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ABSTRACT 

 

In spite of numerous geophysical studies have been conducted in East Africa and 

Northeast Asia, the structure and evolution of the crust, upper mantle, and the mantle 

transition zone (MTZ) are still controversial. The MTZ discontinuities beneath the study 

area are imaged by stacking an unprecedented volume of receiver functions (RFs). The 

normal MTZ thickness beneath the Western Branch of the EARS and Tanzania Craton 

indicates the absence of present-day thermal upwelling from the lower mantle. In 

contrast, beneath the Eastern Branch, a significant MTZ thinning reveals the existence of 

thermal upwelling from either the upper MTZ or the lower mantle. A normal MTZ 

thickness beneath southern Africa and the negligible disparity of the mean MTZ 

thicknesses between on and off cratonic regions suggest the absence of thermal influence 

from the African Superswell and cratonic keels on the MTZ beneath southern Africa. The 

major volcanoes in northeast China are underlain by a thickened MTZ, which can be 

interpreted by an anomalously high-water concentration in the MTZ released from the 

stagnated slab. An abnormally thin MTZ beneath the Hangay Dome suggests the possible 

existence of thermal upwelling from the lower mantle.  

Additionally, the crustal structure in the Malawi Rift Zone (MRZ) has been 

investigated using RFs and gravity modeling. The small crustal stretching factor is 

consistent with the general absence of volcanism in the MRZ. The high Vp/Vs beneath the 

southern MRZ may indicate the existence of partial melting. Abnormally low Vp/Vs 

along the western boundary of the MRZ may be related to the CO2 suffusion of rift 

boundary faults. 
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 1. INTRODUCTION 

 

In this study, we analyzed the structure and evolution of the crust, upper mantle, 

and the mantle transition zone (MTZ) beneath East Africa and Northeast Asia in four 

parts by stacking an unprecedented volume of receiver functions. The first part 

demonstrates the rifting mechanism of Western and Eastern Branches of East African 

Rift System (EARS). The initiation and development of the EARS, which is an archetype 

of continental rifts, remain enigmatic. The debate is particularly intensive for the central 

part of the EARS, where the African lithosphere is divided into the Nubian and Somalian 

plates and the Victoria and Rovuma microplates by the Eastern and Western Branches 

which are separated by the Archean Tanzania Craton (Chorowicz, 2005). Several studies 

of the mantle transition zone (MTZ) discontinuities have been conducted in the EARS, 

frequently with controversial conclusions regarding the thermal state of the MTZ and 

rifting mechanisms. In this part, we utilized an unprecedented volume of high-quality 

receiver functions (RFs) to image the MTZ discontinuities beneath the Tanzania Craton 

and the surrounding Western and Eastern Branches, for the purpose of providing 

additional constraints on the role that the African superplume may play on the initiation 

and development of the EARS. 

The thermal influence from the African Superswell and cratonic keels on the 

MTZ beneath southern Africa is discussed in the second part. In spite of numerous 

observational and geodynamic modeling studies, mechanisms responsible for the 

anomalously high topography of southern Africa remain controversial (Lithgow-

Bertelloni and Silver, 1998; Hu et al., 2018). One of the most commonly invoked 
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hypotheses is the dynamic effects of the African Superswell, a low-seismic wave speed 

anomaly in the lower mantle beneath most of the southern hemispheric region of Africa 

and the neighboring oceanic areas of the African Plate (Lithgow-Bertelloni and Silver, 

1998; Romanowicz and Gung, 2002; Ni et al., 2005). Another controversial issue is the 

depth extent of the cratonic keels and their influence on the temperature distribution in 

the upper mantle and MTZ. In this part, we applied a non-plane wave assumption 

approach (Gao and Liu, 2014a) to an expanded data set recorded over the past 27yr to 

provide an enhanced image of the MTZ discontinuities beneath southern Africa. The 

results provide tighter and more reliable constraints on the deep structure and temperature 

and water content of the upper mantle and MTZ beneath southern Africa. 

In the third part, a number of critical issues associated with the subducted Pacific 

slab and its effects on the developments of the Cenozoic volcanisms in northeast Asia are 

discussed. Despite numerous studies, the geometry and depth extent of the subducted 

Pacific plate are still inconclusive due to limited vertical resolution of the tomographic 

inversion techniques (Foulger et al., 2013). The intraplate Cenozoic volcanos in northeast 

China are mainly distributed along the edges of the Songliao basin, and the mechanisms 

of these intraplate volcanisms are still much debate. Furthermore, the origins of the 

Baikal rift and Hangay dome remain mysterious. In this part, we imaged the topography 

of the d410 and d660 under the non-plane wave assumption using 274,593 P-to-S RFs 

beneath northeast Asia. The resulted systematic spatial variations of the MTZ thickness 

and apparent discontinuity depths can provide valuable constraints on these critical 

issues. 
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In the last part, we present measurements from a joint receiver function and 

gravity study using recently recorded broadband seismic and gravity data that we 

collected as part of an interdisciplinary investigation (Gao et al., 2013) to unveil the 

crustal characteristics and impact of CO2 and partial melting on Vp/Vs beneath the 

Malawi and Luangwa rift zones (MRZ and LRZ, respectively) and adjacent areas. 
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PAPER 
 

I. RECEIVER FUNCTION IMAGING OF MANTLE TRANSITION ZONE 
DISCONTINUITIES BENEATH THE TANZANIA CRATON AND 

ADJACENT SEGMENTS OF THE EAST AFRICAN RIFT SYSTEM 
 

ABSTRACT 

 

The mantle transition zone (MTZ) discontinuities beneath the Tanzania Craton 

and the Eastern and Western Branches of the East African Rift System are imaged by 

stacking over 7,100 receiver functions. The mean thickness of the MTZ beneath the 

Western Branch and Tanzania Craton is about 252 km, which is comparable to the global 

average and is inconsistent with the existence of present-day thermal upwelling 

originating from the lower mantle. In contrast, beneath the Eastern Branch, an up to 30 

km thinning of the MTZ is observed and is attributable to upwelling of higher 

temperature materials from either the upper MTZ or the lower mantle. The observations 

are in agreement with the hypothesis that rifting in Africa is primarily driven by gradients 

of gravitational potential energy and lateral variations of basal traction force along zones 

of significant changes of lithospheric thickness such as the edges of the Tanzania Craton.  

 

1. INTRODUCTION 

 

The initiation and development of the East African Rift System (EARS), which is 

an archetype of continental rifts, remain enigmatic in spite of numerous studies (Burke & 

Wilson, 1972; Ebinger & Sleep, 1998; Foulger et al., 2013; Koptev et al., 2015; Rychert 
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et al., 2012; Stamps et al., 2014, 2015). One of the frequently involved features in rifting 

models for the EARS is the African superplume, a low-velocity feature in the lower 

mantle (Nyblade & Robinson, 1994; Ritsema et al., 1999). Previous seismic tomographic 

studies have reached contrasting conclusions about whether superplume materials have 

reached the upper mantle, and if they have played a significant role in the development of 

the EARS (Chang et al., 2015; Corchete, 2012; Debayle et al., 2001; Fishwick, 2010; 

Mulibo & Nyblade, 2013a; O’Donnell et al., 2013; 2016; Priestley et al., 2008; Ritsema 

et al., 1998). 

The debate is particularly intensive for the central part of the EARS, where the 

African lithosphere is divided into the Nubian and Somalian plates and the Victoria and 

Rovuma microplates by the Eastern and Western Branches which are separated by the 

Archean Tanzania Craton (TC) (Figures 1 and S1 in the supporting information) 

(Chorowicz, 2005). This controversy is most likely caused by the limited vertical 

resolution of the tomographic techniques and the pervasive use of relative (rather than 

absolute) travel time residuals (Foulger et al., 2013), as well as the wave front healing 

effects of deep and thin (relative to the wavelength) mantle plumes (Montelli et al., 2004). 

Petrophysical, geodynamic modeling, and observational studies conducted over 

the past several decades have demonstrated that the topography of the mantle transition 

zone (MTZ) discontinuities found ubiquitously at the globally averaged depths of 

approximately 410 km (d410) and 660 km (d660) are functions of MTZ water content 

and in situ temperature in the vicinity of the discontinuities (Flanagan & Shearer, 1998; 

Hirose, 2002; Ringwood, 1991; Shearer & Masters, 1992). Specifically, a depression of 

the d410 indicates a higher than normal temperature due to the positive Clapeyron slope 
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of the olivine-wadsleyite transition, while an uplifted d660 is anticipated for areas with 

thermal upwelling from the lower mantle, as a result of the negative Clapeyron slope of 

the ringwoodite to bridgmanite and ferropericlase phase transition (Helffrich, 2000; 

Ringwood, 1975; Tschauner et al., 2014). If the temperature at the bottom of the MTZ 

increases from the estimated normal value of approximately 1600℃ to higher than 

1800℃, the dominant phase transition associated with the d660 becomes the transition 

from majorite to perovskite, which has a positive Clapeyron slope of +1.0 MPa/K 

(Hirose, 2002). Anomalously high-water content in the MTZ has similar effects as low 

temperature, that is, leading to an uplifted d410 and depressed d660 and consequently a 

thicker than normal MTZ (Litasov et al., 2005; Ohtani et al., 2004). 

Several studies of MTZ discontinuities have been conducted in the EARS, 

frequently with controversial conclusions regarding the thermal state of the MTZ and 

rifting mechanisms. Owens et al. (2000) and Huerta et al. (2009) imaged the structure of 

the MTZ beneath the EARS based on the 3-D model of Ritsema et al. (1998) and the 1-D 

IASP91 model, respectively. Both studies revealed a locally depressed d410 beneath the 

Eastern Branch and a widely depressed d660 beneath the TC and adjacent areas and 

suggested the existence of a mantle plume traversing both the d660 and d410 and 

reaching shallow mantle depths. Mulibo and Nyblade (2013b) corrected the depths of the 

d410 and d660 by using a 3-D velocity model (Mulibo & Nyblade, 2013a). Their results 

implied that the superplume induced a thinning of the MTZ beneath a broad area of 

Eastern Africa, including the Eastern Branch and the central and southern regions of the 

TC, and advocated for pervasive thermal upwelling of superplume-originated material 

through the MTZ and its active role in rift development. 
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Figure 1 Topographic relief map of the study area showing the center of radius = 1° bins 
(filled circles), and major tectonic boundaries (solid black lines). The color of the circles 
represents the number of RFs per bin. The blue triangles are seismic stations used in the 

study, and the green lines are national boundaries. The red rectangle in the inset map 
shows the study area. 

 

 

Results from some other MTZ studies, however, are inconsistent with the 

existence of mantle plumes rising from the lower mantle traversing the MTZ. Julia and 

Nyblade (2013) utilized 2,557 P wave receiver functions from 30 permanent broadband 

stations in Africa to image the MTZ discontinuities and found no significant thinning of 

the MTZ beneath the EARS. Tauzin et al. (2008) conducted a global study and found no 
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clear evidence for the thinning of the MTZ beneath the EARS. Beneath the Afar 

Depression and Ethiopian Plateau, Reed, Gao, et al. (2016) reported that velocity 

perturbations in the upper mantle are the major factors for an apparent 40-60 km 

depression of both MTZ discontinuities. Similarly, beneath the nonvolcanic Okavango 

Rift in Botswana (Yu, Liu, et al., 2015) and the Malawi Rift which is the southward 

extension of the Western Branch, no significant thinning of the MTZ is observed (Reed, 

Liu, et al., 2016). 

In this study, we utilized an unprecedented volume of high-quality receiver 

functions (RFs) to image the MTZ discontinuities beneath the TC and the surrounding 

Western and Eastern Branches, for the purpose of providing additional constraints on the 

role that the African superplume may play on the initiation and development of the 

EARS. 

 

2. DATA AND METHODS 

 

All the broadband seismic data used in the study were obtained from the 

Incorporated Research Institutions for Seismology (IRIS) Data Management Center 

(DMC). We requested all the available teleseismic data (epicentral distance range 30–

100°) recorded by broadband stations located in the area of -10°N to 5°N and 25°E to 

45°E during the recording period from May 1994 to March 2017. The cutoff magnitude 

(Mc) is determined using the epicentral distance (Δ) and focal depth (D) according to the 

equationMc = 5.2+(Δ-30.0)/(180.0-30.0)-D/700.0 (Liu & Gao, 2010). A four-pole, two-

pass band-pass Bessel filter with a frequency range of 0.02-0.2 Hz was applied to the 
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original three-component seismograms. The seismograms with a first-arrival signal-to-

noise ratio (SNR) on the vertical component below 4.0 were not used in the study. The 

SNR is obtained by max |As|/|Ān|, where max |As| is the maximum absolute amplitude on 

the vertical seismogram 8 s before and 17 s after the predicted IASP91 arrival time for 

the first P wave, and |Ān| is the mean absolute amplitude in the time window of 10–20 s 

before the predicted P wave arrival time (Gao & Liu, 2014a, 2014b). The remaining 

seismograms were converted into radial RFs using the frequency-domain water-level 

deconvolution procedure with a Gaussian factor of 5.0 (which corresponds to a high-pass 

corner frequency that is greater than that of the Bessel filter, so that the filtering is solely 

performed by the latter) and a water level of 0.03 (Ammon, 1991; Clayton & Wiggins, 

1976). Before calculating the RFs, we adopted a set of exponential weighting functions to 

reduce the strong PP arrivals which are found to degenerate the RFs (Gao & Liu, 2014a). 

A total of 7,139 high-quality RFs from 1,871 events recorded by 87 stations were utilized 

for this study (Figures 1 and S2). 

A non-plane wave assumption approach (Gao & Liu, 2014a) was employed to 

migrate and stack the P-to-S converted phases generated from the MTZ discontinuities. 

By considering the difference in ray parameters between the direct P wave and the 

converted S wave, this approach can more accurately estimate the discontinuity depths 

and lead to sharper discontinuity images than approaches assuming a plane wave front. 

Using the 1-D IASP91 Earth model (Kennett & Engdahl, 1991), the geographic 

coordinates of the ray-piercing point for each of the RFs were computed at the middle of 

the MTZ (535 km depth). The moveout-corrected RFs within 1° radius circular bins, 

which are one geographic degree apart from the neighboring bins (Figure 1), were then 
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stacked to form a depth series for each of the bins. Results from bins with less than six 

RFs are not used. A bootstrap resampling procedure with 50 resampling iterations (Efron 

& Tibshirani, 1986; Liu et al., 2003) was used to compute the mean and standard 

deviation of the MTZ discontinuity depths and MTZ thickness for each bin. Detailed 

description of the migration and stacking procedures and specific data processing 

parameters can be found in Gao and Liu (2014a, 2014b). 

