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ABSTRACT 

 

Electrical resistivity tomography (ERT) data were acquired across a segment of 

an existing fly ash landfill in southwestern Missouri. The objective was to map potential 

karst features and identify probable groundwater seepage through and beneath the 

landfill.  

Variations in the moisture content were mapped below and above the two liners 

(clay and synthetic) systems, the soil and bedrock. Seepage pathways were mapped 

through the fly ash and the underlying soil and rock. No visual evidence was found on 

any of the 3D ERT profiles of the presence of either pre-existing air-filled voids or pre-

existing or newly infilled clay-filled voids. There was also no evidence that moisture was 

seeping into the subsurface through the basal clay liner.     

Imaging beneath the geosynthetic liner system using the ERT technique was 

achieved due to the moisture resulted from permeability in the geosynthetic liner, which 

enabled the conduction of current through the geosynthetic liner. 

Multichannel analysis of surface waves (MASW) data were acquired to constrain 

and verify the accuracy of the ERT interpretations. The interpretations of ERT data were 

consistent with MASW and borehole control.  

Based on the investigation, it is concluded that the study site is devoid of karst 

features that could affect the landfill. The interpretation revealed no evidence of 

groundwater seepage pathways through the basal clay liner and, hence no potential 

hazard of groundwater contamination. 
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1. INTRODUCTION 

 

The Ozarks region is underlain by Paleozoic age carbonate rocks that were 

subjected to karstification in the Mississippian time, and more recently in the late 

Quaternary, where such units lie within proximity (~ 152 m; 500 ft.) to the present-day 

ground surface. This situation portends likely hazards associated with the local gradual to 

catastrophic collapses associated with karst features, when improvements are constructed 

over such features without the knowledge of their precise natural geometry. The study 

area in southwestern Missouri is underlain by thick carbonate rocks (~ 59 %) that host a 

wide variety of karst features such as sinkholes, limestone ridges, caves and extensive 

underground and/or exposed streams and drainage systems that were created by the 

dissolution process of limestone and dolomite rocks by the seepage of surface and 

underground acidic water (Figure 1.1). 

 

 
Figure 1.1: Block diagram shows some karst features (Source: 

http://www.ocean.odu.edu/ ~spars001/common/graphics/Figures/plummer). 
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The significance of this research is to map potential karst features, if any, beneath 

an existing fly ash landfill, using the electrical resistivity tomography (ERT) and 

multichannel analysis of surface waves (MASW) techniques, and to image any possible 

seepage patterns and flow pathways through and beneath the fly ash landfill, and to map 

the variations in moisture content beneath and above the liners systems, and to assess the 

condition of the landfill liners. The research will implement those integrated geophysical 

techniques to characterize the karst terrain beneath the landfill that developed within 30 

meter (100 feet) of the original ground surface. In order to achieve optimum results, we 

utilized ERT and MASW methods, which have shown themselves to be cost effective 

techniques for characterizing large tracts of land (e.g. > 100 acres) (Anderson, personal 

communication). 

The research will hopefully show the wisdom of employing more than one non-

invasive geophysical imaging technique to more accurately study existing landfills and 

mapping the variations in the depth to the top-of-rock at low cost.  

This research is essential in helping fly ash landfills owners to assess the 

structural stability of these landfills, and should help in preventing karst-related 

settlements that could impair the long-term integrity of the fly ash landfills, or impune 

groundwater quality by damage of the liner/containment systems through localized 

sinkholes collapses beneath landfills, or the migration of potentially hazardous leachate 

into the subsurface soils and groundwater table. 

The research and utilization of these techniques will hopefully assist in avoiding 

the potentially high cost of mitigating the impacts of such foundation movements beneath 

or immediately adjacent to the existing landfill. 
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Missouri is ranked the 16
th

 state in the production of fly ash in the United States 

that is disposed in man-made landfills (Figure 1.2). The weight of the fly ash landfill 

embankments and/or preferentially-directed/concentrated runoff can hasten the collapse 

of sinkholes, or water-filled voids and cause possible contamination of groundwater 

(Evans, et al, 2011). 

 

 
Figure 1.2: An aerial view of a fly ash landfill at Dominion’s Chesapeake Energy Center 

(Source: Bill Tirenan file photo, the Virginian Pilot, http://pilotonline.com/news/local/ 

environment/tennessee-spill-brings-fly-ash-dangers-to-forefront/article, Jan. 24, 2017). 

 

Fly ash which is generated in the burning process of coal in power generation 

plants contains many toxic elements, and poses serious challenges of surface and 

subsurface environmental contamination that directly and indirectly affect the living 

organisms (Openshaw, 1992). The massive produce of fly ash requires a well-engineered 

disposing systems and well-designed landfills.  

Electrical resistivity tomography (ERT) is one of the most proficient methods for 

subsurface studies in karst terrains to a depth of about 30 m (100 feet), because it can 

measure the spatial variations of electrical resistivity of natural subsurface materials such 

http://pilotonline.com/news/local/
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as rocks and soils and man-made materials, including the fly ash.  The 2-D and 3-D ERT 

imaging is not capable of exploring the natural subsurface features only, but also capable 

of imaging man-made structures such as fly ash landfills. 

The multichannel analysis of surface waves (MASW), is a highly efficient 

geophysical technique that can adequately be used in mapping the variations in the 

rigidity of soils, rocks and man-made materials, including fly ash, and as well, the 

variations in the elevation of top of rock. The MASW technique is often used as 

complementary method that constrains and verifies the interpretation of the ERT data 

(Torgashov, personal communication). 

 

1.1 RESEARCH OBJECTIVES 

 map any karst features beneath the fly ash landfill (if any); 

 identify possible pathways of seepage or water flow through and beneath the fly 

ash landfill; 

 image the fly ash beneath and above the landfill geosynthetic liner; 

 map the variations in moisture content in fly ash, and rocks and soils; and 

 map the variations in the elevation of top-of-rock. 

 

1.2 DESCRIPTION OF THE RESEARCH 

This research intended to accurately survey and image an existing fly ash landfill 

in Southwestern Missouri, with the objectives of determining the subsurface conditions 

beneath the landfill, noting any karst features, and to detect the seepage pathways and 
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to image the fly ash below and above the geosynthetic liner of the landfill and to 

determine the variation in the moisture content in fly ash, and rocks and soils and to 

determine the elevation of the top-of-rock.  

3-D electrical resistivity tomography (ERT) data were acquired along traverse 

profiles, varying in length between 150 m (500 feet) to more than 300 m (1000 feet), in a 

west to east orientation. The data acquired using an automated multi-channel resistivity 

meter SuperSting system connected to dipole-dipole electrode array of 168 electrodes, 

spaced by 1.5 m (5 feet) apart and separated by 6 m (20 feet) distance. The Res2dinvx64 

software was employed for the ERT data processing. 

The proposed orientation was selected normal to the general direction of the 

underlying geologic structure, and the spacing between adjacent profiles (6 m) is 

intended to enhance data resolution and to produce 3-D image for the shallow subsurface. 

The resistivity contrast was employed as a reliable factor for the identification of the 

various stratigraphic units.  

