
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2019

Privacy preservation in social media environments using big data Privacy preservation in social media environments using big data

Katrina Ward

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Ward, Katrina, "Privacy preservation in social media environments using big data" (2019). Doctoral
Dissertations. 2797.
https://scholarsmine.mst.edu/doctoral_dissertations/2797

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2797?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2797&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PRIVACY PRESERVATION IN SOCIAL MEDIA ENVIRONMENTS USING BIG

DATA

by

KATRINA JOHANNA WARD

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2019

Approved by

Dan Lin, Advisor
Daniel Tauritz

Jennifer Leopold
Yanjie Fu

Donald Wunsch

Copyright 2019

KATRINA JOHANNA WARD

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following two articles which have been submitted

for publication, or will be submitted for publication as follows, with the first publication

being a journal extension of the author’s previous work:

PAPER I: A Parallel Algorithm for Anonymizing Large-Scale Trajectory Data:

Pages 14-62 have been accepted to ACM Transactions on Data Science 2019.

PAPER II: Risk Estimation Mechanism for Images in Network Distribution: Pages

63-94 have been submitted toACMConference onComputer andCommunications Security.

iv

ABSTRACT

With the pervasive use of mobile devices, social media, home assistants, and smart

devices, the idea of individual privacy is fading. More than ever, the public is giving

up personal information in order to take advantage of what is now considered every day

conveniences and ignoring the consequences. Even seemingly harmless information is

making headlines for its unauthorized use (18). Among this data is user trajectory data

which can be described as a user’s location information over a time period (6). This data

is generated whenever users access their devices to record their location, query the location

of a point of interest, query directions to get to a location, request services to come to their

location, and many other applications. This data could be used by a malicious adversary

to track a user’s movements, location, daily patterns, and learn details personal to the user.

While the best course of action would be to hide this information entirely, this data can be

used for many beneficial purposes as well. Emergency vehicles could be more efficiently

routed based on trajectory patterns, businesses could make intelligent marketing or building

decisions, and users themselves could benefit by taking advantage of more conveniences.

There are several challenges to publishing this data while also preserving user privacy. For

example, while location data has good utility, users expect their data to be private. For real

world applications, users generate many terabytes of data every day. To process this volume

of data for later use and anonymize it in order to hide individual user identities, this thesis

presents an efficient algorithm to change the processing time for anonymization from days,

as seen in (20), to a matter of minutes or hours. We cannot focus just on location data,

however. Social media has a great many uses, one of which being the sharing of images.

Privacy cannot stop with location, but must reach to other data as well. This thesis addresses

the issue of image privacy in this work, as often images can be even more sensitive than

location.

v

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere appreciation and thanks to my advisor,

Dr. Dan Lin, for her support, knowledge, and encouragement during my Ph.D and related

research. I am grateful for her patience which has guided me throughout my research.

Aside from my advisor, I want to express my sincere gratitude to the rest of my

committee: Dr. Daniel Tauritz, Dr. Jennifer Leopold, Dr.Yanjie Fu, and Dr. Donald Wun-

sch. Their comments, suggestions, recommendations, and encouragement have contributed

greatly to my success and I could not imagine having made it without them. My research

went in directions I didn’t imagine because of their questions and guidance and for this I

am grateful.

Finally, I would like to thank the Computer Science Department, including faculty

and staff. They have providedmewith many opportunities to grow as a person and a student.

They have worked tirelessly to make sure I had everything I needed to succeed and I could

not have done it without them.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xii

SECTION

1. INTRODUCTION. 1

2. LITERATURE REVIEW . 7

2.1. PRIVACY PRESERVING TRAJECTORY PUBLISHING . 7

2.2. PROCESSING LOCATION DATA IN PARALLEL . 9

2.3. PRIVACY VS UTILITY . 10

2.4. PRIVACY POLICY RECOMMENDATION SYSTEMS . 10

2.5. PRIVACY BREACH FROM FRIEND-TO-FRIEND SHARING 11

2.6. IMAGE POLICY CONFLICTS . 12

PAPER

I. A PARALLEL ALGORITHM FOR ANONYMIZING LARGE-SCALE TRA-
JECTORY DATA . 14

ABSTRACT . 15

1. INTRODUCTION . 15

vii

2. PROBLEM STATEMENT . 19

2.1. DATA REPRESENTATION . 19

2.2. PRIVACY DEFINITION . 20

2.3. PERFORMANCE METRICS . 22

3. THE PROPOSED MELT . 23

3.1. AN OVERVIEW OF MELT . 23

3.2. ROAD MAP PARTITIONING . 25

3.3. PARALLEL TRAJECTORY ANONYMIZATION 28

3.3.1. Round 1: Trajectory Assignment . 29

3.3.2. Round 2: Pre-Classification. 32

3.3.3. Round 3: Melt . 35

3.4. PRIVACY PRESERVATION WITH WITH VARYING k 38

4. SYSTEM ANALYSIS. 40

4.1. PRIVACY AND UTILITY ANALYSIS. 40

4.2. COMPLEXITY ANALYSIS . 44

4.2.1. Round 1 Analysis . 44

4.2.2. Round 2 Analysis . 44

4.2.3. Round 3 Analysis . 45

4.2.4. Overall Complexity. 45

4.2.5. Comparison to Other Approaches . 45

5. PERFORMANCE STUDY . 46

5.1. EXPERIMENTAL SETTINGS . 47

5.2. EFFECT OF MAP PARTITIONING ON ANONYMIZATION
ACCURACY . 49

5.3. EFFECT OF THE ANONYMIZATION PARAMETER k ON
DATA UTILITY. 50

5.4. SCALABILITY TEST . 53

viii

5.5. EFFECT OFMAP TOPOLOGYON EFFICIENCYANDACCU-
RACY . 55

5.6. EFFECT OF USER DEFINED k ON ANONYMIZATION AC-
CURACY . 57

6. CONCLUSION . 58

REFERENCES . 59

II. REMIND: RISKESTIMATIONMECHANISMFOR IMAGES INNETWORK
DISTRIBUTION . 63

ABSTRACT . 64

1. INTRODUCTION . 65

2. PROBLEM STATEMENT . 68

3. THE REMIND SYSTEM .. 69

3.1. PROPAGATION CHAIN MODELS . 70

3.2. DISCLOSURE PROBABILITY CALCULATION. 74

3.3. PRIVACY HARMONIZATION AMONG MULTIPLE USERS 82

3.4. POTENTIAL ENHANCEMENT. 84

4. EXPERIMENTAL STUDY . 85

4.1. USER STUDY . 85

4.1.1. Setup and Survey . 86

4.1.2. Scenarios. 86

4.2. EFFICIENCY STUDY . 89

4.2.1. Effect of the Number of Propagation Hops 90

4.2.2. Effect of the Number of Friends in the Initial Sharing List 91

4.2.3. Effect of the Sharing Convergence Speed 91

5. CONCLUSION . 92

REFERENCES . 93

ix

SECTION

3. CONCLUSIONS . 95

APPENDICES

A. AUTHOR PUBLICATIONS LIST . 96

B. MELT COMPLEXITY ANALYSIS EXPANDED . 98

REFERENCES . 102

VITA . 107

x

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. (a)Naivemap partitioning approaches break up trajectories into small segments
which will lower data utility.(b) Ideal partitioning to keep trajectories whole. 18

2. An Example of the Inference-Route Problem with u4’s location inferred. 21

3. An overall representation of the architecture of our approach. 24

4. In the second reducer phase, instead of using one large c-Tree, we break
off similar branches into smaller chunks to benefit from map-reduce’s batch
processing in the reducers. 34

5. At a k value of 0.5% we are no longer able to identify the original trajectories
with at least 65% confidence. 41

6. Comparison of K vs Utility showing they are measured differently, and there-
fore cannot be immediately assumed to be inversely proportional. 42

7. Anonymization accuracy when dividing the map into different number of
partitions . 50

8. Anonymization accuracy when varying k . 52

9. The accuracy of the data drops significantly when k represents more than 1%
of the data. 52

10. Effect of data size on anonymization time . 54

11. CPU time comparison on real datasets. 54

12. Effect of data size on anonymization accuracy . 55

13. Effect of map topology on anaonymization time . 56

14. Precision and recall for different map topologies . 56

PAPER II

1. An Example of Privacy Breach Due to Image Propagation . 65

2. An Overview of REMIND System . 70

3. An Example of Image Sharing Graph . 71

xi

4. Single Photo Propagation Chains . 72

5. A Generic Photo Propagation Model . 74

6. User uo’s Personal Image Sharing Graph . 75

7. Sharing Scenario Case 1 . 77

8. Sharing Scenario Case 2 . 78

9. An Example of Sharing Graph . 80

10. An Example of Probability Serialization. 81

11. Effect of the Number of the Hops . 90

12. Effect of the Size of the Initial Sharing List . 91

13. Effect of Sharing Convergence Speed . 92

xii

LIST OF TABLES

Table Page

PAPER I

1. The number of trajectories and the corresponding file size . 47

2. Real trajectory datasets tested for efficiency . 48

3. Number of trajectories in the anonymization results . 51

4. The anonymization time using the centralized approach . 53

5. Change of anonymization accuracy when using individual k parameters 57

PAPER II

1. User Response to Different Scenarios . 85

2. Real Social Network Datasets . 89

SECTION

1. INTRODUCTION

Since the early 1990’s, social media has grown in popularity and has now become a

significant part of everyday users’ lives. Users are now able to share pictures, their locations,

information about their lives, and other data with hundreds of other users without leaving

their own home. For some, this has enriched lives and connections with people so much that

it is deemed a necessity. This sharing of data has led to new challenges in terms of privacy,

however. Before, when someone shared information, it spread to local communities and

was unlikely to do much harm to that person. Now, however, information shared reaches

hundreds of people in seconds and can spread to millions in a matter of hours. Information

that once was fairly harmless can now destroy lives (7). In addition to social media, smart

phones have risen in popularity and use since their debut in the early 2000’s. Over half

a billion mobile devices were added to networks in 2013 (51). With these phones, users

no longer need to stop at a computer to share with their friends. Instead, they carry their

computer with them, snap pictures and send messages instantly, play social games with

countless people anywhere in the world from any location, and so much more. We are more

connected than ever.

74% of adults use their smart phones to get directions and other information based

on their current location (51). In a survey completed in 2018 (31), nearly all users have at

least one social media account, with many having multiple. 30% of adults with an account

on social media sites say they have at least one of those accounts include their current

location in their posts (61). Even if we ignore hand held devices, as many as 96% of cars

produced in 2013 are built with event recorders that include GPS.

2

Location information can be used by an adversary to track a user’s movements, infer

work locations and other habits, and even locate sensitive targets such as children, elderly,

or government officials (20). As of now, this information is accessed and sold at alarming

rates (6; 18). The immediate solution is to not make location data available at all. This poses

two issues however. First, in order for some convenient applications to work, locations need

to be sent to a server to be part of some sort of analysis. It is difficult to think of a GPS app

functioning without location information. This information produces income revenue to

telecommunication companies. Even though the data can be limited by not being available

to the public, data breaches happen with alarming frequency (10). The frequency in which

locations are collected is also alarming. A politician in Germany went to court to find out

how often and what kind of data was collected by his cell phone company. The results

were staggering. In just a six month period, his coordinates were recorded and stored over

35,000 times (4). Users are becoming increasingly cautious to trust that their data is being

kept safe.

The second reason to keep location data available is that the data is very useful for

analysis and predictions. With a large amount of user trajectory data, we could determine the

best route for emergency vehicles during a specific time period, assist with traffic congestion

prevention, infrastructure and evacuation planning, analysis of social behavior to provide

more conveniences, advertising campaigns, and control of spread of diseases. If the data

could safely be used, it has great potential for both private and public projects.

Solving the challenges of using location information is not a trivial task. The simple

solution to protect users and still use the data is to hide their user id’s and other identifiable

information. The issue, however, is that even data related to the user can be used to identify

them if used together. For example, if we were to hide a user’s name and address from

a dataset and use zip code, birth date, and gender, we would not be able to identify the

user from any of these data categories individually. Many people in an area will share any

single pieces of this information. However, used together, we could infer who the data

3

is taken from. These are called quasi − identi f iers and are not sufficient to protect user

privacy entirely (56). Instead, we would need to completely anonymize all of the data. This

introduces another challenge, the size of the data. Mobile device users generate 7.2 EB of

data every month, and is projected to grow to 49 EB per month by 2021 (51), and most of

the data contains location information. The amount of information is exceeding the data

management and analysis ability of existing traditional database type storage systems (15).

While there has been research conducted to anonymize trajectories to address the privacy

concern considering small data sets, there has been limited work on anonymizing large-scale

datasets. Some of these methods proposed are k-anonymization, spatial-cloaking and data

transformation (1; 4; 8; 16; 17; 19; 20; 22; 35; 39; 40; 41).

Unfortunately, few prior works addresses the scalability issue while keeping the

privacy and high utility of the trajectory data, which is a newly occurring problem brought

by the information explosion, i.e., the current need of dealing with exabytes of trajectory

data. A naive approach to this problem would be to take a centralized approach and simply

write it into a distributed framework such as Hadoop or Spark. However, there are additional

challenges related to the distributed approach that create bottlenecks and significantly slow

down processing. In addition, centralized approaches ported into a distributed environment

often leads to significant errors and data loss, which undermines the need for accurate data

utility (54).

In this thesis, the author presents a novel solution to this problem called MELT

(53; 54). In this work, we present a three round map-reduce algorithm that guarantees strict

k-anonymity on a dataset of user trajectory data in a fraction of the time it takes centralized

approaches. This means that no user will have their data published for use anywhere unless

there are at least k − 1 other users with identical trajectories. The intuition behind this

approach is that if there are 100K users sharing the same trajectory, it will be impossible

to pick a particular person out among them. In order to maintain the utility of the data,

however, we need to retain as many trajectories as possible by performing transformations

4

on the trajectories while also keeping those transformations minimal in order to keep the

data as close to the original as possible. We also need to prevent inference of user identities

through low frequency traveled routes. We present a way to achieve complete anonymity

and maintain high data utility.

As stated earlier users are cautious when trusting their privacy to someone else.

Rather than force every user to depend on a global k value to achieve k-anonymity, users

would be more trusting if they could define their own level of privacy. The author presents

an extension to MELT where we add the capability of users to define their own k value and

base the final result off the more strict requirement (54). We show that this addition requires

alteration of the original algorithm but adds little complexity change and utility loss.

In addition to adding the ability for users to define their own privacy requirement, we

also address the idea of privacy vs utility. In most works, the two are considered inversely

dependent on one another. That is, if we have high privacy, we have low utility and vice

versa. For example, if we want 100% user privacy, we hide all of their data. With no

data published, users are completely protected but there is no data utility as it cannot be

used. However, if we publish all of the user’s data we get 100% data utility, as it all can

be used, but users have no privacy. In spite of this, for all cases in between, the two are

not necessarily dependent. In a recent paper, (52), the authors claim that since privacy

and utility are measured differently and compared to different datasets, the two cannot be

referred to as dependent. Using observations from their work, we analyze our own solution

and show that we maintain both high data utility and user privacy.

User privacy in social media is not limited to location data. Another source of data

sensitivity is user images. Based on a user survey, almost every user using social media

posts images of their personal life (31). With a single image, information about a user’s

home, children, work, or other private information can potentially be leaked. Still, many

users prefer to share their images, though often with only certain people. This has been

addressed in a limited capacity with many social media sites allowing the creation of groups

5

for users to share certain information with, such as family, friends, work, etc. Maintaining

groups can be tedious at best. Within family we can have close family and extended. A user

maywant to share with all family except one person or perhaps to only best friends. Creating

groups to share to the right users can become inconvenient and cause users to not see the

service as easy to use and therefore stop using it or ignore the the privacy implications. In

addition, though images are shared to a specific person, it is often impossible to tell who

that person will share to or who will see the image later. If a user shares a party picture with

her sister, who is married to a person that has a friend who works with the original user,

then that user’s supervisors could see the picture. This may not be in the best interest of the

user. Or perhaps the user shared a picture of her children to her sister who has a friend who

is a friend of someone who may be an unknown predator.

In this thesis, the author presents REMIND, an algorithm designed to calculate the

probability of an image reaching unintended audiences and make suggestions on who to

share an image with to limit the risk that the image will reach those audiences (31). In

addition, it prevents users not in the chosen group from viewing the image based on the

preferences of everyone in the photo. Finally, based on user history and choices, it develops

policies for new images being shared based on who is in the images so that share filtering

becomes automatic and requires little to no user input. Not only does it address the current

user, it addresses everyone in the image. If a user shares a picture of themselves and their

best friend, it considers the policies and restrictions of the best friend as well. Not only do

we protect the privacy of the user, but also other users in the same image and with little

interference from the users. This makes sharing images convenient and maintains their

privacy choices. When combined with social media, users will be able to share their images

without worrying about tedious group sharing policies and their privacy will be protected

in the background.

6

The current growth of social media, mobile devices, and connectivity between

people means user privacy is a concern that will only continue to grow. The work presented

in this thesis is a strong contribution to protecting users while they enjoy these conveniences

while also making use of the data to improve physical safety and improve overall quality

of life. The author demonstrates that there can be a balance between user privacy and data

utility and that instead of fighting against user data being used, we can embrace using the

data safely.

This thesis formally presents two major pieces of work: (i) A Parallel Algorithm

for Anonymizing Large-Scale Trajectory data which includes earlier work presented at the

Mobile Data Management conference as MELT: Mapreduce-based Efficient Large Scale

Trajectory Anonymization, and (ii) REMIND: Risk Estimation Mechanism for Images

in Network Distribution. In addition, as summarized in Appendix A, these works are

supplemented by additional publications by the author.

7

2. LITERATURE REVIEW

2.1. PRIVACY PRESERVING TRAJECTORY PUBLISHING

There have been many centralized approaches for trajectory anonymization. Most

of them (17; 19; 22; 35; 39; 40; 41) output anonymized trajectories in the form of cloaking

regions or centers of clusters. For example, in (19), the spatial-temporal cloaking technique

is applied to generate cloaking regions covering segments of trajectories. In (1), Abul et

al. consider a trajectory as a cylindrical volume where the radius represents the location

imprecision. They then perturb and cluster trajectories with overlapping volumes to ensure

that each released trajectory volume encloses at least k − 1 other trajectories to achieve

k-anonymity. Similarly, in (35), each trajectory is an ordered set of spatio-temporal 3D

volumes. In (34), Monreale et al. cluster trajectories and transform them into a sequence of

centroids of Voronoi cells. In these approaches, the anonymized trajectories do not follow

the road network constraints. They can be located even in the middle of two parallel roads,

and hence, are not beneficial for traffic analysis on individual roads, which our approach

aims to achieve. Also, GPS systems are becoming more and more accurate. A cellphone

can tell a person’s location within a few feet, making methods such as these unusable in

practice.

In (11), trajectories are clustered based on a distance function and then a location time

triple in an anonymized trajectory is replaced by an existing triple with close proximity in the

original trajectory to satisfy k-anonymity. However, two triples, though close in proximity,

may belong to two different roadsmaking it easy for the adversary to identify fake trajectories

given that the road map is publicly known. In (1), Abul et al. used a coarsening strategy

which removes one or more spatial points in a trajectory to achieve anonymization. An

anonymized trajectory may contain disconnected paths. This is different from our approach

8

which preserves continuous trajectories based on road-network information. Similarly, in

(8), Chen et al. adopt a greedy algorithm to suppress locations in the trajectories to achieve

anonymity. However, using suppression alonemay decrease the utility of the anonymization

results. They did not provide any experimental study to prove the effectiveness of the

approach. Unlike the previous works which are based on the similarity of trajectories,

Yarovoy et al. (56) group trajectories based on so-called quasi-identifiers, which are hard

to be selected in practice. Anonymization using these quasi-identifiers is nearly impossible

as knowledge of more than one of these can lead an adversary to infer information about a

user.

Rather than representing trajectories as a set of coordinates, some works (34) repre-

sent trajectories as landmarks or locations of interests. However, these kind of trajectories

provide mainly moving patterns rather than real trajectories as considered in our work. In

addition, a fewworks (1; 8) make the assumption that attackers have certain prior knowledge

and take such prior knowledge as input for anonymization, while our anonymization is more

general and does not need such assumptions.

