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ABSTRACT

Cyber-physical systems link cyber infrastructure with physical processes through

an integrated network of physical components, sensors, actuators, and computers that are

interconnected by communication links. Modern critical infrastructures such as smart

grids, intelligent water distribution networks, and intelligent transportation systems are

prominent examples of cyber-physical systems. Developed countries are entirely reliant on

these critical infrastructures, hence the need for rigorous assessment of the trustworthiness

of these systems. The objective of this research is quantitative modeling of dependability

attributes - including reliability and survivability - of cyber-physical systems, with domain-

specific case studies on smart grids and intelligent water distribution networks. To this end,

we make the following research contributions: i) quantifying, in terms of loss of reliability

and survivability, the effect of introducing computing and communication technologies; and

ii) identifying and quantifying interdependencies in cyber-physical systems and investigating

their effect on fault propagation paths and degradation of dependability attributes.

Our proposed approach relies on observation of system behavior in response to

disruptive events. We utilize a Markovian technique to formalize a unified reliability

model. For survivability evaluation, we capture temporal changes to a service index chosen

to represent the extent of functionality retained. In modeling of interdependency, we apply

correlation and causation analyses to identify links and use graph-theoretical metrics for

quantifying them. The metrics and models we propose can be instrumental in guiding

investments in fortification of and failure mitigation for critical infrastructures.To verify the

success of our proposed approach in meeting these goals, we introduce a failure prediction

tool capable of identifying system components that are prone to failure as a result of a

specific disruptive event. Our prediction tool can enable timely preventative actions and

mitigate the consequences of accidental failures and malicious attacks.
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1. INTRODUCTION

Modern critical infrastructures are large complex systems that are expected to be

highly dependable and continuously provide essential services. Examples of such complex

networks are smart grids, intelligent water distribution networks, and intelligent transporta-

tion systems. These systems utilize cyber infrastructure, which provides computing-based

decision support and failure monitoring, among other benefits. Collectively, the physical

infrastructure and this network of cyber devices comprise a cyber-physical system (CPS).

A fundamental motivation for supplementing the existing physical systems with computing

and communication is to improve dependability. The research presented in this dissertation

is devoted to determining whether CPSs succeed in providing a higher level of dependability

than their conventional counterparts.

Dependability analysis of CPSs has become increasingly urgent, given the ubiquity

of such systems, extensive use of computing in critical applications, and disruptions that

inevitably occur in critical infrastructures. Past incidents have proven that incapacity of

critical infrastructures can have a catastrophic impact on our health, safety, economics, and

social welfare [2, 3, 4, 5, 6].

In the energy sector for example, there has been instances where unexpected failures

in the electric delivery systems has resulted in large-scale power outages with profound

consequences on several sectors of the critical infrastructure. Figure 1.1 depicts three large-

scale catastrophic power outages since 2000 and highlights the main recommendations

made by task forces that analyzed respective events.

In 2003 Northeastern Blackout, the outage of transmission lines, combined with

a failure in the alarm system, caused an instability and resulted in a series of cascading

failures. These incidents eventually led to a large-scale blackout that affected more than

55 million people [2]. The 2003 Italy Blackout was a cascading power failure that left
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Before After

Aug. 14, 2003 - Northeastern Blackout
Affected 55 million people

Recommendations [2]

• Strengthen institutional frame-
work for reliability management.

• Expand research on reliability-
related tools and technologies.

• Improve cyber and physical
security of the network.

• ...

Sep. 28, 2003 - Italy Blackout
Affected 56 million people

Recommendations [3]

• Updating reliability standards.
• Ensure redundancy and reliabil-
ity of control and communica-
tion infrastructure.

• Enhancement of special protec-
tion systems can be effective.

• ...

Oct. 2012 - Hurricane Sandy
Left 8 million people without power

Recommendations [4]

• Improve electric grid policies
and standards.

• Develop a resilient power strat-
egy for communications infras-
tructure.

• ...

Dependability Analysis of Criti-
cal Infrastructures

Techniques:

• Truth table
• Reliability block diagram
• Petri-net analysis
• Markovian analysis
• Fault tree analysis

Outcomes

• Identification of susceptible
parts

• Determining failure propagation
paths

• Prediction of cascading failures
• Elimination/alleviation of the
risk and automating the recovery
and failure mitigation process

Figure 1.1. Catastrophic events that motivate this research.

half of the country without power for multiple days [3]. This failure was exacerbated by

the loss of Internet communication nodes due to the power outage, which in turn caused

further breakdown of communication and control at multiple power stations. Hurricane

Sandy is an example where several critical infrastructures were affected due to a natural

disaster [4]. The need for more dependable critical infrastructures and better preparation

has been emphasized in the task force reports of these and several other catastrophic events,

specifically by tightening dependability requirements and incorporating cyber and socio-

technical aspects in investigations.
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In order to improve the dependability of CPSs, accurate models are needed. In a

disruption cycle of a system, dependability models can substantially help at three stages:

1. Before disruption: Models help to raise awareness and understanding of the potential

risks and their consequences, compare alternative recovery strategies, and prepare for

contingency planning.

2. During disruption: Availability of knowledge and resources enable use of appropriate

decisions to mitigate consequences and support rapid recovery.

3. After disruption: Models can help in determining high-priority actions required for

restoration of essential services and resources needed for supporting recovery. Models

should be continually refined based on what learned from the event.

Model-based analysis is a common and effective method for investigating failure

scenarios of a system and evaluating its dependability attributes. Models can facilitate the

comparison of alternative designs and expedite the design process; however, developing

unified models of CPSs is a challenging task, as the model has to reflect hardware and

software operation, as well as the continuous dynamics of physical systems [7]. Despite

increasing activity in research related to CPSs, such models are still scarce, and to a large

extent qualitative.

The overarching objective of this research is analytical modeling of dependability

attributes of CPSs with domain-specific case studies on smart grids and intelligent water

distribution networks. While both qualitative and quantitative models are important and

useful for analysis of CPSs, this work focuses on quantitative modeling, as it has not been

properly addressed in the literature. We evaluate the potential vulnerabilities and quantify

the loss of dependability as a result of introducing computational and communication

technologies . Furthermore, in order to compose a unified dependability model from the

quantified dependability attributes, we study interdependence among the components of

CPSs and investigate its effect on fault propagation paths.
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Dependability is an integrative concept with multiple attributes, fromwhich we seek

to address reliability and survivability, as they have higher priority and are more appropriate

in analysis of power and water critical infrastructures. Interdependency is the concept that

attaches the disparate parts of dependability and provides integrity in model composition.

Our contribution to the area of CPS dependability analysis is shown in Figure 1.2 and further

explained in the following list. Respective publications are mentioned under each item.

Dependability Modeling

Availability

Safety

Integrity

Maintainability Survivability

Reliability

Interdependency

Figure 1.2. Our contribution to the area of CPS dependability modeling. Attributes that are
covered in this research are shown in hexagons with thick borders.

1. Development of a quantitative reliability model using a Markovian technique that is

applicable to CPSs with interdependent components

• K. Marashi and S. Sedigh Sarvestani, “Towards comprehensive modeling of

reliability for smart grids: Requirements and challenges,” in Proceedings of

the 15th IEEE International High Assurance Systems Engineering Symposium

(HASE), (Miami, FL), pp. 105–112, January 2014
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• K.Marashi, M.Woodard, S. Sedigh Sarvestani, and A. R. Hurson, “Quantitative

reliability analysis for intelligent water distribution networks,” in Proceedings

of the Embedded Topical Meeting on Risk Management for Complex Socio-

Technical Systems (RM4CSS), Annual Meeting of the American Nuclear Society,

(Washington, D.C.), November 2013

• K. Marashi, M. Woodard, S. Sedigh Sarvestani, and A. R. Hurson, “Quanti-

tative reliability analysis for intelligent water distribution networks,” in Risk

Management for Complex Socio-Technical Systems, American Nuclear Society,

to appear

• K. Marashi, S. Sedigh Sarvestani, and A. R. Hurson, “Consideration of cyber-

physical interdependencies in reliability modeling of smart grids,” IEEE Trans-

actions on SustainableComputing – Special Issue on SustainableCyber-Physical

Systems, to appear

2. Evaluating quantitative survivability attributes from service indices of CPSs

• M. Woodard, K. Marashi, and S. Sedigh Sarvestani, “Survivability evaluation

and importance analysis for complex networked systems,” IEEE Transactions

on Network Science and Engineering, under review

3. Proposing two methods using correlation metrics and causation analysis for identifi-

cation of interdependency among components of a CPS

• K. Marashi, S. Sedigh Sarvestani, and A. R. Hurson, “Identification of inter-

dependencies and prediction of fault propagation for cyber-physical systems,”

Reliability Engineering & System Safety, to be submitted

4. Introducing interdependency metrics for quantifying the extent to which components

and subsystems of a CPS are interdependent
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• K. Marashi, S. Sedigh Sarvestani, and A. R. Hurson, “Quantification and anal-

ysis of interdependency in cyber-physical systems,” in Proceedings of of the

3rd International Workshop on Reliability and Security Aspects for Critical In-

frastructure (ReSA4CI 2016), in conjunction with the 46th IEEE/IFIP Interna-

tional Conference onDependable Systems andNetworks (DSN 2016), (Toulouse,

France), pp. 149–154, June 2016

5. Proposing a method using machine learning tools for prediction of failure sequences

in interdependent CPSs

• K. Marashi, S. Sedigh Sarvestani, and A. R. Hurson, “Identification of inter-

dependencies and prediction of fault propagation for cyber-physical systems,”

Reliability Engineering & System Safety, to be submitted

Aswell as the listed publications, we compiled a survey article on the recent research

on modeling of CPSs as shown below.

• N. Jarus, M.Woodard, K. Marashi, A. Faza, J. Lin, P. Maheshwari, and S. Sedigh Sar-

vestani, “Survey on modeling and design of cyber-physical systems,” ACM Transac-

tions on Cyber-Physical Systems, under review

Overall, as a result of this research three peer-reviewed conference papers [9, 8, 14],

one book chapter [10], and four journal papers [11, 12, 15, 13] were published.

As mentioned, for demonstration of our proposed modeling approaches we will

perform case studies on smart grid and intelligent water distribution networks. The term

smart grid describes amodernized electrical grid that uses information and communications

technologies and computer-based remote control to improve the efficiency, reliability, and

sustainability of the production and distribution of electricity [16, 1]. Smart grids present

an emerging solution to problems caused by increasing electric power demand from aging

traditional power grids. Water distribution networks are constituents of another critical
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infrastructure that is considered an essential requirement of a modern city and a measure of

the standard of living of the community. The primary goal of the water distribution networks

is to provide a dependable source of potable water to the public. An intelligent water

distribution network is the modern counterpart of the traditional water networks that collects

and utilizes information on demand patterns, water quantity, and water quality in order to

improve dependability, guide maintenance efforts, and identify vulnerable areas requiring

fortification and/or monitoring. Despite difference in the physical commodities, smart

grids and intelligent water distribution networks are common in structural and topological

features, which enables the use of the same modeling approaches for both of these critical

infrastructure CPSs.

The basis for our proposed methods is observation of system’s behavior in a set of

specified states. Given the high dependability expected of critical infrastructures and their

large scale, fault injection studies on actual systems are infeasible, and organic failures are

few and far between. As such, we use simulation platforms for determining the behavior of

water and power systems in the presence of disruptions. Typical domain-specific simulation

environments for power and water systems are incapable of capturing the behavior of the

cyber infrastructure with the resolution required for analysis of CPSs. Therefore, we

integrated MATLAB with these domain-specific simulators, namely, EPANET [17] for

water distribution networks, and PSAT [18] for power grid systems, to enable holistic

cyber-physical simulation.

Simulation environments enable us to inject hardware and software faults and study

the behavior of the system in response to those disruptions. For each dependability attribute,

associated behaviors are captured and populated into a model. Figure 1.3 shows the scope

of our research and outlines our approach for modeling dependability aspects of CPSs.

In our reliability modeling [9, 10, 11], the set of plausible states are investigated

and it is determined through simulation whether each state leads to an operational or failed

system-level state. The results are then populated into a quantitative reliability model
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Cyber-Physical Critical Infrastructures

Intelligent Water 
Distribution 

Network

Smart Grid

Model Abstraction from 
System Descriptions

Cyber Infrastructure

Physical Infrastructure

Intelligent 
Transportation 

System

Nuclear Power 
Plant

. . .

Software Fault Injection

Hardware Fault Injection

Observation of System Indices 
and Component States

Simulation Environment

Quantitative Models

Reliability - Markov Chain Imbeddable Structure
Survivability - Survivable Behavior

Interdependency - Correlation and Causation

Figure 1.3. Our approach for dependability modeling of cyber-physical critical infrastruc-
tures.

using Markov chain imbeddable structure technique [19]. Unlike reliability modeling, our

survivability evaluation technique tends to capture temporal behavior of the system and

its capabilities in degraded states [12]. We quantify survivable behavior in terms of the

extent and rate of degradation of a measure showing the level to which essential services are

provided. Subsequently, components whose failure is the most detrimental to survivability

are identified and fortified.
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Similarly in our interdependency modeling [13], we observe sequence of events that

occur after injecting software and hardware faults and find fault propagation patterns using

correlation and causation analyses. We then quantify the interdependency using graph-

theoretical metrics [14]. With the interdependencies revealed, we are able to take advantage

of our dependability models in i) identifying weaknesses ii) determining how they can lead

to vulnerabilities and propagate to other sections, iii) being prepared for potential risks, iv)

making timely actions to mitigate the consequences of accidental failures and malicious

attacks, and v) devising effective recovery strategies. We investigate the use of machine

learning techniques in building a failure prediction tool, which can help system operators

to better understand the risks and perform timely preventive actions [13]. Our approach is

based on an artificial neural network trained with data collected from observed sequences

of failure and is able to predict imminent failures given the current state of the system.

To illustrate the application of our proposed approaches, we have performed case

studies on power and water systems. For the power domain, we chose well-studied IEEE

14-bus and 57-bus systems and supplied them with overlaid cyber infrastructure. Similarly

for the water domain, we selected a test system studied in the literature and supplied it with

intelligent control. Resulting CPSs do not include all of the existing cyber technologies

used in respective areas, but are representative of real-world systems and are adequate for

demonstration purposes.

Whatmakes this research original and different from existing studies is consideration

of cyber infrastructure as an error-prone entity with complex functionality, instead of

reducing its role to a simple protective device. The quantitative nature of our models and

the use of simulator-generated data, which alleviates the burden of procuring field data, are

other distinctive features of this work.

The intellectual merit of this research is advancing knowledge of the potential loss

of dependability due to the impairments originating in cyber and physical components,

propagated through unprotected channels, and escalated into catastrophes in interdependent
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critical infrastructures. The broader impact of this research is a reduction in service inter-

ruptions and increased tolerance against disruptions for critical infrastructure CPSs. This is

attained by providing models that enable engineers to better understand the consequences

of their design decisions.

The remainder of this document is organized as follows. Section 2 discusses de-

pendability attributes, summarizes related literature on modeling of CPS interdependency,

reliability, and survivability, and articulates the uniqueness of our research in the context

of the existing studies. Section 3 presents the methodology used in developing our models

and Section 4 presents the results obtained from application of the proposed approaches to

power and water systems. Section 5 outlines future research directions and concludes this

dissertation.
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2. BACKGROUND AND RELATEDWORK

Dependability is a non-functional attribute that captures the behavior of a system

during its life cycle. In the literature, dependability is defined as “the ability of a system to

avoid service failures that are more frequent and more severe than is acceptable” [20]. It is

an integrative concept that encompasses reliability, availability, safety, integrity, and main-

tainability. Each of these constituent attributes has a different definition and is meaningful

for specific applications. For example, availability is an appropriate metric where a short

outage of the service is negligible, but the system should be functional most of the time,

e.g., web services. On the other hand, reliability is a meaningful metric where intermittent

operation is not acceptable and the system should be continually functional, e.g., a power

delivery system.

