to the lack of knowledge of physiological

property and mechanism.

Here, a parallel framework is developed to create a multiscale cell population model

from a single cell biochemical network. In this Bottom-up approach, signaling pathways

or reactions network is selected as a fundamental level. The method is based on Master

slave communication where the Master process launches parallel processes. The parallel

processes act as slave processes and simulate the cell-specific biochemical networks based

on the Gillespie algorithm [38]. Then the Master process communicates with each cell

processes after a fixed interval of time and modifies the cellular environment to capture
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tissue scale dynamics. The Master process also simulates the collective behavior of the

cell population. This multiscale framework is capable of modeling cell to cell and cell to

environment communications.

In the framework, model-specific higher level rules link the intracellular molecular

events to cellular functions, such as death, division, or phenotype change. Cell death is

implemented by terminating a parallel process, while cell division is carried out by creating

a new process (daughter cell) from an existing one (mother cell). First, these capabilities

are demonstrated by creating two simple example models. In one model, a relatively

simple scenario is considered where cells can evolve independently. In the other model, the

interdependency among the cells is considered, where cellular communication determines

their collective behavior and evolution under a temporally evolving growth condition. The

dynamics of cell population due to the presence of environmental signaling molecule or

apoptotic molecule is also demonstrated here by an example model. This mock model is

similar to real biological system where cell death occur due to apoptotic molecules (Bcl-2,

Fas, FasL, Caspase-8, P52 [131, 132]) or external factors (e.g. drug dosages [133–135]).

This framework is also capable of modeling the cellular death due to a constant or periodic

supply of different dosages of drug molecules or apoptotic molecules. It is a general

framework to incorporate any biological processes for a large population of cells (i.e., tissue

scale). The software version of the framework is ParCell and also discussed here.

This Section is organized as follows. Section 3.1 describes the construction of the

multiscale parallel framework. Section 3.2 demonstrate the capability of the framework

based on the two mock models. Section 3.3 discusses the current limitation and future

perspective of the framework. Section 3.4 concluded the Section with remarks.
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Figure 3.1. Schematic diagram of the population modeling framework. The framework
uses MPI/multiprocessing parallelism to create multiscale population model from a single-
cell biochemical reaction network model. Each single cell is represented by a stand-alone
parallel process. Intercellular communication is mediated in a server-client fashion. On the
far right of the figure, an example set of biochemical network reactions associated with each
cell is shown. The network consists of two intracellular species S and P and their synthesis,
degradation, and inter-conversion in response to an extracellular cue I. The master process
creates a population of cells, where each cell has this same set of biochemical reactions.
However, the master process incorporates heterogeneity among the cells by sampling the
protein copy number or parameter values from defined distributions (Input 1). In addition,
the master process implements rules for cellular decision making based on the intracellular
species concentrations (Input 2). The master process also determines how the extracellular
input I may change over time (t) or position (x, y, z) based on some defined rules (Input 3)

3.1. METHODS

3.1.1. The PopulationModeling Framework. The framework is illustrated in Fig-

ure 3.1. To create a cell population model, the framework requires a single-cell biochemical

network model implementing a stochastic method, such as Gillespie algorithm [38].

The biochemical network model could be a signaling pathway or gene transcription

network model describing the intracellular protein-protein interaction and their biochemical

transformations. The framework also requires three additional inputs, as shown. The

Type 1 inputs are cellular distributions of the model parameter values and protein copy

numbers. Distribution functions can be defined for the parameters and initial concentrations
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to incorporate cell-to-cell variability in the population model. The Type 2 inputs are model-

specific rules that link the temporal intracellular events (time evolution of a network species,

for example) to cellular functions (death, division, or phenotypes). The Type 3 inputs define

the cell environment (growth condition).

Given the inputs, the framework launches parallel simulations on the single cell

biochemical network model. Each of the simulation processes is then treated as a cell

object, as in an agent-based model. Based on the parameter distribution functions, each cell

object may acquire properties that are distinct from the other cell objects in the population.

The framework works as a server (a master process), while each of the parallel

simulations on the biochemical network model serves as a client (a slave process). MPI

[82] ormultiprocessing [83] is used tomediate the server-client communications. A detailed

algorithm of this server-client scheme is provided in Appendix A. This sever-client scheme

is illustrated in Figure 3.2 in case of MPI. Each cell object (slave process) is allowed to

propagate simulation (Gillespie algorithm on the intracellular network) for a prescribed time

interval ∆t. At the end of each ∆t, the master process and the slave processes communicate.

The master process collects simulation data from each slave process (cell object) and

analyzes the data against the rules (Type 2 and Type 3 inputs). Based on the analysis, it

sends cell-specific instructions to each slave process. In addition, it takes actions to execute

death, division, or other functions for a cell object if corresponding conditions specified in

the rules are met.

If the internal state of any cell object meets the conditions for cell death (specified

in the Type 2 rules), the master process terminates the parallel process. Similarly, if the

internal state of a cell object meets the conditions for cell division, the master launches

a new parallel process to create a daughter cell object. It then sends an message to the

newly created process to specify its initial condition, as defined in the rules (Type 2 inputs).

Following cell division, the framework partitions the contents (network species) of the

mother cell between the mother and the daughter based on binomial distribution [136].
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Figure 3.2. The skeleton algorithm of MPI communications. The master program and the
slave program are shown in the left and right box, respectively. The master program defines
parameters and rules associated with the cellular-scale processes and extracellular environ-
ment. The slave program defines the molecular-scale processes in the form of a complete
biochemical network model. The master and slave programs contain complementary calls
in a loop to mediate communications in a server-client fashion

Based on the Type 3 inputs, the master process evaluates the extracellular envi-

ronment in each ∆t. It sends messages to the cell objects about the updated environment

variables. Such variables may include the concentration of an extracellular signal (the

concentration of a drug, ligand, or other biomolecules, for example) that may affect the

intracellular reactions. Based on the updated environment, the cell objects propagate sim-

ulation for another ∆t, and the process can be repeated. A software named ParCell is

developed based on the scheme discussed here.

It should be noted that the algorithm above is based on an approximation, rather

than the accurate implementation of the Gillespie method. The approximation involves

discretizing time in small intervals (∆t) within which the cells are assumed independent

(simulated in parallel). An accurate implementation of the Gillespie algorithm over a mul-

ticellular system could be impractical if the detailed molecular interactions are considered

at the single-cell level.
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The simulation time is discretized with ∆t = 1 second. The assumption here is that

the change in the extracellular environment in this period is small. In addition, this period

is also small compared to the time scale of the cellular processes (death and division),

which typically take several minutes to hours. This approximation may potentially improve

computation, as demonstrated in the result section. In this algorithm, the time step∆t can be

chosen arbitrarily small. However, a smaller ∆t could increase the frequency and overhead

of the communication.

3.1.2. Gillespie Algorithm. The Gillespie Algorithm, also called Stochastic Simu-

lationAlgorithm (SSA), is a procedure for simulating changes in themolecular concentration

of chemical species in a chemically reacting system. Hence the behavior of each cell and the

advancement of simulation time within the system is determined by executing the Gillespie

algorithm. The Gillespie algorithm (shown below) calculates propensity (likelihood) ai of

reaction γi, and the total propensity A as follows:

ai = ki ×

|ωi |∏
j=1

ω
j
i (3.1)

A =
∑
i∈γ

ai (3.2)

Here, k is the rate constant and ω is the reactant concentration.

1: procedure Gillespie(Rr ,Rc,M ,t)
2: Calculate ai for all reactions and A.
3: Select r1, r2 = random(0, 1)
4: Update current time t: t = t + ln(1/r1)/A
5: Select reaction γ j : (∃J ∈ N)

∑J
j=1 a j < A × r2 ≤

∑J+1
j=1 a j

6: Update reactant concentration of γ j in M .
7: Return t, M
8: end procedure
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In each step, the Gillespie algorithm takes four input parameters: the set of reaction

rules (Rr), reaction rate constant (Rc), initial simulation time t and molecular concentration

matrix M . The Gillespie algorithm probabilistically chooses a single reaction (γ j), based

on the individual reaction propensities. Finally, Gillespie updates the reactant concentration

of γ j according to its stoichiometric coefficients.