The multichannel analyses of surface waves (MASW) data were acquired at 

separate locations across the fly ash landfill using a 24-channel Seistronix engineering 

seismograph and 24 geophones, spaced at 1.5 m (5 feet) or at 0.76 m (2.5 feet) intervals 

(depending on the regularity of the depth to top-of-rock along the array line of the 

geophones). The acquired MASW data were used to determine the engineering properties 

of the subsurface to depth varies between 9 m (30 feet) to 30 m (100 feet)  

The broader impact of this research is that it safeguards communities from the 

possible inadvertent migration of fly ash pollutants into subsurface soils and 

groundwater. 
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2. LITERATURE REVIEW 

 

Yeheyis et al. (2009) defined fly ash as a by-product of coal combustion in 

thermal power generating stations. It is composed mainly of silt-sized spherical 

amorphous ferro-aluminosilicate minerals (Fisher et al., 1976) and is generally 

characterized by low permeability, low bulk density, and high specific surface area (Roy 

et al. 1981). 

Fly ash contains many elements that include SiO2, Al2O3, and Fe2O3 and trace 

elements such as As, Ba, Cu, Cr, Mn, Pb, Sr, V and Zn. Fly ash produced by burning coal 

in power generation plants introduced many challenges, on top of which, is the surface 

and subsurface environmental contamination that directly and indirectly affect the living 

organisms. (Openshaw, 1992). 

Fly ashes produced from coal combustion in power generating plants require 

careful treatment and safe disposal in landfills. The efforts directed to the reduction of the 

highly visible surface contamination problems, such as the blowing of or the burning 

debris. The possibility of ground-water contamination by fly ash landfills is of 

importance because of the composition of the fly ash. Douglas S. Cherkauer,1980 has 

mentioned that fly ash contains considerable concentration and types of trace elements 

such as Ti, Mn, K, Cu,Zn, Cr, Mo.,Ni and Pb.  Jones et al. (1978) and Duvell et al. 

(1979), on the other hand, recognized that composition of fly ash is highly variable 

depending on the coal used, but has been shown to be generally high in Si, Al, Fe, Ca, 

Mg and S, among the major constituents. Tao et al., (2015) found that the dielectric 

constant of fly ash is dependent on the size of the grains of fly ash, such that the electrical 
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conductivity decreases with the decrease of the grain size, which means that the grain 

size plays an important role in the electrical conductivity of fly ash.  

 The major concern of the Environmental Protection Agency (EPA) related to 

groundwater pollution by leachate from coal combustion by-products, is the high 

concentration of their constituents of soluble salts and toxic trace elements and heavy 

inorganic components that include boron, sulfate, Arsenic, Barium, Cadmium, 

Chromium, Lead and Selenium (USEPA, 1988). Carlson and Adriano, 1993, found that 

the chemical and physical characteristics, climate and the hydrological conditions at the 

disposal site largely determine the groundwater contamination extent and concentration 

attenuation, and that major impacts of coal combustion residues are generally associated 

with changes in water chemistry, including changes in the pH and the concentrations of 

potentially toxic elements. Using fly ash as a soil amendment can improve soil texture 

and water-holding capacity, and increase the soil pH, and enhance soil fertility. However, 

it may also result in excessive soluble salt concentrations, excess Boron, and increased 

concentrations of other potentially toxic trace elements.  

Mathematical solution techniques and modeling of contaminants transport are 

largely used in evaluating the impact of contaminants on groundwater. Most approaches 

to describing and predicting the movement of contaminants treat groundwater as a two-

phase system in which contaminates partition between immobile solid constituents and 

the mobile aqueous phase. Contaminants that are sparingly soluble in water and that have 

a strong tendency to bind to aquifer media are assumed to move much more slowly than 

the rate at which groundwater flows (Figure 2.1).  
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Figure 2.1: The two and three-phase systems of contaminant transport in groundwater 

(Source: McCarthy and Zachara, 1989). 

 

Many contaminants readily absorb to immobile aquifer media and therefore are 

considered, to be virtually irremovable in the subsurface and to present little danger to 

groundwater supplies.  For example, in soil and aquifer material, many metals and 
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radicals bind strongly to mineral components; therefore, many nonpolar organic 

contaminants tend to bind to particulate or link-matter and colloids in the solid phase, 

however, also may be mobile in subsurface environments. Because the composition of 

colloids is expected to be chemically like that of the surfaces of immobile aquifer 

material, these particles also could absorb organic and inorganic contaminants and 

stabilize them in the mobile phase (John F. McCarthy et al., 1999). 

Landfill failures are evident in many parts of the United States. On December 

22, 2008, a dike ruptured at an 84-acre ash fill operated by the Tennessee Valley 

Authority’s Kingston Fossil Plant in Roane County, TN.  1.1 billion gallons of fly ash 

slurry were released, and covered over 300 acres with up to 1.8 m (6 feet) of 

sludge.  The spill was larger than the Exxon Valdez, damaging neighboring properties 

and contaminating nearby waterways. 

Electrical resistivity tomography is often used in conjunction with other non-

invasive geophysical techniques in detecting and characterizing landfills in general, while 

for fly ash landfills the (ERT) technology supported by multichannel analysis of surface 

waves (MASW), has proved to be of importance in assessing the conditions of fly ash 

landfills. Muchingami, (2013) selected the (ERT) as the appropriate tool for the 

elucidation of potential flow paths and brine dispersion in ash dump. Thus, he could 

utilize (ERT) in monitoring and evaluating the impact of ash dump on the hydrological 

system at Tutuka, South Africa. The researcher was further able to estimate the flow rate 

of brine and to apply the (ERT) to understand and extract knowledge of the underlying 

hydrogeology and the geology of the study area without the application of intrusive 

methods. 
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Similar study by Muchingami et al. (2013) in Mpumalanga, South Africa utilized 

Electrical resistivity for monitoring infiltration of salt fluxes in dry fly ash dumps, based 

on the changes in moisture and salt concentration. 

Sinkholes are considered by some to be difficult to study. Electrical resistivity 

tomography was found as an appropriate method to map sinkholes because of its 

capability of detecting resistive features and discriminate subtle resistivity variations. 

Schoor, (2002) used (ERT) in detecting two sinkholes in the dolomites of the Lyttelton 

Formation near Pretoria, South Africa. 

ERT has gained a universal acceptance in the detection and imaging of sinkholes 

and underground karst features, especially when these features are buried under the sand. 

In Algeria, Fahdi et al. (2011) conducted 2-D electrical resistivity imaging in the Cheria 

Basin and was able to differentiate between the developing and mature sinkhole based on 

the detection of the resistive air-filled cavities.  Youssef et al. (2012) detected sinkholes 

in Saudi Arabia that were successfully confirmed by field observation, using different 

electrode spacing with the dipole-dipole method. Shishay et al. (2016) found that 

electrical resistivity tomography is routinely used in Missouri to image the shallow 

subsurface in karst terrain because of the presence of the undisturbed soil, carbonate rock, 

clay in-fill, and air-filled cavities, which are characterized by very high resistivity 

contrast. 