As indicated in [21, 20], survivability and dependability are concepts that are es-

sentially equivalent in their goals and address similar threats with minor differences, thus

survivability is considered as a dependability-related attribute.

Reliability and availability, two important aspects of dependability, consider the

system state to be binary – operational or failed. This view is sometimes inadequate for

large-scale CPSs such as critical infrastructures, which are expected to deliver uninterrupted

service despite continual disturbances. It is expected that a large-scale system will spend

time in functionally degraded states, without interruption of essential services. Conse-

quently, additional non-functional attributes are required to characterize these degraded, yet

operational states.

Performability, introduced byMeyer [22], combines performance and availability to

evaluate system effectiveness, taking into account behavior due to failures. In other words,

a system can be in a fully functional state, a partially operational state with degraded perfor-

mance, or a failed state. Performability evaluates the expected performance over a duration
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composed of alternating operational/degraded/failed periods. Introducing performability as

a metric that combines availability (pessimistic, binary view of operation) and performance

(optimistic, neglects periods of inoperability) is an effort to attain a realistic view of the

system. Survivability is another non-functional attribute that was introduced with a similar

objective, and is used to characterize degraded operation. Survivability can be used to

describe degraded operation at any point after a disturbance occurs, regardless of whether

the disturbance is a fault tolerated by the system, or a failure that actually causes degrada-

tion. Another attribute closely related to survivability is Resilience, which is defined as the

ability of a system to bounce back from failure [23, 24], but its application is limited to the

recovery phase that follows a failure, not any period beforehand.

Among the dependability attributes, our focus is on reliability and survivability. We

have analyzed reliability as it is a meaningful and commonly used measure for evaluation of

the domains of our interest, i.e., the electric power delivery and water distribution networks.

Besides the features captured by reliability, critical infrastructure CPSs are expected to

autonomously defend against attacks, remediate the consequences of failure, and recover

in a timely manner. Classical dependability attributes such as reliability provide coarse-

grained characterization of these qualities, unlike survivability, whose very purpose is

to precisely characterize transient behavior after a disturbance. For this exact reason, it

has been used in several different domains including weapons systems engineering [25],

telecommunication services [26], information systems [21], and software engineering [27].

Reliability has a formal definition from which a quantitative definition was derived.

Reliability is a measure of the continuous delivery of correct service, and is formally

defined as “the ability of a system or component to perform its required functions under

stated conditions for a specified period of time” [28]. On the other hand, no standard

definition of survivability was identified at the time of writing this dissertation; perspectives

on the topic are diverse [29]. A concise qualitative definition presented by Heegaard and
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Trivedi [30] states that “Survivability is the system’s ability to continuously deliver services

in compliance with the given requirements in the presence of failures and other undesired

events.”

Survivability has been quantitatively defined for networked systems by the ANSI

T1A1.2 working group [31], using a domain-specific figure-of-merit (FoM), as shown in

Figure 2.1:

“Suppose a measure of interest M has the value m0 just before a failure occurs.

The survivability behavior can be depicted by the following attributes: ma is the

value of M just after the failure occurs; mu is the maximum difference between

the value of M and ma after the failure; mr is the restored value of M after some

time tr ; and tR is the time for the system to restore the value of m0.”

To better illustrate the differences between the aforementioned dependability-related

attributes, one operation and recovery cycle of a repairable system is shown in Figure 2.1.

Note that M(t) denotes an FoM chosen to represent the behavior or performance of the

system over time. According to the definitions provided, the scopes of reliability and

survivability, as well as other discussed attributes are indicated on Figure 2.1.

Reliability Survivability/

Performability

Resilience

Availability

M(t)

timet0 te td ts tf

m0

ma

mr

Original
Functional

State

Failure
Occurs

Recovery
Event

Triggered

Final
Functional

State

Figure 2.1. Durations of applicability for dependability-related metrics.
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In the remainder of this section, the studies closest to the scope of our research are

reviewed. Among the large amount of publications in the areas of our interest, we mostly

focused on those that have been applied or are applicable to critical infrastructure CPSs,

specifically the smart power grid. The related literature is organized as shown in Figure 2.2.

Dependability Analysis

Survivability

Quantitative
[30, 32, 33, 34, 35]

Qualitative
[30, 36]

Reliability

Purely Physical

Quantitative
[37, 38]

Qualitative
[39]

Cyber-Physical

Quantitative
[40, 41, 42, 43]

Qualitative
[44, 45]

Interdependencies

Failure Prediction
[46, 47]

Fault Propagation
[48]

Quantification
[49, 50, 51, 52, 53]

Modeling/Analysis
[49, 54]

Identification
[48, 55, 56]

Figure 2.2. Organization of the related literature along with examples of each category.

2.1. RELATEDWORK ON CPS INTERDEPENDENCY

There is an extensive literature devoted to the analysis of interdependency and its

effects. The interdependence can be viewed as the relationships among the components

of a single system [57], or among services provided by different systems [48, 58]. In the
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area of critical infrastructure, Rinaldi et al. have provided an ontology for understanding

interdependence and classified its types into physical, cyber, geographic, and logical [59].

Similar classifications are presented in other studies, as enumerated in [60].

Researchers have used different approaches to identify interdependence among com-

ponents, systems, or operations. In [48], the interdependencies between electrical infras-

tructure and the associated information infrastructure are qualitatively investigated and the

pattern of fault propagation is explored. There are also examples of using correlationmetrics

for studying the interdependence. In [55], Pearson’s correlation metric is used to investigate

dependence among critical infrastructures after the World Trade Center attack. In another

study [56], the time-series analysis is utilized to reveal interdependencies across critical

infrastructures from post-event restoration curves of February 2010 Chile earthquake.

Models of interdependency are presented using a variety of techniques such as

topology-based and flow-basedmethods, Bayesian networks, and Petri nets. In [49], Beccuti

et al. proposed an approach using stochastic Petri nets for modeling the operation of

the physical and cyber networks in electric power delivery systems. They subsequently

measured the effect of disruptions of one network on the other (e.g., as a result of a

cyber attack) in terms of a number of domain-specific performance indices. The study

presented in [54] is an example of the application of dynamicBayesian networks to analyzing

interdependencies of critical infrastructures.

Another group of studies are devoted to quantification of interdependencies. Casal-

icchio and Galli have presented a number of quantitative metrics for interdependencies

in critical infrastructures [50]. Studies presented in [51, 52, 53] use topological metrics

(e.g., connectivity and size of giant component) to quantify interdependency in a network;

however, for the case of power grids, Verma et al. argue that topological measures that are

not context-aware may underestimate vulnerability of the system [61]. Additionally in [62],

a comparison between blackout size and topological measures was performed for several

power grid cases and only a mild correlation was observed.
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As mentioned earlier, an important result of interdependency analysis is to predict

the risk of failures for components and systems, prioritize preventive maintenance, and

perform timely actions to mitigate effects of disruptions. In [46], statistical machine

learning techniques were used to predict failure of feeder lines in boroughs of New York

City over a three-month period and showed an acceptable accuracy of 75%. Additional

results on application of the proposed methods are presented in [47].

2.2. RELATEDWORK ON CPS RELIABILITY

Many researchers have studied the reliability of purely physical systems. It is

important to clarify that there are abundant studies on analysis of critical infrastructures

providing measures of reliability, however, they do not present quantitative models based on

the formal definitions. Focus of this section is on reviewing the studies that present models

only.

One classical analysis approach is the employment of Monte Carlo simulations. An

example is [63], where an analytical model populated using a Monte Carlo simulation is

presented for evaluating the reliability indices of power distribution systems. Fault tree

analysis, another popular tool, is used in [37] for reliability evaluation of power systems.

Bayesian networks approach is also a useful probabilistic tool for system reliability assess-

ment that offers a transparent modeling scheme. It is used in [64], where a framework for

system reliability assessment is presented and an algorithm is introduced in order to address

the issue of exponential growth of the system states.

Graph-theoretical approaches have also been of interest to researchers for many

modeling problems, as in [38], where authors have modeled the reliability of power grids.

Their work aims at finding the most vulnerable nodes and edges with respect to attacks and

accidental failures. They have formulated the reliability model considering both electrical

indices (impedance of transmission lines) and reliability indices (probability of failure in

network components).
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The aforementioned studies do not examine the role of the cyber network. The

reliability analysis techniques utilized in these studies are only applicable to purely physical

system and may not be directly used for CPSs, which have heterogeneity and cyber-physical

interdependencies [65].

In the last decade, extensive studies have been performed to determine the impacts

of communication, information network, and computers on critical infrastructure CPSs.

In [45], the author outlines at a very high-level, a mathematical framework for quantitative

reliability analysis of cyber-physical power grids and compares potential approaches for

accurate reliability modeling. The study presented in [66] discusses some of the complica-

tions due to the addition of the cyber layer to the power systems and investigates possibilities

for transferring and utilizing the high volume of data gathered from numerous measure-

ment devices effectively. Another study presented in [40] uses a pseudo-sequential Monte

Carlo simulation and provides a tool for reliability assessment of smart power distribution

systems considering failure of the communication infrastructure and short-term variations

in distributed generation sites. An example of applying graph-theoretical methods to cyber-

physical environments is [67], where the best topological configuration in terms of system

reliability is investigated.

Generally, due to the diversity of the technologies that are nowadays being incorpo-

rated in a CPS, many of the recent reliability analyses focus on specific subsystems, e.g.,

the measurement subsystem [68] and communications [69].

In contrast, a number of studies have taken a holistic view of reliability for CPSs,

taking consequences of disruptions in the cyber network into account to varying extents. For

instance, [41] combines fault tree analysis, partial state space evaluation, and simulations

to propose a quantitative reliability model for smart grids. The study focuses on reducing

computational intensity and complexity of mathematical calculations by state merging

and eliminating the states representing rare contingencies. This work however, is in an

embryonic state and no tangible quantitative result is presented on a specific example.
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Two other closely related studies are [42] and [43] that quantitatively evaluate the

reliability of smart grids considering respectively direct and indirect interdependencies

between power elements and cyber control devices. Shortcomings of [42, 43] are the

consideration of limited and simplistic functions for the cyber network and overlooking

interdependencies with intermediary events.

2.3. RELATEDWORK ON CPS SURVIVABILITY

Comparison of survivability evaluation techniques is complicated by the lack of

a common definition for this attribute. Knight et al. [36] has presented a survivability

definition and model based on a service state-transition graph constructed from a six-

tuple of service specification levels, service value factors, reachable environmental states,

relative service values, set of valid transitions, and service probabilities. Ma [32] similarly

quantifies survivability as a four-tuple of resistance, resilience, persistence, and failure

count. In [32], resistance refers to the ability to withstand an attack, resilience refers to

the mean recovery time from a catastrophic failure, persistence is the ability to maintain

or exceed the minimal threshold of required functionality, and failure count describes the

number of failures encountered over the duration of observation. In both of these studies

the individual attributes are well-defined, but disjoint, and as such, none of them lead to a

practical approach for quantitative evaluation of survivability.

Menasché et al. [33] have proposed an enhancement to the well-known SAIDI1met-

ric. Their measure is denoted as ESAIDI and applied to evaluation of survivability aspects

of a smart grid. ESAIDI is intended to facilitate analysis of the consequences of failures in

distribution automation in the power grid. Avritzer et al. [70] utilize the same approach and

further extend the model to account for disruptions in the communication infrastructure.

This work was later combined with power flow analysis to create a survivability model that

facilitates optimal design for the automation system of a smart grid [71]. A subsequent

1System average interruption duration index
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extension of the work [72] allowed for concurrent failures in the power system. All of these

approaches [33, 70, 71, 72] use time-to-recovery as a measure of survivability; however,

time-to-recovery spans both the failure and recovery processes, and as such, cannot be used

to separately evaluate system during each of these two phases.

Alobaidi et al. [35] evaluate the survivability of smart grids by studying the rela-

tionship between system condition (in terms of the number of functional components) and

system capacity (ability to provide power to customers). The authors also propose and

demonstrate recovery strategies intended to maximize survivability. The limitation of the

proposed approach is that it is applicable only to power systems. In contrast, the work we

present can be applied to any networked system with a known topology.

Chopade and Bikdash [34] present amodel for survivability of a smart grid, based on

graph-theoretic measures such as degree distribution and clustering coefficient. All buses

(vertices) and lines (edges) are assumed to be identical. This is an unrealistic assumption

given that reliability and other attributes of buses and lines can vary significantly in a power

grid. In a similar vein, [73] evaluates the survivability ofmobile ad hoc networks (MANETs)

as the probability that all active nodes are k-connected to the network. This probability is

determined using a semi-Markov model that captures state transitions due to node failures

and malicious attacks. The connectedness of MANETs is a representative measure of their

functionality; thus, the probability of being k-connected can reflect survivability. The

proposed method is ill-suited to evaluation of any system expected to provide services

beyond connectivity.

Avritzer et al. [29] survey recent approaches to survivability evaluation of water, gas,

and electricity infrastructures. Stochastic hybrid models such as fluid stochastic Petri nets,

hybrid Petri nets, and piece-wise deterministic Markov processes, as well as graph-theoretic

approaches, are among the methods described.
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2.4. THE DISTINCTION OF THIS RESEARCH

In spite of existing literature on dependability modeling of critical infrastructure

CPSs, there are critical gaps that we seek to fill in this research. The missing parts of

the literature, which are addressed in this dissertation are (i) quantitative dependability

modeling, and (ii) consideration of cyber-physical interdependencies and analyzing the

potential risk of increasing the failure propagation channels by deploying computational

and communication technologies. An important feature of this work is consideration of

the role of cyber infrastructure as a decision-making entity and not simply tasked with

monitoring and protection. Another distinction is generality of the proposed approaches,

which makes them applicable to multiple critical infrastructure domains.
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3. METHODOLOGY

The focus of this research is on developing quantitative system-level reliability and

survivability models for CPSs that accurately reflect the operation (and failure) of intelligent

decision support and control, the physical operation, and the interdependency between the

two. This work presents integrated quantitative models that capture impairments in both

physical and cyber infrastructures. We also present a scheme of fault propagation in CPSs to

identify the components that need to be reinforced in order to impede a cascade of failures.

In the remainder of this section, our approaches for identification and quantification

of interdependencies, as well as analyses on reliability and survivability are described. It

is worth mentioning that in the following discussions, we make assumptions specific to the

smart grid domain (e.g., regarding the components and their roles); however, the approach

is applicable to other domains.

3.1. ANALYSIS OF INTERDEPENDENCIES

Dependency is a linkage between two components, through which the state of one

component influences or is correlated to the state of the other. In this case, the relationship

is usually unidirectional, i.e., component i depends on j, but j does not depend on i. As an

example, correct operation of a software that determines control commands for actuators

in a robotic system is contingent on correct data from a sensor that detects surrounding

objects. In this example, the software depends on the sensor, but the sensor does not depend

on the software, as it can continue its operation regardless of the state of the software.

CPSs typically have an interconnected topology in which a bidirectional relationship

may exist between the states of any given pair of components. Interdependency is a bidi-

rectional relationship between two components through which the state of each component

influences or is correlated to the state of the other. In other words, component i depends
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on j through a number of links, and j likewise depends on i through other links. More

generally, two components are known to be interdependent when each is dependent on the

other.

