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ABSTRACT

Diffusion is a powerful and versatile description of a typical wave propagation in

a random scattering medium that disregards phase and, thus, a possibility of interference.

Speckle, transmission fluctuations, wave localization, non-local correlations, and trans-

mission eigenchannels are examples of persistent interference effects, which arise in the

course of deterministic propagation. Such wave phenomena contain a wealth of informa-

tion about the medium and the source of waves, enabling sensing and coherent control of

the propagation. The nonlocal correlations and speckle statistics of the partially coherent

light are used to uncover an object hidden by a diffusive cloak inside a strong scattering

medium. It is shown that it is possible to detect the size and position, including the depth,

of the object unknown apriori. In addition, a theoretical model is developed to predict the

geometry dependence of the transmission eigenchannels and intensity correlations. It is

demonstrated that deformation of the geometry of the system offers a predictable approach

to coherent control of wave propagation in random media that is complementary to wave-

front shaping. Lastly, a class of critical states embedded in the continuum is uncovered in

a one-dimensional optical waveguide array with one non-Hermitian defect. These states

are on the verge of being fractal and have real propagation constants, exhibiting a phase

transition from delocalization to localization as the imaginary part of the refractive index

in the defect waveguide approaches a critical value.
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SECTION

1. INTRODUCTION

1.1. LIGHT PROPAGATION

Light is present all around us, and it is the means by which we perceive the world.

In a transparent medium, like glass or air, light propagates along a straight line. Although

this is indeed the case, during the last leg of its journey to our eyes, tracing light back to the

original source reveals a much richer behavior. The light which might have originated in the

Sun, encounters many obstacles before reaching our eyes. It might be reflected, refracted,

diffracted, scattered, or even absorbed and re-emitted along the way in the medium it is

passing through. The light, which ends up reaching our eyes, may carry a lot of information

about its journey. Propagation of light through homogeneous media can largely be under-

stood through geometrical optics. Without presence of any obstacles, the propagation of

light is ballistic (a ray of light travels straight through the medium without scattering). One

common example of ballistic propagation is light passing through an opening of a cloud in

the sky. The cloud, in contrast, is an inhomogeneousmediumwhen light propagates through

the cloud, the light interacts with water droplets. These obstacles can change its direction

of propagation via the process called scattering of light as depicted in Figure 1.1. When

light propagation is influenced by more than one obstacle, it is called "multiple scattering".

On a cloudless day, we see the direct light from the Sun. When a cloud becomes thick

enough, the Sun is no longer discernible, but we can still see less intense light. This is

diffuse light coming from many directions. It propagates diffusely via a random walk-like

fashion through the cloud and leaves it in random directions. The phenomena described in

our example of light traversing a cloud in the sky did not incorporate the wave nature of
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Figure 1.1. Scattering of light in a cloud

light. Such a treatment may or may not always be adequate as the propagation of waves in

a scattering medium depends on various parameters. The shortest one is the wavelength

of light λ, which depends on frequency f and speed of the wave in a medium υ(λ = υ/f ).

Other parameters include the scattering mean free path `s, which is the average distance

traveled by the wave between two scattering events; transport mean free path `∗, which is

the distance after which the wave loses the "memory" of its initial direction; and absorption

length `a, which is the distance along the path over which the amplitude of the wave is

strongly attenuated due to the presence of absorption inside the medium. The macroscopic

absorption length ξa is the linear distance over which such attenuation occurs– the distance

over which the amplitude of the wave is strongly attenuated due to the presence of absorp-

tion inside the medium see (Figure 1.2). Another important parameter is a thickness of the

medium L. Propagation of light is predominantly ballistic (the wave travels straight through

the medium without straying off the forward direction) when the sample size L is shorter

or comparable to the scattering mean free path `s. In contrast, when light propagation is

influenced by more than one obstacle, we enter the regime of multiple scattering.
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Scattering vs transport mean free path Ballistic vs diffusive absorption lengths

Figure 1.2. (a) Scattering mean free path, sometimes also referred to as scattering length, is
the average distance between two consecutive scattering events. Transport mean free path,
on the other hand, describes the distance over which photon’s direction of propagation is
randomized. (b)Attenuation of light is determined by distance traveled through an absorbing
medium along the path, it is described by the (ballistic) absorption length. Attenuation depth
also accounts for diffusive nature of propagation, it is determined by the parameter ξa.

When the sample size is large compared to `s, waves become multiply scattered

and randomized due to a large number of scattering events along its path. Due to multiple

obstacles, wave also travels longer inside the sample that may cause our geometrical optics

picture become inadequate and fail because wave interference might become important.

When the density of scatters inside a medium is very high, waves can even become localized

(trapped) due to persistent interference with the new associated length scale- the localization

length ξ.

1.2. DIFFUSION OFWAVES

Diffusion model works extremely well in describing wave propagation via multiple

scattering that takes place in opaque media [1]. In these systems, a wave undergoes a

large number of scattering events at random positions. One of the earlier motivations came

from astrophysicists who were interested in how light propagates through nebulae and other
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Figure 1.3. Regimes of scattering. Depending on relative length scales, a number of distinct
regimes of wave propagation can be observed.

interstellar/stellar objects. These studies were early attempts to carefully observe how light

diffuses inside systems and to extract information about the source of the light as well as

the medium through which it propagated [2].

The history of process diffusion dates back to observations of irregular movement of

particles in a fluid due to their collisions with other atoms or molecules. The first scientific

description was provided by Robert Brown, who studied the motion of pollen in water. In

1905, Einstein provided both a mathematical description and a physical interpretation of

this irregular motion, now known as Brownian random walk [3]. In Brownian motion,

the movement of atoms and molecules in a liquid and gas is random, and over time larger

particles will be driven to disperse evenly throughout the medium. Particles undergoing

random walk will eventually explore all available space, although the average distance

explored might increase quite slowly. The evolution of the probability to find, at any given

point and at any given time, a particle that undergoes a Brownian random walk is given
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by the diffusion equation. Importantly, this equation does not describe the microscopic

irregular motion of each particle, but instead is a macroscopic description of the average

motion. A visual example of the particle diffusion process is given by observing the

process of dispersion of a drop of ink in a glass of water. Remarkably, the diffusion

phenomenon, originally conceived for particles, has found to work very well for describing

wave propagation in scatteringmedia [4]. This is highly nontrivial because particle diffusion

fundamentally differs from wave diffusion as latter the interference ("quantum" in case of

electron propagation) effects. A visual example of wave diffusion process in depicted in

Figure 1.4.

(a) Ballistic propagation (b) Diffusive propagation

Figure 1.4. (a) Ballistic regime is applicable to the optically thin systems when only a few
scattering events occur and, thus, the original location of the source can be discerned. (b)
Multiple scattering randomizes the directions of propagation completely, leading to diffuse
propagation. The rainbow represents a separate single-scattering effect superimposed on
top of the diffuse background.

1.3. MATHEMATICAL DESCRIPTION OF THE MULTIPLE SCATTERING OF
LIGHT

Light is scattered by inhomogeneities in the medium, and when such inhomo-

geneities are randomly distributed, the multiple scattering path can be described as a

random walk. We can have different regimes of scattering depending on relative length
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scales and disorder strength as shown in Figure 1.3. The study of multiple scattering of

light inside such a medium can be used as a proxy as it also applies to propagation of

other waves, for example acoustic, seismic, or matter waves, behave in random media [5–

7]. Although the diffusion equation is already sufficient to describe a wide range of wave

transport phenomena [5], it fails to capture interference effects emerging from the multiple

scattering. In this thesis, we go beyond the diffusion model to describe transport of light.

The standard diffusion model neglects interference effects, which are always present, to a

greater or lesser extent, in wave propagation. The idea of incorporating interference ef-

fects in wave propagation in random media, has yielded many interesting wave interference

phenomena [5, 6, 8–10], that would be called quantum phenomena in context of electron

propagation. In last several decades, remarkable results have been achieved in condensed

matter physics, especially in the transport of electrons in conductors. The impurities in

a conductor are randomly distributed, and scatter electrons, or more precisely de Broglie

waves. Multiple scattering affects such a measurable quantity as conductance and, under

certain conditions, it might become imperative to take into account the wave properties of

the electrons inside the conductor. This field is known as mesoscopic physics. The study of

coherent multiple scattering of light in disordered media presents experimental advantages

compared to the problem of electron conduction. Indeed, the absence of coherence de-

stroying effects such as de-phasing, means that experiments with light can be performed at

room temperature. In another example, when light is illuminated upon a scattering medium

and then is detected along some direction allows angular (directional) analysis of multiple

scattering. Such a measurement is much more difficult, if not impossible, in the case of

electrons. Furthermore, development of lasers provided a common source of extremely

coherent light, which is easily tunable, so that the statistical ensemble can be obtained by

simply changing the light wavelength.
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In context of this thesis, it is enlightening to express physical quantities related to

wave scatterings in terms of products of complex amplitudes, a(r,r′). a(r,r′) is complex

amplitude of a propagating trajectory from r′ to r. The average of product of two complex

amplitudes is related to the average probability P(r,r′) of propagation from point r′ to point

r:

P(r,r′) ∝
∑
i,j

a∗i (r,r′)a j(r,r′). (1.1)

We can decompose the total sum of trajectories as in Eq. 1.1 into two components:(1) with

identical trajectories and (2) different trajectories i, j:

P(r,r′) ∝
∑

j

|a j(r,r′)|2 +
∑
i, j

a∗i (r,r′)a j(r,r′). (1.2)

It is tempting, and usually safe to assume, that different trajectories result in different phase

and their contributions vanish on averaging, leading to vanishing of the second term in

Eq. 1.2. Hence, the probability, in our case average intensity I(r,r′), is only due to identical

trajectories.

Figure 1.5. Self-crossing of one (a), or a crossing between two pairs of trajectories result in
interference effect that do not vanish after statistical averaging [6]

Eliminating the second term of Eq. 1.2 neglects all interference effects in the course

of wave propagation. Figure 1.5(a) shows two trajectories (solid line representing a and

dashed line representing a∗) in a medium following the same sequence of scatterings with

one crossing, forming a loopwith counter propagating trajectories. Even after averaging over

disorder, this contribution from the loop is not zero because the two trajectories travel along
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identical paths accumulating identical phase and, thus, always interfering constructively.

The loop is an example of how statistical averagemight not completely suppress information

about interference effects. Figure 1.5(b) shows another example involving one crossing,

which mixes four complex amplitudes and pairs them in different way. The crossing is

called a Hikami box, which is an object which permutes amplitudes and makes intensities

correlated everywhere along trajectories after the crossing [6].

1.4. CORRELATION FUNCTION

Interference, not captured by diffusive description, is the key to explaining a number

of remarkable effects in mesoscopic physics, optics, acoustics, and other fields dealing

with wave propagation in complex scattering media. One of such effects is correlation

between intensity measured at two different locations (also at different outgoing angles, or

frequencies). One prominent example of spatial correlation of intensity is speckle pattern.

Due to presence of disorder, the intensity distribution of a light wave undergoing multiple

scattering yields random distribution of dark and bright spots– a speckle pattern [11].

It is an interference pattern, which depends on disorder configuration and it reflects the

fundamental "graininess" of wave field at the scale of wavelength. Speckle patterns are

common– place, they are observed when intensity is measured spatially or as a function of

angle.

To understand the structure and meaning of the correlation function, let us consider

its diagrammatic contributions in terms of four plane waves: two incident along directions

Sâ,Sâ′ and two emerging along Sb̂,Sb̂′. Here, we consider a slab of thickness L. We can

measure normalized intensity Tab transmitted in the direction Ŝb and corresponding to a

wave incident in the direction Ŝa as in Figure 1.6. Average transmission coefficient, Tab

depends only slightly on the directions Ŝa and Ŝb. The angular correlation of the speckle is
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Figure 1.6. Schematic diagram to define reflection and transmission coefficients through a
slab of thickness L.

defined by

Caba′b′ =
δTabδTa′b′

Tab
2 . (1.3)

where δTab = Tab − Tab. The fluctuation of the speckle pattern, for a specific angle of

incidence direction ŝa are given by Caaaa =
δ2T
T

2 which is equal to 1 in diffusive medium [6],

yielding

T2
aa = 2T2

aa.

This result describes the most visible aspect of a speckle pattern, with relative fluctuations

of the order of unity, it is a consequence of Rayleigh distribution of transmitted intensities.

The correlation function defined in Eq. 1.3 is the product of four complex amplitudes

as depicted in Figure 1.7(a). They are due to four complex fields entering the definition in

Eq. 1.3, two complex conjugated pairs, one per intensity. The pairing of complex amplitudes

is performed to obtain two intensities at the end points, but inside the medium, they fields

can propagate via a multitude of different paths, and thus can result in many contributions.

Such pairings can be classified [5, 12] into the four main groups of to contributions (b− e)
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Figure 1.7. (a) Correlation function is built from four complex amplitudes corresponding
to four incoming and outgoing plane waves. (b) and (c) are the contributions obtained by
pairing amplitudes in pairs without swapping the order of pairing. Contribution (d) contains
one quantum crossing, while (e) has two quantum crossings, each of which incurs swapping
pairings of the four trajectories.

in Figure 1.7. The classification originates from the role played by the interference of waves

inside medium. The diagram in Figure 1.7 (b) corresponds to two intensities propagating

independently through the system, it is the term which is being subtracted off when defining

δTab. The correlation function is decomposed into its components depending on number

of interference events, which, in context of electronic wave transport in condensed matter

systems, are "quantum" crossings of paths– the remaining three diagrams, Figure 1.7(c-e).
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1.4.1. Short-Range C(1) Correlation. Figure 1.7(c) depicts the principal contri-

bution to the correlation function Eq. 1.3 denoted by C(1)aba′b′. It is appreciable only if

Ŝa − Ŝ′a = Ŝb − Ŝ′b and it decays exponentially otherwise. This contribution corresponds to

the following pairing

C(1) : (aa′)(aa′) → (bb′)(bb′).

If the angle of an incoming beam is changed, the speckles follow the incoming beam–

the so-called memory effect. Second, the speckle pattern also deforms, it decorrelates. The

C(1) correlation is a sharply peaked function, nonzero only if the angles of the incoming and

outgoing channel are changed by the same amount. Theoretical studies of C(1) were first

done by Shapiro [13]. Experimental work on C(1) was then carried out to study memory

effect [14]. Frequency dependence of short-range correlation is studied by Lagendijk et.

al. [15]. The effects of absorption and internal reflection in C(1) is studied in ref [16, 17].

1.4.2. Long-Range C(2) Correlation. It is also possible to pair the amplitudes by

interposing them in one or more quantum crossings. One of the such possibility is C(2)aba′b′,

it has one crossing and is shown in Figure 1.7(d). The crossing leads to an exchange of the

channels a and a′ or b and b′ which can be represented by

C(2) =



(aa)(a′a′) → (bb′)(bb′),

or

(aa′)(aa′) → (bb)(b′b′).

The contribution C(2) to the correlation decreases and vanishes only if both ∆Ŝa

and ∆Ŝb are large. For a speckle pattern generated from a single incident beam a = a′, we

expect to observe long–range (for b not equal to b′) angular correlations of weak amplitude.

Smallness of this contribution arises from the additional requirement for two paths to cross

which is usually a rare event.
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The C(2) term can be measured more easily in a setup using one incoming channel

(e.g. angle of incidence) and integrating over all outgoing channels. This is because this

type of correlation (when b and b′ are automatically paired) is present in all channels

so that the addition makes C(2) the dominant contribution. The long-range character

of the C(2) arises due to interference of the diffuse light paths [17]. The long-range

correlation function was first introduced by Stephen and Cwilich [18]. The Langevin

approach simplified the calculation of correlation functions [19]. Zyuzin and Spivak applied

the Langevin approach to calculate the correlation functions of light transmitted through and

reflected from disordered samples [20]. The long-range correlation function was obtained

experimentally for various systems: including optical systems [15, 21, 22] and microwave

waveguides [23, 24].

1.4.3. Infinite-Range C(3) Correlation. The contribution C(3)aba′b′ with two cross-

ings is depicted in Figure 1.7(e). Because of the two-crossing structure, this contribution

has no angular dependence,(i.e. it yields a uniform background to the correlation function

for any aa′ and any bb′). This result is characteristic of coherent multiple scattering of the

combined effect of quantum crossings and of their non-local propagation. Upon averaging

over all directions of incident and emergent waves, this contribution not only survives, but

it becomes dominant. This is the celebrated universal conductance fluctuation [25–28].

The correlation function is thus decomposed into its components depending on

number of interference events or, on a more fundamental level, on the type of pairing of

the incoming and outgoing wave amplitudes that, in context of electronic wave transport in

condensed matter systems, are "quantum" crossings of the paths. Thus, the three terms to

the correlation function, in the decreasing order of contribution, are

C(r,r′) ≈ C1(r,r′) + C2(r,r′) + C3(r,r′). (1.4)
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1.5. TRANSMISSION EIGENCHANNELS

Another striking interference effect is the existence of eigenchanels, first predicted

by Dorokhov [29] in 1984. His work suggested existence of particular incident wavefronts,

which can transmit through scattering media with near unity transmittance. He calculated

the statistical distribution of transmission eigenvalues and predicted the existence of these so-

called open eigenchannel, the system-specific wavefronts with unity transmittance [8, 30].

Each eigenchannel can be excited by a linear combination of multiple free-space incident

modes. These incident wave-fronts when coupled to an open eigenchannel can be fully

transmitted through a lossless disordered sample, even if the sample is optically thick (i.e.

when the sample thickness is much greater than the transport mean free path). In contrast,

waves injected into low-transmission (closed) channels with a transmission coefficient of

close to zero barely penetrate the medium and are mostly reflected. In this thesis, we

explore the idea manipulating the perfectly transmitting eigenchannels (open channel) by

constructing different shapes of the disordered medium.