 

3. RESULTS 

 

For each of the stacked traces, the optimal depth of an MTZ discontinuity is 

determined using the following steps. First, the depth corresponding to the maximum 

stacking amplitude in a fixed depth range (380-440 km for the d410 and 650-710 km for 

the d660) is automatically determined and marked on the trace. Second, the automatically 

determined depth is visually verified to reject the ones with ambiguous and weak arrivals 

that are significantly different from neighboring bins. Third, for a small fraction of the 

traces, the search range is adjusted so that the picked depth is consistent with neighboring 

bins. A total of 162 bins with clearly observable d410 or d660 peaks were obtained 

(Figure 2), among which 147, 139, and 124 have reliable peaks for the d410, d660, and 

both, respectively. Profiles of the resulting depth series along all the 14 latitudinal lines 

(from 10°S to 3°N with a 1° increment), together with the mean depths and the error bar, 

are shown in Figure S3, and all the observed depths of the discontinuity arrivals and the 

MTZ thicknesses are listed in Table S1. 
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Figure 2 (a) Results of stacking all available normal moveout-corrected RFs in 1° radius 
bins with a minimum of six high-quality RFs, plotted with the sequentially increasing 
depth of the d410. (b) Similar to Figure 2a but for sequentially increasing depth of the 

d660. 

 

 

The observations (Figure S1) were fitted with a continuous curvature surface 

gridding algorithm (Smith & Wessel, 1990) (Figure 3) with a tension factor of 0.5, in 

order to generate spatially continuous images for the observed depths and MTZ 

thicknesses. The standard deviation of the resultant MTZ thickness is less than 6 km for 
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the majority of the study area (Figure 3d). The mean apparent depths of the d410 and 

d660 over the region are 423±12 km and 672±9 km, respectively, and the vast majority of 

the depths exceed the global averages in the IASP91 Earth model of 410 and 660 km, 

respectively. The apparent depths of both the d410 and d660 increase systematically 

toward the northeast part of the study area (Figure 3). The resulting apparent depths of 

the d410 range from about 390 km beneath the southeastern part of Tanzania to a 

maximum value of 460 km at the northeastern corner of the study area (Figure 3a). A 

trend similar to the d410 is observed for the apparent depths of the d660 (Figure 3b). 

 

4. DISCUSSION 

 

The depths of the MTZ discontinuities are calculated under the 1-D IASP91 Earth 

model, and thus, the depths are apparent rather than true depths. The true depths can only 

be achieved when absolute (rather than relative to the mean values of a study area) 

velocity anomalies of both the P and S waves are available for the entire crust, upper 

mantle, and MTZ (e.g., Gao & Liu, 2014b, for the contiguous United States). Due to the 

discrepancies in previous seismic tomographic studies, as well as the fact that the vast 

majority of the studies only reported relative P or S wave (but not both) velocity 

anomalies for the shallow upper mantle (e.g., Adams et al., 2012; Fishwick, 2010; 

Pasyanos & Nyblade, 2007; Priestley et al., 2008; Slack & Davis, 1994), such corrections 

using results from any of the existing tomographic studies would not lead to trustful 

results. 
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Figure 3 (a) Spatial distribution of resulting d410 apparent depths. (b) Same as Figure 3a 
but for the d660. (c)MTZ thickness measurements. Red triangles represent Cenozoic 

volcanoes. (d) Standard deviation (SD) of the MTZ thickness measurements. 

 

 

Therefore, in the following we utilize the observed apparent discontinuity depths 

to infer velocity, thermal, and water content anomalies. 

As discussed in various previous studies, three factors have been recognized to 

affect the apparent depths of the MTZ discontinuities (see Mohamed et al., 2014, for a 

more detailed discussion). The first factor is velocity anomalies in the upper mantle, that 

is, above the d410 associated with temperature, partial melting, and compositional 

heterogeneities. The presence of low and high-velocity anomalies in the upper mantle 

causes simultaneous apparent depressions and uplifts of both the d410 and d660, 
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respectively, leading to positively correlated apparent d410 and d660 depths, as 

exemplified by the spatial similarities between the d410 and d660 depths shown in 

Figures 3a and 3b (correlation coefficient = 0.54). Velocity anomalies in the MTZ can 

lead to apparent undulations of the d660 but not the d410 and thus reduce the correlation 

coefficient. The second factor is the temperature anomalies near the d410 and d660, 

which are related to velocity anomalies by a scaling factor of dVp/dT = −4.8×10−4 km s−1 

℃−1 (Deal et al., 1999). For example, assuming a Clapeyron slope of +2.9 MPa/K (Bina 

& Helffrich, 1994) for the d410 and −1.3 MPa/K (Fei et al., 2004) for the d660, a 300℃ 

temperature increase around the d410 and d660 corresponds to a 25 km depression of the 

d410 and a 11 km uplift of the d660 for an assumed Vs and Vp relative anomaly ratio 

(dln(Vs)/dln(Vp)) of 1.8 (Gao & Liu, 2014b; Mohamed et al., 2014). Note that because 

the observed depth undulations are relative to the globally averaged values, for a given 

depth, the temperature anomalies derived from such undulations are relative to the 

globally averaged temperature at the same depth. The third factor is the presence of the 

hydrous materials in the MTZ, which depresses the d660 and uplifts the d410 (Ohtani et 

al., 2004). 

 

4.1. NORMAL MTZ THICKNESS BENEATH THE TC AND WESTERN 
BRANCH 

Beneath the TC, an ∼10 km depression for both the d410 (420±7 km) and d660 

(672±7 km) and a close-to-normal MTZ thickness are observed (Figure 3). The simplest 

explanation for the observations is a low-velocity upper mantle with a mean Vp anomaly 

of -0.86%, which is calculated based on Gao and Liu (2014a) using a dln(Vs)/dln(Vp) 
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value of 1.8, a value that is between that suggested for the stable central United States 

and the tectonically active western United States (Gao & Liu, 2014b; Schmandt & 

Humphreys, 2010). Additionally, both the weak deepening of the d410 and the normal 

thickness of the MTZ suggest negligible effect of temperature on the MTZ (Deuss, 2007; 

Tauzin et al., 2008). Reed, Gao, et al. (2016) quantitatively discussed the possibility of 

the existence of a mantle plume rising from the lower mantle beneath an area with a 

normal MTZ thickness and suggested that a mantle plume only exists under a specific 

combination of temperature, hydrous materials, and velocity anomalies. However, this 

specific combination would be difficult to exist everywhere beneath the entire TC. 

Therefore, we propose a non-plume model with lateral velocity variation in the upper 

mantle beneath the TC to explain the apparently depressed MTZ discontinuities with a 

normal MTZ thickness. 

The mean MTZ thickness (252±12 km) and the apparent discontinuity depths 

beneath the Western Branch are comparable to those of the TC. Those observations are 

consistent with the previously observed similarity in lithospheric thickness between the 

two areas (Chesley et al., 1999; Vauchez et al., 2005) and imply the absence of both 

significant thinning of the mantle lithosphere (Davies, 1994; Rychert et al., 2012) and 

thermal upwelling of lower mantle materials beneath the Western Branch, favoring a 

passive rifting mechanism for this section of the EARS. 

 

4.2. ANOMALOUSLY THIN MTZ BENEATH THE EASTERN BRANCH 

The most prominent feature in the study area is an up to 30 km apparent thinning 

of the MTZ beneath the Eastern Branch. This thinning is associated with a 50 km 



16 

 

 

apparent depression of the d410 and a 20 km depression of the d660 (Figure 3). Since the 

depressed d410 and the thinned MTZ can be interpreted as a result of thermally perturbed 

structure in the upper mantle as well as in the MTZ, two models with and without a 

thermal upwelling from the lower mantle (“plume and non-plume models”) are discussed 

in the following in order to quantitatively interpret the observed results. 

4.2.1. Plume Model. The existence of an active mantle plume beneath the Eastern 

Branch (Figure S4a) has been proposed based on seismic tomography (Mulibo & 

Nyblade, 2013a), MTZ topography studies (Huerta et al., 2009; Mulibo & Nyblade, 

2013b), geodynamic modeling (Koptev et al., 2015), and geochemical studies (Roberts et 

al., 2012). In order to produce the observed ∼50 km depression of the d410, a −1.8% 

mean Vp and associated high-temperature anomalies in the upper mantle are required. 

The total depression of 50 km would include a 22 km apparent depression due to the low-

velocity upper mantle, and an additional 28 km true depression from the 340℃ 

temperature increase corresponding to the low-velocity anomaly (estimated using a 

Clapeyron slope of +2.9 MPa/K; Figure 4a). Similarly, the downward extension of the 

low-velocity zone into the lower mantle would produce a 35 km apparent depression of 

the d660, and a 12 km true uplift of d660 (calculated using a Clapeyron slope of -1.3 

MPa/K (Fei et al., 2004)), leading to a 23 km net depression of the d660. Therefore, the 

plume model would produce a net 27 km thinning of the MTZ, which is similar to the 

observed MTZ thickness beneath the Eastern Branch (Figures 3c and 4a). 

One potential problem with the plume model is that the low MTZ velocities 

associated with the plume may correspond to an anomalously high-temperature 

environment in the vicinity of the d660, in which the dominant phase transition is 
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majorite (rather than ringwoodite) to perovskite. Specifically, the normal temperature at 

the bottom of the MTZ is estimated to be about 1600℃ (Ito & Katsura, 1989), while the 

plume model (Figure 4a) requires a 340℃ thermal anomaly at the base of the MTZ, 

leading to a temperature as high as 1940℃. This required temperature is higher than the 

1800℃ temperature above which the dominant phase transition becomes majorite to 

perovskite, which has a positive Clapeyron slope of +1.0 MPa/K (Irifune et al., 1996, 

Hirose, 2002, Hirose et al., 2001). Applying a +1.0 MPa/K Clapeyron slope for the 

transition, the d660 would depress about 9 km corresponding to the temperature increase. 

Together with the 35 km apparent depression of the d660 due to the low-velocity upper 

mantle and MTZ, the d660 would depress about 44 km in total. Because the d410 has a 

50 km depression due to both the velocity and thermal effects, the amount of MTZ 

thinning under the plume model is about 6 km, which is significantly smaller than the 

observed ∼30 km. It should be noted that those estimates are based on a number of 

experimentally determined quantities with large uncertainties and variably limiting 

temperature-pressure conditions, including the velocity and temperature anomaly scaling 

factor, the dln(Vs)/dln(Vp) value, and the Clapeyron slopes (see Tauzin & Ricard, 2014, 

for some of the reported values). The existence of partial melts in the upper mantle and 

the MTZ can also affect the estimated depths. The required temperature anomaly to 

produce the apparent depression of the discontinuities would reduce if partial melt exists 

in the upper mantle and MTZ. If a certain amount of melt is present, the temperature in 

the vicinity of the d660 could be lower than 1800℃, so that the phase transition across 

the d660 would be from ringwoodite (rather than majorite) to perovskite. Therefore, the 



18 

 

 

existence of a thermal upwelling from the lower mantle cannot be confidently ruled out 

solely based on those arguments. 

4.2.2. Non-plume Model. In this model (Figure S4b), a low-velocity zone with a 

Vp anomaly of -1.8%reaches the d410 and only extends to the uppermost MTZ (Figure 

4b). The low velocities result in an apparent depression of 22 km for both the d410 and 

d660. In addition, the high temperature associated with the low velocities leads to an 

additional 28 km depression of the d410, resulting in a 28 km thinning of the MTZ which 

is comparable to the observed value beneath the Eastern Branch.  

 

 

 

Figure 4 Schematic models to explain the observed depressions of the MTZ 
discontinuities beneath the Eastern Branch. (a) The plume model, in which a thermal 

plume with a velocity anomaly of -1.8% and a corresponding thermal anomaly of 340℃ 
rises from the lower mantle. (b) The non-plume model, in which a velocity anomaly 

exists in the upper mantle as well as the uppermost MTZ. The dashed lines represent the 
apparent depths of the discontinuities due to the presence of the low velocities, and the 
solid lines are the final depths. The models produce a 27-28 km thinning of the MTZ. 
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Relative to the plume model, the non-plume model is simpler and can more easily 

explain the spatial correspondence between the surface expression of the rift and the 

thinned MTZ. However, the cause of the high-temperature anomaly associated with the 

observed depression of the d410 remains problematic. Upwelling of higher temperature 

material from the upper MTZ to the upper mantle can certainly increase mantle 

temperature in the vicinity of the d410, but it is difficult for this process to produce such 

a high-temperature anomaly. Additionally, this process requires that the MTZ be a 

thermal boundary layer from which a thermal plume originates, a hypothesis that is 

inconsistent with geodynamic modeling results (e.g., Schubert et al., 1995). 

 

4.3. IMPLICATIONS ON RIFTING MECHANISMS 

The above discussions suggest that ambiguities still remain regarding the 

existence or absence of thermal upwelling from the lower mantle beneath the northern 

part of the Eastern Branch, and thus, additional studies are needed in order to resolve this 

critical issue. However, as detailed below, such uncertainty plays an insignificant role 

when rifting mechanisms are discussed in light of the new MTZ discontinuity 

measurements presented in this study. 

The possible existence of a thermal upwelling from the lower mantle (under the 

plume model) beneath the northern part of the Eastern Branch seems to be consistent with 

the active rifting model. However, a lack of such upwelling in the rest of the Eastern 

Branch and the entire Western Branch makes such a rifting mechanism unlikely for the 

Eastern and Western Branches. The absence of significant thermal upwelling from the 

lower mantle beneath other segments of the EARS has also been inferred for the Afar 
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Depression (Reed, Gao, et al., 2016), the Malawi Rift of the EARS (Reed, Liu, et al., 

2016), and the Okavango Rift (Yu, Liu, et al., 2015) and is suggested by geodynamic 

modeling (Quere & Forte, 2006; Stamps et al., 2014; 2015). 

The observations presented in the study are consistent with the hypothesis that 

rifting in East Africa is driven by gradients of gravitational potential energy probably 

originating from the African superplume (Lithgow-Bertelloni & Silver, 1998; Moucha & 

Forte, 2011; Stamps et al., 2014, 2015), and by lateral variations of horizontal basal 

traction forces applied to the lithosphere in areas with sudden changes of thickness. The 

latter has recently been exemplified in the EARS by a number of shear wave splitting 

investigations (Gao & Liu, 2016; Reed et al., 2017; Yu, Gao, et al., 2015). The significant 

difference in lithospheric thickness (e.g., Ritsema et al., 1998) between the TC and the 

surrounding rift segments makes the edges of the TC ideal locations for rift development. 

 

5. CONCLUSIONS 

 

We have imaged mantle transition zone discontinuities beneath the TC and the 

surrounding Eastern and Western Branches of the EARS. A parallel 10 km depression of 

the apparent depths of MTZ discontinuities and normal MTZ thickness reveal a -0.86% 

mean upper mantle Vp anomaly, and a lack of significant thermal anomaly in the MTZ 

beneath most of the Tanzania Craton and the Western Branch. In contrast, a 30 km 

thinning of the MTZ is found beneath the Eastern Branch associated with a 50 km 

apparent depression of the d410 and a 20 km depression of the d660. Quantitative 

analyses of the effects of velocity and thermal anomalies on the observed discontinuity 
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depths suggest that the most plausible and simplest explanation of the observed apparent 

depressions and the MTZ thinning is a low-velocity zone with a Vp anomaly of -1.8% 

extending from the surface to the uppermost MTZ. Those observations may suggest the 

present-day existence of thermal upwelling from either the lower mantle or the uppermost 

MTZ beneath the northern part of the Eastern Branch and is comparable with the 

hypothesis that gradients of gravitational potential energy from the African superplume 

and lateral variations of basal traction force applied to areas with significant changes of 

lithospheric thickness are probably responsible for rift development in East Africa. 