3.1.3. Sequential Algorithm. In the sequential model, each cell contains one copy

of the regulatory network. All the reactions in the entire population, including diffusion

reaction between cell and environment, is considered as a single global system. As shown

in Line 4 of sequential algorithm, the Gillespie algorithm is invoked in a loop, until the

current time t exceeds the total simulation time T . Note that the sequential model, when

used in conjunction with the exact Gillespie algorithm, yields accurate result. Therefore,

the sequential model is implementedas a benchmark of accuracy for our proposed parallel

framework.

1: procedure Sequential(Rr ,Rc,M ,T)
2: t = 0
3: While t ≤ T do
4: t, M = Gillespie(Rr ,Rc,M ,t)
5: Endwhile
6: end procedure

3.1.4. ParCell: Software Implementation of theFramework. ParCell is aMaster-

Slave based parallel software considering each cell as a parallel process or agent. Figure

3.3 shows a schematic diagram of ParCell model generator. It takes the reaction network

of a single cell (e.g.: DNA transcription as shown in the figure) and expands the model

into population scale. The software incorporates the parameter, species, initial molecu-

lar concentration and reaction rules in different blocks. These blocks are similar to the

software BioNetGen [137] which focuses on the modeling of a single cell. But ParCell

can incorporate cellular heterogeneity by distributing the rate constant parameter across all

cells. Uniform, normal and lognormal distribution are available in the software. Dependent
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Figure 3.3. Schematic diagram of ParCell model generator

reaction rule block can include any dynamic dependency of the reaction rules. For example,

if the rate constant parameter of a protein depends on the dynamic concentration of another

species, the time-dependent concentration can be included in the rules. The environmental

molecules are represented by environmental species block. It automatically synchronizes

the environmental molecule across the system boundary homogeneously. Environmental

rules can set an environmental species concentration to a fixed value which represents the

external influx. Rules connecting cellular birth and death can be included in the cellular

birth and death block. Simulation end rules block is used when a user wants to terminate

the simulation after crossing a certain threshold of the total number of cells.
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Figure 3.4. Models created using the framework. The gray circle represents the cell, and
the white space around the circle represents the extracellular space. (A) Model I: cells are
independent. (B) Model II: cells communicate by modifying the extracellular environment

The software is implemented in two example models: DNA transcription model and

michaelis menten model. The formulation of the model in ParCell and associated results

are shown in Appendix A. A more realistic biological system for bacterial quorum sensing

and its implementation in ParCell is discussed in next Section.

3.2. RESULTS

3.2.1. Models. Two models (Model I and Model II) are created using the frame-

work. The models are illustrated in Figure 3.4.

3.2.1.1. Model I. In thismodel, cells are considered as independent objects. There-

fore, the death, division, or intracellular reactions of any cell is not affected by other cells

in the population.

First, a biochemical networkmodel describing the intracellular events at themolecule

scale is defined. As illustrated in Figure 3.4 A, four elementary reactions are considered

in the network. These reactions and corresponding rate constants are listed in Table 3.1.

The reactions describe a signaling pathway, which is activated in response to an extracel-

lular signal I. A receptor protein S is synthesized and degraded in a zeroth and first-order
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reaction, respectively. In the presence of extracellular I, S is activated to produce P and

deactivated in a reverse reaction. In the model, P serves as a pro-death signal for a cell.

Intracellular accumulation of P elicits cell death by inducing the mean rate of cell death

kdeath.

Table 3.1. Signaling pathway model parameters (slave program)

Parameter Value Description
S 10,000 molecule/cell Initial concentration of S.
P 0 molecule/cell Initial concentration of P.
I (Varied) molecule/cell Extracellular signal.
ksyn 10 molecules s−1 Rate constant for φ→ S.
kdeg 0.001 s−1 Rate constant for S → φ

k f 10−7 (molecule/cell)−1s−1 Rate constant for S → P.
kr 0.1 s−1 Rate constant for P→ S.

Table 3.2. Cellular model parameters (master program)

Parameter Value Description
kdeath,0 10−3 s−1 Mean rate of cell death in the basal state.
kdivision 10−3 s−1 Mean rate of cell division.
α 10−6 (molecule)−1s−1 Cell death sensitivity to intracellular P.
kdeath (kdeath,0 + αP) s−1 Mean rate of cell death (function of intracellular P).
ke 10−9 (molecule)−1s−1 Model II only: rate of cellular production

and release I per of molecule of intracellular P.

In a separate program, the cellular processes and associated parameters are intro-

duced (Table 3.2). Cellular heterogeneity is ignored (Type 1 input). A rule (Type 2 input)

is included to define the dependency of cell death on intracellular P. This rule simply states

a linear relationship: kdeath = kdeath,0 + αP (Table 3.2). Here, kdeath,0 is the mean rate of

cell death in the absence of P or extracellular I. The proportionality constant α (Table 3.2)

measures the sensitivity of a cell to intracellular P. A second rule is included to binomially

distribute the contents (network species) of a cell when it is divided to create a new cell. The

extracellular environment (I) is assumed to remain unchanged throughout the simulation.
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As explained earlier, there are two programs: one program (acting as slave) defining

the biochemical network model, and the other program (acting as master) defining the

cellular processes. These two programs contain complementary calls to communicate in a

server-client fashion. The master program launches a number of parallel simulations on the

slave program to create the initial population of cell objects. For an interval, ∆t = 1 seconds,

all the simulation processes (cell objects) propagate simulations (Gillespie algorithm) on

the biochemical network system. At the end of ∆t, the master process collects simulation

data from the cell objects. Based on the analysis of the simulation data against the rules, the

master process performs few checks and takes actions accordingly. First, it evaluates each

cell object for death or division. A cell is selected for death if U(0, 1) < 1 − e(−kdeath∆t),

where U(0, 1) is a uniform random number between 0 and 1. Similarly, a cell is selected

for division if U(0, 1) < 1 − e(−kdivision∆t). Cell death is executed by terminating the

corresponding parallel process, while cell division is executed by creating a new process

(daughter cell) from the existing process (mother cell). The master process then analyzes

the level of P in each (living) cell and updates the cell’s kdeath according to the rule.

While the master process performs these checks, the slave processes (cell objects)

remain in a blocking mode. This blocking mode is released upon receiving a message from

the master program. The slave processes then propagate simulation for another ∆t, and the

process is repeated until the simulation end time is reached.

3.2.1.2. Model II. This model is shown in Figure 3.4 B. The model has the same

set of intracellular reactions as Model I. However, in this model, cells are interdependent

due to cell-to-cell communication. A reaction is considered whereby cells can secrete I in

proportion to their intracellular P. Thus, each cell contributes to the global pool of I in

the environment, which is shared by all cells. An increase in I in the environment further

stimulates the intracellular production P in the cells, thus inducing cell death.
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The slave program of Model II defining the biochemical network model remains

essentially the same as in Model I, with the exception of the master program, where an

additional rule (Type 3 input) is included. According to this rule, a cell i secretes ∆I(i)

amount of I in time ∆t: ∆I(i) = keP(i)∆t, where ke is a constant (Table 3.2) and P(i) is the

intracellular P at time t. The total change of the environment is computed by summing up

the contributions from all cells:
∑n(t)

i=1 ∆I(i), where n(t) is the number of cells at time t.

As in Model I, the master process communicates with the slave processes after each

interval, ∆t = 1 second, and evaluates cell death, division, and kdeath for each of the cell

objects. In addition, it also evaluates the change in I in the environment. It then updates

the slave processes (cell objects) about the change in the environment by sending messages.

Upon receiving the message, the cell object replaces the old I with a new I. Each cell object

then propagates simulation for ∆t based on the new extracellular environment. The process

is repeated until the simulation end time is reached.

3.2.2. Sequential Model. This model is equivalent to Model I but implements

accurate Gillespie method without parallelism. The model is developed using the agent-

basedmodeling approach, where the cells are represented by agents. The entiremulticellular

system is represented by a single reaction list. The list contains the intracellular reactions of

all cells in the system. In addition, it includes cell death and division as reactions. Therefore,

with n(t) cells in the system, the list contains 4n(t) intracellular reactions, n(t) cell death

reactions, and n(t) cell division reactions. Gillespie algorithm is used to probabilistically

select and execute reactions from the list. The same criteria as in Model I is used for cell

death and division. Cell death is executed by removing an agent, whereas cell division is

performed by creating a new agent in the system. In a cell division, cellular contents are

again distributed based on binomial distribution, as in Model I.