3.1.1. Representation of Interdependencies. For representation of interdepen-

dencies in a CPS, we use dependency graph that is a two-level weighted directed graph in

which an edge exists from node i to node j if and only if the state of component i impacts,

in one time step, the state of component j. We select time step small enough that we can

assume impairment of a component propagates to the others through direct links only, not

through multiple intermediate links.

Depending on the source and destination of an edge, it can represent one of four types

of dependency, namely, physical-physical, physical-cyber, cyber-physical, and cyber-cyber.

Note that in this notation, s1 − s2 dependence represents a relation in which components

of subsystem 1 (s1) influence components of subsystem 2 (s2). As an example, Figure 3.1

illustrates the dependency graph for a hypothetical CPS.

In Figure 3.1, the bottom plane encompasses components of the physical system

and the top plane is representative of the cyber infrastructure that monitors and controls

the underlying physical processes. The weights shown on the edges represent the extent

of dependency, denoted as the degree of influence and are in the range of [0, 1], where a

0 means that there is no functional influence from a component on another, and a 1 is the

case where the state of a component causes maximal degradation to the state of another,

i.e., makes it unable to operate.

For mathematical representation, we introduce direct influence matrix, denoted as

D =
[
di j

]
∈ [0, 1]n×n, which is in fact the adjacency matrix of the dependency graph. di j

represents the degree of influence that component i exerts on component j and n is the total

number of components in the system. Note that the entries on the diagonal of D should

always equal zero, as a faulty state of a component “propagates” to itself immediately, not

after one time step.
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Figure 3.1. Dependency graph of a hypothetical CPS.

3.1.2. Identification of Interdependencies. Interdependency between components

can be due to causality or simply a correlation. In a causation relationship, state of a com-

ponent is responsible for that of another. On the other hand, state of two components are

correlated when they have a statistical relationship, whether causal or not. Depending on

the purpose of interdependency analysis, correlation or causation relationships may be of

interest. In this section, we present two approaches for capturing correlation and causality,

respectively, from observations of failure sequences corresponding to a set of failure cases.

A failure case is composed of a set of distinct components whose failure leads to

disturbance to the system. These initial disruptions, exerted to the system at time te, may

propagate to other components through dependency links, resulting in a failure sequence.

Let Fk(t) represent the set of components that experience degradation during failure case k

at time t.

In our approach, a set of failure cases are selected, and subsequent failures are

observed. Dependency links are then extracted by analyzing these sequences. Note that a

larger set of failure cases, and consequently, more observations will improve the accuracy

of the interdependency model.
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3.1.2.1. Correlation analysis. Statistical dependence between random variables

that represent state of components is a potential tool for measuring interdependence. Con-

ventional measures of dependence, such as Pearson’s correlation coefficient, consider only

a limited class of association patterns. More complicated correlation measures are able to

detect non-linear relationships as well.

For each component we define a state variable, which is a random variable that

characterizes the state of the component and subsequently, determine correlation between

these random variables. Let Xi(t) denote the state variable of component i at time t. For

analysis of dependency of component j on component i, Pearson’s correlation coefficient

(PCC) between Xi(t) and X j(t) is calculated, as shown in Equation (3.1).

rXiXj =
cov(Xi, X j)

σXiσXj

(3.1)

Where cov(.) is the covariance and σ is the standard deviation of a state variable. As ex-

plained in Section 3.1.1, we are interested in finding di j values, which represent dependence

in one time step. Furthermore, direction of relationship (increasing or decreasing) is not of

our interest. Therefore, we use PCCXiXj = |rXi(t)Xj (t+1) | to capture the direct dependency.

Shortcoming of PCC is that it only detects linear relationships, while an impaired

componentmay result in disturbances, not necessarily linear, in another component. Among

correlation coefficients introduced for detecting nonlinear relationships, we selected ran-

domized dependence coefficient (RDC) [74], which has a low computational complexity

and shows a good performance in comparison with similar methods. Readers are referred

to [74] for more information on RDC. In this document, we use RDCXiXj notation to repre-

sent RDC correlation between state variables Xi and X j . Note that RDC has two parameters

associated with it, namely, sample size and number of random features, which can be set

using guidelines provided in [74].
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For identification of interdependencies we can compute mean value of correlation

coefficients (either PCC or RDC) between Xi and X j over all failure cases and use it as an

estimator for di j .

3.1.2.2. Causation analysis. In general, a causal relationship is harder to establish

than correlation, and hence, fewer interdependency studies have investigated causality. We

use a method inspired by the interaction model introduced in [75], to identify causation

relationships and estimate D. The work presented in [75], determines the interactions

among components of a power grid, finds key dependency links, and provides strategies for

mitigating cascading failures. In this section, we present a similar method that is generalized

to be applicable for cyber-physical systems. Specifically, we have extended the method to

incorporate heterogeneous components, control the sensitivity in detecting causality, and

to account for dependency relationships between degraded states rather than binary states.

Consider a system composed of n components, for which m failure cases are ob-

served. From the set of all failure sequences, i.e., Fk(t), ∀k, we can construct matrix

W =
[
wi j

]
∈ Zn×n, where wi j shows the number of times component j has degraded one

time step after degradation of component i over all failure cases. Components in the set

Fk(t − 1) whose states are known to be the dominant causes for degradation of component

j in Fk(t) are identified using Equation (3.2).

Hk, j(t) = { i | i ∈ Fk(t − 1),wi j ≥ η max
l∈Fk (t−1)

wl j } (3.2)

In Equation (3.2), η controls the sensitivity in detecting the causative relationships, and is set

to 0.9 in thiswork. MatrixE =
[
ei j

]
∈ Zn×n is constructed as shown inEquation (3.3), where

ei j is the number of times degradation of component i caused degradation of component j.

E =
[
ei j

]
ei j =

m∑
k=1

∑
t>0

card({ (k, t) | i ∈ Hk, j(t) }) (3.3)
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In Equation (3.3), card(.) denotes the cardinality of a set. Assuming that fi is the total

number of times component i experiences degradation over all failure cases,
ei j

fi
estimates

the likelihood of component i having a causative relationship with component j, i.e., the

degree to which degradation of component i “causes” degradation in component j.

3.1.3. Quantification of Interdependencies. Assuming that the direct influence

matrix D is known, we can explore dependency of components in multiple time steps.

Specifically, we are interested in the k th-level influence matrix, which represents the influ-

ence that components have on each other over exactly k time steps – in contrast to D, where

the influence exerted over a single time step is captured. To this end, we first normalize D

by dividing it by n to ensure that
n∑

j=1
di j ≤ 1. Matrix

(
1
nD

) k
represents k th-level influence

matrix. The total influence matrix, T, can be computed as shown in Equation (3.4).

T =
[
ti j

]
= V ◦

∞∑
k=1

(
1
n

D
) k

V = [vi j]

vi j =


n + 1

n
, i , j;

n + 1
n − 1

, i = j .

, 1 ≤ i, j ≤ n (3.4)

In Equation (3.4), ◦ represents the entrywise product and ti j shows the degree by which

component j can be influenced by a failure in component i in any number of time steps,

which reveals indirect influences. Note that the matrix V is used to scale ti j to [0, 1] range.

In Equations (3.5) and (3.6), we define τi, and ν j , which are respectively theweighted

out-degree of node i and weighted in-degree of node j, in order to evaluate the extent of

influence components exert on or receive from other components.

τi =
1
n

n∑
j=1

ti j (3.5)

ν j =
1
n

n∑
i=1

ti j (3.6)
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We will also measure the average dependence that components of subsystem s1 have on

components of subsystem s2. For this purpose, γs1−s2 is calculated as shown in Equa-

tion (3.7).

γs1−s2 =
1

ns1ns2

∑
i∈s1

∑
j∈s2

ti j (3.7)

In Equation (3.7), ns1 and ns2 are the number of elements in subsystems s1 and s2, respec-

tively, and ns1 + ns2 = n. Note that τ, ν, and γs1−s2 are all normalized to the [0, 1] range so

that systems of different sizes can be easily compared.

3.2. RELIABILITY MODELING

A prerequisite for reliability modeling is to clearly define system-level failure. As-

suming that such definition is provided, we can represent the system reliability as the prob-

ability of being in one of the system-level operational states. Our approach uses Markov

chain imbeddable structure technique [19], which is an analytical method for reliability

evaluation of systems with components whose reliabilities are known.

3.2.1. System State. Ideally, all components of a system are in a fully functional

state, however, this is not always the case. Each component may make a transition to

another degraded state due to an internal or external disruption. Let Ci denote the set of

states for component i with a cardinality of Ni. For a system composed of n components,

system state can be represented by vector Φ = [φi], where φi ∈ Ci, 1 ≤ i ≤ n. The system

can be in one of N =
∏n

i=1 Ni different states, hence, the system state space is represented

by S = {Φ j | 1 ≤ j ≤ N }. Each of these N states can be classified as “operational” or

“failed,” as represented by the vectorU = [u j], where u j is determined as shown in Equation

(3.8).

u j =


1, Φ j is an operational state;

0, otherwise.
, 1 ≤ j ≤ N (3.8)
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Assuming that Φ(t) is the system state at time t, the state distribution vector at time t is

Π(t) = [π j(t)], where π j(t) = Pr{Φ(t) = Φ j}, 1 ≤ j ≤ N .

3.2.2. State Transitions. Starting from an initial state at t = 0, captured by Π(0),

the system can make transitions to other states with specific probabilities. These tran-

sition probabilities are in fact product terms composed of reliabilities and unreliabilities

of the components. Due to the scope of reliability, state transitions are only considered

until the system falls into a failed state, i.e., transitions in the repair phase are not incor-

porated. Let Λ = [λkl] represent the transition probability matrix of the system, where

λkl = Pr{transition from state k to state l}, 1 ≤ k, l ≤ N . Similarly let Λi denote the state

transition based on operation of component i. With this notation, there exist n transi-

tion probability matrices which collectively determine the ultimate state distribution of the

system.

3.2.3. Markov Chain Imbeddable Structure. Assuming that the matrix U is

known through investigation of all states in S, the overall reliability of the system can

be expressed as shown in Equation (3.9). It can be seen that R will in the form of sum

of products, where each term represents the probability of being in one of the operational

states.

R = Π(0)

(
n∏

i=1
Λi

)
UT (3.9)

Computational complexity for developing amodel usingMarkov chain imbeddable structure

technique is high; however, elimination of implausible states and use of data structures that

fit this application (e.g., sparse matrices for Λ) will drastically mitigate the complexity. In

a previous work [76], state aggregation as a complexity reduction method for reliability

modeling has been investigated and found to be unnecessary for analysis of systems smaller

than a specific size.
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3.3. SURVIVABILITY MODELING

The high availability required in critical infrastructures makes it infeasible to bring

down the system for fault injection studies. Detailed reports of real-world failures are few

and far between, and many of the potential failure scenarios have never actually occurred

in practice, necessitating the use of simulation tools. No simulation environment perfectly

captures the characteristics of real-world entities; however, simulation does provide a good

understanding of system behavior at minimal cost. This section introduces a survivability

evaluation for CPSs, with an approach that can rely upon data from simulation, laboratory

and/or field observation, and historical data about failures. We also present a method for

identifying components whose failure is the most detrimental to survivability.

3.3.1. Survivability Attributes. Our survivability evaluation approach relies upon

identification of a domain-specific FoM that is indicative of the extent to which one or more

essential services are provided. In [31], graceful degradation and failure resistance are

mentioned as two attributes essential to survivability. In defining metrics for survivability,

we describe these attributes (with reference to Figure 2.1) as follows:

• Graceful degradation is achieved when the rate of degradation,
���dM(t)

dt

���, after a

disturbance is considered to be slow, in the context of the time scale of the system

domain.

• Failure resistance indicates that the extent of degradation, |M(td) − M(te)|, after a

disturbance, i.e., the loss in FoM value incurred between the start of the disturbance

and initiation of recovery, leaves the system functionality at an acceptable level.

The FoM is domain-specific, as it is intended to capture the extent to which a system

is delivering essential services. In this work, we consider the FoM to represent a single

service. Our survivability evaluation approach can be used to represent more complex

behavior by defining an FoM that is a composite, e.g., a weighted average, of metrics that

reflect different essential services.
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3.3.2. Evaluation of Survivability. Graceful degradation and failure resistance

are two attributes that are pivotal to our proposed approach to survivability evaluation and

component importance analysis. We evaluate survivability through the following actions,

carried out consecutively, seeking to quantify these attributes.

1. A system-specific FoM and a set of representative failure cases are selected to evaluate

the system.

2. Each failure case is observed or simulated, and the value of the FoM is monitored

over an interval that begins with a fully functional system, includes a disruption that

causes degradation to the FoM, and continues through initiation of recovery efforts.

3. The rate and extent, respectively, of degradation of the FoM are calculated from the

log of FoM values.

In each failure case, faults are injected to a set of distinct components at time te (as

in Figure 2.1). Let Fk(t) represent the set of components failed at time t during failure

case k. We consider component-level operation to be binary, i.e., a component is either

fully functional or has failed altogether. This assumption is justified where the system

representation is fine-grained and the contribution of a single component to delivery of an

essential service cannot be further decomposed.

Exhaustive examination of failure cases is infeasible for large complex systems.

On the other hand, omission of failure cases with catastrophic consequences could render

survivability evaluation meaningless. This state space explosion problem is common in

any type of system evaluation and its resolution is not within the scope of this dissertation.

In this work we will assume that we have a predefined set of failure cases as the basis of

survivability evaluation.

Suppose we have a system with n components and m failure cases that have been

designated as the basis of survivability evaluation. Each failure case is observed or sim-

ulated for a duration that begins with a fully functional system where all components are
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operational, continues through the disturbance caused by failure of the components inFk(te),

and ends when recovery efforts are initiated. In other words, observation or simulation of

the failure case k produces a record of the FoM, Mk(t), for t0 ≤ t ≤ td , where t0 and td are

as defined in Figure 2.1. It is worth noting that the failures of the components initiating

the disturbance at te, Fk(te), can lead to failures of other components. This larger set of

components, denoted as Gk , includes any component whose failure is observed between te

and td .

Survivability analysis requires that the Mk(t) be examined to determine the extent

and rate of degradation. In terms of Figure 2.1, we seek to determine the full extent of

degradation, denoted as δk , incurred between the instant of disturbance (te) and initiation

of recovery (td). Over the same period, the most rapid rate of degradation is denoted as

ρk . Equations (3.10) and (3.11), respectively, reflect these attributes. The survivability of a

system is determined by aggregating the extent and rate of degradation for all failure cases.

δk = max
te≤t≤td

|Mk(t0) − Mk(t)| (3.10)

ρk = max
te≤t≤td

���dMk(t)
dt

��� (3.11)

Visualization of the FoM, as in Figure 3.2, facilitates evaluation of survivability. For each

failure case, a degradation point, (ρk, δk), is used to calculate the degradation index, defined

as the distance from the degradation point to the origin. The single degradation point (failure

case) shown in Figure 3.2 has ρ = 0.25, δ = 0.6, and a degradation index of 0.65. The

degradation index facilitates comparison of failure cases and can be averaged across all

failure cases to calculate a single survivability index for the system.

Creating a two-dimensional color intensity histogram of the degradation index, over

all failure cases considered, can facilitate identification of clusters indicative of failure cases

that are similar in consequence. In an ideal system, only one cluster would be evident, near
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Figure 3.2. Rate and extent of FoM degradation, (ρ, δ), for a failure case.

the origin, in the lower left corner of the plot. This cluster is characterized by slow and

minimal degradation of the system. Clusters outside of this area represent failure cases that

merit further investigation, as they reflect non-survivable behavior.