Finally, we would like to discuss the more closely related work (20; 38; 40) which

generate anonymized trajectories following the road-networks. In (38), Pensa et al. proposed

a prefix-tree based anonymization algorithmwhich guarantees k-anonymity of the published

trajectories in a way that no trajectories with support less than k will be published. Later,

Gurung et al. (20) identified a so-called inference-route problem in the anonymization

results produced by (38), and proposed an improved anonymization algorithm that achieves

stronger privacy guarantee. Our proposed parallel trajectory anonymization algorithm is

developed based on this latest centralized trajectory anonymization strategy (20) while

addressing new challenges raised by the scalability and the MapReduce technique. In

(39; 40; 41), Poulis et al. have proposed a cluster based anonymization which is similar, but

they do not address scalability and also suffer from the inference route problem as defined

in (20) Most recently, He et al. (23) has proposed a method to protect user privacy by

9

not publishing the real data generated by users. Instead, they take samples of real datasets

and then generate a synthetic trajectory dataset based on information from the real data,

probabilities, and noise added. While this does protect user privacy, it causes a loss of utility

which the authors don’t analyze. Additionally, there is still the inference route problem later

discussed in Section 3. Our solution is proven to retain utility in large scale while avoiding

the inference route problem. Additionally, MELT allows the user to select the level of

privacy, k, and thus adjust the trade-off between privacy and utility. This is something not

allowed in (23).

In addition, an overview of our work was introduced briefly in (53). In the journal

version (54), we have made the following new contributions: our new algorithm allows each

user to define his/her own privacy requirement; we conducted detailed analysis regarding the

trade-off between privacy and utility as well as complexity; we added a detailed description

and examples for the proposed algorithms; we implemented our work in both Hadoop and

Spark.

2.2. PROCESSING LOCATION DATA IN PARALLEL

Many works (59) have been proposed to utilize map-reduce to perform data mining,

pattern classifications, document retrieval, etc., in large-scale datasets. However, there are

very few works on large-scale trajectory data processing. Yang et al. (21) proposed a

method called TRUSTER for query processing over trajectory data using MapReduce. In

(29; 43), MapReduce-based algorithms have been proposed to handle trajectory matching.

Eldawy andMokbel (12) proposed SpatialHadoop as an extension toMapReduce to provide

support for spatial data management. However, to the best of our knowledge, while these

works address indexing and querying trajectories very well, none of the existing works

address the issue of anonymizing a large volume of trajectory data.

10

Aside from Hadoop, there are other parallel approaches. In the most recent work

(44; 45), Shang et al. find similar trajectories and group them together in parallel. Compared

to their work which requires multiple passes over the data, our approach is capable of

scanning the dataset only once and therefore further reducing the computation time and

increasing utility.

2.3. PRIVACY VS UTILITY

In a recent paper (52) on the discussion of privacy versus utility in regards to the

anonymization of data, Li and Li discuss the trade-offs while measuring privacy versus

utility. In many works, privacy and utility are viewed as dependent on one another. For

example, if we took the extreme example and hide all user data, therefore achieving 100%

user privacy, we also have zero utility as the data cannot be used for anything. However, if

we publish 100% of the user data, then we can say we have 100% data utility but no user

privacy. The authors of (52) claim that for all other circumstances however, privacy and

utility are measured differently and against different datasets, and therefore should not be

compared to one another as though dependent. They also discuss the way privacy and utility

should be measured to have an accurate analysis. Using their observations and calculations,

we analyze our own work and give detailed examples.

2.4. PRIVACY POLICY RECOMMENDATION SYSTEMS

Our work shares similar goals of privacy protection with existing works on privacy

policy recommendation systems, privacy risk estimation and privacy violation detection in

social networks. However, our proposed probability-based approach is unique that has not

been explored in the past. More details are elaborated in the following.

11

There have beenmany privacy policy recommendation systems (2; 5; 13; 33; 37; 47).

They typically utilize certain types ofmachine-learning algorithms to analyze users’ profiles,

historical privacy preferences, image content and meta data, and/or social circles, in order to

predict privacy policies. Instead of relying on social circles and clustering social contexts,

another thread of work looks into the image content and metadata directly (26; 46; 49; 58).

In order to even better capture the users’ privacy preferences, there is a new trend of

hybrid approaches which combine knowledge learned from both social contexts and the

image content (48; 57). For example, Squicciarini et al.(48) propose to utilize community

practices for the cold start problem in new users and image classification based approaches

for users with long privacy configuration history. Yu et al.(57) consider both content

sensitiveness of the images being shared and trustworthiness of the users being granted to

see the images during the fine-grained privacy settings for social image sharing.

2.5. PRIVACY BREACH FROM FRIEND-TO-FRIEND SHARING

Since our work considers the privacy breach caused by friend-to-friend sharing,

we review works that also examine this aspect. Akcor et al.(3) propose a risk model that

estimates the risk of adding a stranger as a new friend. They cluster users based on their

profile features, privacy settings and mutual friends. Our approach is different from theirs

in terms of both goals and approaches. We aim to estimate the risk of an image may be seen

by an unwanted person, while they aim to estimate whether a stranger could be added as a

new friend. We define probability models while they use clustering techniques. Another

work on malicious user identification is by Laleh et al.(27) who analyze social graphs using

the assumption that malicious users show some common features on the topology of their

social graphs. This work is also different from ours regarding goals and approaches. More

related to our work, Kafali et al.(25) propose a privacy violation detection system called

PROTOSS which checks and predicts if the users’ privacy agreements may be violated due

to the friends of friends sharing. Their approach is based on semantic checking and rule

12

reasoning. The potential limitation is that the privacy violation prediction is likely to report

lots of false positives in a well connected social network since the system preassumes that

the sharing would happen as long as the two users are connected in the social network.

In our work, our proposed probability model not only models social network topology but

also the image sharing statistics to provide more refined and accurate predictions. Later,

Kokciyan et al. (36) also propose a monitoring approach which utilizes agents to keep

checking whether the current sharing activity (e.g., by a friend of the owner) violates the

privacy requirements of the content owner. Unlike this approach that relies on agents to

continuously monitor the sharing events, our approach aims to prevents the potential privacy

breach at the beginning of the sharing.

2.6. IMAGE POLICY CONFLICTS

Lastly, there have been works on resolving image policy conflicts among multiple

users. Such and Criado (50) look at conflicting policies between users in images for when

an image is to be shared. They propose a set of concession rules that model how users

would actually negotiate to reach the common ground. In addition, there have also been

general approaches for integrating access control policies of collaborating parties (42) which

however requires the users to clearly specify how these policies should be combined.

Compared to all the existing works on image privacy preservation, our work distin-

guishes itself in two main aspects. First, it is probably the first time that the large volume

of image sharing statistic data being considered and sophisticated probability models being

built for privacy risk estimation. Second, compared to existing approaches which usually

recommend policies based on relatively fuzzy logics, our system offers a direct and quan-

titative view of the risk of sharing so that the users could make more informed decisions

regarding the image sharing. That is, we calculate, within a social network of varying

13

size, the probability that different users will be able to view an image if one particular user

decides to share it. In this way, it gives users an insight into just how vulnerable their photo

is, and the probability someone they do not desire to view their photo will end up seeing it.

14

PAPER

I. A PARALLEL ALGORITHM FOR ANONYMIZING LARGE-SCALE
TRAJECTORY DATA

Katrina Ward

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri 65409

Tel: 417-217-4273

Email: kjw26b@mst.edu

Dan Lin

Department of Computer Science

University of Missouri

Columbia, Missouri 65211

Tel: 573-884-6628

Email: lindan@missouri.edu

Sanjay Madria

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri 65409

Tel: 573-341-4856

Email: madrias@mst.edu

15

ABSTRACT

With the proliferation of location-based services enabled by a large number of

mobile devices and applications, the quantity of location data, such as trajectories collected

by service providers, is gigantic. If these datasets could be published, they will be valuable

assets to various service providers to explore business opportunities, to study commuter

behavior for better transport management, which in turn benefits the general public for

day to day commute. However, there are two major concerns that considerably limit the

availability and the usage of these trajectory datasets. The first is the threat to individual

privacy as users’ trajectoriesmay bemisused to discover sensitive information, such as home

locations, their children’s school locations, or social information like habits or relationships.

The other concern is the ability to analyze the exabytes of location data in a timely manner.

Although there have been trajectory anonymization approaches proposed in the past to

mitigate privacy concerns. None of these prior works address the scalability issue since it

is a newly occurring problem brought by the significantly increasing adoption of location-

based services. In this paper, we conquer these two challenges by designing a novel parallel

trajectory anonymization algorithm that achieves scalability, strong privacy protection and

high utility rate of the anonymized trajectory datasets. We have conducted extensive

experiments using MapReduce and Spark on real maps with different topologies, and

our results prove both effectiveness and efficiency when compared with the centralized

approaches.

Keywords: Trajectory anonymization, Large-scale, Divide and conquer, MapReduce

1. INTRODUCTION

One of the fastest growing trends in mobile technology is the use of location-based

services for applications such as social networking, vehicle tracking, and targeted advertis-

ing. As reported by Census, more than 471,000 people commute into Los Angeles county

16

everyday which results in more than 10 million trajectories each month (9). According to

Cisco, global mobile data traffic has reached 7.2 exabytes a month and is increasing rapidly

(51). In 2013, 526 million mobile devices were added to cellular and WiFi networks,

including a large increase in data usage for location-based mobile applications. Currently,

74% of adults use their smart phones to get directions and other information based on their

current location. 30% of adults with an account on social media sites say they have at least

one of those accounts include their current location in their posts (61). Even if we ignore

hand held devices, as many as 96% of cars produced in 2013 are built with event recorders

that include GPS. As a result, a huge amount of location information has been collected and

stored for analytics.

These collected location data have great potential for statistical usage in various

applications such as traffic congestion prevention, infrastructure and evacuation planning,

analysis of social behavior, advertising campaign, and control of spread of diseases. While

the benefits provided by location datasets are indisputable, many challenges remain to be

addressed to actually realize the benefits. One critical challenge is how to ease customers’

worries on location privacy (30) when they are told their location data have been collected

and may be used for analysis. A politician in Germany went to court to find out how

much and what kind of data was collected by his cell phone company. The results were

staggering. In just a six month period, his coordinates were recorded and stored 35,000

times (4). Without a strong privacy guarantee, cautious customers will soon be reluctant to

subscribe to location-based services. To address the privacy concern, several methods have

been proposed such as k-anonymization, spatial-cloaking and data transformation (1; 4; 8;

16; 17; 19; 20; 22; 35; 39; 40; 41). Unfortunately, none of the prior works addresses the

scalability issue which is a newly occurring problem brought by the information explosion,

i.e., the current need of dealing with exabytes of location data compared to only millions of

data in the past.

17

In this paper, we propose a novel parallel trajectory anonymization algorithm under

the map-reduce (14) programming paradigm, called MELT, which encloses the following

four features: Mapreduce-based, Efficient, Large-scale Trajectories, and “melting" the

trajectories for anonymization to preserve their privacy. We present our algorithms by

following the MapReduce programming paradigm since it clearly exemplifies the divide

and conquer spirit which is heavily used in our proposed parallel algorithm.

It is not a trivial task to convert existing centralized anonymization approaches to

a parallel version. To better understand the challenge, let us look at the following naive

solutions. A common approach for handling a large-scale dataset is to partition the big

trajectory dataset into many small datasets and then anonymize individual small datasets

in parallel using the existing centralized approach. For dataset partitioning, there are two

straightforward methods. One is to partition the road map vertically (or horizontally)

into equal-width stripes, and the other is to partition the map into grids of equal-size

cells. Then, anonymize trajectories falling in each partition separately. However, such

partitioning of trajectory datasets can easily split a single trajectory into multiple segments

as shown in Figure 1(a) where solid lines indicate trajectories and dashed lines indicate

partitioning. As a result, groups of popular trajectories that are across multiple partitions

will be treated separately, which could severely lower the utility of the anonymized data.

This is because some trajectories will be anonymized segment by segment rather than

being considered as a whole. The anonymization results may contain disconnected or

shorter trajectories which would have lower data utility rate compared to that produced

by the original centralized approach that directly works on the entire dataset. Moreover,

anonymizing partial trajectories can introduce additional privacy breach, called inference-

route problems as elaborated later.

An ideal case is to have themap partitionsmatch the natural clusters of trajectories as

shown in Figure 1(b) so that the quality of the anonymization results will be as close as that

obtained from the centralized approach and original data. To achieve this, one may think of

18

(a) Vertical Partitioning (b) Ideal Partitioning

Figure 1. (a)Naive map partitioning approaches break up trajectories into small segments
which will lower data utility.(b) Ideal partitioning to keep trajectories whole.

using existing trajectory clustering algorithms (24) to get the map partitions. However, this

would not work either because clustering algorithms typically requires scanning the dataset

multiple times. Multiple scanning of exabytes of trajectory data is very time and resource

consuming, and thus it may not be practical. Instead, we expect to scan the dataset at most

once.

To overcome the aforementioned challenges, in this paper, our proposed MELT

algorithm makes the following new contributions:

• We propose a dynamic data partitioning algorithm that automatically adapts to the

distribution of trajectories and partitions the map to capture the natural clusters of

trajectories.

• We propose three rounds of map-reduce processes that fully parallelize the conven-

tional trajectory anonymization process within a single scan of the dataset.

• We ensure that the anonymization results achieve k-anonymity, inference free, and

high data utility rate. That is, any trajectory in the published anonymization results

will have at least k − 1 other identical trajectories, and no further information can be

inferred from analyzing and comparing trajectories in the anonymization results.

19

• We analyze the trade-off between privacy and data utility and also conduct extensive

experiments on real road maps using Hadoop and Spark. The experimental results

demonstrate that our approach is capable of efficiently handling large-scale datasets

that cannot be processed by the centralized approach.

The rest of the paper is organized as follows. Section 2 formally presents our

problem statement. Section 3 elaborates the detailed algorithms of our proposed MELT.

Section 4 analyzes the trade-off between privacy and data utility. Section 5 reports the

experimental study.

2. PROBLEM STATEMENT

In this work, we aim to anonymize large-scale trajectory datasets in parallel while

maintaining high data utility.

2.1. DATA REPRESENTATION

Following the same setting as that in (20), the road network is modeled as a directed

graph, where each edge corresponds to a road with objects moving in one direction, and

each node represents an intersection. Raw data collected by location-based applications

contains their user information as a three-tuple 〈ID, loc, t〉, where ID is the user ID the

user’s location, loc which corresponds to a GPS coordinate at an intersection, at timestamp

t, respectively. Each road segment between intersections is assigned a road id ri. The

anonymization is carried out on the set of trajectories (Definition 1) within the same time

interval tint to preserve the time relationship among trajectories.

Definition 1 (Trajectory): User u’s trajectory is represented as Tr ju={r1, r2, ..., rn}, where

r1, ..., rn are IDs of roads visited by u in sequential time order.

20

After anonymization, the output dataset contains information in the form of:

〈r1dir1, r2dir2..., rndirn, support〉

where ri is a road id in the representative trajectory of nodes visited by users, diri is the

direction the user traveled on ri, and support is the number of users who have traveled the

entire representative trajectory. Such representation is sufficient to derive trajectories or

traffic flow information.

2.2. PRIVACY DEFINITION

We aim to achieve strict k-anonymity. That is, no trajectory will be published unless

at least k − 1 other trajectories are identical. The intuition is that if k is sufficiently high, it

is impossible to identify an individual user among k identical users.

Definition 2 (Strict k-anonymity over trajectories): Let Tr j be a trajectory. We say Tr j

satisfies strict k-anonymity if Support(Trj) is no less than k, where Support(Trj) is the

number of identical trajectories matching Tr j.

Trajectories that satisfy strict k-anonymity do not contain any inference-route prob-

lem (20). The notions regarding the inference-route problem are given below.

Definition 3 (Road frequency): Let W be a time interval, and let k be a threshold. We

say a road is a frequent road if the number of objects moving along one direction on this

road is no less than k within time interval W . We call the number of moving objects as the

frequency of the road.

Definition 4 (Inference route): Let Υ be an intersection of roads r1, ..., rm, and let U+i ,

U−i be the sets of objects moving toward and outward Υ on road ri (1 ≤ i ≤ m) during W ,

respectively. If∃U+i ,U
−
j , |U

+
i | ≥ k, |U−j | ≥ k, and (0< |U+i −U−j | < k or 0< |U−j −U+i | < k),

then we say Υ has an inference-route problem.

21

u4

R 2R
BA

C

I

J

K
u3

u1

u2

D

u1,u2,u3, u4 u1,u2,u3

1

Figure 2. An Example of the Inference-Route Problem with u4’s location inferred.

In the above definition, the constraints |U+i | ≥ k, |U−j | ≥ k ensure that only frequent

road segments are considered, and (0< |U+i − U−j | < k or 0< |U−j − U+i | < k) check if

there is a chance for a road segment to be inferred. To have a better understanding, let us

consider a toy example in Figure 2 which shows four users leaving their homes (I, J, K , A)

for work. Let k be 3, which means a trajectory can be published if at least three users have

this trajectory. If trajectories are anonymized segment by segment due to map partitioning

(illustrated by dashed dotted lines), the anonymization output will contain two roads r1 and

r2 with supports 4 and 3 respectively, and has the following the inference-route problem.

Specifically, if an adversary observes that Alice passes by road r1 and r3 every weekday,

then Bob can infer that u4 is Alice’s ID from the published anonymized trajectory dataset

because Alice is the only one whomay enter road r3 by comparing the set of anonymous IDs

in the published road segment. Using this ID, the adversary would be able to track Alice’s

other movement. According to Definition 4, node B is an intersection of three roads. On

road r1, U+r1 = {u1,u2,u3, u4}; on road r2, U−r2={u1,u2,u3}. SinceU+r1 −U−r2 = {u4}, |U+r1 −U−r2 |

= 1< k, node B has an inference-route problem. In general, given a threshold k, if an

adversary can link any anonymous ID to a particular user with probability greater than 1
k

by using the above method, then we say there is an inference-route problem.

22

2.3. PERFORMANCE METRICS

Our proposed trajectory anonymization approach will be evaluated in terms of three

factors: (i) privacy guarantee (discussed in the previous section), (ii) efficiency (CPU time),

and (iii) data utility rate.

The data utility of the anonymized trajectory dataset will be evaluated using the

following two commonly accepted metrics: Precision and Recall. Intuitively, the less

difference between the anonymized dataset and the original dataset, the better quality the

anonymized dataset is. It is clear that some error will be introduced due to the divide

and conquer technique inherent to a distributed approach. To gauge the utility of the final

dataset, we compare the results from our approach to the original dataset. Recall will allow

us to see how much data is lost by splitting the data across multiple nodes that are unable

to share information with one another. Precision will tell us how similar our results match

those of the original data, thereby showing how much error is introduced. The calculations

for these are as follows:

Precision = Pairs_Matching_Tra j
Tra j_Output_By_MapReduce

Recall = Pairs_Matching_Tra j
Pairs_Matching_Tra j+Missing_Tra j

In the above equations, precision is calculated by comparing the anonymized trajec-

tories obtained from our distributed approach using MELT to the original dataset. Specifi-

cally, for each trajectory obtained by our algorithm, we look for the most similar trajectory

from the original data set, i.e., the trajectory with the largest number of common nodes and

compare the support from each approach. If the identified pair of trajectories are identical,

it means we were able to find the same cluster and that trajectories were grouped together

correctly and error was not introduced. Then, the pair are removed from the data sets when

searching for the next pair of identical trajectories. In the equation for Recall, MissingTra j

23

refers to the number of trajectories that the centralized approach (20) found that our algo-

rithm did not. This is due to similar trajectories not being partitioned to the same region

of the map or similar trajectories becoming dissimilar if broken up across multiple regions,

and so they were removed for not meeting our k threshold. The higher the precision and

recall, the better the accuracy of our approach and the less error has been introduced.

3. THE PROPOSED MELT

In this section, we first present an overview of our proposed MELT algorithm, and

then elaborate the detailed steps.

3.1. AN OVERVIEW OF MELT

Figure 3 illustrates the overall data flow in the MELT system. The proposed MELT

system consists of two major phases: (i) map partitioning; and (ii) divide-and-conquer-

based trajectory anonymization. The second phase is further divided into three rounds

of processes to ensure the maximum parallelism of the anonymization steps, which are

Trajectory Assignment, Pre-Classification, and Melt.

• Map partitioning: At the beginning, we divide the road map into multiple regions

with the goal of keeping as many similar trajectories as possible in the same region.

A desirable partitioning (as shown in Figure 3) will prevent long frequent traffic flows

from being separated or wrongly pruned, and retain as much of the original data as

possible to maximize the data utility after the anonymization. However, the map

partitioning is an extremely challenging task because it is done before seeing all the

actual data.