 

APPENDIX A. SUPPLEMENTARY MATERIAL 

 

Supplementary material related to this article can be found online at 

https://doi.org/10.1002/2017GL075485. 
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II. ABSENCE OF THERMAL INFLUENCE FROM THE AFRICAN 
SUPERSWELL AND CRATONIC KEELS ON THE MANTLE 

TRANSITION ZONE BENEATH SOUTHERN AFRICA: EVIDENCE 
FROM RECEIVER FUNCTION IMAGING 

 

ABSTRACT 

 

The depths of the 410 km (d410) and 660 km (d660) discontinuities beneath 

southern Africa, which is presumably underlain by the lower-mantle African Superswell, 

are imaged in 1° radius consecutive circular bins using over 6400 P-to-S receiver 

functions (RFs) recorded by 130 seismic stations over a 27 yr period. When the IASP91 

standard Earth model is utilized for moveout correction and time-depth conversion, a 

normal mantle transition zone (MTZ) thickness of 246 ± 7 km is observed, suggesting 

that the Superswell has no discernible effect on mantle transition zone temperature. 

Based on the negligible disparity of the mean MTZ thicknesses between on (246 ± 6 km) 

and off (246 ± 8 km) cratonic regions, we conclude that the deep Archean cratonic keels 

possess limited influence on MTZ thermal structure. The apparently shallower-than-

normal MTZ discontinuities and the parallelism between the d410 and d660 are mostly 

the results of upper mantle high wave speed anomalies probably corresponding to a thick 

lithosphere with a mean thickness of about 245 km beneath the Kaapvaal and 215 km 

beneath the Zimbabwe cratons. In contradiction to conclusions from some of the previous 

studies, the resulting spatial distribution of the stacking amplitudes of the P-to-S 

converted phases at the discontinuities is inconsistent with the presence of an excessive 

amount of water in the MTZ and atop the d410. 
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1. INTRODUCTION 

 

In spite of numerous observational and geodynamic modeling studies, 

mechanisms responsible for the anomalously high topography of southern Africa (Figure. 

1) remain controversial (Lithgow-Bertelloni and Silver, 1998; Hu et al., 2018). One of the 

most commonly invoked hypotheses is the dynamic effects of the African Superswell, a 

low-seismic wave speed anomaly in the lower mantle beneath most of the southern 

hemispheric region of Africa and the neighboring oceanic areas of the African Plate 

(Lithgow-Bertelloni and Silver, 1998; Romanowicz and Gung, 2002; Ni et al., 2005). 

Whether the presumably high temperature from the Superswell has influenced the 

structure and deformation (especially rifting) of the upper mantle and mantle transition 

zone (MTZ), a layer of the Earth sandwiched between the 410 km (d410) and 660 km 

(d660) discontinuities, is still a debated subject (Ritsema et al., 1998; Priestley et al., 

2008; Fishwick, 2010; Youssof et al., 2015). Another controversial issue is the depth 

extent of the cratonic keels and their influence on the temperature distribution in the 

upper mantle and MTZ. Beneath the Kaapvaal and Zimbabwe cratons, seismic surface 

wave studies suggested a lithospheric thickness of 160-250 km (Li and Burke, 2006; 

Chevrot and Zhao, 2007; Priestley et al., 2008; Schaeffer and Lebedev, 2013), while 

other studies especially those using teleseismic body-waves (James et al., 2001; Youssof 

et al., 2015) revealed a much thicker lithosphere, down to about 300 to 350 km, which 

may cause low temperature anomalies in the MTZ (Blum and Shen, 2004). The 

discrepancy is most likely caused by the limited resolving power and the consequent 

large uncertainties in the tomographic methods. Body-wave tomographic techniques 
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pervasively utilize relative (rather than absolute) travel time residuals and thus the 

resulting wave speed anomalies are relative to the mean over the region investigated 

(Foulger et al., 2013). Additionally, they suffer from vertical smearing due to the steep 

ray paths beneath the station. In contrast, surface-wave tomographic techniques produce 

absolute wave speed anomalies, and have inherently better vertical resolution but poorer 

horizontal resolution due to lateral smearing. 

It has long been recognized that the topography of the d410 and d660 can provide 

independent constraints on the thermal and wave speed structures of the upper mantle and 

MTZ (Anderson, 1967; Flanagan and Shearer, 1998). The discontinuities reflect sudden 

changes in mineralogical phases, from olivine to wadsleyite at the d410, and from 

ringwoodite to bridgmanite at the d660 (Ringwood, 1975). Due to the opposite sign of the 

Clapeyron slopes (ranging from +1.5 MPa/K to +4.0 MPa/K for d410 and from -0.2 

MPa/K to -4.0 MPa/K for d660; Tauzin and Ricard, 2014), high and low temperature 

anomalies can result in a thinner-than-normal and thicker-than-normal MTZ, 

respectively. In addition, the existence of water-saturated minerals in the MTZ could 

thicken the MTZ (Litasov et al., 2005), and an excessive amount of water tends to 

broaden the interval of the olivine-wadsleyite phase transition and reduce the sharpness 

of the d410 (Wood et al., 1996; Smyth and Frost, 2002; van der Meijde et al., 2003). 

Therefore, variations of the depths and sharpness of the d410 and d660 are effective 

indicators of spatial variations of thermal perturbations and water content anomalies in 

the vicinity of the MTZ discontinuities (Ringwood, 1975). 

Several MTZ studies have been conducted in southern Africa with controversial 

conclusions. Gao et al. (2002) estimated an MTZ thickness of 245 km that is comparable 
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to the global average, and suggested that the lower-mantle African Superswell beneath 

southern Africa has no observable influence on the MTZ temperature. In contrast, Blum 

and Shen (2004) detected a 20 km thicker-than-normal MTZ beneath the Archean cratons 

in southern Africa, and interpreted it as the consequence of the extension of low-

temperature, water-saturated Archean cratonic keels to the base of the MTZ. Another 

MTZ study (Niu et al., 2004) showed a normal MTZ thickness and suggested that the 

highly depleted root causes an approximately 20 km apparent uplift of the d410 and d660 

relative to the global average beneath the Kaapvaal craton. Julia and Nyblade (2013) 

utilized 2557 P-to-S receiver functions (RFs) from 30 permanent broadband stations in 

Africa, including 7 stations in our study area (Figure.1), to image the MTZ 

discontinuities. They reported d410 depths in the range of 405 ±10 km, and d660 depths 

of 655 ±11 km with a mean MTZ thickness of 250 ±3 km beneath southern Africa. A 

recent MTZ study across the Okavango Rift zone conducted by Yu et al. (2015) revealed 

apparently shallower-than-normal MTZ discontinuities beneath the northern Kalahari 

Craton and a normal MTZ thickness beneath most of the study area, suggesting the 

absence of mantle plumes beneath the incipient rift. 

The discrepancies in the results and conclusions from previous MTZ studies in 

southern Africa (Gao et al., 2002; Shen and Blum, 2003; Blum and Shen, 2004; Niu et 

al., 2004) are mostly the results of the limited amount of seismic data and the different 

methodologies applied by different research groups. In this study, we apply a non-plane 

wave assumption approach (Gao and Liu, 2014a) to an expanded data set recorded over 

the past 27 yr to provide an enhanced image of the MTZ discontinuities beneath southern 

Africa. Relative to methodologies based on the plane-wave assumption, our approach can 



33 

 

 

lead to sharper MTZ discontinuity arrivals and more accurately determined depths (Gao 

and Liu, 2014a). In addition to the unprecedented number of high-quality RFs used in this 

study, the spatial coverage is more extensive than the aforementioned regional-scale 

studies. The results provide tighter and more reliable constraints on the deep structure and 

temperature and water content of the upper mantle and MTZ beneath two of the oldest 

cratons on Earth, and the only continental area that is presumably underlain by a lower-

mantle superswell. 

 

 

 

Figure 1 Topographic relief map of the study area showing the center of radius =1° bins 
(filled circles), and major tectonic boundaries (black dashed lines). The color of the 

circles represents the number of the RFs per bin. The purple triangles are seismic stations 
used in the study. The subareas include: A: Zimbabwe Craton; B: Limpopo Belt; C: 

Kaapvaal Craton; D: Kheiss Belt; E: Namaqua–Natal Belt; F: Cape Fold Belt; G: 
southern Congo Craton; H: Damara Belt; I: Rehoboth Province; J: Magondi Belt. Line a–

b indicates the location of the profile shown in Figure.8. The red rectangle in the inset 
map shows the study area. (For interpretation of the colors in the figure(s), the reader is 

referred to the web version of this article.) 
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Figure 2 Spatial distribution of earthquake source areas. Each dot represents a radius =1° 

circular area. The distance between neighboring circles is 1°. The color of the dot 
represents the number of used RFs originated from earthquakes in the circle. The radius 

of the concentric dashed circles centered at the central part of the study area (star) 
indicates the epicentral distance. 

 

 

2. DATA AND METHODS 

 

2.1. DATA 

All the available teleseismic data recorded by three-component broad-band 

stations located in the study area (14°S to 35°S, and 15°E to 40°E) during the period 
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between 1990 and 2017 were requested from the Incorporated Research Institutions for 

Seismology (IRIS) Data Management Center (DMC). The cut-off magnitude (Mc) for 

requesting data is determined based on the empirical equation to balance the quality and 

quantity of the data to be requested, i.e., Mc=5.2+( ∆ −30.0)/(180.0−30.0)−D/700.0, 

where ∆ and Dare the epicentral distance (ranging from 30° to 100°) in degrees and focal 

depth in kilometers, respectively (Liu and Gao, 2010). The requested three-component 

seismograms with a length of 280 s, including 20 s before and 260 s after the theoretical 

arrival of the first compressional wave calculated based on the IASP91 Earth model, were 

filtered in the frequency band of 0.02-0.2Hz. Vertical-component seismograms were 

assessed for signal-to-noise ratio (SNR) using the method of Gao and Liu (2014a). If the 

SNR exceeded 4.0, the filtered 3-component seismograms were converted into radial RF 

following the procedure of Ammon (1991). Then the receiver functions were checked 

visually to reject the ones without a clear first P pulse, or those with abnormal arrivals 

that are stronger than the first P pulse. Among the 6907 three-component seismograms 

with a SNR greater than 4.0, a total of 6472 high-quality RFs recorded by 130 stations 

from 1302 events (Figure.2) were used in this study. In comparison, the number of RFs 

used by Gao et al. (2002) and Blum and Shen (2004) in the similar study area is 1300 and 

3354, respectively. 

 

2.2. MOVEOUT CORRECTION AND STACKING 

The data processing steps and parameters used in this study are discussed in detail 

in Gao and Liu (2014b), and are briefly summarized here. The RFs are grouped into 

1◦radius circular bins based on the locations of ray-piercing points computed at the 
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middle of the MTZ (535 km depth) according to the IASP91 Earth model. The bin size is 

approximately comparable to that of the first Fresnel zone of shear waves at the MTZ 

depths. Comparing with the traditional common conversion point stacking approach of 

grouping the RFs for each depth of assumed discontinuities (e.g., Dueker and Sheehan, 

1998; Liu et al., 2003), this approach ensures that both MTZ discontinuities are sampled 

by the same RFs, minimizing possible biases on the resulting MTZ thickness by upper 

mantle wave speed heterogeneities (Gao and Liu, 2014b; Dahm et al., 2017). 

RFs in each of the bins are moveout corrected and stacked using a non-plane 

wave assumption approach (Gao and Liu, 2014a) to form a depth series in the depth 

range of 300-800 km with a vertical grid size of 1 km under the 1-D IASP91 Earth 

model. Relative to approaches assuming a plane wave front, the non-plane wave 

assumption approach can more accurately determine the discontinuity depths and result 

in sharper discontinuity images due to the consideration of the difference in ray 

parameters between the direct P-wave and the converted S-wave. Only the results from 

bins with 10 or more RFs are used for the study. The optimal depth of the d410 

corresponds to that of the maximum stacking amplitude in the depth range of 380-440 

km, and that of the d660 corresponds to the depth of the largest arrival in the range of 

630-690 km. For a small fraction (about 5%) of the bins, multiple arrivals with 

comparable amplitudes are present in the search window. For these bins, the search 

ranges are manually adjusted to maintain spatial continuity. The mean and standard 

deviation of the MTZ discontinuity depths and MTZ thickness for each bin are obtained 

following a bootstrap resampling procedure with 50 resampling iterations (Efron and 

Tibshirani, 1986). 
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2.3. WAVE SPEED CORRECTION 

Since the 1-D IASP91 standard Earth model is utilized to moveout-correct the 

RFs, the resulting MTZ discontinuity depths are apparent instead of true depths, which 

can be obtained if P-and S-wave speed models extending through the crust, upper mantle 

and MTZ are available in digital form. If only the Vp (Vs) model is available, a γ factor, 

which is defined as d ln (Vs)/d ln (Vp), is assumed or searched (e.g., Gao and Liu, 2014b) 

to generate the Vs (Vp) model. 

In this study, two wave speed models (Schaeffer and Lebedev, 2013and updated 

in 04/2018; Youssof et al., 2015), which include both Vp and Vs anomalies in digital 

forms, are used to conduct the wave speed corrections by following the procedure of Gao 

and Liu (2014b) for correcting the MTZ discontinuity depths beneath the contiguous 

United States. To perform the correction, the wave speed anomalies are smoothed using 

the cubic B-spline function, and the average P-and S-wave speeds are calculated in radius 

=1° cylinders with a 10 km thickness for the depth range of 0-700 km. Lastly, the 

equation (Gao and Liu, 2014b) 

𝐻𝐻𝑇𝑇 = (𝑉𝑉𝑠𝑠𝑠𝑠+𝛿𝛿𝛿𝛿𝑠𝑠)×(𝑉𝑉𝑝𝑝𝑝𝑝+𝛿𝛿𝛿𝛿𝑝𝑝)
𝑉𝑉𝑝𝑝𝑝𝑝+𝛿𝛿𝛿𝛿𝑝𝑝−𝑉𝑉𝑠𝑠𝑠𝑠−𝛿𝛿𝛿𝛿𝑠𝑠

× 𝑉𝑉𝑝𝑝𝑝𝑝−𝑉𝑉𝑠𝑠𝑠𝑠

𝑉𝑉𝑝𝑝𝑝𝑝×𝑉𝑉𝑠𝑠𝑠𝑠
𝐻𝐻𝐴𝐴                                      (1) 

is applied to convert the apparent depths (HA) into true depths (HT), where Vp0 and Vs0 are 

the mean P-and S-wave speeds in the layer in the standard Earth model, and δVp and δVs 

are the absolute P-and S-wave speed anomalies. 
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Figure 3 Results of stacking moveout-corrected RFs within each bin plotted along 20 
latitudinal profiles. The black traces show the depth series averaged over all the 50 
bootstrap iterations. The circles and error bars respectively represent the resulting 
apparent depths and standard deviations of the depths of the MTZ discontinuities. 
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Figure 4 (a) Results of stacking all available normal moveout corrected RFs from 1° 
radius bins with a minimum of 10 high-quality RFs, plotted against the sequentially 

increasing depth of the d410. (b) Similar to (a) but against the sequentially increasing 
depth of the d660. The top panel in (a) and (b) shows the number of RFs per bin. 
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3. RESULTS 

 

All the 20 latitudinal profiles (from 14°S to 33°S) of the resulting depth series in 

the study area are shown in Figure.3. Robust peaks for the d410 or d660 are observed in a 

total of 281 bins (Figure.4), among which 263, 260, and 242 possess reliable arrivals 

from the d410, d660, and both, respectively. 