Combined ERT and GPR were used by Kruse et al. (2006) to resolve the structure 

of the clay-rich semi confining layer that floors sinkholes in many karst terrains and to 

image individual fractures or conduits below a main depression in the northeastern part of 

Tampa Florida. The study results confirmed that the combined geophysical methods were 
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able to image the target depression in the clay-rich semi confining layer, and that the 3-D 

GPR could further be used to detect the subtle vertical undulations. 

Information from borehole log together with 2-D electrical resistivity data are 

used by Shishay et al. (2016) to generate geologic models depicting the subsurface 

structure and the formation mechanism of the karst features beneath the subsurface, 

therefore, with the help of borehole and MASW control and previous knowledge of the 

author in the study area, ERT contour values for the different geophysical unites in 

specific area can be determined. 

3D electrical resistivity tomography (ERT) was used by Ogilvy et al. (2002) to 

map the 3D spatial distribution of waste and leachate concentrations within a closed and 

unconfined landfill as the 2D (ERT) and borehole sampling failed to detect the pollution 

plume. The 3D survey determined the pattern of leachate drainage within the waste and 

presented as 3D volumetric tomograms that showed the waste distribution and leachate 

flow-paths. In a study by Ahmed et al. (2001), the researchers were intending to evaluate 

the groundwater and soil pollution near Seri Petaling landfill in the State of Selangor, 

Malaysia. The results from (ERT) agreed with the geochemical analysis and 

investigation, revealing a general down-stream trend of pollutants. 

Electrical resistivity imaging was employed in surveying the leachate content and 

to evaluate the boundary of a waste disposal site in Northern Israel. The research was 

challenged by the highly water saturated fat nonconsolidated clay, but was able to 

determine that the landfill body bottom was intensively saturated with leachates (Frid et 

al. 2008). 
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A recent research study by Shishay et al. (2016) in southwestern Missouri showed 

that the increase of clay content with depth is a reliable indicator of vertical water flow 

and piping and washing down of fine soil material into subsurface, and that the higher the 

moisture and piped clay, an anomalously low resistivity values is produced. 
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3. STUDY AREA 

  

3.1. LOCATION 

The study site is in Springfield Plateau, part of the Ozark natural division in 

southwestern Missouri. The natural divisions of Missouri are described by Richard et al., 

(2004) as a hybridized regionalization scheme that divides the state into six major 

divisions, namely, the Glaciated Plains, the Big Rivers, the Ozark Border, the Ozark, the 

Osage Plains, and the Mississippi Lowlands; that by integrating the geologic history, 

soils, bedrock geology, topography, plant and animal distribution, the pre-settlement, 

vegetation and other natural factors (Figure 3.1). 

  

 
Figure 3.1: The location of study area in the Springfield Plateau in the Ozark Natural 

Division (red arrow) (Source: http://web.archive.org/web/20030930114729/ 

www.mdc.state.mo.us/ nathis/natcom/natdiv/). 

 

http://web.archive.org/web/20030930114729/
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The Springfield Plateau in south-central Missouri and northernmost Arkansas, 

being part of the Ozark Plateaus Province, falls within the general elevation of the Ozark 

natural division between 122 m (400 feet) to 548 m (1,800 feet) (a.s.l.), where elevations 

of 1800 feet reported in Springfield Plateau, and steep hillsides at elevations in the order 

of 304 m (1,000 feet) to 426 m (1,400 feet) occupy the hilly southeastern parts of the 

plateau (Figure 3.2). 

 

 
Figure 3.2: Elevations of the Springfield Plateau study area within the Ozark Region 

(Source: https://en.wikipedia.org/wiki/Ozarks#/media/File:OzarkRelief.jpg; By Tosborn 

at English Wikipedia - Transferred from en.wikipedia to Commons. Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=4346100). 

 

This research conducted at the northern section of a larger study area in 

southwestern Missouri (Figure 3.3). 3-D ERT data were acquired along west-east 

traverses for the purpose of imaging a fly ash landfill and map the underneath subsurface 
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to an approximate depth of 30.48 m (100 feet), using AGI SuperSting unit coupled to 168 

electrodes, spaced at 1.5 m (5 feet) intervals. 

 

 
Figure 3.3: Traverses configuration where the ERT data acquired in the study area in 

southwestern Missouri, USA. 

 

3.2. GEOLOGICAL SETTING 

A characteristic feature of the Ozark Plateau, which encompasses Springfield 

Plateau, Salem Plateaus and the Boston Mountains, is the gentle southward dipping of its 

sedimentary rock formation, which were laid as shallow marine deposits and reached a 

thickness of more than 1524 m (5,000 feet), during the Ordovician- Pennsylvanian Period 

(http://www.geology.ar.gov/education/geo_ozark_plateaus.htm).  As shown in Figure 

(3.4), the major rock formation of Springfield Plateau is the limestone dolomite, 

sandstone, and limestone with minor amounts of shale; rocks of Mississippian age, which 

are mostly cherty limestones; rocks of Pennsylvanian age, which consist mostly of shale, 
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sandstone, and limestone; and Post-Paleozoic sediments, which consist of sands, gravels, 

and clays. The Springfield plateau is recognized for its marvels of extensive cave systems 

and prominent sinkholes that have developed in the Mississippian limestone of the 

Burlington-Keokuk Formation that forms most of the extensive surface bedrock (Ismail 

and Anderson, 2012).  

The Precambrian age igneous rocks underlying the Ozark Plateau province of the 

granite, rhyolite and diabase and the sedimentary rocks, are extensively fractured and 

faulted, and exposed only in the St. Francois Mountains of south-central Missouri and 

where rivers incision was deep through the overlying sedimentary formation. 

Structures in the Ozark, in general and in the Springfield Plateau, such as faults 

and major river systems are vertical to steeply dipping, have strike-slip displacement, and 

trending northeasterly and northwesterly. Joints in the rocks are generally vertical too and 

are trending north-south and east-northeast (James C. et al., 2016). 

 

 
Figure 3.4: The principle rock formation and stratigraphic setting of Springfield, Salem 

and Boston Mountains of the Ozark Plateau (Source: http:// www.geology.ar.gov/ 

education/geo_ozark_plateaus.html). 
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3.3. TOPOGRAPHIC SETTING 

The surface of Springfield Plateau is characterized by an undulating topography and 

is dominated by gently rolling hills.  The plateau is less highly dissected compared to the 

other Plateaus of the Ozark, but in some of its parts, the plateau consists of steep hillsides 

associated with the deeply entrenched stream valleys. 

Except at St. Francis Mountains, the study area is characterized by karst features 

in the entire Ozark region, which include sinkholes, caves, bluffs and large springs, 

calcareous wet meadows, losing streams, and streams with entrenched meanders. Streams 

are generally clear and meander in a northerly direction, such as Gasconade, Niangua, 

Lower Osage, Bourbeuse, and Meramec Rivers (Figure 3.5).  

 

 
Figure 3.5: Karst features distribution in Missouri (Source: https://www.nature.nps.gov/ 

Geology/parks/ozar/index.cfm). 

