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ABSTRACT

This dissertation proposes three new algorithms for underwater acoustic wireless

communications. One is a new tail-biting circular MAP decoder for full tail-biting con-

volution (FTBC) codes for very short data blocks intended for Internet of Underwater

Things (IoUT). The proposed algorithm was evaluated by ocean experiments and computer

simulations on both Physical (PHY) and Media access control (MAC) layers. The ocean

experimental results show that without channel equalization, the full tail-biting convolu-

tion (FTBC) codes with short packet lengths not only can perform similarly to zero-tailing

convolution (ZTC) codes in terms of bit error rate (BER) in the PHY layer. Computer

simulation results show that the FTBC codes outperform the ZTC codes in terms of MAC

layer metrics, such as collision rate and bandwidth utilization, in a massive network of

battery powered IoUT devices.

Second, this dissertation also proposes a new approach to utilizing the underwater

acoustic (UWA) wireless communication signals acquired in a real-world experiment as a

tool for evaluating new coding and modulation schemes in realistic doubly spread UWA

channels. This new approach, called passband data reuse, provides detailed procedures for

testing the signals under test (SUT) that change or add error correction coding, change bit to

symbol mapping (baseband modulation) schemes from a set of original experimental data.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND

Underwater acoustic communications have played a crucial part in the broad range of

oceanic engineering applications, such as environmental monitoring, offshore exploration,

and disaster prevention. Acoustic waves are not the only means for wireless communication

underwater, but they are the only ones that can travel over longer distances. However,

current underwater acoustic (UWA) communication systems can only achieve very low data

rates such as 1 kbps to 10 kbps at medium range (1 km to 10 km) due to the limited channel

bandwidth.

Underwater acoustic channels are amongst the most difficult communication media.

Long range acoustic wave propagation is best achieved at low frequencies, and the available

bandwidth for communication is extremely limited. Due to the low traveling speed of sound

waves, approximately 1500 m/s, and multipath propagation of waves in water, the delay

between arrival of each path spreads over tens or even hundreds of milliseconds resulting in

frequency-selective signal distortion, which combined with extreme doppler effect caused

by ocean currents raise difficult challenges. These properties of acoustic channels degrade

the physical link quality and cause high latency in underwater acoustic communications.

Many emerging underwater applications such as autonomous, or unmanned un-

derwater vehicles (AUVs, UUVs) could benefit from real-time wireless communications.

Underwater vehicles can move freely without a tether cable and improve their range of

operation and while staying connected to an underwater data network consisting of both

stationary and mobile nodes (Heidemann et al., 2012) capable of exchanging different types
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of data, such as control, telemetry and eventually video signals, between many network

nodes. Such a reliable network requires strong error correction coding and channel equal-

ization in the physical layer in order to combat severe impairments from the underwater

wireless channels.

Most wireless communication needs are met by exchanging short packets or short

data blocks (Durisi et al., 2016). These messages are normally a few bytes in length which

aims to keep underwater acoustic sensor nodes (UWASN), instruments connected to the

network. These packets are often transmitted sporadically and due to the low propagation

speed of sound waves, can cause a massive network of UWASN to suffer from high packet

collision rates which reduces the overall throughput of network. Therefore any methods

that can effectively increase the network throughput by reducing the packet collision rate

are critical to improving the performance of the underwater acoustic networks (UWA-Nets).

1.2. PROBLEM STATEMENT

The bandwidth available in UWA communications is extremely small. Error cor-

rection coding techniques and channel equalizations currently used in order to combat the

multipath delay spread and Doppler-induced frequency spread that lead to time-varying

channel impulse response, reduce the channel bandwidth efficiency. Zero-tailing convolu-

tional forward error correction (FEC) coding schemes increase the number of transmitted

bits by adding zeros to the end of the packet in order to make the design of the decoder

in the receiver simpler, which causes this technique to suffer from code rate loss, while

the channel equalization schemes require long training sequences to estimate the multipath

channel impulse response or train the equalizer coefficients. The bandwidth inefficiency

becomes significant when a crowded network of UWASN uses short length packets more

often to keep the network operating. Thereby, methods that can effectively utilize the limited

channel bandwidth are critical to improving the performance of the UWA-Nets.
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Second, underwater acoustic (UWA) communications channels lack explicit models

that could capture the underlying physics of ocean telemetry and characterize the time-

varying doubly-spread nature of channels (Kilfoyle and Baggeroer, 2000). Therefore,

many researchers in the field of UWA communications still require sea-going measurement

campaigns to evaluate their transmitter and receiver algorithms (van Walree et al., 2008).

Holding these campaigns to acquire field data is often expensive, time consuming, and

prone to many types of failures (Deane et al., 2018). To reduce the cost of extensive

field experiments, researchers in the field of UWA communications have proposed many

models and simulators for acoustic communication channels in the past decades. Often

the proposed models include a few assumptions, approximations, and simplifications over

key parameters of acoustic waves propagation in the ocean (Bjerrum-Niese and Lutzen,

2000; Kilfoyle and Baggeroer, 2000). These parameter include, but are not limited to,

wide or quasi-wide sense stationarity, sound speed profiles, sea floor compositions and

roughness, time-delay, frequency dispersion, noise or multipath characteristics, etc. These

assumptions, although applicable to a specific case or scenario, often lack the knowledge

for prediction and evaluation of true long-term ocean channel models.

Motivated by the respective advantages and limitations of the methods in the liter-

ature, we proposed a low-complexity receiver algorithms and a novel channel simulator to

enable robust UWA communications.

1.3. SUMMARY OF CONTRIBUTION

This dissertation consists of two journal publication papers listed in the publication

list. My contributions that are under review are

1. This dissertation proposes an efficient, low computational complexity maximum A

Posteriori (MAP) decoder designed for full tail-biting convolutional (FTBC) codes

for transmitting short data packets in underwater acoustic communications and net-
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works. Moreover, the dissertation investigates how much the packet collision rate

would improve in underwater acoustic networks that use short messages in communi-

cation between nodes, by utilizing FTBC codes as an encoding mechanism to combat

underwater channel impairments. The simulation and experimental results on the

physical-layer performance demonstrate that the FTBC codes achieve a similar bit er-

ror rate (BER) as the conventional method of zero-tailing convolutional (ZTC) codes

when applied to different short message lengths, while reducing packet collision rate

in an underwater acoustic network.

2. A new type of underwater acoustic channel simulator is proposed based on reusing

the passband signal acquired from previous real-world sea trial experiments. This

dissertation provides detailed procedures of the passband data reuse method on how

a signal under test from previous experiments can be reconfigured in order to be

used as a channel simulator. This method enables the possibility of changing or

adding new error correction codes or changing the bit to symbol mapping (baseband

modulation) schemes of the recorded signal in order to evaluate new coding and

modulation schemes in a real-world scenarios.
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ABSTRACT

This paper investigates full tail-biting convolutional (FTBC) codes for transmitting

short data packets in underwater acoustic communications and networks. With a constraint

length of K and coding rate of R = 1/n, the traditional zero-tailing convolutional (ZTC)

codes suffer from considerable rate loss when the message length is small, while the FTC

codes offer good error correction performance at no coding rate loss. A new circular

Maximum A Posteriori Probability (MAP) decoding algorithm is proposed to decode the

FTBC codes without increasing the computational complexity, when compared to decoding

ZTCcodeswith theMAPalgorithm. The new circularMAPdecoding algorithm is evaluated

by both simulation and a real-world ocean experiment in comparison to the ZTC codes.

When applied to networks designed for handling short packet type of traffics, simulation

results show that the FTBC codes reduce the network collision rate and improve the network

throughput in comparison to the traditional ZTC codes. The simulation results on the

physical-layer performance demonstrate that the FTBC codes achieve a similar bit error rate

(BER) as the ZTC when applied to different short message lengths. In addition, the ocean

experimental results show that the FTBC and ZTC codes achieve acceptable BER on the
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order of 1% when the block length is shorter than 64; however when the block length is 64

and larger, all types of codes suffered more from the inter-symbol interference (ISI) induced

by the multipath fading channels when no channel equalizer is used.

Keywords: Slotted Aloha, Tail-biting convolutional codes, underwater acoustic commu-

nications, Maximum A Posteriori decoding, circular Viterbi algorithm, Internet of Things,

Internet of Underwater Things.

1. INTRODUCTION

Underwater acoustic wireless networks (UWA-Nets) are gaining more interest in

a variety of applications such as deep ocean exploration, remote underwater command

and control, and underwater infrastructure monitoring. These underwater networks, unlike

terrestrial radio frequency (RF) wireless networks, face more severe constraints, such as

large propagation delay, severe multipath and Doppler, and limited bandwidth. Many

protocols such as Aloha and slotted-Aloha are developed for RF networks to provide

random channel access. When these protocols are utilized for UWA-Nets, they become

more vulnerable to packet collision and channel impairments. The network efficiency also

suffers from the large inter-nodal propagation delay in UWA-Nets with respect to the packet

length and nodal coverage range.