Figure 1.8. Schematic depiction of a disordered waveguide with varying diameter.

To construct the transmission matrix t of the disordered waveguide, we use guided

modes in the leads as the basis. The input (output) lead waveguide has a constant width

equal to the same width W1(W2) of the disordered waveguide with an index of refraction

n, at the front (back) end z = 0 (z = L), and it supports M = W1/(λ/2n) (N = W2/(λ/2n)
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guided modes. Thus t is a N×M matrix, and its element ti j represents the field transmission

from the input j th mode to the output ith mode. The reflection matrix is constructed in a

similar way by computing the reflected waves, and its dimension is M × M . A singular

value decomposition of the transmission matrix t gives t = UΛV†. Λ is a N × M diagonal

matrix with min[N,M] non-negative real numbers, τ1/2
m , where τm is the eigenvalue of t†t

and represents the transmittance of themth transmission eigenchannel. U is a M×M unitary

matrix that maps the field in the guided modes of the input lead to the eigenchannels of

the disordered waveguide, and V is a N × N unitary matrix that maps the eigenchannels to

the output waveguide modes. Each column of V represents an input singular vector, whose

elements are the complex coefficients for the input waveguide modes that combine to couple

light into a single transmission eigenchannel. The output field of a single transmission

eigenchanel is represented by the column of U, which is called the output singular vector.

Similarly, the reflection eigenvalues ρm can be obtained by singular value decomposition

of the reflection matrix r . The dimensionless conductance is g = 〈Tr(t̂†t̂)〉 =
∑

n〈τn〉. The

density of the eigenvalues P(τ) has a bimodal distribution [8, 22, 29, 31, 32], with one peak

at τ ≈ 0 that corresponds to the closed channels, and a peak at τ ≈ 1 that corresponds to

the open channels.

P(τ) =
g0
2

1
τ
√

1 − τ
. (1.5)

In this thesis, we will show that for a waveguide with an arbitrary shape, this expression

remains appropriate, if g0 =
k`
2

[ ∫ L

0
W−1(z)dz

]−1
depends on geometry of the waveguide,

where k = 2π/λ is the wave number, ` is the transport mean free path. We obtain this result

by reducing arbitrary 2D or 3D waveguide to the 1D waveguide by projection technique [22,

33] see Figure 1.8. We propose a model to describe transmission eigenchannels for arbitrary

waveguide profiles and develop an inverse design technique to obtain waveguide profiles

for the desired eigenchannel profile.
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1.6. FOCUSING CONTRAST

Scientific instruments like telescopes, microscopes, and cameras all work on the

notion of easily predictable ballistic propagation of light. But, for a turbid medium, light

propagation is not ballistic and its direction gets scrambled due to scattering on the inho-

mogeneities. Hence, it is not immediately clear how we can get a sharp focus inside turbid

medium. The majority of imaging methods (coherence gating, multi-photon microscopy)

depend on the ballistic light to form an image [34–38], but the intensity of the ballistic

light decreases exponentially with depth of penetration. Therefore, with increasing depth,

it becomes progressively (exponentially) more difficult to retrieve information that would

be useful in imaging.

Recent investigations of wavefront shaping offered a radically new approach to

light focusing inside scattering medium. One such method is the iterative method which

was developed by Mosk and Vellekoop to focus light through [39] or even inside scattering

objects [40]. Waves propagating inside a randommedium (with exponentially small ballistic

component), which are completely scattered, ordinarily generate a strongly fluctuating

spatial distribution of intensity (speckle pattern) [1, 6, 12] having no apparent relation to the

incident waveform. However, despite such a superficial randomness, light propagation in

a linear complex medium is completely deterministic. Therefore, intensity can potentially

be focused at any point inside the medium by adjusting the phase and amplitude of all

sources of the wave so that the constructive interference of all partial waves takes place at

the selected point. It has since been convincingly demonstrated that light can indeed be

focused, albeit not perfectly due to experimentally limitations, through a random slab in

both space and time by manipulating the incident fields [41].

The spatial profile of focused intensity inside the medium does depend upon the ran-

dom medium, location with respect to the boundaries, as well as upon the incident field. To

understand the process and limitations of focusing via wave-front shaping, a complete set of

the N orthogonal eigenchannels of the transmissionmatrix and their associated transmission
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eigenvalues τn is used. As discussed previously, the field transmission matrix t relates the

fields Ea and Eb between incoming a and outgoing b waveguide modes with Eb =
∑N

a tbaEa;

whereas the transmission matrix eigenchannels represent an alternative basis for repre-

senting the electric fields inside the medium [41–43]. Furthermore, focusing in/through

random media is intrinsically related to the correlation and the fluctuations of transmitted

intensity [41]. Intensity correlation across the transmitted speckle pattern persists beyond

the range over which the field is correlated [14, 18, 23, 44, 45] and may be characterized

through the degree of intensity correlation κ [46] related to C(2) correlations introduced

previously. Correlation in intensity and fluctuations of total transmission normalized by its

ensemble average sa = Ta/〈Ta〉, whereTa =
∑N

b |tba |
2 are linked via the equality κ = var(sa)

for N � κ. κ is also inversely proportional to the dimensionless conductance g [12] because

C(2) correlation requires one crossing of paths. The conductance g is in fact the ensemble

average of the optical transmittance g = 〈T〉 = 〈
∑N

a,b |tba |
2〉 = 〈

∑N
n=1 τn〉 [47].

Focusing with maximum intensity at a point β for a normalized incident field is

achieved by phase conjugating the field transmission coefficient between the target point at

β and input points a so that the incident field is Ea =t∗βa/
√∑

a t2
βa = t∗βa/

√
Tβ. Components

of the transmitted field originating from different points then interfere constructively at β

to give the focused intensity, which is equal to the total transmission through the opposite

surface for a source at β, Iβ =
∑

a |t2
βa |

2/Tβ. If M incoming channels is such that M � N ,

where N is the number of independent components supported in the space surrounding the

medium, 〈Iβ〉 is only enhanced by a factor M over 〈I〉, 〈Iβ〉 = M 〈I〉 = Mg/N2. On the

other hand, the background intensity at points b , β is Ib = |
∑

a tbat∗βa |
2/Tβ. Decomposing

the field into orthonormal incoming and outgoing singular vectors vn and un, respectively,

t can be written as t = UΛV =
∑N

n=1 unτ
1/2v†n . The singular vectors vn and un are the

waveforms at input and ouput surfaces, respectively, which couple selectively to the nth

eigenchannel propagating through the medium. The focused and background intensities
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can now be expressed in terms of the singular vectors:

Iβ =
∑

n

τn |unβ |
2 (1.6a)

Ib =
|
∑

n τnunbu∗nβ |
2

Tβ
(1.6b)

Since the background intensity is the result of interference between randomly phased

statistically independent elements associated with different eigenchannels, the contrast

µM ≤ 〈Iβ/Ib〉 depends on the effective number of eigenchannels contributing to the trans-

mission. The average of the contrast(i.e. ratio) between the peak and background intensity

for M input points is [43]:

µM =
1

1
1+1/Ne f f

− 1
M

(1.7)

where Ne f f ≡ 〈(
∑N

n=1 τn)
2/

∑N
n=1 τ

2
n 〉 , and the eigenchannel participation number of the

transmission matrix is the effective number of uncorrelated speckle patterns contributing to

the transmitted field. The eigenchannel participation number Ne f f may be directly linked to

fluctuations and correlations of intensity for diffusive waves for quasi-one-dimensional sam-

ples. Indeed, the correlation of intensity and fluctuations of total transmission normalized

by its ensemble average sa = Ta/〈Ta〉 are linked with κ = var(sa). For N � 1:

var(sa) = κ = 1/Ne f f

Therefore, the average intensity pattern for focused waves normalized to the value at the

focus can be written to give the spatial variation of the normalized intensity pattern with

the displacement ∆r in terms of κ ∝ C(2):

〈I f oc(∆r)〉

C(1)〈I〉
=

C(1)(∆r) + κ
1 + κ

(1.8)
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This relationship explicitly shows that importance of intensity correlations, specifically, the

long-range correlation, extends far beyond studies of mesoscopic transport, it plays the key

role in setting the fundamental limits for wavefront shaping applications [41–43, 48, 49].

1.7. PROJECTION METHOD IN 2D AND 3D WAVEGUIDES WITH ABSORP-
TION

Recently, two theoretical models have been put forward to describe the spatial

profile of the perfectly transmitting channels in lossless diffusive media. Davy et al. [50]

applied the supersymmetry theory to wave propagation in a quasi-one-dimensional random

system and related the intensity profile to the return probability (RP) of diffusive waves.

Ojambati et al. [51, 52] proposed that the perfectly transmitting channel in a disordered slab

is related to the fundamental mode (FM) of the one-dimensional (1D) diffusion equation.

Although both models correctly predict the depth of the maximum energy density [50, 53–

55], they disagree quantitatively in terms of the depth profile for the perfectly transmitting

channel. So far, both models have been applied only to one-dimensional diffusion.

We have studied light transport in quasi-two-dimensional disordered systems and

showed that the spatial structure of transmission eigenchannels can be modified by the con-

finement geometry [56]. For example, by adjusting the shape of the reflecting boundary of a

disordered waveguide, the depth at which the energy density of a high transmission channel

reaches the maximum can be displaced. This enables enhanced light-matter interaction at

different location inside the random medium.

In this part of the thesis, we use the projection technique, developed in physical

chemistry for particle diffusion in confined geometries [22, 33], to describe wave diffusion.

With the help of projection technique, we derive expressions for the Green function in

the two- and three-dimensional disordered waveguides with an arbitrary shape in order

to obtain the non-local long-range mesoscopic correlations [12, 18, 20, 23, 48, 57–60].
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We reduce the problem to one-dimension and obtain an analytical solution. We further

extend the projection technique to include the effects of absorption commonly encountered

in experiments with the electromagnetic waves.
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Department of Physics Missouri University of Science and Technology, Rolla, Missouri
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ABSTRACT

We propose a scheme to detect the diffusive cloak proposed by Schittny et al [Sci-

ence 345, 427 (2014)]. We exploit the fact that diffusion of light is an approximation that

disregards wave interference. The long-range contribution to intensity correlation is sen-

sitive to locations of paths crossings and the interference inside the medium, allowing one

to detect the size and position, including the depth, of the diffusive cloak. Our results also

suggest that it is possible to separately manipulate the first- and the second-order statistics

of wave propagation in turbid media.

1. INTRODUCTION

A cloak conceals an object by molding the the flow of light in the surrounding

volume [1]. Transformation optics [2, 3] has enabled one to design artificial materials with

spatially varying permittivity and permeability to achieve cloaking effect, see Figure 1(a).

In the following we will refer to this scheme as a ballistic cloak. A different kind of cloak

has been proposed by Schittny et al [4, 5] – a reflecting object is hidden inside a turbid
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medium where the light propagates diffusively, i.e. via a random walk, see Figure 1(b). The

effect is achieved by properly increasing diffusivity of the shell D′. Hiding an object inside

a scattering medium is usually not difficult – it suffices to bury an object at the depth of

several transport mean free paths – in fact, the opposite task of detecting an inhomogeneity,

such as a cancer, is the holy grail of biomedical optics [6]. Notwithstanding, it has been

pointed out that in Ref. [4] that cloaking effect can be achieved for a shallow object and

with a thin cloak made of a statistically uniform material. Furthermore, the cloak is omni-

directional and broadband. This behavior can be understood by realizing that the light

intensity in turbid medium is governed by the diffusion equation, which is much simpler

than Maxwell equations for the ballistic cloak. Laplace equation describing the diffusion is

formally equivalent to that of electric/magnetic potential in the electro-/mangneto- statics.

In the latter context, core-shell structures have been known to preserve the uniformity of

electric [7]/magnetic [8] field lines in both two (cylinder) and three (sphere) dimensions.

In context of light diffusion, it suggests that the proper choice of diffusion constant ensures

the uniform intensity at the output surface of a slab containing the cloak. This result has

been verified in Ref. [4] and further extended to heat cloaking [9, 10].

The cloak in Figure 1 b is based on the diffusive description of wave transport.

This is an approximation, which does not take into account wave interference effects [11,

12]. Second-order statistical properties such as fluctuations and correlations of intensity

contain information about wave nature of transport, including the location where wave

interference took place [13]. We consider spatial intensity correlations defined asC(r1,r2) =

〈δI(r1)δI(r2)〉/〈I(r1)〉〈I(r2)〉, where δI(r) = I(r) − 〈(I(r)〉 is the deviation from the mean.

〈...〉 denotes ensemble average that is accomplished by e.g. averaging over wavelength

of the source. The correlation is dominated by a short-range (on the order of transport

mean free path, `) contribution C1(r1,r2) responsible for speckles [14]. In this work,
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Figure 1. (a) Schematic depiction of light paths in a ballistic cloak. Gray shell depicts the
area where material properties have been modified based on principles of transformation
optics to mold the flow of light around the obstacle. (b) Diffusive cloak compensates the
longer paths around the object by the increased diffusivity (e.g. lower scatterer density) in
the surrounding shell.

we present a method for detecting the size and location of an object concealed by the

diffusive cloak based on analysis of the long-range component of correlation [15–18]

C2(r1,r2) ' C(r1,r2)−C1(r1,r2)measured at the output surface of a slab of turbid medium.

2. MODEL

Weconsider coherent plane-wave illumination of a slab of lossless 2D turbidmedium

of thickness L and transport mean free path `. Our goal is to compare the intensity and the

long-range correlation in a slab (the reference) to those in slab with an embedded reflecting

cylinder (case I); and in slab with the cylinder surrounded by diffusion cloak (case II).

To compute ensemble-averaged intensity we solve diffusion equation

D∇2〈I (r)〉 = 0 (1)
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with boundary conditions 〈I (y,0)〉 = I0 and 〈I (y, L)〉 = 0. r = (y, z) where y and z

are the transverse and longitudinal coordinates respectively. For cases with inclusions, we

represent the solution as:

〈I(r)〉 = 〈I(0)(r)〉 + 〈∆I(r)〉 (2)

where 〈I(0)(r)〉 is the solution of diffusion equation in pure slab and 〈∆I(r)〉 is correction

in intensity due to the inclusion. To obtain an analytical expression for correction term,

we use method described in Ref. [19]. For an object located at rc inside the medium, the

intensity can be described by a multipole expansion, in analogy with electrostatics [19–21],

where electric potential also satisfies Laplace equation. For a lossless medium, the lowest

order dipole term describes disturbance of the intensity far enough from the object can be

written as

〈∆I(r)〉 = p · ∇rcG(0) (r,rc) , (3)

where G(0)(r,r′) is Green function for the pure slab, i.e. it is solution of ∆rG(0)(r,r′) =

−δ(r−r′)with zero boundary conditions at the slab boundaries. The dipole moment in Eq. 3

is induced by the incident intensity so that p = −P ∇rc 〈I
(0)(rc)〉. Intrinsic "polarizability"

for a reflecting cylindrical inclusion P(I) = 2πR2
1 can be found by applying proper boundary

conditions at the cylinder surface [21]. Using same method for the core-shell structure we

find

P(I I) = 2πR2
2 ×
(R2

2 + R2
1)/(R

2
2 − R2

1) − D′/D

(R2
2 + R2

1)/(R
2
2 − R2

1) + D′/D
, (4)

where R1,2 are inner and outer radii of the shell and D′ is diffusion coefficient of the shell.

It is implicitly assumed that the size of the inclusion is much greater than `. Lastly, the

position-resolved intensity transmitted through the slab can be found from the diffuse flux

at the output surface, where c denotes speed of light.

IT (y) = (1/c)J(r)〉|z=L = −(D/c)∇z〈I(r)〉|z=L , (5)
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Using Langevin approach [17, 22, 23], the long-range intensity correlationC2(r1; r2)

has been related to the ensemble average intensity 〈I(r)〉 and Green function G(r; r′) of

diffusion equation as

C2(r1,r2) =
4

k0`

∫
Ω

dr ∇rG(r1,r) · ∇rG(r2,r)〈I(r)〉2

〈I(r1)〉〈I(r2)〉
. (6)

In the Langevin approach, proposed in the context of mesoscopic electron transport

by Spivak and Zyuzin [24], the long-range correlations are obtained from the short-range

(δr ≤ `) correlations for fluxes. The result in Eq. 6 is due to wave interference of paths with

crossings in Figure 1 b; its wave nature is seen from the (k0`)
−1 factor, where k0 = 2π/λ

is the wave number. As in Eq. 1, Eq. 6 neglects surface corrections [22], which are small

in the limit L ≥ ` considered in this work. The integration in Eq. 6 is taken over the entire

volume of the system Ω.

In analogy with in Eqs. 2,3, Green function in systems with inclusions can be found

as

G(r,r′) = G(0)(r,r′) − P ∇rcG(0)(rc,r′) · ∇rcG(0) (r,rc) . (7)

Inwhat follows, we use Eqs. (2,6) to compute the diffuse intensity and long-range correlation

for the three cases of interest.

3. DIFFUSE INTENSITY

For a slab without inclusions illuminated by a plane wave, solution of diffusion

equation is a linear function and the Green function can be easily found by e.g. Fourier

transformation over the transverse variable [12]

〈I(0)(r)〉 = 〈I I(z, L)〉 = I0(1 − z/L) (8)
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G(0)(r,r′) = −
∞∫

−∞

sinh[kz<] sinh[k(L − z<]
k sinh[kL]

eik(y−y′) dk
2π
, (9)

where z< = min[z, z′], and z> = max[z, z′]. Diffuse intensity in the presence of a reflecting

cylinder at rc = (zc, yc ≡ 0) can be found by substituting Eqs. (8,9) into Eq. 3

〈∆I(I)(r)〉 = −
P(I)I0

4L2

(
sin[π(z − zc)/L]

cosh[πy/L] − cos[π(z − zc)/L]

+
sin[π(z − (L − zc))/L]

cosh[πy/L] − cos[π(z + zc)/L]

)
.