3.2.3. Scalability and Performance. First, Model I is tested for its computational

performance. The test is performed against an equivalent model (referred to as Sequential

Model, please see Method section) implementing serial computation.
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Figure 3.5. Computational performance of Model I. Model I (circles) and its equivalent
sequential model (squares) are simulated for 1,000 seconds. The X-axis represents the
average cell population size in a simulation. The Y-axis represents corresponding simula-
tion completion time (clock seconds). Simulations are conducted in a dedicated 20-core
computer

Figure 3.5 compares these two models in terms of their scalability and speed of

computation. The scale of the model is varied by changing the cell population size. For

consistency, all simulations are performed in the absence of stimulation (I = 0). This is to

ensure that the mean cell population size remains constant during the simulations. For each

population size, the two models are simulated for 1, 000 seconds and note the simulation

completion times (wall clock seconds) (Figure 3.5). The simulations are carried out on a

dedicated 20-core machine.
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As seen in Figure 3.5, computation is orders of magnitude faster in the parallel for-

mulation compared to its sequential counterpart. The difference becomes more significant

when the models are made more computationally expensive by increasing the concentra-

tion of molecule S (Figure 3.5). Figure 3.5 B represents a 10-fold higher S in the models

compared to Figure 3.5 A. Simulation using Gillespie method at the cellular level become

more expensive when S is increased. This makes computation prohibitively slow in the

sequential model.

The faster computation in the parallel formulation is due to the parallelism as well

as the numerical approximation in the algorithm. As explained in the method section, the

simulation time is discretized in ∆t = 1 second. In each ∆t, the cell objects are simulated

independently and in parallel. At the end of each ∆t, the cell objects are synchronized

and updated. On the contrary, in the sequential model, Gillespie algorithm is accurately

implemented over a single reaction list that represents the entire multicellular system. The

sequential model is not scalable as the number of reactions in the list is determined by the

number of cells in the system. In the parallel formulation, the time discretization (∆t = 1

second) is small because the mean waiting time for cell death and division is much longer

(1/kdeath = 1/kdivision = 1, 000 seconds). Some loss of accuracy is expected from this

approximation, which, however, significantly improves computation.

3.2.4. Link between Intracellular Dynamics to Population Response. The rate

of cell death in Model I is linked to the intracellular concentration of P (activated S) by a

linear function, as discussed in the Method section. Figure 3.6 shows intracellular S and

P of individual cells in an evolving cell population. An initial population of 100 cells

is launched (parallel processes) at time zero. At t = 1, 000 seconds, the population is

stimulated with k f I = 0.01 s−1 (Figure 3.6 A and B) and k f I = 0.1 s−1 (Figure 3.6 C and

D). In Figure 3.6, each curve for S or P represents an individual cell. The start and end

of a curve correspond to the birth and death time of a cell, respectively. The sharp fall of

any curve marks a cell division. The fall is due to the decrease in the cellular content of a



56

Figure 3.6. Temporal evolution of S and P in individual cells.(A), (B) The population is
stimulated at t = 1, 000 seconds with k f I = 0.01. (C), (D) The population is stimulated at
t = 1, 000 seconds with k f I = 0.1

mother cell because of its division. When a cell divides, the contents (network species) are

divided between the two cells based on binomial distribution, as discussed in the Method

section.

Figure 3.7 shows the cell population size at different doses of I. The curve showing

a constant mean population size represents the basal condition (k f I = 0). The intermediate

curve indicating a slow decline in the population size represents stimulation at k f I = 0.01

s−1. The curve indicating a sharp decline represents stimulation at k f I = 0.1 s−1.

3.2.5. Modeling Extracellular Environment. Figure 3.8 demonstrates cell pop-

ulation response in Model 1 under a temporally-evolving extracellular environment. To

model the cell environment, an additional rule is included (Type 3 input) in the master

program of Model I. This rule introduces a periodic pulse in I, as shown in Figure 3.8 A.
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Figure 3.7. Cell population dynamics at different doses of stimulation, indicated by black
(k f I = 0 s−1), blue (k f I = 0.01 s−1), and red (k f I = 0.1 s−1), respectively

Figure 3.8. Modeling cell environment. (A) The cell environment with pulse variation in
extracellular I.(B) Intracellular S of individual cells. (C) Intracellular P of individual cells.
(D) Time evolution of the cell population size
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At the end of each ∆t, the master program sends a message to each cell object. The

message contains a new value of I for the global environment, which is shared by all cells.

Upon receiving the message, the new value of I replaces the old one, in each cell object. The

cell objects then propagate the reactions (Gillespie algorithm) based on this new value of I.

Figure 3.8 B and C show the intracellular S and P in each cell in the changing environment.

Figure 3.8 D shows corresponding changes in the cell population size as a function of time.

3.2.6. Cellular Communication. Model II is inspired by multicellular systems

where cell-to-cell communications determine the collective behavior of cells [138]. In

many physiologically-relevant systems, cells respond in an interdependent manner. Such

dependencies may arise from the direct or indirect communications among the cells. Cells

may directly communicate via physical interactions [139]. On the other hand, indirect

communications may arise when cells modify a shared growth environment. Cells can

release proteins or metabolites into the environment, which may affect other cells. An

example of such indirect communication is called quorum sensing [140].

Recent studies have identified a family of quorum-sensing peptides, called Extracel-

lular Death Factors (EDFs), that induces programmed cell death in E.coli [141] and several

other bacteria [142]. Reportedly, secretion of these peptides by bacteria may elicit collective

cell death in a population. In Model II, a similar scenario is considered where cells can

produce and secrete I in proportion to their intracellular P. This is implemented by simply

adding a rule (a Type 3 input) in the master program of Model I. In each ∆t = 1 second, the

master program evaluates the intracellular P in each cell object and the secretion of I by

the cell object. The global environment is changed based on the contributions from all cells

in the population. The change in the environment is implemented by sending messages, as

explained in the previous section.

Figure 3.9 shows the population response in Model II. In the top panels (Figure 3.9

A-D), an initial population of 10 cells are launched at time zero, and stimulated at t = 500

seconds with a small dose of the extracellular signal, k f I = 10−4 s−1. The population
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Figure 3.9. Population response under cellular communications inModel II. In the top panels
(A-D), an initial population of 10 cells was subject to k f I = 10−4 s−1 at t = 500 seconds.
In the bottom panels (E-F), an initial population of 100 cells is subject to k f I = 10−4 s−1

at t = 500 seconds. (A), (E) Intracellular S in individual cells; (B), (F) Intracellular P in
individual cells; (C),(G) temporal evolution of extracellular I in the environment; (D),(H)
Cell population size as function of time

remains non-responsive to this signal. The average population size is not affected, as seen

in Figure 3.9 D. In the bottom panels (Figure 3.9 E-H), an initial population of 100 cells

are launched and subjected to the same level of stimulation, k f I = 10−4 s−1, at t = 500

seconds. Except for the population size, all other conditions are identical to those in the

top panels. Nevertheless, contrary to the smaller population, this larger population displays

a dramatic response (Figure 3.9 E-F). The quorum-sensing positive feedback is triggered

because of the collective contribution of the population. This leads to a rapid buildup of

intracellular P (Figure 3.9 F) and extracellular I (Figure 3.9 G). As a result, the population

shows a rapid post-stimulation decay (Figure 3.9 H).

It should be noted that the selection of the population sizes in this example (100

or 10 cells) is completely arbitrary. In reality, millions of cells may participate in such

a process. Nevertheless, the same qualitative differences could be reproduced at different
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relative scales of the model. An increase in the model scale (population size) would simply

require an adjustment in the parameter ke (Table 3.2), which denotes the rate of secretion

of I by each cell per molecule of its intracellular P.

Previous examples are involved with two mock models with very simple sets of

intracellular reactions. Here, a full-scale model of bacterial quorum sensing is considered

with a more complex intracellular biochemical network. The model is based on an earlier

model by Boada et al. [87]. The intracellular biochemical network reactions associated of

this model are illustrated in Figure 3.10. The expansion of this reaction network system

into a population model is also illustrated in Figure 3.10. In the master-slave scheme of this

framework (Figure 3.10), the biochemical reactions in each cell is independently simulated

using the Gillespie algorithm for a short interval ∆t. Each cell object simulates Gillespie

algorithm based on the reactions shown in Figure 3.10. The updated intracellular species

concentrations from each cell object (slave process) are sent back to the master process.

The master process then updates the common (well-mixed) extracellular environment based

on the rules specified as an input to the master process (Figure 3.10). Here the master takes

two types of inputs. Type 1 input describes the distribution of parameters to incorporate

cellular heterogeneity and Type 2 input is the relationship between cell and environment

defined as the net change between external autoinducer concentration (AHLext) and inter-

nal autoinducer concentration (AHL) over each time interval ∆t. The parameters values

associated with this model are taken from [87].