3.3.3. Component Importance Analysis. Evaluation of survivability can illumi-

nate weaknesses in a system. Specifically, our method can facilitate identification of

components most in need of fortification, i.e., importance analysis, where the measure of

importance is the contribution of a component to survivability. We propose two criteria for

ranking components, namely, criticality and fragility.

The criticality of a component is determined by the consequences of its failure on

service degradation, evaluated over all failure cases in which the component experiences

failure. Recall that associated with each failure case k is a set, Gk , that encompasses all

components observed to fail during the failure case. As described in Section 3.3.2, the

highest degradation incurred during a given failure case k is denoted as δk . To determine

the criticality of component i, we need to identify every failure case in which it was observed

to fail, the set of these cases, Qi = { k | i ∈ Gk, 1 ≤ k ≤ m }. Additionally, let t(k)i denote the

time at which component i has failed during failure case k. The criticality of a component

is composed of three terms: The first term normalizes the extent of degradation to rank
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the severity of the failure case. The second term normalizes the rate of degradation at the

instant of component i’s failure during failure case k. The third term normalizes the second

derivative of the FoM at the instant of component i’s failure during failure case k. We

consider this term to be indicative of the immediate impact of this specific component’s

failure during the failure case. The product is calculated and summed across all failure cases

involving component i and divided by m, the total number of failure cases. The criticality

of component i, αi, is determined as shown in Equation (3.12).

αi =
1
m

∑
k∈Qi

©­­­­­­­­­­«

first term︷   ︸︸   ︷
δk

max
1≤l≤m

δl
·

second term︷         ︸︸         ︷
dMk(t)

dt

���
t=t(k)i

max∀t

dMk(t)
dt

·

third term︷           ︸︸           ︷
d2Mk(t)

dt2

���
t=t(k)i

max∀t

d2Mk(t)
dt2

ª®®®®®®®®®®¬
(3.12)

A less precise measure of the importance of a component is provided by fragility, which

reflects the fraction of observed or simulated failure cases inwhich the component has failed.

The fragility of component i, denoted as βi , can be determined as shown in Equation (3.13),

where m is the total number of failure cases.

βi =
|Qi |

m
(3.13)

Either criticality or fragility can be used to determine the priority of a component for hard-

ening efforts. Given that fragility is calculated without consideration of service degradation

(as represented by the FoM), its use is recommended only in cases where failure information

does not involve the exact time when each component failed.
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3.4. PREDICTION OF FAILURE SEQUENCES

Upon availability of sufficient failure data and knowledge on interdependency among

the components of a system, a prediction tool may be used to detect catastrophic failures in

their incipient stage and enable the supervisory control team to perform timely preventive

actions and make appropriate decisions to mitigate the consequences. For this purpose,

powerful and reliable tools are needed that are capable of identifying the components (or

sections of the system) that are prone to failure as a result of a disruptive event. Furthermore,

such tools are expected to respond in real-time and provide a prioritization of the components

that are in risk, based on their failure likelihood and importance of their roles in the system.

3.4.1. Preparation of the Failure Data. Assuming that failure data of a system is

available, we need to convert them into a data set composed of several input/output entries

to be used for training the predictor tool. Figure 3.3 shows an example of a failure sequence

for a hypothetical system with eight components. In this failure case, the system initially

has faults in components 2 and 6. The faulty state is propagated to other components and

affects component 1, then components 4 and 8, and finally component 5. We transform this

failure case into four entries of the data set used for training the predictor tool, as shown

in the right of Figure 3.3. Each entry of the data set has two fields: i) an array of the state

variables at a time instant and ii) a list of components that will degrade at the next time step.

3.4.2. Artificial Neural Networks Approach. The problem of predicting a se-

quence of events is closely related to classification and sequence labeling in time series

analysis. In this work, we transform the problem of sequence prediction to a multi-class

classification and investigate the use of artificial neural networks (ANN) for tackling this

problem. Reports show that the ANN is a promised tool for classification problems [77].

In a multi-class classification problem, a given instance is to be associated with a num-

ber of classes. The classification can also be probabilistic, where the classifier provides
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Figure 3.3. Transformation of a failure sequence into four entries of the data set used for
training the failure prediction algorithm.

probability distribution of a given instance belonging to the existing classes. Some of the

popular classification problems are speech recognition, pattern recognition, and several

other applications in medical imaging.

For a system with n components, let X(t) = (X1(t), X2(t), . . . , Xn(t)) denote the input

array to the ANN, where Xi(t) is the state variable of component i at the time instant t.

X(t) is fed to a multi-layer fully connected ANN with the architecture shown in Figure 3.4.

The Output layer provides Y = (Y1,Y2, . . . ,Yn), where Yi represents the probability that

component i fails as a result of disruption specified by the given state variables in the input.

Input layer
(n nodes)

Output layer
(n nodes)

Hidden layer 1
(128 nodes)

∙∙∙

State 
variables

∙∙∙

Hidden layer 2
(64 nodes) Hidden layer 3

(32 nodes)
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(64 nodes)

Hidden layer 5
(128 nodes)
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X1

X2

X3

Xn

∙∙∙ ∙∙∙

∙∙∙

Failure 
prediction

Y1

Y2

Y3

Yn

Figure 3.4. Architecture of the multi-layer fully connected ANN used for failure prediction.
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In the nodes of the hidden layers, we have used the softplus activation function [78],

which is a differentiable and smooth version of the well-known rectifier function, to in-

troduce nonlinearity to the ANN. The optimizer used for updating weights of the ANN is

Adam, as introduced in [79] and the loss function is found by calculating the cross entropy

between sigmoid of the failure predictions and that of the actual failures. In order to pre-

vent overfitting during the training process, we utilized L2 regularization method, which

penalizes the network for large weights by increasing the loss.

The choice of ANN architecture is generally based on heuristic rules and is only

for the sake of demonstrating applicability of the method. The architecture described here

has shown an excellent performance on the test cases investigated in Section 4.5; however,

depending on the type and size of the system under test, adjustments may be required.

The ANN is trained using a data set generated by simulating a number of failure

cases or data from historical information of previous disruptions. In either case, each entry

of the data set should include state variable of the components at the time of disruptive

event (input to the ANN), linked with the list of components affected consequently (used as

ground truth for optimization during training and final verification).

Depending on the type of the system, preventive actions may be prioritized based

on different parameters. Examples of prioritization parameters are the predicted failure

probability of each component (provided by the neural network), importance of each com-

ponent in providing essential services, and consequences of failure of each component on

other components (e.g., weighted out-degree explained in Section 3.1.3) as well as on the

operation of the system (e.g., in terms of loss of dependability [12]).

3.4.3. Evaluation of Predictive Performance. In order to evaluate the effective-

ness of the proposed ANN in predicting failures, we should use metrics that capture the

predictive performance. To this end, we take advantage of the available metrics in the areas

of information retrieval and classification, namely, precision, recall, and F1 score.
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Precision shows the ratio of successful failure detections over the total detections.

The precision has a shortcoming in evaluating the performance when the ANN correctly

predicts only a portion of the failed components, but fails to detect the remainder. Recall,

also known as sensitivity, is the ratio of the failed components detected by the ANN to the

total number of failures. The shortcoming of recall is that its value is large if the ANN

simply predicts that all of the components will fail. Therefore, no single metric is enough

for evaluating the performance correctly. F1 score has been introduced to solve this issue

by combining precision and recall into a single metric by taking their harmonic mean.

Equation (3.14) shows how these metrics are calculated.

Precision =
tp

tp + f p

Recall =
tp

tp + f n

F1 score = 2 ×
Precision × Recall
Precision + Recall

(3.14)

In Equation (3.14), tp, tn, f p, and f n represent the numbers of true positives, true negatives,

false positives, and false negatives, respectively. To better understand these terms, let us

consider a commonly used example of binary classification. In this example the task of the

classifier is to determine whether a prisoner is guilty or innocent. A true positive is the case

where the prisoner is actually guilty and is correctly detected as guilty. If the guilty prisoner

is freed from the jail, it is considered a false negative. On the other hand, convicting an

innocent person is an example of false positive and freeing an innocent is a true negative.
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4. RESULTS AND ANALYSIS

In this section, we first present and discuss the results obtained by applying our

proposed approaches, described in Section 3, to smart power grid systems. We then explore

applicability of the same approaches to other critical infrastructure CPSs, as a specific

example, illustrate reliability modeling for an intelligent water distribution network.

4.1. CASE STUDY ON SMART GRIDS

For our case study, we have constructed two smart grids based on test systems

well-studied in power engineering literature, namely, the IEEE 14- and IEEE 57-bus test

systems [80]. To better understand the structure of a power delivery system and recognize

threats to its dependability, we review common sources of failure in the domain of smart

grids. The IEEE 14-bus system has been included in the interest of brevity and clarity and

the IEEE 57-bus system demonstrates the scalability of our methods.

4.1.1. Potential Sources of Failure in Smart Grids. Rapid developments in gen-

eration and consumption of power are causing increasing stress on distribution networks.

Among other benefits, cyber control brings more efficient use of the limited capacity avail-

able; however, each additional component used in this cyber control is a potential source

of failure, and the net effect of this increased vulnerability and complexity on the overall

reliability of the grid requires careful examination. A comprehensive dependability anal-

ysis should be able to consider every potential source of failure and reflect its effect on

the overall system state. The remainder of this section enumerates the main categories of

components that comprise a smart grid and can affect its operation by causing or increasing

the likelihood of failure. The sections of a smart grid along with respective examples of

potential failures are depicted in Figure 4.1.
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Figure 4.1. Major sources of failure in a smart grid, by category.

4.1.1.1. Electrical infrastructure. Electric delivery systems are primarily com-

posed of current-carrying components, including generators and transmission lines. In

several studies, transmission lines are assumed to be the main sources of vulnerability,

since generation units and similar components typically have enough backup to compensate

for their failures [81, 82]. With this assumption, reliability analysis of a power grid usually

entails tripping transmission lines, one-at-a-time, and inspecting the resulting state of the

system. This process is also referred to as N − 1 contingency analysis.

4.1.1.2. Control devices. Power flow control has traditionally relied on generator

control and voltage regulation by means of phase-shifting transformers. These techniques

are often found to be ineffective, as they rely on a permanently fixed configuration and

lack the adaptability required in smart grids. Flexible AC transmission system (FACTS)

is a technological development in electrical power systems that is based on the incorpo-

ration of power electronic devices for controlling the power system. Early developments

of the FACTS technology were in power electronic versions of the phase-shifting trans-

formers. Unified power flow controller, static compensator, and static synchronous series

compensator are some examples of FACTS devices.
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4.1.1.3. Communications. One important feature of smart grids is the integration

of high-speed and reliable data communication networks to manage the complex power

grid effectively and intelligently. The dependability of the power management is hence

contingent on a reliable communication backbone. Various communications technologies

are utilized at different sections of smart grids. Figure 4.2 depicts communication links in

a conceptual smart grid, categorized into subsystems.

 

DistributionTransmission
Customer 

Service Provider

Generation 

Operators Markets 

Figure 4.2. Communications in a smart grid (adapted from [1]).

In a smart grid, generation units communicate with the market and the operation

domains. The information communicated includes key parameters such as generation

capacity and shortage. In the transmission system, a significant amount of data is captured

from the grid and sent to the control centers. The control centers in turn send responses to

devices in remote substations. Distribution networks interact with multiple entities, such

as distributed generators, automatic metering infrastructure, and sensors in order to enable

provision of high-quality and stable electricity for the end-users. Operation domain mainly

communicates to the transmission and distribution systems to obtain information about

power system activities such as monitoring, maintenance, and metering. Market domain
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needs to communicate with the bulk producers of electricity and the distributed generating

resources to match the production with the demand. The customer domain communicates

with the distribution, operation, service provider, and market domains to facilitate remote

load control, monitoring of distributed generators and in-home display support [68]. Finally,

service providers communicate with the operation domain for situational awareness and

system control and to obtain metering information. They also communicate with the

customer domain to provide smart services such as management of energy use and home

energy generation.

4.1.1.4. Measurement systems. Advanced sensing andmeasurement technologies

evaluate the health of equipment and the integrity of the smart grid. The use of enhanced

measurement and control allows the system to operate closer to its physical limits and

increases its efficiency [45].

For better wide-area situational awareness, regional transmission operators require

information about the state of the power grid, which is achieved by specialized sensors

that provide real-time data - phasor measurement units (PMUs)- at substations. PMU

devices capture current and voltage phasor information from the electrical buses at selected

substations at sample rates of up to 60 Hz. The information received from PMUs is used by

energy management systems at control centers for improved state estimation, monitoring,

control, and protection.

Corruption of data received from the sensors or lack thereof, can result in erroneous

situational awareness or unobservability to the decision support, resulting in inappropriate

control of regulators and potentially a cascade of failures. Therefore, it is very important

to assure that the measurement devices are highly reliable, calibrated, and maintained in

specified intervals.

4.1.1.5. Computation. The evolution and use of decentralized control significantly

complicates analysis of the large-scale distributed networks. It also necessitates that com-

munication links and data transfer functions be considered alongside computing elements
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in dependability analysis. Software engineering has enabled the development of nearly-

perfect computer programs that utilize control algorithms to optimize the functionality of a

CPS; however, software faults often lead to system failures and should be considered in the

dependability analysis.

4.1.1.6. Operators. If proper planning criteria are followed most modern power

systems are designed to be able to operate safely and in a stable fashion with minor

contingencies; however, depending on the severity of a failure event, the system may

enter into an emergency state where a human operator needs to take an action. It should

be noted that human errors are inevitable and can cause catastrophic failures in critical

applications [83]. Therefore, dependability analysis should take into account the effect of

human errors as well.

4.1.2. IEEE-14 and IEEE-57 Smart Grids. The IEEE 14-bus system consists of

two generators supplying the grid with active power; 14 buses providing electricity for 11

loads; and 20 transmission lines interconnecting these buses. In order to study the effects

of utilizing intelligent control systems and communication and information technology,

we construct a smart grid from this physical system by incorporating cyber components.

According to the method presented in [84], four PMUs are placed on buses 2, 4, 6, and

9. This placement strategy provides power system observability for the control systems

and brings redundancy. Furthermore, based on the method presented in [85], three static

synchronous series compensator (SSSC) devices are installed on specific transmission lines

as depicted in Figure 4.3. SSSC is a type of FACTS device that is used for controlling the

power flows in the network.

An ideal decision support algorithm utilizes the available resources and computing

capabilities efficiently in order to mitigate faults and prevent cascading failures. Com-

putational intelligence comprises promising approaches to solve the intricate problem of

controlling the complex networks using the information collected from the sensors, consid-

ering the “global” effects of “local” decisions in an intelligent way [86]. In our case study,
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Figure 4.3. IEEE 14-bus smart grid.

an ANN trained with N−1 contingencies is used as the decision support algorithm. Finding

the optimal setting for each SSSC device in all possible contingencies is a computationally

intensive task. This ANN dynamically controls the SSSC devices according to the real-time

measurements from PMUs with the objective of distributing the flow of power through all

available routes and minimizing the risk of overloading. Applicability and performance of

ANN in dynamic tuning of SSSC devices in unusual operating points are verified in [87].

Power utility companies mitigate the impacts of peak demand and impairments by load

shedding, load balancing, and line current balancing. This ANN plays a similar role in

our smart grid example and performs the same tasks autonomously. More details on the

architecture of this ANN is provided in Appendix B.

Table 4.1 highlights the performance of the ANN in practice by comparing the

number of cases that lead to system-level failure out of all simulated cases for three con-

figurations, namely, IEEE-14 without any control devices, IEEE-14 with three fixed-tuned
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SSSC devices installed on specific lines as shown in Figure 4.3, and lastly, IEEE-14 with the

same three SSSC devices but dynamically tuned by the ANN according to the instantaneous

system state.