In the PHY layer, strong error correction coding and channel equalization are often

used to combat severe impairments from the underwater wireless channels. The multipath

delay spread and Doppler-induced frequency spread lead to time-varying channel impulse

responses that cause severe inter-symbol interference and burst bit errors. Channel im-

pairments in underwater acoustic (UWA) communications are more severe than terrestrial

RF communications, in that both multipath delay spread and Doppler spread are extremely

high. These factors call for extra strong forward error correction (FEC) coding schemes

(Chitre et al., 2008; Stojanovic and Preisig, 2009) and complex channel equalization tech-

niques (Stojanovic and Preisig, 2009; Zheng et al., 2015) to improve the reliability of UWA
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communication. However, both FEC coding and channel equalization techniques reduce

the channel bandwidth efficiency because FEC coding schemes increase the number of

transmitted bits, while the channel equalization schemes require long training sequences to

estimate the multipath channel impulse response or train the equalizer coefficients.

Unfortunately, the available bandwidth in UWA is very small, which is on the order

of kilo-Hertz. Any methods that can effectively utilize the limited channel bandwidth are

critical to improving the performance of the UWA-Nets. On the other hand, most wireless

communication needs are met by exchanging short packets or short data blocks (Durisi

et al., 2016). For example, handshaking in wireless network protocols involves exchange

of the Request to Send (RTS) and Clear to Send (CTS) messages between the transmitter

and the intended receivers. These messages are often as short as 16 - 32 bits. The

recent development in massive machine-to-machine (M2M) communications or Internet of

Things (IoT) will support thousands of sensors and smart devices that only transmit short

packets sporadically (Boccardi et al., 2014). These messages are normally a few bytes

in length. Internet of Underwater Things (Domingo, 2012) also attracts great attention

in recent years, which aims to connect underwater sensors, instruments, robots, gliders,

and autonomous underwater vehicles (AUVs) to the Internet via underwater wireless links.

These underwater devices mostly need short command and control or sensing messages in

order to stay connected and communicate with each other.

Therefore, it is often desirable to use a strong FEC coding scheme for short message

blocks without complicated channel estimation and equalization for network layer com-

munications. An excellent example is the NATO standard JANUS protocol (Potter et al.,

2014), which specifies the network header in a 64-bit message block and codes the block by

a constraint length-9 zero-tailed convolutional (ZTC) code, yielding a 144-bit coded block.

Using unnecessary long packets for transmission of short data blocks also results in waste

of bandwidth resources and increase of latency.
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Although the classical iteratively-decodable codes are developed for long packets,

code design for short data blocks is gaining traction in recent years (Boccardi et al., 2014;

Liva et al., 2016). Conventional FEC codes tend to suffer from coding rate loss and perfor-

mance loss when applied directly to short data blocks. A recent survey (Liva et al., 2016)

on low-density parity check (LDPC) codes, turbo codes, Bose–Chaudhuri–Hocquenghem

(BCH) codes, polar codes, and convolutional codes reveals that the LDPC codes exhibit

advantages mostly for long data blocks with lengths on the order of several thousand bits

or more. In contrast, convolutional codes are known to perform well for short data blocks

with lengths on the order of several hundred bits (Clark Jr and Cain, 2013; Lin and Costello,

2004). Convolutional codes are described by (n, k,m) where the code rate is R = k/n and

the memory order is m = K − 1. The higher the constraint length K or the lower the coding

rate, usually the better error correction capability of the code is. Let the data block length

be L. For short data blocks with L < 100 bits, convolutional codes with a large constraint

length would suffer from rate loss because the convolutional codes require m extra zero bits

added to the end of the data block to provide equal bit protection all over the information

bits, hence the name Zero Tailed Convolutional (ZTC) code, which translates to an effective

coding rate of kL/((L +m)n) instead of k/n. When L and K are on the same order, the rate

loss is significant. To solve the code rate loss, tail-biting (TB) technique is used to initialize

the encoder with the m tail bits (Ma and Wolf, 1986), resulting in the Full Tail-Biting

Convolutional (FTBC) codes. FTBC codes retain the coding rate of k/n at the expenses of

high decoding complexity if optimal performance is required.

Optimal decoding of FTBC codes is rather complex. Since it is using the last m

bits of the data block to initialize the encoder memory prior to encoding the data block and

discards the 2m output bits corresponding to the initialization, the start state of the code is

unknown a priori to the decoder. However, the tail-biting technique constrains the start and

end states of the encoder to be identical, which requires the decoder to search all possible

start states to achievemaximum likelihood (ML) decoding. For codes with a large constraint
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length, the complexity becomes prohibitive since it requires 2m runs of Viterbi decoding.

Maximum A Posteriori (MAP) decoding of FTBC codes is also available achieving superior

performance with more computational complexity (Anderson and Hladik, 1998). Many

low-complexity suboptimal algorithms are available in the literature (Anderson and Hladik,

1998, 2002; Cox and Sundberg, 1994; Han et al., 2018; Raghavan and Baum, 1998; Shao

et al., 2003; Wang and Bhargava, 1989; Williamson et al., 2014), including the circular

Viterbi algorithm (CVA) (Cox and Sundberg, 1994), the Wrap-Around Viterbi Algorithm

(WAVA) and Bi-directional VA (BVA) (Shao et al., 2003), the bounded-distance decoding

(BDD) CVA(Anderson and Hladik, 2002), the reliability-output Viterbi algorithm (ROVA)

(Raghavan andBaum, 1998;Williamson et al., 2014), and two-phase algorithms that acquire

trellis metrics in a forward and backwardmanner in search of theML path (Han et al., 2018).

These algorithms are iterative in nature and have less complexity than the brute force ML

algorithm.

Although the maximum-likelihood Viterbi algorithm tries to minimize the probabil-

ity of code word error for convolutional codes, it does not necessarily minimize the symbol

error (Bahl et al., 1974). This problem was tackled by Bahl et. al. (Bahl et al., 1974) by

estimating and maximizing the a posteriori (MAP) probabilities of the states and transitions

of a Markov source observed through a noisy discrete memoryless channel to optimally

decode the received code word. However, this algorithm is unattractive compared to the

Viterbi algorithm from the computational complexity point of view.

This paper applies the FTBC codes to short data blocks for underwater acoustic

communications and evaluates their performance by both computer simulation and real-

world ocean experiment. This paper improves the tailbiting BCJR algorithm (Anderson and

Hladik, 1998) and proposes a new implementation of tailbiting circular MAP (TC-MAP)

decoder that achieves much lower computational complexity than that in the tail-baiting

BCJR (Anderson and Hladik, 1998). Performance at both MAC-layer and PHY-layer is

evaluated for data block lengths from L = 12,25,32,64 to L = 512. On the MAC-layer, we
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simulated an any-to-any network with the slotted-Aloha protocol where a randomly-selected

transmission node may communicate with a random receive node at each time slot. The

slot length may be shorter than the sum of the propagation delay and the message length.

Different coverage areas have been simulated and the maximum propagation delay increases

as the area increases. With shorter transmission length, the network collision rate is always

lower than that of the longer transmission length. The throughput of shorter transmission

length is also higher than the longer transmission length.

On the PHY-layer, computer simulations compared the K = 3,6,9 rate 1/2 codes

in Additive White Gaussian Noise (AWGN) channels and the results show that the FTBC

codes with CVA performed similarly with the ZTC codes. The ocean experiment evaluated

the (3,1,5) code and (2,1,8) code in real-world UWA fading channels. Results of the ocean

experiment show that the (3,1,5) code outperformed the (2,1,8) code due to higher redun-

dancy, and FTB codes performed close to ZTC codes with TC-MAP decoding algorithms.

The ocean experiment results also show that the shortest block length L = 12 for K = 6

and K = 9 FTBC codes performed worse than the corresponding ZTC codes because the

coded block size was too small to realize the coding gain. The same reason was responsible

for the worse performance of the (2,1,8) FTBC codes than those of ZTC codes for L = 25

and L = 32. The longer block lengths L = 64 and L = 512 all suffered severe inter-symbol

interference (ISI) due to multipath. Without channel equalization, the coding schemes were

ineffective in combating the ISI. Therefore, we conclude that the ZTC and FTBC codes with

strong error correction capability may be utilized without channel equalization for short

data blocks in UWA channels, which enjoy both low computational complexity and high

error correction gains (Behgam et al., 2018).