 

https://www.nature.nps.gov/
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3.4. SOILS 

The soil in the study area is part of the Ozark Division; it is characterized by thin, 

often stony residual soils and scanty thin loess. Soils are highly weathered and contain 

high iron and aluminum. Soils of the study area can be extremely gravelly and have high 

permeability with short retention time. 

Alfisol and ultisol soil types underlie most of the study unit. These soils are 

moderately to deeply weathered and have a wide range of hydraulic properties. The 

fertile alfisols are commonly found in both Salem and Springfield Plateaus. They are 

fairly fertile and good for vegetation growth (USDA, 1981 and Frey et al., 2014). 

 

3.5. CLIMATE AND VEGETATION 

 Climate and vegetation are two of the elements that are detrimental in the creation 

and transportation of contaminant. Vegetation cover and type controls the intensity and 

velocity of water, therefore, landfills that are at the proximity of dense vegetation cover 

would likely be less affected by input water compared to landfills that are located at areas 

devoid of vegetation cover. Climate, on the other hand is also controls the amounts of 

water and the seasonality of possible pollution.      

3.5.1. Climate. The climate of Missouri is generally controlled by the cold 

Canadian air masses and the warm moist air from Gulf of Mexico, thus Missouri has a 

continental type of climate marked by strong seasonality and is unchallenged by any 

topographic barriers, but periodically swing south from the northern plains and Canada. 

Precipitation varies from 0.889 m (35 inches) in the north and northwest to 1.27 m (50 

inches) in the extreme southeast, mostly falls during April – June. Missouri receives little 
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amount of snow during December – February and the State lies in the path of maximum 

tornadic activity (Rafferty, et al. 2016). 

The maximum temperature is experienced during January at about mid 40’s 

degree Fahrenheit, in the southeast and mid 30’s in the north and northwest, but summer 

temperatures may exceed the 100 °F (38 °C) in any part of the state.  

The weather conditions between March and June brings about approximately 1.21 

m/year (48 in/year) of rainfall to southwestern Missouri, while in the cold season 

extending between October and March, the average seasonal precipitation during is 

approximately 0.30 m/year (12 in/year), and it is important to know that precipitation is 

generally acidic in nature with pH values between 4.6 and 5.0, thus, would greatly impact 

the carbonate rocks in the region and the enhancement of karst development process. 

3.5.2. Vegetation. Most of Missouri lands are covered by forests and prairie 

grasses. Bottomland deciduous forest is common due to the large number and size of the 

streams. Studies of pre- settlement vegetation (palynology) in the Ozarks revealed that a 

mixture of pine and oak forests were common under pre-settlement conditions. 

Vegetation was described as a mosaic of grassland, savannah, oak forest with open grass 

undergrowth and densely wooded valley bottoms. The Niangua darter (Etheostoma 

nianguae Gilbert and Meek) and bluestripe darter (Percina cymatotaenia) are Ozark 

endemics species, together with Wild pink (Silene caroliniana). Early settlers of the 

Ozarks during the 1800’s cleared considerable forests areas for grazing and crop 

production (Foreman, A. T., 2014). 
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4. FLY ASH  

 

4.1. WHAT IS FLY ASH? 

Fly ash is the lightweight by-product particles that produced from coal 

combustion process in electric utility or industrial boilers, and it is carried off with the 

flue gases in electric generating plants by a mechanical collector or an electrostatic 

precipitator as they flow down from the boilers.  Fly ash is composed mainly of silt-sized 

spherical amorphous ferro-aluminosilicate minerals (Fisher et al., 1976) and is generally 

characterized by low permeability, low bulk density, and high specific surface area, and 

is considered as waste and disposed in landfills (Roy et al., 1981). 

 

4.2. PHYSICAL AND CHEMICAL PROPERTIES 

Fly ash is mainly composed of silt sized glassy spheres typically ranging in size 

between 2 µm -50 µm (Martin et al., 1990) (Figure 4.1). 

 

 
Figure 4.1: Fly ash particles at 2,000x magnification (Source: https://www.fhwa.dot.gov/ 

pavement/recycling/fach01.cfm). 

 

https://www.fhwa.dot.gov/
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Some of the spheres are hollow, termed cenospheres, or spheres filled with 

smaller spheres termed plerospheres. The fly ash properties are dependent on the 

composition of the parent   coal, conditions during   combustion, efficiency of emission 

control   devices, storage and handling of the byproducts, and climate (Adriano et al., 

1980). 

During the combustion and subsequent cooling process many different metal 

oxides can precipitate and concentrate on the surfaces on these spheres. These oxides 

control the chemical properties of the ash, and tend to vary from ash to ash. The oxides 

may also affect the physico-chemical properties of some fly ashes, especially the 

pozzalonic (cementious) reactivity (Stewart et al, 1996) 

Fly ash is generally considered a ferro-aluminosilicate mineral with aluminum 

(Al), silicon (Si), calcium (Ca), magnesium (Mg), iron (Fe), potassium (K), sodium (Na), 

chlorine (Cl2), and sulphur (S), as the predominant elements. In addition, fly ash contains 

all naturally occurring elements and generally enriched in the trace elements compared 

with the parent source coal, like boron (B), arsenic (As), cadmium (Cd), molybdenum 

(Mo), selenium (Se), and zinc (Zn). Many of these trace elements are concentrated in the 

smaller ash particles. Ash pH depends on the sulphur content of the parent coal.  

Classifying and sorting fly ash into types or groups was governed by the purpose 

of the ash utilization, such as an input in the cement industry and in soil fertilization, but 

the environmental protection agency (EPA), is considering the risk of mobilization of ash 

and other slid wastes as a classification approach based on the toxicity of some particular 

mobilized waste. Other than Griffin (1982) classification, which is based on the chemical 

composition, hydration pH and particle size distribution, the American Society for 



22 

 

 

Testing and Materials (ASTM), is the main classification method used. The method is 

based on the source of coal and the major element oxide content of the fly ash. 

Accordingly, fly ash in the U.S. is classifies into type (F) and type (C), where type (F) 

contains at least 70% of SiO2 + Al2O3 + Fe2O3, and type (C) must have a minimum of 

50% SiO2 + Al2O3 + Fe2O3 , and higher calcium content (Openshaw, 1992).  

The physical, chemical, and mineralogical characteristics of fly ash depend upon 

several factors including the composition of the parent coal, combustion conditions, the 

efficiency and type of emissions control devices, and the method of ash disposal (Carlson 

and Adriano, 1993). Ash varies from acidic to alkaline because of the chemical make-up 

of the source coal. Physical appearance varies depending on coal type and furnace. All fly 

ash samples are mainly composed of glass-like porous beads that vary in chemical 

composition with respect to Al/Si/Fe ratio and pH, from extremely low pH (near 3) to 

extremely high pH (near 12). Alkaline fly ash is often associated with high boron levels 

and exhibits extremely low pH buffering (V.P. Evangelou, 1996). 

 4.2.1. Physical Properties. The physical properties of fly ash depend upon 

several factors, including the type of coal burned, the boiler conditions, the type and 

efficiency of the emission controls, and the disposal method (Adriano et al., 1980). 