(10)

This negative correction scales as a ratio between the area πR2
1 of the inclusion and square

of the thickness of the slab. It leads a shadow directly behind the cylinder that was studied

both experimentally and theoretically in Ref. [19] where Eq. 10 was also obtained.

To cloak a cylindrical inclusion, Ref. [4] proposed to modify the diffusion coefficient

in the surrounding cylindrical shell as

D′/D = (R2
2 + R2

1)/(R
2
2 − R2

1). (11)

Under this cloaking condition, the polarizability in Eq. 4 vanishes and our method confirms

that indeed

〈∆I(I I)(r)〉 = 0. (12)

4. LONG-RANGE INTENSITY CORRELATION

For a slab, the long-range correlation is found by substituting Eqs. (8,9) into Eq. 6.

For observation points at the output surface a compact expression has been obtained [17]

C(0)2 (y1, L; y2, L) =
1

k0`

+∞∫
−∞

dk
2π
−2kL + sinh(2kL)

k sinh2(kL)
cos[k(y1 − y2)], (13)



26

which we use as a reference. Presence of a reflecting cylinder can be treated perturbatively,

it introduces corrections of two types

∆C(I)2 (r1,r2) '
1

k0`

P(I)

L2 F(r1,r2) + ∆CEV
2 (r1,r2). (14)

The first term is the leading term due to 〈∆I(r)〉 and ∆G(r,r′) in Eqs. (3,7) respectively,

where P(I)/L2 is small parameter and F(r1,r2) is a function with an amplitude on the order

of one. The second contribution in Eq. 14 originates from the reduction of the integration

area (i.e. exclusion volume)Ω→ Ω−Ωc in Eq. 6. This negative contribution is proportional

to the area of the cylinder Ωc and can be estimated as ∆CEV
2 (r1,r2) ∝ (1/k0`) × (πR2

1/L
2).

Therefore, although two terms in Eq. 14 have difference origin, they have comparable

amplitudes. Analytical computation of ∆C(I)2 (r1,r2) leads to a cumbersome expression, so

we defer further analysis of this case to the numerical section below.

Surrounding a cylindrical object with a cloak modifies its "polarizability" P(I) →

P(I I) = 0 when the condition in Eq. 11 is met. As the result, the first term in Eq. 14 that

proportional to P(I I) vanishes, whereas the exclusion volume in the second term is increased

to also include the cloak. Assuming that the integrand in Eq. 13 varies slowly around rc,

we obtain the following analytical result for observation points at the output surface of the

slab

∆C(I I)
2 (y1, L; y2, L) = −

1
k0`

πR2
2

L2
π2(L − zc)

2

4πL2 ×

Re
[
cosh−2 π (iy1 + zc)

2L
cosh−2 π (iy2 − zc)

2L

]
,

(15)

When y1 = y2, ∆C(I I)
2 (y, L; y, L) represents a correction to the fluctuations of intensity at the

output surface. We find that the transverse coordinate of the cloaked object corresponds to

themaximum correction (y = yc ≡ 0 in our case). The depth and the size of the object can be

determined from the absolute value, |∆C(I I)
1 (0, L; 0, L)| ≡ δ, and the full width at half max-

imum, ∆yFWHM , of the correction: z = zc/L = 2/π cos−1[(
√

2 − 1)1/2 sinh(πyFWHM/L)]
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and πR2
2/L

2 = δ4k0`L2/(L − zc)
2 cos4(πzc/2L). Table 1 summarizes the results of our

calculations. It shows that the cloak removes the correction in the transmitted intensity pro-

file but not in the long-range correlations. Moreover, the magnitude and the scaling of the

correction is the same with and without the cloak. To confirm the analytical results derived

above, we obtained the intensity, 〈I(r)〉, and the long-range intensity correlation, C2(r1,r2),

numerically. First, we used Comsol Mutiphysics [25] to compute intensity, 〈I(r)〉, and

the Green function, G(r,r′), as solutions of the homogeneous diffusion equation and the

diffusion equation with a point source, respectively. Secondly, we used Eq. 6 to calculate

the correlation.

Table 1. Summary of the analytical results. Long-range intensity correlation contains the
size and location (see Eq. 15) information of the cloaked object.

Slab Cylinder (I) Cloak (II)

〈I(0)〉 ∝
`

L
〈∆I〉 ∝

`

L
×
πR2

1
L2 0

C(0)2 ∝
1

k0`
∆C2 ∝

1
k0`
×
πR2

1
L2 ∝ −

1
k0`
×
πR2

2
L2

5. NUMERICAL RESULTS

Figures 2(a-c) show numerically computed intensity 〈I(r)〉 and the corresponding

transverse profiles at the output surface 〈I(y, L)〉, Figure 2(d), for plane wave illumination

for: (case 0) slab geometry (red lines); (case I) slab geometry with an embedded reflecting

cylinder (black) lines; and (case II) slab geometry with an embedded cloaked cylinder (blue

lines). In the latter two cases, the inclusions were placed in the middle of the slab. For

results in Figure 2(a-c,e-g) the thickness was L/` = 20.4. The radii of the cylinder and

cloak were chosen as R1/` = 4.5 and R2/` = 6.8, such that their ratio is R2/R1 = 1.5. The

diffusion coefficient of the cloak satisfied Eq. 11.
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As predicted analytically by Eq. 10, there exists a diffusive shadow behind the

cylinder, c.f. Figs. 2(b,d), where intensity drops. In contrast, the cloaked cylinder has

no shadow, concealing the presence of the cylinder in accordance with Eq. 12. To verify

the theoretical scaling in Eq. 10, solid black line, we normalized the numerical intensity

profiles Figure 2(d) by πR2
1/L

2. Dashed, dot-dashed, dotted black lines are normalized

intensities at output surface in the slabs with an embedded cylinder with L/` = 20, 34 and

41 respectively. The numerical results approach the analytical solution with an increase of

L, where the dipole approximation used in deriving Eq. 10 are asymptotically satisfied.

In general, the long-range correlation C2(r1,r2) depends on two spatial coordinates

r1 and r2. Figures 2(e-g) depict the diagonal part C2(r,r) computed numerically using

Eq. 6. This quantity corresponds to the non-Rayleigh contribution to intensity fluctuation.

In the slab geometry, Figure 2(e), C2(r,r) depends only on z-coordinate as C2(z; z) ∝

(z/L)(1 − 2z/3L) [26]. In case of slab with a reflecting cylinder in the middle, Figure 2(f),

the long-range correlation is enhanced. This is because photon path lengths increase in

order to circumvent the cylinder and, thus, the probability of path crossings, responsible for

correlations, is also increased. The amplitude of the correction ∆C2(L, y; L, y) computed

for slabs of different thickness, black lines in Figure 2(h) scales with ∝ πR2
1/L

2, as predicted

in Table 1.

The diminished diffusion coefficient of the cylinder, Eq. 11, reduces the time the

waves spend in the cloak. As a result, the intensity correlation is suppressed below the

reference level of a pure slab, see Figure 2(g). This agrees both qualitatively and quantita-

tively with the prediction of Eq. 12. Indeed, as shown in Figure 2(h), our analytical result

describes ∆C2(L, y; L, y) computed for slabs of different thickness. Both profile and size

scaling of the correction term are in agreement. In the realistic systems, an absorption tends

to suppress the transmission and its fluctuations. However, the correlation in Eq. 6 is nor-

malized by the average intensity. This largely compensates for the exponential attenuation

factor associated with absorption. Hence, the long-range correlations persist at distances
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Figure 2. Panels (a-c) show intensity computed by solving diffusion equation numerically
for slab, bare reflecting cylinder and cloaked cylinder respectively. (d) shows the inten-
sity profile on the output surface of the slab. Red, black and blue curves correspond to
three geometries shown in (a-c) respectively. Dashed, dot-dashed and dotted black curves
correspond to slabs with L/` = 20, 34, 41; solid line is the analytical result in Eq. 10.
Panels (e-g) show the amplitude of the long-range intensity correlation C2(r,r) computed
numerically from Eq. 6 and normalized to the maximum value in the case of pure slab. (h)
shows ∆C2(L, y; L, y) using the same color scheme as in (d); solid blue line is the analytical
result from Eq. 15.

longer than the characteristic absorption length [27], and we expect that the effect predicted

in our work will depend only weakly on absorption losses. The detailed account of loss

goes beyond the scope of the current work.
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6. CONCLUSIONS

Analogy between diffusion and electrostatics problems offers insights into the nature

of diffusive cloak. It shows that the intensity perturbation due to embedded objects can

be suppressed by cancellation of "multipoles". In case of cylindrical (spherical in 3D)

inclusions, cancellation of the dominant dipole term leads to cloaking, Eq. 3. Such an

approach is also analogous to ballistic cloaks employing metamaterials [28].

In this work we exploit a the fact that diffusion is only an approximate description

of the electromagnetic wave transport in turbid media. The intrinsic wave effects are

responsible for such phenomena as speckles, intensity fluctuations and correlations. In

particular, the non-local nature of the long-range correlation offers an opportunity to detect

the diffusive cloak. Crossings of diffusive paths and subsequent interference serve as

“beacons” which give rise to intensity correlation detectable at the output surface of the

medium. In Ref. [29], ultrasound focus was used to shift the wavelength of light and, thus,

to temporarily create a source inside a strongly scattering sample. Such a technique can

potentially offer an alternative approach to detecting the diffusive cloak. However, unlike

the long-range correlation employed in our work, scanning ultrasonic focus would be a

serial process. Lastly, use of an entirely different kind of a “beacon” – Cherenkov radiation

produced by fast-moving charged particles – was proposed for detection of the ballistic

cloak based on transformation optics [30].

Aside of detection of diffusive cloak, our work also offers an intriguing possibility

to manipulate the second-order statistics (correlations/fluctuations) independently from first

order statistics (average intensity). Finally, the results can be trivially generalized to 3D

systems and for waves of different nature acoustic, electronic, seismic, etc.
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ABSTRACT

Within the range of validity of the stationary diffusion equation, an ideal diffusive-

light invisibility cloak can make an arbitrary macroscopic object hidden inside of the

cloak indistinguishable from the surrounding for all colors, polarizations, and directions of

incident visible light. However, the diffusion equation for light is an approximation which

becomes exact only in the limit of small coherence length. Thus, one expects that the cloak

can be revealed by illumination with coherent light. The experiments presented here show

that the cloaks are robust in the limit of large coherence length but can be revealed by analysis

of the speckle patterns under illumination with partially coherent light. Experiments on

cylindrical core-shell cloaks and corresponding theory are in good agreement.
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1. INTRODUCTION

The purpose of any cloak is to make an arbitrary object hidden inside of the cloak

indistinguishable from the surrounding with respect to some observable [1]. A specific

cloak works for a specific surrounding only. For example, in water or in a cloud, an

optical invisibility cloak designed for vacuum or air would appear as a void and would

hence be visible. Broadly speaking, cloaking can be seen as a striking example for that the

corresponding tomography problem does not have a unique solution [2].

With respect to invisibility cloaking for electromagneticwaves following theMaxwell

equations for continua, fundamental limitations of cloaking [3–5] and possibilities to un-

cloak the cloak have been discussed in detail. For example, due to relativity, a macroscopic

object can be hidden only for a relatively small part of the electromagnetic spectrum. [4].

The extinction cross section of the cloak, integrated over all frequencies, is always larger

than that of the object to be hidden alone [5]. The cloak can be uncloaked by Cherenkov

radiation of charged particles passing through the cloak [6] or by motion of the cloak with

respect to source and observer at relativistic speeds [7].

The situation is less clear in regard to invisibility cloaking in turbid media, where

light propagation follows a diffusion equation [8, 9]. Ideal cloaks can be designed by using

coordinate transformations [10] and approximate cloaks have been realized by simplified

core-shell structures [11–13]. Homogenizing the light emission from Lambertian emitters

such as OLEDs with shadowing metal contacts on top is a possible application [14].

Conceptually, diffusive cloaking of macroscopic objects can be ideal for the entire visible

spectrum and for all polarizations and directions of incident light – at least for stationary

or quasi-stationary [15–17] conditions. It is thus interesting to also investigate fundamental

limitations of diffusive-light cloaking allowing for revealing the cloaks – which is the aim

of the present work.
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It is clear that the diffusion equation does not account for coherent wave effects like,

e.g., speckles [8]. All previous experiments on core-shell structures have used illumination

with incoherent white light [11–13]. Experiments in the opposite limit of illumination with

coherent light from a continuous-wave laser (Toptica, DL100) operating at around λ = 780

nm wavelength along the positive z-direction are depicted in Figure 1 The bandwidth of

this laser is less than 5 MHz, corresponding to a coherence length in air exceeding 60 m.

The behavior shown in Figure 1 is similar to the one for illumination with incoherent white

light [12]: The obstacle casts a pronounced diffusive shadow, which essentially disappears

for the cloak sample, making it indistinguishable from the reference. For all samples,

pronounced spatial intensity fluctuations, i.e., speckles are superimposed. Altogether, the

cloak cannot be revealed by such an experiment.

Figure 1. Images of (a) the reference, (b) the obstacle, and (c) the cloak sample under large-
area illumination from the rear side(i.e. along the positive z-direction) with coherent laser
light at λ = 780 nmwavelength(red). No polarizer is used in front of the camera. Each image
results from two exposures: One with white-light illumination to reveal the sample and one
with laser illumination. The laser light leads to strong intensity fluctuations (speckles). The
two images are superimposed in the computer. The black curves are intensity cuts through
the middle of the samples, projected onto the sample’s surface. The white curves show
the intensity averaged along the vertical direction from 25% to 75% of the sample height.
We find that the obstacle casts a diffuse shadow, which essentially disappears for the cloak,
making it indistinguishable from the reference. This overall behavior for illumination with
coherent light is closely similar to t at for illumination with incoherent white light, which
we have published previously [12]

Here, we use the same samples as in our previous work [12]: The cuboid reference

sample with dimensions Lx = 15 cm, Ly = 8 cm, and Lz = 3 cm contains a constant

density of TiO2 nanoparticles (DuPont, R700) with an average diameter of 340 nm within a

homogeneous and transparent polydimethylsiloxane (PDMS) matrix, leading to an effective
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Figure 2. In contrast to Figure 1, only the center of the rear side of the sample is illuminated
with a narrow beam, and a linear polarizer is placed in front of the camera. Furthermore,
illumination is with partially coherent light with adjustable effective coherence length `coh.
(a) One example (`coh = 4.8 cm, see arrows in (b)) of a resolved measured speckle image for
a magnified view onto the center of the front side of the reference (left) and the cloak sample
(right). The inset shows the corresponding histograms, normalized to unity integral, vs.
normalized intensity I/〈I〉. (b) Derived speckle contrast,CI , versus inverse coherence length
`−1

coh for the reference (blue) and the cloak (red) sample. The solid curves are guides to the
eye. (c) calculated speckle contrast versus `−1

coh represented as the experiments in (b). The
different symbols corresponds to diffusion theory without absorption(crosses), diffusion
theory with absorption (circles), and the Monte Carlo ray-tracing simulations(triangles).

light diffusivity of DO = 11.9 × 108cm2s−1 [12]. The corresponding transport mean

free path length is l0
s = 1.67 mm. The scattering mean free path length of l0

t = 0.76 mm

= l0
t × (1 − 〈cos θ〉) has been measured independently [12] and leads to an asymmetry

value of g = 〈cos θ〉) = 0.544 [13]. This value indicates preferential forward scattering,

which is expected for TiO2 nanoparticles of this size. The obstacle sample additionally

contains a hollow cylindrical ceramic core (Accuratus Corporation, AccuflectÂő B6) in

the center of the xz-plane, with the cylinder axis parallel to the y-axis. It has an outer

radius of R1 = 0.8cm and acts as a Lambertian diffusive reflector with diffusivity D1 �

D0 The cloak sample contains an additional PDMS cylindrical shell with outer radius

R2 = 1.2cm = 1.5 × R1 around the core. The shell is doped with a 3.9 times lower

concentration of TiO2 nanoparticles than the surrounding, leading to a light diffusivity of

D2 = 3.9 × D0 [12]. Arbitrary objects can be placed into the opaque hollow ceramic core,

qualifying the arrangement as a true cloak rather than just as an invisible object.
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The mean distance between the intensity peaks of the speckle patterns in Figure 1

is mainly determined by the resolution capability of the imaging system. To better resolve

the speckles, we perform additional experiments. We illuminate the center of the rear side

of the sample (parallel to the xy-plane) with a collimated Gaussian beam (with about 2

mm diameter) of the same laser impinging along the positive z-direction. We image only

a small region with about 1 mm2 footprint in the center of the sample’s front side by using

a single microscope objective lens (Olympus, 605339,10 × , NA = 0.25) and a charge-

coupled-device (CCD) gray-scale silicon camera (Point Grey, BFLY-PGE-50H5M-C, 12

bits dynamic range). To maximize the effects and to obtain good statistics, we have chosen

this region to be small compared to the cloak diameter and large compared to the speckle

size. In contrast to Figure 1, a linear polarizer is located in front of the camera; without

the polarizer, one would obtain an incoherent superposition of two independent speckle

patterns. The speckle contrast is defined as CI = σI/〈I〉, with the standard deviation of

the intensity pattern aI and the average intensity 〈I〉. The measured camera images contain

the effects of electrical noise. We thus first subtract a dark image I0
i j ,i.e., Ii j → Ii j − I0

i j .