11

2. FULL TAIL-BITING CONVOLUTIONAL CODES

A typical convolutional encoder is shown in Figure 1,where K = 3 rate 1/2 code has

m = K − 1 memory units M0 and M1. The code generator is G = [7,5] in the octal format

which corresponds to the generator polynomials g1(x) = x2+ x +1 and g2(x) = x2+1. The

encoder takes a input bit into the shift register and outputs two bits c1 and c2. The input bit

is shifted to M0 when the next input bit arrives.

Input Output

b c
c1

c2
M0 M1

Figure 1. Encoder structure of K = 3 rate 1/2 convolutional codes.

2.1. ENCODING TECHNIQUES

A ZTC encoder adds m zeros at the end of the data block to flush out the memory so

the ending state is forced back to the all-zero state. This overhead is necessary for reliable

transmission because it protects the last m bits in the block. Therefore, total length of the

output code word is n(L + m) bits, rather than nL for an (n,1,m) code resulting in some

rate loss. A FTBC code attempts to solve the problem of code rate loss while maintaining

equal amount of protection for every bit in the block. The FTBC technique, shown in

Figure 2, uses the last m bits of the data block to initialize the encoder memory prior to

encoding of the data block, and discards any output from encoder in the initialization stage.

In the second stage, the data block is passed through the initialized encoder, and the output

codeword is then transmitted. With this technique, total length of the output code word

is nL bits. What makes the FTBC technique more complex is that, any valid state of the

encoder is equally probable to be the starting and ending states of the encoder. However,
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this technique ensures that the encoder starts and ends in an identical state for each data

block. This is illustrated in the Trellis diagram in Figure 2 for the K = 3, R = 1/2 FTBC

code. This unique feature is utilized in the decoder to achieve error correction decoding

with some increase in decoding complexity over the ZTC decoder.

Figure 2. Encoder trellis diagram for tail-biting codes with K = 3 and rate 1/2.

2.2. DECODING TECHNIQUES

TheViterbi algorithm (VA) (Viterbi, 1967) is theMaximal Likelihood (ML) decoder

for convolutional codes. When applied to the ZTC codes, the branch metric is calculated for

each state at each stage of the Trellis diagram. For hard-decision VA, the branchmetric is the

hamming distance between the received code and the legitimate code, and for soft-decision

VA, it is the Euclidean distance between the two. At each stage, the path with the shortest

distance entering each state is kept and other branches are discarded. After 3K − 5K stages,

the survival paths converge to a single path corresponding to the decoded bit sequence. The

ending state of the ZTC decoder is also the all-zero state.

However, the situation is different when the VA is applied to FTBC codes. The

algorithm must find the best path with the constraint that the maximum likelihood path

starts and ends in an identical state which can be any one of the 2m possible states. It simply
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appears that a brute force method to decode a FTBC code is to run VA once for each possible

starting state and, then after constructing the path metrics, check if the ending state with

the minimum path metric is identical to the starting state. The VA can start decoding from

state zero and work its way up to the last state in an orderly fashion, or take a probabilistic

approach (Ma and Wolf, 1986) by choosing an arbitrary starting state.

A low-complexity sub-optimal algorithm for FTBCdecoding is known as the circular

Viterbi algorithm (CVA), where VA traverses around the tail-biting circle more than once

(Anderson and Hladik, 2002; Cox and Sundberg, 1994; Shao et al., 2003). In this paper, a

CVA with a fixed stopping rule was used to decode FTBC, similar to the lowest-complexity

case in (Cox and Sundberg, 1994). The received data block is repeated twice, as shown in

Figure 3. The decoder starts with all states having the same starting metric value, constructs

the Trellis by calculating the branch metric. At the block boundary, the VA continues

passing the received data block three times. The first time is to find the correct start state

for the trellis construction for the second copy of the received block; the second time is

to construct the output trellis, and the last time is to perform the correct training so that

the traceback begins from the correct state. The decoded bit sequence corresponds to the

output in the second copy of the received data block.

Figure 3. Low-complexity CVA for FTB decoding. The fixed stopping rule is to use three
copies of the received data block and traverses the trellis through them.
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The CVA applies continuous decoding process to the sequence of appended received

data blocks, without losing any (soft) information gathered from decoding the previous copy

of the received block, and all the information is transfered to the next attempt to decode the

second copy, and so on. The continuous fashion of decoding on a repeated versions of the

same received block inherently satisfies the constraint that the FTBC codes have identical

start and ending states. Also, the advantage of using short length data blocks is that the

traceback length can be equal to data block length ensuring no degradation on the BER

performance. One disadvantage of choosing the fixed stopping rule for the CVA is the

BER degradation for noisy channels or an increased workload for good channels (Cox and

Sundberg, 1994).

3. THE PROPOSED TAILBITING CIRCULAR MAP (TC-MAP) DECODING
ALGORITHM

The goal of the MAP decoder is to compute and maximize the a posteriori probabil-

ities (APP) that a state i is sent at stage t, given that y = y1, · · · , yL are the received symbols.

Equivalently, the MAP decoder maximizes the joint distribution p(St = s,St+1 = s′,y),

where St = s denotes the event that the encoder is in state i at trellis stage t. This joint

distribution can be decomposed, using the Bayes’ rule, into three parts:

p(St,St+1,y) = p(St, [y1 : yt−1]) · p(St+1, yt |St) · p([yt+1 : yL]|St+1)

= αt(St) · γt(St,St+1) · βt+1(St+1) (1)

where αt , and βt+1 are the forward and backward transition metrics, respectively, and γt is

the branch metric. The three metrics are calculated recursively by

αt(St = s) = p(St, [y1 : yt−1]) =
∑
∀s′∈S

αt−1(s′) · γt−1(s′, s) (2)
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βt(St = s) = p([yt : yL]|St) =
∑
∀s′∈S

βt+1(s′) · γt(s, s′) (3)

γt(St = s,St+1 = s′) = p(St+1, yt |St) = P(St+1 |St) · p(yt |St,St+1)

=


p(bt) · p(yt |ut), valid branch

0, invalid branch
(4)

where S is the set of valid states, p(bt) is the probability of the input bit, being 0 or 1,

corresponding to the valid branch of state transition s → s′, and ut is the transmitted

symbols corresponding to the same state transition. The distribution p(yt |ut) is assumed to

be Gaussian.

For the ZTC codes, the encoder starts at state zero, so the MAP decoder initializes

the alpha and beta metrics as α1 = [1,0, ...,0]1×M , βL+K−1 = [1,0, ...,0]TM×1. The forward-

backward algorithm computes the alpha metric from t = 1 to t = L + K , and the beta

metric from t = L + K − 1 to t = 1. meanwhile, the MAP algorithm computes the gamma

metric for all t. The ultimate goal is to compute the a posteriori probability p(b̂t |y). If

p(bt = 0|yt) > p(bt = 1|yt), then the b̂t is decoded as zero, otherwise, a one. This is

equivalent to computing the log likelihood ratio, LLR(b̂t |y) = ln p(bt=1|y)
p(bt=0|y) . A hard decision

can be made based on the LLR output to decode b̂t . That is, b̂t = 0 if L(b̂t |y) < 0, and

b̂t = 1 if L(b̂t |y) > 0.

Since the FTBC encoder may start at any state in the trellis, the α1 and βL have to be

initialized with different approach. Therefore, we propose a novel circular MAP algorithm

that initializes the alpha and beta metrics α1 and βL such that all states are equally probable

to be the starting and ending state of the encoder. Note that the length of the trellis is only L

for the FTBC codes instead of L + K − 1 for the ZTC codes. If the same forward-backward

algorithm of the ZTCMAP decoder is used for the FTBC codes with a length L trellis, then

the K − 1 stages would suffer from computational errors. We propose to wrap around the
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trellis in the circular fashion with a depth set to be K − 1, as shown in Figure 4, where the

stage index t progresses in a circular fashion in the range of [1, L] for the alpha and beta

metrics.

Figure 4. TC-MAP decoding algorithm stage indexing order.

The proposedwrap-around depth ismuch smaller than the ones in the tailbitingBCJR

(Anderson and Hladik, 1998) which uses a stopping criterion measured by ∆ = | |αt − α
′
t | |,

i.e. the algorithm stops if the change in newly computed αt array is suitably small to

the previously computed one α′t at index t. We discover that this measure demonstrates a

significant drop of value at stage K − 1 beyond L, even for low SNRs, as shown in Figure

5. Therefore, we propose the new implementation to stop at stage K − 1 beyond L without

calculating the stopping criterion. This simplification ensures that the proposed TC-MAP

algorithm is robust against noise estimation errors and is independent from threshold settings

or SNR estimates.

2 4 6 8 10 12 14 16 18 20 22
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Figure 5. Stopping criteria used in (Anderson and Hladik, 1998): ∆ = | |αt − α
′
t | | versus the

number of stages beyond L for (2,1,6) code. The higher the SNR, the faster the drop.
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The proposed TC-MAP decoding algorithm is summarized in Table 1, where A0

and A1 are the state transition matrices of the FTB code. As an example, the matrices A0

and A1 for the (7,5) code are shown in (5)

A0 =



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0


, A1 =



0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1


(5)

Table 1. Proposed TC-MAP decoding algorithm for FTB codes with block length L and
constraint length K .