In themodel, cell division is simulated by splitting themolecular concentration of the

mother cell based on binomial distribution into two daughter cells. The cell population size

is kept constant by killing (removing) a randomly selected cell (parallel thread) every time

a cell division occurs. Figure 3.11 shows comparison of the computational performance

between the parallel model and the sequential model, carried out on dedicated 50 cores

of a high performance computing cluster. Using the two models, different cell population

sizes were simulated for 100minutes and corresponding simulation completion times (clock
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Figure 3.10. Schematic diagram of the multicellular quorum sensing model. The master
process expands the single-cell biochemical network (set of reactions shown) into a mul-
ticellular model. Type 1 input defines the distributions of the model/network parameters
values to incorporate cellular heterogeneity. Type 2 input defines relationship between a
cell and the extracellular environment defined as the net change between external autoin-
ducer concentration (AHLext) and internal autoinducer concentration (AHL) over each time
interval ∆t

time) were recorded for each model. The result indicates the parallel algorithm is at least

two orders of magnitude faster than the corresponding sequential algorithm for a population

of 25 cells. Moreover, this gap between the parallel and the sequential algorithms widens

with the increase in population size. Note that existing literature on quorum sensing [86, 89]

shows modeling of up to 240 cells using sequential approaches. Figure 3.11 shows that
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Figure 3.11. Semi-log plot for computational performance of the parallel quorum sensing
model compared against a corresponding accurate (sequential) model. The black and grey
bars represent the parallel and the sequential model respectively. The infinite signs represent
the cases where simulation of the sequential model remained unfinished after 168 hours of
simulation

simulation of 500 and 1000 cells using the sequential approach remain unfinished after 168

hours and are denoted by ∞. On the contrary, the proposed parallel framework exhibits

scalability by simulating up to 1000 cells in less than 18 hours. A detailed description of

the QS model in the parallel framework and algorithms are discussed in next Section.

3.3. DISCUSSION

The goal of this work is to introduce a simple method for developing mechanistic

but computationally efficient cell population models. The question that is raised here was

whether it is possible to systematically expand a biochemical network model into a cell

population model. The commonly employed techniques to model multicellular systems

include the continuum (equation-based) approach, cellular potts modeling (CPM) [26], and

discrete agent-based modeling [143]. The equation-based approach and CPM are useful for

modeling long-time behavior and evolution of cells. However, these methods have limited

ability to capture the intracellular biochemistry in a population model.
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Arguably, agent-based modeling (ABM) is the most versatile framework for mech-

anistic modeling of multicellular systems [144–147]. In an agent-based model, individual

cell agents could be assigned with cellular attributes at various time and spatial scales. But

mechanistic agent-based models could be computationally expensive and demand signifi-

cant programming efforts.

Unlike the agent-based approach, cells are presented by stand-alone parallel simula-

tion processes on a biochemical networkmodel. It is shown thatMPI/multiprocessing-based

remote communications can be used to treat such parallel processes as software objects like

an agent-based model. In an agent-based approach, parallelism could also address the

scalability issues and speed up computation. However, such implementation could be

model-specific and require expertise in parallel logic implementation. The aim of this work

is to provide a modular framework that would require minimal programmatic efforts. A

model is seperated into two different programs. It is shown that cellular-scale processes de-

scribed in one program can be linked to the molecular-scale processes described in another

program remotely to create a unified model. This allows a cellular and a biochemical net-

work model to be defined separately and then combined to create a mechanistic population

model.

This framework can be extended to make it compatible with other modeling lan-

guages and software platforms. It can be extended to create cell population models from

the biochemical network models developed using other tools.

For demonstration purposes, the cellular biochemistry in this example model is

defined by a network of four elementary reactions. However, the network could be made

as detailed as intended. Many advanced tools can develop highly mechanistic biochemical

network models. For example, the rule-based modeling tools [120, 121, 148] can model

biochemical network systems where cellular protein molecules can be defined with their

site-specific details, such as binding domains and phosphorylation motifs [123, 149, 150].

This framework can be integrated with such tools. This can be easily accomplished by
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embedding necessary communication calls between a master program and the program

running the simulation on a rule-based model. Such integration may provide the ability

to study cellular evolution arising from the site-specific (point) mutations in the cellular

protein domains and motifs.

This framework can only expand biochemical network models formulated in a

stochastic approach, such as Gillespie method [38]. In a stochastic model, it is possible

to introduce a run-time change in the model parameter values and simulation conditions.

In a deterministic model’s such changes would lead to discontinuities. Therefore, it is not

extensible for the deterministic models.

An important limitation of this approach is that it must synchronize the parallel

simulation processes (cell objects) at discrete intervals. The synchronization limits the

computation speed by the slowest process in a population. In a large number of parallel

processes implementing stochastic simulations, the cost of computation could be consider-

ably different from the processes. This issue could be partially addressed by developing a

dynamic load-balancing and resource allocation scheme.

A second limitation is an overhead associated with Master-slave communications.

For a large number of cells in a model, such communication overhead could be significant.

Overhead can be the limiting factor if the simulation of the biochemical network is not

computation intensive. This issue could be partly addressed through serialization of the

communication messages. In the current framework, the messages are passed as C data

structures without serialization. The cost of overhead could also be addressed by developing

a more distributed system having multiple servers and clients. Current framework is based

on a centralized system, where communications occur between a single server and multiple

clients.

This framework presents a general approach to connect the molecular scale to the

cell population scale. It is noteworthy that cancer cells have similar multi scale features

in low scale (production of molecules from genes), intermediate scale (interaction of gene



65

with its cellular environment) and high scale (collective behavior of cells) [127–130]. This

framework can incorporate these hallmarks to study the nature and phenotype of cancer

cells. Furthermore, it is intuited that this proposed framework can also be applied to any

drug delivery system, where the concentration of optimum drug dosage can be quantitatively

estimated [133–135, 151]. The different dosages (e.g. constant dose, periodic dose) of drug

can be modeled as environmental variables as described in Figure 3.7 and Figure 3.8.

Finally, this approach could also find applications in modeling biological systems

that are of scientific, pathological, and clinical interests. Examples include the evolutionary

mechanisms of stem cells [152], clonal expansion of B and T lymphocytes [153, 154],

autocrine, paracrine, and endocrine signaling [155, 156], and chemotactic cell migration

[157].

3.4. REMARKS

In this work, a new framework is demonstrated for the systematic development of

multiscale cell population models. The framework takes a biochemical network model as

an input and expands it into a population model by linking intracellular network dynamics

to cellular functions, fate decisions, and evolution. This capability is provided by a unique

Master-slave scheme. This scheme also enables modeling cell-to-cell and cell-environment

communications. The framework is further extensible to modeling multicellular systems

evolving under both spatially- and temporally-resolved growth environments. In next Sec-

tion, the framework’s capability is demonstrated by simulating a full-scalemodel of bacterial

quorum sensing, where the dynamics of a population of bacterial cells is dictated by the

intercellular communications in a time-evolving growth environment.
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4. A SCALABLE PARALLEL FRAMEWORK FORMULTICELLULAR
COMMUNICATION IN BACTERIAL QUORUM SENSING

Bacteria are single cell organism. But certain species of bacteria can communicate

with each other via signaling molecules. This process is called Quorum Sensing (QS).

Bacteria can release and sense these signaling molecules in the environment known as

autoinducer. Based on the concentration of the signaling molecule in the environment, they

can sense other bacteria around them and show coordinated behavior. Despite stochastic

fluctuations, bacteria gradually achieve coordinated gene expression through QS, which in

turn, help them better adapt to environmental adversities. This way bacteria cells behave

like a multicellular organism. The mechanism in bacterial QS is simple and well studied.

There are sufficient experimental results available on the mechanism of bacterial QS. So,

understanding the fundamental property from the experimental outcome will give us a

better understanding of complex biological processes. Existing sequential approaches for

modeling information exchange via QS for large cell populations are time and computational

resource intensive because the advancement in simulation time becomes significantly slower

with the increase in molecular concentration.

In this Section, the bacterial quorum sensing model is incorporated into the ParCell

framework described in Section 3 and presents a scalable parallel framework for modeling

multicellular communication. Simulations show that the framework accurately models

the molecular concentration dynamics of the QS system, yielding better speed-up and

CPU utilization than the existing sequential model that uses the exact Gillespie algorithm.