 

3.1. APPARENT DISCONTINUITY DEPTHS AND MTZ THICKNESS 

The resulting apparent d410 and d660 depths (Figures.5a and 5b; Table S1) show 

systematic spatial variations and are positively correlated with a cross correlation 

coefficient (XCC) of 0.7 (Figure.6). On average, the Kaapvaal and Zimbabwe cratons 

show a 10-15 km (Figure.5 and Table S2) apparent uplift of both MTZ discontinuities 

with a maximum value of about 30 km, while the surrounding Proterozoic fold belts 

demonstrate normal discontinuity depths. For the entire study area, the mean apparent 

depths are 401±9 km and 648±9 km for the d410 and d660, respectively. The 

corresponding values are 395±5 km and 640±7 km for the Kaapvaal Craton, and 398±5 

km and 647±4 km for the Zimbabwe Craton (Table S2). The boundary of the area with 

apparently shallower MTZ discontinuities follows the surface expression of the Kaapvaal 

Craton well, but shifts to the west by about 200 km from the western boundary of the 

surface expression of the Zimbabwe Craton (Figure.5). In spite of the obvious difference 

in the apparent d410 and d660 depths between on and off cratonic regions (Table S2), a 

negligible disparity of the mean MTZ thickness between on (246±6 km) and off (246±8 

km) cratonic regions is observed in the study area (Figure.5c). 
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The average MTZ thickness is 246±7 km (Figure.5c), which is statistically 

identical to the global average (which ranges from 240 to 250 km) reported by previous 

global scale studies (Flanagan and Shearer, 1998; Gu et al., 1998; Tauzin et al., 2008). 

The depths and thickness measurements are generally consistent with most of the 

previous MTZ studies targeting the Kaapvaal and Zimbabwe cratons (Gao et al., 2002; 

Niu et al., 2004; Julia and Nyblade, 2013) and the Okavango Rift zone (Yu et al., 2015). 

They are also in agreement with results from several stations in southern Africa from 

global scale studies (Flanagan and Shearer, 1998; Chevrot et al., 1999;Tauzin et al., 

2008), but are inconsistent with the results of Shen and Blum (2003) and Blum and Shen 

(2004) who reported a 20 km thicker-than-normal MTZ beneath the Archean cratons in 

southern Africa due to shallowing of the d410 and deepening of the d660, and interpreted 

it as the consequence of lowered temperature originating from the cold deep cratonic 

keels.  

 

3.2. SPATIAL VARIATION OF STACKING AMPLITUDES 

We use the ratio (R) between the amplitude of the P-to-S converted phase (Pds) 

from an MTZ discontinuity and that of the direct P -wave as a measure of the wave speed 

contrast across, and the sharpness of, the discontinuity (Figure. 7). For the entire study 

area, the average R value is 0.021±0.008 for the d410 and 0.023±0.007 for the d660, both 

are greater than that beneath tectonically stable central North America (0.018±0.005 for 

the d410 and 0.019±0.004 for the d660), and active western North America (0.015±0.005 

for the d410 and 0.016±0.004 for the d660) (Gao and Liu, 2014b). The stronger stacking 

amplitudes of the Pds observed beneath southern Africa might indicate the existence of a 
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less attenuative upper mantle relative to western and central North America. Under this 

assumption, the absence of a clear correspondence between the R observations and the 

tectonic provinces (Figure. 7) may suggest that there is no obvious age dependence of 

upper mantle attenuation. 

 

3.3. WAVE SPEED CORRECTED DEPTHS 

The P- and S-wave speed models of Schaeffer and Lebedev (2013) and Youssof 

et al. (2015), which cover the entire and most of the study area, respectively, are utilized 

for wave speed corrections in this study. As detailed in Gao and Liu (2014b), the 

accuracy of the wave speed correction can be estimated using the degree of reduction in 

the XCC between the corrected depths of d410 and d660. This is primarily because of the 

fact that wave speed anomalies in the upper mantle (above the d410) lead to positive 

correlations between the apparent depths of the two discontinuities (Figure. 6), while 

thermally or water content induced wave speed anomalies in the MTZ normally result in 

negative correlations between the true depths of the two discontinuities. Therefore, if the 

wave speed anomalies used for the correction are precisely determined, the resulting 

XCC should reduce to zero if there is no thermal, water content, or other anomalies that 

affect the depths of the discontinuities; the XCC becomes a negative value if thermal or 

water content anomalies exist in the MTZ. 

The corrected depths and MTZ thickness as well as the resultant XCC values are 

shown in Figures. S1 and S2. Although the correction by using the models of Schaeffer 

and Lebedev (2013) reduces the XCC from 0.7 before the correction to 0.58 afterward, 

the corrected d410 and d660 depths are still positively correlated. The XCC between the 
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corrected depths by using the models of Youssof et al. (2015) only reduces marginally, 

from 0.70 to 0.67, indicating that the wave speed corrections did not effectively remove 

the influence of upper mantle wave speed anomalies on the apparent depths. In 

comparison, the XCC reduced from 0.84 to 0.41 after the same wave speed correction 

procedure was applied for the contiguous United States (Gao and Liu, 2014b). We also 

tried a few other wave speed models (e.g., Priestley et al., 2008) with available Vp and/or 

Vs anomalies in digital form, and found that none of them was able to significantly 

reduce the XCC. 

 

 

 

Figure 5 (a) Spatial distribution of resulting d410 depths. (b) Same as (a) but for the d660. 
(c) MTZ thickness measurements. (d) Standard deviation (SD) of the MTZ thickness 

measurements. 
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Figure 6 Correlation plot of apparent d410 and d660 depths. The line indicates the 

optimal bivariate regression with a cross-correlation coefficient of 0.70. 

 

 

The small reduction in the XCCs between the corrected d410 and d660 depths 

suggests that the wave speed corrected depths are not reliable, most likely due to large 

uncertainties in the models and underestimation of the amplitude of the wave speed 

anomalies. Additionally, considerable discrepancies are present among existing wave 

speed models (e.g., Figure. S3) and thus it is difficult to determine which of the wave 

speed corrected results is the most realistic one. Therefore, in the following we discuss 

the wave speed structure in the upper mantle and the thermal and water content anomalies 
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in the vicinity of the MTZ discontinuities using the apparent (Figure. 5) rather than the 

wave speed corrected (Figures. S1 and S2) depths. 

 

 

 

Figure 7 Stacking amplitude (relative to that of the direct P-wave) for (a) d410 and (b) 
d660. 
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4. DISCUSSION 

 

4.1. THERMAL STRUCTURE OF THE MTZ 

The simplest explanation for the observed nearly normal MTZ thickness beneath 

most of southern Africa (Figure. 5c) is that there is no discernible temperature anomaly in 

the MTZ. However, some specific combinations of temperature and water content 

anomalies may lead to a normal MTZ thickness (Reed et al., 2016; Sun et al., 2017). The 

first scenario is when the effect of water (which can uplift the d410 and depress the d660; 

Litasov et al., 2005) and that of higher-than-normal temperature (which has an opposite 

effect than water on the discontinuities) coincidentally cancel each other, leading to a 

normal MTZ thickness. However, these two factors are unlikely to cancel each other 

almost everywhere across this study area with a diverse set of tectonic provinces and 

lithospheric ages and thicknesses (Figure. 1). In addition, the lack of an anomalously high 

amount of water in the MTZ is consistent with the observation that a low wave speed 

layer is not observed atop the d410 beneath southern Africa (Tauzin et al., 2010), a 

conclusion that is supported by the stacked RFs from this study (Figures. 3 and 8). 

The second scenario to produce a normal MTZ thickness is when the amount of 

uplift of the d660 caused by the higher-than-normal temperature from the lower mantle 

superswell matches that of the d410 caused by the lower-than-normal temperature from 

the deep cratonic keels. However, because the superswell covers a much larger area than 

the cratons (Ritsema et al., 1999), thinner-than-normal MTZ thickness should be 

expected beneath the off cratonic areas due to the absence of the effect of the keels. This 
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prediction is inconsistent with the observed MTZ thicknesses, which are similar between 

cratonic (246±6 km) and off cratonic (246±8 km) areas (Figure. 5c and Figure. 8). 

Therefore, we conclude that the presence of an excessive amount of water or 

significant thermal anomalies in the MTZ is unlikely. This in turn suggests that neither 

the lower-mantle African Superswell nor the cratonic keels have a discernible effect on 

the MTZ temperature. The conclusion that the thermal influence of the cratonic keels is 

limited to the upper mantle and does not extend to the MTZ is consistent with most 

previous tomographic studies (James et al., 2001; Wittlinger and Farra, 2007; Priestley et 

al., 2008; Fishwick, 2010; Youssof et al., 2015). Similarly, the observed dominantly 

normal MTZ thickness beneath cratonic areas in North America indicates the absence of 

significant influence of cratonic keels on the thermal structure of the MTZ (Thompson et 

al., 2011; Gao and Liu, 2014a). 

 

4.2. UPPER MANTLE WAVE SPEED AOMALIES DERIVED FROM THE 
APPARENT DISCONTINUITY DEPTHS 

As discussed in the previous section, large scale significant thermal and water 

content anomalies are unlikely to exist in the MTZ beneath southern Africa. In addition, 

the parallelism between the shallower-than-normal apparent depths of the d410 and d660 

(Figure.5) suggests that high wave speed anomalies situated above the d410 are the 

simplest explanation for the apparent uplift of both discontinuities. Under the assumption 

that the true depth of the d410 is 410 km, the apparent depth of the d410 can be used to 

estimate the mean upper mantle P- and S-wave speed anomalies for an assumed γ factor 

(Gao and Liu, 2014b). For the following calculations, we assume that γ=1.7, a value that 
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was estimated for the central and eastern United States (Gao and Liu, 2014b). 

Application of a different factor would change the absolute wave speed anomalies, but 

not their spatial variations (Reed et al., 2016). 

The resulting average upper mantle P-wave speed anomalies calculated using the 

relationship between the apparent depths of the MTZ discontinuities and wave speed 

anomalies (Equation (1)) correspond well with major tectonic boundaries (Figure.9). The 

mean upper mantle P-wave speed anomaly required to correct the observed average 

apparent d410 depth (401±8 km) to the depth of 410 km is 0.84±0.84% for the entire 

study area, and 1.49±0.49%, 1.20±0.49%, and 0.83±0.56% for the Kaapvaal Craton, 

Zimbabwe Craton, and Limpopo Belt, respectively. 

While the spatial variations of the derived wave speed anomalies (Figure.9) are in 

general agreement with those from most seismic tomographic results (James et al., 2001; 

Schaeffer and Lebedev, 2013; Figure. S3), the absolute amplitude of the variations 

obtained from this study is significantly greater than those from seismic tomographic 

investigations. Such a reduction in the amplitude in tomographically-derived wave speed 

models could be the result of a high damping factor that is necessary to stabilize the 

inversion, and for some previous studies, the use of relative rather than absolute travel 

time residuals (Foulger et al., 2013). 

Under the assumption that the wave speed variations derived above are entirely 

caused by variations in lithospheric thickness, in the following we estimate the depth of 

the lithosphere–asthenosphere boundary (LAB) across the study area. To perform this 

task, a reference location on Earth with normal upper mantle wave speeds, a well imaged 

d410 with a nearly normal depth, and a reliably determined lithospheric thickness is 
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needed. These conditions are satisfied by most parts of the eastern U.S., where normal 

apparent d410 depths and near zero average wave speed anomalies in the upper mantle 

(see Figure.4a in Gao and Liu, 2014b) have been suggested. Additionally, for the 

easternmost U.S., the most recent S-to-P receiver function study revealed a lithospheric 

thickness of ∼90 km (Liu and Gao, 2018), which is consistent with most of the previous 

studies (e.g., Rychert et al., 2007; Fischer et al., 2010). 

 

 

 

Figure 8 (a) Number of RFs in bins within a 150 km wide band centered at Profile a-b 
shown in Figure.1. (b) Resulting depth series in the bins. The letters at the top indicate 

the five subareas in Figure.1. 
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Once the reference location with normal velocities and d410 depth is determined, 

the mean lithospheric thickness (L) beneath a given area with a mean relative upper 

mantle Vp anomaly of A (in percent) can be estimated by partitioning the anomaly from a 

layer with a thickness of 410 km to a layer of (L−90) km with a Vp anomaly of C% 

determined in Section 4.2, i.e., (L−90)/A=410/C+90, where 90 is the thickness of the 

lithosphere in km at the reference location. Obviously, for a fixed wave speed anomaly, a 

larger wave speed contrast requires a smaller difference in LAB depth relative to the 

reference location. 

 

 

 
Figure 9 Required P-wave velocity anomalies (relative to the IASP91 Earth model) in 
order to correct the observed apparent d410 depths to a uniform true depth of 410 km. 
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Figure.10 shows the resulting mean lithospheric thickness plotted against assumed 

C values beneath the Kaapvaal and Zimbabwe cratons and the Limpopo Belt, calculated 

based on the mean upper mantle Vp anomalies shown in Table S2. If we assumed that the 

Vp contrast between the lithosphere and the asthenosphere is 4%, a value suggested in 

numerous previous studies (e.g., Li et al., 2003; Rychert et al., 2007; Eaton et al., 2009; 

Yu et al., 2015), the lithospheric thickness would be about 245 km for the Kaapvaal 

Craton (Figure.10). This value is generally consistent with most of the previous 

tomographic and receiver function studies (James et al., 2001; Niu et al., 2004; Wittlinger 

and Farra, 2007; Youssof et al., 2015). On the other hand, if the high wave speed root 

beneath the Kaapvaal Craton only extends to less than 200km (Priestley et al., 2008; 

Fishwick, 2010), the required Vp contrast between the lithosphere and asthenosphere 

would be greater than 5.6%, a high value that is not suggested by the existing studies for 

the area. The resulting lithospheric thickness beneath the Zimbabwe Craton and Limpopo 

Belt is about 215 km and 175 km, respectively, which are also comparable to most of the 

previous seismic tomographic studies (Li and Burke, 2006; Chevrot and Zhao, 2007). It 

must be emphasized that the estimated lithospheric thicknesses are under the assumption 

that there is a sharp boundary between the lithosphere and the asthenosphere, while in 

reality a gradual rather than sharp transitional zone between the two layers might be 

present (e.g., Fischer et al., 2010). In this case the estimated depths approximately 

represent the center of the transitional layer. 
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Figure 10 Estimated lithospheric thickness as a function of P-wave velocity contrast 

across the LAB beneath the Kaapvaal Craton (red line), Zimbabwe Craton (blue line) and 
Limpopo Belt (green line). 