Certain characteristics tend to be similar in most ashes. Fly ash is mainly composed of 

silt-sized materials having a diameter of less than 10 microns (Chang et al., 1977, 

Terman, 1978 and references therein). The grain size of fly ash affects its electrical 

resistivity, such that the electrical resistivity increases with the decrease of the grain size 

(Tao et al., 2015). When compared with mineral soils, fly ash has lower values for bulk 

density, hydraulic conductivity, and specific gravity. Both crystalline (mullite) and 
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amorphous (glass) phases have been identified by X-ray diffraction in fly ash (Mattigod 

et al., 1990).  

4.2.2. Chemical Properties. Fly ash consists primarily of oxides of silicon, 

aluminum iron and calcium. Magnesium, potassium, sodium, titanium, and sulfur are also 

present to a lesser degree. The chemical properties of fly ash will largely be determined 

by the metal oxides that were surface adsorbed during particle formation. In the U. S., fly 

ash from eastern coals, which usually are higher sulfur coals, tend to be higher in Fe, Al, 

and S and lower in Ca and Mg when compared to western coals. The ranges of chemical 

analyses of U.S. fly ashes from different types of coal are shown in Table 4.1 and 4.2. 

 

Table 4.1: Partial elemental composition of various fly ash sources (Terman, 1978). 
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Table 4.2: Ranges and average chemical composition of fly ash (Roy and Griffin, 1982). 
Constituent Range (%) No. of data Avg. (%) 

SiO2 2.19-68.1 58 44 

TiO2 0.5-2.55 39 1.3 

Al2O3 3.39-39.4 60 23 

Fe2O3 3.60-29.2 58 11 

CaO 0.2-31.0 58 8.2 

MgO 0.4-12.8 58 2.7 

Na2O 0.2-8.0 50 1.8 

K2O 0.2-8.1 49 2.0 

C 0.1-25.7 21 5.0 

SO
2
 0.1-7.28 48 1.6 

(Table 4.2 data from the literature and unpublished data from Illinois State logical 

survey files). 

 

The electrical resistivity of the fly ash depends on the physical characteristics, 

chemical composition and moisture content of fly ash. In a research on the chemical 

composition and moisture effects on of fly ash electrical resistivity, conducted by 

Andrabi, et al. (2012), he found that increasing combined calcium and magnesium 

oxides, increases the resistivity of fly ash due to the low conductivity of these elements 

when in combination, and also concluded that combining sodium and potassium oxides, 

decreases resistivity when their percentages increase because sodium is an ion donor and 

is abundant in fly ash, unlike potassium that has minor effect in decreasing the resistivity.   

Fly ashes from eastern coals also tend to be higher in the trace elements As, Cd, 

Cr, Pb, V and Zn (Roy et al., 1981). Most of these elements can substitute into the iron 

pyrite structure, and coals higher in pyrite therefore tend to produce fly ashes which 

contain higher levels of these elements. The element selenium does not seem to be 

correlated with any coal property. Selenium is known to be a volatile element and its 

behavior may be highly dependent upon the burning conditions within the boiler. 

(Stewart et al, 1996). 
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4.3. FLY ASH PRODUCTION 

In coal combustion processes, coal is crushed into small particles, which is then 

burned at temperatures that exceed 1500°C. 70 to 90% of the raw coal is burned in this 

process leaving a small fraction of impurities, which is known as fly ash (coal 

combustion by-product).  One fifth of this by-product settles down to the bottom of the 

furnace, and is known as “bottom ash’’, while the remainder is quickly (~ 4 seconds) 

removed to low temperatures (~200
o
C), where it is expelled from the furnace with the 

flue gas in a crystalline or non-crystalline glassy form, known as fly ash.  

More recent combustion technologies tends to introduce clean methods by pre-

treating raw coal before combustion by removing the mineral particles and reduce the 

toxic contents of the coal and to eliminate the gaseous materials. 

Fly ash is the second largest industrial waste seam in the United States. 

Approximately 90 million tons of coal combustion byproducts were produced in the USA 

in 1994 (Stewart, B. et al., 1996), while 114.7 million tons was produced in 2013 

(American Coal Ash Association, https://www.acaa-usa.org, August 2016) (Table 4.3). 

 

Table 4.3: Production of coal byproducts in the USA, 2013. 

 
 The generated fly ash in Missouri is about 2,679,742 tons annually  

(http://earthjustice.org/sites/default/files/StateofFailure_2013-04-05.pdf).  

https://www.acaa-usa.org/
http://earthjustice.org/sites/default/files/StateofFailure_2013-04-05.pdf
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Most of the coal combustion byproducts is fly ash with approximately 53.4 

million tons in 2013 (https://www.acaa-usa.org, Aug. 2016), and it is projected to be 54.6 

million tons in 2033 (Figure 4.2). 

 

 
Figure 4.2: Projected production of fly ash in the United States (Source: ACAA, 

https://www.acaa-usa.org, Aug. 2016). 

 

4.4. UTILIZATION OF FLY ASH 

Although fly ash is considered waste by itself, it has become a valuable by-

product in numerous environmental and commercial applications due to its pozzolanic, 

cementitious and alkaline properties. These include its use as raw material in cement 

production, as an admixture in blended cements and as replacement for cement or as a 

mineral admixture in concrete; for agriculture to improve soil structure and water-holding 

capacity, as a liming agent to neutralize acidic soils, and as essential source of 

micronutrients for agricultural crops. (Muluken B. Yeheyis, Julie Q. Shang and Ernest K. 

Yanful, 2009). 

Utilization of fly ash is increasing and is expected to increase over the next 20 

years, by 53 percent, that increase is triggered by the growth of the ready-mixed concrete 

industry. (Figures 4.3 and 4.4). 

https://www.acaa-usa.org/
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Figure 4.3: Projected demand for ready-mixed concrete (Source: ACAA, 

https://www.acaa-usa.org, Aug. 2016). 

 

 
Figure 4.4: Fly ash utilization (Source: ACAA, https://www.acaa-usa.org, Aug. 2016). 

 

 



28 

 

 

5. DESIGN AND CONSTRUCTION OF FLY ASH LANDFILLS 

 

Landfill is the physical construction built (designed) for disposing solid wastes in 

the earth’s surface soil (either in the ground or on the top of the ground) to avoid 

polluting the surrounding environment and the ground water. Fly ash landfills are a 

special landfill types that are constructed and designed to accommodate the by-products 

of coal combustion residues, which contains toxic materials contained in heavy metals, 

trace elements and soluble oxides of chemical elements that are considered of primary 

concern by environmental, governmental and community bodies in the contamination of 

ground water pollution and subsurface soil. 

Increasing production of fly ash, from coal based industrial constructions or from 

power plants, is posing a challenging problem in terms of its safe disposal and proper 

utilization. Fly ash is enriched in leachable heavy metals such as arsenic and boron, 

which are considered highly hazardous materials according to the environmental 

regulations in most of the countries of the world.  Fluctuating water table and rain water 

interacts with fly ash in landfills, causing the leaching of toxic heavy metals and trace 

elements to the subsurface soil and groundwater, thus, leads to serious environmental 

issue. As such, it becomes mandatory to characterize fly ash, along with the identification 

of its leaching characteristics to adopt efficient disposal strategies (Devendra N. Singh et 

al, 2002). 