Inputs: A0, A1, L, P = 2K−1, M = K − 1

Initialize: α1 = [
1
P , ...,

1
P ]1×P, βL = [

1
P , ...,

1
P ]

T
P×1

Compute: from γt(s, s′) with (4) for valid state transitions,
normalize γt(s, s′) and store it in Γt for t = 1 : L

form the row vectors αt by the forward recursion
αt = αt−1Γt−1
and normalize αt for t = [2 : L,1 : M]

form the column vectors βt by the backward recursion
βt = Γtβt+1
and normalize βt for
t = [L − 1 : −1 : 1, L : −1 : L − M + 1]

D0
t = A0 ⊙

Γt , and D1
t = A1 ⊙

Γt for t = 1 : L

LLR Output: LLR(b̂t |y) = lnαtD1
t βt+1

αtD0
t βt+1

Hard Decision: decide b̂t = 0 if L(b̂t |y) < 0, and b̂t = 1 if L(b̂t |y) > 0
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Despite the similarities of the proposed algorithm to the ones in (Anderson and

Hladik, 1998), the proposed circular MAP algorithm for FTBC codes has a fixed wrap-

around depth, and less stages for calculating α, β and γ metrics, while achieving similar

performance as those in (Anderson and Hladik, 1998). A BER performance comparison is

shown in Figure 6 for the same encoder configuration.

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0 (dB)

10
-6
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-4
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-3
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-2
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-1

B
E

R
Circular MAP in [13]

Proposed Circular Map

Figure 6. BER of (2, 1, 6) code (554, 744), and L = 48 in AWGN channel. Parameters are
the same as in (Anderson and Hladik, 1998), Figure 4.

4. SIMULATION RESULTS

This section compares the performance of the three different convolution code

techniques using MATLAB simulation. For the PHY-layer performance, each coding

technique was simulated in the baseband with different constraint lengths and data block

lengths under an AWGN channel. The coding rate was 1/2 and the bit to symbol mapping

was BPSK. Constraint lengths were chosen as K = 3,6,9, and the generator polynomials

were (7,5), (74, 64), and (753, 561), respectively. The input data block lengths were

L = 12,25,32,64,512. To avoid cluttering in the BER graphs, only the L = 12 and the

L = 512 scenarios are plotted, as shown in Figure 7, where performance of other block
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lengths laid in between the two groups of curves. The Direct-Truncation Convolutional

(DTC) code was also simulated, where the overhead of the ZTC code was simply discarded

without transmission.

The FTBC and ZTC performed very closely to each other, with the performance

of FTBC being slightly inferior to the ZTC in all cases. However, the performance gap

was only 0.1 dB at BER of 10−5. This demonstrated the advantages of using FTBC as a

coding technique for short packets, utilizing 100% of bandwidth without much degradation

in reliability. As the constraint length increases, the performance gap between FTBC and

ZTC with longer data block lengths was smaller than those with shorter data block length.

This is because the traceback length of the decoder is normally 3K to 5K to achieve good

performance. If the data block length is very small, the circular Viterbi algorithm would

have insufficient length of the received data to cover the traceback length, thus resulting in

some performance loss.

Simulation results for comparison between theMAP and CVA algorithms are shown

in Figure 8 for K = 9 and K = 6. The block length was L = 64. The MAP algorithm

showed about 0.3 dB better performance than the CVA at BER = 10−3. Other block lengths

had similar results which are omitted here. The small performance gain of MAP over CVA

is achieved with high computational complexity that involves metrics calculation along the

trellis in both forward and backward directions.

For network performance, a slotted-ALOHA network using FTBC or ZTC packets

were simulated to study the collision rate of a underwater network. The difference between

the short range slotted-Aloha networks for RF and UWA is illustrated in Figure 9, where

a node can start a transmission only at the beginning of a time slot, and thus collisions

are reduced comparing to a pure-Aloha network. Nodes are located randomly and their

distance from other nodes are constrained to 0 < r < R. The network (a), on the left,

demonstrates the relation of the time slot length and the frame size in a RF network. With

traveling speed of RF waves being 3× 108 m/s, the propagation delay Tp is so small that the
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Figure 7. BER performance of CVA in AWGN channels with different constraint lengths:
(a) K = 3, (b) K = 6, and (c) K = 9.
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Figure 8. Comparison between TC-MAP and CVA for L = 64: (a) K = 9, R = 1
2 ; (b)

K = 6, R = 1
3 .

time slot for this network can be set to be equal to the frame size, Tt , and it is proven that

the maximum throughput is 1/e frames per frame-time, reached when there is on average

one transmission per time slot Chirdchoo et al. (2007); De et al. (2011). On the other hand,

the propagation speed of acoustic waves is about 1.5 × 103 m/s, which is multiple orders of

magnitude slower than the RF wave. The propagation delay starts to dominate, especially

in ad hoc networks when short messages are exchanged at the network layer. As illustrated

in Figure 9 (b), Tmax
p is the maximal propagation delay between the nodes that have the

maximum distance R from each other. The shorter the Tt , i.e. short packets, the stronger

the domination of Tmax
p has on the design of the whole network.

In our simulation, we selected network header parameters similar to the JANUS

packet Potter et al. (2014), where each header block was 64 information bits which was

encoded by a K = 9, R = 1/2 convolution encoder. JANUS protocol uses the ZTC

technique, yielding 144-bits codewords for transmission. The simulation assumed that

the channel transmission rate was RC = 1 kbps and acoustic wave propagation speed was

v = 1500 m/s. In this configuration each JANUS packet was Tt = 144 ms in length.

In comparison, the FTBC encoded the same 64-bit information block into 128 bits for
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Figure 9. Slotted-Aloha with fixed frame size: (a) RF network, propagation delay is
negligible; (b) Underwater acoustic network, propagation delay is comparable to or larger
than packet length.

transmission, resulting in 16ms savings in transmission time. A total of N = 100 nodeswere

scattered randomly in a rectangular area. The nodes were assumed to have homogeneous

circular communication range D and the nodes could have any-to-any communications.

The transmitters were chosen randomly among the nodes, and each transmitter chose its

receiver randomly as well. Note this any-to-any communication scenario is different from

the many-to-one simulation used in De et al. (2011) where many nodes transmit all to one

receive node.

A total of 106 packets were transmitted in each simulation trial. A packet collision

was detected when any two packets arriving at one receiving node were overlapped in time.

Denote the duration of the Aloha time slot as Tslot and assume there was at least one node

transmitting at the beginning of each time slot. In the first network scenario, we assumed

that the maximum propagation time was less than the packet transmission time. That is

Tmax
p < Tt . The 100 nodes were placed randomly in a 100 × 100 m2 area whereTmax

p = 94.3

ms. With Tslot ranging from 150 ms to 200 ms, the collision rates dropped quickly as Tslot

was increased, as shown in Figure 11. Note that, in both ZTC and FTBC packet types, the

same number of information bits per time slot was transmitted. WhenTslot/(Tt+Tmax
p ) ≈ 85

%, the collision rate for ZTC approached 10−3. On the other hand, by only changing the
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Figure 10. Snapshots of UWN scenarios at a given time. Each ring or disc represents an
acoustic wave generated by a transmitter at the center propagating outwards. Bright gray
scale indicates the power received at that point. The maximum communication distance
was D = 5000 m.

encoding technique to FTBC, the network reduced the collision rate to 10−5. This is over

two orders of magnitude improvement in effective throughput of the network, as shown in

Figure 11 (a).

In the second network scenario, we assumed a constantTslot = 200ms, and the packet

collision rate was simulated based on increasing the area that the 100 nodes occupied. The

domination of Tmax
p started to grow as the network area increased. The simulation results

in Figure 11 (b) demonstrates that when Tmax
p became longer than the packet duration, the

packet collision rate increased dramatically for both types of encoding. Nevertheless, the

FTBC outperformed ZTC in all cases. Although the packet collision rate was high as 40-

50% in a large Tmax
p scenario, the network throughput was still a lot higher than that of the

many-to-one network simulated in De et al. (2011) as the transmission rate was as high as
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Figure 11. The packet collision rates in a slotted-Aloha network where Tslot is the duration
of a slot time. Unlike the networking protocol in Figure 9 where Tslot = Tt + Tmax

p , our
simulation chose a Tslot smaller than the sum Tt + Tmax

p .

one packet per time slot. Based on the results in Figure 11, we conclude that network packet

collision reduces as the length of transmitted packets becomes shorter, and the benefit is

most significant when the maximum propagation delay is less than packet duration.