Negative values Ii j can result. We then compute the average 〈I〉 = N−1 ∑
i j Ii j and the

intensity standard deviation σ1 = N−1 ∑
i j(Ii j − 〈I〉)2 with the number of camera pixels

N = 2448× 2048. The camera exposure time is adjusted such that pixel values much larger

than 〈I〉 are still below the saturation value Isat , i.e., 〈I〉 = Isat/15. Otherwise, the speckle

statistics could be distorted. The measured speckle contrast is equal to within the error

bars for reference and cloak, respectively, and typically around CI = 95% in both cases(see

Figure 2(b)). This value is close to the expected theoretical ideal of CI = 100% for fully

coherent speckles from scattering off bulk turbid media or surfaces [8]. The 5% difference

can be traced back to electrical noise, which smears out the contrast - despite the above

background subtraction. Importantly, the cloak cannot be reveled in this manner.
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To reveal the cloak, recent theoretical work [18] has suggested computing the long-

range contribution of the second-order intensity correlation function C2 [19] from such

speckle patterns for fully coherent illumination. It relies on the existence of crossing and

interference of diffusive paths. Occurrence of such processes has low probability in our

highly diffusive system with `0
t � λ. Indeed, the published formulas applied to our sample

parameters yield that the peak relative differences between reference and cloak are expected

to be on the order of merely

|∆Cmax
2 | ≈

1
2
λ

`0
t

R2
2

L2
z
≈ 4 × 10−5

for λ = 780 nm. Such small relative differences are very difficult to resolve for realistic

statistics and single-to-noise ratios. Thus, in practice, the cloaks discussed here cannot

be revealed in this manner either. The diffusive-light cloak works well for incoherent

illumination as well as for coherent illumination. Can it be revealed for the intermediate

case of partially coherent illumination?

It is known from our time-resolved measurements [13–15] that the propagation-time

distributions are different for reference and cloak. The propagation-time, t, distribution can

be converted into a path-length distribution P(s), with s = ct and the medium velocity

of light c. The distribution P(s) could alternatively be measured by an interferometric

approach [20]. The physical reason for the different path-length distributions P(s) is that

the cloaking shell has a larger diffusivity of light than the surrounding to compensate for

the near-zero diffusivity of the core. The diffusion time is inversely proportional to the

diffusivity and determines the width of the path-length distribution, which is thus larger for

the reference than for the cloak. This trend is partly compensated for by the facts that light

has to make a detour surrounding medium for the cloak sample.

References [21–23] describe an experimental approach based on measuring speckle

contrast for illumination with partially coherent light to obtain certain information about

P(s) without actually determining the entire path-length distribution via demanding time-
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resolved or interferometric measurements. This approach has previously been employed

for studying the internal microscopic structure of a scattering medium [24], detection of

buried objects [22], and imaging in biomedical optics [25]. It is however, not a priori clear

whether such measurement can recover enough information to reveal the existence of a

cloaked object.

To test this idea, we have performed experiments in which we sweep the center

frequency of the laser (monitered by a Fabry-Perot interferometer (Topitca, FPI 780)) in a

periodic triangular temporal pattern, leading to a box-shaped spectrum of frequency width

∆ f . The camera exposure time of 250 ms is chosen to be large compared to the sweep

period of 4 ms, such that this spectral width ∆ f effectively corresponds to a coherence

length in air given by `coh = c0/∆ f , with the vacuum speed of light c0. Figure 2 exhibits the

measured speckle contrast of the reference (blue curve) and the cloak (red curve) samples

versus the inverse coherence length; Figure 2(a) depicts examples of underlying raw data.

To test the reproducibility, we have repeated the experiments on different days and have

intentionally taken the samples in and out of the setup in between (see measurements no.

1-4 in Figure 2(b)). We find the cloak behaves significantly and different from the reference

for intermediate coherence lengths. If no separate reference sample should be available, the

observer could equivalently compare the speckle contrast of images centered at the cloak

position and horizontally separated from the center by a few times the diameter or the depth

of the cloak (whatever is larger). This finding means that the cloak can indeed be uncloaked

using partially coherent illumination -while the cloak works well for very small coherence

lengths (white-light illuminations, see [12]) as well as for every large coherence lengths.

To test the validity of our interpretation, we have performed corresponding theoret-

ical calculations. Mathematically, the speckle contrast can be obtained [21] from

CI =
[
∫ ∞

0

∫ ∞
0 S(λ)S(λ

′)F(λ,λ′)dλdλ′]1/2∫ ∞
0 S(λ)dλ

. (1)
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The contrast depends on the spectral profile (S)(λ) and the distribution of the path lengths

P(s) via function

F(λ,λ′) = |[
∫ ∞

0
P(s)exp[2πis(λ−1 − λ′−1)ds]|2, (2)

which is essentially a Fourier transform of P(s). (In our case, the spectral profile is a

rectangular function with a width defined by `coh. It can be shown that `coh. It can be

shown that `coh → ∞ → CI → 1 and `coh → 0 → CI ∝
√
`coh/∆s, with the width of

the path-length distribution ∆s. While ∆sc is different for reference and cloak, CI → 0

holds true for both, i.e., the cloak cannot be revealed using incoherent light. For partially

coherent light, the only remaining input is the path-length distribution P(s) that we compute

using two different numerical methods: (i) solution of the diffusion equation [13] or (ii)

Monte-Carlo simulations [13]. In the case of the reference sample, both methods agree

well, whereas we observe slight differences in P(s) for the case of the cloak sample. This

finding is due to the fact that the thickness of the cloak is not much larger than the transport

mean free path and, therefore, the Monte-Carlo approach should provide a more accurate

description of light propagation.

The results of numerical evaluation of Eqs. 1 and 2, shown in Figure 2(c), reproduce

the measurements shown in Figure 2(b) well. In particular, we observe an onset of modi-

fication of the speckle contrast when `coh/c0 becomes comparable to the time of diffusive

light propagation through the sample [26] τdi f f = L2
z /6D0 ≈ 1.3ns, which translates onto

`−1
coh ≈ 2.7m−1. For larger values of `−1

coh, the differences in speckle contrast C1 between

reference and cloak samples is evident from Figure 2(b) and 2(c). This means that the

cloak can indeed be revealed without having to measure the complete distributions of the

path lengths P(s).

Finally, our experiments and the corresponding theory have considered the case of

simplified core-shell cloaks. We have used a cylindrical geometry throughout this paper

because the effects are more pronounced than for spherical geometry [11]. One might ask
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whether the conclusions drawn also apply for refined cloaks designed by spatial coordinate

transformations [15], which can be approximated by cloaks composed of many layers [13].

The answer is yes, because the described uncloaking mechanism using partially coherent

light builds upon the fact that the geometrical path-length distribution P(s) or, equivalently,

the propagation- time distribution, is significantly different for the reference and the cloak,

respectively [15].

2. CONCLUSIONS

In conclusion, we have shown that diffusive-light invisibility cloaks can work well

under stationary conditions in the limits of very small and very large coherence length of

light, but can be uncloaked for the intermediate case of illumination with partially coherent

light and inspection of the resulting speckle contrast. Broadly speaking, all types of cloaks

have their Achilles’ heels and partial coherence is one for diffusive-light cloaking. The

same weakness is, of course, expected for other diffusing-wave cloaks, e.g., in acoustics.
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ABSTRACT

Light-matter interactions inside turbid medium can be controlled by tailoring the

spatial distribution of energy density throughout the system. Wavefront shaping allows

selective coupling of incident light to different transmission eigenchannels, producing dra-

matically different spatial intensity profiles. In contrast to the density of transmission

eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of

the eigenchannels are not universal and depend on the confinement geometry of the system.

Here, we develop and verify a model for the transmission eigenchannel with the corre-

sponding eigenvalue close to unity. By projecting the original problem of two-dimensional

diffusion in a homogeneous scattering medium onto a one-dimensional inhomogeneous

diffusion, we obtain an analytical expression relating the intensity profile to the shape of the

confiningwaveguide. Inverting this relationship enables the inverse design of the waveguide

shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel.

Our approach also allows to predict the intensity profile of such channel in a disordered

slab with open boundaries, pointing to the possibility of controllable delivery of light to

different depths with local illumination.
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1. INTRODUCTION

Interference of scattered waves in random media gives rise to well-known phenom-

ena such as enhanced backscattering, Anderson localization and universal conductance

fluctuation. These phenomena are general and occur not only for electromagnetic waves,

but also for acoustic, electronic and other kinds of waves [1, 2]. Recently, there has

been a growing interest in another interference effect – formation of perfectly transmitting

channels [3, 4], which can greatly enhance the total transmission through opaque media

[5–8]. In addition, the perfectly transmitting channels have energy density buildup deep

inside the medium [7, 9–11], opening the possibility of enhancing linear and non-linear

light-matter interactions inside turbid media. Recent advances of optical wavefront shap-

ing techniques [12–17] enabled direct coupling of incident light to perfectly transmitting

channels [11], making the depth profile of energy density dramatically different from the

typical decay in a diffusive medium. To unlock the full potential of this approach for tai-

loring light-matter interactions in turbid media, it becomes imperative to understand what

determines the spatial structure of the perfectly transmitting channels.

Recently two theoretical models have been put forward to describe the spatial profile

of the perfectly transmitting channels in lossless diffusive media. Davy et al [9] applied

the supersymmetry theory to wave propagation in a quasi-one-dimensional random system

and related the intensity profile to the return probability (RP) of diffusive waves. Ojambati

and co-workers[10, 18] proposed that the perfectly transmitting channel in a disordered slab

is related to the fundamental mode (FM) of the one-dimensional (1D) diffusion equation.

Although both models predict correctly the depth of the maximum energy density [7, 9, 11,

19], they disagree quantitatively in terms of the depth profile for the perfectly transmitting

channel. So far, both models have been applied only to one-dimensional diffusion.

We have studied light transport in quasi-two-dimensional disordered systems, and

showed that the spatial structure of transmission eigenchannels can be modified by the

confinement geometry [20]. For example, by adjusting the shape of the reflecting boundary
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of a disordered waveguide, the depth at which the energy density of a high transmission

channel reaches the maximum can be moved. This enables enhancing light-matter interac-

tion at different location inside the random medium. For many applications, inverse design

is needed, namely, to design the confinement geometry to achieve the desired depth profile

of energy density inside a diffusive system. This requires a prior knowledge of the relation

between the geometry of the system and the spatial structure of the transmission channels.

However, there is currently no theoretical model capable of establishing such relation.

In this work, we consider a two-dimensional disordered waveguide with an arbi-

trary shape, and develop a theoretical model to predict the spatial structure of the perfectly

transmitting eigenchannel in the regime of diffusive transport. We further employ a pro-

jection technique, developed in physical chemistry for the particle diffusion in confined

geometries [21], to obtain an analytical relation between the depth profile of the perfectly

transmitting eigenchannel and the geometry of the waveguide. With this relation, we per-

form the inverse design of the waveguide shape to realize the desired energy distribution

for the perfectly transmitting eigenchannel. Finally, we predict the depth profile for the

perfectly transmitting eigenchannel in an open slab geometry with local illumination, by

simulating the lateral beam spread in a waveguide of expanding width. We find that the

depth of the maximum of intensity increases with the size of the impinging beam, which

provides an insight into controlling the energy distribution inside a diffusive slab with local

illumination.

2. MODEL AND ITS SOLUTION

The transmission matrix, which connects the transmitted fields to the incident fields,

contains the complete information about wave transport through the disordered system.

Transmission eigenchannels are introduced via singular value decomposition of the trans-

mission matrix t̂ = Ûτ̂1/2V̂†. Here τ̂ is the diagonal matrix of eigenvalues of t̂†t̂ that

represent the transmittance of each eigenchannel; V̂ is a unitary matrix that maps the in-
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comingmodes onto the eigenchannels; and Û is a unitarymatrix thatmaps the eigenchannels

onto the outgoing modes. In the regime of diffusive transport, the transmission eigenvalues

have a universal bimodal distribution, independent of both the microscopical details of the

disorder and the boundary shape of the system. It consists of two peaks at τ ∼ 0 and τ ∼ 1,

which correspond respectively to closed and open eigenchannels [22–25].

Here, we consider a two-dimensional (2D) waveguide with reflecting boundaries at

y = ±W(z)/2. The region 0 ≤ z ≤ L is filled with lossless scattering medium characterized

by the transport mean free path ` � L. The waveguide width W(z) can be either larger

or smaller than the length L, corresponding to slab or quasi-1D geometry. Our aim is

to predict the depth profile (cross-section averaged intensity) of the perfectly transmitting

eigenchannel (PTE) with τ ' 1, φ(z) ≡ W−1(z)
∫ W(z)/2
−W(z)/2〈IPTE (r)〉dy, where IPTE (r) is the

intensity and 〈...〉 denotes the ensemble averaging. IPTE (r) ≡ |EPTE (r)|2, and EPTE (r) is

the solution of the wave equation with the incident wave given by the eigenvector (a column

vector in V̂) corresponding to the eigenvalue τ ' 1.

Diagrammatic theorywas used [9] to establish connection between the spatial profile

of PTE and the diffusion return probability to the cross-section in a rectangular waveguide

of constant width W � L. To determine PTE profile in the waveguides of an arbitrary

cross-section and without the width constraint, we propose a phenomenological model

based on the solution of the diffusion equation with the additional ad-hoc self-action term

on the right-hand-side:

−∇2
rG(r; r′) = [1 + αG(r; r′)] δ(z − z′)/W(z), (1)

where the diffusion coefficient D0 is absorbed in the definition of G(r; r′). Cross-section

average of its solution G̃(z; z′) ≡ W−2(z)
∫ ∫

G(y, z; y′, z′)dydy′ gives the normalized depth

profile of PTE φ(z) = G̃(z; z)/max[G̃(z; z)]. For a rectangular waveguide in the limit of

W � L with α ≡ 0, Eq. (1) reduces to the return probability model of Ref. [9].
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The ad-hoc self-action term in Eq. (1) will be justified in numerical simulations

below, it is meant to account for the effect of interference of waves that return after multiple

scattering. It reflects the fact that upon the return, the coherent sum of the fields leads to

the cross terms in the total intensity, similar to the weak localization correction [26]. With

the proper choice of α (to be determined below), this equation can be solved inside the

disordered waveguide (0 ≤ z ≤ L, |y | ≤ W(z)/2) with the open boundary conditions at

the two ends (z = 0, L), [z0∂G(r; r′)/∂z ∓ G(r; r′)]z=0,L = 0, where z0 = (π/4)` is the 2D

extrapolation length [1]. The solution can be readily obtained numerically.

To obtain the analytical solution, we employ a projection technique that was devel-

oped in the study of diffusion of electrolytes in nano-pores [21]. This technique reduces

the process of solving 2D diffusion equation in a complex geometry to a solution of the

one-dimensional diffusion equation (along z-axis) with an effective diffusion coefficient that

varies with z:

D(z) = W(z)/
[
1 + (W′(z)/2)2

]1/3
, (2)

where the nominator accounts for the geometrical effect of reduction of flux in a constriction,

and the denominator is introduced to expand the applicability to systems with larger width

variation of upto W′(z) ' 1, see Ref. [21] for details. Eq. (1) is then transformed to yield

G̃(z; z′) directly

−
∂

∂z
D(z)

∂

∂z
G̃(z; z′) =

[
1 + αG̃(z, z′)

]
δ(z − z′), (3)

while the boundary conditions at z = 0, L remain the same. This method suits our problem

because we are interested in the depth dependence of the cross-section-averaged intensity

profile.

We stress that the z-dependent diffusivityD(z) arises from the varyingwidthW(z) in

a purely diffusive waveguide where the localization corrections are negligible. In the regime

where localization corrections are significant, the projection ansatz used to obtain Eq. (3)
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from Eq. (1) is still applicable with the effective diffusion coefficientD(z)×D(z)/D0, where

D(z) is the cross-section averaged value of the position-dependent diffusion coefficient [27–

29] due to the localization-induced renormalization and D0 is its unrenormalized value.

Solution of Eq. (3) can be obtained in the closed form

φ(z) =
(1 − α̃)F(z)
[1 − α̃F(z)]

(4)

F(z) =
4
(

z0
D(0)

+

∫ z

0

dz′

D(z′)

) (
z0
D(L)

+

∫ L

z

dz′

D(z′)

)
(

z0
D(0)

+
z0
D(L)

+

∫ L

0

dz′

D(z′)

)2

α̃ =
α

4

(
z0
D(0)

+
z0
D(L)

+

∫ L

0

dz′

D(z′)

)
. (5)

φ(z) has been normalized so that max[φ(z)] = 1 and F(z) is an auxiliary function, which

corresponds to the normalized solution of the same set of equations with α = 0. The value

of α (or α̃) can be found from the waveguide with constant width.