Table 4.1. Number of cases out of all simulated cases that lead to system-level failure for
IEEE-14.

No SSSC
devices

With fixed-tuned
SSSC devices

With
dynamically-
tuned SSSC
devices

Single-line outages
that lead to a

cascading failure
2 / 20 1 / 20 1 / 20

Double-line outages
that lead to a

cascading failure

44 / 190 29 / 190 23 / 190

It is seen in Table 4.1, that utilizing fixed-tuned SSSC devices can eliminate some

of the vulnerabilities, as reflected by the reduction of the cases that lead to system-level

failure, and hence, increases the robustness of the system against single- and double-line

contingencies. Employing the ANN for dynamic tuning of SSSC devices further increases

the robustness against double-line outages, as manifested by reduction of 29 cases leading

to system-level failure down to 23.

The IEEE-57 is a larger power system that consists of seven generators; 57 buses

providing electricity for 42 loads; and 80 transmission lines interconnecting these buses.

Twelve PMUs and seven SSSC devices are also installed on specific buses and transmission

lines according to the methods presented in [84] and [85], respectively, as illustrated in

Figure 4.4. Similar to the IEEE-14 smart grid, an ANN is employed to serve as the decision

support algorithm. The ANN utilized for the IEEE-57 smart grid however, has larger input,

hidden, and output layers as it is responsible for controlling a larger system.
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In the remainder of this document, we use the following notations for the components

of smart grid that are in the scope of our analysis.

• Li− j : A transmission line connecting bus i to bus j

• Fi− j : An SSSC device installed on line Li− j

• Pi: A PMU installed at bus i

• CM: A communication link between two cyber entities

• DS: The decision support
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4.1.3. Integrated Cyber-Physical Simulator. A CPS simulator should be able

to reflect the operation of multiple aspects: sensors, data collectors, computers, control

systems, databases, communications, and the processes in the underlying physical infras-

tructure. Differences between cyber and physical components complicate representation of

their behavior with a single simulation tool. For most sectors of the critical infrastructure,

including power, water, and transportation, specialized simulation tools exist. These tools

have been created with the objective of accurately reflecting the operation of the physical

system, at high spatial and temporal resolution; however, the behavior of cyber infrastruc-

ture is not reflected. Despite the existence of simulation tools for cyber aspects such as

computing and communication, differences in temporal resolution and data representation

and lack of well-defined interfaces exert significant challenges to linking these simulation

tools and providing an integrated CPS simulator.

For the electric delivery system, there are a number of commercial and non-

commercial computer simulation tools available. The PowerWorld Simulator [88] is a

popular commercial tool for analysis of high voltage power systems. It supports common

protection and control devices, provides an interactive environment and intuitive GUI, and

is able to solve power flow equations for very large systems; however, PowerWorld does not

provide the transparency needed for analysis of the sequence of failures. Several other com-

mercial software packages, such as DIgSILENT [89], have the same shortcoming. Among

the non-commercial packages, MATPOWER [90] and PSAT [18] are two MATLAB-based

toolboxes commonly used for academic research. MATPOWER can solve load flow and

optimal power flow problems in a command line interface. PSAT has a graphical interface

and supports basic monitoring and protection devices and power regulators in addition to

the capabilities of MATPOWER. In this research, we used PSAT for simulation of the

power grid systems. For the purpose of our simulations, we enhanced PSAT in order

to achieve the high resolution required for analysis of smart grids. These enhancements

include defining data structures for each category of cyber components, incorporating wide-
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area measurement capabilities by PMU devices, providing a platform for implementing a

decision support algorithm, and integrating the power systems with communication tech-

nologies used in smart grid applications. This modified version of PSAT is interfaced with

a MATLAB wrapper that acts as an adapter between libraries and orchestrates subroutine

calls. Figure 4.5 visualizes the operation of our smart grid simulator.

 Decision support
 Metering
 Measurement
 Monitoring
 Control systems
 Communications

 Generation
 Lines and transformers
 Substations
 Protection devices
 Storage devices
 Customers

MATLAB
Discrete-time
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Continuous-time

Cyber infrastructure
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rf
ac

e

Figure 4.5. Cyber-physical smart grid simulator.

Inputs to the simulator include i) a data file that comprises power grid topology

and cyber infrastructure specifications and ii) a perturbation file that lists all contingencies

intended to be analyzed. On the other hand, the simulator returns system state, including

electrical parameters (e.g., voltages, phases, and power flows) as well as operation status

of cyber components. This output can be used to find the service indices and determine

wether the system is considered to be in a failed or operational state.
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4.2. ANALYSIS OF INTERDEPENDENCIES

Smart grids are composed of several different subsystems working together to

achieve a common goal. The close interactions between different entities, captured by

the concept of interdependence, are due to the fundamental attributes of CPSs as well as the

nature of the electric delivery system. In this section, we will study the interdependence in

smart grids using our proposed identification and quantification techniques.

In addition to the intrinsic dependencies between components, we assumed that the

operation of PMUs depends on the underlying power grid, i.e., a PMU device is disabled

as soon as a voltage violation occurs at the bus on which it is installed. Voltage violation is

defined to be outside of 0.9 to 1.1 per-unit1 range, according to the EN-50160 standard [91].

4.2.1. Selection of Failure Cases. Selection of failure cases and determining the

minimum number of failure cases needed for obtaining all of the dependencies are of great

importance in the presented method. In general, the larger the number of failure cases is,

the more accurate the model becomes; however, exhaustive examination of failure cases is

infeasible for large systems. The study presented in [75] provides a method for selection of

failure cases in analysis of power grids while a given accuracy is maintained. In this work,

we analyzed the following scenarios:

• One or two simultaneous transmission line outages,

• at most one failed SSSC device,

• at most one failed PMU, and

• failure of the decision support algorithm.

It is worth mentioning that upon availability of simulation environments capable

of modeling the communication infrastructure with high resolution, considering the effects

of respective impairments will improve the quality of the model. Unless a sophisticated

1The per-unit representation denotes normalization by a base value.
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model for channel impairments is utilized, considering communication failures simply

adds redundant failure cases and complicates representation of the results without actually

capturing the behavior of the communications. For interdependency analysis of IEEE-14

and IEEE-57 smart grids, we have not considered the communication failures.

Table 4.2 lists the number of simulations carried out for each test case. The total

number of simulations for each system is product of the number of failure cases shown for

each category of component. Note that in all of the failure cases at least one transmission

line is tripped since it is observed that the system does not degrade otherwise, even in the

presence of cyber faults; however, having one ormore transmission lines tripped, impairment

of cyber components can exacerbate the situation and lead to further degradation.

Table 4.2. Number of simulated failure cases.

IEEE-14 IEEE-57

transmission lines
2∑

k=1

(20
k

)
= 210

2∑
k=1

(80
k

)
= 3, 240

SSSC devices
1∑

k=0

(3
k

)
= 4

1∑
k=0

(7
k

)
= 8

PMU devices
1∑

k=0

(3
k

)
= 4

1∑
k=0

(12
k

)
= 13

decision support
1∑

k=0

(1
k

)
= 2

1∑
k=0

(1
k

)
= 2

total number of simulated cases 6,720 673,920

In this study, failure cases were selected based on the failure rate of components.

Transmission lines were selected because they have a relatively high rate of failure and are

a major source of power outages [81]. Additionally, we selected SSSC and PMU devices

and the decision support as representative cyber components and because their failure can

impact the state of the physical components. Including other components of the system can

enhance the model and improve the accuracy of results.
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4.2.2. Interdependencies of IEEE Bus Systems. In this section, we present inter-

dependencies of IEEE-14 and IEEE-57 smart grids identified using both correlation and

causation analyses. Correlation analysis requires state variable for each component to be

defined. Equation (4.1) shows definition of state variables for each category of components

in smart grids.

XLi−j (t) = |Active power flow of Li−j in p.u. at time t |

XFi−j (t) =


1, Fi−j is operational at time t;

0, otherwise.

XPi (t) =


1, Pi is operational at time t;

0, otherwise.

XDS(t) =
Number of observable buses and lines

Total number of buses and lines
(4.1)

In Equation (4.1), XLi−j (t) ∈ R
+, XFi−j (t) ∈ {0, 1}, XPi (t) ∈ {0, 1}, and XDS(t) ∈ [0, 1]. Note

that XDS(t) is the portion of the power system that is observable to the decision support

and is used as a measure since it well captures its operation and data dependency on PMU

devices.

Figure 4.6 helps to see how these state variables can capture the operation of a

smart grid during a failure sequence. In Figure 4.6, state variables of components of IEEE-

14 smart grid during a selected failure sequence are plotted on a single horizontal axis.

Note that the state variables are shown only for components that experience degradation.

Each row presents state variable of a component and the rows are ordered according to the

propagation of the faults, i.e., the two topmost rows correspond to the components whose

failure initiates the failure case (L1−5 and P2); third and fourth rows represent state variable

of the components that fail consequently (L1−2 and F1−5) and so forth. The bottommost row

shows the state variable of component F2−3, which is known to be the last component to be

affected in this failure sequence.
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Figure 4.6. State variables of selected components of IEEE-14 during a failure sequence.
Arrows indicate the points at which components are considered failed.

According to Figure 4.6, correlation among the state variables is expected to be

maximal for those degrade with one time step difference. Table 4.3 shows values of PCC

and RDC for pairs of components that degrade with one time step difference as shown in

Figure 4.6. In calculation of RDC values, sample size and number of random features are

set to 0.1 and 1, respectively.

Both correlation coefficients exhibit relatively large values for the component pairs

that are expected to have dependence; however, RDC values of dependent components

better stand out according to Table 4.3. This is mainly due to the fact that RDC captures

nonlinear aswell as linear correlations, unlike PCC, which only captures linear relationships

and results in underestimating dependency between component pairs that are non-linearly

correlated. Hereinafter, we utilize and present RDC values only, due to its superiority in

capturing the interdependence.
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Table 4.3. Correlation coefficients between state variables of component pairs for those
experience degradation with one time step difference in the failure case shown in Figure 4.6.

State variables PCC RDC
XL1−5 XL1−2 1.00 1.00
XL1−5 XF1−5 1.00 1.00
XP2 XL1−2 1.00 1.00
XP2 XF1−5 1.00 1.00
XL1−2 XL9−10 0.85 1.00
XL1−2 XP9 0.98 1.00
XF1−5 XL9−10 0.71 1.00
XF1−5 XP9 1.00 1.00
XL9−10 XL2−3 0.79 0.99
XP9 XL2−3 0.95 0.99
XL2−3 XF2−3 0.94 0.99
Maximum among
all other pairs 0.68 0.83

For each failure case, RDC values are calculated for all pairs of state variables.

For estimating di j , mean value of RDCXiXj is calculated over all failure cases. Likewise,

the process explained in Section 3.1.2.2 is applied on the results of simulations to find

the di j values using causation analysis. For each of the methods, we found di j values and

constructed the D matrix.

The D matrices are visually represented as weighted directed graphs, in Figure 4.7

and Figure 4.8 respectively, for IEEE-14 and IEEE-57 smart grid systems. Each edge

represents a direct dependency and its width is proportional to the extent of the dependence

(di j). Note that edges with weights less than 0.05 are not shown in the figures for ease

of illustration. The top five links with largest weights are shown in red. It can be seen

that dependency links with large weights are captured by both correlation and causation

methods. It is also seen that the correlation-basedmethod identifies a larger number of direct

dependencies, as causation is typically a relationship that exists only in a small fraction of

correlated events. In Appendix A, numerical values of notable direct dependency links are

provided.
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Figure 4.7. Graph representation of D matrix for IEEE-14 smart grid identified using
correlation (a) and causation (b) analyses. Notable dependency links are shown in red.
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Figure 4.8. Graph representation of D matrix for IEEE-57 smart grid identified using
correlation (a) and causation (b) analyses. Notable dependency links are shown in red.
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By applying interdependency quantification methods presented in Section 3.1.3,

we computed T matrix based on direct dependencies identified using both correlation and

causation analyses. Among the values of ti j there exist links that are of great importance.

As an example, in the IEEE-14 smart grid case, the total influence from the decision support

to L1−5 is among the largest values while the corresponding direct link has a small weight

of 0.05. The pair of P32 and F1−17 in the IEEE-57 smart grid is another example with a

similar situation. This characteristic is justified by existence of several multi-step strong

dependency links that connect pairs of components together and can give rise to further

breakdown of components that are not in the geographical, logical, physical, or cyber reach

of the initially impaired component [59]. This nonlocal property of the fault propagation has

been observed in a number of real-world blackouts [2, 3]. Appendix A provides numerical

values of notable links with large multi-step dependencies.

In Figure 4.7 and Figure 4.8, the top five components (nodes) with highest in-

degree (ν) and out-degree (τ) values are specified by distinguishable markers. This analysis

identifies the cyber and physical elements that have the highest priority for further inspection

and fortification if dependability is to be improved. Among the identified components are

the bridge lines, which are responsible for transmitting the majority of the power from the

generating buses to the load buses, and PMU and SSSC devices that are installed on critical

locations of the power grid. Identifying these components using analytical methods can

be very difficult or even impossible for large systems. A more inclusive list of notable

components with large in-degree and out-degree values is shown in Appendix A.

In order to lessen the risk of dependability loss due to existence of strong in-degree

values, we can increase capacity of respective components to prevent overload, replace

them with more robust components, and utilize redundant components [20]. For mitigating

the risk exerted by strong out-degree values, a diverse selection of components should be

utilized [92]. Diversity involves the use of spatially, temporally, and functionally different

alternatives and guarantees that the components will not be affected by the same disruptions.
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In order to compare the extent of dependency among the cyber and physical subsys-

tems, γs1−s2 is calculated and shown in Figure 4.9. It can be seen that the most significant

dependencies are from the physical subsystem to the cyber subsystem (physical-cyber)

and within the cyber subsystem (cyber-cyber). Dependency of cyber components on the

physical components are typically in binary form (e.g., if power is not available the sensor

shuts off) which justifies the large value of corresponding γs1−s2 value. The large value

of cyber-cyber dependency is mainly due to the nature of the common topologies of the

cyber infrastructure, in which each component is connected to multiple other components

for transmission and reception of information.

Comparing the respective γs1−s2 values obtained from the correlation and causation

analyses, we can infer that the causation relationships among the components are less

frequent and of smaller extent, which can also be observed in the graphs provided in

Figure 4.7 and Figure 4.8; however, the orders of γs1−s2 values within each group are similar

to each other.

4.3. RELIABILITY MODELING

The most commonly studied dependability attribute for the smart grids is reliability.

This is mainly because of the fact that uninterrupted delivery of electricity has the highest

priority among objectives of the smart grids and this capability is best captured by reliability.

In this section, we apply our proposed reliability modeling approach to the smart grids. In

addition, we measure the detrimental effect of introducing additional interdependency on

the reliability of the IEEE-14 smart grid test case.

4.3.1. Definition of System Failure. Reliability is a dependability attribute that

takes a binary view of the system state, and hence, it is very important to have a clear

understanding of what is considered a “system-level failure.” We define a system failure as

comprising at least one of the following two cases:
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Figure 4.9. Comparison of dependency among subsystems (γs1−s2) using correlation and
causation analyses.

• Voltage violation: Having at least one load that is supplied by a bus whose voltage

does not fall in 0.9 to 1.1 per-unit range (EN 50160 standard [91])

• Excessive outages: Concurrent failure of more than three transmission lines
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Excessive outages is not a general criterion for system-level failure of smart grids,

but according to extensive simulations on IEEE-14 and IEEE-57, leads to a cascading failure

or a voltage violation eventually. It particularly helps in eliminating the need for exhaustive

simulation of the entire system states.