Another underwater network scenario was simulated to demonstrate the bandwidth

efficiency of the FTBC codes compared to the ZTC codes, where 100 IoT devices commu-

nicating with a base station was considered. The base station transmitted 10,000 packets

to a randomly chosen IoT device and each packet contained 64 information bits including

IoT device address, packet number, payload, and a cyclic redundancy check (CRC) bit. The

communication channel was randomly selected from the watermark channel library van

Walree et al. (2016) which were time-varying and frequency selective underwater acoustic

channels measured by real-world ocean experiments. Figure 12 demonstrates two examples

of such channels used in the simulation. The information blocks were encoded by the con-

straint length K = 9 FTBC or ZTC, and the data rate was Rb = 1 kbps. Upon a reception,

an IoT device decoded the packet with the MAP algorithm and checked for any remaining

errors using the CRC. A negative acknowledgement (NACK) was sent back to the base sta-

tion upon error detection and the NACK also served as an automatic repeat request (ARQ).

The NACK packet was a 32-bits packet containing IoT device address, packet number, and
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Figure 12. Two samples of watermark channels used in the simulation.

Figure 13. Comparison of the performance of a network using ZTC, FTBC as their encoding
technique. FTBC completes 10000 packet transmission approximately 180 seconds earlier
than ZTC.

CRC, encoded with the same coding technique. For the simplicity of the simulation, the

NACK packets were assumed to reach the base station with no errors. Upon receiving the

NACK, the base station re-transmitted the requested packets until ARQ was received. The

total time in successfully transmitting the 10,000 information packets, as well as the NACK,

or ACK, is demonstrated in Figure 13, where the network utilizing the FTBC code took less

time to reach the throughput than the ZTC codes and over 11% time savings was achieved,

which translated to 11% improvement of network efficiency.
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5. UNDERWATER EXPERIMENT RESULTS

An ocean experiment, called SECOMM2017, was conducted in the Atlantic ocean

during Oct 4-14, 2017 to test the proposed tail-biting convolutional codes. The experiment

site was on the eastern US continental shelf in a 10 × 10 km2 area centered at 39.33◦ N

and 72.88◦ W. Teledyne Benthos ATM-885 MF (16-21 kHz) Subsea Modems were used

for transmission and reception. The receiver was anchored about 100 meters above the sea

bottom and 40 meters beneath the sea surface. The transmitter was slowly towed on a ship

at a speed of a few Knots. The transmit modem was a few meters below the sea surface,

and the sea state was calm. The Tx - Rx separation was approximately 1-2 km. Meanwhile,

another unwanted transmitter anchored 0.2 km away from the receiver, which was not part

of our experiment, was sending sporadic interference signals during the experiment.

The structure of the transmitted data packets is shown in Figure 14, where each

data block length frame consisted of a head linear frequency modulation (LFM) chirp

signal labeled as LFMB, followed by an equal number of data blocks coded with ZTC,

DTC, and FTBC separated by gaps. The number of blocks for L = 12,25,32,64,512 were

N = [80,40,32,16,2] so that the number of randomly generated bits between each chirp

is close to 1000 bits. The gaps length was Ngap = 120 symbols, Tgap ≈ 47 ms, to avoid

inter-block interference under highly dispersive UWA channels. The receiver also used the

gap before each block to estimate the noise spectrum and compute the SNR. The chirp LFM

signals served multiple purposes, such as delimiter of frame start, coarse synchronization,

and Doppler shift estimation.

Figure 14. Structure of Transmitted Data Packets.
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Different codes and modulation schemes were designed for the experiment. Unfor-

tunately, due to various physical constraints, only two test cases recorded valid data. One

was the frame with constraint length K = 6 and code rate of R = 1/3, another was K = 9

with R = 1/2. Both cases used the On-Off Keying (OOK) modulation scheme. OOK has

the advantage in IoT applications in that it simplifies the carrier demodulation without the

need of carrier phase synchronization. The SNR performance of OOK would be slightly

lower than the BPSK, but the synchronization overhead is reduced which further shortens

the packet length. The generator polynomials used in these two cases wereG6 = [75,53,47],

and G9 = [753,561], respectively. The data block lengths that are fed to the encoders are

the same as simulation. The coded data rate was Rb = 2560 bps, and the baseband signal

was pulse-shaped using a square-root-raised-cosine (SRRC) filter with a sampling rate of

fs = 10240Hz. Finally, the baseband waveformwasmodulated by themodemwith a carrier

frequency of fc = 18560 Hz, and a bandwidth of BW = 4160 Hz. The LFMB frequency

range was fc − Rb < f < fc + Rb Hz.

The examples of the received passband signals are shown in Figure 15, after being

passed through a bandpass filter centered at fc. An impulsive interference, also shown in

Figure 15, corrupted some of the recordings. Those portions of the received signal were

identified and discarded from the data analysis.

Figure 15. Received passband signals after a bandpass filter. The impulsive interference
was from an unintended transmitter near the receiver.
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Received signal is then demodulated non-coherently, by passing through an envelope

detector and an square-root raised cosine (SRRC) filter. Frame and symbol synchronization

was achieved by correlating the LFM with the received signal to find the starting point of

the data stream. Figure 16 shows a normalized output of the correlation, where Figure

16(a) shows the peaks for the whole frame with each peak indicating the start of a new data

block. This synchronization method was rather coarse and was very sensitive to multipath

fading channels since multiple correlation peaks were produced and the first peak might be

lower than the later peaks under non-minimum phase channels, as shown in Figure 16(b).

Fine synchronization for symbols was achieved by the minimum mean square error method

using the first block of data, as shown in Figure 16(b). The highest peak in Figure 16(b)

was the start of the frame and the first symbol.
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Figure 16. Correlation of LFMB with received OOK signal (a) coarse synchronization in a
frame; (b) fine synchronization via MMSE.

The multipath channel impulse response of one block was estimated using the

transmitted data. A 3D bi-time representation of channel magnitude response is depicted in

Figure 17 for a complete transmission frame. It is clear that the total multipath duration was

about 50 ms, and the time variation of the channel was severe with an estimated maximum

Doppler frequency of 3.1 Hz, which yields to 50% coherence time of Tc =
√

9
16π f 2

m
≈ 136

ms Rappaport (2001).
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Figure 17. Bi-time representation of the fading channel magnitude response.

Zooming in to 20 seconds of channel impulse response, the amplitude response

of the multipath channels are shown in Figure 18, where each subplot was the estimated

channel with a time lapse of 2 seconds apart. The strong multipath arrivals were mostly

in the first 15 – 20 msec of the channel impulse response with 3-5 high-amplitude paths,

followed by a small cluster at 40 msec, then another low-amplitude cluster at 60 - 80 msec.

The strong paths in the first cluster may be separated by a few msec in time, which allowed

the short data blocks to be received without ISI. This observation confirms that the BER

performance of short blocks may be better than those of the long blocks when no channel

equalizer was used.
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Figure 18. Channel impulse response (amplitude response) estimated form ocean experi-
ment.
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The down-sampled baseband signals were decoded by CVA and TC-MAP decoders.

Finally the decoded bits are compared to the transmitted data to estimate the BER. The total

numbers of processed bits are listed in Table 2 for the (2,1,8) code and (3,1,5) code. The

error probabilities are plotted in Figure 19. Without channel equalizer, the short data

blocks performed very well in both subfigures. With the (3,1,5) codes, the ZTC achieved

3.5×10−3,7×10−3,1.5×10−2 for L = 12,25,32, respectively. The FTBC short data blocks

also achieved comparable error rate with 6× 10−3,1.1× 10−2,1.6× 10−2 for L = 12,25,32,

respectively. The DTC clearly suffered from performance loss with the short data blocks

with 1.5×10−2,1.8×10−2,2.5×10−2 for L = 12,25,32, respectively. For longer data blocks

such as L = 64 and L = 512, the three convolutional coding schemes performed similarly

with high errors due to ISI caused by the severe multipath channels. Similar results are

shown for the (2,1,8) codes.

Table 2. Total number of processed bits for each scenario.

12 25 32 64 512
K = 9,R = 1/2 26880 35000 37888 47104 44032
K = 6,R = 1/3 19200 19000 29696 27648 27648

With the estimated noise power at each block, the signal to noise ratio (SNR) of

each data block was estimated and the blocks with similar SNRs were grouped together.