3. VERIFICATION IN RECTANGULAR GEOMETRY

To test the analytical solution, we compare it to the numerical solution obtained by

directly solving the wave equation with KWANT simulation package [30], see Appendix A

for details. Figure 3a compares the profile of PTE computed numerically to the predictions

of the two previously developed models [9, 18]. Although RP-model deviates from the

numerical solution, bothmodels agreewell at z = 0, L. They give φ(RP)(0) = (8/π)×(`/L) '

2.55 × (`/L) and φ(FM)(0) = (π2/4) × (`/L) ' 2.47 × (`/L). The knowledge of φ(z) at

one point is enough to recover the value of the coefficient α̃. We find close values of

α̃ = 1 − 8/π2 ' 0.19 and α̃ = 1 − π/4 ' 0.21 from the two models. Below, to be specific,

we use the former value. Importantly, we observe that α̃ is a non-zero numerical constant

independent of system parameters, such as the transport mean free path and the system

dimension, underlining the universality of the self-action term on the right-hand-side of
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Eqs. (1,3). The result of Eqs. (4) is shown as dashed line in Figure 3a, it agrees well with

the result of numerical simulations. Quantitatively, for RP-, FM-models and our Eq. (4)

are 5.6%, 0.4% and 0.4% respectively. Furthermore, in Figure 3b we verify that the same

value of α̃ applies to waveguides with varying cross-section. We stress that the agreement

between numerical simulations and our model is achieved with no fitting parameters.
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0.8

1
φ
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(a)
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y
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z

0

Figure 1. Comparison of previous models to ours in predicting the perfectly transmitting
eigenchannels (PTEs) in the diffusive waveguides. (a) The cross-section integrated intensity
φ(z) of the PTE in a constant width waveguide, computed numerically (bold solid line)
and predicted by the RP-model (dash-dotted line), the FM-model (dotted line), and our
model Eq. (4) (dashed line). The inset is 2D intensity distribution of the PTE, computed
numerically, throughout this waveguide with L/` = W/` ' 18.3.

4. ARBITRARY GEOMETRY: INVERSE DESIGN

The closed-form analytical solution given in Eq. (4) establishes the relation between

the shape of the diffusive waveguide and the depth profile of the PTE, thus enabling the in-

verse design. By introducing a normalized width functionw(z) = [W(z)/L]×
∫ L

0 dz′/W(z′),

the dimensionless conductance g = k`/
[
2
∫ L

0 dz′/W(z′)
]
[31], and neglecting the extrapo-

lation length z0, we obtain an expression for waveguide boundary function w0(z) in terms

of the depth profile φ0(z)

w0(z)/
[
1 +

( g
k`

w′0(z)
)2

]1/3
= (6)[

(1 − α̃)(1 − α̃(1 − φ0(z)))3(1 − φ0(z))/φ′20 (z)
]1/2

,
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Figure 2. (b) φ(z) for the PTEs in three waveguides of varying cross-section. Blue color:
expanding waveguide, green color: lantern waveguide, purple color: bow-tie waveguide.
Solid lines: numerical simulation, dashed lines: our model Eq. (4). The inset are the
numerically calculated 2D intensity distribution for the PTEs in the three waveguides. The
waveguide length and width at the widest point are identical to those of the waveguide
shown in Figure 3(a). The width at the narrowest point is equal to a half of that at the widest
point.
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Figure 3. Figure (c) The waveguide width w0(z) obtained by inverting (via Eq. (13)) the
depth profile φ0(z) predicted in the rectangle geometry by the RP-model (dash-dotted line),
the FM-model (dotted line), constant width (dashed line) is shown for reference. z0 � L
is assumed for clarity. The FM model shows less deviation from a constant width than the
RP-model, but only our model produces the consistent result of constant width.

where k = 2π/λ is wave number and φ0(z) satisfies the boundary condition φ0(z = 0, L) = 0.

The extrapolation length at the boundary z = 0, L can be accounted for by the following

scaling
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φ0(z) → φ(z) = φ0 ((z + z0)/(L + 2z0)) (7)

w0(z) → w(z) = w0 ((z + z0)/(L + 2z0)) . (8)

In Appendix B, we present a table of φ(z) for the waveguide geometries w(z) shown in

Figure 3b.

The relation between w(z) and φ(z) allows us to infer the shape of the waveguide

from the depth profile of the PTE. For the depth profile of PTE predicted by the RP-

and FM-models for the rectangle waveguide, c.f. Figure 1c, we derive the corresponding

waveguide shape, as shown in Figs. 3c. The shape predicted by the RPmodel corresponds to

a waveguide with the width variation of up to 20%. In contrast, FM-model is more accurate.

However, in other waveguide geometries, the PTE profiles predicted by the FM-model are

inconsistent with the results of the numerical simulations.

To demonstrate the power of inverse design, we change the universal profile of PTE

in constant-widthwaveguides to a highly unusual profile of a triangle. According to Eq. (13),

to have φ0(z) increase linearly with z, we find the waveguide width w(z) ∝
√

z in the leading

order of α̃. This allows us to designwaveguides that support PTEwith a triangular profile, as

shown in Figure 4. The waveguide boundary is described by W(z) = Wc +∆W
√
|z − zc |/zc,

where zc denotes the depth at which the width is the narrowest. It also closely corresponds

to the maximum of the intensity profile of the PTE. The results in Figure 4, obtained for

two different values of zc/L = 1/2 and 2/3, show that it is possible to obtain waveguide

geometries that have maximum concentration of energy at the desired depth.

Finally, the inverse design introduced above provides an insight to controlling the

depth profile of light intensity inside a disordered slab with local illumination. Such a

geometry is common in optical experiments, and it is different from the waveguide geometry

because the light will diffuse laterally as it penetrates deeper into the slab. A waveguide

expanding linearly at 45◦ angle can be used as a proxy for studying the lateral diffusion in

the slab geometry with local illumination [31]. In particular we consider a waveguide with
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Figure 4. Design of waveguide shape to achieve the desired depth profile of PTE. The
cross-section averaged intensity φ(z) showing an abnormal triangular dependence on the
depth is obtained by the inverse design of the waveguide width w(z) by Eq. (13). Bold
solid lines are the result of numerical simulation, and dashed lines are the prediction by our
model. The two waveguides, shown in the inset, have the PTE intensity maximum at the
depth zc/L = 1/2 (blue line) and 2/3 (red line). The 2D intensity distribution of PTE are
plotted in insets.

expanding width W(z) = W1 + (W2 −W1) × (z/L), and the tapering angle of the waveguide

boundary is θ = arctan[(W2 −W1)/2L] = 45◦, to mimic the lateral diffusion in the slab.

Substituting this expression into Eq. (4) leads to an important result – the profile of PTE

depends on the aspect ratio of the waveguide W1/L, see Figure 5. It implies that in the

slab geometry, the ratio between the impinging beam size and the thickness of the slab can

be used to control the energy penetration. An analytical expression of the depth profile is

given in Appendix B, here, we only present the formula for the depth of the maximum of

the intensity

zmax ' L/
[
1 +

√
1 + 2L/W1

]
. (9)

As expected, for W1 � L we recover known result zmax → L/2. As W1/L decreases,

the maximum of the energy profile is displaced towards the front surface. This result has

practical applications as it offers a mechanism to scan the intensity maximum of PTE in the

longitudinal direction of a disordered slab by varying the incident beam size.
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Figure 5. Prediction of PTE depth profile in an open slab with local illumination by
approximating the lateral beam spreading with an expanding waveguide. The cross-section
averaged intensity φ(z) for the linearly expanding waveguides W(z) = W1 + 2 × z with
different values of W1 and fixed L/` ' 18.3. Gray area represents the region where φ(z)
is greater than 1/2 of its maximum value. The position of the maximum zmax depends on
W1/L, which is well described by Eq. (9), bold dashed line.

5. CONCLUSIONS

In conclusion, we proposed a model for the perfectly transmitting eigenchannel

(PTE) in the two-dimensional (2D) random system with an arbitrary shape. A self-action

term was incorporated into the 2D diffusion equation for the return probability, to account

for the interference effect. We employed a projection technique to reduce the 2D problem

to 1D, and obtained an analytical expression relating the depth profile of the PTE to the

boundary shape of the waveguide. This relation enabled the inverse design, namely, finding

the waveguide shape to achieve the desired depth profile of the PTE. As an example, we

predicted and verified numerically a specific shape of the waveguide in which PTE has a

triangular profile. Such a profile, distinct from the universal parabolic-like profile of the

PTE in the rectangle-shaped waveguide [4, 7, 9, 18], yields a tighter energy distribution,

that can enhance the local light-matter interaction inside the diffusive medium.
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Approximating the lateral beam spreading with an expanding waveguide, we predict

the depth profile for the PTE in an open slab with local illumination. The depth for

the maximum intensity increases with the size of the impinging beam. Our model can

be further extended to include the effect of mismatched boundary conditions [32](via an

appropriate choice of z0), and to describe three-dimensional geometries, see Appendix C.

In the latter case, the projection to one-dimension Eq. (2) shall be modified as well [21].

The results presented here are applicable to electromagnetic, acoustic, electronic and other

types of waves. In optics, in particular, controllable delivery of light to different depths may

lead to non-invasive imaging, sensing and therapeutic applications such as e.g. 2-photon

fluorescence, second harmonic generation microscopy.
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APPENDICES

A. NUMERICAL SIMULATIONS

We numerically obtain the perfectly transmitting eigenchannel (PTE) by the direct

solution of the wave equation using KWANT simulation package [11, 30]. It allows to

conveniently compute the transmission matrix t̂ relating the incoming and outgoing wave

amplitudes. The simulated system is a two-dimensional disordered waveguide 0 ≤ z ≤

L, |y | ≤ W(z)/2. In KWANT it is defined as a collection of coupled lattice sites in

the two-dimensional rectangular grid described by a tight-binding Hamiltonian. Lack of
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bonds at the terminal sites at the sidewalls naturally introduces the reflecting boundary

conditions. To model a passive random medium we introduce disorder by adding a random

on-site potential δEii to the diagonal elements as Hii = E0 + δEii, while keeping the nearest

neighbor couplings at constant value of 1. The scattering region 0 ≤ z ≤ L is connected to

the leads at z < 0 and z > L where δEii = 0. This model is well suited to describe wave

scattering phenomena as long as k` � 1 [33] where k is the wave number and ` is transport

mean free path.

The transmission matrix t̂ relates the amplitudes of the propagating modes incident

from the left lead φa to those of the outgoing modes in the right lead φb. Representing

t†t = V̂ τ̂V̂† gives the diagonalmatrix of eigenvalues τn and the corresponding eigenchannels

Van. After computing t̂, we construct the input field vector φa = Van to couple exclusively

into a specific eigenchannel n. With τn arranged in the decreasing order, n = 1 corresponds

to the maximum transmission eigenchannel [11]. The parameters of the waveguides are

chosen to be in the regime of a well-developed diffusive propagation L/`,W/` � 1. In

this regime, the universal bimodal distribution of the eigenvalues τn yields the maximum at

τ ' 1. In each disorder realization we select eigenchannel with n = 1 and retain it only if

1 − ε < τn=1 < 1 with ε = 0.03. Then we compute its intensity IPTE (r) and average over

the ensemble of 1000 random realizations of disorder to obtain 〈IPTE (r)〉. φ(z) is obtained

by averaging 〈IPTE (r)〉 over the cross-section of the waveguide.

B. PTE PROFILES FOR SELECT GEOMETRIES

In Sec.3 we outlined the procedure to find the depth profile of PTE φ(z) for a given

shape of disordered waveguide w(z), Eqs. (2,4), or other way around, to find w(z) from φ(z),

Eq. (13). In this appendix we present the pairs w(z), φ(z) for a select group of waveguide

geometries studied in this work.
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1. Rectangular waveguide:

w(z) ≡ 1

φ(z) =
4(1 − α̃)ζ(1 − ζ)
1 − 4α̃ζ(1 − ζ)

ζ = (z + z0)/(L + 2z0).

2. Linearly expanding waveguide:

w(z) =
(

W1
W2 −W1

+
z
L

)
log

W2
W1

φ(z) =
4(1 − α̃)ζ(1 − ζ)
1 − 4α̃ζ(1 − ζ)

ζ =

z0
W1
+

L
W2 −W1

log
w(z)
w(0)

z0
W1
+

z0
W2
+

L
W2 −W1

log
w(L)
w(0)

.

Here W1,2 denote the widths at z = 0, L.

3. Bowtie/lantern waveguide:

w(z) =
(

W2
W1 −W2

+

���2 z
L
− 1

���) log
W1
W2

φ(z) =
4(1 − α̃)ζ(1 − ζ)
1 − 4α̃ζ(1 − ζ)

ζ =

z0
W1
+

L/2
W2 −W1

log
w(z)
w(0)

z0
W1
+

z0
W2
+

L
W2 −W1

log
w(L)
w(0)

.

Here W1 denote the widths at z = 0, L, and W2 is the width at the mid-point z = L/2 of the

waveguide.
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C. GENERALIZATION TO 3D

In this Appendix we generalize our model Eqs. (1,2,3) to three-dimensional systems.

We consider axially symmetric waveguide of diameterW(z)where z is the axial coordinate.

This corresponds to cross-section A(z) = πW2(z)/4 which varies longitudinally. 3D version

of Eq. (1) with a planar source at z′ now reads

−∇2
rG(r; r′) =

[
1 + α(3D)G(r; r′)

]
δ(z − z′)/A(z), (10)

where as in Eq. (1) the diffusion coefficient has been absorbed in the definition of G(r; r′).

Open boundary conditions are to be applied at the two ends (z = 0, L),[
z(3D)

0 ∂G(r; r′)/∂z ∓ G(r; r′)
]

z=0,L
= 0, where z(3D)

0 = (2/3)` is the 3D extrapolation length.

Projection from the 3D waveguide geometry to 1D system with spatially-varying diffusion

coefficient can be accomplished analogously [21] to 2D case (compare to Eq. (2)), with

D(3D)(z) = A(z)/
[
1 + (W′(z)/2)2

]1/2
, (11)

Eq. (10) is then transformed to yield G̃(z; z′) ≡ A−2(z)
∫ ∫

G(r; r′)dxdydx′dy′ directly

−
∂

∂z
D(3D)(z)

∂

∂z
G̃(z; z′) =

[
1 + α(3D)G̃(z, z′)

]
δ(z − z′), (12)

while the boundary conditions at z = 0, L remain the same as for Eq. (10).

The normalized depth profile of PTE φ(z) = G̃(z; z)/max[G̃(z; z)] can be found in

the analytical form of Eqs. (4,5) with substitution ofD(z) → D(3D)(z) and α̃→ α̃(3D). The

former is given by Eq. (11). The value of the constant α̃(3D) can be established using the

same procedure as in Sec. 2 – comparing the result to thewaveguidewithW(z) = const � L

in RP- or FM-model. We find α̃(3D) = 1−3/π ' 0.045 and 1−3π2/32 ' 0.075 respectively.
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Inversion of the solution can be made similar to Eqs. (13,7,8). Introducing a

normalized area function a(z) = [A(z)/L] ×
∫ L

0 dz′/A(z′), and neglecting the extrapolation

length z0, we obtain an expression for waveguide boundary function a0(z) in terms of the

depth profile φ0(z)

a0(z)/
[
1 +

(
W′0(z)/2

)2
]1/2
= (13)[

(1 − α̃)(1 − α̃(1 − φ0(z)))3(1 − φ0(z))/φ′20 (z)
]1/2

,

where subscript zero refers to z0 → 0 approximation, which is relaxed using scaling

procedure in Eqs. (13,8).
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ABSTRACT

We demonstrate a possibility to predictably control nonlocal correlation in meso-

scopic transport of waves by tailoring the geometry of a disordered waveguide. In case of

non-dissipative medium, we find an explicit relationship between correlation and the shape

of the system. Inverting this relationship, we realize inverse design: we obtain specific

waveguide shape that leads to a pre-determined non-local correlation. The proposed tech-

nique offers an approach to coherent control of wave propagation in random media that is

complementary to wavefront shaping.

1. INTRODUCTION

Diffusion is a powerful and versatile description of the typical wave propagation [1–

4] in scattering medium that disregards the phase and, thus, the possibility of interference.

Persistent interferece phenomena such as universal conductance fluctuations, Anderson lo-

calization corrections, enhanced backscattering and nonlocal mesoscopic correlations [5–8]

can be captured using the diagrammatic perturbation technique [3, 9–11]. The perturba-

tion building block, which describes an interference of two propagation paths, is known as

"quantum crossing", or Hikami box [12, 13]. The crossing, see Figure 1, is a local object
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confined to a volume `d , where ` is the transport mean free path and d is the dimensionality

of the system. This locality of the interference event means that it is independent of the

exact shape of the considered geometry. In contrast, propagation between the source of

waves to the interference site and on to the detector does depend on the geometry of the

system, as seen from Figure 1. It is described in terms of ladder propagator, which is in

essence a Green function G(r,r′) of the diffusion equation for the disorder-averaged inten-

sity. Consequently, to describe the wave interference effects, the knowledge of G(r,r′) in

the particular geometry is crucial.

In this work, we derive expressions for the Green function in the two- and three-

dimensional disordered waveguides with an arbitrary shape in order to obtain the non-

local long-range mesoscopic correlations [9, 14–21]. We adapt the projection technique,

developed in physical chemistry for the particle diffusion in confined geometries [22, 23],

to describe wave diffusion. We reduce the problem to one-dimension and obtain analytical

solution. We further extend the projection technique to include the effects of absorption

commonly encountered in experiments with the electromagnetic waves.

Spatial light modulator and related technologies have enabled manipulation of light

propagation in scattering media via shaping the incident wavefront field to tailor it to the

specific configuration of scatters in the sample [8, 24, 25]. This brought the renewed

attention to the nonlocal correlations as they were found to be related to such transport

parameters as focusing contrast inside the medium [26] and energy deposition [27? –

35]. The long-range correlation also affects total transmission via an optimized wave

front with a limited degree of input control [21], it is also the key constraint determining

the broadband transmission achievable in wavefront shaping [36]. Our derived analytical

relation between the long-range correlation and the shape of the waveguide enables the

inverse design: selecting the specific waveguide to obtain the desired correlation profile.