Fly ash landfills are constructed to eliminate the visual and non-visual 

environmental threats of trace elements, heavy metal and other element oxides that are 

generated from the combustion of the different types of coal, and to prevent these toxic 
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and hazardous materials from migrating to groundwater or be retained by subsurface soils 

and ultimately reach for the food-chain and impact human life and living organisms. 

Landfill designs are all meant to be secured, but for fly ash landfills, the secure 

landfill construction requires a number of elements to be considered that include (i) a 

bottom-liner system (compacted clay layer and/or geosynthetic layers) at the base and 

sides of the landfill, to prevent the scape of the leachate material to subsurface soils and 

groundwater, (ii) leachate collection pipes to collect the leachate from the landfill base 

and to prevent the leachate clogging, (iii) geotextile filter layers to filter or become as a 

pipe drain the leachate to the removal area (iv) final cap cover soil to divert the surface 

drainage away from the landfill, (v) landfill structural stability, and (vi) a hydrogeological 

setting and surface water drainage system to minimize the chances of washing the landfill 

materials into the natural drainage system (Figure 5.1 and Figure 5.2). 

 

 
Figure 5.1: Elements of design of fly ash landfill (source: https://www.duke-   

energy.com/). 
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Figure 5.2: Illustrative figure for a fly ash landfill. 

     

5.1. THE LINER SYSTEMS OF FLY ASH LANDFILLS  

The liner system in landfills is the principle element in the design, as it secures the 

leachate and prevents it from reaching for the groundwater and subsurface soils. Many 

developments occurred in designing, constructing and maintaining liners for variety of 

purposes. The main types of liners include the clay liners, the geosynthetic liners and the 

geosynthetic clay liners.    

5.1.1. Clay Liners. The compacted clay material is used as classical liner in 

landfills due to the relatively low hydraulic conductivity (10
-7

 cm/sec) that characterizes 

compacted clay. In 1984, the Environmental Protection Agency (EPA) enforced a 

minimum of double liner system design for leachate collection and removal (Figure 5.3). 
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Prior to the enforcement of double liner systems, single clay liner or single geomembrane 

liners were commonly used for landfills. 

The double liner system is dependent on the properties of the materials used in the 

design, such as the clay and the synthetic material properties. For clay to be used as liner, 

compaction is considered as the most challenging task, because of the flocculent 

structural property of the clay. For the optimum compaction of the clay, the compaction 

moisture content will reduce the degree of flocculation to its minimum. Exceeding the 

optimum moisture content will reduce the dry soil unit weight, despite that it leads to clay 

particle orientation, which is a desired property. 

 

 
Figure 5.3: Cross section of double-liner system (Source: Das, B. M., 2014, Principles of 

Geotechnical Engineering). 
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To achieve optimum compaction results of clay, at least 20% of the soil should be 

of the fine fraction (i.e. silt and clay), and that the plasticity index (PI) to be greater than 

10, and the gravel-size content to be less than or equal to 10%, and the soil should not 

contain greater than 25 to 50 mm-size chunks of rocks. 

The ideal mix of plastic and non-plastic materials needed to produce liners that 

comply with the requirements for the minimum hydraulic conductivity for clay liners 

where the mixtures liquid limit is greater than 50%, was introduced from laboratory 

experiments, and is satisfying the equation: 

log K =  e – 0.0535 (LL) – 5.286 

                  0.0063(LL) + 0.2516   
where, 

K = hydraulic conductivity (permeability) of bentonite- non-plastic soil mixture 

(m/sec) 

e = void ratio of compacted mixture 

LL = liquid limit of mixture (%) 

(Source: Das, 2008). 

Permeability and hydraulic conductivity (K) are often interchangeably used terms 

for the same property. Permeability (K) is defined as a measure of the amount of fluid 

that will flow through a sample for a given time without causing displacement. Fluids 

actually flow through the void space, not the particulate matter, and that gives porosity a 

controlling influence on permeability.  
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The coefficient of permeability equivalently refers to the hydraulic conductivity 

and is given by the equation (Openshaw, 1992): 

                              K = ḵɤ/µ 

where  

ɤ = specific weight of fluid  

µ = dynamic viscosity of fluid and, 

 ḵ = the intrinsic property of the medium. 

 It is essential for successful compaction of clay layers; the permeability is highly 

reduced for both, the liners and the clay, and between the compaction lifts, otherwise, 

leachate could escape through the compaction lefts interfaces (Figure 5.4). 

 

 
Figure 5.4: Pattern of flow through compacted clay with improper bonding between lifts 

(After J.5. Environmental Protection Agency, 1989). 
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5.1.2. Geosynthetic Liners. The Geosynthetics liners are similar to natural 

textiles, but are manufactured from polymer materials such as polyester, polyethylene, 

polypropylene, polyvinyl chloride, nylon and chlorinated polyethylene, to be utilized in 

the separation, reinforcement, filtration and drainage and as a moisture barrier in a variety 

of applications, including, essentially, the landfill leachate liners. Examples of these 

Geosynthetic materials and their most common functions in the landfills liners systems 

are illustrated in Figures 5.5 to 5.7. 

5.1.2.1. Geonets. Geonets are formed by the continuous extrusion of polymeric 

ribs at acute angles to each other and are used basically for drainage, and are made of 

medium to high density polyethylene (Figure 5.5). 

They are available in rolls with widths of 1.8 m to 2.1 m, and their lengths could 

be 30 m to 90 m. The approximate aperture sizes vary from 30 mm x 30 mm to about 6 

mm x 6 mm. The thickness of geonets that is commercially available can vary from 3.8 

mm to 7.6 mm. 

 

 
Figure 5.5: Polyethylene geonets as drainage liners (Source: Das, B. M., 2008, Principles 

of geotechnical engineering, seventh edition). 
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5.1.2.2. Geomembranes. These are Impermeable liquid or vapor barriers, made 

of continuous polymeric thermoplastic or thermoset flexible sheets, and the material used 

for their manufacturing include polyethylene, chlorinated polyethylene, and polyamide. 

The thermoset polymers include ethylene vinyl acetate, polychloroprene, and isoprene-

isobutylene. 

The hydraulic conductivity of geomembranes is in the range of 10
-12

 to 10
-15

 

m/sec, and their thickness range from 0.25 mm to about 0.4 mm. Types and field 

configurations of geomembrane seams include, (a) lap seam; (b) lap seam with gum tape; 

(c) tongue-and-groove splice; (d) extrusion weld lap seam; (e) fillet weld lap seam; (f) 

double hot air or wedge seam (Figure 5.6). 

 

 
Figure 5.6: Types and field configurations of geomembrane seams (Source: Das, B. M., 

2008, Principles of geotechnical engineering, seventh edition). 

 



36 

 

 

5.1.2.3. Geotextiles. Geotextiles encompass the woven and nonwoven types and 

they both require intensive testing’s of their properties to approve them to be used as 

liners in landfills (Figure 5.7). 