• map-reduce-based trajectory anonymization: We design three rounds of map-reduce

processes to fully parallelize the trajectory anonymization process. The Trajectory

Assignment round takes themap partitioning results as input, assigns original trajecto-

24

Figure 3. An overall representation of the architecture of our approach.

ries to the corresponding regions, and calculates the supports of the same trajectories

in each region. The Pre-Classification round removes the roads that could cause

the inference route problem, and then organizes the remaining trajectories into a tree

structure based on their similarity. Finally, the Melt round conducts the fine-grained

anonymization on the sub-trees obtained from the previous round.

25

3.2. ROAD MAP PARTITIONING

The first step in our approach is to partition the map into regions that meet the

following conditions: (i) each region contains an approximately equal number of trajectories,

so that the workload can be balanced for the worker nodes during the parallel anonymization

phase; (ii) each region contains trajectories that are as similar as possible to one another so

that the anonymization results will preserve high data utility rate as previously discussed.

However, achieving these two goals is very challenging since we do not want to scan

the entire location dataset to determine the regions, which would otherwise be too time

consuming. Therefore, we propose an adaptive map partitioning algorithm (shown in

Algorithm 1) that partitions the map based on the concept of the traffic flow. Though we

could also parallel this step in our approach, we note that even for the largest city map, we

are able to partition it in an order of milliseconds. Thus, we chose not to complicate this

step by making it parallel.

In order to obtain map partitions adapted to different traffic flow datasets, the key

idea of our approach is to identify hot spots on the road-networks using a small sample

dataset, and then expand them to reconstruct possible traffic flow that forms the sub-regions.

To determine a good sampling rate, we conducted extensive tests on various datasets and

found that any sample above 30% preserves nearly the same accuracy compared to using

the entire dataset. From the sample dataset, we extract hot spots as follows. Hot spots are

popular road intersections. Observe that trajectories tend to frequently pass by some hot

spots such as commercial centers, major road-highway intersections, and intersections in

between residential areas. Based on this observation we aim to identify hot spots as hubs in

each map partition. Specifically, we compute node frequency (i.e., the sum of trajectories

from the sample data set passing by the node/intersection) and road frequency (Definition

3) from the sample trajectories. We sort all the nodes in a descending order of its frequency.

26

Then, we start a depth-first road expansion from the most frequent nodes. It is

worth noting that we can parallel this road expansion process by starting the expansion

simultaneously from the top m frequent nodes which are at certain distance from each

other. Given a starting node (n0), the road segments connected to n0 will be considered in

a descending order of their road frequency. At the first expansion, the road (r0) with the

highest road frequency will be selected. After that, the road r1 with the most similar road

frequency to r0 will be selected, and then r2 with the most similar road frequency to r1. In

general, each timewe select the subsequent road segment that minimizes∆ = f (ri)− f (ri−1),

where f (ri) and f (ri−1) denote the frequency of the road ri and its previous road ri−1. In this

way, we project possible traffic flow. There are three stopping criteria for the expansion, of

which only one needs to be met: (i) the length between the hot spot and the current node

is equal to or greater than the average length of the trajectories in the data set; (ii) the road

frequency difference (∆) exceeds the threshold ρ = max f (ri)
dri−1 , where dri is the degree of the

node (the number of the roads connected to this intersection). The threshold computes the

case when an incoming traffic flow is equally distributed among outgoing roads; (iii) the

current area being calculated exceeds total_map_area
num_regions . Then, the next round of expansion will

start again from n0 to see if more traffic flow can be identified. If not, we move to the node

with the next highest frequency that is not already included in the previous road expansion,

and continue the same road expansion as we did for n0. The roads associated with the same

hot spot form a region.

After we visit all the hot spots, there may still be some roads which are not yet

included in any region. These roads are usually sparsely distributed and mixed in the roads

that have already been classified. In this case, we conduct a quick breath-first search starting

from unvisited nodes found in the road map and find the closest region for each unvisited

node. If two regions are of the same distance to the unvisited node, the region with the less

difference in road frequency will be selected. At the end of our map partitioning, every

road will be matched to a region.

27

ALGORITHM 1: Road Map Division
Data: List of Hot Spots(sampled), HS; road-network (V, E); number of

reducers, RNO
Result: List of road map divisions, Regions
indexHS← 0
totalArea← RNO
startFlag← true
while startFlag = true do

node← HS[indexHS]
if node.areaData is not empty then

define list of nodes NList
define region r
add node to region r
add node to NList at index 0
node.depth← 1
add r, node.depth to node.areaData with key r.id
while NList is not empty do

firstnode← NList[0]
remove element of NList at index 0
for each nodeneigh in firstnode.Nbrs do

if nodeneigh.areaData does not have key r.id then
if nodeneigh does not violate the stopping criteria then

nodeneigh← firstnode.depth+1
add nodeneigh to region r
add r, nodeneigh.depth to nodeneigh.areaData with key
r.id
add nodeneigh to NList at index 0

end
end

end
end
add r to Regions

end
else

totalArea← totalArea+1
end
if indexHS ≥ HS.size() | | indexHS ≥ totalArea then

startFlag← false
end

end
FindAreaForUnvisitedNodes(V, Regions)
return Regions

28

3.3. PARALLEL TRAJECTORY ANONYMIZATION

After the map partitioning, we now proceed to discuss how to conduct trajectory

anonymization in parallel. A straightforward way to convert the centralized anonymization

algorithm to a parallel version is to directly execute the centralized algorithm for the sub-

dataset in each region obtained from the map partitioning. However, this straightforward

approach does not fully parallel many functions in the anonymization process, is still unable

to process the volume of data, and it is much less efficient than our proposed approach as

we will soon observe in the experiments.

In order to parallelize the entire anonymization process as much as possible, we

study the centralized algorithm (20) in details. The original centralized algorithm consists

of the following main phases: (i) compute the road frequency; (ii) remove infrequent roads

from trajectories; (iii) cluster similar trajectories and compute the representative trajectory

for each cluster. Moreover, the centralized algorithm needs to scan the trajectory dataset

twice, one for road frequency computation and the other for trajectory clustering.

After examining the detailed anonymization steps, we propose three-rounds of map-

reduce processes, which ensures that the whole dataset is scanned only once. Specifically,

we parallelize the road frequency calculation in the first round of process. Then, we

examine the road frequency in parallel and remove infrequent roads. While examining the

road frequency, we also build an index that group same trajectories together to prepare

for the clustering. Finally, we anonymize the different sub-trees of the trajectory index in

parallel based on the global and individual k requirements.

In what follows, we elaborate the detailed algorithms in the map-reduce program-

ming style which consists of two major functions "map" and "reduce". To put it simple, the

map function of each round is in charge of "divide" while the reduce function is charge of

"conquer". Additionally, we leverage the built in nature of the shuffle-sort phase between

map and reduce to further optimize clustering, shuffling, and sorting to the reducers for the

best time optimization and load balancing.

29

3.3.1. Round 1: Trajectory Assignment. In this first round, the map function

takes raw trajectory data as input, whereby trajectories are still represented as coordinates.

The number of reducers corresponds to the number of regions we obtained during the map

partition phase. The map function will first map the trajectories to a region in the road

network map. Specifically, the map function assigns an initial score of 0 to each region on

the map for the current trajectory, and increases the score of the region by 1 when a road

segment in the trajectory is found belonging to that region as seen in Algorithm 2 on in

the beginning. We compare each node in the trajectory to a partitions list and update the

score in the locations list. Recall that each road has already been marked with the region

ID during the map partitioning.

When the entire trajectory has been analyzed, the mapper finds the region with

the highest score for the current trajectory. If the region contains more than α% of the

trajectory, the trajectory is considered to belong to that region. Otherwise, we may split the

trajectory across two regions that contain the majority of the trajectory. While the value of

α% has no affect on run times in our experiments, it does affect the data utility rate. The

greater the value of α the more likely we are to place the trajectory in the correct area with

the most similar trajectories. A small α could lead to the same problems we have when

naively partitioning the map. In the case where one area does not contain more than α% of

the trajectory, we propose two methods: (i) splitting the trajectory as mentioned above; (ii)

consider the entire trajectory as part of the region that contained the greater portion of the

trajectory.

When the correct region has been identified, the mapper then converts the coor-

dinates in a trajectory to a list of road IDs. The conversion to the road IDs makes it

easier for trajectory comparison and frequency computation and reduces the intermedi-

ate data size. Finally, the map function outputs two types of key-value pairs. One is

〈(Ai,Tr j(R1, ...Rk)), 1〉, where Ai is the region of the trajectory Tr j represented by road

IDs (R1, ...Rk). Also, for each road examined, the map function outputs a key value pair

30

〈(Ai, Rj), 1〉, where Ai is the region ID of the road Rj . In each mapper, we further utilize

a combiner to sum up the frequency of each trajectory and each road so as to reduce the

amount of intermediate results to be sorted and shuffled among the follow-up reducers. This

intermediate sum is referred to as support in Algorithm 2.

The reduce function then computes the sum (or frequency) of each trajectory and

each road. Note that each reducer handles one region of the map, thereby keeping similar

trajectories together. The road information is saved into a hash table while the trajectories

are output to an intermediate file. The final output of this round is the result of a key-value

conversion, where trajectory information has been moved from the key section to the value

section so that we obtain trajectories for each map partition: <Ai, (Trji, count)>.

To better understand our approach, we use the following running example throughout

the paper. Suppose that we have the map and trajectory data for a city. For easy illustration,

we partition the map into four regions denoted as A1, A2, A3, and A4 respectively. Let

the anonymization parameter k=3 and the trajectories in our data set be Trj1, Trj2,...,Trjn,

whereby xi j and yi j denote the x and y coordinates for the jth node in the ith trajectory:

Trj1 = {(x11,y11), (x12,y12), ..., (x1i, y1i)}

...

Trjn = {(xn1,yn1), (xn2,yn2), ..., (xnj , ynj)}

These trajectories are sent to mappers, and the mappers would map each trajectory

to a region and convert the coordinates to road ID’s. Assuming that these trajectories are

mapped to region A1, the output from this first round of map-reduce contains two types of

key-value pairs, the trajectories and their assigned areas as well as each road segment and

their assigned area, as follows:

<(A1, (r1, r2, r3, ...)), 1>,

<(A1, (r1, r2, r3, ...)), 2>,

<(A1, (r3, r5, r2, ...)), 4>,

...

31

ALGORITHM 2: First Round of Map Reduce
Data: Tra jFile = trajectory file, PartList = Map Partitions List, RoadMap =

map of coordinates to road ids
Result: List of trajectories[Key = partition, trajectory: Value = support]
List of Roads[Key = partition, road: Value = support]
for each tra j in Tra jFile do

locationsList for each node in tra j do
PartList.find(node) locationsList ← node location

end
largestLocation← NULL
for each location in locationList do

if node count in location > node count in largestLocation then
largestLocation = location

end
end
partition← largestLocation MapperOut← [(partition, tra j), 1] for
each Road in newTra j do

MapperOut← [(partition, Road), 1]
end
Reducer Input: MapperOut([partition, Tra jOrRoad), cntList] while
MapperOut not empty do

count ← 0
for each cnt in cntList do

count ← count + cnt
end
ReducerOut← [partition, (Tra jOrRoad, count)]

end
end

<(A1, r1), 1> ((A1, r1), 2>...

<(A1, r2), 1> ((A1, r2), 2> ((A1, r2), 4>...

The reducer computes the overall frequency of trajectories and roads and output the

following:

<(A1, r1), 4> <(A1, r2), 4> <(A1, r3), 4> <(A1, r4), 3>...

<A1, ((r1, r2, r3, ...)), 3) >,

<A1, ((r3, r5, r2, ...)), 4) >,

...

32

3.3.2. Round 2: Pre-Classification. In this round, the mappers will first process

all the key-value pairs containing road frequency. We leverage the sorting in the shuffle-sort

phase to ensure road frequency information arrives before trajectory frequency. For each

road, the mapper checks its frequency. If the frequency is lower than the anonymization

threshold k, the mapper records this infrequent road ID in a hash table. In algorithm 3,

this is shown as a RoadList. As trajectories arrive at the reducers, the infrequent roads are

removed from the trajectories, thus removing a source of the inference route problem. If

the infrequent road is at one of the ends of the trajectory, it is simply removed. However, if

it is in the middle, the trajectory is split into two if both segments contain at least two road

segments. This helps us maintain the road network constraints and maintain natural road

trajectories.

Although it is now possible to execute the centralized anonymization algorithm

directly on the above dataset in the reducers, we propose another round of map-reduce to

further parallelize the anonymization process. Specifically, the centralized anonymization

algorithm requires to construct a C-Tree (20) to group trajectories based on similarity

before final anonymization. The original C-Tree construction algorithm considers all the

trajectories in a sequential manner within that reducer. However, with all the reducers

operating in parallel, this means all the data would be held in memory at once with several

C-Trees being constructed. Instead, we propose a parallel algorithm to build the C-Tree in

a distributed fashion which also enables the subsequent anonymization to be executed in

sub-trees in parallel. Put simply, we take advantage of map reduce’s batch processing by

processing branches of the C-Tree in parallel, rather than the entire dataset at once.

To construct the C-Tree in parallel, the reducers create a list of slots whereby each

slot corresponds to a branch of the original large C-Tree. In Algorithm 3, these slots are

called Branches. The number of branches chosen depends on the number of available

reducers and the size of the data, meaning that in the final round we will utilize more

reducers and leverage map-reduce’s batch processing at the reduce phase to process all

33

ALGORITHM 3: Second Round of Map Reduce
Data: RoadList = Key, Value Pairs[Partition, (Road, Support)
Tra jList = Key, Value Pairs[Partition, (Traj, Support)]
Result: [part.id, (newTraj, Support)]
in f requentRoads← NULL
for each Road in RoadList do

if support < k then
in f requentRoads.add(Road)

end
end
Branches← NULL
for each Tra j in Tra jList do

for each roadid in Tra j do
if roadid in in f requentRoads then

newTra js← Tra j - road
end

end
for each branch in Branches do

if (newTra js, branch).error < γ then
branch.add(newTra js)

end
else

closestBranch.add(branch)
end

end
if branch← unassigned then

if Branches not full then
Branches.add(newBranch(newTra js))

end
else

closestBranch.add(newTra js)
end

end
end

branches of each C-Tree faster. Similar to the map partitioning in the beginning, we want

to make sure trajectories most similar to one another are placed into the same branch just as

they would in the original C-Tree. We also observe that the density of the data plays a role

in the partitioning as well. Dense data, that is trajectories all close together, can be broken

into more branches than sparse data. An example of branching is shown in Figure 4.

34

Figure 4. In the second reducer phase, instead of using one large c-Tree, we break off
similar branches into smaller chunks to benefit from map-reduce’s batch processing in the
reducers.

For each trajectory, if a branch exists such that the trajectory is at least γ similar

to that branch, the trajectory is assigned to the same branch. γ is a system parameter

that controls how similar the trajectories in each branch are to one another. A γ value of

100% means the trajectories are identical. Otherwise, if there are unassigned branches,

the trajectory is assigned to a new branch. Finally, if there is no more room for more

branches and the trajectory is not very similar to the given branches, it is assigned to the

most similar branch. This means that the most similar trajectories will be assigned to the

same branch, minimizing errors as defined in Section 2.3. The output is represented as

〈part .id, (Tra ji, support)〉 where part.id is the partitioning id consisting of the original

region of the map concatenated with the branch index the trajectory was assigned to and

support containing the number of identical trajectories currently sharing the same roads.

The design of the key ensures that each area is broken up into multiple branches and

processed in chunks in the final stage, rather than all at the same time, while still making

sure to keep the most similar trajectories in the same chunk.

35

Referring to our running example, using the road frequencies in the hash table for

the correct area, we remove all infrequent roads from the trajectories and output the new

trajectories with only the frequent roads. As a result, our trajectories have been converted

to the following:

Trj1 = r1, r2, r3

Trj2 = r1, r2, r3

Trj3 = r1, r2, r3

Trj4 = r1, r2, r3, r4

Trj5 = r6, r7

Trj6 = r6, r7

Trj7 = r2, r3, r6, r7

If we remember that we set k = 3, then in Tr j4, r4 would be removed for being

infrequent. The trajectories are sent to the second reducers where trajectories 1, 2, 3, and 4

are partitioned to a branch, and the remaining would be grouped in another branch based

on their similarity.

3.3.3. Round 3: Melt. This final round of our algorithm conducts trajectory

anonymization in parallel. The algorithm is outlined in Algorithm 4. The mappers here

are just identity mappers which directly pass the datasets obtained from the previous step

to the reducers without additional process. Each reducer will receive the dataset that corre-

sponds to a single branch of the C-Tree, and construct the C-Tree as defined in (20). nlike

a two round algorithm where an entire area would be anonymized at once in each reducer,

processing branches instead of entire areas significantly increases efficiency by taking ad-

vantage of map-reduce’s’s batch processing and load balancing. More specifically, for each

trajectory, if the total support is greater than k, it forms a cluster and is added to the tree. If

the trajectory has a support lower than k, it will traverse the tree and find the most similar

cluster and attempt to merge with that cluster. Note that this is significantly more efficient

36

than the centralized approaches which need to compare trajectories in the entire dataset,

not a small subset such as in our approach. When merging, a representative trajectory is

calculated for the cluster and error is calculated.

Whenwe attempt tomerge trajectorieswith low frequency into a cluster, we calculate

the representative trajectory of the cluster as though the trajectories were added and if the

error is increased by less than β%, the trajectories are added. The error threshold is an

adjustable system parameter which can also be set by the user depending on the amount

of error that is acceptable to them. If no clusters are suitable for merging, a new cluster is

created for the trajectory and added to the tree. By doing this, we are able to possibly merge

multiple trajectories with low support together in order to meet the k threshold, should

they be suitably similar. When all possible merges are done, representative trajectories of

any clusters with at least k support will be output. Any trajectories remaining with less

than k
2 support will be removed from the data set. Any remaining trajectories with more

than k
2 support, but less than k will have false trajectories added, increasing the support

to k. This is done to increase data utility while keeping error low and preserving privacy.

The final anonymization output contains road IDs and road frequency in the representative

trajectories of all the clusters. Our anonymization result guarantees strict k-anonymity.

Finishing up our running example, in the last round of reducers, trajectories 1, 2, and

3 would be put into a cluster since their frequency is greater than k and the representative

trajectory would be calculated. Tr j4 would also be merged into this cluster since after

the infrequent road was removed and no additional error is added, it now matches this

cluster. In another reducer, we cluster trajectories 5 and 6; however, if we try to merge

Tr j7 with trajectories 5 and 6, the error is too great and is placed in its own cluster. Since

the frequency for Tr j7 is less than k
2 , it is removed entirely. The frequency for the cluster

containing trajectories 5 and 6 however, is greater than k
2 . So we simply add a dummy

trajectory to it to bring the frequency up to k. The final output of the anonymized set would

be:

37

ALGORITHM 4: Third Round of Map-Reduce
Data: Key = areaID, Branches index
Value = RIDtraj, sum of traj
Result: Anonymized Trajectory List
ClusList← list of clusters
for each traj, sum pair do

new CLUSTER← traj, sum pair
CLUSTERi.repTraj← traj
CLUSTERi.error← 0

end
for each CLUSTERj with fewer than k trajectories do

Calculate distance between CLUSTERj and each other cluster
Calculate representative trajectory, REP of adding CLUSTER to closest
cluster, CLUSTER’
Calculate error of adding CLUSTERj to CLUSTER’, NEWERROR
if ERROR change ≤ 5% then

add CLUSTERj to CLUSTER’
CLUSTER’.repTraj← REP
CLUSTER’← NEWERROR

end
end
for each remaining CLUSTER with fewer than k trajectories do

if number of trajectories in CLUSTER ≥ k
2 then

while number of trajectories in cluster ≤ k do
add CLUSTER.repTraj to CLUSTER

end
end

end
for each CLUSTER do

if number of trajectories in CLUSTER ≥ k then
for each traj in CLUSTER do

return (" ", CLUSTER.repTraj)
end

end
end

r1, r2, r3

r1, r2, r3

r1, r2, r3

r1, r2, r3

r6, r7

r6, r7

r6, r7

The trajectories are now k-anonymized. The data still maintains utility and individ-

ual users cannot be identified.