 

 

5. CONCLUSIONS 

 

Using an unprecedented number of RFs recorded in southern Africa over the past 

27 yr, we imaged the topography of the d410 and d660 under the non-plane wave 

assumption. Beneath most of the study area, the d410 and d660 are apparently shallower 

than the global average and are parallel to each other, suggesting high wave speed 

anomalies in the upper mantle. The shallower-than-normal MTZ discontinuities can be 

sufficiently explained by variations in lithospheric thickness. The resulting MTZ 

thickness is comparable to the globally averaged value of 250 km, and there is no 

discernible difference between the on and off cratonic regions. The sharp arrivals 

associated with both the d410 and d660 imply the absence of an excessive amount of 

water in the MTZ, and the lack of a robust negative arrival above the d410 is inconsistent 
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with the presence of a water-saturated layer atop the d410. The observations suggest that 

both the cratonic keels and the lower mantle African Superswell have a limited influence 

on the thermal structure of the mantle transition zone beneath southern Africa. 
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III. MANTLE TRANSITION ZONE STRUCTURE BENEATH NORTHEAST 
ASIA: EVIDENCE FROM RECEIVER FUNCTIONS 

 

ABSTRACT 

 

The 410 and 660 km discontinuities (d410 and d660), which represent the top and 

bottom boundaries of the mantle transition zone (MTZ), beneath northeast Asia are 

imaged in successive circular bins with a radius of 1 degree by stacking a total of 274,593 

P-to-S radial receiver functions recorded by 799 broadband seismic stations. After 

moveout correction based on the 1-D IASP91 Earth model, the resulting apparent depths 

of the discontinuities exhibit significant and spatially systematic variations. From east to 

west in the study area, three approximately N-S elongated narrow zones with 

significantly thickened MTZ are observed, which may be associated with the thermal and 

hydrous effects of subducted Pacific slabs. The major volcanoes in northeast China are 

underlain by a d660 that is apparently depressed by 20 km. The thickened MTZ beneath 

the volcanoes can be interpreted by the presence of an anomalously high-water 

concentration in the lower MTZ released from the stagnated slab. Such a spatial 

correspondence between the volcanoes and MTZ thickening, when combined with results 

from seismic tomography studies, is consistent with the hypothesis that the volcanoes are 

fed by wet and hot upwelling originated from slab dehydration in the MTZ. Beneath the 

Baikal Rift zone, the thickened MTZ is consistent with a passive rifting mechanism. In 

contrast, an abnormally thin MTZ is observed beneath the Hangay Dome in central 

Mongolia mostly associated with an uplifted d660, suggesting the possible existence of 

thermal upwelling from lower mantle through the MTZ. 
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1. INTRODUCTION 

 

Subduction of the Pacific Plate beneath the eastern margin of the Eurasian plate 

started from before Jurassic (Sun et al., 2007). Under the assumption that the subduction 

rate over the past ~150 million years is similar to the current rate of 90 mm/yr (Watson et 

al., 1987; Davis et al., 2004), a total of 13,500 km of Pacific lithosphere has been 

subducted. In the northeast China, the subducted Pacific slab has been identified by many 

seismic tomographic studies (Chen et al., 2017; Huang & Zhao, 2006; Li & Van Der 

Hilst, 2010; Tang et al., 2014) as a high-velocity zone of about 100 to 200 km wide in the 

upper mantle. In the mantel transition zone (MTZ), which is bordered by the 410 km 

(d410) and 660 km (d660) discontinuities, most seismic tomography studies (Fukao et al., 

2001; Huang & Zhao, 2006; Li & Van Der Hilst, 2010) imaged the stagnant slab as a 

sub-horizontal layer of high velocities with a thickness of about 100-200 km. The leading 

edge of the horizontally deflected slab in the MTZ may reach the eastern margin of Great 

Xing’an Range (Figure 1).  

The intraplate Cenozoic volcanoes in northeast China are mainly distributed along 

the edges of the Songliao basin (Figure 1, Fan & Hooper, 1991; Liu et al., 2001). In spite 

of numerous studies aiming at understanding the origins of intraplate volcanoes such as 

those found in NE China (Turcotte and Shcubert, 1982; Tang et al., 2014; Wei et al., 

2018), the physical and chemical processes responsible for these volcanoes remain 

enigmatic. Turcotte and Shcubert (1982) suggest that the Changbaishan volcanoes 

(Figure 1) might be associated with a hotspot, while some recent tomographic studies 

(Wei et al., 2018; Zhao et al., 2009) attribute the Changbaishan volcanoes to wet and hot 
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upwelling from dehydration of the subducting Pacific slab. Some other studies (e.g., Tang 

et al., 2014) interpret the Changbaishan volcanoes as the consequence of the 

decompression melting from subduction-induced upwelling through a slab gap.  

Besides the Changbaishan, the origin of other Cenozoic volcanoes in NE China 

such as the Wudalianchi and Halaha volcanoes also remains controversial. Geochemical 

investigations (Kuritani et al., 2013) suggest that the Wudalianchi volcano is associated 

with a hydrous mantle plume originating from the hydrated MTZ, while others (e.g., 

Zhang et al., 1998) attribute it to shallower processes. Recent seismic tomography studies 

(Wei et al., 2018) reveal that the widespread high velocity anomalies in the MTZ beneath 

the Wudalianchi and Halaha volcanoes and most other areas in NE China are underlain 

by low velocities in the shallow mantle. Wei et al. (2018) propose that the Wudalianchi 

volcano is fed by a wet upwelling from the stagnant Pacific slab in the MTZ, while the 

Halaha volcano, which is located above the leading edge of the Pacific slab, is associated 

with a focused upwelling caused by the sinking of the stagnant Pacific slab into the lower 

mantle. 

The Baikal rift zone (BRZ), which is located between the Siberian platform and 

the Altai-Sayan fold belt (Figure 1), is characterized by high heat flow (Lysak, 1984), 

lower than normal mantle velocity (Zhao & Lei, 2006), crustal thinning (Gao et al., 

2004), and negative gravity anomalies (Zorin et al., 1989). Although most tomographic 

studies (e.g., Gao et al., 2003; Petit et al., 1998; Zhao et al., 2006) found low velocity 

anomalies beneath the BRZ and adjacent areas, the depth extent of this low velocity 

anomaly remain highly divergent in different studies. Some studies support an active 

rifting, which is caused by an actively thermal upwelling (Zhao et al., 2006; Zorin et al., 
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2003), while others favor a passive origin, which is induced by the driving forces from 

the collision between the Indian Plate and Eruaisa Plate (Achauer, 2002; Ai, 2000; 

Zoenshain & Savostin, 1981). 

Another controversial issue in the study area is the cause of the anomalously high 

topography of the Hangay Dome in central Mongolia (Figure 1). Some studies suggest 

that lithospheric thinning beneath the Hangay Dome is the result of thermal upwelling 

from the lower mantle impinged on the bottom of the lithosphere (Chen et al., 2015; 

Zhang et al., 2017; Zorin et al., 2003), probably associated with a mantle plume. 

However, other studies (Friederich, 2003; Mordvinova et al., 2015) consider that 

lithospheric delamination induced convective asthenospheric upwelling is responsible for 

the anomalously elevated topography.  

While seismic tomography studies have provided valuable constraints on the 

spatial distribution of the subducted slabs and mantle upwellings, considerable 

discrepancies on the lateral and especially vertical extents of the structures remain, 

leading to significantly different endmember models regarding important questions such 

as formation of intraplate Cenozoic volcanoes in NE China, mechanisms responsible for 

the formation of the Hangay Dome, as well as the formation and evolution of the Baikal 

Rift. The opposite effects of hydration and low temperature that may co-exist in 

subducted slabs on seismic velocities may also play a role in the ambiguities in the 

interpretation of the seismic images. 

Numerous mineral physical, geodynamic modeling, and geophysical 

observational investigations have demonstrated that in-situ temperature and presence of 

water in the MTZ can be revealed by the topography of the d410 and d660, which 
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represent the phase transition from olivine to spinel, and from ringwoodite to Mg-

perovskite + magnesiowustite, respectively (Ringwood, 1975). The former transition has 

a positive Clapeyron slope, suggesting that a region of cold temperature results in an 

uplift of the d410 and vice versa, while the latter has a negative Clapeyron slope. The 

actual magnitude of the Clapeyron slopes, especially which associated with the d660, is 

debated (Bina & Helffrish, 1994; Fei et al., 2004; Ghosh et al., 2013). Recent studies 

suggest that water has similar effect on the topography of the MTZ discontinuities as low 

temperature, but the existence of water in the lower MTZ has a much more significant 

impact on the depression of the d660 than low temperature (Ghosh et al., 2013). 

Consequently, significant depressions of the d660 are indicative of the existence of a 

hydrous lower MTZ (Ghosh et al., 2013; Cao & Levander, 2010; Mohamed et al., 2014). 

 A number of MTZ studies have been conducted in various regions of northeast 

Asia to investigate the thermal state and the presence of water in the MTZ. Ai et al. 

(2003) and Li and Yuan (2003) image the MTZ structure beneath northeast China using 

similar broadband stations. Both studies show a regionally depressed d660 and thickened 

MTZ, suggesting that the Pacific slab exists in the MTZ and has reached the lower 

mantle. Another MTZ study (Liu et al. ,2015) measures the depth variation of the MTZ 

discontinuities beneath northeast China based on different velocity models, and find a 

thinned MTZ beneath the Changbaishan volcanoes, indicating the absence of cold slabs 

in the MTZ and that the volcanoes might be fed by thermal upwelling from lower mantle 

rather than slab dehydration. In contrast, Tian et al (2017) reveal a thicker than normal 

MTZ thickness beneath the Changbaishan volcanoes and attribute their formation to 

dehydration of the subducting Pacific slab in the MTZ. Beneath the BRZ, Liu & Gao 
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(2003) reveal an uplifted d410, depressed d660 and a thicker than normal MTZ which 

favor a passive rifting mechanism. Si et al. (2013) utilize receiver functions from two 

stations (TLY and ULN) to image the MTZ discontinuities beneath BRZ, and find 

depressed MTZ discontinuities and an about 40 km thickening beneath the BRZ except 

for a small area with limited MTZ thinning (20 km). They indicated that the development 

of the BRZ is dominant by the detachment of the lithosphere and the consequent hot 

upwelling. Using seismic data from 3 stations, Chen et al. (2015) report an MTZ that is 

10-20 km thinner than the globally averaged value of 250 km beneath Hangay Dome, and 

interpret it as the consequence of a slightly warmer thermal anomaly across the MTZ. 

Following a receiver function (RF) stacking procedure (Gao & Liu, 2014) 

developed under the assumption of non-plane wave front, which is capable of more 

accurately imaging the d410 and d660 than procedures assuming a plane wave front, this 

study utilizes an unprecedentedly large number (274,593) of P-to-S receiver functions 

from the d410 and d660 to produce robust images of the MTZ discontinuities beneath 

northeast Asia, for the purpose of providing additional constraints on a number of 

significant issues related to slab subduction and thermal upper welling. 

 

2. DATA AND METHOD 

 

2.1. DATA 

The broadband teleseismic data employed in the study were recorded by 799 

stations in the study area (97°E to 142°E, and 37°N to 52°N) from a total of 35 different 

networks (Figure 1). Among the stations, 189 provided publicly-available data through 
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the IRIS Data Management Center, and the remaining 610 stations were part of the 

seismic networks managed by various Chinese agencies. The recording duration for the 

stations is from mid-1986 to September-2018. To achieve an optimal balance between the 

quality and quantity of the requested data, a variable cut-off magnitude (Mc) is calculated 

based on the empirical equation, Mc=5.2+(delta–30.0)/(180.0–30.0)–D/700.0, where 

delta and D represent the epicentral distance (ranging from 30° to 100°) in degree and 

focal depth in kilometer, respectively (Liu & Gao, 2010). 

 

 

 

Figure 1 Topographic relief map of northeast Asia showing distribution of Cenozoic 
volcanoes (red triangles), seismic stations (purple triangles), major tectonic provinces, 

and depth contours of the subducting Pacific slab 
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2.2. DATA PROCESSING 

Detailed description of the procedure for data selection, pre-processing, moveout 

correction, as well as stacking under a non-plane-wave assumption can be found in the 

study for the contiguous United States (Gao & Liu, 2014), and is briefly described below. 

A band-pass filter (0.02-0.2 Hz) was applied to filter the requested seismograms. The 

signal-to-noise ratio (SNR) of the vertical-component seismograms with a first arrival of 

the compressional wave were calculated using the method of Gao & Liu (2014). 

Following the procedure of Ammon (1991), we used all the filtered 3-component 

seismograms with an SNR exceeds 4.0, to generate the radial RFs. Then visually 

checking are processed for all the RFs to reject the ones with abnormal arrivals or no 

clear first P pulse. Finally, a total of 274,593 RFs from 10,129 events were used, a 

quantity that is unprecedented for any P-to-S receiver function studies in the area. 

The coordinates of the ray-piercing points at the depth of 535 km (which is 

approximately the center of the MTZ) are first calculated, and the RFs with piercing 

points in each of the radius=1° circular bins are moveout corrected and stacked to form a 

depth series using the IASP91 earth model. The distance between neighboring bins is 1° 

and therefore, there is an overlap among neighboring bins. To ensure reliability, results 

from bins with less than 10 RFs are not used. For each bin, a bootstrap resampling 

procedure with 50 resampling iterations (Efron and Tibshirani, 1986) was employed to 

calculate the mean and standard deviation of the MTZ discontinuity depths and MTZ 

thickness. 

Since the RFs were moveout-corrected utilizing the 1-D IASP91 standard Earth 

model, the resulting MTZ discontinuity depths are apparent rather than true depths. The 
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true depths can be obtained when accurate P- and S- wave speed anomalies are available 

for the crust, upper mantle and MTZ. In this study, following the velocity-correction 

procedure of Gao and Liu (2014), we used one regional (Chen et al., 2017) and two 

global wave speed models (Schaeffer and Lebedev, 2013; Burdick et al., 2016) to correct 

the apparent depths. 

 

3. RESULTS 

 

A total of 620 bins render robust determinations (Figure 2), including 619 bins for 

d410, 615 bins for d660, and 614 bins for both. As a result of the high quality and 

quantity of the RFs, the d410 and d660 arrivals are unambiguously identified for virtually 

all the bins, except for a few of them on the edges of the study area. All the depth series 

are plotted along 21 E-W profiles in Figure S1. The resulting d410 depths range from 379 

to 444 km with a mean value of 415.7±8.15 km, and for the d660, the corresponding 

values are 634, 704 and 669.4±10.3 km, respectively. The observed MTZ thickness 

ranges from 209 to 297 km, with a mean value of 253.1±10.0 km, which is 3 km thicker 

than the global average of 250 km in the IASP91 Earth model. A continuous curvature 

surface gridding algorithm with a tension factor of 0.5 (Smith & Wessel, 1990) was used 

to obtain the spatially continuous images of the discontinuity depths and MTZ thickness 

(Figure 3). According to the patterns of the resulting discontinuity depths and MTZ 

thickness, we selected 7 most interesting subareas for discussion (Figure 3), and the 

averaged measurements for each of the subareas are shown in Table 1. 
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Figure 2 (a) Depth series in 1° radius bins plotted with respect to the sequentially 
increasing depth of the d410. (b) Same as Figure 2a but for sequentially increasing depth 

of the d660 

 

 

 

Table 1 Averaged measurements for each of the subareas 

Area 
d410 
(km) 

d410_SD 
(km) 

d660 
(km) 

d660_SD 
(km) 

MTZ 
(km) 

MTZ_SD 
(km) 

Study area 416 8 669 10 253 10 
A 393 12 671 5 277 17 
B 425 8 667 8 241 7 
C 417 11 680 12 262 7 
D 414 5 665 6 250 6 
E 415 5 674 6 259 6 
F 417 10 672 11 255 4 
G 420 6 648 11 228 9 
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Figure 3 (a) Spatial distribution of resulting d410 depths. (b) Same as (a) but for the d660. 
(c) MTZ thickness measurements. (d) Standard deviation (SD) of the MTZ thickness 

measurements 

 

 

Since velocity anomalies in the upper mantle would increase, while thermal, 

velocity or water content anomalies in the MTZ would decrease, the cross-correlation 

coefficient (XCC) between the apparent d410 and d660 depths (Gao & Liu, 2014), the 

XCC can reflect the effectivity of the velocity correction. The original XCC between the 

apparent MTZ discontinuities is 0.43 (Figure 4), which is significantly lower than 0.84 

for the contiguous United States (Gao & Liu, 2014) and 0.7 for the southern Africa (Sun 

et al., 2018), indicating the presence of significant thermal, water content or velocity 
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anomalies in the MTZ. Three velocity models (Chen et al., 2017; Schaeffer & Lebedev, 

2013; Burdick et al., 2016) are employed for velocity correction in this study, and the 

corrected MTZ thickness are shown in Figure 5. The considerable differences in the 

corrected depths (Figure 5) are indicative of the discrepancies of the velocity models. 