Therefore, our work opens up additional avenues for coherent control of wave propagation in
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diffusive scattering media. In recent works [35, 37, 37, 38], we fabricated two-dimensional

disordered photonic waveguides with various geometries, which can be now be used to

experimentally test the presented results.

Figure 1. Schematic depiction of a disordered waveguide with varying diameter. In
diagrammatic description of wave transport, the long-range correlation between intensities
at r1 and r2 arises when two propagation paths, described by the Green function of diffusion
equation, intersect allowing a swap of field amplitudes.

2. PROJECTION TECHNIQUE

In this section we outline the projection technique that allows one to reduce the

two- or three-dimensional diffusion problem to one-dimension (1D). For completeness, in

this section we will consider the non-stationary diffusion and will also include the effect of

absorption.

Green function G(r,r′) of the diffusion equation is defined by the equation

∂G(r,r′, t)
∂t

− D0∇
2
rG(r,r′, t) +

G(r,r′, t)
τa

= S0(t)δ(r − r′), (1)

where D0 is the diffusion constant, τa is absorption time, and S0(t) is a point source at r′. In

context of light scattering, G(r,r′) represents an ensemble-averaged intensity in the medium

with the corresponding source. The geometry of the 3D system is schematically depicted

in Figure 1, with 0 ≤ z ≤ L, x2 + y2 ≤ [W(z)/2]2 in 3D or −W(z)/2 ≤ y ≤ W(z)/2 in
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2D, where W(z) is the diameter of the waveguide. The corresponding cross section area

A(z) is πW2(z)/4 and W(z) in 3D and 2D respectively. The boundary conditions consist of

reflection (zero flux) condition ∂G(r,r′, t)/∂n = 0 at the walls of the waveguide and open

boundary conditions at the two ends (z = 0, L), [z0∂G(r,r′, t)/∂z ∓ G(r,r′, t)]z=0,L = 0,

where z0 = (π/4)` is extrapolation length [1].

In defining a projection to 1D, it is instructive to take a step back by writing Eq. 1

as a combination of the diffusive flux J(r,r′, t) and the continuity equations:

J(r,r′, t) = −D0∇rG(r,r′, t), (2)
∂G(r,r′, t)

∂t
+ ∇r · J(r,r′, t) +

1
τa

G(r,r′, t)

= S0(t)δ(r − r′). (3)

As the first step, we will perform an average over the position of the source r′ in the cross-

section plane at a fixed depth z′ as A−1(z′)
∫

A(z′) dρ
′×, where ρ′ is the transverse coordinate

at z′:

J(r, z′, t) = −D0∇rG(r, z′, t), (4)
∂G(r, z′, t)

∂t
+ ∇r · J(r, z′, t) +

1
τa

G(r, z′, t)

= S0(t)δ(z − z′)/A(z′). (5)

G(r, z′, t) represents the ensemble-averaged intensity at point rwith a planar source S0(t)/A(z′)

at z′.

Presence of the divergence operator in Eq. 5 presents a challenge while performing

averaging over the cross-section coordinate ρ in r ≡ (ρ, z). Instead, we accomplish this task

by performing integration over volume sandwiched between cross-sections at z and z + ∆z,
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see Figure 1. Using Gauss theorem, the volume integration is reduced to surface integration

∮
V

∇r · J(r, z′, t)dr =
∫
S

J(r, z′, t) · ndσ. (6)

In the next step we separate the surface integral into three parts: a ring over the surface of the

waveguide, and two cross-sections: one at z and z+∆z each. The first contribution vanishes

due to absence of the normal component of the flux at the boundary. The remaining two

contributions to Eq. 6 are computed as follows

−

∫
A(z)

Jz(ρ, z, z′, t)dρ +
∫

A(z+∆z)

Jz(ρ, z + ∆z, z′, t)dρ

'
1

A(z)
∂

∂z
[A(z)Jz(z, z′, t)] × A(z)∆z, (7)

where subscript z denotes the longitudinal component (of flux) and

Jz(z, z′, t) ≡ A−1(z)
∫

A(z) Jz(ρ, z, z′, t)dρ the cross-section average. In Eq. 7 we accounted,

in the leading order of ∆z, for two possible sources of change in the value of the integral –

one due to ∂Jz(z, z′, t)/∂z and the other due to variability of the waveguide shape dA(z)/dz.

Lastly, the volume integration of remaining terms in Eq. 5 does not pose problems, reduc-

ing them to the cross-sectional averages, e.g.
∮

V G(r, z′, t)dr ' ∆z ×
∫

A(z)G(ρ, z, z
′, t)dρ ≡

G(z, z′, t) × [A(z)∆z].

Examining Eq. 7, we see that completion of our task of reducing the higher-

dimensional problem to 1D requires expression for the longitudinal flux Jz(z, z′, t). Cross-

sectional (surface) integration of the z-component of Eq. 4 yields

Jz(z, z′, t) ' −D0∂G(z, z′, t)/∂z, which upon substitution in Eqs. (7,5) yields

∂G(z, z′, t)
∂t

−
1

A(z)
∂

∂z

[
D0 A(z)

∂G(z, z′, t)
∂z

]
+

1
τa

G(z, z′, t) =
S0(t)
A(z)

δ(z − z′), (8)
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The above expression, together with similarly obtained boundary conditions

[z0∂G(z, z′, t)/∂z ∓ G(z, z′, t)]z=0,L = 0, represents the final result of this section.

We would like to finish this discussion by putting it our result in context of the

available literature. Particle diffusion in confined geometries is a common problem in

physical chemistry, see for example Ref. [22] for a review. In this problem, it is convenient

to define cross-section integrated (not averaged as above) quantity representing linear density

c(z, t) of e.g. a solute. The governing equation

∂c(z, t)
∂t

−
∂

∂z

[
D0 A(z)

∂

∂z
c(z, t)
A(z)

]
= 0, (9)

is known as Fick-Jacobs equation. It has been derived by Jacobs [39] heuristically based

on the particle conservation argument, Zwanzig [40] via reducing higher dimensional

Smoluchowski equation to 1D, and by others [41, 42]. We are not aware of reports of

derivation such as the one presented above, in particular, in context of wave diffusion where

there is no particle conservation constraint.

In context of particle diffusion, therewas a considerable effort to evaluate the validity

of the projection (reduction) to 1D via Eq. 9. It has been found [40–43] that even for rapidly

varying channel profiles with dW(z)/dz ∼ 1, a reliable solution can be obtained from a

modified Fick-Jacobs equation with D0 → D0 × (1 +W′2(z))−α, where α = 1/3,1/2 in 2D

and 3D respectively. Hence, we surmise that similar substitution should extend the validity

of Eq. 8 as well.

Having completed the derivation of Eq. (8), in the remainder of this work we will

consider its static version (i.e. without the time-derivative term) to compute the long-range

spatial correlation of intensity.
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3. INTENSITY CORRELATION IN DISOREDEREDWAVEGUIDES WITH
VARYING CROSS SECTION

Intensity correlations originate due to interference in wave scattering and propa-

gation, it was first considered for electronic waves in mesoscopic physics [9, 14, 44, 45].

The electromagnetic waves, such as visible light or microwaves, offer a convenient test bed

for study of correlation with numerous practical applications [3, 11, 16, 17, 46, 47]. For

incident plane wave, the spatial correlation is defined as

C(r1,r2) =
〈δI(r1)δI(r2)〉

〈I(r1)〉〈I(r2)〉
, (10)

where 〈...〉 denotes the ensemble average and δI(r) = I(r) − 〈I(r)〉 is the deviation intensity

from its average at r. This arrangement implies adding contributions from all trajectories

originating from the front surface, i.e. at all possible R1,2 in Figure 1.

Three universal, i.e. independent of the microscopical details of the disorder, con-

tributions to C(r1,r2) have been identified [3, 9, 48]: short-range C1 decribing speckle

pattern, long-range C2 leading to e.g. fluctuations of transmission, and an infinite range

C3 underlying the universal conductance fluctuation [11, 49, 50]. Diagrammatically, inter-

ferences between waves scattered along independent paths give rise to C1, one crossing of

paths shown in Figure 1 generates C2 , and two crossings cause C3. The spatial correlation

term C1(r1,r2) has unit magnitude but decays quickly when |r1 − r2 | exceeds the speckle

size. C2(r1,r2) ∝ 1/g but decays much more slowly, while C3(r1,r2) ∝ 1/g2 has a con-

stant contribution. g is the dimensionless conductance, which is large in diffusive systems

considered here.

Serendipitously, averaging over cross-section of the waveguide such as that per-

formed by the projection technique in the previous section, allows one to obtain the long-

range correlation in the leading order of 1/g [19, 20]. Indeed, averaging over cross-section

reduces the contribution of the short-rangeC1 correlation by the factor 1/N (N is the number
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of waveguide modes), whereas the contribution of C2 ∝ 1/g remains unaffected because it

is present at any value of the transverse coordinate. The ratio between their magnitudes is

g/N ∝ `/L � 1 for a strongly scattering system, here ` is transport mean free path and L is

the length of the waveguide. Meanwhile, the contribution of the C3 term remains smaller,

at the level of 1/g2. Therefore, we conclude that

C2(z1, z2) '
〈δI(z1)δI(z2)〉

〈I(z1)〉〈I(z2)〉
, (11)

As seen above, the projection technique is perfectly suited for calculation of the long-

range correlation, which we undertake next. We begin with an expression first obtained

with the Langevin approach [15, 51]:

C2(r1,r2) = ad D2
0

∫
V
〈I(r)〉2∇rG(r1,r) · ∇rG(r2,r)dr

〈I(r1)〉〈I(r2)〉
. (12)

Here, G(r,r′) is the Green function of the static version of the diffusion equation (1) with

a constant source S0(t) ≡ 1. a2 = 4/k` and a3 = 6π/k2` is the dimensionality-dependent

coefficient. Eq. (12) has a transparent diagrammatic interpretation. In this expression,

〈I(r)〉2 represents two diffusive paths connecting the input surface of the waveguide to a

crossing point at r; Green functions G(r1,2,r) describe the diffuse propagation from r to the

detectors at r1,2; and the gradient operators together with the constant prefactors originate

from the interference (i.e. Hikami box) at r. Finally, volume integration over r signifies

averaging over all possible locations of interference.

Cross-sectional average of 〈I(r1,2)〉 terms in the denominator of Eq. (12) does

not present challenges due to their weak dependence on the transverse coordinates, i.e.

〈I(r)〉 ' 〈I(z)〉. To proceed with the analytical calculation of Eq. (12), we average the

nominator over the transverse components of r1 and r2. Although ∇rG(z1,r) · ∇rG(z2,r)

includes derivatives of the Green functions with respect to both longitudinal and transverse
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coordinates, the former make the dominant contribution. Indeed, because the arguments

of a Green function can be swapped, ∇rG(z1,2,r) can be viewed as ∇rG(r, z1,2). In this

form, G(r, z) represents intensity at point r with a uniform planar source at the cross-section

z. Such a source should not produce large transverse variation of intensity as long as the

cross-section is not changing too rapidly, i.e. for a sufficiently small dW(z)/dz. Hence, we

obtain

C2(z1, z2) ' ad D2
0

∫ L

0

∂G(z1, z)
∂z

∂G(z2, z)
∂z

〈I(z)〉2 A(z)dz

〈I(z1)〉〈I(z2)〉
, (13)

where G(z, z′) is the solution of the static version of the diffusion equation (with a constant

source S0(t) ≡ 1) we obtained previously using projection technique, c.f. Eq. (8). 〈I(z)〉 is

the solution of the same equation with S0(t) ≡ 0, and a constant value at z = 0, as will be

discussed in the next section. Eq. (13) together with the static version of Eq. (8) have rather

broad applicability, for example, they can incorporate the effects of absorption or gain on

the correlations [20, 52].

4. LONG-RANGE CORRELATIONS IN LOSSLESS DISORDERED
WAVEGUIDES

In this section we demonstrate that, without absorption, the long-range intensity

correlation can be obtained in a closed form for an arbitrary slow-varying (dW(z)/dz < 1)

waveguide geometry. To that end, we introduce a change of spatial variable

ζ(z) =

z0
A(0)

+

∫ z

0

dz̃
A(z̃)

z0
A(0)

+

∫ L

0

dz̃
A(z̃)

+
z0

A(L)

. (14)

In terms of this variable, the defining equation for Green function takes a simple form

−
∂2G(ζ, ζ ′)

∂ζ2 = δ(ζ − ζ ′) (15)
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with constant factors absorbed in the definition of the Green function to make it dimension-

less. Furthermore, extending the region applicability of ζ from ζ0 ≤ ζ ≤ ζL to 0 ≤ ζ ≤ 1

allows to also simplify boundary conditions to G(ζ, ζ ′)|ζ=0,1 = 0. Here ζ0 and ζL are defined

by inserting z = 0 and L in Eq. 14 respectively. Eq. 13 for the long-range correlation takes

form

C2(ζ1, ζ2) ' ãd

∫ ζL

ζ0

∂G(ζ1, ζ)

∂ζ

∂G(ζ2, ζ)

∂ζ
〈I(ζ)〉2dζ

〈I(ζ1)〉〈I(ζ2)〉
, (16)

where 〈I(ζ)〉 satisfies homogeneous version of Eq. 15 with 〈I(ζ0)〉 = I0 and 〈I(1)〉 = 0

boundary conditions; and ãd = ad × [z0/A(0) +
∫ L

0 A−1(z)dz + z0/A(L)].

The final expression for the long-range correlation can now be obtained substituting

the solution of Eq. 15

G(ζ, ζ ′) =

ζ(1 − ζ ′), ζ < ζ ′

ζ ′(1 − ζ), ζ > ζ ′
(17)

and the corresponding intensity as 〈I(ζ)〉 = I0(1 − ζ)/(1 − ζ0) into Eq. 16. We obtain

C2(ζ1, ζ2) =
2

3g

[
ζ1(2 − ζ1) +

ζ1
1 − ζ1

(1 − ζ2)
2
]
, (18)

where ζ1,2 ≡ ζ(z1,2) as defined by Eq. 14, and the dimensionless conductance is introduced

via g = 2/ãd . When ζ1 = ζ2, Eq. 18 yields

C2(ζ, ζ) =
2ζ
g

(
1 −

2ζ
3

)
. (19)

This quantity corresponds to the leading non-Rayleigh contribution to the fluctuation of

intensity and originates in non-locality ofwave transport. Both Eqs. (18,19) reduce to known

expressions for waveguides with constant cross-section, in this case ζ(z) = (z+z0)/(L+2z0),

which can be found from Eq. 14.
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We would like to point out several general properties of Eqs. (18,19) that are

common to all waveguides irrespective of their shape. For the sake of simplicity, we

will assume that small corrections z0/L ∼ `/L � 1 can be neglected. We find that

g = (2/ad)/[
∫ L

0 A−1(z)dz]; C2(L, L) = 2/(3g); the maximum value of the correlation

max[C2(ζ1, ζ2)] = C2(ζmax, ζmax) = (9/8) × 2/(3g), where ζmax = 3/4. C2(ζ, ζ) is a

monotonically increasing function of ζ between 0 and ζmax and a monotonically decreasing

between ζmax and 1. Furthermore, C2(ζ, ζ) ≤ 2/(3g) for 0 ≤ ζ ≤ (1/2) and 2/(3g) ≤

C2(ζ, ζ) ≤ 3/(4g) in the interval for (1/2) ≤ ζ ≤ 1. Remarkably, C2(ζ, ζ) varies by less

than 12% in the second interval. The long-range correlation between the output intensity

at ζ2 = 1 and that in the interior of the sample is C2(ζ,1) = 2/(3g)ζ(2 − ζ). It decays

monotonically with distance from the output surface, however, the rate of the decay is

determined by the ζ(z), which is set by the shape of the waveguide. In a waveguide with

constant cross-section, C2(z, L) ' 2/(3g)z/L[2 − z/L] in agreement with Ref. [51].
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Figure 2. Solid line in the main plot depicts C2(z, z) in a three-dimensional expanding
disordered waveguide shown in the inset, see text for system parameters. The dashed line
depicts the same quantity for thewaveguide of constant width. The inset plots the long-range
correlation C2(z, L) for the two cases in the main plot.

Eq. 18 also predicts correlation between intensities at z = 0, L surfaces. In this case,

z0 terms cannot be neglected as they make the leading contribution to ζ0 and, therefore, have

to be retained. Evaluation of C2(ζ0, ζL) gives 2/(3N0) in both two and three dimensions,
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where N0 is the number of waveguide modes at the input cross-section z = 0. Correlation

between the transmitted and reflected intensities has been studied theoretically [53, 54] and

experimentally [55]. It was found to be negatively correlated at the level of −2/(3N0).

Because an increase of intensity at the front surface (positive correlation) corresponds to a

reduction (negative correlation) of the reflected intensity, our results are in agreement with

Ref. [54]. In addition, the maximum value of C2(zmax, zmax) = (9/8) × 2/(3g), independent

of the extrapolation length z0. The leading term for C2(0,0) ' 1/N0 corresponds to

addition of N0 uncorrelated modes. In contrast, at output surface, the leading correction is

C2(L, L) ' 2/(3g) + 1/(3NL), where NL is the number of modes at the output.