4.3.2. Simulated Cases. A system composed of n components with binary states

has a total of 2n states; however, in most cases it is neither feasible, nor required to examine

all these states. For IEEE-14 and IEEE-57 smart grids, it is verified that states with more

than three concurrent transmission line outages will certainly lead to a failed state (also

reflected in our definition of system failure) and do not need to be examined. Furthermore,

occurrence of some states are practically improbable. Such states can be eliminated without

a significant impact on the accuracy of the reliability model too.

Consequently, in this work we have analyzed the following scenarios:

• Up to three simultaneous transmission line outages,

• at most one failed SSSC device,

• at most one failed PMU,

• at most one failed communication channel, and

• failure of the decision support algorithm.

For the sake of brevity, results are presented with the assumption that components

have binary states (i.e., operational or failed). Furthermore, failure of a component is

considered to be representative of failure of all backups (e.g., backup batteries and generators

and redundant communication mediums). Note that this assumption is made only for the

examples of IEEE-14 and IEEE-57 smart grids and does not restrict the approach in general.

With these assumptions, the proposed method is not computationally intensive. Recorded
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computational time for simulation of the IEEE 57-bus system is 22 minutes on an Intel

Xeon E5-2623 3.00 GHz machine, which is acceptable considering that model composition

is typically a non-real-time task.

4.3.3. Reliability Models for IEEE Bus Systems. If no cyber infrastructure is

deployed for the IEEE 14-bus system, only two specific single-line contingencies cause

system failure: respective outage of the transmission lines L1−2 and L1−5. Any other single-

line contingency leaves the system in an operational state. Furthermore, among the 190

possible double-line contingencies, only 44 leave the grid in a “failed” state. Equation (4.2)

represents system-level reliability for the IEEE-14 when no cyber infrastructure is utilized,

i.e., the system shown in Figure 4.3 without the decision support, SSSC and PMU devices,

and the interconnecting communication links.

Rsys = p20
L + 18qL .pL

19 + 146q2
L .pL

18 (4.2)

In Equation (4.2), pL and qL , respectively, denote the reliability and unreliability of trans-

mission lines, i.e., qL = 1 − pL .

For reliability analysis of the IEEE-14 smart grid, we need to investigate the system-

level effect of all component-level failures, whether the component is in the physical or cyber

infrastructure. Cyber devices can fail in various modes, ranging in effect from fail-fault -

where failure of the cyber device severely impacts the operation of any other components

dependent upon it, to fail-bypass - where the cyber device fails to zero, i.e., failure of the

device is equivalent to removing it from the system. In fail-bypass mode, a failed PMU

does not send any data to the decision support, a failed SSSC device does not adjust the

power flow, and a failed decision support algorithm does not tune the SSSC devices. For

brevity, we present only the results for a fail-bypass mode. Emphasis on fail-bypass mode

is further justified by the relatively nascent stage of cyber-physical critical infrastructure,

which motivates conservative deployment of cyber devices.
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Figure 4.10 illustrates the overall system reliability of the IEEE-14 smart grid, as

a function of transmission line reliability. The horizontal axes of the plots are in logit

scale, chosen to emphasize common reliability values, expressed in “N nines” notation.

Each subfigure captures the effect of improvements to component-level reliability of a

specific category of cyber devices, i.e., the decision support algorithm, SSSCs, PMUs, and

communication links, respectively. pF , pP, pCM , and pDS, respectively, denote reliabilities

of each SSSC device, each PMUdevice, each communication link, and the decision support.

Mathematical representation of the reliability model for IEEE-14 smart grid is shown in

Appendix C.

Figure 4.10 confirms that more reliable transmission lines result in higher system-

level reliability. Note that the high (e.g., five nines) reliability expected of a critical system

is not achieved unless the transmission lines are highly reliable [93]. For the case study of

a smart IEEE-14, assuming that no cyber device is less than 90% reliable (a conservative

estimate), grid reliability of five nines requires transmission lines with a reliability of at least

six nines. However, fortification focused solely on improving the reliability of transmission

lines exhibits diminishing returns.

Figure 4.10 also facilitates comparison of the improvement achieved in system-level

reliability as a result of enhancing the reliability of each category of cyber components.

This information can be used to guide the investments in fortifying the grid. For example,

comparing Figure 4.10b and Figure 4.10d confirms the intuitive notion that investing in

more reliable communication links is much more rewarding than improving reliability of

the SSSC devices.

Figure 4.11 highlights the “break-even” point for reliability of a smart grid, i.e., the

minimum reliability required of cyber components for the IEEE-14 smart grid to be more

reliable than its purely physical counterpart. This threshold is compared for different values

of transmission line reliability. For simplicity, all cyber components have been assumed

equally reliable. Among the four cases illustrated in Figure 4.11, the lowest threshold
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identified for the reliability of cyber components is 0.985 - relatively high for computing or

communication equipment. Our reliability analysis for this case study assumed fail-bypass

behavior for all cyber components. Other failure modes could amplify the effect of their

unreliability and necessitate even higher thresholds for the reliability of cyber components.
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Figure 4.11. Comparison of the reliability of the smart and purely physical IEEE-14 grid.

For the larger case of IEEE-57 smart grid, overall system reliability shown in

Figure 4.12 is more sensitive to the reliability of transmission lines. In general, the larger

the size of the system, the more reliable its components need to be in order to maintain

a specific level of overall system reliability. By comparing the relationship between the

subfigures of Figure 4.12 with those of Figure 4.10, we can see that the cyber components

in IEEE-14 and IEEE-57 smart grids have very similar effects on the reliability. This
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similarity is due to the fact that the cyber components in these two smart grids play similar

roles, and confirms correctness of the inferences stated above about the effect of the cyber

infrastructure on the reliability of smart grids.
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4.3.4. Effect of Additional Interdependence on Reliability. Cyber-physical in-

terconnections among components of a CPS can expand the scope of information used for

decision support and improve the system. It can also lead to additional fault propagation

paths and degrade dependability. In this section, we investigate how added functional in-

terdependency can degrade the reliability of the IEEE-14 smart grid, where cyber-induced

interdependencies are of greatest interest. Our investigation is comprised of assuming

additional dependencies - beyond those present in the original system - and evaluating

their impact on reliability. Figure 4.13 compares the effects of adding dependencies of

three respective types: physical-cyber, cyber-cyber, and cyber-physical. Transmission line

reliability is held at 0.999. All cyber components, i.e., PMU and SSSC devices, communi-

cation links, and decision support, are assumed to have the same reliability value of 0.95.

Each data point shown in Figure 4.13 represents the average reliability attained over 30

experiments, where each experiment consisted of modifying an arbitrary number of edges

of the original dependency graph representing the IEEE-14 smart grid, while maintaining

the value of γS1−S2 . The weight of each modified edge, which represents the degree of

influence of one component on the other, was arbitrarily chosen. To facilitate observation

of trends, an exponential curve (depicted as a dotted line) was fitted to the data points for

each type of dependence. In all three cases, system-level reliability degrades very quickly

as the dependency index increases. Similar trends have been reported for degradation of

robustness as connectivity increases [94].

Of the three types of dependency examined, cyber-physical dependencies, where

failure of a cyber component brings down a physical component, were found to be the most

crucial. Cyber components are typically more complex, and hence, cyber failures occur

more frequently. System-level reliability is evaluated based on physical manifestations of

failure, which directly reflect the operational state of physical components. Taken together,

these two facts provide tangible justification of the rapid degradation observed in system-

level reliability as cyber-physical dependencies increase.
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4.4. SURVIVABILITY EVALUATION

It is very unlikely in a large-scale smart grid that at a given time period all of the

components maintain a fault-free operation and the system remains in a perfect state. While

reliability takes such optimistic view of the system operation, survivability characterizes

degraded states as well. In this section, we demonstrate our proposed approach for sur-

vivability evaluation by applying it to smart grid test cases. On IEEE-57 smart grid, we

also identify the components whose failure is the most detrimental to survivability. For

verification of this importance analysis, we fortify the selected components and reevaluate

the survivability. It is expected that the IEEE-57 smart grid with fortified components

possess a higher survivability.

4.4.1. Selection of the Figure-of-Merit. The essential service expected of a smart

grid is provision of stable power to customers. We define two corresponding FoMs: the

customer service index and the average nominal voltage error. The customer service index

(CSI) reflects the fraction of customers who have received this essential service, with a

binary view – a customer is either served with adequate power or has not been served at
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all. In accordance with standards such as EN-50160 [91], our determination of whether a

customer has been served is based on whether the voltage of the bus to which the customer

is connected is within a predetermined range. For example, EN-50160 specifies a range of

0.9 to 1.1 per-unit. Equation (4.3) articulates the calculation of CSI.

CSI =
Number of customers served
Total number of customers

(4.3)

The second FoM we propose for evaluating smart grid survivability is the average nominal

voltage error (ANVE), which is calculated from the average voltage error over all load

buses that experience undervoltage or overvoltage, as in Equation (4.4). An ANVE of 1

indicates that the grid is providing full service. In contrast with CSI, which solely reflects

blackouts, ANVE considers brownouts as well.

ANVE = 1 −

∑
i
|Rated voltage at bus i − Actual voltage at bus i |

Total number of customers
(4.4)

4.4.2. Selection of Failure Cases. As power grids are typically highly reliable and

robust networks, most evaluations rely on N −1 or N −2 contingency analyses, i.e., a single

failure or two concurrent failures. In this work, we analyzed the consequences of an outage

of a transmission line or an SSSC device in the presence of a fault in the cyber network. The

cyber faults injected to the smart grid are manifestations of data corruption: (i) incorrect

data from PMUs, (ii) incorrect commands generated by the decision support algorithm,

and (iii) undetected errors in the communications. Note that any one of these cyber faults

alone can be tolerated by the system; however, if they are accompanied by an outage of a

transmission line, further propagation of the failures is likely. Table 4.4 lists the simulated

failure cases and the number of simulations carried out for each case.

4.4.3. Simulation Environment. Our smart grid simulator is used to determine

power flows and voltages in the network during the failure cases. Figure 4.14 illustrates the

procedure we have followed for simulating each failure case. In each outer loop, a data file
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Table 4.4. Types and numbers of faults simulated.

IEEE-14 IEEE-57
single transmission lines 20 80
SSSC devices 3 7

number of hardware faults simulated 23 87
PMU devices 3 12
communication links 6 19
control units 1 1

number of cyber faults simulated 10 32
total number of simulation runs 230 2,784

that contains the topology of the system under test is loaded and a failure case (with index

k) is executed at time te by injecting corresponding faults and/or failures. In the inner loop,

at each time step, PSAT performs power flow analysis and determines active power flow

on each line and voltage at each bus. PMU devices then measure phasor data (including

active power and voltage) of corresponding lines and buses and send it to the decision

support algorithm where new settings for SSSC devices are calculated. Updated settings

will regulate active and reactive power flow in the lines, where SSSC devices are installed.

At this point, power flow analysis is run once more to find the updated active power flows

and bus voltages. In every iteration of the inner loop after instant te, active power flow of

the lines are compared to their capacity, and if any line is overloaded, it is considered failed

and the topology is updated accordingly.

The simulation continues until no further failures are detected. For the sake of

consistency among the two IEEE bus systems and ease of comparing the plots, all simula-

tions are continued for 25 time steps (denoted as t f inal in Figure 4.14), however, all failure

sequences terminate before the 25th time step.

Note that since the time is discrete and is determined by the software simulation tool,

the rate of degradation is bounded to a maximum value. Additionally, minor changes in the

rate of degradation due to time-specific variations may not be captured in the simulation

environment.
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Figure 4.14. Survivability evaluation procedure.

4.4.4. Simulation Results. Figure 4.15 depicts the simulation results for each of

the two test systems, using CSI and ANVE as the FoMs. In Figure 4.15, each sub-figure

depicts the change in one FoM over time, after the injection of a failure. The intensity of a
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line indicates the number of failure cases which resulted in the behavior shown by that line.

The desired outcome is a value of one, characterized by all customers being served and no

voltage error for all customers, respectively, for CSI and ANVE. Note that since the CSI is

discrete, it can hold only a finite set of values between 0 and 1.
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Figure 4.15. CSI and ANVE vs. time for IEEE14 and IEEE-57 smart grids.

These results indicate that the majority of the simulated failure cases result in

minimal degradation as the test systems are relatively robust. In the IEEE-14 smart grid

results, shown in Figure 4.15a and 4.15b, a number of failures lead to total system failure

with no customers served and maximum error for CSI and ANVE, respectively. This is
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indicated by the FoMs reaching zero. Additionally, the results show that a number of failure

cases have two phases of system degradation separated by a brief period of stabilization.

The IEEE-57 smart grid incorporates more redundancy and can tolerate a greater number

of failures. This is seen in 4.15c and 4.15d where the FoMs never reach zero.

4.4.5. Evaluation of SurvivableBehavior. Themaximum rate and extent of degra-

dation were extracted from the log of each failure case. Figure 4.16 depicts a two-

dimensional histogram of CSI and ANVE for each smart grid system. These histograms

are based on the maximum rate and extent of degradation calculated from the log of each

failure case.

In an ideal system, every one of these histograms would be dense near the origin

and sparse elsewhere, reflecting slow and minimal degradation in response to failure. This

expectation is realized for the IEEE smart grids evaluated. However, there are clusters of

failure cases with higher rates and extents of failure, which appear in the upper and/or right

regions of the histogram. The presence of these clusters indicates that many of the failure

cases simulated result in similar rates and extents of degradation. This is most likely caused

by similar failure propagation paths through the power grid, i.e., different cascading failures

involving the same vulnerable components.

4.4.6. Identifying Important Components. Our importance analysis technique is

used to identify survivability bottlenecks and guide investments in fortifying these systems.

Criticality and fragility can be determined for each component of a system, as described in

Section 3.3.3.

Table 4.5 shows the rankings of the top ten lines of IEEE 57-bus system using

fragility and criticality as criteria for hardening prioritization. It can be seen that some lines

have similar ranking in both, e.g., lines L4−18, L3−4, and L4−6. The also exist a few lines

that have significantly higher priority using criticality as the metric, such as lines L8−9 and

L6−7, which is due to the difference in the weaknesses captured by fragility and criticality

metrics. These lines fail in fewer failure cases (resulting in small fragility), but have very
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Figure 4.16. Histograms showing extent of degradation vs. rate of degradation for CSI and
ANVE. Color indicates the number of failure cases which resulted in the corresponding
degradation point.

high impact on the system FoM when they do fail (as characterized by high criticality).

Alternatively, a few lines have a significantly lower priority using criticality as a metric,

such as lines L1−2 and L1−15. These lines fail very frequently, but their failure is relatively

insignificant in terms of system survivability.

4.4.7. Validation of Approach. In this section we validate our importance analysis

technique through targeted hardening of the IEEE 57-bus smart grid. To harden this smart

grid system the five lines with highest priority metrics were fortified by increasing their

power flow capacity by 50%, which is expected to increase the survivability of the system as
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Table 4.5. Transmission lines of IEEE 57-bus system with highest fragility and criticality.
Only the top ten lines are shown.

Rank Line Fragility (×10) Rank Line Criticality (×102)

1 L4−18 0.280 1 L8−9 0.148
2 L1−2 0.273 2 L4−18 0.142
3 L3−4 0.251 3 L3−4 0.134
4 L1−15 0.237 4 L6−7 0.128
5 L1−17 0.237 5 L4−6 0.114
6 L4−6 0.223 6 L1−2 0.108
7 L8−9 0.223 7 L1−15 0.106
8 L1−16 0.223 8 L13−15 0.072
9 L6−7 0.216 9 L1−16 0.066
10 L2−3 0.194 10 L2−3 0.064

it increases fault tolerance. The same hardening effect could have been achieved by adding

redundant lines; however, this was not done in order to maintain the topology of the system

for ease of comparison. Once the system was hardened the survivability analysis was rerun

to compare the results with the original system.