Since it is impossible to determine which corrected result is the most realistic one, in the 

following we discuss the thermal, water, and velocity structure mostly based on the 

apparent depths rather than true depths. 

 

 

 

Figure 4 Correlation plot of apparent d410 and d660 depths. The line indicates the 
optimal bivariate regression with a cross-correlation coefficient of 0.43 
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4. DISCUSSION 

 

4.1. IMPLICATIONS FOR THE DEPTH AND LATERAL EXTENTS OF THE 
SUBDUCTED PACIFIC SLAB BENEATH SORTHEAST ASIA 

The resulted systematic spatial variations of the MTZ thickness and apparent 

discontinuity depths can provide valuable constraints on the geometry and depth extent of 

the subducted Pacific slab in northeast China. Similar to most previous MTZ studies (Ai 

et al., 2003; Chen et al., 2013; Tang et al., 2014), a widespread depression of the d660 

with magnitude of about 14 km is observed beneath Areas A-C (Figure 3). 

Beneath Area A, an ~17 km apparent uplift of the d410 is observed around the 

depth contour of 400 km of the subducting Pacific slab defined by deep earthquakes and 

higher-than-normal P wave velocity anomalies (Figure 6) (Chen et al., 2017). The 

uplifted d410 may be caused by the low temperature associated with the subducted slab 

due to the positive Claypeyron slope of +2.9 MPa/K (Bina & Helffrish, 1994), which 

means that the slab segment has possibly penetrated into the MTZ beneath Area A. 

In Area B, our results show that the d410 and d660 are apparently depressed by 

about 15 km and 7 km, respectively, leading to an 8 km thinning of the MTZ on average. 

The simplest model that can account for the observations in Region B involves a low 

velocity zone (LVZ) in the upper mantle and a high velocity anomaly in the MTZ 

associated with the subducting slab. If we assume a dln(Vs)/dln(Vp) value of 2.0 (Gao & 

Liu 2014), a low velocity zone with a mean Vp anomaly of about -1.1% in the upper 

mantle would result in an apparent depression of 15 km for both the d410 and d660, 

while a high velocity anomaly of about +0.9% in the MTZ from the subducting slab 
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would uplift the d660 about 7 km, which are similar to the observed in this region. The 

required velocities anomalies for the upper mantle and MTZ to produce the observed 

undulations of the discontinuities are in general agreement with those from most previous 

seismic tomographic studies (Figure 6; Zhao et al., 2009; Chen et al., 2017; Wei et al., 

2018).  

The largest depression of the d660 (20 km) and significant MTZ thickening (12 

km) occur west of the 600 km depth contour line of the subducting Pacific slab (Area C), 

implying that the subducted slab contacts closely with the d660 in Area C (Figures 3, 6). 

Previous tomographic studies show that the stagnant Pacific slab in the MTZ reaches the 

Great Xing'an Range (Huang & Zhao, 2006; Li & Van der Hilst, 2010; Obayashi et al., 

2013; Wei et al., 2012). However, the normal MTZ thickness observed in Area D 

suggests the absence of a cold slab in the MTZ beneath this area. In contrast, the 

thickened MTZ in region C (Figure 3) reveals that only the northern portion of the 

leading edge of the subducted Pacific slab in the MTZ has reached the eastern margin of 

the Great Xing’an Range, while the central and southern portions merely reached the 

eastern edge of the Songliao basin (Figure 3). 

 

4.2. FORMATION MECHANISM OF CENOZOIC VOLCANOES IN 
NORTHEAST CHINA 

The intraplate Cenozoic volcanoes in northeast China, including the 

Changbaishan, Jingpohu, Longgang, Wudalianchi, Halaha, are mainly distributed in Area 

C which is characterized by an MTZ that is on average 13 km thicker than normal (Figure 

3). The MTZ thickening is due to a 7-km apparent depression of the d410 and a 20 km 
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depression of the d660 (Figure 3). In the following we use a model involving velocity, 

thermal, and water content anomalies in the upper mantle and MTZ to quantitatively 

discuss the observations in this area. 

 

 

 

Figure 5 Averaged upper mantle (first row), MTZ (second row), topmost lower mantle 
(third row) P-wave velocity anomalies, and corrected MTZ thickness (fourth row) by the 

previous studies (Chen et al., 2017; Schaeffer & Lebedev, 2013; Burdick et al., 2016) 
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Figure 6 Stacked receiver functions across 3 latitudinal lines. The background image 
shows P-wave velocity anomalies (Chen et al., 2017) 

 

 

In this model, if we assume a dln(Vs)/dln(Vp) value of 2.0 (Gao & Liu 2014), a 

mean Vp anomaly of -0.5 percent in the upper mantle would lead to an ~7 km apparent 

depression of both the d410 and d660. In contrast, the high velocities of the slab in the 

MTZ can lead to an ~7 km apparent uplift of the d660. Additionally, if the scaling 
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relationship of dVp/dT =-4.8×10-4 km×s-1K-1 (Deal et al., 1999) is used, the +1.6% 

velocity anomaly associated with the stagnant slab corresponds to a -330 K thermal 

anomaly, which would result in an additional depression of the d660 by about 12 km if a 

Claypeyron slope of -1.3 MPa/K (Fei et al., 2004) is used. The net 12 km depression of 

the d660 is significantly smaller than the 20 km depression observed in this study, 

implying that the observed depression of the d660 in this area cannot be explained solely 

by the negative temperature (and corresponding velocity) anomaly related to the stagnant 

slab in the lower MTZ. 

Mineral physics experiments predict that cold and old (≥ 50 Myr) slabs have the 

capability of carrying water into the MTZ, by hydrous minerals and dense hydrous 

magnesium silicates (Thompson 1992; Pearson et al., 2014). Water solubility of 

wadsleyite and ringwoodite in the slabs reduces with increased temperature (Ohtani et al., 

2000, 2004), and thus facilitates gradual and long-lasting slab dehydration. Many studies 

reveal that a high-water content exists in the MTZ beneath some areas above the stagnant 

slabs in northeast China (Kelbert et al., 2009; Wang et al., 2015), which is considered as 

the result of the deep dehydration from the stagnant slab. Litasov et al. (2005) indicate 

that at 1473 K temperature condition, 2 wt. % of water in hydrous peridotite can lead to 

15 km depression of the d660. If this is the case, the remaining 8 km depression of the 

d660 observed in Area C can be attributed to a 1.0 wt. % water content in the lower 

MTZ, which is close to the 0.8 wt. % value estimated by Wei et al. (2015) based on 

seismic tomography. The existence of high water concentration in the MTZ and the long-

term (~150 million years) subduction history of the Pacific plate are consistent with the 

hypothesis that the volcanoes in this area may be related to wet upwelling originated from 
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dehydration of the subddcted Pacific slab, a mechanism that has been proposed to explain 

the loss of cratonic root beneath North China (Zhu et al., 2012) and the formation of 

Cenozoic volcanoes and continental floods basalts in northeast China (Chen et al., 2017, 

Tian et al., 2016; Wei et al., 2018). 

 

4.3. SMALL-SCALE THERMAL UPWELLING ADJACENT TO THE CURRENT 
PACIFIC SLAB IN THE MTZ 

Beneath the region D, an about 5 km depression for both the d410 (414±5 km) 

and d660 (665±6 km) and a close-to-normal MTZ thickness (251±6 km) are observed 

(Figure 3). The small scaled anomalously thin MTZ observed beneath the center of the 

Songliao basin and North Korea have estimated averaged thickness of 241 and 240 km, 

corresponding to an estimated positive thermal anomaly of +76K and +85K, respectively. 

Numerical models tested by Feccenna et al. (2010) show that the lateral edge of 

subducting slab can cause a mantle thermal upwelling originating from beneath the slab. 

This atypical thermal upwelling is revealed by previous MTZ studies in Indochina 

Peninsula (Yu et al., 2017) and Alaska (Dahm et al., 2017). Therefore, we speculate that 

the thermal upwelling beneath center of Songliao basin and North Korea might be 

originated beneath the subducting Pacific slab. 

Additionally, an S-wave receiver function study conducted by Zhang et al. (2014) 

suggests a thinned lithosphere of about 100-120 km in thickness beneath the Songliao 

basin, which is about 40 km thinner than that beneath the Great Xiangan Range. Previous 

studies (Zhang et al., 2010; Wei et al., 2018) suggest that this lithospheric thinning might 

be caused by lithospheric delamination occurred in the Cretaceous. The anticipated 
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negative temperature anomaly in the sinking lithospheric layer, if it has reached the MTZ, 

is expected to result in a thicker than normal MTZ. The normal and slightly thinner than 

normal MTZ in Area D indicates that the lithospheric delamination beneath the Songliao 

basin, if exists, has no observable influence on the MTZ temperature, implying that the 

delaminated lithosphere has not reached the MTZ. 

 

4.4. EVIDENCE FOR THE EXISTENCE OF SUBDUCTED ANCIENT PACIFIC 
SLAB IN THE MTZ 

In Area E, the MTZ is about 9 km thicker than normal on average, which is 

caused by a 5 km apparent depression of the d410 and 14 km apparent depression of the 

d660 (Figure 3). Previous studies (e.g., Fukao et al., 2001) suggest that Area E is 

underlain by an ancient Pacific slab. Considering similar values of both MTZ 

discontinuity depths and MTZ thickness between regions C and E, we conclude that the 

MTZ thickening in the region E is possibly caused by ancient Pacific slab. 

 

4.5. RIFTING MECHANISM OF BAIKAL RIFT 

The BRZ (Region F) is characterized by depressed d410 and d610 that are 7 and 

12 km deeper than normal, respectively, and a slightly thickened MTZ with magnitude of 

5 km (Figure 3). Both the weakly depressed MTZ discontinuities observed in this study 

indicate that a low velocity anomaly exists in the upper mantle, which is consistent with 

previous tomographic studies (Gao et al., 2003; Zhao et al., 2006). Similar to more 

localized studies (Liu and Gao, 2003; Si et al., 2013), the observed slightly thickened 

MTZ suggests the absence of a thermal upwelling perturbing the MTZ directly beneath 
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the BRZ, which favors a passive rifting mechanism for the BRZ (Achauer, 2002; Ai, 

2000; Zoenshain & Savostin, 1981). The observations of the BRZ are consistent with 

those beneath some other continental rifts with different maturity such as the Okavango 

rift (Yu et al., 2015), Malawi and Luangwa rifts (Reed et al, 2016) and western branch of 

the East Africa rift system (Sun et al., 2017). 

 

4.6. THERMAL UPWELLING BENEATH THE HAGAY DOME AND ALTAI 
MOUNTAIN 

The most prominent feature in central Mongolia is an on average 22±9 km 

thinning of the MTZ beneath the Hangay Dome and Altai Mountain in an approximately 

circular region of about 400 km in diameter. This thinning is centered at the Hangay 

Dome and is associated with a 10 km apparent depression of the d410 and a 12 km uplift 

of the d660 (Figure 3). 

A recent receiver function study (Chen et al., 2015) has also detected a 10-20 km 

thinner-than-normal MTZ beneath the Hangay Dome, and interpreted it as the 

consequence of a slightly warmer thermal anomaly across the MTZ. However, although 

both studies have found similar magnitude of MTZ thinning beneath the Hangay Dome, 

there is a significant discrepancy in the distribution of the observed thinned MTZ. In this 

study, the thinning of the MTZ primarily occurs between 100°E and 105°E, while that 

revealed in Chen et al. (2015) mainly exists between 104°E and 110°E. The discrepancy 

in this area is most likely caused by that only 3 stations were used in Chen et al. (2015), 

while 12 stations were utilized in this study. 
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One of the simplest mechanisms for the thinner-than-normal MTZ in this area is 

that thermal anomalies beneath Hangay Dome traverses the whole MTZ from the lower 

mantle. Assuming Clapeyron slopes of +2.9 MPa/K and -1.3 MPa/K for the d410 and 

d660 (Bina & Helffrich, 1994; Fei et al., 2004), respectively, the observed 22 km 

thinning of the MTZ corresponds to a 185K temperature increase in the MTZ. 

The presence of thermal anomaly from the lower mantle beneath the Hangay 

Dome is also evidenced by various studies using different techniques. The integrated 

seismic study (Chen et al., 2015) find a thinner-than-normal MTZ and low velocity 

anomalies through the entire MTZ beneath the Hangay Dome, and interprets it as the 

consequence of a thermal upwelling across the MTZ. A tomographic study (Zhang et al., 

2017) focused on the central Mongolia also reveals a low velocity zone beneath Hangay 

Dome, which is rooted at least 800 km, suggesting that the deep thermal upwelling may 

cause the uplift of the Hangay Dome and magmatism of the active Khanuy Gol and 

Middle Gobi volcanoes. Using regional gravity data, Zorin et al. (2003) construct 3-

dimensional gravity models and reveal the existence of deep thermal upwelling beneath 

Mongolia, including the Hangay Dome and the Hentay Mountains. 