38

3.4. PRIVACY PRESERVATIONWITHWITH VARYING k

So far in this work, the privacy of users depends on a globally fixed k value chosen

before trajectories are anonymized. However, for some users, their privacy requirements

may vary compared to other users. This can be observed inmany socialmedia environments.

One user may share everything to the public, while others choose not to use social media at

all due to privacy concerns. While these two examples represent both extremes, there are

users all across the spectrum between them. Therefore, we propose to extend our approach

to accommodate users with different privacy requirements and allow each individual user

to set his/her own value of k. As of now, this is the first work to allow user control for their

privacy while maintaining the high efficiency and accuracy of the final results.

ALGORITHM 5: Clusters with varying k
Data: Tr jList = List of trajectories in cluster with individual k
RepTr j = Representative Trajectory of Cluster
Support = Overall Support of Cluster
k = Global Minimum Support Threshold
Result: Anonymized Trajectory List
for each Tr ji in Tr jList do

ki ← User Required Support for Tr ji
if ki > Support then

if (ki − Support) < 0.05Support then
Increase Support to ki

end
else

Remove trajectory from cluster
Support ← Support − β
Recalculate representative trajectory

end
end
if Support < k

2 then
break

end
end

39

In order to achieve variable k during the anonymization, we propose the following

modifications to our parallel algorithm which are also represented in Algorithm 5. The

first change is to maintain the personal k value for each trajectory throughout all the three

rounds of parallel processes. Note that although it seems that keeping the personal k value

attached to the user may be more space efficient, it is impossible to distinguish users since

no identifiers or even quasi-identifiers are stored in the system. Therefore this information

is attached to the trajectory itself as a local constraint. Specifically, it is carried throughout

the map reduce process as part of the value attached to the support for the trajectory.

The second change occurs in the third round of anonymization, particularly during

the output of representative trajectories. When deciding whether or not to output a cluster,

we will check to make sure each individual k requirement is met. The naive solution is

to compare each personal k with its cluster support. If the cluster support is lower than

one of the users’ k, meaning that the user’s privacy is not met, the cluster will be removed.

However, this naive solution can result in removing a large number of clusters simply due to

some users who have a higher k value than their other cluster members. To reduce loss on

the data utility rate, we propose Algorithm 5 that attempts two options. Instead of directly

removing the whole cluster when its support is lower than some users’ k values, our first

option is to try to increase the cluster support and recalculate the error. If the introduced

error is within the desired threshold, the cluster will be preserved. If the first option does

not work, that is, it produces too much error, we try the second option which is to remove

the trajectory with particularly high k from the cluster and recalculate the representative

trajectory for that cluster. This additional step provides users with more controls on their

privacy while introducing very little time overhead to the performance as later shown in

Section 5.

40

4. SYSTEM ANALYSIS

4.1. PRIVACY AND UTILITY ANALYSIS

Regardless of how private we can make information, we recognize that it makes

little difference if there isn’t any utility in the final result. All related work on trajectory

anonymization aswell as other works on privacy subscribe to the common belief that privacy

and utility are inversely related and impossible to reconcile together. In a recent paper (52),

Li and Li discuss the trade-offs and measurements of both privacy and utility and show that

this is not necessarily the case. In our work, we look at the three main observations from

their work and compare our approach to show that we maintain both high privacy and high

utility.

The first observation is that knowledge gained on a small population or individual

has the largest impact on privacy, while knowledge gained overall on a population increases

utility. This makes sense since utility is the information we gain from the data. While

individual data helps in some specific cases, information on an entire population is veritably

useful. However, general knowledge tells us little about a single individual. This means

that privacy must be considered on an individual basis rather than on an entire population

as a whole, while information gained on an individual has little utility compared to an entire

population. If any individual can be identified, then we must assume any individual can be

identified. In our work, we consider each individual’s privacy to be unique and important,

therefore, our work has a large impact on user privacy. In Figure 5 we see that at a k value of

0.25% of the data, we can find the original trajectory of 52% of the trajectories with at least

65% confidence. However, that number drops significantly and at 0.5% of the data as k, we

can no longer accurately identify any individual trajectory from the anonymized dataset.

For this reason, we have chosen 0.5% as our k threshold for our experiments. Similarly, we

are looking for large groups of trajectories in order to study and gain knowledge on patterns

while removing information on individuals and small groups; therefore we also have a large

41

utility gain. In Figure 9, we see that a k threshold up to 1% of the data keeps a high utility,

however, after this, the utility drops. This shows we are able to maintain the privacy of

every single individual while also looking at the optimal utility.

Figure 5. At a k value of 0.5% we are no longer able to identify the original trajectories
with at least 65% confidence.

The second observation states that privacy should be measured at its worst case

scenario for reasons stated above, while utility should be measured at its best case. This

means that the unacceptable privacy loss of even a single individual should be considered

the privacy loss for the entire population in the data while utility should be looked at as how

much information is ultimately gained. In our research, we observe that no individual’s

data is published if it is below our k threshold, therefore it is appropriate to measure privacy

loss in terms of k since we do not have any quasi-identifiers in our data. Additionally, since

we allow users to choose their own level of privacy and we consider it a strict constraint,

we can say that we focus strongly on individual privacy. Similarly, we always look at the

highest and average precision and recall in order to determine data utility. This means we

look at the best and average utility of the final data sets and therefore measure at its best

case. As mentioned above, we are able to maintain the privacy at it’s worst case while also

maintaining optimal utility gain.

42

Figure 6. Comparison of K vs Utility showing they are measured differently, and therefore
cannot be immediately assumed to be inversely proportional.

Most often, privacy and utility are compared to one another and are considered

to be inversely dependent. However, the last observation from (52) is that privacy is to

be measured against another anonymized dataset to determine if privacy is maintained,

improved, or lost while utility should be measured against the original dataset to determine

how much of the original data is maintained. More specifically, privacy and utility are

measured differently and against different datasets and should not be compared to one

another as though they are dependent. In Figure 6, we see that as k increases, the utility

remains the same for reasonable k. Paired with Figure 5, we see we are able to maintain

strict privacy requirements while maintaining high utility. The two are clearly not inversely

related as previous assumptions would suggest. We can understand this by remembering

that we do not use any quasi-identifiers in our data that would create a link between the two.

In our tests, we compare privacy to the anonymized data produced by the centralized

approach in (20). This is to make sure that through our divide and conquer technique, we

are maintaining the same privacy standards and not unintentionally relaxing our privacy

43

requirement. We measure our utility by calculating the number of trajectories retained from

the original data set and how similar those trajectories are to determine how much utility

the anonymized dataset has.

In our work, we calculate utility loss by calculating the precision and recall of the

results from our approach compared to the centralized approach and the original data set to

determine: (i) How much of the original dataset we retained and (ii) How similar are our

results compared to the centralized and original data. This allows us to see what percentage

of the data we kept after anonymization and howmuch error we introduced in our approach.

Privacy loss, however, is more challenging to calculate. While we can give an

arbitrary k value that sounds secure enough, we choose to use the measurement included

in (52) Ploss = max
t Ploss(t) This calculation matches with the second observation, that

privacy should be measured at its worst case and considered for the entire population. We

do not use any quasi-identifiers in our work, so we do not calculate privacy loss for each

individual attribute. Instead, we look at privacy on each hop in a trajectory for a user and

calculate it as:

Ploss =
∑h

i=1(P(ni) ∗ 2P(
∑m

j=1(ti))

P(ni) is the probability that an adversary can identify an individual user from

published users on a road segment. 2P(
∑m

j=1(ti) addresses the inference route problem

in that it is the probability that both a user chose to take an infrequent road and that

the adversary was able to correctly choose the same road in identifying the user. Since

infrequent roads are not published, this is considered very random for both the user and

the adversary. There are possibly several infrequent roads a user can take, therefore it is a

summation of all those possible paths. We can make it a little more simple by remembering

that the minimum number of people on a published road segment is k and the worst case

being that no unknown, infrequent paths were taken. Therefore we can say that for i hops

in a published trajectory, privacy loss can be calculated as:

Ploss =
∑h

i=1(P(k))

44

Since we use no quasi-identifiers in our data and we remove infrequent roads to protect

against the inference route problem, we can say that k is a sufficient measure of privacy loss

since we maintain all of the observations listed above and in (52).

4.2. COMPLEXITY ANALYSIS

In this section, we will look at each round of our algorithm and determine the worst

and average case scenario. Map partitioning is not analyzed, as performing this task requires

only the list of road intersections and a small sample set of the data. The size of this data

is trivial compared to the trajectory dataset. As mentioned earlier, we only scan the entire

dataset once. Therefore the processing time is mainly dominated by the second round of

map-reduce of our algorithm. A more detailed explanation of this analysis can be found in

Appendix B.

4.2.1. Round 1 Analysis. In the first round, we examine the time taken to assign

trajectories to map partitions and output each trajectory and the roads in those trajectories

as well as their assigned partitions. Based on this, the time for round 1 is: cn+n
x where c

is a constant representing the average number of nodes in a trajectory, n is the number of

trajectories and x is the number of map partitions.

4.2.2. Round 2 Analysis. The data to reach the second round will be the roads and

their assigned map partitions. The first portion of round 2 is to identify infrequent roads.

The processing time for this can be represented as m
i where m is the number of roads and

i is the number of mappers. According to the number of occurrences of roads, we remove

the infrequent roads from the trajectories, which takes the time cn
i .

Once infrequent roads are removed, we perform the pre-clustering algorithm. We

represent the number of chunks we are breaking the data into as j and the value we define for

k-Anonymity as k. In the worst case scenario, there will be only one reducer and each kind

of the trajectory has no more than k similar trajectories. This will result in the maximum

number of chunks of data. The amount of calculation can be represented as n∗ nk
j . j is an

45

arbitrary value set by the user and is calculated based on data size, therefore we can say

the worst case scenario is n2

k . The chance that every trajectory will need to be compared to

every other trajectory is unrealistically small. Such a data set would have no use, as that

would mean no two trajectories are even similar to one another. This implies a very tiny data

set, in which this algorithm would not be used anyway, or a very unrealistic dataset where

no data will be published at all in the end and the rest of the algorithm would terminate,

resulting in faster, but useless processing. Therefore, the realistic worst case scenario is

when the data is clustered evenly into k clusters, which would make the run time n
k . Finally,

we consider the I/O cost as n
k .

4.2.3. Round 3 Analysis. In round three, each of the data chunks is put into C-

Trees, and the representative trajectory of clusters meeting our k requirement are the output.

For each trajectory, the algorithm finds the correct cluster in the C-Tree. The time to find

these clusters is nlog(cn), which is split over x reducers. However, in the previous round,

we split the data going to the reducers into j chunks, therefore the time is nlog(cn)
j x . For

each of these clusters, we calculate a representative trajectory: cn
x , and finally output the

representative trajectories of the clusters that meet the k requirement: n
k .

4.2.4. Overall Complexity. Combining the three rounds of map-reduce, removing

constants, and considering the altered worst case in round two, we are left with a run time

of O(n + nlog(n)), which is significantly faster than current published methods. This run

time assumes the worst case of the data being split into as many clusters as possible, none

of which will be removed and everything published in the end. This is unlikely considering

many side roads that are infrequently traveled, local residential areas, and suburban country

roads. We can assume then, that that the run time will be realistically faster in practice.

4.2.5. Comparison to Other Approaches. In the most recent related work (45),

the authors are able to find the trajectories meeting k by finding the top most frequent

trajectories. This means they need to scan through the dataset at least once to count the

number of times each trajectory exists. They also perform joins to fins similar trajectories

46

which, in parallel is fairly fast using their approach. However, while merging has a constant

cost, per trajectory searches for similar trajectories is costly, even in parallel. For large

datasets like those tested in this work, the time would increase dramatically. Assuming

worst case, the cost would be n ∗ n/r where r is the number of instances running in parallel

and n is the number of trajectories in the data. Partitioning is done uniformly and not

based on the map and location, therefore we have to assume that similar trajectories are not

necessarily kept together. This means a greater utility loss or longer processing. Since all

trajectories are compared, we can assume the longer processing time. This leaves at least

a processing time of O(n2). For their work, no anonymization is done, only clustering of

similar trajectories. Therefore, the anonymization step must be added to the time.

In our experimental algorithms, we compare to the centralized approach which

requires scanning the entire dataset at least twice, while MELT only scans once. In addition,

there is no distribution of the data or tasks in the centralized approach, so each piece of data

is handled one at a time. Though the number of reducers operating through most of MELT

is dynamic and changes based on data size, we know that for the first round the number of

reducers is based on the number of map partitions. For a real map and data size, we find that

eight partitions is ideal. This means that the centralized approach is eight times slower than

MELT during the process of assigning trajectories to map partitions, and even slower for

later portions of the algorithm. We see this again in Table 4 where the centralized approach

is exponentially slower and even fails.

5. PERFORMANCE STUDY

In this section, we first present the experimental settings and then report the experi-

mental results.

47

5.1. EXPERIMENTAL SETTINGS

All the tests were conducted on a cluster of four physical machines, each being Dell

PowerEdge R730, Intel Xeon CPU E5-2650 v3 processors at 2.30GHz, 2 socket, 14 cores

per socket. The machines are managed using VMWare and divided up into eight virtual

machines, each running CentOS 64bit and having 14 CPU’s and 60GB RAM. We used

Apache Hadoop 2.3.0 and Spark 2.3.0.

Our experiments were conducted on both real and synthetic datasets. The real

datasets (60) contain taxi data from drivers in New York City over a period of three years,

all taken from the same three hour time frame to consider the potential privacy issues

stemming from temporal information. The real datasets are represented in Table 2 and

contain the data file sizes as well as the number of trajectories. Note that one smaller

dataset was taken in order for the centralized and single round approaches to be able to

process it and compare accuracy. In addition to the real datasets, we also generate several

large synthetic datasets over real road maps so that we can show our approach is consistent

over several sets of data and locations. The synthetic datasets contain trajectories with

similar average length in the real datasets, which is about 15 to 20 nodes. The trajectory

node distribution is random to avoid any bias. The synthetic dataset size goes up to 100GB,

which is sufficient to represent commuter traffic in a large city such as Los Angeles or New

York City over a three month period (9). Throughout our experiments, we refer to our

datasets by the number of trajectories in the input data file. Table 1 presents the statistic

summary of the synthetic datasets while Table 2 presents the real datasets.

Table 1. The number of trajectories and the corresponding file size

Number of Trajectories 5K 50k 500k 2M 5M 50M 250M 500M
Dataset Size 3M 14M 141M 540M 1.4G 14G 55G 103G

In our experiments, we compare the performance of the following algorithms in

terms of efficiency and effectiveness.

48

Table 2. Real trajectory datasets tested for efficiency

Dataset Name RS RS50 RS100 RS200
Number of Trajectories 17K 175M 420M 862M
Data Size 137K 50GB 100GB 200GB

• Centralized: The centralized anonymization approach proposed in (20).

• Single-roundMapReduce: This approach executes the original centralized anonymiza-

tion algorithm directly on each sub-dataset after the map partitioning.

• Stripe: The map is partitioned into even sized stripes and then trajectories are

anonymized using MELT-Hadoop.

• Grid: The map is partitioned into even sized squares and then trajectories are

anonymized using MELT-Hadoop.

• MBR: The roads in the map are partitioned using minimum bounding rectangles

(MBR) such as those in the R-trees. Specifically, we divide the roads into equal-sized

groups based on their distance and enclose them in minimum bounding rectangles to

form partitions. Anonymization is then performed using MELT-Hadoop.

• MELT-Hadoop: The full version of our proposed MELT algorithm in Hadoop.

• MELT-Spark: The full version of our proposed MELT algorithm in Spark.

For the map partitioning, we compare our solution with the naive partitioning

methods, as described in Section 2. To evaluate the anonymization accuracy, we compare

our results with the centralized approach proposed by (20), as well as a single round

map-reduce algorithm and naive partitioning methods. We test the effects of changing

the k-threshold, the number of map partitions, dataset size, and multiple map topologies.

49

Finally, we test the effects of having user defined k on the data utility and processing time.

Effectiveness is evaluated based on the precision and recall defined in Section 2. Efficiency

is evaluated using CPU time.

5.2. EFFECT OF MAP PARTITIONING ON ANONYMIZATION ACCURACY

In the first round of experiments, we aim to study how map partitioning will affect

the anonymization accuracy. We compare our dynamic partitioning approach to the naive

partitioning methods introduced in Section 2 and the approach using the simple minimum

bounding rectangles (MBRs). More specifically, our approach has two versions: MELT-

whole, MELT-split. In the MELT-whole approach, we always keep the trajectories as a

whole even if it crosses partitions, and assign the trajectory to the partition in which the

majority of the trajectory lies. The MELT-split approach, instead, splits the trajectory if it

crosses partitions, and assign each part of the trajectory to its respective partition. Figure

7 shows the anonymization accuracy of all the approaches in terms of precision and recall.

Recall that both precision and recall need to be calculated against the original anonymization

results produced by the centralized approach. Since the centralized approach cannot handle

very large datasets, in this experiment, we adopt the largest dataset that the centralized

approach can handle which contains 500K trajectories and set the anonymization parameter

k to 0.5% of the number of trajectories.

As show in the figure, both versions of our proposed MELT yield significantly

higher accuracy results compared to other approaches especially when the number of

partitions is large. This conforms with our analysis that equally partitioned maps do not

match the trajectory distributions as well as our proposed dynamic partitioning. Also,

since our approach performs even better for the larger number of partitions, it indicates the

advantages of our approach in large-scale datasets which typically needs more partitions

to handle. We also observe that the MELT-whole achieves slightly better accuracy than

MELT-split since MELT-whole would be able to keep more trajectories intact. In addition,

50

(a) Precision (b) Recall

Figure 7. Anonymization accuracy when dividing the map into different number of parti-
tions

it is expected that the more partitions, the lower the anonymization accuracy. This is

because when the number of partitions is large, the area of each partition becomes small

and hence more trajectories may cross partitions resulting in more difficulties in identifying

similar trajectories. However, more partitions could help reduce the overall processing time

for large-scale datasets since each partition handles a smaller amount of data. Therefore,

we carefully choose the number of partitions based on the dataset size in the following

experiments to balance the anonymization accuracy and the anonymization time.

5.3. EFFECT OF THE ANONYMIZATION PARAMETER k ON DATA UTILITY

As we already know that the proposed MELT has better anonymization accuracy

than other approaches, we now take a further look only at the anonymization results of the

MELT in terms of data utility. Note that both MELT-Hadoop and MELT-Spark versions

have the same data utility rate since they implement the exactly same algorithms.

51

Specifically, we investigate the effect of the anonymization parameter k on data

utility in terms of the number of trajectories retrained in the anonymization result. Since k

may have more impact on smaller datasets, we tested three datasets ranging from as small

as 5K to 500K trajectories. For each dataset, we vary k from 0.1% to 1% of the number of

trajectories.

Table 2 shows the number of trajectories left after the anonymization. As expected,

the smaller dataset with 5K trajectories ends up with just 20% of the original trajectories

after the anonymization when k = 1% of the number of total trajectories (i.e., k=50). The

larger the datasets, the more percentage of trajectories are kept after the anonymization.

This is because in the larger dataset, the chances of finding similar trajectories is higher

and hence more trajectories can be anonymized. In addition, we also observe that there is

a significant reduce in the number of anonymized trajectories when k increases from 0.5%

to 1%, which suggests that the anonymization parameter k should not be set to be too large.

The larger the k value, the lower the probabilities will be to obtain similar trajectories in

the group larger than k.

Table 3. Number of trajectories in the anonymization results

Number of trajectories in the dataset 5K 50K 500K
k=0.1% of data 4255 35809 285995
k=0.5% of data 3228 30910 279500
k=1% of data 878 18626 132602

Next, we are also interested in examining the effect of k on the precision and recall.

As shown in Figure 8, we can see there is little difference in the accuracy across the different

datasets, meaning using 1% of the data in the 5k dataset is about the same accuracy as taking

1% of the data in the larger datasets. This means that regardless of the size of data, keeping

the same k percentage of the dataset will yield the same accuracy results. k does not need

to change based on the data size.

52

(a) Precision (b) Recall

Figure 8. Anonymization accuracy when varying k

It is true, however, that changing the percentage of the data that k represents has

a significant impact on the accuracy. This is an expected outcome due to the fact that the

larger the k value, the more trajectories need to be the same to be published. This means

many more trajectories will be eliminated for not meeting our k threshold and therefore

more data is lost. Based on our experiments, approximately 1% of the data is the optimal

percentage of the data k should represent. As we see in Figure 9, the accuracy drops quickly

after 1%. This same threshold occurred in all of our dataset tests.