The average SNR of each group was then calculated and plotted as the x-axis for the BER

plots in Figure 20 and Figure 21, which are BERs for the (2,1,8) code and the (3,1,5) code,

respectively. In all cases, the ZTC had the best performance, compared to other techniques,

especially for the very short data blocks of L = 12. With SNR as low as 2-6 dB, the length

12 ZTC achieved BER below 10−2 in both (2,1,8) and (3,1,5) codes. The FTBC codes

performed moderately worse than the ZTC but a lot better than the DTC. It is interesting to

note that, for the (3,1,5) FTBC codes, the length 25 case performed better than the length

12 case at almost all SNRs. This was because the data block length of the L = 25 FTBC

was short enough to avoid most multipath interference and long enough to obtain error
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Figure 19. Total bit error performance comparison. (a) CVA results for (2,1,8) code, (b)
TC-MAP results for (2,1,8) code, (c) CVA results for (3,1,5) code, (d) TC-MAP results for
(3,1,5) code.

correction capability. In all cases, the shorter the packet the better the performance. The

reason for that is, the shorter packets were less contaminated by the extended multi-path

property of UWA channel.

6. CONCLUSION

In this paper, we proposed a new tail-biting circularMAPdecoderwith low computa-

tional complexity, and evaluated its performance for tail-biting convolutional codes for very

short data blocks in underwater acoustic communications for both PHY, and MAC layers.

The lengths of the data blocks are 12, 25, 32, 64 and 512, and the (2,1,8) and (3,1,5) FTBC
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Figure 20. TC-MAP BER curves with estimated SNR for (2,1,8) code from ocean experi-
ment. (a) L = 12, (b) L = 25, (c) L = 32, (d) L = 64.

codes are compared with the ZTC codes. The ocean experimental results show that without

channel equalization, FTBC codes with short packet lengths not only can perform similar

to ZTC codes, in terms of BER, they can outperform the ZTC codes in terms of collision

rate, and bandwidth utilization in a massive network of battery powered IoT devices, that

cannot afford to use complex and power-consuming equalization algorithms. These results

provide interesting suggestions that the short data blocks may suffer less from inter-symbol

interference, induced by the multipath fading channels, and form packet collision; and a

strong channel code alone can be effective for communication of short data blocks over

underwater acoustic channels.
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Figure 21. TC-MAP BER curves with estimated SNR for (3,1,5) code from ocean experi-
ment. (a) L = 12, (b) L = 25, (c) L = 32, (d) L = 64.
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ABSTRACT

This paper expands the passband data reuse approach, first proposed by Deane,

Preisige and Singer in UCOMM 2018, to utilize the underwater acoustic (UWA) wireless

communication signals acquired in a real-world experiment as a tool for evaluating new

coding and modulation schemes in realistic doubly spread UWA channels. The passband

data reuse approach first finds the differences in coding and modulation schemes between

the original experimental scheme and the new scheme under test (SUT), then modifies the

baseband signals in both the transmitter and receiver while keeping the passband transmit

and receive signals unchanged. This paper provides detailed procedures of the passband

data reuse method for testing the SUTs that change or add error correction coding, change

bit to symbol mapping (baseband modulation) schemes with a set of original experimental

data. The passband data reuse approach is compared to three existing approaches: one is

the direct field experiment approach which is costly; one is the baseband direct channel

playback approach that uses the estimated baseband equivalent channel impulse response

(CIR) from an experimental data, and the third one is the computer channel simulation

approach that generates baseband fading CIRs with Wide-Sense Stationary Uncorrelated

Scattering (WSSUS) approximation. The performance of the passband data reuse approach

is similar to the direct field experiment approach; while the performance of the baseband

direct channel playback approach is similar to the WSSUS channel simulator approach. We

conclude that under specific conditions, the time-varying and non-stationary characteristics
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of the real-world UWA channels are preserved by the passband data reuse approach and

the performance of the new SUT evaluated by the passband data reuse approach can be

considered as under the similar conditions as the original experiment scheme.

Keywords: Acoustic communications, field experiment, data reuse, underwater fading

channels, non-stationary scattering, channel modeling.

1. INTRODUCTION

Underwater acoustic (UWA) communications channels lack explicit models that

could capture the underlying physics of ocean telemetry and characterize the time vary-

ing doubly spread nature of channels (Kilfoyle and Baggeroer, 2000). Therefore, many

researchers in the field of UWA communications still require sea-going measurement cam-

paigns to evaluate their transmitter and receiver algorithms (van Walree et al., 2008).

Holding these campaigns to acquire field data is often expensive, time consuming, and

prone to many types of failures (Deane et al., 2018). Besides these difficulties, the acquired

field data are often privately protected in individual research groups, and most probably the

data will be left unused after the funded research activity is completed. However, due to the

lack of readily and publicly available channel models, joining the sea-going campaigns has

remained the only opportunity that a researchers could evaluate newly proposed algorithms

(Stojanovic and Preisig, 2009).

To reduce the cost of extensive field experiments, researchers in the field of UWA

communications have proposed many models and simulators for acoustic communication

channels in the past decades. Often the proposed models include a few assumptions,

approximations, and simplifications over key parameters of acoustic waves propagation

in the ocean (Bjerrum-Niese and Lutzen, 2000; Kilfoyle and Baggeroer, 2000). These

parameters include, but are not limited to, wide or quasi-wide sense stationarity, sound

speed profiles, sea floor compositions and roughness, time-delay, frequency dispersion,
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noise or multipath characteristics, etc. These assumptions, although applicable to a specific

case or scenario, often lack the knowledge for prediction and evaluation of true long-term

ocean channel models.

Alternatively, the baseband direct channel playback approach is proposed in (van

Walree et al., 2008), which uses the baseband equivalent channel impulse response (CIR)

estimated from some original experimental signals to replace the computer simulated CIRs.

The SUT is first demodulated to baseband and convolved with the estimated CIRs, then

re-modulated to the passband to yield the received signals of the SUT. This approach may

capture the time-varying nature of the CIR by updating the adaptive estimation in a fine

time scale, but still suffers from the fact that the true passband channel was not experience

by the SUT but a Wide-Sense Stationary Uncorrelated Scattering (WSSUS) approximation

of the channel.

Recently, an interesting approach was proposed by Deane, Presig and Singer (Deane

et al., 2018) to preserve the passband transmitted and received signals from a field exper-

iment, but modify the baseband signals to test the SUT by finding the difference between

the original baseband signal and the SUT at the transmitter and then add the difference

in the received baseband signals. The authors call it post-experiment modification. We

rename this approach passband data reuse in this paper. While the work in (Deane et al.,

2018) described hard decoding and symbol detection schemes of the passband data reuse

approach, we provide detailed procedures for the receiver soft decision decoding, soft sym-

bol detection, and Turbo equalization. We also evaluate the passband data reuse approach

against the direct field experiment approach using SPACE 08 experimental data, as well

as the direct channel playback approach, and the computer channel simulation approach.

Our results show that the passband data reuse approach performed similarly to the field ex-

periment approach, allowing the researchers to reuse the recorded signals from previously

successful experiments to evaluate different communication signaling schemes in an actual

real-world scenario, but with fractional cost of the field experiment. In comparison, the
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direct channel playback approach performed similarly to the computer simulation approach.

The SUT under the simulated channels and direct channel playback method achieved better

BERs than the passband data reuse approach and the field experiment approach, indicating

significant performance gaps.

2. EXISTING CIR SIMULATION AND DIRECT CHANNEL PLAYBACK

2.1. COMPUTER SIMULATION MODELS

UWA channel simulation may be achieved by two methods: one is acoustic wave

theory-based simulation; one is the stochastic CIR generation. The wave theory-based

simulation utilizes ray tracing to model the physical wave propagation from the transmitter

to the receiver. The related tools include Bellhop (Porter, 2019), Karen (Peterson and Porter,

2013), and parabolic equation method (Song et al., 2011), etc. The key computation of

ray-tracing models is the integration of the ray approximation to the acoustic wave equation

with respect to time. The eigenrays represent the paths through the sound channel from

the source to a receiver by tracing the rays radiating from the source (Peterson and Porter,

2013). The time varying ray-tracing algorithms simulate channels by providing a complex

valued amplitude Ci(t) to reflect the varying phase changes regarding each ray interacting

with sea floor and sea surface. The delay time τi expresses the observed channel by the

receiver for each eigenray i = 1, ...,N . Then the observed channel by the receiver can be

written as the sum of the N eigenrays (Siderius and Porter, 2008) given by

y(t) =
N∑

i=1
Ci(t)x(t − τi).

The ray-tracing based simulator has the advantage of being able to map ocean environment

parameters, such as temperature, salinity, wind, air bubbles, and sound profiles, etc., into the

channel responses. It is also capable of simulating shadow zones in underwater channels.
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However, the wave theory-based computer simulators suffer from high computational com-

plexity if time-variation and randomness are incorporated in the simulation. The stochastic

CIR simulators include the sum of sinusoids method (Zheng and Xiao, 2003), the Markov

chain method, and the Doppler spectrum filtering method (Qarabaqi and Stojanovic, 2013).