 

5. CONCLUSION 

 

Using an unprecedented number of RFs recorded in northeast Asia, we imaged 

the topography of the d410 and d660 under the non-plane wave assumption. Beneath the 

study area, a low XCC between the apparent depths of the d410 and d660 is obtained, 

suggesting the presence of the thermal, water content or velocity anomalies in the MTZ. 
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The current and ancient Pacific slabs might be responsible for the three approximately N-

S oriented zones with thickened MTZ. Most of the major Cenozoic volcanoes in 

Northeast China are underlain by a depressed d660 and thickened MTZ, which can be 

explained by hot and wet upwelling originated from dehydration of the subducted Pacific 

slab. The observed thickened MTZ beneath the BRZ is inconsistent with the present-day 

existence of active thermal upwelling from the lower mantle. In contrast, the presence of 

a thermal upwelling from lower mantle cross the MTZ is indicated by the observed 

abnormally thinned MTZ beneath the Hangay Dome. 
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APPENDIX A. SUPPLEMENTARY MATERIAL 

 

 
Figure S1 Stacked receiver functions across 21 latitudinal lines. The background image 

shows P-wave velocity anomalies (Chen et al., 2017)  
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IV. CRUSTAL STRUCTURE IN THE MALAWI AND LUANGWA RIFT 
ZONES AND ADJACENT AREAS 

 

ABSTRACT 

 

Stacking over 2500 P-to-S receiver functions recorded by 34 broadband seismic 

stations that we installed in the vicinity of the Malawi and Luangwa rift zones (MRZ and 

LRZ, respectively) and gravity modeling reveal significant crustal thickness and Vp/Vs 

variations. The resulting crustal stretching factor is about 1.1 for the MRZ, which is 

significantly lower than that observed in the magmatic eastern branch of the East African 

rift system (EARS), and is consistent with the general absence of volcanism in the MRZ. 

The southern MRZ shows a high crustal Vp/Vs of 1.81 or greater and may indicate the 

existence of partial melting. Abnormally low Vp/Vs values between 1.69-1.71 are 

observed along the western boundary of the northern MRZ and are attributable to CO2 

suffusion of rift boundary faults. The LRZ shows negligible crustal thinning and normal 

Vp/Vs, suggesting that crustal post-rifting healing is nearly completed. 

 

1. INTRODUCTION 

 

Continental rifts are widely recognized as linear zones where the entire 

lithosphere has been pulled apart under extension (Sengor & Burke, 1978). One of the 

most common features in continental rifts is basaltic volcanism, which originates from 

either partial melting in the lithosphere or doming convection from the sub-lithospheric 

mantle (Sengor & Burke, 1978). A recent ambient noise tomographic (ANT) study 
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(Wang et al., 2019) suggests that, in continental rifts, the magnitude of crustal thinning 

has a close relationship with the development of rift-related volcanisms. Different from 

most of the mature segments of the East Africa Rift System (EARS) which have been 

studied extensively using various techniques, the non-volcanic young Malawi rift and the 

Mesozoic Luangwa rift have been inadequately investigated. Consequently, the 

magnitude and extent of crustal deformation, the existence of partial melting or mafic 

intrusion in the crust, and important characteristics such as the depth penetration and 

possible CO2 suffusion of the seismically active boundary faults, remain enigmatic. 

Laboratory investigations of crustal rock samples (Holbrook et al., 1992) suggest 

that under average crustal temperature and pressure conditions, felsic, intermediate, and 

mafic rocks have Vp/Vs values of smaller than 1.76, between 1.76 and 1.81, and greater 

than 1.81, respectively. While the existence of crustal partial melting and intensive diking 

can increase the Vp/Vs (e.g., Liu & Gao, 2010; Reed et al., 2014), an increasing number 

of mineral physical and observational studies have suggested that CO2 released from the 

mantle through deep and steep lithospheric faults can significantly reduce crustal Vp/Vs 

(Julian et al., 1998; Lee et al., 2016; Parmigiani et al., 2016; Roecker et al., 2017). 

Therefore, observations of Vp/Vs values that are below the normal felsic rock value of 

1.76 may suggest the presence of mantle derived CO2, and that of lithospheric faults 

acting as conduits for the CO2. 

In this study, we present measurements from a joint receiver function and gravity 

study using recently recorded broadband seismic and gravity data that we collected as 

part of an interdisciplinary investigation (Gao et al., 2013) to unveil the crustal 
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characteristics and impact of CO2 and partial melting on Vp/Vs beneath the Malawi and 

Luangwa rift zones (MRZ and LRZ, respectively) and adjacent areas. 

 

2. TECTONIC SETTING 

 

The Cenozoic MRZ is the southernmost segment of the amagmatic western 

branch of the EARS. It separates the Nubian plate and the Rovuma microplate (Figure 1) 

and originated approximately 14 Ma (Roberts et al., 2012). The Rungwe Volcanic 

Province located at the northern tip of the rift zone is the only volcanic province within 

the MRZ (Ebinger et al., 1993). A kinematic GPS study (Saria et al., 2014) indicated that 

the spreading rate between the Nubian plate and the Rovuma microplate decreases 

gradually from the northern tip (2.2 mm/yr) to the southern tip (0.8 mm/yr) of the MRZ. 

Broadband seismic studies using the same data set used by this study have shown that 

there is a normal mantle transition zone thickness (Reed et al., 2016) and a NE-SW 

oriented seismic azimuthal anisotropy (Reed et al., 2017) under the rift, suggesting that 

there is no significant rift-related mantle flow and detectable influence of an active plume 

in the vicinity of the mantle transition zone. Previous geodynamic modeling studies also 

inferred a lack of significant thermal upwelling from the lower mantle beneath the MRZ, 

and favor an upper mantle origin of rifting (Stamps et al., 2014; 2015). Relative to the 

mantle, the crust beneath most part of the MRZ has been inadequately studied. A recent 

receiver function study for the northern MRZ and the Rungwe Volcanic Province 

(Borrego et al., 2018) suggests a bulk felsic to intermediate crustal composition and small 



92 

 

 

variation of crustal thickness, and concludes that crustal thinning in the northern MRZ is 

highly focused beneath the center of the rifted basin. 

 

 

 

Figure 1 Topographic map of the study area showing the distribution of seismic stations 
(blue triangles) used in the study and major tectonic features. The red dots indicate the 

locations of gravity data used in this study, and the green dots are ray-piercing points of 
P-to-S conversions at the depth of 41.5 km. The dashed lines show the tectonic 

boundaries, among which the purple dashed line is the Mwembeshi Shear Zone. The 
rectangle in the inset map indicates the study area 

 

 

 Another major tectonic feature in East Africa is the Permo-Triassic LRZ, which is 

considered to be a component of the southwestern branch of the EARS (Banks et al., 
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1995; Fritz et al., 2013). The Luangwa rifting started in earliest Permian times and ended 

in the Triassic (Banks et al., 1995; Daly et al., 1989). The southwestern segment of the 

LRZ follows the ENE-trending Mwembeshi Shear Zone, which separates the Proterozoic 

Irumide Belt and the South Irumide Belts (SIB), while its northeastern portion is situated 

in the Irumide Belt (Figure 1). Geochronological studies by Johnson et al. (2005; 2006) 

indicate that different magmatic events resulted in a significant distinction of the crustal 

characteristics between these two neighboring orogenic belts. The Mwembeshi Shear 

Zone separates the lithosphere between the Irumide Belt and SIB, which is evidenced by 

the observation of an electrically conductive discontinuity in the mantle (Sarafian et al., 

2018). This conductive discontinuity might represent a suture zone which is a result of 

collision between two lithospheric fragments after subduction of an oceanic slab beneath 

the Irumide Belt (Johnson et al., 2007; Sarafian et al., 2018). Previous integrated studies 

consider that the left lateral movement on the Mwembeshi Shear Zone dominated the 

development of the LRZ (Banks et al., 1995; Daly et al., 1989; Orpen et al., 1989). 

However, this suture zone has not been detected by previous seismological studies 

(Kachingwe et al., 2015). 

 

3. DATA AND METHODS 

 

The teleseismic (epicentral distance ranging from 30° to 180°) data used in the 

study were recorded by 34 stations (Figure 1) that we installed in Malawi, Mozambique, 

and Zambia over a 2-year period (2012 - 2014) as a component of the SAFARI (Seismic 

Arrays for African Rift Initiation; Gao et al., 2013) project. To balance the quality and 
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quantity of the selected data, a variable cut-off magnitude (Mc) was set by 

Mc=5.2+(∆−30.0)/(180.0−30.0)−D/700.0 where ∆ and D are the epicentral distance in 

degree and focal depth in kilometer, respectively (Liu and Gao, 2010). A band-pass filter 

with a frequency range between 0.04-0.8 Hz was applied to the seismograms, which were 

windowed 20 s before and 260 s after the theoretical first P-wave arrival based on the 

IASP91 Earth model (Kennett & Engdahl, 1991). If the signal to noise ratio (S/N) of the 

first arrival on the vertical component was greater than 4.0, the filtered seismograms were 

selected to generate P-to-S receiver functions (RFs) following the procedure of Ammon 

(1991) with a water level value of 0.03. The resulting P-to-S RFs for each of the stations 

were inspected visually to reject the ones without a clear first 110 P-arrival in the first 2 

second window. A total of 2504 high-quality radial RFs from 311 events were selected 

for determining crustal thickness (H) and Vp/Vs (𝜅𝜅). 

 

3.1. H- 𝜿𝜿 STACKING 

Following the H- 𝜅𝜅 stacking procedure of Zhu & Kanamori (2000), the selected 

RFs were moveout corrected and stacked to grid-search for the optimal pair of the crustal 

thick ness and Vp/Vs, which corresponds to the maximum stacking amplitude. In this 

study, a crustal mean P-wave velocity of 6.1 km/s was chosen for the H- 𝜅𝜅 stacking, 

which is consistent with the IASP91 Earth model. Subsequently, following a bootstrap 

resampling procedure (Efron & Tibshirani, 1986), the mean and standard deviation of the 

measurements for each station were calculated. 

A delay time of approximately 0.4s of the first arrivals and strong multiple 

reflections in the RFs at one of the stations (Z06GL) located in the LRZ suggest the 
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presence of a loose sedimentary layer (Yu et al., 2015). Such strong reverberations can 

mask the P-to-S converted phases from the Moho. For this station, we applied a 

resonance-removal filter (Yu et al., 2015) to isolate the P-to-S converted phases from the 

Moho. 

 

3.2. RF MIGRATION 

To produce a spatially continuous image of the Moho, we migrated the RFs and 

projected them into a rift orthogonal (W-E) and a rift parallel (S-N) profile, respectively. 

To produce the cross-sections, the RF raypaths were traced three-dimensionally using an 

assumed mean crustal Vp of 6.1 km/s and the optimal Vp/Vs value for each station 

obtained from H- 𝜅𝜅 stacking. We then divided the 25-55 km depth range of the Earth 

along the profile into rectangular blocks of 1° (longitude for the W-E profile, and latitude 

for the S-N profile) by 1 km (vertical) with a horizontal and vertical moving step of 0.1° 

and 0.1 km, respectively. The mean amplitude of the RFs in each of the blocks was 

calculated and the stacked RFs were normalized by the maximum amplitude in the 25-55 

km depth range. 

 

3.3. RESIDUAL OIL EFFECT 

Bouguer gravity anomaly data consisting of approximately 15,000 stations within 

the study area were obtained from the National Geospatial and Imaging Agency (NGIA) 

and detailed surveys by Matende (2013). To remedy the relatively large (greater than 4 

km) spacing of the NGIA data in most areas, a detailed gravity survey by Matende (2013) 

collected data between 1 and 2 kilometers along major roads in Zambia and south ern 
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Malawi. These new data were processed to complete Bouguer gravity anomalies using 

the 1967 international gravity formula, sea level as a datum and 2.67 g/cm3 as a Bouguer 

reduction density, and 1-kilometer DEM to determine terrain corrections. The combined 

data set was used to create two gravity models that followed the trend of the broadband 

seismic stations (Figure 1). 

The two-dimensional gravity models were constructed using GM-SYS software. 

Since forward gravity modeling is intrinsically non-unique, constraints were used to 

determine a better resolved model. Results from previous geological studies (Boniface & 

Appel, 2017; De Waele et al., 2008; Hansen, 2003) and mapping (Bloomfield & Mason, 

1966; Thieme & Johnson, 1975) were used to determine the surface geology and to 

estimate potential upper crustal bodies. The H- 𝜅𝜅 stacking results for the crustal thickness 

and Vp/Vs determined from this study were used to constrain crustal thickness and 

density variations. There were no density measurements or seismic refraction surveys in 

either the MRZ or LRZ, so the densities were estimated from other gravity studies in the 

EARS (e.g., Mickus et al., 2007; Simiyu & Keller, 2001; Tesha et al., 1997). The 

location, geometries and densities of the various bodies were varied by 15% during the 

modeling process from our initial model. 

 

4. RESULTS 

 

Robust P-to-S arrivals are obtained from the migrated RFs (Figure 2), enabling 

reliable determinations of crustal thickness and Vp/Vs beneath the vast majority of the 

stations.  
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Figure 2 Surface elevation (top panels) and migrated receiver function profiles (bottom 
panels) along rift-orthogonal (left panels) and rift parallel (right panels) profiles. The 

black dots indicate results from H-κ stacking. 

. 

 

4.1. CRUSTAL THICKNESS AND VP/VS FROM H-𝜿𝜿 STACKING 

 The resulting crustal thicknesses vary from 33.4 km beneath the northern part of 

the MRZ to 46.1 km beneath the Mozambique belt with an average of 41.5±2.7 km 

(Figure 3a), and the Vp/Vs values range from 1.69 to 1.84 with 1.67 a mean value of 

1.75±0.04 (Figure 3b). The measurements are in general consistent with results from the 

several stations along the two profiles (Borrego et al., 2018; Kachingwe et al., 2015). 

Along the rift-orthogonal profile, the crustal thickness in the MRZ is 2-3 km thinner than 

the surrounding orogenic belts (Figure 2a and 3a), leading to a β (stretching) factor of 

about 1.1, which is significantly lower than mature segments of continental rifts. The 

Mozambique Belt has an average thickness of 42.3±2.7 km and 𝜅𝜅  of 1.78±0.04. The 

mean crustal thickness of the SIB is 43.6±0.6 km, while the Vp/Vs measurements have a 
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mean value of 1.75±0.01. The crustal thickness observed beneath both the Mozambique 

Belt and SIB is consistent with the results from a recent ANT study (Wang et al., 2019). 

H- 𝜅𝜅 stacking from 6 stations in the Irumide Belt leads to a mean crustal thickness of 

41.1±1.9 km and Vp/Vs of 1.73±0.03. For the two stations situated in the LRZ, the crustal 

thickness is 43.3 km at Z06GL and 44.6 km at Z08MF, and the Vp/Vs is 1.75 at both 

stations. 

 Along the rift-parallel profile, the averaged crustal thickness is 39.6±2.6 km 

(Figure 3a). The thinnest crust (33.4 km) was found beneath Station W07CR at the 

northern end of the profile, while the thickest crust (43.2 km) was observed at Station 

Z03 in the central part of the MRZ (Figure 3a). The resulting Vp/Vs values observed 

beneath MRZ fall within the range of 1.69-1.84 with an average of 1.74±0.05 (Figure 

3b). Small Vp/Vs values were revealed at 6 stations (W07CR, W08KB, W09TK, W05SL, 

W11KP, and W10LW) in the northern half of the S-N profile, ranging from 1.69 to 1.72, 

with a mean of 1.71±0.01.  

 

4.2. MOHO DEPTH VARIATION FROM MIGRATED RFS 

 The spatial variation of crustal thickness and its correspondence with surface 

elevation can be clearly observed on the migrated and laterally smoothed RF profiles 

(Figure 2). Along the rift-orthogonal profile (Figures 2a and 2c), the western boundary of 

the LRZ, which is also approximately the boundary between the Irumide Belt and the 

SIB, separates the LRZ with a thick crust and the Irumide Belt with relatively thin crust. 