This framework can also accommodate evolving population due to cell birth, death and

heterogeneity due to noise. Furthermore, the performance of the framework vis-á-vis the

effects of its data sampling interval and Gillespie computation time are analyzed. Then, the

model is simulated for a large cell population to observe the scalability of the framework.

Note that existing literature on quorum sensing [86, 89] is capable of modeling up to
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Figure 4.1. Population of cells and macro view of each cell with the LuxI/LuxR regulatory
network

240 cells. But the proposed framework can model up to 2000 cells and beyond. So, the

scalability of the proposed framework is validated by modeling population size up to 2000

bacterial cells.

This Section is organized as follows. Section 4.1 presents an overview of the overall

QS system. Section 4.2 discusses the details of the Gillespie algorithm, sequential model

and the parallel QS framework. Section 4.3 compares the experimental results. Finally,

Section 4.4 closes the paper with concluding remarks.

4.1. SYSTEM OVERVIEW

Quorum Sensing (QS) system consists of a population of cells and their shared

environment, defined as the concentration of autoinducers outside the cells (external au-

toinducer). Figure 4.1 shows a population of cells and LuxI/LuxR regulatory network

within bacterium Vibrio fischeri [87].

In a QS system, bacteria communicate with each other through autoinducers (AHL),

produced due to the synthesis of protein LuxI. These molecules are small in size and can

diffuse freely through cell membrane into the environment and from the environment
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back into cell. The diffusion process changes the concentration of environment, which

in turn, affects the whole population. The overall system remains coupled through this

diffusion process. Within a cell, the LuxR protein binds with AHL to form the monomer

(LuxR.AHL). Then, through dimerization, this monomer forms (LuxR.AHL)2, repressing

transcription of luxI gene. Diffusion rate of intra-cellular autoinducer AHL depends on

the concentration of AHL itself, and extra-cellular autoinducer (AHLext). The chemical

reactions and corresponding rate constants are taken from [87].

Below, a list of the chemical reactions is provided (in accordance with the reduced

QS model discussed in [87]). The propensity of the LuxI expression reaction is shown in

Equation 4.1 and the rate constant parameters for the reactions are listed in Table 4.1.

LuxI
dI

φ

(LuxR ·AHL)2
f(x3,t) LuxI + (LuxR ·AHL)2

LuxR
dR

φ

ttLuxR LuxR

LuxR + AHL
k–1/kd1
K–1

LuxR ·AHL

(LuxR ·AHL)2
dRA

φ

2 (LuxR ·AHL)
k–2/kd2
K–2

(LuxR ·AHL)2

AHL
dA

φ

LuxI
kA LuxI + AHL

AHL D
DVC

AHLext

AHLext
dAe

φ

f (x3, t)
∆
= ttLuxI

( kdlux + αi x3
kdlux + αi

)
(4.1)
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Table 4.1. List of constant parameters [87] used in the parallel QS framework

Parameter Description Value
ttLuxR Protein expression rate: LuxR 76 copies/min
ttLuxI Protein expression rate: LuxI 219 copies/min
k−1 Dissociation rate: LuxR to AHL 10 min−1

k−2 Dissociation rate: (LuxR.AHL)2 1 min−1

α Basal expression rate: luxI 0.01
kA Synthesis rate: AHL by LuxI 0.04 min−1

D Diffusion rate: AHL 2 min−1

kd1 Dissociation const.: LuxR to AHL 100 molecule
kd2 Diss. const.: (LuxRAHL) 20 molecule

kdlux Diss. const.: (LuxRAHL) to lux 100 molecule
dI Degradation rate: LuxI 0.027 min−1

dR Degradation rate: LuxR 0.156 min−1

dA Degradation rate: internal AHL 0.057 min−1

dAe Degradation rate: external AHL 0.04 min−1

dRA Degradation rate: (LuxR.AHL) 0.156 min−1

dRA2 Degradation rate: (LuxR.AHL)2 0.017 min−1

Vcell Initial cell volume 1.1e−9 liter
Vext Extracellular volume 1.1e−3 liter

4.2. SEQUENTIAL AND PARALLEL QS FRAMEWORKS

In this section the details of the sequential model for QS and the proposed parallel

framework are discussed.

4.2.1. System Variables. Here, a system with χ reactions is considered. The

reactions set is defined as γ = {γi |i ∈ N, i ≤ χ}, set of reaction rate constants K =

{ki |i ∈ N, i ≤ χ}, and the concentration of j th reactant in reaction γi as ω j
i . A molecular

concentration matrix Mn×m is considered, where n and m are the number of cells and

molecule species in the QS system, respectively. Thus, Mi denotes molecular concentration

vector of the ith cell. Thus, Mi,5 stores the AHLext concentration for ith cell. Since AHLext

is a global system variable, Mi,5 remains same for all cells.
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4.2.2. GillespieAlgorithm forQS. TheGillespie Stochastic SimulationAlgorithm

(SSA) is used tomodel the signaling pathways as discussed in Section 3. Gillespie algorithm

is used to simulate the reaction network of individual bacterial cell and their environment

taking four parameter as inputs: the set of reaction rules (Rr), reaction rate constant

(Rc), initial simulation time t and molecular concentration matrix M . Then the Gillespie

algorithm probabilistically update the simulation time change the concentration of the

selected reactions occuring at that time instance.

4.2.3. Sequential Model in QS. In the sequential QS model, each cell contains

one copy of the regulatory network (as shown in Figure 4.1). All the reactions in the

entire population, including diffusion reaction between cell and environment, is considered

as a single global system as discussed in previous Section. The Gillespie algorithm is

invoked in a loop, until the current time t exceeds the total simulation time T . Note that the

sequential QS, when used in conjunction with the exact Gillespie algorithm, yields accurate

result. Therefore, the sequential model is implemented as a benchmark of accuracy for the

proposed parallel QS framework.

4.2.4. Parallel Framework. The parallel QS framework is implemented using the

Multiprocessing library of Python [83]. Here, different aspect of the parallel framework is

discussed.

4.2.4.1. Steps in parallel framework. As shown in Figure 4.2, the virtual master

process takes 3 inputs: reaction rules (Rr), environment and constant (Rc). (1) The master

spawns several parallel processes. Here, each cell is modeled as a memoryless process,

termed cell process. In a large scale system several cell processes are assigned to a single

core. (2) In each time intervals, master sends molecular concentration and environment

information to each cell process and invokes Gillespie Algorithm. (3) Each cell process runs

the Gillespie algorithm locally and (4) returns the updated molecular concentration to the
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Figure 4.2. Overview of steps in the parallel QS framework

master. Following this, the master node (5) updates environment variable, (6) population

dynamics and (7) global time, before returning to first step. This cycle continues until

simulation duration is reached.

4.2.4.2. Master process. The master process reads and sends sampling interval Ψ,

Rr , Rc and Mi to all the cell processes, at each time instance t. Sampling interval (Ψ) is

defined as the time interval between which the master process collects concentration data

from all the cell processes. After each Ψ interval, the master receives the updated Mi from

each Zi. It is noteworthy that in the sequential approach, a single reaction takes place at a

time. Consequently, any change to AHLext is instantly reflected to Mi,5 (for all i). However,

in the parallel approach, each cell process Zi autonomously invokes Gillespie and updates

Mi,5. Thus, the uniformity of AHLext in the system is ensured using Equation 4.2.

4.2.4.3. Cell processes. Each cell process Zi invokes the Gillespie algorithm and

returns updated Mi to the master. Two key aspects of the ParallelQS algorithm are discussed

below.
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1: procedure ParallelQS()
2: If ID = Master then
3: t = 0
4: ReadParameters(Rr, Rc, M,T, n,Ψ)
5: While t ≤ T do
6: While (not sentToAll()):
7: send(Mi, Rr, Rc,Ψ, AHLext(t))
8: Endwhile
9: While (not recvFromAll()) do
10: Mi, AHLi

ext(t + 1) = recv()
11: Endwhile
12: J = {AHLi

ext(t + 1)|i ≤ n}
13: ADJUSTE XT(AHLext(t), J)
14: t = t + Ψ
15: Endwhile
16: else
17: (Cell process)
18: Mi, Rr, Rc,Ψ, AHLext(t) = recv()
19: gt = 0
20: While gt ≤ Ψ do
21: gt, Mi = GILLESPIE(Rr, Rc, Mi, gt)
22: Endwhile
23: send(Mi)

24: Endif
25: end procedure

Time synchronization:. In each time instance, the master must wait till it has heard

from all cell processes (Zis). Following this, it increments the overall system time t by

sampling interval Ψ.