 

 
Figure 5.7: The drainage and filter types geotextiles and their properties (Source: Das, B. 

M., 2008, Principles of geotechnical engineering, seventh edition). 

 

 

Cross-plane flow through geotextile 
- Used mainly in filtration 

- It has woven and nonwoven types 

- Water must be able to flow freely 

through their fabric 

- Their capability expressed by 

permittivity P=kn/t, kn = hydraulic 

conductivity, and t = thickness 

- Thickness varies (0.25 to 7.6 mm) 

- Mass/unit area varies (150 to 700 

g/cm
2
) 

    𝑇 = 𝑘𝑝𝑡 

In-plane flow in geotextile 

- Used mainly for drainage 

- Depends on the compressibility 

- In-plane drainage capability 

expressed in terms of transmissivity 

    kp = hydraulic conductivity for in-   

plane flow, and t = thickness of the 

geotextile 
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 The mass per unit area, the percentage of open area, the equivalent opening size 

and the thickness of the geotextile are among the general properties, whereas the 

ultraviolet resistivity, the permittivity, the transmissivity are more concerned with micro 

properties, while the puncture resistance, resistance to abrasion, compressibility, the 

tensile strength and elongation are of the physical properties, and the testing and 

measurement of the chemical resistance. 

To use the Geomembranes as liner component, similar measurements and testing 

is advisable, as in the case of Geotextiles, in addition to measuring and testing density, 

water vapor transmission capacity, tensile behavior, tear resistance, resistance to impact 

stress cracking, and the thermal properties and seams behavior. 

 In practice, geomembrane sheets are assembled and seamed together in larger 

sheets to avoid their failure when they are used as liquid or vapor barrier (Figures 5.4-

5.7). 

5.1.3. Geosynthetic Clay Liners. These are mixed geosynthetic-clay components 

that are designed to provide the maximum protection as a fly ash landfill, in place of the 

clay liners, due to the low hydraulic conductivity of the bentonite that is used in these 

liners (Lin and Benson, 200; Egloffstein, 2001, 2001 and Benson et al., 2006).  

The bentonite layer is securely and professionally locked between two or more 

geotextile layers. The calcium and magnesium of the Bentonite are exchanged for the 

sodium, which has very low hydraulic conductivity in the order of ~10
-11

 m/s (the sodium 

ion is smaller compared to the calcium and magnesium). Furthermore, the sodium rich 

bentonite is hydrated to increase its moisture absorbance capability. 
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5.2. THE LEACHATE REMOVAL SYSTEM 

 The leachate in landfills is caused by washed-down of the landfill materials by 

rain water, snow melt and flood water into the subsurface. It represents a major source of 

pollution to groundwater and subsurface soils. Therefore, proper containment deems 

necessary to be implemented in constructing and designing landfills that are equipped 

with double linear systems to avoid the anticipated hazards of fly ash leachate in fly ash 

landfills. 

The leachate removal systems employ pumping or gravity to efficiently remove 

leachate from the base of the landfill, thus, proper gradation of the landfill floor is a vital 

design element to drain leachate to the collection and removal point (Figures 5.8 & 5.9). 

 

 
Figure 5.8: Secondary leak detection, collection, and removal (LDCR) system, by means 

of pumping (Note: The plastic pipe penetrates the primary geomembrane) (Source: Das, 

B. M., 2014, Principles of Geotechnical Engineering). 
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Figure 5.9: Secondary LDCR system, by means of gravity monitoring (Note: The plastic 

pipe penetrates the secondary geomembrane) (Source: Das, B. M., 2014, Principles of 

Geotechnical Engineering). 

 

5.3. CLOSURE OF LANDFILLS 

At the end of the age of the landfill, a cap cover is implemented for minimizing 

the production of leachate and minimizing the infiltration, and as a result protecting the 

groundwater from being contaminated (Figure 5.10). Clay-rich soils used in constructing 

low-hydraulic-conductivity covers for landfills (Daniel, et al. 1993). The cap cover is 

constructed of layers of compacted clay, topped by geomembrane and drainage layer and 

finally, covered by topsoil (Figure 5.11).The upper topsoil allow water to percolate to the 

protective impermeable layer or geomembrane. The function of this protective layer or 

geomembrane is to direct the water flow laterally away from the fly ash landfill. The 

diverted storm water will be collected at the designed drainage system at the toe of the 

landfill (drainage ditch), and eventually be directed to the natural drainage system and/or 

the low area of the landfill where the retention pond is located. Storm water that collects 
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via the drainage ditch will reach to the groundwater, bearing no contaminants, while on 

the other hand, the protective soil layer or geomembrane will prevent storm water to 

contact the leachate of the landfill.   

 

 
Figure 5.10:  Landfill with liner and cap (Source: Das, B. M., 2014, Principles of 

Geotechnical Engineering). 

     

 
Figure 5.11: Schematic diagram of the layering system for landfill cap (Source: Das, B. 

M., 2014, Principles of Geotechnical Engineering). 
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5.4. FLY ASH LANDFILLS STABILITY  

Landfills stability is controlled by many factors that individually or combined can 

lead to failures. These factors include angle of slope, the nature and the properties of the 

base and liner’s side’s and the interface material, the height and weight of the material 

and the change of pore pressure. These factors affect the stability of landfills by changing 

the shear strength. The stability of the landfill liner system is affected by the interface 

shear strength between the geosynthetic materials; the interface shear strength between 

geosynthetis and soil materials; the internal shear strength of geothynthetic clay liners; 

the internal shear strength of solid waste and on the slope and height.    

Stability analysis studies of fly ash landfills showed that the dominant landfill 

failures occurs at the interfaces between the different liner planes of the base and along 

the side slopes in a composite liner systems (Bergdo, D. T., et al, 2006, Dixon, N., et al., 

2006). Failures of bottom liner landfills induce leachate leakage into subsurface soils and 

groundwater. Mal functioning and clogging of leachate draining systems can lead to spill 

over landfill sides and/or change of pore pressure and pressure on the bottom liner and 

consequently, increase the probability of failure. Leachate can leak in the bottom of the 

landfill when a failure of the bottom liner happens, or it can fill up the landfill and spill 

over its sides, if the landfill fills up with a fluid, this fluid weight puts pressure on the 

bottom liner, which will lead to bottom liner failure. Other reported failures include 

sudden sinkhole collapses in karst terrains. The existence of either pre-existing air-filled 

voids or pre-existing or newly infilled clay-filled voids can highly affect the landfill 

stability and causes failure.  
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5.5. THE IMPACT OF FLY ASH LANDFILLS ON HYDROLOGIC SYSTEM 

Fly ash in most landfills comes eventually in contact with water and generates a 

leachate, which passes contamination threats to hydrologic systems. Most of the efforts in 

landfill operations go to reduce the highly visible surface contamination problems, while 

concerns with the invisible impacts of fly ash on groundwater are growing 

(G. S. Ghuman et al). 

5.5.1. Groundwater Contamination by Fly Ash Constituents. The potential for 

groundwater contamination due to leachate from coal combustion by-products disposal 

sites was identified by USEPA (1988) as the primary concern, based on the elevated 

concentrations of soluble salts and potentially toxic trace elements.  