Contrasting to the commonly observed correspondence between thicker crust and higher 

elevations, the Irumide Belt, which has a thinner crust, is characterized by an elevation 
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that is more than 1 km higher than the LRZ. Additionally, although the Irumide Belt and 

the SIB have similar elevations, the crust beneath the latter is a few km thicker.  

 

 

 

Figure 3 (a). Distribution of resulting crustal thickness. (b). Resulting Vp/Vs 
measurements. Results of modeling of gravity anomaly data along the rift orthogonal 

profile (c) and the rift-parallel profile (d). Red crosses and solid line represent observed 
and calculated Bouguer gravity anomalies, respectively. Densities are in g/cm3. Black 

open circles with error bars indicate results from H-κ stacking 
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 A different relationship between crustal thickness and surface elevation is 

revealed in the eastern half of the rift-orthogonal profile, where a thicker crust 

corresponds to a higher elevation. For instance, the MRZ, which has the lowest elevation 

in the study area, corresponds to a crustal thinning of a few kilometers relative to the 

adjacent SIB, and the high elevation area on the Mozambique Belt adjacent to the MRZ is 

characterized by a thick crust. A sudden thinning of the crust further east corresponds to a 

significant elevation reduction.  

The along-rift variation of crustal thickness is delineated by the migrated RFs 

(Figure 2d). The major features include a crustal thickening at the high-elevation 

southern terminus of the MRZ, as well as a sudden crustal thinning beneath the northern 

end of the profile. Caution must be taken that for stations northern of 14°S, the stations 

were located on the western edge of the MRZ, while the rest of the stations along the NS 

profile were approximately in the axial area (Figure 1). Therefore, if the area with the 

maximum crustal thinning is limited underneath the surface expression of the rift, the 

observed crustal thickness beneath the northern stations might be larger than the axial 

area. However, it is worth to realize that the difference in the resulting crustal thickness 

between Station W05SL, which, similar to the rest of the northern stations, was on the rift 

shoulder, and Station W06SB, which was approximately in the axial area, is less than 3 

km. 

 

4.3. RESULTS FROM GRAVITY MODELING 

 Figure 3c shows an east-west trending model that starts within the Irumide Belt 

and crosses LRZ, SIB and MRZ. Of interest is that there is no obvious crustal thinning or 
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magmatic underplating beneath the LRZ which was constrained by the receiver function 

results. However, in order to explain the long wavelength, low amplitude gravity 

maximum over the LRZ without crustal thinning, some type of density increase must be 

included beneath the LRZ. We used a slightly higher density lower crust (relative to the 

Irumide Belt at the western end of the profile) combined with a higher density body 

within the upper crust. The Vp/Vs values do not show an increase under the LRZ so 

having the entire density increase within the lower crust did not make geophysical sense. 

Additionally, a higher crustal density region was required under the SIB as this region is 

associated with a relative gravity maximum. Commonly, Proterozoic terranes are 

associated with thicker, denser lower crust, however this region has been subjected to two 

adjacent rifting events in the Permian-Triassic and the current rifting in Malawi. 

 The upper mantle density beneath the region between the LRZ and the MRZ has 

relatively average densities (3.25 g/cm3) with no gravity or seismic evidence for a lower 

density upper mantle seen in other portions of the East African Rift (Mickus et al., 2007; 

Simiyu & Keller, 2001). The lower density crust and upper mantle under the Irumide Belt 

are necessary to fit the more felsic and thinner crust, as well as the high elevation, which 

are consistent with the more felsic lithologies that are seen in the surface rocks (De 

Waele et al., 2009). 

 The north-south gravity model (Figure 3d) indicates slightly thinner crust of 

approximately 39 km on the north and south ends of the model compared to an average of 

42 km for the rest of the model. The crustal thickness in northern Malawi agrees with the 

thicknesses (39 km) to the north of the profile under the Rungwe Volcanic Province 

(Borrego et al., 2018). While this region is associated with a low velocity zone in the 
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mantle (Borrego et al., 2018), there is no evidence of high Vp/Vs values and/or crustal 

thinning associated with rifting and the presence of partial melt. The slightly thinner crust 

in southern Malawi is associated with higher Vp/Vs values. 

 

5. DISCUSSION 

 

5.1. CONSTRAINTS ON CRUSTAL MAGMATIC INTRUSION AND PARTIAL 
PELTING BENEATH THE MRZ 

Borrego et al. (2018) observed negligible crustal thinning beneath the shoulder of 

the northern MRZ, suggesting that crustal thinning in the northern MRZ must be highly 

focused beneath the centers of rift basin segments. In this study, a relatively flat Moho 

(39.6±2.6 km) was found under most stations in the MRZ including the central and 

southern parts of the MRZ. This seems to indicate that, relative to other parts of the 

EARS, crustal thinning within the MRZ is relatively minor even within the central 

portion of the MRZ. This relatively low magnitude crustal thinning beneath the MRZ is 

consistent with the absence of volcanism on the surface except for the Rungwe Volcanic 

Province. 

In contrast to the small variations of crustal thickness along the axis of the MRZ, 

the resulting Vp/Vs values observed within the MTZ varies greatly from 1.69 at the 

northernmost part to 1.85 in the central part of the MRZ (Figure 3b), implying significant 

along-rift variations of crustal composition, degree of partial melting, or temperature. The 

high Vp/Vs (≥ 1.81) determined at stations Q01MP, W06SB, and W14MC (Figure 3b), 

which are situated in the central and southern parts of the MRZ, implies the possible 
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existence of magmatic intrusion in the lower crust or partial melting in the crust beneath 

some areas of the MRZ. High crustal densities and higher than- normal Vs in the crust are 

expected, if the high Vp/Vs is caused by magmatic intrusion in the crust from mantle. 

However, the gravity model in this study shows normal crustal densities beneath most 

parts of the MRZ (Figure 3d). On the other hand, a recent ANT study (Wang et al., 2019) 

revealed lower-than-normal Vs beneath these areas. All these observations, when 

combined with the evidence of the absence of crustal thickening from magmatic addition 

observed in this study (Figure 2b), are inconsistent with the possibility of the presence of 

magmatic intrusion of high-density mantle material into the crust beneath the central and 

southern parts of the MRZ. 

Broadband seismic studies have observed a normal mantle transition zone 

thickness (Reed et al., 2016) and NE-SW oriented seismic azimuthal anisotropy which is 

similar to that observed across the rest of southern Africa (Reed et al., 2017; Silver et al., 

2001), suggesting that absence of rifting-related mantle flow beneath the MRZ. These 

observations suggest that the high Vp/Vs values could be related to partial melting and 

elevated temperatures induced by lithospheric stretching decompression rather than 

ascending magma from an active mantle plume. 

 

5.2. MAGMA-DERIVED CO2 SUFFUSION OF BOUNDARY FAULTS IN THE 
NORTHERN MRZ 

Anomalously low Vp/Vs values ranging from 1.69 to 1.71 with a mean value of 

1.70±0.01 were determined at six stations (W05, W07, W08, W09, W10, and W11) along 

the western boundary of the MRZ. The most commonly cited cause for such low Vp/Vs 
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values is the presence of rocks with a high silicon content (Christensen, 1996), which, to 

our knowledge, is not found by previous studies in the study area. A recently proposed 

alternate mechanism for low Vp/Vs is magma-derived CO2 released from the mantle 

through deep and steep lithospheric faults (e.g., Foly & Fischer, 2017; Julian et al., 1998; 

Lee et al., 2016; Parmigiani et al., 2016; Roecker et al., 2017). Parmigiani et al. (2016) 

suggest that a magmatic volatile phase is prone to migrate from the crystal-rich regions to 

the crystal-poor parts, and accumulate large volumes of low density bubbles at the roof of 

the crystal-poor magma reservoir. The deep boundary faults beneath the edges of the rift 

zones, if they connect to the magma reservoir in the mantle, could be infiltrated by the 

magma-derived volatiles (Foly & Fischer, 2017; Roecker et al., 2017), which can affect 

the pore-fluid compressibility, and consequently, reduce the crustal Vp/Vs (Julian et al., 

1998). 

Considering the enormous quantity of recently recognized CO2 outgassing along 

the faults in the EARS (Lee et al., 2016) and similar observations of low Vp/Vs values 

along the edges of the EARS in northern Tanzania and southern Kenya (Roecker et al., 

2017), we speculate that a viable explanation for the anomalously low Vp/Vs observed in 

the northern part of the MRZ is CO2 suffusion of deep rift boundary faults. 

 

5.3. POSSIBLE EXISTENCE OF A MESOPROTEROZOIC SUTURE ZONE 
BENEATH THE MWEMBESHI SHEAR ZONE AND POST-RIFTING 
HEALING OF THE LRZ 

Along the rift-orthogonal profile, if we assume uniform densities for the crust and 

upper mantle, the relationship between crustal thicknesses determined by the receiver 

function analysis and surface topography could generally fit an Airy isostatic model 
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except for the LRZ and the Irumide Belt to the west (Figure 2b). The Irumide Belt which 

has the highest elevation is associated with crust that is 37.7 km thick, which is obviously 

thinner than that under the SIB which has a lower elevation. Simple calculations based on 

Airy’s isostatic model suggest that, relative to the SIB, the crust beneath the Irumide Belt 

must be underlain by a lower density upper mantle and/or lower density crust. While a 

variety of gravity models under the Irumide Belt were attempted, the final model shown 

in in Figure 3c best fit the observed gravity data, the receiver function models and the 

low Vp/Vs values (Figure 3b). This model includes both relatively lower upper mantle 

and lower crustal densities than the surrounding terranes. 

The density contrast boundary in the gravity model (which is approximately 

located at 100-130 km along the horizontal axis in Figure 3c) is located at the boundary 

between the Irumide Belt and the SIB (Figure 1) and might represent the suture zone 

which is the result of the collision of the two lithospheric fragments after ocean closure 

occurred during the Irumide Orogeny (Johnson et al., 2007). Previous studies suggested 

that this suture zone beneath the Mwembeshi Shear Zone dominated the development of 

the LRZ (Banks et al., 1995; Daly et al., 1989; Orpen et al., 1989). This conclusion is 

supported by geochronological studies (Johnson et al., 2005; 2006), which found 

significant difference in metamorphism types and magmatism histories between Irumide 

Belt and SIB, suggesting that the crust underlying the SIB is not the southward extension 

of the crust beneath the Irumide Belt. Moreover, a recent magnetotelluric study (Sarafian 

et al., 2018) observed an electrical conductivity discontinuity in the mantle beneath the 

Mwembeshi Shear zone, indicating that the tectonic effects of this shear zone might 

extend through the entire lithosphere.  
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Unlike the tectonically active MRZ, the resulting crustal thickness beneath the 

Mesozoic LRZ, the southern part of which was developed in the Mwembeshi Shear Zone, 

is not significantly thinner than that beneath the adjacent orogenic belts. In spite of the 

currently higher level of tectonic activity relative to the surrounding areas and the 

speculation that the LRZ has been reactivated (Banks et al., 1995; Daly et al., 1989; 

Orpen et al., 1989), the observed negligible crustal thinning and insignificant variation of 

Vp/Vs beneath the LRZ relative to the surrounding area suggest that post rifting healing of 

the rifted crust beneath the LRZ has completed since the cessation of the rifting event. 

 

6. CONCLUSIONS 

 

Crustal thickness and Vp/Vs beneath 34 SAFARI stations located along two 

profiles in the vicinity of the MRZ and LRZ were imaged by stacking 2504 highquality 

RFs and gravity modeling. The crustal thickness measurements are generally consistent 

with sparsely spaced previous measurements. The new observations show that relative to 

the adjacent orogenic belts, the crust beneath the MRZ is thinned by about 3 km. This 

low magnitude crustal stretching is consistent with the absence of volcanisms in the main 

portions of the MRZ. Some areas in the MRZ show a high crustal Vp/Vs of 1.81 or 

greater, which, when combined with the observations from other broadband seismic 

studies and gravity modeling, may indicate the existence of partial melting probably 

associated with lithospheric stretching decompression. One of the most significant 

observations from this study is the spatially consistent low Vp/Vs measurements in the 

range of 1.69-1.71 along the western edge of the northern MRZ, which could be 
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interpreted by the suffusion of magma-derived CO2 into lithospheric normal faults. 

Moreover, the ancient suture zone beneath the Mwembeshi Shear Zone is represented by 

a density contrast boundary between the Irumide Belt and the South Irumide Belt. Based 

on the negligible crustal thinning and insignificant variation of Vp/Vs beneath the LRZ 

relative to the surrounding area, we propose that post-rifting healing of the rifted crust 

beneath the LRZ has completed, and the recent reactivation of tectonic activities in the 

failed rift represents localization of regional strain along preexisting zones of mechanical 

weakness in the rifted crust. 
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2. CONCLUSIONS 
 

In this study, we have imaged MTZ discontinuities beneath the Tanzania Craton 

(TC), the Eastern and Western Branches of the East Africa Rift System (EARS), southern 

Africa and northeast Asia. The normal MTZ thickness reveals a lack of significant 

thermal anomaly in the MTZ beneath most of the Tanzania Craton and the Western 

Branch. In contrast, a 30 km thinning of the MTZ beneath the Eastern Branch associated 

with a 50 km apparent depression of the d410 and a 20 km depression of the d660 

suggest that the present-day existence of thermal upwelling from either the lower mantle 

or the uppermost MTZ beneath the northern part of the Eastern Branch. The observed 

normal MTZ thickness beneath southern Africa suggest that both the cratonic keels and 

the lower mantle African Superswell have a limited influence on the thermal structure of 

the MTZ beneath southern Africa. The most major Cenozoic volcanos in northeast China 

are underlain by a depressed d660 and thickened MTZ, which can be explained by hot 

and wet upwelling originated from dehydration of subducted Pacific slab. The observed 

thickened MTZ beneath the BRZ indicates a low temperature around MTZ structure, 

which rules out the possibility of the active rifting mechanism. In contrast, the presence 

of the thermal upwelling from lower mantle cross the whole MTZ is proved by the 

observed abnormally thinned MTZ beneath the Hangay Dome.  

The crustal thickness measurements show that relative to the adjacent orogenic 

belts, the crust beneath the MRZ is thinned by about 3 km. This low magnitude crustal 
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stretching is consistent with the absence of volcanisms in the main portions of the MRZ. 

Some areas in the MRZ show a high crustal Vp/Vs of 1.81 or greater, which, when 

combined with the observations from other broadband seismic studies and gravity 

modeling, may indicate the existence of partial melting probably associated with 

lithospheric stretching decompression. One of the most significant observations from this 

study is the spatially consistent low Vp/Vs measurements in the range of 1.69-1.71 along 

the western edge of the northern MRZ, which could be interpreted by the suffusion of 

magma-derived CO2 into lithospheric normal faults. Moreover, the ancient suture zone 

beneath the Mwembeshi Shear Zone is represented by a density contrast boundary 

between the Irumide Belt and the South Irumide Belt. Based on the negligible crustal 

thinning and insignificant variation of Vp/Vs beneath the LRZ relative to the surrounding 

area, we propose that post-rifting healing of the rifted crust beneath the LRZ has 

completed, and the recent reactivation of tectonic activities in the failed rift represents 

localization of regional strain along preexisting zones of mechanical weakness in the 

rifted crust. 
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