Time increment:. Gillespie calculates the increment in simulation time t as ln(1/r1)/A,

where r1 is random number between 0 and 1. Thus, there exists an inverse relationship

between time variable t and overall propensity A (i.e., t ∝ 1
A). Note that the sequential

model calculates A (Equations 3.1 and 3.2) based on all reactions in the system, whereas

each Zi in the parallel framework calculates Ai only based on the reactions specific to itself,

implying that Ai << A. Hence, the time increment for the parallel framework is expected

to be greater than that of the sequential approach.
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Adjustment of global AHLext concentration:. The assumption here is that AHLext is

homogeneously distributed within the system boundary, making it a global system variable.

A cell is capable of interacting with any AHLext molecule. Master estimates the adjusted

system AHL concentration at time t + 1, AHLext(t + 1), by incrementing AHLext(t) by the

net difference of AHLext(t) concentration from local cellular AHL concentrations, over all

cells, using the equation below:

AHLext(t+1) = AHLext(t) +
n+1∑
j=2
(AHL j

ext(t+1)−AHLext(t)) (4.2)

Here AHL j
ext(t+1) is the local AHL concentration of the j th cell process at time t + 1.

Adjustment of molecular concentration due to population dynamics. The proposed

framework is capable of modeling dynamic population (i.e. cellular birth and death). Each

cell Zi undergoes division once simulation time t exceeds its division time βi. For each Zi, βi

is sampled from exponential distribution with µ = 45 minutes. Each cell division causes the

mother cell to split into two daughter cells, each containing half the molecular concentration

of mother cell. Given initial volume of all cells Vcell , each Zi has a time-dependent volume,

given by –

Vi(t) = Vcell × 2
t
βi (4.3)

Initial volume of a daughter cell is half the volume of its mother cell. The propensity of

each reaction is also updated to account for time-dependent volume. In the QS system, cell

density is kept constant by compensating each cell division by death of randomly picked

cell (as discussed in [86]).

4.2.5. QS Model in ParCell. ParCell is a general software for modeling cell pop-

ulation from a single cell biochemical network. It is based on the framework discussed

in Section 3. The software can seperately considers and synchronizes the environmental



74

species. So, this is a powerful tool to study the multicellular communication. The QS

model is also implemented into the software. The implementation of QS model in ParCell

is shown in Appendix B.

4.3. RESULTS

Here, 6 molecule species are considered in the reduced QS system – (A) LuxI, (B)

LuxR, (C) (LuxR.AHL)2, (D) AHL (E) LuxR.AHL and (F) AHLext. Parallel framework is

implemented using Python 2.7 and Python Multiprocessing library [83]. Scalability exper-

iments are performed on 50 cores of Forge high performance cluster; for other simulation

experiments, Ubuntu system is used with Linux system with 8 CPUs of 1.6 GHz each.

4.3.1. Accuracy. First, how closely the dynamics of molecular concentration (ma-

trix M) generated by parallel QS framework aligns with that of the sequential model is

analyzed. On both sequential and parallel approaches, 50 cells are simulated for 200

minutes and sampling interval ψ = 0.05.

4.3.1.1. Similarity of molecular concentration. Figure 4.3 shows that the average

concentration dynamics of molecules (A) - (F) (over 10 trials) are nearly identical for

sequential and parallel approaches.

4.3.1.2. Accuracy at large scale. In Figure 4.4, the above model is validated

against a corresponding accurate (sequential) model for a large population. In the sequential

model, the intracellular reactions, cell death, and divisions associated with all cells in the

population are grouped into one single list. The reactions from this list are sampled and

executed following the Gillespie algorithm. As seen in the figure, despite the independent

simulation of cells for discrete interval ∆t, the parallel model is in perfect agreement with

the sequential model. The yellow region is the standard deviation, representing cell to cell

variability arising from distribution of rate constant parameters. The change of molecular

concentration under cellular birth and death are shown in Appendix C.
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Figure 4.3. Comparison of averagemolecule concentration dynamics of 6molecular species
(A) LuxI, (B) LuxR, (C) (LuxR.AHL)2, (D) AHL (E) (LuxR.AHL) and (F) (AHLext) for
population of 50 cells

4.3.1.3. Effect of sampling interval. The choice of Ψ in the parallel framework

affects the number of the data points master receives from each Z[i]. If Ψ is high, the

framework exhibit inaccuracy in concentration dynamics due to lack of sufficient data.

Here Mean Absolute Error (MAE) is considered as the metric of accuracy i.e. higher the

MAE between two sets of plot points, greater is the dissimilarity. Since the sequential model

is benchmark, the deviation of AHLext of the parallel framework (φp) from the sequential

model (φS) on d data points is calculated as M AE(φs, φp) =
1
d ×

∑
d |M s

i,5(d) − Mp
i,5(d)|.

Simulation on 50 cells for duration of 200 minutes shows that the MAE of AHLext

plots between the two approaches increases with the increase in Ψ (Figure 4.5). It is

observed that a higherΨ, though enhances running time (RT) byminimizing communication

overhead, degrades accuracy.



76

Figure 4.4. Prediction accuracy of the framework-created quorum sensingmodel is validated
against an equivalent sequential model. Temporal evolution of (A) AHL and (B) LuxR.
The blue and red curve represent the parallel model and the sequential model, respectively.
The yellow region is the standard deviation, representing cell to cell variability arising from
distribution of parameters. The temporal profiles of these concentrations are similar to
those shown in [87]. Note that the sequential model was run only up to 200 seconds due to
the prohibitively slow computation

Figure 4.5. Increase in sampling interval (Ψ) increases Mean Absolute Error (MAE), but
decreases running time (RT), between sequential and parallel QS framework
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Figure 4.6. Population dynamics of LuxI concentration during cellular birth and death
under conditions of (A) no noise and (B) noise with standard deviation 0.005

4.3.2. Population Dynamics. Cellular birth and death is modeled in QS for a

population size 1000 cells and duration 100 minutes. In Figure 4.6 A, a single color

represents the LuxI concentration of a bacterial cell over time, while the discontinuity and

drop in the curves show cell death and division, respectively. Population dynamics of AHL

and LuxR molecules are shown in Appendix B.

The proposed parallel framework is capable of modeling noise arising from stochas-

tic fluctuation in gene expression that can cause phenotypic variability in isogenic population

[158]. In Figure 4.6 B, Cellular birth and death are shown under condition of noise gener-

ated by sampling constant parameters RC fromGaussian distributionwith standard deviation

0.005. It is noteworthy that molecular concentration in Figure 4.6 B, by virtue of the noise,

exhibits greater phenotypic variability than the one in Figure 4.6 A.

4.3.3. Noise Analysis. Noise, arising from stochastic fluctuation in gene expres-

sion, can cause phenotypic variability in isogenic population [158]. Specifically, the het-

erogeneity induced by the noise is of particular interest in the fields of biotechnology and

bio-medicine. Noise is incorporated in in the framework by sampling constant parameters

RC from Gaussian distribution with standard deviations 0, 0.025, 0.050, 0.075 and 0.1.

Noise analysis is significant as it helps analyze the mean protein expression level. In Figure
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Figure 4.7. Noise analysis for different standard deviations (A) 0, (B) 0.025, (C) 0.05, (D)
0.075 and (F) 0.1. X axis: time in minutes; y-axis: molecular concentration. Figure (E)
shows the phenotypic variability (mean absolute error) for varying deviation in constant
parameters

4.7, the deviation from mean protein expression is shown for varying degrees of noise for

200 nodes, ψ = 0.005 and duration 100 minutes. Figure 4.7 E shows the mean deviation

error for Figure 4.7 A-D and F.

4.3.4. Processor Utilization. The CPU utilization of the sequential and parallel

frameworks is compared on a population size of 100 cells and duration of 60 minutes on an

8-CPU machine.

Figure 4.8. Comparison of CPU utilization for the sequential and parallel QS frameworks
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Figure 4.9. The speed up and scalability analysis of parallel QS framework. (A) Speed-
up: Semi-log plot for speed-up for population sizes varying between 10 and 50. Parallel
QS framework exhibits little growth in running time with increase in simulation time (B)
Scalability: Log-log plot for scalability analysis for population sizes 25, 50, 100, 500, 1000,
2000

The psutil python library [159] is used to record the instantaneous CPU utilization

for both frameworks. Figure 4.8 shows that the parallel framework exhibits a more uniform

CPU utilization than the sequential approach.