Figure 2 illustrates the dependence of the correlation on the shape of the waveguide

by plotting C2(z, z) and C2(z, L) for an expanding disordered waveguide, in which the

diameter W(z) is a linear function of z. We used the following parameters L = 100`, k` =

10, A(0) = 100`2, A(L) = 1000`2, z0 = (2/3)`, that correspond to g ' 33. For comparison,

we also plot with dash line the same quantities for the waveguide of constant width equal

to A = 550`2, in this case g = 58. We can clearly see that the shape of the waveguide can

have a significant effect on the correlation. Specifically, the reduced width at the front end

led to a steeper increase of both C2(z, z) and C2(z, L) for small z. This dependence can be

deduced e.g from Eq. 19 as dC2(z, z)/dz ∝ ζ ′(z) ∝ A−1(z) for ζ � 1. Therefore, narrower

opening of the linearly expanding waveguide leads to a steeper increase of correlation in the

first half of the sample in Figure 2. Since the maximum value correlations is bounded from

above by the value 3/4g, a rapid increase at the beginning of the waveguide, inadvertently

leads to to a weaker dependence towards z = L. In case of C2(z, z), as was discussed above,

once the maximum value of 3/4g is reached at zmax , in the remainder of the system the

function varies in only a narrow range 2/3g ≤ C2(z, z) ≤ 3/4g, see Figure 2.
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To conclude this section, we note that since ζ(z) is determined by A(z) via Eq. 14,

one can exploit the freedom of choice the shape of the waveguide in order to predictably

manipulate the correlation, within the constraints imposed by the general properties above.

We tackle this task below.

5. INVERSE DESIGN OF THE LONG-RANGE CORRELATION

The compact-form analytical expression given in Eq. 18 establishes a relation be-

tween shape of the diffusive waveguide and correlation C2(z1, z2) of the cross-section aver-

aged intensity, thus enabling the predictive (inverse) design. Two comments are in order.

First, C2(z1, z2) is the function of two variable whereas A(z) is of one, so the task is not well

defined. To circumvent this problem, we going to consider two possiblemappings: one from

the diagonal (fluctuation) C2(z, z), and the other from the off-diagonal (correlation) C2(z, L)

functions. The second comment concerns the constrains imposed on possible C2(z, z) and

C2(z, L). Indeed, as discussed in previous sections, see also Figure 2, neither of the two

mappings allow an arbitrary input functions. For example, neglecting z0, C2(z, z) has to

be monotonically increasing from 0 to a maximum and then monotonically decreasing to

8/9 of the maximum value at the output. Likewise, C2(z, L) has to be a monotonically

increasing function of z. Below, we obtain such constrained mappings.

Solving Eq. 19 for ζ and then inverting ζ(z) with the help of Eq. 14 we obtain

A(z) = ad

√
1 −

4g
3

C2(z, z)����dC2(z, z)
dz

���� . (20)

The structure of this relationship is intimately related to the constraints we imposed on

C2(z, z). Indeed, the 4g/3 factor ensures that the expression under the square root remains

positive or zero. The latter case corresponds to the maximum of the function at zmax , where
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both the nominator and denominator of Eq. 20 turn to zero simultaneously. To prevent A(z)

from turning to zero or having a singularity, we need to ensure that C2(z, z) has a parabolic

behavior in the vicinity of its maximum.

Following steps similar to those used to arrive at Eq. 20, we find

A(z) =
2ad

3

√
1 −

C2(z, L)
C2(L, L)����dC2(z, L)
dz

���� . (21)

Unlike Eq. 20, where the maximum value of the input function was related to conductance

using a simple relationship, the maximum value of C2(z, L) at z = L is only approximately

equal to 2/(3g) with additional (smaller) corrections due to the finite extrapolation length

z0. Hence, normalization by C2(L, L) guarantees that the expression under the square root

does not fall below zero. Similar to Eq. 20, the vanishing of dC2(z, L)/dz in Eq. 21 at z = L

coincides with a zero of the nominator, preventing a singularity.

Equations (20,21) open a possibility of inverse design. As an example, we design

a waveguide where the diagonal term C2(z, z) is a (nearly) piece-wise linear function.

As discussed in previous sections, a choice of model correlations is constrained by their

properties. Therefore, we set out to find a functional form of A(z), such that

C2(z, z) =


z
zc
×

3
4g
, z < zc

L − z
L − zc

×
1

12g
+

2
3g
, z > zc

(22)

where we neglected by the small corrections at z = 0, L due to the extrapolation effect. This

function has chosen to satisfy the following constraints: (i) it monotonically increases in

0 < z < zc; (ii) it monotonically decreases in zc < z < L; (iii) it maximum value is 3/4g

at zc; and (iv) its value is 2/3g at z = L. However, the model function does not have a

vanishing derivative at its maximum at zc. This should result in an artifact to be corrected
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at a later step. Substitution of Eq. 22 into Eq. 20 gives

A(z) =
4gad

3


√
(zc − z)zc, z < zc

3
√
(z − zc)(L − zc), z > zc

(23)

We observe that Eq. 23 predicts a zero cross-section at zc. To avoid this artifact, related to

a cusp in the input function in Eq. 22, we add a condition that A(z) does not fall below a

certain minimum value of Amin.
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Figure 3. Thick solid line in the main plot depicts C2(z, z) in a two-dimensional expanding
disordered waveguide defined by Eq. 23. Thin line is the result of numerical simulation.
The inset plots the shape of the considered waveguide.

To test the above prediction we substitute Eq. 23 into Eqs. (14,18) to compute the

long-range correlation in a two-dimensional disordered waveguide with parameters quoted

below. Thick solid line in Figure 3 shows that the C2(z, z) is indeed close to a piece-wise

linear function. The deviations from the input Eq. 22 can be seen at z ∼ 0 and ∼ zc.

The former is due to the fact that the model equation did not explicitly account for the

extrapolation length z0. Replacement of a cusp-behavior at zc with a smooth parabolic

maximum is related to the structure of Eq. 20 as well as our our insistence on A(z) to be

always greater than Amin. One can see from Figure 3, however, that this did not cause

significant deviation from linearity away from the maximum.
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To further verify the predictions of our inverse-design procedure, we performed

numerical simulations. We consider a two-dimensional waveguide where A(z) = W(z),

and use the following parameters: N0 = 125, L/` ' 30, W(0)/` ' 5, Wmin/W(0) = 1/3,

zc = L/3 and g ' 7. The simulation are performed using method described in detail in our

previous works [23, 32, 56]. Cross-section averaged intensity was obtained numerically by

solving wave equation and then was used to compute C(z1, z2) using Eq. 11. The angular

brackets represent average over 1000 disorder realizations. The transport mean free path

was obtained by computing the dimensionless conductance for a rectangular waveguide

and then using relationship g = (π/2)N`/(L + 2z0), where N is the number of waveguide

modes. This allowed us to express all length scales in terms of `, with the numerical values

quoted above.

Equation (11) holds only approximately, because averaging over cross-section of

the waveguide does not fully remove other contributions. In order to compare the nu-

merical simulation with our theoretical prediction, which only accounts for C2 contri-

bution, we removed the following two residuals. The first is related to C1 contribu-

tion and can be evaluated by noticing that cross-sectional averaging of intensities in

W−2(z)
∬
〈δI(z1, y)δI(z2, y + ∆y)〉dyd∆y has a small but z-dependent contribution, which

can be computed as

C1(z, z) '
1

W(z)

∫ W(z)

0
C1(∆y)d∆y. (24)

Away from boundaries z ∼ 0, L, the short-range correlation [18, 44]C1(∆y) can be evaluated

in two dimensions in terms of Bessel function [57] as J2
0 (k∆y). The second residual related

to another type of correlation, C0 [58], which is non-universal. This contribution has been

related to the variance of the local density of states [59], [60], which we compute directly

in our numerical simulations. The smallness of the two contributions is determined by

1/(kW) and 1/(k`) parameters respectively. Therefore, in larger systems and, particularly

in three-dimensional systems, these residuals are expected to be negligible.
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Thin line in Figure 3 shows the results of the numerically computed C2(z, z) after

subtracting the two residual contributions described above. As predicted by Eq. 22, C2(z, z)

exhibits nearly linear dependence in both 0 < z < zc and zc < z < L intervals. We attribute

deviation in the z ∼ 0 region to the remaining ballistic intensity of the incident waves.

6. CONCLUSIONS

In this work, we first present a method to compute the Green function of the diffusion

equation in two- and three-dimensional disordered waveguides with varying shape. This

is accomplished by reducing the dimensionality of the problem to 1D. Because geometry

dependence of the long-range intensity correlations arises from that in Green functions,

the complexity of the problem of determining the correlations is greatly reduced. Further-

more, in case of lossless media, we are able to obtain close-form analytical expression for

both Green function and the long-range correlation in arbitrary geometry. This relationship

allows us to design specific waveguide shapes with unusual pre-determined non-local corre-

lations, which we confirm with the direct numerical simulations. We refer to this approach

as an inverse design. It is worth noting that the possibility of inversion of the non-local

long-range correlations via rather simple Eqs. (20,21) is rather surprising.

Experimental measurement of the long-range correlation in our previous work [20]

in photonic disordered waveguides already showed shape dependence. The results agreed

with theoretical predictions based on Eq. 12. In waveguides other than rectangular, we had

to resort to numerical calculation of the full two-dimensional Green function. Although

samples in Ref. [20] exhibited absorption and our analytical results for passive systems in

the last section do not apply, Eq. 13 does. Therefore, results of this work offer a much

simpler approach based on the projection technique.
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Our technique of studying geometry dependence of intensity correlations can be

extended to studying other interference phenomena such as localization-induced position-

dependent diffusion, transmission eigenchannels etc, see e.g. Refs. [8, 23, 61]. Our results

are applicable to electronic, acoustic, electromagnetic and other types of waves and can

incorporate the effect of absorption or optical gain.
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ABSTRACT

We introduce a class of critical states which are embedded in the continuum (CSC)

of one-dimensional optical waveguide array with one non-Hermitian defect. These states

are at the verge of being fractal and have real propagation constant. They emerge at a phase

transition which is driven by the imaginary refractive index of the defect waveguide and it is

accompanied by a mode segregation which reveals analogies with the Dicke super-radiance.

Below this point the states are extended while above they evolve to exponentially localized

modes. An addition of a background gain or loss can turn these localized states to bound

states in the continuum.

1. INTRODUCTION

A widespread preconception in quantum mechanics is that a finite potential well

can support stationary solutions that generally fall into one of the following two categories:

(a) Bound states that are square integrable and correspond to discrete eigenvalues that are

below awell-defined continuum threshold; and (b) Extended states that are not normalizable
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and they are associated with energies that are distributed continuously above the continuum

threshold [1]. This generic picture has further implications. For example it was used by

Mott [2] in order to establish the existence of sharp mobility edges between localized and

extended wavefunctions in disordered systems. Specifically it was argued that a degeneracy

between a localized and an extended state would be fragile to any small perturbation which

can convert the former into the latter. Nevertheless, von Neumann and Wigner succeeded

to produce a counterintuitive example of a stationary solution which is square integrable

and its energy lies above the continuum threshold [3]. These, so-called, Bound States in the

Continuum (BIC) can provide a pathway to confine various forms of waves like light [4–7],

acoustic, water waves [8, 9], and quantum [10] waves as much as to manipulate nonlinear

phenomena in photonic devices for applications to biosensing and impurity detection [11].

Interestingly, these ideas have also migrated to the non-linear domain [12, 13].

Although most of the studies on the formation of BIC states have been limited

to Hermitian systems there are, nevertheless, some investigations that address the same

question in the framework of non-Hermitian wave mechanics [14]. Along the same lines

the investigation of defect modes in the framework of PT -symmetric optics [15–18] has

recently attracted some attention. In many occasions, however, the resulting BIC states are

associated with very complex potentials which are experimentally challenging.

In this paper we introduce a previously unnoticed class of critical states which are

embedded in the continuum (CSC). We demonstrate their existence using a simple set-up

consisting of N coupled optical waveguides with one non-Hermitian (with loss or gain)

defective waveguide in the middle. Similarly to BIC they have real propagation constant;

albeit their envelop resembles a fractal structure. Namely their inverse participation number

I2 scales anomalously with the size of the system N as

I2 ≡

∑
n |φn |

4

(
∑

n |φn |
2)2
∼

log(N + 1)
(N + 1)

(1)
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Above φn is the wavefunction amplitude at the n−th waveguide. The CSC emerges in

the middle of the band spectrum when the imaginary index of refraction of the de-

fective waveguide ε (I)0 becomes |ε (I)0 | = 2V where V is the coupling constant between

nearby waveguides. Below this value all modes are extended while in the opposite

limit the CSC becomes exponentially localized with an inverse localization length ξ−1 =

ln[2V/(|ε (I)0 | −

√
(ε
(I)
0 )

2 − 4V2)]. The localization-delocalization transition is accompanied

with a mode re-organization in the complex frequency plane which reveals many similarities

with the Dicke super/sub radiance transition [19]. We can turn these exponentially localized

modes to BIC modes by adding a uniform loss (for gain defect) or gain (for lossy defect) in

the array, thus realizing BIC states in a simple non-Hermitian set-up.

2. MODEL

We consider a one-dimensional array of N = 2M + 1 weakly coupled single-mode

optical waveguides. The light propagation along the z-axis is described by the standard

coupled mode equations [20]

iλ
¯∂ψn(z)
∂z

+ V (ψn+1(z) + ψn−1(z)) + εnψn(z) = 0 (2)

where n = −M, · · · ,M is the waveguide number, ψn(z) is the amplitude of the optical field

envelope at distance z in the n-th waveguide, V is the coupling constant between nearby

waveguides and λ bar ≡ λ/2π where λ is the optical wavelength in vacuum. The refractive

index εn satisfies the relation εn = ε
(R)
0 + iε (I)n δn,0 where we have assumed that a defect in the

imaginary part of the dielectric constant is placed in the middle of the array at waveguide

n = 0. Below, without loss of generality, we will set ε (R)0 = 0 for all waveguides. Our results

apply for both gain ε (I)0 < 0 and lossy ε (I)0 > 0 defects.
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Substitution in Eq. (2) of the form ψn(z) = φ
(k)
n exp(−iβ(k)z/λ)̄, where the prop-

agation constant β(k) can be complex, leads to the Floquet-Bloch (FB) [21] eigenvalue

problem

β(k)φ
(k)
n = −V(φ(k)n+1 + φ

(k)
n−1) − εnφ

(k)
n ; k = 1, · · · ,N (3)

We want to investigate the changes in the structure of the FB modes and the parametric

evolution of β(k) as the imaginary part of the optical potential ε (I)0 increases.

Before we begin the analysis of the model, we would like to comment on the

possibility of realizing such system in an experiment. First, due to the Kramers-Kronig

relations the real and imaginary part of the dielectric constant are not independent of each

other; nevertheless it is possible to have the same ε (R)0 for the defect waveguide as well by

compensating for the changes in the ε (R)0 at n = 0 by adjusting, for example, the width of

this waveguide. Secondly, optical losses can be incorporated experimentally by depositing

a thin film of absorbing material on top of the waveguide [22], or by introducing scattering

loss in the waveguides [23]. Optical amplification can be introduced by stimulated emission

in gain material or parametric conversion in nonlinear material [24].

3. THRESHOLD BEHAVIOR

We begin by analyzing the parametric evolution of β(k)’s as a function of the

non-Hermiticity parameter ε (I)0 . We decompose the Hamiltonian Hnm of Eq. (3) into a

Hermitian part (H0)nm = −Vδn,m+1 −Vδn,m−1 and a non-Hermitian part Γnm = −iε (I)n δn,0δn,m

i.e. H = H0 + Γ. For ε (I)0 = 0 the eigenvalues and eigenvectors of H = H0 are β(k) =

−2V cos(kπ/(N + 1)) and φ(k)n =
√

2/(N + 1) sin [k (nπ/(N + 1) + π/2)]. In the limit N →

∞ the spectrum is continuous creating a band β ∈ [−2V,2V] that supports radiating states.

As ε (I)0 increases from zero the propagation constants move into the complex plane.

Using, for small values of ε (I)0 , first order perturbation theory we get that β(k) ≈ β(k)0 + Γk,k

where Γk,k ≈ −iε (I)0 /(N + 1). When the matrix elements of the non-Hermitian part of



88

H become comparable with the mean level spacing ∆ = 2V/N of the eigenvalues of the

Hermitian part H0, the perturbation theory breaks down. This happens when |ε (I)cr |/(N+1) ∼

∆ which leads to the estimation |ε (I)cr | ∼ 2V . In the opposite limit of large |ε (I)0 |, H0 can be

treated as a perturbation to Γ. Due to its specific form, the non-Hermitian matrix Γ has

only one nonzero eigenvalue and thus, in the large |ε (I)0 | limit, there is only one complex

propagation constant corresponding to Re
[
β
(k=(N+1)/2)
0

]
= 0, while all other modes will

have zero imaginary component (to first order). The above considerations allow us to

conclude that for |ε (I)0 | � 2V a segregation of propagation constants in the complex plane

occurs: Below this point all β’s get an imaginary part which increases in magnitude as

∼ −ε
(I)
0 /N while after that only one of them accumulates almost the whole imaginary

part ∼ −ε (I)0 (independent of N) and the remaining N − 1 approaches back to the real

axis as ∼ −(2V)2/(Nε (I)0 ). This segregation of propagating constants is the analogue of

quantum optics Dicke super-radiance transition [25] which was observed also in other

frameworks [14, 26–30]. These predictions are confirmed by our numerical data (see

Figure 1).