Experimental channel measurements demonstrate different distributed behaviours such as

Rice, or Rayleigh (Chitre, 2007), or compound K-distributed (Yang and Yang, 2006) highly

dependent on the environment. Therefore, computer simulation models for these probabil-

ity distributions of fading envelops are also developed. The power density spectrum of the

fading process is the standardized U-shape Doppler spectrum which is derived from the

WSSUS assumption. The computer simulation approach has the advantage of generating

CIRswith independent or correlatedmultipath andDoppler spread properties, as well as low

computational complexity. However, unlike in a terrestrial radio channel where theWSSUS

assumption is well accepted, underwater channel models often experience non-stationary

scattering. It is difficult to find an accepted statistical model of acoustic communication

channels (Stojanovic and Preisig, 2009).

2.2. DIRECT CHANNEL PLAYBACK

In contrast to the pure computer simulation, the direct channel playback simulators

estimate the time-varying CIRs using field experimental data (van Walree et al., 2017).

Given a set of ocean experimental data, the transmitted signals are treated as channel probe

signals and received signals are carrier demodulated to baseband. The baseband equivalent

CIRs are estimated with shifted time windows of the received signals to yield time-varying

CIRs h(τ, t) which is a function of delay time τ, and time t. To apply the direct channel

playback to a SUT, the passband signal of the SUT is first demodulated to baseband,

then convolved with the baseband CIRs, and re-modulated back to passband. Hence, the

simulator replays the field experimental channel through a tapped delay line or FIR filter
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with taps Ts seconds apart,

y(t) =
K∑

k=0
bk(t)x(t − kTs) (1)

where Ts is the sampling interval and the tap gains bk(t) can be obtained by

bk(t) =
∫ ∞

−∞

h(τ, t)sinc
(
τ − kTs

Ts

)
.

This is obtained based on the assumption that the waveform is band-limited with bandwidth

BW and Ts < 1/BW . However, h(τ, t) is tracked at a lower rate and the simulator linearly

interpolates the channel taps between each tracking for simulation purposes (van Walree

et al., 2008). Thus, the time varying underwater acoustic channels are considered quasi-

WSSUS, meaning that the channel behaves like a WSSUS channel for short and restricted

time intervals. As long as the channel tracking rate is well above its fading rate, the direct

channel playback approach works fine (Socheleau et al., 2015; van Walree et al., 2008).

Figure 1 demonstrates the block diagram of the direct channel playback simulator.

Figure 1. Block diagram of direct channel playback simulator. PRBS probe signals is used
to estimate the time varying channel impulse response using matched filtering method to
be used in channel playback simulator.

The direct playback simulators enjoy the low computational complexity and the

flexibility of using different ocean experimental data. On the other hand, the drawback

arises from the fact that the simulated channel is quasi-WSSUS, especially when the channel

tracking rate is a lot lower than its sampling rate, then the simulators upsample the measured
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channels and linearly interpolate the channel taps from one tracking to another. We will see

in Section 4 that, this method performs, on average, 10 dB better than the field experiment

approach, thus cannot fully represent the dynamics of a real-world underwater channel.

3. PASSBAND DATA REUSE

Consider a general Single-Input Single-Output (SISO) underwater acoustic commu-

nication system illustrated in Figure 2. In the original experiment, a bit stream bn generated

from a source is passed through the forward error correction encoder and the interleaver to

generate the cn bit stream. Then, the coded bits in cn are grouped and mapped to symbols

via anM-ary digital modulation scheme. Finally, the symbols are upsampled, pulse-shaped,

and modulated with the carrier e j2π fct . The real part of the modulated output is the signal

x(t) that is transmitted in the original experiment.

In order to use the signals received in the original experiment and test new coding

algorithms, a different bit stream b′n is generated from a random source, encoded and

interleaved by by the new coding/interleaving algorithms of the SUT to generate c′n. At this

stage, the mapping between c′n and cn bit streams must be obtained to yield mn in Figure

2. This can be achieved by passing the two bit streams through an XOR block, as long as

length(cn) ≥ length(c′n).

A general signal flow diagram of the receiver architecture is demonstrated in Figure

3, to enable the reuse of the passband field experimental data. Let y(t) be the received

passband signal in the original experiment. It is first demodulated via the commonly-

used algorithms, including bandpass filtering, carrier demodulation with e j2π fct , matched

filtering downsampling, and possibly channel equalization. The soft de-mapper calculates

the log-likelihood ratio (LLR) of each individual bit from the symbols of the original

experiment, i.e. LLR(ĉn). At this stage, a Soft XOR block is proposed to convert the

LLR(ĉn) to LLR(ĉ′n) designed for post experiment. This block uses the mapping mn
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obtained in the transmitter to calculate the LLR(ĉ′n) by

LLR(ĉ′n) = (−1)mn LLR(ĉn) (2)

Equation (2) enables the utilization of soft-output soft-input algorithms such as turbo

equalization andMAP decoding by reserving the confidence in the output of soft de-mapper

LLR(ĉn), and just changing the sign to map the LLR(ĉn) to LLR(ĉ′n). After the LLR of the

SUT is obtained, the de-interleaver and the decoder of the SUT are used to process the post

experiment data and evaluate the performance of the SUT.

Figure 2. Block diagram of transmitter. Signal flow is demonstrated for original experiment
and passband data reuse. In this diagram the original and post experiment signal flow are
different in source, encoder, and interleaver blocks.

Figure 3. Receiver block diagram and signal flow for passband data reuse.
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Common bit-to-symbol mapping used in wireless communications are PSK (Phase

Shift Keying) and QAM (Quadrature Amplitude Modulation). In scenarios where lower

order modulation is desired than what is available in the original experiment this procedure

can be used in combination with constellation reduction (CR) block, demonstrated in Figure

4, where an 8-PSK is mapped to a QPSK (Quadrature PSK).

Constellation reduction block combines the gray coded neighboring symbols that

contain a number of common bits to generate a new symbol that could represent all the

symbols in their region. An M-PSK mapping scheme is written as

sn = exp
(
j
(
2πn
M
− φ0

) )
, n = 0,1,2, ...,M − 1 (3)

where φ0 is the initial phase offset of the constellation. CR block can reduce a higher order

M-PSK to a lower order M’-PSK, by

s′n = exp
(
j
π

M
(−1)

⌊
∠sn−θ

⌋
M ′

π

)
sn (4)

where θ = π/M − φ0.

An example of 8PSK constellation points generated by (3) and reduced to QPSK

using (4) is demonstrated in Figure 5. In this constellation, the least significant two bits that

are common between each neighboring symbols decide the new QPSK symbol regions.

Figure 4. Transmitter block diagram and signal flow for constellation order reduction post
experiment.
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Figure 5. Phase shift keying constellation reduction. In this figure an 8PSK constellation is
reduced to QPSK.

Constellation points in an M-QAM mapping scheme can be obtained by

sn =

log2
√

M∑
m=1

√
M

22m−1 exp
(
j
π

4
(
4b2m−1 + 2b2m + 1

) )
(5)

where the bs are the log2 M bits grouped together to generate the symbol sn and log2
√

M ∈

Z. Equation (5) describes the M-QAM constellation points as a summation of log2
√

M

vectors rotating in log2
√

M circles with radius proportionate to
√

M/22m−1. Figure 6

demonstrates the generation of 64-QAM constellation points using (5). The CR block can

reduce a higher order M-QAM to a lower order M′-QAM by (6) where q = log2
√

M/M′.

After Constellation is reduced, it is necessary to obtain the mapping pn between the

previous higher order modulation symbols to the new symbols that contains the phase and

amplitude offset information by pn = s′n/sn, demonstrated in Figure 4. Using this mapping,

the random phase and amplitude offsets can be removed from the received signal right

before equalization, as demonstrated in Figure 7. New symbols s′n generated as a result of

constellation reduction have to be de-mapped into bits, in order to obtain the mapping mn

between the new bit stream and the c′n stream, generated for post experiment using the XOR

operation.



46

-8 -6 -4 -2 0 2 4 6 8

Real

-8

-6

-4

-2

0

2

4

6

8

Im
a

g

Figure 6. Quadrature amplitude modulation constellation order reduction. In this figure a
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s′n =
(
sn −

log2
√

M∑
m=log2

√
M−q

√
M

22m−1 exp
(
j
π

4
(
4b2m−1 + 2b2m + 1

) ))/
2q (6)

4. PERFORMANCE RESULTS AND ANALYSIS

In this section we validate the idea of reusing previous underwater acoustic com-

munications experiments to test new algorithms designed for transmitter and receiver. We

also compare this method to direct channel replay simulators to see how accurately each

method can represent real-world underwater acoustic channel scenarios.