Figure 9. The accuracy of the data drops significantly when k represents more than 1% of
the data.

53

5.4. SCALABILITY TEST

After obtaining the insights regarding the map partitions and the parameter k, we

now proceed to evaluate the scalability of our proposed MELT which is indeed the major

goal of our design. We first tested the centralized annonymization approach to see its

scalability limit. As shown in Table 4, the centralized approach crashes when the dataset

contains more than 2M trajectories.

Table 4. The anonymization time using the centralized approach

Number of trajectories in the dataset 5K 50K 500K 2M RS(17K trajectories)
File size 3M 14M 141M 540M 137M

Processing time (minutes) 0.9752 22.6 1157.72 NA 1441.49

Since the centralized approach is impossible to complete the anonymization as

shown in Table 4, we only plot the processing time of the parallel approaches in the

following figures for clear comparison. In the experiments, the number of partitions is set

to 8 and the value of k is set to 0.5% of the number of trajectories. As shown in Figure 10,

the full version of the MELT-Hadoop is similarly fast as the MELT version with simple map

partitioning methods, i.e., stripe and grid. This indicates that our dynamic map partitioning

does not introduce much computational overhead. Moreover, we also observe that the

single-round MapReduce approach does not scale well and crashes when the number of

trajectories reach 5M. This proves the need of having multi-round of divide-and-conquer

as in the full version of the MELT. Also, it is not surprising to see that the Spark version of

MELT is about twice faster than the Hadoop version. The performance gain is attributed to

the in-memory access by Spark.

In addition to the synthetic datasets, we also compare the same approaches using the

real datasets in Table 2. Based on our results in Figure 11, our approach of MELT-Hadoop

and MELT-Spark show much better scalability with the growing data size, with MELT-

SPARK showing more than 120% improvement in CPU time compared to MELT-Hadoop.

54

Figure 10. Effect of data size on anonymization time

Figure 11. CPU time comparison on real datasets.

Further, we also compare the anonymization accuracy of all the parallel approaches.

Since the anonymization accuracy is calculated by comparing the anonymization results

with the centralized approach, Figure 12 shows the comparison results with the dataset up to

500Kwhich is themaximum size that the centralized approach can process. Observe that the

full version of theMELTachievesmuch better precision and recall than the naive partitioning

approaches when the dataset grows larger. Note that the full version of MELT here refers

to both MELT-Hadoop and MELT-Spark since they produce exactly same anonymization

results. When the dataset is very small (say 5K), the anonymization accuracy is similar

among all the approaches because the number of trajectories in the anonymization results

55

is small too and hence less difference. Note that only two partitions are used for 5K dataset

whereby the Grid partitioning approach is basically the Strip partitioning, and thus no result

is reported for the Grid approach for the 5K dataset.

(a) Precision (b) Recall

Figure 12. Effect of data size on anonymization accuracy

Additionally, for the real dataset tests, we calculated the recall as recall is compared

to the original dataset and not the centralized anonymized dataset like precision is. We

achieved an average of 0.81376 recall, meaning we maintained a high data utility rate in

terms of number of trajectories retained from the original dataset. Precision could not be

measured as the centralized anonymization approach could not process the datasets for us

to compare.

5.5. EFFECT OF MAP TOPOLOGY ON EFFICIENCY AND ACCURACY

In this experiment, we evaluate the effect of the map topology on the anonymiza-

tion efficiency as well as accuracy. In order to measure the accuracy, we generate 500K

trajectories (the maximum size that the centralized approach can handle) on four different

real maps representing big cities. We set the number of the partitions to 6 and k to 0.5% of

the number of trajectories. As we can see in Figures 13, our proposed MELT-Spark is the

fastest approach among all regardless of the map topology used. The single-round MapRe-

56

duce approach is the slowest. This is because MELT, Strip, and Grid not only partition

the original input dataset but also break the anonymization task into sub-tasks and hence

achieve better parallelism than the single-round MapReduce.

Figure 13. Effect of map topology on anaonymization time

When comparing the anonymization accuracy, MELT again achieves the highest

accuracy among all. The reason is the same as previously discussed. It is because the equal

partitioning cannot capture the real trajectory distribution. In addition, it is worth noting

that the single-round MapReduce has the similar accuracy as the MELT since they adopt

the same map partitioning approach.

(a) Precision (b) Recall

Figure 14. Precision and recall for different map topologies

57

5.6. EFFECT OF USER DEFINED k ON ANONYMIZATION ACCURACY

Finally, we examine the effect of user defined k on the anonymization accuracy. In

the dataset of 500K trajectories, for each user, we randomly generate its k value ranging

from 0 (no privacy protection needed) to 0.5% of the number of trajectories. Then, we

compare the precision and recall between the anonymization results using the same value of

k (0.5% of the number of trajectories) and the anonymization result that used the variable

k for different users. Table 5 shows that the changes in precision and recall are very little

after introducing customized k. Such good performance is because our algorithm carefully

adjusts the clusters of trajectories based on individual ks and maximizes the number of

trajectories to be kept. The processing time after introducing the customized k is also

almost the same as the version with the same global k, and hence we did not include the

figure here. The processing time is similar because the algorithm for the customized k adds

only small conditions to the original version which do not affect the overall processing time.

Table 5. Change of anonymization accuracy when using individual k parameters

Number of Trajectories Precision Change Recall Change
5k -0.003 -0.002
50k -0.003 0.00005
500k -0.009 -0.004

We do note, however, that for other map partitioning methods, allowing user define

k introduces more error and sets MELT apart from those approaches even further. This

is because the size of the clusters are already smaller since similar trajectories are split

across multiple partitions, and therefore removed from the final anonymized dataset. By

introducing a larger k value in some clusters, causes more clusters to be lost entirely, where

as if more similar trajectories were clustered together, the cluster could still be published.

Therefore, MELT is best suited for user control over their privacy. Other recent approaches

mentioned in the Literature Review do not have the ability to allow for user defined privacy

requirements, and therefore cannot be compared.

58

6. CONCLUSION

In this paper, we propose a novel parallel algorithm called MELT to efficiently

anonymize large data sets of trajectories. The proposed MELT employs three rounds of

divide-and-conquer strategies that break the centralized anonymization task into sub-tasks

that can be performed in parallel. The MELT also provides flexibility to individual users

to define their own privacy levels. Our anonymization results on both real and synthetic

datasets demonstrate that our approach successfully protects the personal data from direct

knowledge or inference attacks while at the same time achieves high data utility rate.

The extensive experimental study also shows that our method performs much better when

compared with recent works in terms of computation speed, volume of data, and data utility.

To further show the benefits of our work, we have also analyzed the relationship between

the privacy and utility aspects of our approach.The outcome of this research can be used by

cellular and other location service providers to publish anonymized trajectory data much

faster so that it can be used in a wide variety of services in timely fashion without sacrificing

user privacy.

Acknowledgements : This work was funded by the National Science Foundation (NSF-

DGE-1433659, NSF-IIP-1332002), Department of Education (P200A120110).

59

REFERENCES

[1] Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., and Kalnis, P., "Trajectory
similarity join in spatial networks" Proc. VLDB Endow., 2017,Vol 10, pp. 1178-1189,
ISSN 2150-8097.

[2] Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., and Kalnis, P., "Parallel
trajectory similarity joins in spatial networks" The VLDB Journal, 2018,Vol 27,
pp.395-420

[3] The Apache Foundation. "Apache Spark". https://spark.apache.org. [Online Access
January 2019].

[4] Burke, M., "Miami teen commits suicide in two-hour long facebook livevideo,
the third in as many weeks" http://www.nydailynews.com/news/national/miami-teen-
commits-suicide-two-hour-long-facebook-live-video-article-1.2955175,2018, [On-
line Accessed 2019].

[5] Granville, K., "Facebook-Cambridge Analytica Explained"
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-
explained.html, 2018, [OnlineAccessed 2017].

[6] Brodkin, J.,"Ajit Pai gives carriers free pass on privacy violations during FCC shut-
down". https://arstechnica.com/tech-policy/2019/01/ajit-pai-gives-carriers-free-pass-
on-privacy-violations-during-fcc-shutdown,2019,[Online accessed July 2019].

[7] DiGiacomo, J., "2017 security breaches: Frequency and severity on the rise"
https://revisionlegal.com/data-breach/2017-security-breaches/, 2018, [Online ac-
cessed2018].

[8] Yeung, S.Ward, K.Madria, M. "Ridesharing-Inspired Trip Recommendations". MDM
’18. doi = 10.1109/MDM.2018.00019.

[9] Ward, K., Lin, D., and Madria, S., "A Parallel Algorithm for Anonymization of Large-
Scale Trajectory Data" Transactions on Data Science ’2019.

[10] Lin, D., Steiert, D., Ward, K., Squicciarini, A., and Fan, J., "REMIND: Risk Estima-
tionMechanism for Images in Network Distribution". CCS ’2018.

[11] Lin, D., Bertino, E., Cheng, R., and Prabhakar, S., "Location privacy in moving-object
environments" Trans. Data Privacy, 2009,Vol 2, pp. 21-46, ISSN 1888-5063.

[12] Jensen, C. S., Lin, D., and Ooi, B. C., "Continuous clustering of moving objects".
IEEETransactions on Knowledge and Data Engineering, 2007,Vol 19, pp. 1161-1174.

[13] Abul, O., Bonchi, F., andNanni, M., "NeverWalk Alone : Uncertainty for Anonymityin
Moving Objects Databases". ICDE, 2008.

60

[14] Bonchi, F. and Wang, H. W., "Trajectory Anonymity in Publishing Personal Mobility-
Data". SIGKDD, 2011,Vol 13, pp. 30-42.

[15] Chen, R., Fung, B. C. M., Mohammed, N., Desai, B. C., and Wang, K.,
"Privacy-preserving trajectory data publishing by local suppression" Information
Sciences,2013,Vol 231, pp. 83-97, ISSN 0020-0255, doi:10.1016/j.ins.2011.07.035.

[16] Domingo-Ferrer, J. and Trujillo-Rasua, R., "Microaggregation and permutation-based
anonymization of movement data". Information Sciences, 2012,Vol 208, pp. 55-80,
ISSN 00200255, doi:10.1016/j.ins.2012.04.015.

[17] Eldawy, A. and Mokbel, M., "A demonstration of SpatialHadoop: an efficient mapre-
duce framework for spatial data". VLDB, 2013, Vol 6, pp. 1230-1233

[18] Apache Software Foundation. "What is Apache Hadoop?" http://hadoop.apache.org/,
2016,[Online Accessed 2017].

[19] Gedawy, H.K., "DynamicPathPlanning andTrafficLightCoordination forEmergency
Vehicle Routing". Carnegie Mellon University Thesis, 2009, pp. 1-9.

[20] Ghasemzadeh,M., Fung, B.C.M., Chen, R., andAwasthi, A., "Anonymizing trajectory
data for passenger flow analysis". Transportation Research Part C, 2014,39, pp.63-79,
ISSN 0968-090X, doi:10.1016/j.trc.2013.12.003.

[21] Gruteser, M. and Grunwald, D., "Anonymous Usage of Location-Based Services-
Through Spatial and Temporal Cloaking". Proceedings of the 1st international con-
ference on Mobile systems applications and services MobiSys ’03, 2003, pp. 31-42,
doi:10.1145/1066116.1189037.

[22] Gurung, S., Lin, D., Jiang, W., Hurson, A., and Zhang, R., "Traffic InformationPubli-
cation with Privacy Preservation". ACM Trans. Intell. Syst. Technol., 2014, Vol5, pp.
1-26, ISSN 2157-6904, doi:10.1145/2542666.

[23] Halevy, A. Y., Franklin, M. J., and Maier, D., "TRUSTER: TRajectory Data Pro-
cesstingon ClUSTERs". Dasfaa, 2009,Vol 3882, pp. 768-771, doi:10.1007/11733836.

[24] Han, P.I. and Tsai, H.P., "SST: Privacy Preserving for Semantic Trajectories". 2015
16th IEEE International Conference on Mobile Data Management, 2015,Vol 2, pp.80-
85, doi:10.1109/MDM.2015.18.

[25] He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C. M., and Srivastava, D.,
"DPT: Differentially Private Trajectory Synthesis Using Hierarchical Reference Sys-
tems". Proceedings of the VLDB Endowment, 2015,Vol 8, pp. 1154-1165, ISSN
21508097, doi:2150-8097/15/07.

[26]] Li, X., Li, W., Anselin, L., Rey, S., and Kochinsky, "A MapReduce Algorithm to
Create Contiguity Weights for Spatial Analysis of Big Data". in BigSpatial, 2014.

61

[27] Monreale, A., Pedreschi, D., Pensa, R. G., and Pinelli, F., "Anonymity pre-
serving sequential pattern mining". volume 22, 2014, ISBN 1050601491546,
doi:10.1007/s10506-014-9154-6.

[28] Nergiz, M. E., Atzori, M., Saygin, Y., and Guc, B., "Towards Trajectory Anonymiza-
tion: A Generalization Based Approach". Transactions on Data Privacy, 2009,2(106),
pp.47-75, doi:10.1145/1503402.1503413.

[29] Pensa, R. G., Monreale, A., Pinelli, F., and Pedreschi, D., "Pattern-preserving k-
anonymization of sequences and its application to mobility data mining". CEUR
Workshop Proceedings, 2008,Vol 397, pp. 44-60, ISSN 16130073.

[30] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulala-Divanis, A., "Select-
organize-anonymize: A framework for trajectory data anonymization". Proceedings
IEEE 13th International Conference on DataMiningWorkshops, ICDMW2013,2013,
pp. 867-874, doi:10.1109/ICDMW.2013.136.

[31] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulalas, A., "Apriori-based algo-
rithms for km-anonymizing trajectory data". Transactions on Data Privacy, 2014,Vol7,
pp. 165-194.

[32] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulalas-Divanis, A.,
"Distance-based km-anonymization of trajectory data" Proceedings IEEE Interna-
tional Conference on Mobile Data Management, 2013,Vol 2, pp. 57-62, ISSN
15516245,doi:10.1109/MDM.2013.66

[33] Sankararaman, S., Agarwal, P., Molhave, T., Pan, J., and Boedihardjo, A., "Model-
Driven Matching and Segmentation of Trajectories". in SIGSPATIAL. 2013.

[34]] Ward, K., Lin, D., and Madria, S., "Melt: Mapreduce-based efficient large-scale
trajectory anonymization". in SSDBM ’2017 doi:10.1145/3085504.3085581.

[35] Yarovoy, R., Bonchi, F., Lakshmanan, L. V. S., and Wang, W. H., "Anonymizing
moving objects: How to hide a MOB in a crowd?". Proceedings of the 12th In-
ternational Conference on Extending Database Technology Advances in Database
Technology(EDBT’09), 2009, pp. 72-83, doi:10.1145/1516360.1516370.

[36] Zhao, W., Ma, H., and He, Q., "Parallel K-Means Clustering Based on MapReduce"
Cloud Computing. Springer Berlin Heidelberg, 2009, pp. 674-679.

[37] Executive Summary. "Cisco Visual Networking Index:
Global Mobile Data Traffic Forecast Update, 2013-2018".
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white_paper_c11-520862.html,2014, [Online Accessed
2018].

[38] Zixkhur, K., "Location-Based Services". http://www.pewinternet.org/2013/09/12/location-
based-services, 2013, [Online Accessed 2016].

62

[39] Francis, M., "Future Telescope Array drives development of exabyte processing"
http://arstechnica.com/science/2012/04/future-telescope-array-drives-development-
of-exabyte-processing/, 2014, [On-line accessed 2016]

[40] Deal, M., "Census Bureau Reports 471,000 Workers Commute into Los
Angeles County, Calif., Each Day". http://www.census.gov/newsroom/press-
releases/2013/cb13-r13.html, 2016, [Online accessed 2018].

[41] Wang, W., Ying, L., and Zhang, J., "On the Tradeoff between Privacy and Distortion
in Differential Privacy". in KDD ’2014 pp. 517-525.

[42] Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y., "Mining interesting locations and travel
sequences from gps trajectories". in âĂŸACM Press, ’2009 pp. 791-800.

63

II. REMIND: RISK ESTIMATION MECHANISM FOR IMAGES IN NETWORK
DISTRIBUTION

Dan Lin

Department of Computer Science

University of Missouri

Columbia, Missouri 65211

Tel: 573-884-6628

Email: lindan@missouri.edu

Doug Steiert

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri 65409

Tel: 636-293-0940

Email: djsg38@mst.edu

Katrina Ward

Department of Computer Science

Missouri University of Science and Technology

Rolla, Missouri 65401-0050

Tel: 417-217-4273

Email: kjw26b@mst.edu

64

ABSTRACT

People constantly share their photos with others through various social media sites.

With the aid of the privacy settings provided by social media sites, image owners can

designate scope of sharing, e.g., close friends and acquaintances. However, even if the

owner of a photo carefully sets the privacy setting to exclude a given individual who is not

supposed to see the photo, the photo may still eventually reach a wider audience including

those clearly undesired through unanticipated channels of disclosure, causing a privacy

breach. Moreover, it is often the case that a given image involves multiple stakeholders who

are also depicted in the photo. Due to various personalities, it is even more challenging

to reach agreement on privacy settings for these multi-owner photos. In this work, we

propose a privacy risk reminder system called REMIND, which estimates the probability

that a shared photo may be seen by unwanted people - through the social graph - who are

not included in the original sharing list. We tackle this problem from a novel angle by

digging into the big data regarding image sharing history. Specifically, the social media

providers possess a huge amount of image sharing information (e.g., what photos are shared

with whom) of their users. By analyzing and modeling such rich information, we build

a sophisticated probability model that efficiently aggregates image disclosure probabilities

along different possible image propagation chains and loops. If the computed disclosure

probability indicates high risks of privacy breach, a reminder is issued to the image owner

to help revise the privacy settings (or at least inform the user about this accidental disclosure

risk). The proposed REMIND system also has a nice feature of policy harmonization that

helps resolve privacy differences in multi-owner photos. We have carried out a user study

to validate the rationale of our proposed solutions and also conducted experimental studies

to evaluate the efficiency of the proposed REMIND system.

Keywords: Image privacy, Sharing chain, Risk estimation, Probability model

65

1. INTRODUCTION

With social media affecting the way millions of people live their lives each day,

we have assisted to an explosion of user contributed content online, especially images and

media files. Some of the user-contributed photos may be harmless and effective for users’

self-recognition and gratification. However, for many of these photos, the portrayed content

affects individuals’ social circles, as it either explicitly includes multiple users or it relates to

users other than the original poster (e.g., a child or a house/location). To further complicate

this issue, photos may be leaked or disclosed with an audience larger than expected, for

both the image owner and its stakeholders.

Although many social websites provide privacy configurations that allow the users

to specify to whom they would like to share the photos with, through the possible re-sharing

via the friends to friends, it is often the case that the photos reach a wider audience than

that in the original sharing list of the photo owner. Figure 1 illustrates a simple example of

the privacy breach caused by such image sharing propagation.

Figure 1. An Example of Privacy Breach Due to Image Propagation

Alice wanted to share her images with some her friends but not Mary. However,

one of Alice’s friends, Bob, forwarded Alice’s images to his friends whose social circles

include Mary, and eventually Mary views Alice’s images although Mary is not supposed

to. Such privacy risks caused by sharing from friends to friends have been aware by many

(3; 25; 27; 36). Some propose monitoring approaches to check the privacy violation during

each sharing event (3; 27). Most employ (5; 13; 33; 37; 49) clustering techniques to classify

66

users based on their privacy preferences, profile similarities, social network topology, image

content and metadata, in order to identify risky users and recommend better privacy policies

. However, to the best of our knowledge, none of the existing works leverages the image

sharing history and develops probability models to provide a straightforward view of the

sharing consequence as we will elaborate shortly in this work.

Another critical factor that could cause a privacy breach is the difference among

privacy preferences of people depicted in the same photo. Due to the variety of personalities,

users may drastically disagree on the scope of sharing for a given co-owned image causing

some significant conflicts. In some instances, it can be courtesy that these users may

personally discuss which photos can be posted and by whom so that there are no conflicts

of interest, but that takes time and is not often the route pursued. An increasing number

of recent works (50) have analyzed how to address the policy conflict, by considering

every user’s prior privacy preferences of sharing or through semi-automated resolution

mechanisms. These existing works are usually based on fuzzy logic while we aim to

provide clear evidence of chances of privacy breach.