4.3.5. Speed Up. Let the execution (or wall clock) time of sequential and parallel

QS algorithms be ρs and ρp respectively, and the simulation time for both algorithms be

T . The speedup is defined as Sp =
ρs

ρp
=
ρs

T
×

T
ρp
=
ρs

T
/
ρp

T
. For sequential and parallel

algorithms, a population of 10 to 50 cells are simulated for T = 200 minutes each. Given

that T is same for both algorithms, their real (or execution) time is compared to analyze the

speedup rendered by parallel QS framework. Semi-log plots are generated for execution

time for population sizes 10, 20, 30, 40 and 50. Figure 4.9 A shows that the framework

incurs extremely little increase in real time with growth in cell population size as compared

to the sequential approach.

4.3.6. Scalability. Finally, the sequential and parallel approaches are compared on

the basis of execution time for population sizes 25, 50, 100, 500, 1000 and 2000 cells.

Figure 4.9 B is a log-log plot showing that the parallel framework incurs significantly lower
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execution time. It is noteworthy that the sequential approach does not scale beyond 100

cells, thus the expected real time values for sequential approach (shown in dotted red line)

is obtained through extrapolation.

4.4. DISCUSSION AND REMARKS

This framework is applied to model quorum sensing in bacteria, where a homoge-

neous distribution of environment across all cells is considered and their interaction with the

environment through diffusion. As part of future work, it shall be extended to accommodate

the spatial position of cells and the environmental molecules as discussed in [160, 161] to

incorporate the cellular heterogeneity. There would be a minor variation in the framework

once the spatial model is integrated. At present, this framework constitutes a master module

which controls the activities of the cells in the system. In the spatial model, the master

node will re-determine the coordinates of the cells and environmental molecules after fixed

intervals of time.

This framework can be extended to model other bacteria, yeast [162], fungus and

higher organisms (eukaryotic cells) [163, 164]. For example, the different proteins copy

number of yeast and Hela cells are listed in Kulak et al. [165]. These modelings will follow

a similar approach as quorum sensing, where bacteria synchronize themselves based on

feedback response from their environment.

In this Section, a scalable parallel framework is presented for QS in bacteria. The

framework is based on the general framework described in the previous Section. Simulation

for varying population size, sampling interval and duration show that the framework models

concentration dynamics almost as accurately as its sequential counterpart while showing

significant improvement in speed-up and CPU utilization. Degradation in accuracy and im-

provement in running time are also studied of this model, with an increase in the sampling

interval. This framework can incorporate cellular heterogeneity, phenotypic variability, and

scalability by sampling the QS system parameters from Gaussian distribution and modeling
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up to 2000 bacterial cells. Future works involve the extension of the framework to accom-

modate the spatial positioning of cells and environmental molecules to incorporate cellular

heterogeneity. In the spatial model, the master process will recalculate the coordinates of

the cells and environmental molecules after each sampling interval.
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5. CONCLUDING REMARKS AND RECOMMENDATIONS

In this section, the concluding remarks and summary of the critical findings of this

work alongside with recommendations for future action in modeling the dynamic behavior

and multiscale nature of a biological system are presented.

5.1. CONCLUDING REMARKS

This work investigates the multiscale features of biological tissue. A multi-scale

spatiotemporal model is proposed to study the penetration and dispersion of drug delivery

nanoparticles. This scalable model can simulate tissue scale distribution of nanoparticles

from particle-cell interaction and particle dynamics at the microscale. This model also

considers nanoparticles as a specific size object and investigate the dynamics in tissue in the

presence of cells, advection, and diffusion. Results suggest that the effect of nanoparticle

size is less prominent in biological tissue due to the presence of particle-cell interaction

at a fundamental scale. Then, a parallel framework is developed to study the dynamics of

the cell population from a single cell biochemical reaction. This framework incorporates

the multiscale features of intracellular dynamics to population dynamics. A Master-Slave

communication process enables the framework to model different scale of space and time.

The slave process simulated the molecular scale signaling pathways when the master pro-

cess coordinated the tissue scale behavior. The framework’s unique capability gives the

ability to model cell to cell and cell to environment communications accurately and ef-

ficiently. Finally, the scalability, accuracy, efficiency, and performance of the framework

are investigated based on an available model of quorum sensing. The result indicates that

the framework can model multicellular communication for a large number of population of

bacteria cells accurately and efficiently utilizing less computational resources compared to

other approaches.



83

5.2. RECOMMENDATION FOR FUTUREWORK

At present, the multiscale spatiotemporal model for the distribution of nanoparticles

can only consider specific size. But different shape and availability of specific binding site

can affect the tissue scale distribution. The extension of this framework considering the

effect of particle shape and specific binding site is on the developing phase.

Another extension of the model is to include drug molecules conjugated with

nanoparticles. Nanoparticles can carry drug molecules in a deeper tissue space and re-

lease the drug molecules based on release kinetics. This model will further investigate the

dynamics of drug molecule alongside with nanoparticles.

The multiscale spatiotemporal model proposed here do not explicitly consider the

effect of charge, van der Walls force and corona effect. The impact of these fundamental

features can be explored explicitly by hypothesis at the fundamental level based on the avail-

able experimental results. A future extension of the framework will explicitly incorporate

these and investigate their effect on tissue-scale dynamics.

The parallel framework proposed here assumed a well-mixed system for the envi-

ronmental molecules. But in real biological tissue, the particles andmolecules are heteroge-

neously distributed. Integration of the spatiotemporal model to the parallel framework can

simulate the multicellular communication in a biological tissue based on a heterogeneous

distribution of signaling molecules and drug delivery nanoparticles. At present, the Master

process controls the dynamic behavior of the cell population. In the parallel spatial frame-

work, the Master will re-determine the co-ordinate of environmental particles and cells at

each time interval between Master-Slave communication process. Then the slave process

can simulate the reaction network based on the available environmental species around each

cell. This will represent a more realistic architecture of biological tissue. As a future work,

these two models will be integrated.
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Furthermore, the parallel spatial framework can be incorporated into a drug delivery

system. The dynamics of the cell population can be evaluated based on a constant and

periodic supply of drug molecules. Experimental results at the tissue scale can be observed

at tissue scale from a microfluidic experiment of tumor tissue in a chip. These experimental

result can give us more knowledge on the mechanistic aspect of a drug delivery system. As

a future work, a parallel spatial framework will be developed for drug delivery system.

Biological entities are structured based and has multiple binding sites. So, the inter-

action between two molecules can produce a large number of combinatorial modifications

and complexes. This feature is known as combinatorial complexity. It is computationally

intensive to include such details in a Bottom-up model. But it is essential because cel-

lular regulation mostly depends on this complexity. As a future work, the combinatorial

complexity will be included in the parallel framework.



APPENDIX A.

ALGORITHM FOR PARALLEL FRAMEWORK AND EXAMPLE MODELS
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A.1. ALGORITHM

A.1.1. Master Process. (a) Launch initial cell population (parallel slave processes)

on the biochemical network model with a set of default model parameter values (specified

in the biochemical network model).

(b) Sendmessages (instructions) to each slave processes (living cells). Themessages

should contain one or more of the following: cell-specific new parameter values, initial

concentrations (protein copy numbers), and extracellular environment. These values will

replace the default model parameters and concentrations of the initial population. Wait until

the slave processes communicate. The slave processes will communicate after all of them

have propagated simulation (Gillespie algorithm) for a specific period.

(c) Readmessages from the slave processes (cells). Themessages contain the current

simulation data (state variables, such as species concentrations).

(d) For each cell i, check and execute death by terminating the slave process.

(e) For each cell i, check and execute division by launching a new parallel slave

process (simulation) to create a new cell.

(f) Evaluate the new rate constant for cell death.

(g) Evaluate the change in extracellular signal.

(h) Go back to step (b) and iterate until the end of the simulation time.

A.1.2. Slave Process i. (a) Receive and read themessage sent by themaster process.

If applicable, replace the old parameters and state variables related to the cell attributes,

species concentrations, and extracellular environment. Set a variable for time t to represents

the current simulation time.

(b) Calculate intracellular reaction rates and sum of the reactions.

(c) Draw a uniform random number between 0 and 1. Select a reaction based on

Gillespie Algorithm, and update the network.