Recorded signals from an undersea trial of SPACE08 (Tao et al., 2010) are used to

validate the idea of reusing previous underwater acoustic communications experiments in

order to simulate real-world underwater acoustic channels. We first evaluate the bit error

rate performance of the original experiment to have a common ground to compare other
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Figure 7. Receiver block diagram and signal flow constellation order reduction post exper-
iment.

coding and decoding scenarios. We then use the method proposed in this paper to test four

different post experiment scenarios. Finally, we compare the results with the outcome of

direct channel playback simulator.

The undersea trial, SPACE08, was conducted at the coast of Martha’s Vineyard,

Edgartown, MA, in October 2008. In this experiment, convolutional code with constraint

length 4 and code rate of 1/2, combinedwith a random interleaverwas used on the transmitter

side. Total of 30000 symbols was generated for each digital baseband modulation scheme,

i.e. QPSK, 8PSK, 16QAM, with symbol period of Ts = 0.1024 ms, and the carrier

frequency was fc = 13 kHz, with sampling frequency fs = 39.0625 kHz. The single carrier

modulation frame structure, shown in Figure 8, was adopted for transmission, where the

data frame consisted of a header, three data packets, and a tail. The header and tail of the

transmitted signal were LFMB and LFME, respectively, each having a 1000-symbol length

of linear frequency modulation (LFM) signal surrounded by some gaps. The header and tail

were for Doppler estimation, frame synchronization, and carrier synchronization purposes.

For receiver block diagramwe have adopted a channel-estimation based turbo equal-

izer (Tüchler and Singer, 2011) (CT-TEQ), shown in Figure 9. This receiver incorporates

improved proportionate normalized least mean square (IPNLMS) as channel estimation
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Figure 8. Transmitted signal frame structure in space08.

method combined with maximum a Posteriori (MAP) decoder to boost the performance of

the equalizer (Yang and Zheng, 2016), demonstrated in Figure 9. This equalizer explicitly

estimates the channel coefficients using pilot sequence and then adapts to changes in channel

condition while decoding the information bits (Tao et al., 2010).

Figure 9. Turbo equalizer receiver block diagram and signal flow.

A simulation was designed to compare the performance of direct channel playback

simulator and actual signal transmission. Rician channel with K f actor = 1.5, and max-

imum Doppler shift of 2 Hz was used with the multipath properties illustrated in Figure

10 with a 3 dB loss associated with each bottom reflection. Same generated channel is
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used in two ways. First, a pseudorandom binary sequence (PRBS) signal is used as a probe

signal. Passband BPSK signal with symbol interval of Tsym = 0.1024 ms, and the carrier

frequency was fc = 13 kHz, with sampling frequency fs = 39.063 kHz is generated using

the probe signal and passed through the generated Rician channel. In order to estimate

the time varying impulse response (TVIR) of the channel, to be used in direct channel

playback simulator, the received signal is demodulated to baseband and matched filtered

by the baseband representation of PRBS signal. Figure 10 illustrates a sample estimated

impulse response and doppler spectrum of channel. Then the desired transmission signal

is fed to the simulator along with the estimated TVIR to generate the received signal. In

the second way, the desired transmission signal is passed directly through the same Rician

channel. The packet error rate performance comparing these methods is shown in Figure

10(d), where the direct channel playback simulator demonstrates better BER performance

than experimental evaluation and the passband data reuse. This indicates that the direct

channel playback approach predicts the upper bound of the performance.

In order to perform the direct channel playback simulation the coherence time of all

received packets was estimted to be approximately 0.21 < Tc < 0.44 seconds in worst and

best cast scenario. Then channel was assumed quasi-WSSUS and tracked every 30 ms and

the impulse response is estimated usingMMSE algorithm based on the transmitted baseband

waveform. A sample estimated channel impulse response is shown in Figure 11. The replay

filter upsamples the tracking rate of the estimated channel to match it to the sampling

rate of the received signal and then the channel variation between each tracking is linearly

interpolated. Comparing the original experiment results with direct playback simulator

results, demonstrated in Figure 12 for QPSK, 8PSK and 16QAM, respectively, shows that

this method does not capture all the effects of a UWA channel and BER performance is

unrealistically better than the original experiment.
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Figure 10. Multipath properties of underwater acoustic channel generated for direct play-
back simulator for a system operating near bottom of the sea. (a) overall magnitude response
of channel, (b) Time varying Rician channel impulse response generated for simulation,
(c) Doppler spread of the channel, (d) Packet error rate comparison of the simulated Rice
fading channel with direct channel playback simulator of same channel.

To validate whether the proposed method could simulate a realistic UWA channel

two post-experiments were designed in which convolutional encoders were used as an FEC,

like the original experiment. However, post-experiment 1 uses convolutional encoder with

constraint length 6 and post-experiment 2 uses one with constraint length 3. It is expected

that post-experiment 1 will have a better BER performance and post-experiment 2 will have
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Figure 11. Multipath properties of underwater acoustic channel for SPACE08. (a) Estimated
time varying impulse response, (b) Estimated Doppler spread of channel
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Figure 12. Packet error performance comparison of SPACE08 experiment with channel
playback simulator using turbo equalizer. In all three iterations of detection channel play-
back simulator demonstrates better performance than original experiment.
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slightly worse BER performance than original experiment. Figure 13 which demonstrates

the result of turbo equalization algorithm after 3rd iteration for QPSK, 8PSK, and QAM

16, respectively, confirms our expectations.
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(c) 16QAM

Figure 13. Packet error performance comparison of SPCAE08 experiment and four post
experiments designed to test the passband data reuse.

Another two post-experiments were designed with completely different types of

FECs. Post-experiment 3 uses LDPC encoder and decoder in the transmitter and receiver,

respectively. The LDPC code can be denoted as (n,wc,wr) = (nSym log2 M,6,7) is used

in this test, where n is the code length, wc is the column weight, and wr is the row weight,

nSym = 30000 is the total number of symbols, and M is the order of mapping scheme.

BER performance for post-experiment 3 is shown in Figure 13.
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The post-experiment 4 tests a turbo encoder made out of a parallel concatenated

coding scheme with constraint length 4, code generator [13, 15], and feedback connection

on polynomial 13. The receiver uses the block diagram demonstrated in Figure 3 with

the iterative decoding scheme that uses the a posteriori probability (APP) decoder as the

constituent decoder, an interleaver, and a deinterleaver. BER performance for the post-

experiment 4 are also shown in Figure 13 after 3 iterations of decoding.

To test whether the proposed method of reusing underwater acoustic signal can

also enable the possibility of constellation reduction, the 8PSK and 16QAM packets are

used and reduced to QPSK and 4QAM using equations 4, 6, respectively. A new random

bit stream is generated. The encoding and interleaving algorithms used are the same as

the original experiment. The mappings, mn, between the new code stream c′n and the

code stream generated by constellation reduction, and pn, between original transmitted

symbols and reduced constellation symbols are obtained. The random phase and amplitude

offsets are removed in the receiver right before the turbo equalization stage. In the turbo

equalizer block diagram the higher order soft mapping and de-mapping are replaced by

the desired lower order one and finally the estimated bit stream is decoded to compare the

BER performance. Figure 14 demonstrated the improved BER performance of 8PSK and

16QAM after reducing to QPSK and 4QAM mapping scheme, respectively.
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Figure 14. Packet error performance of SPACE08 experiment and reduced constellation
order version of SPACE08.
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5. CONCLUSIONS

In this paper we explored the possibility and proposed methods to reuse recorded

signal from previously conducted underwater acoustic communication experiment in order

to provide a simulator that could test newly proposed communication algorithms in real-

world underwater acoustic channels. BER performance of this method is compared to

the direct channel playback simulators and results show how realistically this method can

simulate real-world underwater acoustic channel conditions compared to the direct playback

simulators.
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SECTION

2. CONCLUSIONS

This dissertation proposes a new efficient and low complexity tail-biting circular

MAP decoder with low computational complexity, and evaluates its performance for tail-

biting convolutional codes for very short data blocks in underwater acoustic communications

for both PHY and MAC layers. The performance evaluation of experimental results show

that without channel equalization, FTBC codes with short packet lengths not only can

perform similar to ZTC codes, in terms of BER, they can outperform the ZTC codes in

terms of collision rate, and bandwidth utilization in amassive network of battery powered IoT

devices, that cannot afford to use complex and power-consuming equalization algorithms.

These results provide interesting suggestions that the short data blocks may suffer less

from inter-symbol interference, induced by the multipath fading channels, and form packet

collision; and a powerful channel code alone can be effective for communication of short

data blocks over underwater acoustic channels

Second, this dissertation proposes novel methods to reuse recorded signal from

previously conducted underwater acoustic communication experiment in order to provide

an underwater acoustic channel simulator that could test newly proposed communication

algorithms in real-world underwater acoustic channels. Packet error rate performance of

the proposed method is compared to the direct channel playback simulators and results

show how realistically this method can simulated real-world underwater acoustic channel

conditions compared to the direct playback simulators.
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