In this work, unlike any existingworks, we tackle the privacy risk estimation problem

from a novel angle by digging into the big data regarding image sharing history. Specifically,

the social media providers possess a huge amount of image sharing information (e.g., what

photos are shared with whom) of their users. In fact, even some external websites (32)

have provided tools to maintain statistics of the sharing propagation throughout the social

networks.

By analyzing and modeling the rich information of image sharing history, we build a

sophisticated probability model that aggregates image disclosure probabilities along differ-

ent possible image propagation chains and loops. We present the users with direct evidence

of potential scope of sharing, i.e., the probability of unwanted people to access one’s photos.

Specifically, if the computed disclosure probability indicates high risks of privacy breach,

a reminder will be issued to the image owner to help revise the privacy settings. Users then

67

have the opportunity to make informed decisions when setting their privacy preferences.

For example, our work would remind Alice that sharing with Bob could result in 90%

chance that Mary would see the photo as well. Based on such a high disclosure probability,

it is very likely that Alice would remove Bob from her initial sharing list, and hence avoid

the potential privacy breach.

Carrying the spirits of our goal, the proposed system is named REMIND (Risk

Estimation Mechanism for Images in Network Distribution). The REMIND system has the

following novel contributions:

• The REMIND system provides users a quantitative and easier way to directly evaluate

the potential consequence of sharing. It "nudges" users about the risk of sharing the

image with certain people and remind the owners of the photos about users that could

be explicitly excluded to avoid over sharing. The goal is to reduce the risk of privacy

breach that could result from the image propagation in the social network.

• Underlying the REMIND system, we propose a sophisticated probability model that

models the image sharing history. It is very challenging to calculate and aggregate the

disclosure probabilities caused by various sharing paths especially loops in convoluted

social networks. To overcome this, we design an efficient probability serialization

algorithm that ensures each node in the related social circle to be visited and calculated

only once.

• The REMIND system also has a nice feature called policy harmonization, which cal-

culates image disclosure matrix to help resolve differences in the privacy preferences

of people depicted in the same photo.

• We have carried out a user study to validate the rationale of our proposed solutions

and also conducted experimental studies in real-life social networks to evaluate the

effectiveness and efficiency of the proposed REMIND system.

68

In addition, it is worth noting that while we present our models with images as a reference

content type, any co-owned or co-managed piece of content in an online social setting could

take advantage of REMIND, with no significant differences.

The remaining of the paper is organized as follows. Section 2 introduces the

problem statement. Section 3 elaborates the proposed REMIND system. Section 4 reports

the experimental study and Section 5 concludes this work.

2. PROBLEM STATEMENT

We consider the image sharing problem in a finite social network as defined below.

Definition 1 (Social Network) A social network is defined as an undirected graph G(Ξ, R),

where Ξ is the set of the users in this social network, and R is the set edges connecting pairs

of users who have relationship with each other, i.e., R = {(ui, u j)} where ui, u j ∈ Ξ.

Each user can specify a group of people in the same social network who are allowed

to access the shared image. The privacy policy is formally defined as follows.

Definition 2 (Image Privacy Policy)An image privacy policy is in the form of Pol =

{img, u,U+}, where u is the image owner, and U+ is the group of people who are allowed

to access user u’s image img.

Our work aims to compute the disclosure probability (as defined in Definition 3)

that the shared image may be seen by people who are in the photo owner’s contact list but

are not included in the photo owner’s original sharing list. The reason to focus on the users

who are in the image owner’s contact list is because this is the explicitly specified group of

people who the image owner clearly knows whether or not to share the image with. In other

words, the image owner has the greatest privacy concerns regarding the group of users if

they are not included in the sharing list. For example, if Alice would like to share photos

69

of her extreme sport activities with her college friends but not her parents as she does not

want them to be worried. The photos may eventually reach a wider audience, such as other

college students not specified in Alice’s original sharing list, but Alice may not care about

those strangers as long as her parents do not receive the photos from others.

Definition 3 (Image Disclosure Probability)Let uo denote the owner of an image img,

and Uo denote the set of users in uo’s contact list. Let Pol = {img, uo,U+o } denote the

corresponding privacy policy for image img. The image disclosure probability Puo⇒ut is

the probability that user uo’s image may be seen by a target user ut , where ut ∈ U−, and

U− = Uo/U+ which is the set of the users who are not in the sharing list.

3. THE REMIND SYSTEM

We propose a REMIND (Risk Estimation Mechanism for Images in Network Dis-

tribution) system that presents the image owner a privacy disclosure probability value that

indicates the risk of his/her image being viewed by an unwanted person. The REMIND

system not only works for photos with single owners, but can also be utilized to help resolve

privacy differences in multiple users depicted in the same image. Figure 2 gives an overview

of the data flow in the REMIND system.

First, the REMIND will identify the list of people who the image owner uo does

not want to share image with, i.e., U−o , by analyzing the policies associated with the image.

Note that for an image with multiple users, e.g., uo1 , uo2 , ..., uon , this step will return a set of

U−oi whereby the U−oi is the list of people that user uoi does not want to share the photos with.

The second step is to conduct the risk analysis for each user in U−o . We will first extract the

sub-network connected to the owner(s) of the photo and then calculate the image disclosure

probability for the image owner(s) with respect to the users (ut) in U−o . If the computed

disclosure probability Puo⇒ut is above certain threshold (e.g., 80%), the REMIND system

will issue an alert to the image owner uo regarding this. The alert will clearly indicate

70

Figure 2. An Overview of REMIND System

through which user who are in the original sharing list, user ut may have the chance of

Puo⇒ut to view the shared image. If the photo has multiple users in it, the REMIND system

will conduct a policy harmonization process which combines all the alerts and suggests a

possibly smaller group of users to share in to avoid undesired image disclosure. In what

follows, we will elaborate the detailed algorithm for each step.

3.1. PROPAGATION CHAIN MODELS

As aforementioned, our goal is to calculate the probability that the photo owner’s

contact who is not in the original sharing list may view the shared photo via friend-to-friend

sharing chains. We model such sharing propagation as an image sharing graph as follows.

71

Definition 4 (Image Sharing Graph) An image sharing graph is a directed graph SG(Ξ,

SR,Ψ), where Ξ is the set of users in the social network, and SR is the set of ordered pairs of

users SR = {〈ui, u j〉} which indicates that user ui shares some images with user u j , Ψ is the

set of detailed image sharing information including the origin of the image and the number

of shares received. Specifically, Ψ = {ψuo:ui→u j } where ψuo:ui→u j denote the number of

images originally owned by uo and are shared by user ui with u j .

Figure 3 illustrates a portion of the image sharing graph in a large social network.

Let us take user uo’s photo sharing propagation as an example (highlighted red in the figure).

Assume that user uo has 1000 photos of her own. She shares 800 out of 1000 with her

contact u1, denoted as “uo 800/1000" on the edge from uo to u1. User uo also shares 500

her own photos with user u4 who forwards 20 of the received photos to u3 and 400 to u1.

Now user u1 has uo’s photos from two sources. It is possible that u1 shares 400 photos out

of the 800 shares that she directly received from uo with u2, and another 200 photos out of

the shares that she received from u4 with u2 too. Correspondingly, we see two pieces of

Figure 3. An Example of Image Sharing Graph

72

Figure 4. Single Photo Propagation Chains

sharing information on the arrow from u1 to u2. Next, u2 further shares 10 of uo’s photos

from those sent by u1 with u3. In addition, uo also shares 10 out of 1000 photos directly

with u3.

Based on the image sharing graph, we proceed to discuss how to compute the image

disclosure probability Puo⇒ut , i.e., the probability that user uo’s photo may be viewed by

user ut through the sharing propagation chains. Let us start from the simplest case (Figure

4(a)) when there is only one intermediate user connecting the photo owner uo and the target

user ut . The probability Puo⇒ut can be computed by Equation 1.

Puo⇒ut = Puo⇒ui · Puo(ut |ui) (1)

In Equation 1, Puo⇒ui is the probability that uo may share photos with ui which can also

be denoted as P(ui |uo), and P(ut |ui) is the probability that ut may receive uo’s photos from

ui when ui has uo’s photos. Specifically, let No denote the original number of photos that

user uo possess, let No−i denote the number of photos that user uo shares with ui, and let

Ni−t denotes the number of uo’s photos that ui further shares with ut . Puo⇒ui can be easily

73

computed by No−i

No
, and Puo(ut |ui) can be computed by Ni−t

No−i
. Then, we have the following:

Puo⇒ut =
No−i

No
·

Ni−t

No−i
=

Ni−t

No

Next, we extend the above case to the scenario when there are multiple users in a

single chain as shown in Figure 4(b). The probability that uo’s photos may reach the target

user ut via multiple routes of sharing can be computed by Equation 2.

Puo⇒ut = Puo⇒ui · Puo(ut |ui+n)

n∏
j=1

Puo(ui+ j |ui+ j−1) (2)

At the end, we extend the probability formula to the generic scenarios (as shown in

Figure 5) when there are multiple propagation chains between the photo owner uo and the

target user ut . The final probability Puo⇒ut is given by Equation 3, where Pck denotes the

sharing probability from the chain containing ut’s direct parent uk , and m denotes the total

number of sharing propagation routes.

Puo⇒ut = 1 −
m∏

k=1
(1 − Pck)

= 1 −
m∏

k=1
(1 − Puo⇒uk · P(ut |uk)) (3)

In Equation 3, the image disclosure probability Puo⇒ut is computed by aggregating

disclosure probabilities from various sharing routes. Specifically, Pck is the probability that

ut may receive uo’s photos from the propagation chain ck . On the chain ck , uk is the ut’s

direct sender, and hence Pck is the product of the probability Puo⇒uk that uk receives uo’s

photos and the probability P(ut |uk) that uk forwards the photos to ut . Correspondingly,

1 − Pck is the probability that ut will not obtain uo’s photos from the chain ck . Then,

74

Figure 5. A Generic Photo Propagation Model

∏m
k=1(1 − Pck) is the probability that ut will not receive uo’s photos from any of the m

propagation chains. Finally, by negating the previous probability, we obtain the probability

that ut may have access to uo’s photos.

3.2. DISCLOSURE PROBABILITY CALCULATION

In the previous section, we have discussed how to calculate the image disclosure

probability given the possibly multiple sharing routes. The next step is to identify these

sharing routes in the social network. However, the real social network is very complex

which may contain a huge number of paths between two users. The critical question here

is: "Is it possible to compute such image disclosure probability in practise?" The answer is

positive. Even though the paths connecting two users in the social network may be huge,

the number of active sharing chains is not. This is based on an important observation that

people’s interests in sharing others’ photos typically decrease as the relationship with the

photo owner becomes farther away. For example, Alice shares her photo of her first surfing

with her roommate Kathy. Kathy further shares the photo with her friend Mary in the same

college who may also know Alice with the thought that Mary may be surprised to see Alice

75

is doing extreme sports. It is likely that Mary may share the photo again with other friends

who may also know Alice. However, the sharing is likely to stop when it reaches a person

who barely knows Alice.

Based on the above observations, we can extract a sub-network that is closely related

to the photo owner before the probability calculation. The sub-network is formally defined

as personal image sharing graph in Definition 5.

Definition 5 (Personal Image Sharing Graph) Given an image sharing graph SG(Ξ, SR,

Ψ), the personal image sharing graph of a user uo is PSG(Ξo, SRo, Ψo) which satisfies the

following two conditions:

(1) Ξo ⊆ Ξ, Ro ⊆ R, and Ψo ⊆ Ψ;

(2) ∀ u j ∈ Ξo, ∃ψuo:ui→u j .

The first condition in the personal image sharing graph’s definition ensures that PSG

is a sub-graph of the entire image sharing graph. The second condition ensures that only

the users who received photos from uo are included in this PSG. For example, reconsider

the social network shown in Figure 3. We can extract the personal image sharing graph for

uo as shown in Figure 6.

Figure 6. User uo’s Personal Image Sharing Graph

Assume that the image owner uo shares a new photo with only u4. The red dotted

arrows in Figure 6 indicate that u1 and u3 are uo’s contacts but are not in the sharing list of

this photo. We now proceed to calculate the probability that two other uo’s contacts, i.e., u1

and u3, may also view the image.

76

Puo⇒u4 = 1

Puo⇒u1 = Puo⇒u4 · P(u1 |u4)) = 1×400
500=0.8

Puo⇒u2 = Puo⇒u1 ×
200
400 = 0.8×0.5=0.4

Puo⇒u3 = 1 − (1 − Puo⇒u2 · P(u3 |u2))·

(1 − Puo⇒u4 · P(u3 |u4))

= 1 - (1- 0.4× 10
200)(1-1×

20
500) = 0.048

From the above example, we can see that even though uo did not directly share

the photo with u1, there is still 80% chance that u1 may view the photo shared from other

channels. On the other hand, there is very little chance (5%) that u3 may see the photo. To

calculate these probabilities, the sequence of the node visit in the personal image sharing

graph is important. The calculation sequence is u1, u2 and u3 in the example. If we

follow another computation order such as u3, u1 and u2, we will obtain only part of the

probability values for u3, before u2 is calculated. Once u2’s probability is known, we

will have to adjust u1’s probability value. This is obviously inefficient especially in large-

scale social networks. Therefore, we need to ensure that the parent nodes’ probabilities

are computed first. However, identifying the calculation order is not trivial due to the

complicated interconnections among nodes in the social network that may create sharing

loops. To efficiently and correctly calculate and aggregate the disclosure probabilities, we

formally model the problem as the probability serialization (Definition 6).

Definition 6 (Probability Serialization) Let PSG(Ξo, SRo, Ψo) be the personal image shar-

ing graph of a user uo. The probability serialization process aims to identify a serialization

ordering of node visits which minimizes the node visits and ensure that each node’s dis-

closure probability is calculated correctly. The probability serialization ordering is in the

form of ui �ui+1� ...� ui+k , where ui ∈ Ξo, 〈ui, ui+1〉 ∈ SRo, and ui �ui+1 denotes ui’s

probability will be computed before ui+1’s probability.

77

Figure 7. Sharing Scenario Case 1

To conduct the probability serialization, we first analyze various sharing scenarios

and classify them into two main categories as shown in Figure 7 and Figure 8, respectively.

For clarity, the figures do not include the detailed sharing amounts while the arrows in the

figures only indicate that there are some photos belonging to uo being forwarded to others.

Case 1 depicts the scenario when the disclosure probability of a user needs to be

calculated after all its parent nodes have been computed. Specifically, as shown in Figure 7,

the photo owner uo shares photos with his friend u1 but not u4. User u1 then forwards some

of the photos to u2. User u2 further shares the photos with u3. Moreover, the three users

u1, u2 and u3 all forward some of the uo’s photos to user u4. In this case, the probability

that uo’s photos may be seen by u4 depends on the the disclosure probabilities of u1, u2

and u3 which need to be computed first. The appropriate calculation order of this case is

u1 �u2 �u3 � u4.

Case 2 depicts the scenario when there is a sharing loop. Specifically, user u2

forwards uo’s photos to u3, and u3 forwards the photos to u4. Without knowing that u2

already has seen uo’s photos, u4 forwards the photos received from u3 to u2, thus creating

a sharing loop. In this case, even though u4 is also u2’s immediate parent, u2’s disclosure

probability does not depend on u4 since u4 is sharing what u2 originally sent out. The

appropriate serialization ordering of this case is u1 �u2 �u3 � u4.

Based on the above classification, we now proceed to present a generic probability

calculation algorithm. We employ two main data structures to facilitate the probability

serialization. The first structure is a priority queue which stores the uncomputed nodes that

78

Figure 8. Sharing Scenario Case 2

have been visited so far. The second structure is a link list that stores the set of uncomputed

parent nodes of each uncomputed node. The probability calculation takes the following

steps (an outline of the algorithm is shown in Algorithm 6):

1. Initialization: Starting from the photo owner node uo’s initial sharing list, we look

for the children nodes of the users in the sharing list and add them into the priority

queue.

2. Checkingcurrentnodeinthepriorityqueue: Then, we examine the node in the pri-

ority queue one by one. Let ui denote the node in the priority queue that is under

consideration. For any node in the priority queue, its probability is finalized only

after all its parent nodes’ probabilities are computed. Therefore, we check if all of ui’s

parents’ probabilities have already been computed. If so, we compute the probability

of ui, remove it from the priority queue and perform the probability propagation

routine. In the case that at least one parent node of ui whose probability is not yet

computed, we will just keep ui in the priority queue. In both cases, we will proceed

to perform the expansion routine for ui.

3. Probabilitypropagation: Given a node ui whose probability is just computed, we

will set the parent flags of all the nodes that take it as the parent to “computed" and

calculate a partial probability for these nodes by plugging ui’s probability to Equation

1.

79

4. E xpansion: This step is to expand the sharing chain by considering ui’s children

nodes. If ui has a child node uc which has not been visited yet, uc will be added

to the priority queue and uc’s parents including ui will be added to the uc’s parent

list. If some of the uc’s parents’ probabilities are known, their parent flags are set to

"computed". After the expansion, the algorithm goes back to the second step to check

the next node in the priority queue. In the case that uc has already been stored in the

priority queue, that means a sharing loop between ui and uc is detected. We will then

give ui a special flag which means the loop-breaking routine is pending until there is

no more new node to be added to the priority queue.

5. BreakingtheLoopbetween uianduc : Up to this point, all of the ui’s parents should

already be in the priority queue. We will compute uc’s probability by using any

partial probability that ui has so far. Note that the partial probability that ui possesses

is definitely from sources other than uc, so it is important to factor them into uc’s

probability calculation. Once uc’s probability is computed, we will remove it from

the priority queue, perform the probability propagation and then check the next node

in the priority queue (i.e., go back to the second step).

To have a better understanding of the above probability calculation algorithm, let us

step through the following example as shown in Figure 9. This example shows the image

propagation from user uo. In particular, uo shares a new photo with u1 but not two other

friends u4 and u5. This example combines the two types of sharing scenarios including

multi-parent relationship and multiple sharing loops.

Figure 10 presents how the information is updated in the priority queue and the parent

lists throughout the probability calculation. The first black rows in the tables represent the

priority queue at different steps, while the second rows represent the parent lists.

At the beginning, the child node (u2) of the user (u1) who is in the photo owner’s

sharing list is added to the priority queue. Since uo shares the photo directly with u1, the

probability that u1 views the photo is 1. We start evaluating the first node in the priority

80

ALGORITHM 6: Probability Calculation Algorithm
Data: Input:
mage sharing graph Result: Output:
Disclosure probabilities of uo’s friends Extract uo’s personal image sharing
(PIS) graph
for each user ui in uo’s sharing list do

Initialize Prob[ui]← 1
Add ui to priority_queue

end
while priority_queue is not empty and U−o is not computed do

ui ← priority_queue.pop()
for each parent u j of ui do

Pi j ← chain probability (Equation 1)
Prob[ui]← Prob[ui]*(1-Pi j)

end
if all of ui’s parents are computed then

Prob[ui]← 1-Prob[ui]
Remove ui from priority_queue

end
for each ui’s direct friend uc do

if uc is not in priority_queue then
Add uc to priority_queue

end
else

Break_Loop between ui and uc
end

end
end

Figure 9. An Example of Sharing Graph

81

Figure 10. An Example of Probability Serialization

queue, i.e., u2. Since u2 has another parent u5 whose probability is unknown at this moment,

we hold on the calculation of u2’s probability and continue expanding the sharing networks

from u2. As a result, u2’s children nodes u3 and u4 are added to the priority queue too.

Since u3 and u4 also need to wait for their parent nodes to be computed, the expansion

continues whereby u3’s children (i.e., u5 and u6) and u4’s children (i.e., u7) are added to the

priority queue. Next, we encounter the node u5 whose child u2 already exists in the priority

queue. That means we detect a sharing loop that involves u2 and u5. In this case, we give

u5 a special mark indicating that we will revisit u5 at a later time. We continue the network

expansion from u6 to its child u8.

Up to this point, all nodes whose probabilities can be computed should have been

removed from the priority queue. It is time to deal with the sharing loops. Specifically,

we locate the node u5 which has a special mark due to the sharing loop. Then, we find the

node u2 in the priority queue which has u5 as a parent. Since the loop starts from u2 and

goes to u5, it is not necessary to include u5’s probability during u2’s calculation. Therefore,

we go ahead to calculate u2’s probability without considering u5. Once u2’s probability

is obtained, it "unlocks" its children nodes u3 and u4 whose probabilities are ready for

calculation too. Next, we can calculate the probabilities of u3 and u4’s children nodes which

are u6 and u7. Finally, we can compute u5. Note that the calculation stops here without

82

calculating u8 because all of uo’s contacts in the non-sharing list have been computed. The

complete probability calculation ordering is u2�u3 �u4 �u6 �u7 �u5 (indicated by the

circled number on top of each node in the figure).