(d)Advance time based onGillespieAlgorithmby a second uniform randomnumber.
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(e) Go back to step (b) and iterate until the time interval between Master Slave

communication.

(f) Send a message to the master process. The message should contain informa-

tion regarding the current state of the cell object (species, concentrations, extracellular

environment, and other state variables).

A.2. DNA TRANSCRIPTION MODEL IN PARCELL

A.2.1. Model Representation in ParCell. Below is a representation of a DNA

transcription model into ParCell model generator. # is used for commenting.

begin model

# Parameter block

begin parameter

b 20 # Burst factor

k1 0.01 # Transcription of DNA into RNA

k2 0.00577 # Degradation of mRNA

k3 k2*b # Translation of RNA into protein P

k4 0.0001925 # production of mRNA

end parameter

# Species block

begin species

DNA

mRNA

P

end species

# Initial condition block
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begin initial condition

DNA 1

end initial condition

# Reaction rules block

begin reaction rules

# 1. Transcription of DNA into mRNA

DNA -> DNA + mRNA $ k1 $$ (constant)

# 2. Degradation of mRNA

mRNA -> $ k2 $$ (constant)

# 3. Translation mRNA into protein P

mRNA -> mRNA + P $ k3 $$ (constant)

# 4. Degradation of protein P

P -> $ k4 $$ (constant)

end reaction rules

end model

simulate(N = 20, T = 3000, cores = 4, grain = 1, grainWrite = 1)

A.2.2. Protein Dynamics. The molecular dynamics for the above model are eval-

uated for 20 cells and 3000 seconds. Molecular dynamics and average molecular dynamics

are shown in Figure A.1 and A.2.

A.3. MICHAELIS MENTEN MODEL IN PARCELL

A.3.1. Model Representation in ParCell. Below is a representation of aMichaelis

menten model into ParCell model generator.

begin model
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Figure A.1. Molecular dynamics of mRNA and protein P for 20 cells and 3000 seconds

Figure A.2. Average molecular dynamics of DNA, mRNA and protein P for 20 cells and
3000 seconds
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# Parameter block

begin parameter

kf 1e-5

kr 0.1

kp 0.05

end parameter

# Species block

begin species

E

S

ES

P

end species

# Initial condition block

begin initial condition

E 5e3

S 1e4

end initial condition

# Reaction rules block

begin reaction rules

E + S -> ES $ kf $$ (constant)

ES -> E + S $ kr $$ (constant)
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Figure A.3. Molecular dynamics of Michaelis Menten kinetics for 20 cells and 400 seconds

Figure A.4. Average molecular dynamics of Michaelis Menten kinetics for 20 cells and 400
seconds

ES -> P + E $ kp $$ (constant)

end reaction rules

end model

simulate(N = 20, T = 400)

A.3.2. Protein dynamics. The molecular dynamics for the above model are eval-

uated for 20 cells and 400 seconds. Molecular dynamics and average molecular dynamics

are shown in Figure A.3 and A.4.



APPENDIX B.

APPLICATION OF QS MODEL IN PARCELL
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B.1. QS MODEL IN PARCELL

B.1.1. Model Representation in ParCell. Below is a representation of a QSmodel

into ParCell model generator.

begin model

# Parameter block

begin parameter

dI 0.027 # Degradation of LuxI

f(x3,t) 218.98 # Protein expression of LuxI

dR 0.156 # Degradation rate of LuxR

ttLuxR 76.12 # Protein expression rate of LuxR

kf1 0.1 # Association constant of LuxR and AHL(IC)

kr1 10 # Unbinding rate of of LuxR.AHL(IC)

dc 0.017 # Degradation rate of (LuxR.AHL(IC))2

kf2 0.05 # Dimerization rate of LuxR.AHL(IC)

kr2 1 # Dissociation rate of dimer (LuxR.AHL(IC))2

dA 0.057 # Degradation rate of internal AHL(IC)

kA 0.04 # Synthesis rate of AHL(IC) by LuxI

D 2 # Diffusion rate of internal AHL(IC)

DVC 2.2e-6 # Diffusion rate of external AHL(EC)

dAe 0.04 # Degradation rate of external AHL(EC)

end parameter

# Species block

begin species

LuxI

LuxR

(LuxR.AHL(IC))2
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AHL(IC)

LuxR.AHL(IC)

AHL(EC)

end species

# Initial condition block

begin initial condition

(LuxR.AHL(IC))2 10

end initial condition

# Reaction rules block

begin reaction rules

#1. degradation of LuxI

LuxI -> $ dI $$ (constant)

#2. Production of LuxI

-> LuxI $ f(x3,t) $$ (constant) $$$ DRR1

#3. Degradation of LuxR

LuxR -> $ dR $$ (constant)

#4. Production of LuxI

-> LuxR $ ttLuxR $$ (constant)

#5. Association of LuxR and AHL(IC)
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LuxR + AHL(IC) -> LuxR.AHL(IC) $ kf1 $$ (constant)

#6. Dissociation of LuxR and AHL(IC)

LuxR.AHL(IC) -> LuxR + AHL(IC) $ kr1 $$ (constant)

#7. Degradation of (LuxR.AHL(IC))2

(LuxR.AHL(IC))2 -> $ dc $$ (constant)

#8. Dimerization of LuxR.AHL(IC)

LuxR.AHL(IC) + LuxR.AHL(IC) -> (LuxR.AHL(IC))2 $ kf2 $$ (constant)

#9. Dissociation of (LuxR.AHL)2

(LuxR.AHL(IC))2 -> LuxR.AHL(IC) + LuxR.AHL(IC) $ kr2 $$ (constant)

#10. Degradation of autoinducer

AHL(IC) -> $ dA $$ (constant)

#11. Synthesis of AHL(IC)

LuxI -> LuxI + AHL(IC) $ kA $$ (constant)
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#12. Diffusion of AHL(IC) from cell to environment

AHL(IC) -> AHL(EC) $ D $$ (constant)

#13. Diffusion of AHL(EC) from environment to cell

AHL(EC) -> AHL(IC) $ DVC $$ (constant)

#14. Degradation of AHL(EC)

AHL(EC) -> $ dAe $$ (constant)

end reaction rules

#Dependent reaction block

begin dependent reaction rules

[DRR1] *= ((100 + 0.01 * moleculeA[(LuxR.AHL(IC))2]) /

(100 + moleculeA[(LuxR.AHL(IC))2]))

end dependent reaction rules

#Environmental species block

begin environmental species

AHL(EC)

end environmental species

end model

simulate(N = 20, T = 200, cores = 8 meanDivisionTime = 45)
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Figure B.1. Molecular dynamics of LuxI, LuxR and external AHL for 20 cells and 200 min

Figure B.2. Average molecular dynamics of LuxI, LuxR and external AHL for 20 cells and
200 min

The above model will run the simulation of 20 cells for 200 minute with 8 cores in

machine and mean division time of 45 minute.

B.1.2. Protein Dynamics. Molecular dynamics and average molecular dynamics

of LuxI, LuxR and external AHL are shown in Figure B.1 and B.2. Figure B.1 shows the

trajectory of individual cells and Figure B.2 shows the average response of cell population.
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(a) (b)

Figure B.3. Temporal evolution of molecular dynamics under cellular birth and death (a)
AHL (b) LuxR

B.2. MOLECULARCONCENTRATIONUNDERCELLULARBIRTHANDDEATH

Simulation is performed on a population of 1000 bacteria cells for duration of 100

minutes.

Figure B.3 shows the the evolution of concentration of AHL and LuxR molecules.

The condition of constant cell density is followed for cellular birth and death as per [86].



APPENDIX C.

PUBLICATIONS



100

C.1. PUBLICATIONS

This dissertation consists of the following three publications, formatted in the style

used by the Missouri University of Science and Technology:

Islam, Mohammad Aminul, Satyaki Roy, Sajal Das, and Dipak Barua. "Mul-

ticellular Models Bridging Intracellular Signaling and Gene Transcription to Population

Dynamics." Processes 6, no. 11 (2018): 217.

Islam, Mohammad Aminul, Sutapa Barua, and Dipak Barua. "A multiscale

modeling study of particle size effects on the tissue penetration efficacy of drug-delivery

nanoparticles." BMC systems biology 11.1 (2017): 113.

Satyaki Roy, Islam Mohammad Aminul, Sajal Das, and Dipak Barua , " A Scal-

able Parallel Framework for Multicellular Communication in Bacterial Quorum Sensing "

(Accepted in BICT 2019).
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