First, fragility was used to select components for hardening. Lines L4−18, L1−2,

L3−4, L1−15, and L1−17, shown highlighted in yellow in Figure 4.17, were hardened. Next,

criticality was used to select components for hardening. Lines L8−9, L4−18, L3−4, L6−7, and

L4−6, shown highlighted in blue in Figure 4.17, were selected to be hardened.

Comparison of the results of simulations as well as the survivability attributes for

original and hardened versions of IEEE-57 (shown in Figure 4.18 and Figure 4.19) verifies

effectiveness of the hardening technique. It is seen that for the hardened systems the extent of

degradations has reduced and clusters of degradation points have moved towards the origin.

Due to the choice of the hardening method, i.e., increasing the power flow capacity of lines,

improvements in reducing the rate of degradation is not significant as seen in Figure 4.19.

Other hardening methods, e.g., use of power storage and installation of protective relays,

can be more effective in lowering the rate of degradation.



72

98

7

6

57 56

555453

52

51

50

5

49

48

47

46

45

44

43

42

41

40

4

39

38

37

36

35

34 33

32
31

30

3

29

28

27

26

25

24

23

22

21

20

2

1918

17

1615

14

13
12

11

10

1

Generator

Load

Bus

PMU Device

SSSC Device

Figure 4.17. IEEE 57-bus smart grid test system. Lines highlighted in yellow have the
highest fragility and those highlighted in blue have the highest criticality.

Comparing the survivability evaluation results of the twooriginal and hardened IEEE

57-bus smart grids demonstrates an improvement in the survivable behavior of the system.

Both importance analysis techniques resulted in an improvement in system survivability,

using both FoMs, evident in Figure 4.18 and Figure 4.19; however, using criticality as the

metric leads to a more effective improvement over the original system. This is due to the

fact that the criticality metric better captures contribution of a component to survivability

of a system, compared to the fragility.
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(a) CSI vs. time for original IEEE-57 (b) ANVE vs. time for original IEEE-57

(c) CSI vs. time for IEEE-57 hardened based on
fragility

(d) ANVE vs. time for IEEE-57 hardened based
on fragility

(e) CSI vs. time for IEEE-57 hardened based on
criticality

(f) ANVE vs. time for IEEE-57 hardened based
on criticality

Figure 4.18. CSI and ANVE vs. time for original and hardened IEEE-57.
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(e) CSI histogram for IEEE-57 hardened based on
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Figure 4.19. Histograms showing extent of degradation vs. rate of degradation for CSI and
ANVE of original and hardened IEEE-57.
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4.5. PREDICTION OF FAILURES

In this section, we will present the results of training a failure prediction ANN using

the data attained by simulating several failure cases on smart grid test cases and evaluate

its performance on predicting imminent failures. Since the failure data for real-world large-

scale CPSs is limited, we will investigate the possibility of training the ANN with a small

subset of the available data sets and inspect its predictive capability. We randomly selected

a subset of the available data and then divided them into training, validation, and test data

sets using random selection. The training data set is used for adjusting the weights of the

ANN shown in Section 3.4, using the backpropagation technique, while the validation data

set is employed to minimize overfitting during the training cycles. Upon completion of the

training, the test data set is used for measuring the predictive performance of the ANN.

We also simulated a number of randomly selected more complex failure cases for

each smart grid system and evaluated the performance of the ANN on predicting failures

on those cases. The difference between the “simple” and the “complex” test data is that the

latter is composed of failure cases with three to five concurrent transmission line failures,

while the former is selected from the failure cases explained in Table 4.2, where at most

two transmission lines are tripped concurrently. Table 4.6 shows the number of entries of

the failure data used for the ANN.

Table 4.6. Size of the failure data sets used for the ANN.

Data set IEEE-14 IEEE-57
Total failure data available 17,968 1,181,871
Simple failure data used for the ANN 10,000 20,000
Training data (80%) 8,000 16,000
Validation data (10%) 1,000 2,000
Test data (10%) 1,000 2,000

Complex test data 1,000 1,000
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4.5.1. Predictive Performance. Predictions on the failure cases from the complex

data sets are expected to be harder for the ANN as they are not of the same type of the

input data by which the ANN is trained. Performance measures of the ANN on simple

and complex test data sets are shown in Table 4.7. It is worth mentioning that the failure

prediction process, from inputting the system state to the ANN until receiving the output in

the form of component indices that are about to fail, takes less than one millisecond on an

Intel Xeon E5-2623 3.00 GHz machine.

Table 4.7. Predictive performance measures of the ANN.

System Test Data Precision Recall F1 score

IEEE-14 Simple 99.25% 98.21% 98.46%
Complex 90.63% 83.65% 85.54%

IEEE-57 Simple 99.38% 98.66% 98.87%
Complex 84.83% 71.55% 75.29%

As seen in Table 4.7, the ANN has an excellent performance on the simple data sets,

both for IEEE-14 and IEEE-57 smart grids. Although the ANN does not perform as good

on the complex data sets, its performance is yet acceptable. The fact that the ANN can

predict imminent failures with a high accuracy is mainly in virtue of the interdependence

among the components and existence of recurred failure sequences. Identification of such

sequences of failure that frequently occur is also useful in fortification of the system [12].

4.5.2. How Much Training Data is Needed?. Thus far, we have seen that the

ANN has a good performance in detecting the components that are about to fail, both with

high accuracy and high speed. Another equally important feature of a prediction tool is that

it maintains its performance when it is trained with a relatively small data set. In order to

investigate whether the proposed approach has this feature and to find the minimum number

of required entries in the training data set, we have performed the training process with

subsets of the available data set and measured the predictive performance of the resulting
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ANN on a fixed test data set. Figure 4.20 shows how the performance measures of the ANN

in predicting failures of the IEEE-14 and IEEE-57 smart grids are affected by varying the

size of the training data set.
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Figure 4.20. The effect of the size of training data set on predictive performance of the
ANN.
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As expected, it is seen in Figure 4.20 that the performance of the ANN degrades as

we decrease the size of the training data set. Note that due to the randomness in selection of

the training data, the performance curves are not monotonically increasing. According to

Figure 4.20, increasing the size of the training data set to more than 1000 for IEEE-14 smart

grid and 2000 for IEEE-57 smart grid does not have a significant effect on the predictive

performance of the ANN. Since the performance of the proposed ANN is not contingent

on having large training data sets it can be trained using data available in the reports of the

past power outages for developing a failure prediction tool for smart grids.

4.6. EXTENSION TO OTHER CRITICAL INFRASTRUCTURES

The essential assumptions made in this research are not domain-specific, making

our approach applicable to various CPSs in spite of differences in commodities, e.g., water,

power, vehicles, carried by each system. In fact, our modeling approaches seek to capture

and quantify the behaviors that are described by the dependability attributes without relying

on characteristics that are specific to the smart grid domain. As a result, our metrics

and models can be generalized to other critical infrastructures, such as intelligent water

distribution networks and intelligent transportation systems.

Prerequisites of applying the proposed techniques to other domains are: i) a simulator

capable of capturing the operation of cyber and physical entities, ii) system descriptions and

specifications such as physical and cyber topologies, and iii) definitions and assumptions

regarding the acceptable operation of the system. Among these requirements, the most

challenging problem is to build integrated cyber-physical simulators as further explained in

Section 4.1.3.

4.6.1. Intelligent Water Distribution Network. A prominent example of critical

infrastructure CPSs are intelligent water distribution networks (IWDNs), which are very

similar in topology and structure to smart grids. The physical infrastructure of a smart
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grid is responsible for delivery of electricity from he generators, through transmission and

distribution lines, to end-users. Similarly, an IWDN transfers water from reservoirs and

tanks to customers through a network of pipes. Figure 4.21 depicts a hypothetical IWDN.

Computing Devices

Information flow
(sensor data)

Information flow
(commands)

Sensor

Physical commodity flow (water)

Reservois (source)

Consumer (sink)

Valve
(control device)

Figure 4.21. An IWDN.

The cyber infrastructure of the IWDN seeks to make effective use of water resources

by increasing the number of pathways for water circulation. Decision support uses the

information collected by several sensors dispersed in the physical infrastructure and actuates

the hardware controllers to manage the allocation (quantity) and chemical composition

(quality) of the water. Despite the undeniable performance gains facilitate by the cyber

infrastructure, it is critical to verify that dependability aspects is not compromised. This

task is facilitated by model-based approaches such as our proposed MIS model, which we

derive for an IWDN in the remainder of this section.

4.6.1.1. Test case. The IWDN analyzed in our case study, depicted in Figure 4.22,

consists of two water sources (a reservoir at node 1 and a tank at node 11), nine demand

nodes (2-10), four valves (96, 97, 98, 99), and thirteen pipes (1-11, 98a, 98b). The reservoir

is capable of providing an infinite supply of water, while the tank’s supply is limited by
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the tank diameter and water level, which are predefined. The system has a single pump

located at the reservoir which maintains the flow and head. The pipes and valves are the

main components that control the flow and provide water to the consumers represented by

the demand nodes. The topology of the physical water distribution network studied is based

on the water network analyzed in [95, 96] to enable comparison of the reliability evaluation

results. We added additional components, including a tank and multiple valves, to create

a more robust system, but neither the basic structure, i.e., elevation of nodes and topology

of the network, nor the supply and demand (in million gallons per day) specifications were

altered. Table 4.8 presents the parameters associated to the physical infrastructure of this

IWDN.
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Figure 4.22. Physical infrastructure of the IWDN studied.

This water network is being monitored and controlled by a rule-based system that

is considered as the cyber infrastructure. This decision support entity uses data collected

from the water system and sends control commands to the actuators with the objective of

maintaining the flow of water to the demand nodes.
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Table 4.8. Parameters of the IWDN simulated.

Node Elevation (ft.) Demand (mgd) Normal head (ft.) Minimum head
1 100 -6.62 100 -
2 100 0.73 388.48 146
3 200 1.2 386.43 246
4 210 0.6 376.80 256
5 230 0.4 377.54 276
6 250 0.82 380.05 296
7 10 0.6 173.57 56
8 10 0.8 170.31 56
9 50 0.4 160.87 96
10 25 0.2 181.37 96
8a 10 0 - -
4a 210 0 - -
6a 250 0 - -
5a 230 0 - -
Pipe From node / To node Length (ft.) Diameter (in.) Roughness
1 2/3 200 16 120
2 3/4 1500 12 120
3 3/6a 1800 14 120
4 4/5a 2000 10 120
5 6/5 1900 14 120
6 8/7 1000 8 120
7 8/9 2500 10 120
8 7/9 3500 8 120
9 10/7 1500 10 120
10 7/10 1500 6 120
11 11/6 1000 12 100
98a 4a/10 500 6 65
99a 5/8a 500 4 65

4.6.1.2. Definition of system failure. We defined a system failure as comprising

one or more of the following three cases:

• Negative pressure: Having a negative pressure in any pipe or at any node

• Water shortage: Having a node which is supplied with less than 80% of its demand

• Excessive outages: Concurrent failure of more than three components

Excessive outages is not a general criterion, but is used to eliminate the need for

exhaustive simulation of the entire system states. The number of failures that comprise

excessive outage can be set based on the size and number of components of the system.
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4.6.1.3. Simulations. An integrated simulation environment is used to understand

the operation ofwater distribution network and to determine the failed and operational states.

For the physical infrastructure, we have used EPANET, which is a water distribution network

simulator developed by theUSEnvironmental ProtectionAgency to study functional aspects

of the system, such as demand patterns, water quantity (flow and pressure head), and water

quality (contaminants and minerals). As EPANET is incapable of simulating intelligent

decision support, we constructed specific libraries in MATLAB to simulate the cyber

infrastructure. This integrated cyber-physical simulation environment is based on the work

presented in [97]. The simulation procedure, depicted in Figure 4.23, was conducted as

follows:

1. Set fault conditions

2. Run EPANET and generate operation report

3. Parse the report and extract input for the decision support

4. Operate the decision support algorithm to determine controller settings

5. Output control settings as an EPANET INP file

6. Provide the INP file to EPANET and observe simulation results

EPANET produces a report of the flow and pressure at each node and in each

component, as well as a negative pressure warning. These reports were parsed and loaded

into MATLAB to determine whether the injected fault conditions result in a system-level

failure.

4.6.1.4. Reliability model. As mentioned in Section 4.6.1.2, all triple-component

failures are considered system-level failure states. The results of single-component and

double-component fault injection were used to generate the reliability model. A number of

representative failure scenarios are presented in Table 4.9.
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Figure 4.23. Cyber-physical simulation procedure.

Table 4.9. Representative failure scenarios.

Failed component State Failure time Description
Pump failed 3 negative pressure at nodes 2, 3, and 4
Tank operational -
Pipe 1 failed 6 negative pressure at node 3 and 4
Pipe 6 operational -
Pipe 98a failed 0 negative pressure

Pipes 7 and 8 failed 0 negative pressure at node 9
Valve 98 failed 3 negative pressure
Valve 99 operational -

After identifying the failed and operational states, we can populate the reliability

model using theMarkov chain imbeddable structure as explained in Section 3.2. Figure 4.24

plots the overall reliability of the system in terms of the reliability of the pipes with three

different assumptions about the valves. pPI , pV , pT , pPU , and pCyber respectively, denote

reliabilities of each pipe, each valve, each tank, each pump, and the overall reliability of

the cyber infrastructure. As expected, we see that improving the reliability of pipes (as the

main physical components of a water distribution network) has a significant impact on the
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reliability of the system. It is also shown that the valves are required to be highly reliable

to attain a system with acceptable service, even if the pipes are near perfect. Mathematical

representation of the reliability model for this IWDN is shown in Appendix D.
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Figure 4.24. Effect of the valves on system-level reliability.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

The objective of the research presented in this dissertation is to develop quantitative

models for dependability attributes ofCPSs. The scope of thiswork comprises reliability and

survivability, as meaningful dependability attributes for analyzing domains of our interest.

We have investigated interdependency to enable composition of a unified dependability

model from these disparate attributes. Our main focus is on smart grids, as prominent

examples of critical infrastructure CPSs. In our case study, we have used the IEEE 14- and

57-bus test systems as bases for developing smart grid examples. To demonstrate generality

of our approach, we illustrate the application of our reliability modeling technique to an

IWDN.

We have investigated the use of correlation and causation metrics for detection

and quantification of the extent of dependency links among the components of a CPS.

We have created quantitative interdependency metrics, which seek to capture the effect of

multi-step dependencies as well as immediate dependency links. These interdependency

metrics reveal important, but previously indiscernible, links among the components. The

importance of this revelation is amplified by the fact that some components thus revealed to

be strongly dependent are not within geographical, logical, physical, or cyber proximity of

each other. This nonlocal property of fault propagation has been observed in the past and

was demonstrated through the test cases in this work.

Our reliability analysis reiterates the urgency of improving the computational and

communication technologies that underpin modern critical infrastructures. We simulated

several failure cases to populate a Markovian reliability model and observed through quan-

titative analysis that introducing additional interdependency can exponentially degrade

system reliability. Propagation of failure from cyber to physical components was found to

compromise system-level reliability to the greatest extent.
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To better quantify the success of CPSs in achieving their stated goals, such as the

ability to autonomously defend against attacks and remediate the consequences of failure, we

presented an approach for evaluation of survivability. This approach quantifies attributes

pivotal to survivability by determining the rate and extent of degradation of a domain-

specific figure-of-merit during a number of selected failure cases. These results were used

to identify critical components whose hardening would be most beneficial to survivability.