The above probability calculation algorithm provides the calculation ordering for

all the users that are in the photo owner uo’s personal image sharing graph. It is worth

noting that the efficiency of probability calculation can be further improved by stopping the

calculation for a node if its current probability is already higher than the decision threshold.

For example, if through currently explored sharing chains, the disclosure probability is as

high as 99%, it is not necessary to keep checking remaining sharing routes.

The complexity of our probability calculation algorithm is O(n) as each node in the

personal image sharing graph is first visited once during the personal image sharing graph

extraction and then calculated once in the priority queue.

3.3. PRIVACY HARMONIZATION AMONGMULTIPLE USERS

In the previous sections, we have discussed how to handle a photo with a single

owner. Indeed, the risk estimation algorithm can be easily extended to address the policy

harmonization issues occurring in a photo with multiple owners. It is common that different

users may have different privacy preferences regarding the same photo. Consider the

example when there is a group photo of Alice, Bob and Mary. Alice would like to share

the photo with her family members only, while both Bob and Mary would like to share the

photo with their close friends. It is possible that some of Bob and Mary’s close friends are

also Alice’s friends who will be able to view Alice’s photo although Alice’s initial intention

is to share only within her family. Our goal is to estimate the risk of privacy breach due

to such difference. Our system will calculate the disclosure probability of the photo being

seen by people who are in Alice’s contact list but not her family members due to the sharing

activities from Bob and Mary. We will present the estimated risk to all the photo owners so

that they can refine their privacy policies.

83

In order to achieve the above goal, instead of calculating disclosure probabilities for

an individual photo owner as discussed in the previous sections, we need to calculate the

following disclosure matrix.
Definition 7 (Disclosure Matrix) Let u1, ..., un denote the group of people depicted in a

photo img, and Pol1, ..., Poln denote the policies belonging to each photo owner, respec-

tively. The disclosure matrix is defined below, where uij ∈
⋃n

w=1 U+w/{u1, ...un}.

ui1 ui2 ... uik



u1 P(U−1 |ui1) P(U−1 |ui2) ... P(U−1 |uik)

u1 P(U−2 |ui1) P(U−2 |ui2) ... P(U−2 |uik)

...

un P(U−n |ui1) P(U−2 |uik)

The main idea underlying the disclosure matrix is to check the potential privacy breach that

may be caused by the union of the groups of people in all the photo owners’ sharing list.

After the calculating the disclosure matrix, we will identify and suggest the photo owners

to remove potentially high-risk sharing activities. The following is an illustrating example.

Suppose that a photo has three owners: u1, u2 and u3. The sharing lists in the photo

owners’ policies are the following:

Polu1 = {u1, u2, u3, u4, u5}

Polu2 = {u1, u2, u3, u4, u6}

Polu3 = {u1, u2, u3, u5, u7}

The corresponding disclosure matrix considers the unions of the sharing list excluding the

photo owners themselves who are assumed to have full access to the photo. Assume that

we obtain the probabilities as shown in the following:

84

u4 u5 u6 u7


u1 0.1 0.9 0.05 0

u2 0.1 0.95 0.8 0.1

u3 0 0.85 0.2 0.3

From the above disclosure matrix, we can see that P(U−1 |u5), P(U−2 |u5), and P(U−3 |u5) are

very high (i.e., above a given privacy threshold), which means the risk that people in the

non-sharing lists of all the photo owners may see this photo due to the further propagation

from u5. Therefore, our REMIND system will suggest all the photo owners to remove

u5 from their sharing list. In addition, user u2’s sharing with with u6 may cause potential

privacy breach for him/herself, thus, we would suggest u2 to remove u6 from the sharing list.

If all the users agree with suggestions, the policy harmonization will result in the following

new policies:

Pol’u1 = {u1, u2, u3, u4}

Pol’u2 = {u1, u2, u3, u4}

Pol’u3 = {u1, u2, u3, u7}

3.4. POTENTIAL ENHANCEMENT

Our system can be further enhanced to provide more fine-grained and precise pri-

vacy alerts by pre-processing statistic information collected by the social media provider.

Specifically, images can be first clustered based on their content (49; 58). Then, the image

sharing statistics will be linked to each particular type of images of a user instead of all. For

example, photos which are categorized as "funny" are more likely to propagate throughout

a much larger portion of the social network than photos which are categorized as "normal

daily life". To handle such additional sharing information only requires a minor modifica-

tion of the previously discussed probability calculation algorithm. The minor change lies in

85

Table 1. User Response to Different Scenarios

Privacy Breach Probability 90% 50% 10%
Scenario 1 (Single-owner photo, undesired disclosure to family) 61% 57% 34%
Scenario 2 (Single-owner photo, undesired disclosure to friend) 78% 73% 31%
Scenario 3 (Multi-owner photo, undesired disclosure to manager) 85% 80% 68%

the input parameter to the algorithm. With the fine-grained sharing information, we update

Ψ by adding the image type information, i.e., Ψ = {ψ(uo,typ):ui→u j
}. Next, when it comes

to the probability calculation, only those Ψ which contain the same image type as the one

under consideration will be considered.

4. EXPERIMENTAL STUDY

In this section, we present our experimental studies that evaluate both effectiveness

and efficiency of our proposed approach. Specifically, we conducted user studies to see how

people would react when presented a probability score of their privacy breach as computed

by our system. The goal is to validate the usefulness of our proposed REMIND system.

Next, we tested the performance of our system by using real social network datasets with

various sharing scenarios. The second set of experiments aims to validate the efficiency of

our proposed system.

4.1. USER STUDY

This user study aims to investigate how a typical user would react if the user

knows that sharing with someone may cause a privacy breach with different disclosure

probabilities. We created an online survey which asked for demographic information,

photo sharing preferences, and then presented users with various sharing scenarios. In what

follows, we first describe the demographics information of people who participated in the

user study, and then analyze the results of the users’ responses.

86

4.1.1. Setup and Survey. The user study involves 104 users, including approxi-

mately 30% female and 70%male. Their ages range from 18 to over 50. All of the 104 users

have at least one social media account with about 71% of them have more than 2 accounts.

When asked how often they shared images on social media, more than half said they share

regularly with 6% admitting they share images every day, and over half of the participants

have between 50 to over 200 images. To understand how conscious the participants were

about the privacy of their images, we asked them whether they often designate a group

of people that they would like to share when uploading a photo. Although about 72% of

participants answered yes, we can see there is still a good percentage (28%) of users who

may not be aware of privacy risks which makes it important to have a system that can help

remind these users about the potential privacy breach.

Moreover, even users who set up the privacy configurations during the photo sharing,

they still do not have the knowledge what would be the final audience of their images as their

friends may re-share the received images. To get an idea of how much of an impact that

the social network connections can make on a user’s privacy, we asked how many contacts

each user had in their social media accounts. 53% of the participants claim to have between

100 to 500 contacts while 21% claim to have more than 500 contacts. Imagine that even

half of those contacts sharing the images they see to their own additional contacts, we can

see how quickly an image can spread which may result in undesired privacy breach that the

photo owners do not anticipate.

4.1.2. Scenarios. After surveying the participants’ common practices in the social

media sites, we next present them three different scenarios to learn how they may react if

they know the probabilities of their photos being seen by unwanted people.

Scenario 1: Suppose that you are going to post a picture of yourself doing extreme

sports such as surfing. You know your parents (or close family members) always try to

convince you to give up these extreme sports for safety concerns, so you are not planning

87

to share the photo with your parents (or close family members), but only with your surfing

club members. However, one of the surfing club members, Erica, is actually a colleague of

your parents’ (or close family members’) friends.

Scenario 2: Suppose that you are going to post a picture of yourself in a party and

share it with some of your close friends. One of your friends in your sharing list, Erica, is

also a friend of Bob who you do not wish to see your photo for some reasons.

Scenario 3: Suppose that you are going to post a picture of you and your best friend

Mary in funny costumes (such as shown in the photos) with your family members. Mary

does not wish her manager to see this. However, your cousin, Erica, knows some of Mary’s

colleagues who may know Mary’s manager.

The first two scenarios are regarding single-owner photos and the last scenario is

about multi-owner photo. For each scenario, we present sample photos to the participants

to help them better understand the scenarios. Then, we ask whether they would consider

excluding Erica from their initial sharing lists if they know there is 90%, 50%, or 10%

chance that the photo may be disclosed to unwanted people by Erica. Table 1 reports the

percentage of participants who responded positively that they would change their initial

privacy settings as suggested. From the table, we can clearly observe an increasing trend

of privacy concerns when the relationship between the photo owner and the unwanted

person becomes loose. Specifically, 61% of participants said they would not share with

Erica if there is 90% chance that the photo may be disclosed to their close family members

who are not in the initial sharing list; the percentage jumps to 78% when there is 90%

chance of disclosure to the photo owner’s friend who is not supposed to see the photo; the

percentage further increases to 85% when it is about the disclosure to the photo owner’s

manager. Such results essentially conform with most people’s common practice as we

are less concerned about our privacy within the family than in the working environments.

The second observation is that the percentage of participants who would like to change

88

the privacy settings decreases with the disclosure probability. For example, when there

is only 10% chance of disclosure to undesired people, only around 30% of people chose

to restrict the privacy settings in the first two scenarios. There are still a high percentage

(68%) of people would like to prevent their manager from seeing the photo even there is

only 10% chance of disclosure. This is understandable since the privacy risk with respect

to the manager may lead to severe impact on the career development, and hence people

would not want to take much risk. Based on these responses, we envision that our proposed

REMIND system would have a good number of customers when adopted by the social

media providers.

To be even more clear about the usefulness of our REMIND system, at the end

of the user study, we directly asked the participants if they would like to have such kind

of privacy breach reminder provided by social websites. We have 73% of participants

responded that they are interested in using this kind of system. It is interesting to note that

this percentage matches the percentage of participants who answered that they usually set

up privacy settings in the social networks. It indicates that users who are concerned about

their privacy are very likely to adopt our proposed REMIND system to further enhance

their privacy protection. For people who do not care about privacy issues much, we feel

that our REMIND system could play an important role in gradually educating them the

importance of privacy protection via constant privacy breach alerts. To sum up, there is a

large percentage of people who may benefit from our proposed REMIND system to gain

better privacy protection.

89

4.2. EFFICIENCY STUDY

After the user study which validates the usefulness and potential market of our

proposed REMIND system, we proceed to evaluate the efficiency of our approach. Since

our probability model looks into large-scale historical image sharing data and convoluted

social networks, it is critical that the disclosure probability can be computed in a real-time

manner to provide the users an immediate reminder when they are uploading new photos.

To examine the efficiency, we test our approach in real social networks released by

Facebook and Twitter (28). Since current social mediate sites only release the social network

Table 2. Real Social Network Datasets

Dataset Facebook Twitter
Total number of nodes 3,908 81,306
Total number of edges 168,194 1,768,149
Average degree 43 21
Maximum degree 293 1635

connections as shown in Table 2, but not the image sharing statistics yet, we simulate a

variety of scenarios in terms of image sharing on these real social networks as described

in Definition 4. It is worth noting that although the image sharing statistic information is

synthetic, it does not affect the efficiency test since the social network topology is real and

our sharing parameters cover a wide range of possible sharing scenarios. Specifically, we

first generate a random number of photos ranging from 100 to 1000 for each user. Then,

for each user, we randomly select a group of his/her friends to share certain percentage of

the photos. The receivers of the shared photo will forward a random number of received

photos to a random number of their friends. In this way, the photos are propagated in the

social network similar to the real world scenario. We control the propagation by setting

the maximum number of hops to forward the photos since a personal photo may not be

interesting to people who have almost no relationship with the photo owner. We vary

the number of people in the initial sharing list. We also vary the speed of image sharing

90

Figure 11. Effect of the Number of the Hops

convergence as a photo may becomes less interesting to people who are farther away from

the photo owner. The following subsections elaborate the detailed experimental settings for

each round of experiments and report the corresponding results.

4.2.1. Effect of the Number of Propagation Hops. In the first round of experi-

ments, we evaluate the effect of the number of image propagation hops ranging from 1 to

5. When there is only one hop, the photo owners share the photos with their direct friends

and their friends will not forward the photos to anyone else. When there are five hops, the

photos will be forwarded by the photo owners’ friends to the friends’ friends until 5 hops.

The reason to choose 5 hops is based on the "six degrees of separation" theory (55) that

any two users can be connected through 5 acquaintances, and we choose one degree less

to avoid the photos being propagated in the whole social networks which loses the privacy

protection sense.

Figure 11 reports the average time taken to compute the disclosure probability of

a photo owner’s friend who is not in the initial sharing list. We can observe that the

calculation takes less than 1s in all cases for both the Facebook and Twitter datasets. The

efficiency could be attributed to the extraction of the personal sharing graphs as well as the

probability serialization algorithm, both of which help reduce the amount of users (nodes

in the social network) to be examined and calculated. Moreover, we also observe that the

calculation time increases when the photos are propagated through more hops. The reason

91

is that the more hops, the more users may receive the shared photos, resulting in various

sharing chains and loops which takes time to calculate. Actually, the average disclosure

probability of the friends who are not in the initial sharing list also increases with the hops.

4.2.2. Effect of the Number of Friends in the Initial Sharing List. In this round

of experiments, we fix the image propagation hops to 3 and vary the number of friends in the

initial sharing list from 50 to 200. As shown in Figure 12, the average time to calculate the

disclosure probability for a user in both datasets can be done in just a fewmilliseconds. This

again proves the efficiency of our algorithm. In addition, we also observe that the calculation

time increases with the size of the sharing list. This is because the more people in the initial

sharing list, the wider audience the photos may reach, which leads to a complicated sharing

graph. As a result, there may be more ancestor nodes to be computed before finalizing a

user’s disclosure probability. Note that the wider audience also means the corresponding

increase in the average disclosure probabilities.

4.2.3. Effect of the Sharing Convergence Speed. Finally, we evaluate the effect

of the sharing convergence speed. We simulate this by decreasing the number of friends

to share the photos at each hop. Specifically, the statistic sharing information is generated

by allowing each user to share the photos with 75 friends. For each friend who received

the photo, he/she forwards the photo to a smaller number of friends, e.g., 20% less of the

previous hop. The sharing stops when reaching the third hop. Figure 13 shows the average

probability calculation time for each user. Observe that the calculation time decreases when

Figure 12. Effect of the Size of the Initial Sharing List

92

the sharing convergence speed increases. This is because the number of people in the

sharing list at each hop decreases, and hence the overall size of the sharing graph decreases

too. In other words, the smaller the scope of the sharing, the faster the calculation. Also,

the smaller sharing scope, the lower the average disclosure probabilities.

Figure 13. Effect of Sharing Convergence Speed

5. CONCLUSION

In this paper, we present a novel risk reminder system that offers the social network

users a quantitative view of their image sharing risks due to friend-to-friend re-sharing. Our

proposed REMIND system is based on a sophisticated probability model that models the

large-scale image sharing statistic information and captures the complicated sharing prop-

agation chains and loops. Our system also addresses the policy harmonization challenges

in multi-owner photos. We have carried out both user studies and performance studies to

validate the effectiveness and efficiency of our approach.

93

REFERENCES

[1] Watts, D. J., "Six Degrees: The Science of a Connected Age, W. W. Norton & Com-
pany"; Reprint edition, 2004.

[2] Leskovec, J., "Stanford Large Network Dataset Collection".
https://snap.stanford.edu/data, 2015, [Online Accessed 2019].

[3] Laleh, N., Carminati, B., and Ferrari, E., "Graph based local risk estimation in
large scale online social networks", in IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), 2015 pp. 528-535.

[4] Pensa, R. G. and Di Blasi, G., "A semi-supervised approach to measuring user privacy
in online social networks", in T. Calders, M. Ceci, and D. Malerba, editors, Discovery
Science, Cham, 2016 pp. 392-407.

[5] Squicciarini, A. C., Lin, D., Sundareswaran, S., andWede, J., "Privacy policy inference
of user-uploaded images on content sharing sites", IEEE Transactions on Knowledge
and Data Engineering, 2015, Vol 27, pp. 193-206.

[6] Squicciarini, A. C., Sundareswaran, S., Lin, D., and Wede, J., "A3p: Adaptive policy
prediction for shared images over popular content sharing sites", in Proceedings of
the 22Nd ACM Conference on Hypertext and Hypermedia, 2011. pp. 261-270.

[7] Yu, J., Zhang, B., Kuang, Z., Lin, D., and Fan, J., "iprivacy: Image privacy protection
by identifying sensitive objects via deep multi-task learning", IEEE Transactions on
Information Forensics and Security, 2017, Vol 12, pp. 1005-1016.

[8] Squicciarini, A., Karumanchi, S., Lin, D., and Desisto, N., "Identifying hidden social
circles for advanced privacy configuration", Computers and Security, 2014, Vol 41,
pp. 40-51.

[9] Yu, J., Kuang, Z., Zhang, B., Zhang,W., Lin, D., and Fan, J., "Leveraging content
sensitiveness and user trustworthiness to recommend fine-grained privacy settings
for social image sharing", IEEE Transactions on Information Forensics and Security,
2018, Vol 13, pp. 1317-1332.

[10] Mariotti, T., "How can we track when someone shares through the facebook share (not
like) button?", in https://www.quora.com/How-can-we-track-when-someoneshares-
through-the-Facebook-Share-not-Like-button, 2012.

[11] Kafali, O., Gunay, A., and Yolum, P., "Detecting and predicting privacy violations
in online social networks", Distributed and Parallel Databases, 2014, Vol 32, pp.
161-190.

94

[12] Akcora, C. G., Carminati, B., and Ferrari, E., "Risks of friendships on social networks",
in âĂŸData Mining (ICDM), 2012 IEEE 12th International Conference on, ’2012 pp.
810-815.

[13] N.Kokciyan and Yolum, P., "Priguard: A semantic approach to detect privacy vio-
lations in online social networks", IEEE Transactions on Knowledge and Data Engi-
neering, 2016, Vol 28, pp. 2724-2737.

[14] Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J., "Fine-grained integration of access
control policies", Computers and Security, 2011, Vol 30, pp. 91-107, ISSN 0167-
4048, doi:https://doi.org/10.1016/j.cose.2010.10.006, special Issue on Access Control
Methods and Technologies.

[15] Such, J. M. and Criado, N., "Resolving multi-party privacy conflicts in social media",
IEEE Transactions onKnowledge andData Engineering, 2016, Vol 28, pp. 1851-1863.

[16] Bonneau, J., Anderson, J., and Danezis, G., "Prying data out of a social network", in
Social Network Analysis and Mining, 2009. ASONAM ’09. International Conference
on Advances in, IEEE, 2009 pp. 249-254.

[17] Adu-Oppong, F., Gardiner, C. K., Kapadia, A., and Tsang, P. P., "Social circles:
Tackling privacy in social networks", in Symposium on Usable Privacy and Security
(SOUPS), 2008.

[18] Mazzia, A., LeFevre, K., and Adar, E., "The pviz comprehension tool for social
network privacy settings" in Proceedings of the Eighth Symposium on Usable Privacy
and Security, ACM, 2012 p. 13.

[19] Klemperer, P., Liang, Y., Mazurek, M., Sleeper, M., Ur, B., Bauer, L., Cranor, L. F.,
Gupta, N., and Reiter, M., "Tag, you can see it!: Using tags for access control in photo
sharing" in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM, 2012 pp. 377-386.

[20] Fang, L. and LeFevre, K., "Privacywizards for social networking sites", in Proceedings
of the 19th international conference on World wide web, ACM, 2010. pp. 351-360.

[21] Spyromitros-Xioufis, E., Papadopoulos, S., Popescu, A., and Kompatsiaris, Y., "Per-
sonalized privacy-aware image classification", in Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval, ACM, 2016. pp. 71-78.

95

SECTION

3. CONCLUSIONS

More than ever before, our growing population is using all sorts of devices to connect

and communicate with people from all over the world. They are sharing their locations,

their images, and using hand held computers to find the things they are looking for, get

directions, and make recommendations. All of this information can easily lead to the loss

of privacy for many users as we have seen in recent years with data breach after data breach.

Controlling what information is released is already difficult, but also controlling how far it

goes once online is impossible.