4. THERMODYNAMIC LIMIT

In this section we investigate the structure of the FB modes of the system Eq. (3) in

the thermodynamic limit (N→∞) as ε (I)0 crosses the threshold ε (I)cr . In the case of real defect,

an infinitesimal value of it will lead to the creation of a localized mode (with a real-valued

βdef outside of the interval [−2V,2V]) [31]. We want to find out if the same scenario is

applicable in the case of imaginary defect. To this end we introduce the ansatz:

φn =


A(+) exp(−nΛ) for n ≥ 0

A(−) exp(nΛ) for n ≤ 0
(4)
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Figure 1. Parametric evolution of the propagation constants β(k) of an array of N = 49
coupled waveguides with one dissipative (ε (I)0 > 0) defect in the middle, as a function
of ε (I)0 . The phase transition occurs at ε (I)0 = ε

(I)
cr ≡ +2V where the defect mode profile

(shown as red dots) switches from non-exponential to exponential decay. Solid red line
shows the asymptotic analytical result Eq. (5). Similar behavior (not shown here) but with
the β’s in the upper complex plane can be observed for gain ε (I)0 < 0 where ε (I)cr = −2V .
The green lines indicate modes with real propagation constants which are solutions of the
first Eq. (11). In the case of even number N they also acquire an imaginary part in the
propagation constant, similar to the modes shown in blue.

Continuity requirement of the FB mode at n = 0 leads to A(+) = A(−). Furthermore,

substituting the above ansatz in Eq. (3) for n = 0 and n = 1 and after some straightforward

algebra we get that

βdef = −s
√

4V2 − (ε
(I)
0 )

2; Λ = − ln

(
−βdef − iε (I)0

2V

)
, (5)

where s ≡ ε (I)0 /|ε
(I)
0 | denotes the sign of the defect. From Eq. (5) we find that for |ε (I)0 | <

|ε
(I)
cr | ≡ 2V the corresponding propagation constant is real while the decay rate is Λ =

−i arctan
(
ε
(I)
0 /βdef

)
i.e. a simple phase. In other words the FB modes are extended. In

the opposite limit of |ε (I)0 | > |ε
(I)
cr | the propagation constant becomes complex and the
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corresponding Λ takes the form

Λ = ln
©­­«

2V���ε (I)0

��� −√
(ε
(I)
0 )

2 − 4V2

ª®®¬ + i s
π

2
(6)

The corresponding inverse localization length is then defined as ξ−1 ≡ Re(Λ) indicating

the existence of exponential localization. Therefore we find that a non-Hermitian defect -

in contrast to a Hermitian one (see for example [31])- induces a localization-delocalization

transition at the phase transition points ε (I)cr = s × 2V . We emphasize again that this phase

transition and the creation of a localized mode occur for both signs of the non-Hermitian

defect and can be induced for both lossy (ε (I)0 > 0) and gain (ε (I)0 < 0) defect.

In Figure 2 we report the FB defect mode of our system Eq. (3) for three cases

(a) 0 < ε0 < 2V , (b) ε0 = 2V and (c) ε0 > 2V , and different system sizes. Note that

although in the latter case the mode is localized in space, it is not qualified as a BIC since

the corresponding propagation constant βdef (see Eq. (5)) is imaginary and therefore the

mode is non-stationary. Adding, however, a uniform gain (for lossy defect) βdef or loss (for

gain defect) −βdef to the array can turn this state to a BIC with zero imaginary propagation

constant. The latter case is experimentally more tractable since adding a global loss will

lead to a decay of all other modes while the localized defect mode would be stable having

a constant amplitude.

5. PROPERTIES OF THE CRITICAL STATE

The existence of the delocalization-localization phase transition posses intriguing

questions, one of which is the nature of the FB mode at the transition point associated with

ε
(I)
cr . In particular, it is known from the Anderson localization theory, that the eigenfunctions

at the metal-to-insulator phase transition are multifractals i.e. display strong fluctuations

on all length scales [32–41]. Their structure is quantified by analyzing the dependence of
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Figure 2. FB defect mode for various system sizes N = 2M + 1. Left panels report the left
part (n < 0) of these modes (the right part n > 0 is the same) by employing the scaling
Mφ(x = n/M)while the right panels report the right part n > 0 of these modes without any
scaling. In the former representation an extended state is invariant under increase of the size
of the system while in the latter, the scale invariance is demonstrated for localized modes.
Three defect values of ε (I)0 has been used: (upper) 0 < ε

(I)
0 = 1.9V < 2V where the mode is

delocalized; (middle) ε (I)0 = 2V where the mode is critical; (lower) ε (I)0 = 2.1V > 2V where
the mode is exponentially localized.

their moments Ip with the system size N:

Ip =

∑
n |ψn |

2p

(
∑

n |ψn |
2)2
∝ N−(p−1)Dp . (7)

Above the multifractal dimensions Dp , 0 are different from the dimensionality of the

embedded space d. Among all moments, the so-called inverse participation number (IPN)

I2 plays the most prominent role. It can be shown that it is roughly equal to the inverse

number of non-zero eigenfunction components, and therefore it is awidely acceptedmeasure

to characterize the extension of a state. We will concentrate our analysis on I2 of the FB

mode at the phase transition point ε (I)cr .
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We assume that the eigenmodes of Eq. (3) take the form:

φ
(k)
n = A(∓)eiq(k)n + B(∓)e−iq(k)n(n < 0/n > 0) (8)

where q(k) = q(k)r + iq(k)i , while the associated propagation constants are written in the

form β(k) ≡ −2V cos(q(k)) = β(k)r + iβ(k)i . Imposing hard wall boundary conditions φM+1 =

φ−M−1 = 0 to the solutions Eq. (8) leads to:

B(∓) = −A(∓)e∓2iq(M+1) (9)

The requirement for continuity of the wavefunction at n = 0 lead us to the relation

A(+) + B(+) = A(−) + B(−) (10)

Substitution of Eqs. (9,10) back into Eq. (3) for n = 0, lead to the transcendental equations

for q:

sin[(M + 1)q] = 0; or cot[(M + 1)q] sin(q) = i
ε
(I)
0

2V
(11)

We are interested in the structure of the FB mode in the middle of the band corresponding

to Re(β) = 0. For simplicity of the calculations we assume below that M +1 is odd and also

remind that the total size of the system is N = 2M +1. Imposing the condition Re(β) = 0 in

the second term of the Eq. (11) we get that qr = −sπ/2 while the imaginary part qi satisfies

the equation

s tanh
[
(M + 1)qi

]
cosh(qi) =

ε
(I)
0

2V
(12)

Wewill look for a stationary solution at the phase transition point ε (I)0 = s 2V with βi → 0 (or

equivalently qi → 0) in N →∞ limit that also satisfies qi × (M +1) ∼ qiN →∞ condition.

In Eq. (12) we now perform small qi expansion in cosh(qi) ≈ 1 + q2
i /2 and large (M + 1)qi

expansion in tanh[(M+1)qi] =
exp((M+1)qi)−exp(−(M+1)qi)
exp((M+1)qi)+exp(−(M+1)qi) ≈ 1−2 exp(−(N+1)qi) ≈ 1−q2

i /2.
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In the large M-limit the solution of the last transcendental equation is

qi ∼ 2
ln(N + 1)

N + 1
(13)

Substituting back to the expression for the propagation constantwe get β = −2V cos(−sπ/2+

iqi) ≈ −s 2V iqi which in the large N(M)-limit results in β = 0. Finally, substituting

Eqs. (9,13) back to Eq. (8) we get that

φn ∝ exp [i(−sπ/2 + iqi)|n|] =
(−s i)|n|

(N + 1)2|n|/(N+1) (14)

The FB state described by Eq. (14) is not exponentially localized neither it is extended. It

rather falls to an exotic family of critical states and it can quantify better via the IPN I2.

Using Eq. (7) for p = 2 it is easy to show that the IPN of the FB mode of Eq. (14) is given

by Eq. (1). Furthermore, this scaling relation is not consistent with the standard power law

Eq. (7) characterizing self-similar (fractal) states. Rather we have an unusual situation of

a critical state that it is at the verge of being fractal. To our knowledge such anomalous

scaling has been discussed only in completely different context of Hermitian randommatrix

models [42] or modulated (graded)systems [43, 44] and were never found to be present in

any physical system. Thus our simple set-up constitutes the first paradigmatic system where

these CSC can be observed. In Figure 3 we report the scaling of I2 versus the system size

at the phase transition point ε (I)cr = 2V as found by solving Eq. (3) numerically. We see that

the data follow nicely the prediction of Eq. (1). We conclude this section by noting that

for odd N considered above, some of the FB modes can have (due to symmetry) a nodal

point at the center of the array where the non-Hermitian defect is placed, see green symbols

in Figure 1. Therefore they do not overlap with the defect and thus have real propagation

constants. The latter are solutions of the first Eq. (11). In the case of even N , all modes

of the system are calculated by an equation similar to the second Eq. (11) and thus they all

have imaginary propagation constant. This is due to the fact that they have an appreciable
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Figure 3. Scaling analysis of I2 (shown as symbols) of a CSC state versus the system size
N . Dot-dashed line corresponds to N−1 dependence. Dashed line is prediction of Eq. (1)
which contains a logarithmic correction. In the inset we plot the same data in a different
fashion i.e. lnI2 + ln(N + 1) versus ln ln(N + 1). Straight line with a unit slope confirms
the existence of the logarithmic dependence as indicated by Eq. (1).

component at the middle of the array where the non-Hermitian defect is placed. The rest of

the analysis associated with the CSC remains qualitatively the same. We also repeated our

calculation for the periodic boundary conditions to confirm that the scaling properties the

critical state remain unchanged in the N →∞ limit.

6. PERIODIC PERTURBATION

In this section we demonstrate that the critical nature of the defect state is not a

consequence of the degenerate band-edge [45] being present in the case of the tight-binding

system of Eq. (3). This can be achieved by introducing an on-site potential ε (R)n = ε
(R)
0 (−1)n

which removes the degeneracy at β = 0. Therefore, the new tight-binding equation is:

β(k)φ
(k)
n = −V(φ(k)n+1 + φ

(k)
n−1) − (ε

(R)
0 (−1)n + iε (I)n δn0)φ

(k)
n (15)

We propose the following ansatz for odd/even (denoted by superscript o/e) waveguide

numbers:
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φ
(k)(o/e)
n = A(−)(o/e)eiq(k)n + B(−)(o/e)e−iq(k)n(n < 0)

φ
(k)(o/e)
n = A(+)(o/e)eiq(k)n + B(+)(o/e)e−iq(k)n(n > 0) (16)

In the absence of imaginary defects we get the following dispersion relation:

β(k) = (−1)b
√
(ε
(R)
0 )

2 + 4V2 cos2 q(k), (17)

where b is the band index. b = 1 for Re[β] < 0 and b = 2 for Re[β] > 0. Therefore, the

degenerate energy at zero is shifted into the positive or negative branch.

In the presence of defect, and after taking into account the hard wall boundary

conditions (φ(k)(o)M+1 = φ
(k)(o)
−M−1 = 0) and continuity at n=0, we get two discrete equations for

the complex propagation constant q:

sin[(M + 1)q] = 0; or

cot[(M + 1)q] sin(q) =
iε (I)0
2V

.
ε
(R)
0 + (−1)b

√
(ε
(R)
0 )

2 + 4V2 cos2 q

2V cos q
(18)

The above equations are consistent with the results presented in the previous section at the

limit ε (R)0 → 0. In the localized regime (|ε (I)0 |> |ε
(I)
cr |), we get cot[(M+1)q] ≈ i. By replacing

this expression into the second term of Eq. (18), we derive the following cubic relation for

x ≡ tan q:

2ε (R)0 ε
(I)
0 x3 +

(
(ε
(I)
0 )

2 − 4V2
)
x2 + 2ε (R)0 ε

(I)
0 x + (ε (I)0 )

2 = 0 (19)

The above algebraic equation has three roots. Depending on the value of ε (I)0 these roots

can be either real or complex. In the former case (i.e. x, and therefore q, being real) the

associated mode is extended, while in the latter one (i.e. x, and therefore q, being complex)

the associated mode is localized. The transition between these types of modes occurs at ε (I)cr
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Figure 4. Band structure (green shadowed array) of the model Eq. (15) vs. ε (R)0 . The red
line indicates the trajectory of the defect eigenmode as ε (R)0 increases. The red dots and the
associated numbers are indicative values of the critical |ε (I)0 | (for the specific ε (R)0 ) above
which a defect mode is created.

and is given as a solution of the following equation:

(
(4V2 − ε

(I)
cr )

2
)3
= 8(ε (R)0 )

2
(
− 2V4 + 10V2(ε

(I)
cr )

2 + (ε
(I)
cr )

4 + 2(ε (I)cr )
2(ε
(R)
0 )

2
)

(20)

Furthermore, it can readily be confirmed that, as expected, for ε (R)0 → 0, ε (I)cr approaches to

2.

The associated energy βcr of the defect (localized) mode is found after substituting

the expression for ε (I)cr from Eq. (20), into Eq. (18). This allows us to evaluate q(cr) which

can then be substituted in Eq. (17) in order to get an expression for βcr . The obtained
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dependence of Re[βcr] on ε (R)0 is shown in Figure 4 with red line. The values of Im[βcr]

are denoted with dots and numbers. We note that the real part of the propagation constant

Re[βcr] is insensitive to the sign of ε (I)0 .

Next, we investigate the scaling behavior of the defect mode at the transition point

ε
(I)
cr . Following the same argumentation as used in the previous section, we write q(cr) as

q(cr)
r + iqi, where we assume that (M + 1)qi → ∞ and qi is a small quantity. Substituting

back to the transcendental equality of Eq. (18) and expanding each term up to first order in

qi we eventually get:

qi ∼
ln(N + 1)

N + 1
. (21)

Considering the fact that I2 ∼ qi, it can be deduced that the second moment of the defect

mode for the modified model scales anomalously as indicated in Eq. (1) of the main text.

Hence, we conclude that the logarithmic scaling of IPR is not a consequence of degenerate

band-edge in Anderson model at β = 0.

7. CONCLUSIONS

In conclusion we have investigated the structure of non-Hermitian defect states as a

function of the defect strength. We have found that these states experienced a phase transition

from delocalization to localization as the imaginary part of the refractive index in the defect

waveguide approaches a critical value. At the transition point the inverse participation

number of this mode scales as ln(N)/N indicating a weak criticality. This phase transition

is accompanied by a mode re-organization which reveals analogies with the Dicke super-

radiance. The transition survives periodic perturbations in the refractive index in the

waveguide array and the anomalous logarithmic behavior of the inverse participation ratio

at the critical point is preserved. It will be interesting to investigate whether this behavior

survives in higher dimensions and other type of configurations including disordered [46–48]

and continuous [49, 50] models.
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SECTION

2. SUMMARY AND CONCLUSIONS

2.1. ANALYSIS OF CORRELATION FUNCTION AND TRANSMISSION EIGEN-
CHANNELS INSIDE RANDOMMEDIA

The first portion of the dissertation described the interference effects in wave prop-

agation in random media. Wave-based models were studied in 1D, 2D , Quasi-1d, and 3D

geometries to explore such effects.

The diffusion model is an extremely useful model used to describe typical wave

propagation [1, 5, 61, 62]. Interference effects such as universal conductance fluctuations,

Anderson localization corrections, enhanced backscattering, and nonlocal mesoscopic cor-

relations [7, 63–65] can’t be explained by the diffusionmodel. These phenomena are general

and occur not only for electromagnetic waves, but also for acoustic, electronic, and other

kinds of waves [6, 7]. Two very interesting phenomena that originate in interference effects

are intensity-intensity correlation function and transmission channels. In this thesis, we

proposed analytical models to predict the behavior of these two quantities in random media

of different geometries.

We also proposed a way to detect a diffusive cloak [66] using the long-range cor-

relation function. When waves undergo multiple scattering events inside random media,

wave path crossing may occur due to the complicated propagation via a random walk-like

process. This wave crossing inside gives rise to the correlation. The correlation function

can be decomposed into its components depending on number of path crossings. The

long-range intensity correlation (C2) is very sensitive to location of path crossing, allowing

one to detect the size and position, including the depth, of the diffusive cloak. We proposed
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a novel theoretical idea to detect diffusive cloak embedded inside random media. Our work

also offers a possibility to manipulate correlations and fluctuations. We also show that

diffusive-light invisibility cloaks can work well under stationary conditions in the limits of

very small and very large coherence lengths of light. But they can be uncloaked for the

intermediate case of illumination with partially coherent light and inspection of the resulting

speckle contrast (C1).

Another important phenomenon that stems from the interference effect is the ex-

istence of eigenchanels, first predicted by Dorokhov [29] in 1984. Indeed, there exist

system-specific incident wavefronts, which couple light into perfectly transmitted eigen-

channels (PTE). Such an excitation allows light propagation through scattering media with

near unity transmittance [40, 49, 53, 67–69]. In this thesis, we develop a theoretical model

to predict the spatial structure of the perfectly transmitting eigenchannels in the regime of

diffusive transport. We employ a projection technique [33] to obtain an analytical relation

between the depth profile of the perfectly transmitting eigenchannel and the geometry of the

waveguide. We further propose inverse design to manipulate the shape of the waveguide to

achieve the desired energy distribution for the perfectly transmitting eigenchannel.

2.2. ANALYSIS OF BOUND STATE IN CONTINUUM

Lastly, we introduce a previously unnoticed class of critical states, which are em-

bedded in the continuum. We demonstrate their existence using a simple setup consisting

of N coupled optical waveguides with one non- Hermitian (with loss or gain) defective

waveguide in the middle. Similarly to the well-known bound in the continuum (BIC)

states, they have real propagation constants, however, their envelope resembles a fractal

structure. These states experienced a phase transition from delocalization to localization

as the imaginary part of the refractive index in the defect waveguide approaches a critical

value. At the transition point, the inverse participation number of this mode scales as

ln(N)/N indicating a weak criticality. We show that this phenomenon is a robust one, as
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the transition is accompanied by a mode re-organization, which reveals analogies with the

Dicke super-radiance. The transition survives periodic perturbations in the refractive index

in the waveguide array, and the anomalous logarithmic behavior of the inverse participation

ratio at the critical point is preserved.
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