Our final contribution is a neural networks approach for prediction of imminent

component failures. This neural network exhibited excellent predictive performance, which

could be attributed in part to the high level of interdependence among components of the

systems analyzed. Several related studies from the literature have confirmed the high level

of interdependency and corroborated the existence of recurrent failure sequences in most

critical infrastructures. These observations support the promise of our failure prediction

approach for being efficiently applied to domains other than power.

Proposed avenues for future extension of this research include the following:

• To date, we have assumed that the communication infrastructure will remain func-

tional despite other failures in the critical infrastructure being examined. Consid-

ering communication impairments, and data corruption as a manifestation thereof,

will refine and increase the accuracy of our dependability model. Corrupted data

may originate in malicious attacks to the communication infrastructure or accidental

faults during measurement, communication, processing, and storage. While consid-

eration of additional components, e.g., communication links, improves the accuracy

of a dependability model, it also increases the size of the system state space and

computational complexity. The computational complexity of our proposed modeling

approach is not prohibitive for systems with fewer than 500 components; however, a

more judicious state eliminationmethod is needed for application to larger-scale CPSs
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or more refined analysis that examines the system at a higher level of granularity. In

systems with independent components, superposition can alleviate the computational

burden.

• A challenging task in dependability modeling is to identify essential services of the

system being investigated. Equally important is finding an appropriate definition of

system-level failure. Qualitative dependability studies, and specifically an ontology,

can be utilized to this end. It is very common for a large-scale system to have multiple

objectives and provide more than one service. To address this challenge, individual

FoMs can be combined to create a multi-dimensional FoM, leading to another avenue

for extending our current research.

• Our dependability modeling approaches are useful regardless of whether the disrup-

tive event is caused by an accidental failure or a malicious attack; however, targeted

cyber-physical attacks may render plausible a number of specific degraded states

omitted from our current analysis. Any omission of plausible degraded states can

cause potential overestimation of dependability attributes. This concern inspiresmore

careful consideration of the consequences of cyber attacks in future extensions to our

work.

• Tools and techniques for machine learning are ubiquitous and fast-growing, and

improving in reliability and accuracy. This allows them to be utilized in critical

applications. We have demonstrated applicability of a well-known machine learning

tool, the ANN, for prediction of failures in CPSs. As an improvement to this research,

state-of-the-art methods such as recurrent neural networks (a more advanced ANN

architecture) may be used to incorporate temporal features of the failures as well.
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In interdependency analysis of the IEEE-14 and IEEE-57 smart grids, weights are

assigned to each node as well as each dependency link. In Figure 4.7 and Figure 4.8, these

weights are displayed using a graph representation. In this section, numerical values of the

weights for notable nodes and links are provided. For easier comparison, we also include

the values attained from correlation analysis using the PCC metric. Tables A.1 and A.2

show the top ten direct dependency links for IEEE-14 and IEEE-57 smart grids, respectively.

Similarly, Tables A.3 and A.4 indicate the most remarkable pairs of components that despite

weak direct dependencies, have large multi-step dependency links. Finally, Tables A.5

through A.8 show the top ten components with largest in-degree/out-degree values for

IEEE-14 and IEEE-57 smart grids.

Table A.1. Notable dependencies among components of IEEE-14 smart grid.

PCC RDC Causation
Components di j Components di j Components di j
L1−2 - L1−5 0.73 L1−2 - L1−5 0.83 L1−2 - L1−5 0.83
L2−3 - F2−3 0.60 L2−3 - F2−3 0.79 L2−3 - F2−3 0.81
L2−4 - F2−4 0.52 L2−4 - F2−4 0.72 L2−4 - F2−4 0.77
P2 - L1−2 0.49 L4−5 - L1−2 0.61 L1−5 - F1−5 0.56
F1−5 - L1−2 0.48 P2 - L1−2 0.60 F1−5 - L1−2 0.39
L4−5 - L1−2 0.45 F1−5 - L1−2 0.57 P2 - L1−2 0.32
L1−5 - F1−5 0.43 L1−5 - F1−5 0.56 L1−5 - P9 0.20
F1−5 - L1−5 0.35 F1−5 - L1−5 0.52 L2−3 - L4−5 0.13
L2−3 - L1−5 0.34 L1−5 - L1−2 0.46 DS - L1−2 0.12
L4−9 - L1−2 0.33 L2−3 - L1−5 0.46 L7−9 - L9−10 0.12
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Table A.2. Notable dependencies among components of IEEE-57 smart grid.

PCC RDC Causation
Components di j Components di j Components di j

L1−17 - F1−17 0.76 L7−29 - L8−9 0.96 L12−17 - F12−17 0.95
L7−29 - L8−9 0.73 L12−17 - F12−17 0.94 L1−17 - F1−17 0.94
L12−17 - F12−17 0.72 L1−17 - F1−17 0.93 L28−29 - P28 0.92
L2−3 - L1−15 0.69 L28−29 - P28 0.92 L7−29 - L8−9 0.92
F1−16 - F1−16 0.68 L34−35 - P32 0.92 L1−16 - F1−16 0.91
L7−8 - F7−8 0.67 L9−55 - P53 0.92 L37−38 - P56 0.91
L34−35 - P32 0.65 L37−38 - P32 0.92 L7−8 - F7−8 0.91
L28−29 - P28 0.65 L37−38 - P56 0.92 L6−7 - F6−7 0.90
L9−55 - P53 0.65 L34−32 - P32 0.91 L54−55 - F54−55 0.88
L37−38 - P32 0.65 L35−36 - P32 0.91 L7−29 - P28 0.87

Table A.3. Notable multi-step dependency links among components of IEEE-14 smart grid;
dependency links that are relatively large in T, but small in D.

PCC RDC Causation
Components Components Components
L2−3 - L1−2 L2−3 - L1−2 L1−2 - F1−5
L4−5 - L1−5 L2−3 - L1−5 F1−5 - L1−5
L2−3 - L1−5 L4−5 - L1−5 P2 - L1−5
L2−4 - L1−5 L2−4 - L1−5 L1−5 - L1−2
L2−3 - F1−5 L2−3 - F1−5 L1−2 - P9
L2−3 - L1−2 L2−4 - L1−2 P2 - F1−5
P2 - L1−5 L2−4 - F1−5 DS - L1−5
L2−4 - L1−2 L4−5 - F1−5 F1−5 - P9
L2−4 - F1−5 L5−6 - L1−5 L4−5 - L1−5
L5−6 - L1−5 L7−9 - L1−5 DS - F1−5

Table A.4. Notable multi-step dependency links among components of IEEE-57 smart grid;
dependency links that are relatively large in T, but small in D.

PCC RDC Causation
Components Components Components
L7−29 - L1−15 L7−29 - L1−15 L7−29 - L7−8
L7−29 - L1−2 L7−29 - L1−2 L7−8 - F6−8
L7−29 - F7−8 L7−29 - F7−8 L8−9 - F7−8
L7−29 - P32 L1−16 - P32 L1−16 - L1−2
L7−29 - F1−17 L7−29 - F1−17 L7−29 - L6−8
L7−29 - L1−17 L7−29 - L1−17 L1−15 - F1−17
L1−16 - P32 L7−29 - P32 L8−9 - F6−8
L7−29 - L7−8 L1−2 - P32 L1−2 - F1−17
L1−15 - P32 L1−15 - P32 P32 - F1−17
L8−9 - L1−15 L1−16 - F1−17 L1−2 - F1−16
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Table A.5. Largest weighted out-degree values in the IEEE-14 smart grid.

PCC RDC Causation
Component τ Components τ Component τ

L2−3 0.239 L2−3 0.244 L1−2 0.206
L4−5 0.219 L4−5 0.234 L1−5 0.187
L2−4 0.215 L2−4 0.220 L4−5 0.152
L1−2 0.205 L1−2 0.206 F1−5 0.143
P9 0.196 L7−9 0.200 L2−3 0.128

L1−5 0.193 P2 0.199 P2 0.127
F1−5 0.188 L5−6 0.197 L2−4 0.113
P2 0.187 L1−5 0.196 P9 0.093

F2−3 0.185 F1−5 0.194 DS 0.091
L5−6 0.178 P9 0.191 L7−9 0.071

Table A.6. Largest weighted out-degree values in the IEEE-57 smart grid.

PCC RDC Causation
Component τ Components τ Component τ

L7−29 0.073 L7−29 0.072 L1−2 0.047
L8−9 0.069 L1−16 0.067 L7−29 0.038
L1−2 0.063 L1−2 0.067 L1−15 0.033
L1−16 0.063 L8−9 0.067 L1−16 0.031
L1−15 0.062 L1−15 0.063 L7−8 0.028
L7−8 0.055 L3−4 0.060 L22−23 0.025
P25 0.053 L22−23 0.060 L8−9 0.024

L12−17 0.052 L37−39 0.058 L1−17 0.018
P19 0.051 L7−8 0.056 L37−38 0.018
P28 0.050 L12−17 0.054 L6−8 0.016

Table A.7. Largest weighted in-degree values in the IEEE-14 smart grid.

PCC RDC Causation
Component ν Components ν Component ν

L1−2 0.591 L1−5 0.604 L1−5 0.181
L1−5 0.575 L1−2 0.594 L1−2 0.1168
F1−5 0.497 F1−5 0.495 F1−5 0.151
P9 0.421 P9 0.427 P9 0.148

F2−3 0.318 F2−3 0.322 L4−5 0.118
F2−4 0.269 L4−5 0.285 L9−10 0.103
L4−5 0.263 F2−4 0.280 F2−3 0.101
L2−3 0.219 L9−10 0.237 L7−9 0.093
L9−10 0.187 L2−3 0.210 F2−4 0.088
L7−9 0.175 L7−9 0.208 L2−3 0.080
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Table A.8. Largest weighted in-degree values in the IEEE-57 smart grid.

PCC RDC Causation
Component ν Components ν Component ν

F1−17 0.130 L1−17 0.132 P32 0.045
L1−17 0.130 F1−17 0.128 L1−17 0.043
P32 0.116 P32 0.126 F1−17 0.031

L1−15 0.101 L1−15 0.109 L1−15 0.028
L1−2 0.086 L1−2 0.099 P28 0.027
P28 0.083 P25 0.092 P53 0.023
P25 0.081 P28 0.092 L8−9 0.022
P53 0.081 P53 0.089 P25 0.020

F1−16 0.077 F1−16 0.084 L7−8 0.019
F7−8 0.077 P56 0.084 P56 0.019
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For each of the IEEE-14 and IEEE-57 smart grid systems, we designed and trained

an ANN to provide decision support. Each of these ANNs has one input layer, fed with

parameters describing system status (i.e., bus voltages and line power flows), one hidden

layer, and one output layer, providing settings for SSSC devices. Each ANN is trained by a

lookup table generated by exhaustive search for optimal settings on N-1 failure cases. The

exhaustive search is performed seeking for the settings that minimize line overloads and is

calculated as shown in Equation (B.1).

θ =

n∑
i=1

(
Pi

Ci

)2µ
(B.1)

where n is the number of lines; Pi and Ci are the active power flow and maximum capacity

of line i, respectively; µ controls the extent to which a given setting should be penalized for

line overloads. We have set µ = 5.

Figure B.1 shows the architecture of the ANN used for dynamic adjustment of SSSC

settings.

Input layer Output layerHidden layer

∙∙∙
∙∙∙

Line states

Bus states

∙∙∙

L1

SSSC1

SSSC2

SSSCnf

L2

Lnl

B1

B2

Bnb

∙∙∙

Figure B.1. Architecture of the ANN used for decision support of IEEE test cases.
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Table B.1 shows for each of the IEEE test cases, the number of nodes at each layer.

Table B.1. Number of nodes at each layer of the ANN used as decision support for IEEE
test cases.

IEEE-14 IEEE-57
input layer 34 137
hidden layer 20 75
output layer 3 7

The R2 measure of goodness of fit for the ANNs trained for IEEE-14 and IEEE-57

smart grids are 0.92 and 0.90, respectively.
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System-level reliability of IEEE-14 smart grid in fail-bypass mode is shown in

Equation (C.1), where pDS, pF , pP, pL , and pCM , respectively, represent the (component-

level) reliability of the control algorithm, each SSSC device, each PMU device, each

transmission line, and each communication link. For every component-level reliability

value p, the corresponding unreliability is defined as q = 1− p. For a better tractability, but

without loss of generality, all components of the same type (e.g., all PMUs) are considered

to be equally reliable.

Rsys = p20
L +

19pDS .pF
3.pP

4.qL .pL
19.pCM

7 +

167pDS .pF
3.pP

4.qL
2.pL

18.pCM
7 +

76pDS .pF
3.qP .pP

3.qL .pL
19.pCM

6 +

76pDS .pF
3.pP

4.qL .pL
19.qCM .pCM

6 +

668pDS .pF
3.qP .pP

3.qL
2.pL

18.pCM
6 +

835pDS .pF
3.pP

4.qL
2.pL

18.qCM .pCM
6 +

56pDS .qF .pF
2.pP

4.qL .pL
19.pCM

6 +

481pDS .qF .pF
2.pP

4.qL
2.pL

18.pCM
6 +

219pDS .qF .pF
2.qP .pP

3.qL .pL
19.pCM

5 +

219pDS .qF .pF
2.pP

4.qL .pL
19.qCM .pCM

5 +

1849pDS .qF .pF
2.qP .pP

3.qL
2.pL

18.pCM
5 +

1849pDS .qF .pF
2.pP

4.qL
2.pL

18.qCM .pCM
5 +

16qDS .pF
3.qL .pL

19 +

393qDS .pF
3.qL

2.pL
18 +

221qDS .qF .pF
2.qL .pL

19 +

1705qDS .qF .pF
2.qL

2.pL
18 (C.1)

Equation (C.1) can be interpreted as the sum of probabilities of being in any of the

states that do not lead to a failure (as defined in Section 4.3.1). The system can withstand

cyber impairments in virtue of the relatively conservative fail-bypassmode, asmanifested by

the term p20
L . The subsequent terms correspond to the cases where at least one transmission

lines is in outage, and hence, fault-free operation of the cyber network is needed in order to

mitigate the impacts of disruptions imposed to the system.
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System-level reliability of the IWDN studied in this document is as shown in Equa-

tion (D.1), where pPU , pT , pPI , pV , and pCyber , respectively, represent the component-level

reliability of the pump, the tank, each pipe, each valve, and the overall reliability of the

cyber infrastructure. For each component-level reliability value, p, the corresponding un-

reliability is defined as q = 1 − p. For better tractability, but without loss of generality, all

components of the same type (e.g., all pipes) are considered to be equally reliable.

Rsys = pPU .pT .pPI
13.pV

4.pCyber +

pPU .qT .pPI
13.pV

4.pCyber +

8pPU .qT .pPI
12.qPI .pV

4.pCyber +

pPU .qT .pPI
13.pV

4.qCyber +

10pPU .pT .pPI
12.qPI .pV

4.pCyber +

31pPU .pT .pPI
11.qPI

2.pV
4.pCyber +

16pPU .pT .pPI
12.qPI .pV

3.qV .pCyber +

5pPU .pT .pPI
12.qPI .pV

4.qCyber +

3pPU .pT .pPI
13.pV

3.qV .pCyber +

pPU .pT .pL
13.pV

4.qCyber (D.1)

Equation (D.1) can be interpreted as the sum of probabilities of being in any of the

states that do not lead to a failure (as defined in Section 4.6.1.2).
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