The potential benefits are impossible to ignore, however. This information could

be used to plan critical infrastructures, route emergency vehicles, improve conveniences,

and so much more. The volume of data being produced is overwhelming due to current

algorithms however, and require a new approach that can make the most use of the data

while also maintaining the privacy of the users producing it.

This collection of work has provided improvements that not only can handle large

volumes of data quickly, but also maintain the privacy of all users associated with the data.

This work is easily deployable to real world environments and brings our social nature and

technology closer to both being safe, and helping the greater needs of society. As a whole,

it has shown that using data for real world improvements is not only possible, but that it can

be done without sacrificing safety.

APPENDIX A.

AUTHOR PUBLICATIONS LIST

97

The following are all current publications by the author for quick reference.

1. Katrina Ward., Dan Lin, Sanjay Madria. 2019 MELT: Mapreduce-based Efficient

Large-Scale TrajectoryAnonymization. ACMTransactions onData Science(TDS)’19.

2. Dan Lin, Douglas Steiert, Katrina Ward, Anna Squicciarini, Jianping Fan. 2019.

Risk Estimation Mechanism for Images in Network Distribution, Under Submission

to ACM Conference on Computer and Communications Security.

3. Katrina Ward, Dan Lin, Sanjay Madria. 2017. MELT: Mapreduce-based Efficient

Large-scale Trajectory Anonymization. In Proceedings of SSDBM ’17. Chicago, IL,

USA. June 27-29, 2017, 6 pages. DOI: http://dx.doi.org/10.1145/3085504.3085581

4. Yeung, San. Ward, Katrina. Madria, Sanjay. 2018. Ridesharing-Inspired Trip

Recommendations. In Proceedings of MDM âĂŹ18. Aalbord, Denmark. 16 July

2018. DOI: 10.1109/MDM.2018.00019

5. Jennifer L. Leopold, Chaman L. Sabharwal, Katrina J. Ward. 2015. Spatial rela-

tions between 3D objects: The association between natural language, topology, and

metrics, Journal of Visual Languages & Computing, Volume 27, April 2015, Pages

29-37, ISSN 1045-926X, Distributed Multimedia Systems

6. Jennifer L. Leopold, Chaman L. Sabharwal, Katrina J. Ward. 2014 Spatial Relations

Between 3D Objects: The Association Between Natural Language, Topology, and

Metrics. DMS 2014: 241-249

APPENDIX B.

MELT COMPLEXITY ANALYSIS EXPANDED

99

In the MELT paper (the third paper) in this thesis, the author presented a summary

of the complexity analysis of the algorithms for the system. In this appendix, the author

presents more detail to the complexity analysis to facilitate better understanding.

• Round1Analysis : For the first round, recall that we:

1. Calculate which partition a trajectory belongs to

2. Output Trajectories and roads with their assigned partition

3. Cluster identical trajectories and roads

For this analysis:

c = Average nodes in a trajectory

n = Number of trajectories in data

x = Number of map partitions the data will be divided into

We can say that the time for round one is:

cn+n
x

where cn represents looking at each node in a trajectory, n represents outputting each

trajectory, assuming none are grouped for worst case, and x represents each partition

has its own reducer working in parallel.

• Round2Analysis : For the second round, we:

1. Identify infrequent roads

2. Remove infrequent roads from trajectories

3. Divide data into branches and output

100

For this analysis, we add the following terms:

m = Number of roads in data

i = Number of mappers running in parallel

j = Number of branches to divide data into

k = k Anonymity privacy threshold

With this, we add the following to our complexity:

m
i +

cn
i

where m
i represents the time to identify infrequent roads among all the roads and cn

i

represents the time to remove those infrequent roads from the trajectories since we

look at each road in them. This assumes the worst case of no duplicate trajectories at

this point. Also at worst case, we can assume only one reducer is operating and no

more than k similar trajectories in any group, or branch. This means that one reducer

is processing the maximum number of branches itself.

n∗ nk
j

The above equation represents the time for each trajectory to be compared with each

other cluster of similar trajectories and assuming it does not match and creates its

own. j is arbitrary and constant, so the equation can be reduced to n2

k with an I/O cost

of n
k .

Therefore in round 2, we see:

m
i +

cn
i +

n2

k +
n
k

101

We assume there are n infrequent roads, meaning every trajectory will need to be

changed. In the third term, realistically, there is never a single reducer working and

the chances of even clusters and every trajectory checking every cluster and reaching

the end every time is very small. It would be considered an extreme outlier case. In

practice, this term is reduced to n
k to be realistic. Therefore, the actual round two

result to be realistic would be:

m
i +

cn
i +

n
k +

n
k

• Round3Analysis : In the third round, we build small cluster trees, locate the cluster

each trajectory belongs to, and output the final anonymized dataset. We start with:

nlog(cn)
j x + cn

x +
n
k

where the first term represents finding a cluster for each trajectory to be assigned

to. Since we look at individual nodes in the cluster, we assume we look at all

nodes for worst case. This task is split up over j branches being processed in

batches over x reducers in parallel. The second term shows us the time to calculate

the representative trajectory for those clusters looking at the nodes, and the last term

represents outputting the anonymized dataset assuming all trajectories are split evenly

into k clusters and all clusters meet our privacy threshold so no data is lost.

• FinalSummary : From these three rounds, we have:

Round 1(cn+n
x) + Round2(mi +

cn
i +

n
k +

n
k) + Round3(nlog(cn)

j x + cn
x +

n
k)

When we assume constants are 1 and toss them, we are left with:

8n + nlog(n) → O(n + nlog(n))

102

REFERENCES

[1] Abul, O., Bonchi, F., andNanni, M., ‘N everW alkA lone : Uncertainty for Anonymity
in Moving Objects Databases,’ ICDE, 2008.

[2] Adu-Oppong, F., Gardiner, C. K., Kapadia, A., and Tsang, P. P., ‘Social circles:
Tackling privacy in social networks,’ in ‘Symposium on Usable Privacy and Security
(SOUPS),’ 2008 .

[3] Akcora, C. G., Carminati, B., and Ferrari, E., ‘Risks of friendships on social networks,’
in ‘DataMining (ICDM), 2012 IEEE 12th International Conference on,’ 2012 pp. 810–
815.

[4] Bonchi, F. and Wang, H. W., ‘Trajectory Anonymity in Publishing Personal Mobility
Data,’ SIGKDD, 2011, Vol 13, pp. 30–42.

[5] Bonneau, J., Anderson, J., and Danezis, G., ‘Prying data out of a social network,’ in
‘Social Network Analysis and Mining, 2009. ASONAM’09. International Conference
on Advances in,’ IEEE, 2009 pp. 249–254.

[6] Brodkin, J., ‘Ajit Pai gives carriers free pass on privacy viola-
tions during FCC shutdown,’ https://arstechnica.com/tech-policy/2019/01/
ajit-pai-gives-carriers-free-pass-on-privacy-violations-during-fcc-shutdown, 2019,
[Online accessed July 2019].

[7] Burke, M., ‘Miami teen commits suicide in two-hour long facebook live
video, the third in as many weeks,’ http://www.nydailynews.com/news/national/
miami-teen-commits-suicide-two-hour-long-facebook-live-video-article-1.2955175,
2018, [Online Accessed 2019].

[8] Chen, R., Fung, B. C. M., Mohammed, N., Desai, B. C., and Wang, K., ‘Privacy-
preserving trajectory data publishing by local suppression,’ Information Sciences,
2013, Vol 231, pp. 83–97, ISSN 0020-0255, doi:10.1016/j.ins.2011.07.035.

[9] Deal, M., ‘Census Bureau Reports 471,000 Workers Commute into Los Angeles
County, Calif., Each Day,’ http://www.census.gov/newsroom/press-releases/2013/
cb13-r13.html, 2016, [Online accessed 2018].

[10] DiGiacomo, J., ‘2017 security breaches: Frequency and severity on the rise,’ https:
//revisionlegal.com/data-breach/2017-security-breaches/, 2018, [Online accessed
2018].

[11] Domingo-Ferrer, J. andTrujillo-Rasua, R., ‘Microaggregation- and permutation-based
anonymization of movement data,’ Information Sciences, 2012, Vol 208, pp. 55–80,
ISSN 00200255, doi:10.1016/j.ins.2012.04.015.

103

[12] Eldawy, A. and Mokbel, M., ‘A demonstration of SpatialHadoop: an efficient mapre-
duce framework for spatial data,’ VLDB, 2013, Vol 6, pp. 1230–1233.

[13] Fang, L. andLeFevre, K., ‘Privacywizards for social networking sites,’ in ‘Proceedings
of the 19th international conference on World wide web,’ ACM, 2010. pp. 351–360.

[14] Foundation", A. S., ‘What is Apache Hadoop?’ http://hadoop.apache.org/, 2016,
[Online Accessed 2017].

[15] Francis, M., ‘Future Telescope Array drives development
of exabyte processing,’ http://arstechnica.com/science/2012/04/
future-telescope-array-drives-development-of-exabyte-processing/, 2014, [On-
line accessed 2016].

[16] Gedawy, H.K., ‘Dynamic Path Planning andTrafficLight Coordination for Emergency
Vehicle Routing,’ Carnegie Mellon University Thesis, 2009, pp. 1–9.

[17] Ghasemzadeh, M., Fung, B. C. M., Chen, R., and Awasthi, A., ‘Anonymizing trajec-
tory data for passenger flow analysis,’ Transportation Research Part C, 2014, 39, pp.
63–79, ISSN 0968-090X, doi:10.1016/j.trc.2013.12.003.

[18] Granville, K., ‘Facebook-CambridgeAnalytica Explained,’ https://www.nytimes.com/
2018/03/19/technology/facebook-cambridge-analytica-explained.html, 2018, [Online
Accessed 2017].

[19] Gruteser, M. and Grunwald, D., ‘Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking,’ Proceedings of the 1st international con-
ference on Mobile systems applications and services MobiSys 03, 2003, pp. 31–42,
doi:10.1145/1066116.1189037.

[20] Gurung, S., Lin, D., Jiang, W., Hurson, A., and Zhang, R., ‘Traffic Information
Publication with Privacy Preservation,’ ACM Trans. Intell. Syst. Technol., 2014, Vol
5, pp. 1–26, ISSN 2157-6904, doi:10.1145/2542666.

[21] Halevy, A. Y., Franklin, M. J., andMaier, D., ‘TRUSTER:TRajectoryData Processting
on ClUSTERs,’ Dasfaa, 2009, Vol 3882, pp. 768–771, doi:10.1007/11733836.

[22] Han, P.-I. and Tsai, H.-P., ‘SST: Privacy Preserving for Semantic Trajectories,’ 2015
16th IEEE International Conference on Mobile Data Management, 2015, Vol 2, pp.
80–85, doi:10.1109/MDM.2015.18.

[23] He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C. M., and Srivastava, D.,
‘DPT: Differentially Private Trajectory Synthesis Using Hierarchical Reference Sys-
tems,’ Proceedings of the VLDB Endowment, 2015, Vol 8, pp. 1154–1165, ISSN
21508097, doi:2150-8097/15/07.

[24] Jensen, C. S., Lin, D., and Ooi, B. C., ‘Continuous clustering of moving objects,’ IEEE
Transactions on Knowledge and Data Engineering, 2007, Vol 19, pp. 1161–1174.

104

[25] Kafali, O., Gunay, A., and Yolum, P., ‘Detecting and predicting privacy violations
in online social networks,’ Distributed and Parallel Databases, 2014, Vol 32, pp.
161–190.

[26] Klemperer, P., Liang, Y., Mazurek, M., Sleeper, M., Ur, B., Bauer, L., Cranor, L. F.,
Gupta, N., and Reiter, M., ‘Tag, you can see it!: Using tags for access control in photo
sharing,’ in ‘Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems,’ ACM, 2012 pp. 377–386.

[27] Laleh, N., Carminati, B., and Ferrari, E., ‘Graph based local risk estimation in
large scale online social networks,’ in ‘IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity),’ 2015 pp. 528–535.

[28] Leskovec, J., ‘Stanford Large Network Dataset Collection,’ https://snap.stanford.edu/
data, 2015, [Online Accessed 2019].

[29] Li, X., Li, W., Anselin, L., Rey, S., and Kochinsky, ‘A MapReduce Algorithm to
Create Contiguity Weights for Spatial Analysis of Big Data,’ in ‘BigSpatial,’ 2014 .

[30] Lin, D., Bertino, E., Cheng, R., and Prabhakar, S., ‘Location privacy in moving-object
environments,’ Trans. Data Privacy, 2009, Vol 2, pp. 21–46, ISSN 1888-5063.

[31] Lin, D., Steiert, D.,Ward, K., Squicciarini, A., and Fan, J., ‘REMIND:Risk Estimation
Mechanism for Images in Network Distribution,’ CCS, 2018.

[32] Mariotti, T., ‘How can we track when someone shares through the facebook share (not
like) button?’ in ‘https://www.quora.com/How-can-we-track-when-someone-shares-
through-the-Facebook-Share-not-Like-button,’ 2012 .

[33] Mazzia, A., LeFevre, K., andAdar, E., ‘The pviz comprehension tool for social network
privacy settings,’ in ‘Proceedings of the Eighth Symposium on Usable Privacy and
Security,’ ACM, 2012 p. 13.

[34] Monreale, A., Pedreschi, D., Pensa, R. G., and Pinelli, F., Anonymity preserving
sequential pattern mining, volume 22, 2014, ISBN 1050601491546, doi:10.1007/
s10506-014-9154-6.

[35] Nergiz,M.E., Atzori,M., Saygin, Y., andGuc, B., ‘TowardsTrajectoryAnonymization
A Generalization Based Approach,’ Transactions on Data Privacy, 2009, 2(106), pp.
47–75, doi:10.1145/1503402.1503413.

[36] N.Kokciyan and Yolum, P., ‘Priguard: A semantic approach to detect privacy viola-
tions in online social networks,’ IEEE Transactions on Knowledge and Data Engineer-
ing, 2016, Vol 28, pp. 2724–2737.

[37] Pensa, R. G. and Di Blasi, G., ‘A semi-supervised approach to measuring user privacy
in online social networks,’ in T. Calders, M. Ceci, and D. Malerba, editors, ‘Discovery
Science,’ Cham, 2016 pp. 392–407.

105

[38] Pensa, R. G., Monreale, A., Pinelli, F., and Pedreschi, D., ‘Pattern-preserving k-
anonymization of sequences and its application to mobility data mining,’ CEUR
Workshop Proceedings, 2008, Vol 397, pp. 44–60, ISSN 16130073.

[39] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulala-Divanis, A., ‘Select-
organize-anonymize: A framework for trajectory data anonymization,’ Proceedings
- IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013,
2013, pp. 867–874, doi:10.1109/ICDMW.2013.136.

[40] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulalas, A., ‘Apriori-based algo-
rithms for k m -anonymizing trajectory data,’ Transactions on Data Privacy, 2014, Vol
7, pp. 165–194.

[41] Poulis, G., Skiadopoulos, S., Loukides, G., and Gkoulalas-Divanis, A., ‘Distance-
based km-anonymization of trajectory data,’ Proceedings - IEEE International Con-
ference on Mobile Data Management, 2013, Vol 2, pp. 57–62, ISSN 15516245,
doi:10.1109/MDM.2013.66.

[42] Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J., ‘Fine-grained integration of access
control policies,’ Computers and Security, 2011, Vol 30, pp. 91 – 107, ISSN 0167-
4048, doi:https://doi.org/10.1016/j.cose.2010.10.006, special Issue on Access Control
Methods and Technologies.

[43] Sankararaman, S., Agarwal, P., Molhave, T., Pan, J., and Boedihardjo, A., ‘Model-
Driven Matching and Segmentation of Trajectories,’ in ‘SIGSPATIAL,’ 2013 .

[44] Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., and Kalnis, P., ‘Trajectory
similarity join in spatial networks,’ Proc. VLDBEndow., 2017,Vol 10, pp. 1178–1189,
ISSN 2150-8097.

[45] Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., and Kalnis, P., ‘Parallel
trajectory similarity joins in spatial networks,’ The VLDB Journal, 2018, Vol 27, pp.
395–420.

[46] Spyromitros-Xioufis, E., Papadopoulos, S., Popescu, A., and Kompatsiaris, Y., ‘Per-
sonalized privacy-aware image classification,’ in ‘Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval,’ ACM, 2016. pp. 71–78.

[47] Squicciarini, A., Karumanchi, S., Lin, D., and Desisto, N., ‘Identifying hidden social
circles for advanced privacy configuration,’ Computers and Security, 2014, Vol 41,
pp. 40–51.

[48] Squicciarini, A. C., Lin, D., Sundareswaran, S., andWede, J., ‘Privacy policy inference
of user-uploaded images on content sharing sites,’ IEEE Transactions on Knowledge
and Data Engineering, 2015, Vol 27, pp. 193–206.

[49] Squicciarini, A. C., Sundareswaran, S., Lin, D., and Wede, J., ‘A3p: Adaptive policy
prediction for shared images over popular content sharing sites,’ in ‘Proceedings of
the 22Nd ACM Conference on Hypertext and Hypermedia,’ 2011. pp. 261–270.

106

[50] Such, J. M. and Criado, N., ‘Resolving multi-party privacy conflicts in social media,’
IEEETransactions onKnowledge andData Engineering, 2016,Vol 28, pp. 1851–1863.

[51] Summary, E., ‘Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2013-2018,’ http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white_paper_c11-520862.html,
2014, [Online Accessed 2018].

[52] Wang, W., Ying, L., and Zhang, J., ‘On the Tradeoff between Privacy and Distortion
in Differential Privacy,’ in ‘KDD,’ 2014 pp. 517–525.

[53] Ward, K., Lin, D., and Madria, S., ‘Melt: Mapreduce-based efficient large-scale
trajectory anonymization,’ in ‘SSDBM,’ 2017 doi:10.1145/3085504.3085581.

[54] Ward, K., Lin, D., and Madria, S., ‘A Parallel Algorithm for Anonymization of
Large-Scale Trajectory Data,’ TPDS, 2019.

[55] Watts, D. J., Six Degrees: The Science of a Connected Age, W.W. Norton &Company;
Reprint edition, 2004.

[56] Yarovoy, R., Bonchi, F., Lakshmanan, L. V. S., and Wang, W. H., ‘Anonymizing mov-
ing objects: How to hide a MOB in a crowd?’ Proceedings of the 12th International
Conference on Extending Database Technology Advances in Database Technology
(EDBT’09), 2009, pp. 72–83, doi:10.1145/1516360.1516370.

[57] Yu, J., Kuang, Z., Zhang, B., Zhang, W., Lin, D., and Fan, J., ‘Leveraging content
sensitiveness and user trustworthiness to recommend fine-grained privacy settings
for social image sharing,’ IEEE Transactions on Information Forensics and Security,
2018, Vol 13, pp. 1317–1332.

[58] Yu, J., Zhang, B., Kuang, Z., Lin, D., and Fan, J., ‘iprivacy: Image privacy protection
by identifying sensitive objects via deep multi-task learning,’ IEEE Transactions on
Information Forensics and Security, 2017, Vol 12, pp. 1005–1016.

[59] Zhao, W., Ma, H., and He, Q., ‘Parallel K-Means Clustering Based on MapReduce,’
Cloud Computing. Springer Berlin Heidelberg, 2009, pp. 674–679.

[60] Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y., ‘Mining interesting locations and travel
sequences from gps trajectories,’ in ‘ACM Press,’ 2009 pp. 791–800.

[61] Zixkhur, K., ‘Location-Based Services,’ http://www.pewinternet.org/2013/09/12/
location-based-services, 2013, [Online Accessed 2016].

107

VITA

Katrina was born in Indianapolis, IN. In May 2014, she received her B.S. in Com-

puter Science from Missouri University of Science and Technology, with a focus in Data

Mining and Computer Security. She began her research during her undergraduate stud-

ies. Immediately following graduation, she began her Ph.D at the same institution, also

in Computer Science with the same focus. During her time as a student, she has worked

as a graduate teaching and research assistant within her department, a software developer

at Brewer Science to automate chemical mixing equipment, and she formally accepted a

position at Sandia National Laboratories immediately following her graduation. Katrina

had a very strong focus in helping her department and participated in many events and

activities to promote STEM fields at local schools. She was an active member of ACM and

ACM-W and has worked closely with the University’s diversity office to provide engaging

activities for potential future students.

She published conference and journal papers as a primary and secondary author,

most of which are cited in this research. In May 2019, she received her Ph.D. in Computer

Science from Missouri University of Science and Technology.

	Privacy preservation in social media environments using big data
	Recommended Citation

	tmp.1561064408.pdf.KgmcD