 Evangelou, V.P., 1996, stated that coal ash is made of three types of solids (i) 

chemically water stable solids (SiO, FeO, AIO) (ii) relatively water soluble solids (e.g., 

metalSO4, metal-BO3), and (iii) water reactive metal-oxides (e.g., CaO, MgO, K2O, 

Na2O, etc.). On the other hand, Carlson and Adriano, 1993 showed that the effects of fly 

ash on groundwater quality depend on the physical and chemical characteristics of the 

ash, the hydrogeological conditions and the climate at the disposal site, hence safe 

disposal of fly ash with respect to surface and groundwater protection depends on having 

the know-how to evaluate the potential of a given fly ash to release its toxic pollutants.   

5.5.2. The Leaching Behavior of Fly Ash in Landfills. The leaching behavior of 

fly ash is a complex process and could be exemplified by the dissolution of lead. 

Understanding leaching behavior of fly ash and the leaching process is crucial in 

preventing the anticipated pollution and migration of the liquid that is collected at the 

bottom of the fly ash landfill (leachate) to groundwater and subsurface soil, and is 
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important in assessing and guiding the landfill disposal and detoxification of fly ash. 

(Gong, Y. and Kirk, D.W.  1993). 

The constituent of landfill leachate is the water-laden fly ash soluble and heavy 

material and the rain and surface water percolating through the ground. Different 

chemical and physicochemical reactions occur to transfer the fly ash constituents to the 

rain and surface water in a cation exchange process. The capacity and ability of soil to 

retain heavy metals is determined by the Cation Exchange Capacity (CEC) of the soil, 

which is defined as the number of milligrams of cations that are absorbed by 100 grams 

of the soil, and by the amount of minerals and organic colloidal matter present in the soil. 

The diminishing of the concentration of the migrating leachate material through 

the subsurface is determined by the mechanical filtration, the amount of precipitation and 

surface water and the cation exchange capacity of the soil. 

Leachate collection systems are essentially included in the landfill design to 

prevent the migration of leachate generated inside a landfill from reaching the soil and 

ground water beneath the landfill, with the aid of liner system, and methods to control 

and minimize leachate heads within the landfill, and to prevent the damage of the liner 

system which is composed of compacted clays, geomembranes and geosynthetic clay 

liner. 

  

5.6. CASE EXAMPLES OF LANDFILL FAILURES 

In Harriman, Tennessee on December 22, 2008, a coal ash dam at the Tennessee 

Valley Authority (TVA) Kingston Fossil Plant broke, releasing 4,16395 billion liters of 

coal ash into the Emory and Clinch Rivers, destroying three homes and damaging a 
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dozen others, and destroying three homes and damaging a dozen others. By volume, this 

spill is the largest environmental disaster in U.S. history that destroyed a highway and 

railroad line (Figure 5.12), and at around 10 a.m. on Sept. 4, 2013 the owner of the Big 

Run Municipal Solid Waste Landfill near Ashland, KY., reported a solid waste slide 

(Figure 5.13). About 800,000 tons of municipal solid waste slid from its disposal location 

to an area extending some 121.92 m (400 feet) off the landfill plastic liner and clay. The 

total slide was about 6 m (20 feet) deep and consisted of about 32374,9 m
2
 (8 acres). The 

amount of waste represented about one year’s worth of disposal effort. (Kentucky Energy 

and Environment Cabinet). 

 

 
Figure 5.12: Aerial images before and after the landfill failure in Tennessee, 2008 

(Source: http://www.cnn.com/2009/HEALTH/07/13/ coal.ash.illnesses/ index. html 

eref=rssus). 

 

The forensic report of the landfill failure revealed that there have been a buildup 

and increase in pore pressure and a development of wetted spots along the soil cover that 

contributed to the failure, by inhibiting the draining of the abundant heavy rain water. 

http://www.cnn.com/2009/HEALTH/07/13/
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 The absorption properties of the waste varied according to the waste type, hence, 

contributed to the failure by creating the soft wetted spots. The net result of the report is 

that water was trapped at the base and the sideways were the only scape for it, thus it took 

the garbage along. 

 

 
Figure 5.13: Aerial view of Big Run, KY landfill slide failure (source: https:// kydep. 

wordpress.com/ 2014/04/24/what-does-an-8-acre-garbage-slide-look-like-big-run-

landfill-slide-cleanup/). 

 

 Failure of fly ash landfill caused by the damage occurred in the liner and/or the 

leachate system, could cause a wide spread of contaminants into groundwater and 

subsurface soils that requires equipment to trap and collect water back into the leachate 

tanks. The cost of repairing and reconstructing these systems poses considerable financial 

and legal burden on companies and landfill owners. Imaging landfills using ERT and 

MASW geophysical technologies will become an indispensable effort and cost reduction 

option for such problems.  
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Fires might erupt following failures of solid waste landfills, due to the gasses that 

escape the cover layer, allowing waste to contact with air. This situation requires urgent 

treatment with sealant material to contain the gasses.  
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6. ELECTRICAL RESISITIVITY TOMOGRAPHY 

 

6.1. THEORITICAL PRINCIPLES  

 Electrical resistivity tomography (ERT) is a noninvasive geophysical technique 

that measures the electrical resistivities of subsurface materials, which depend on the 

lateral variations in subsurface resistivities.  

 Theoretically the principle of surface electrical resistivity technique is because, 

the distribution of electrical potential in the ground around a current-carrying electrode 

depends on the electrical resistivities and the distribution of the surrounding soils and 

rocks, to estimate the true resistivities of the subsurface materials (W. Ed Wightman et 

al., 2002-2003).  

  The basic physical concept of the electrical resistivity technique is derived from 

Ohm’s Law that gives the relationship between the current (I), the change in potential 

(ΔV), and the resistance (R), in the electrically conductive materials. This relationship is 

expressed by Ohm’s Law equation as: 

ΔV = IR 

where: 

ΔV = change in voltage, 

I = current, 

R = resistance. 

 Resistivity of a material is a measure of the efficiency of the material in detaining 

the flow of electrical current.  
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 The electrical resistivity concept is understood in the context of current flow 

through a subsurface medium consisting of layers of materials with different individual 

resistivities. Thus, the resistance (R) of a wire of length (L) and across-sectional area (A) 

is given by the equation: 

                                                                 R = ρ L/A  (1) 

where 

R = resistance (Ω) 

ρ = resistivity of the medium composing the wire (Ωm), 

L = length (m), 

A = area of the conducting cross section (m
2
). 

 To allow for multi-dimensional calculation of the heterogeneous medium, Ohm’s 

Law can also be expressed in a vector format by the equation: 

                                                        J = σE                                     (2) 

where:  

 σ = conductivity of the medium,  

 J = current density vector 

 E = electric field intensity vector 

The change in the electric potential represents the electric field intensity, represented by 

the equation: 

                           E = - V                                                   (3) 

where:  

 V = the change in the electric potential. 
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 Substituting for E in equation (2);  

                                                      J = - σV                             (4) 

         J = - 1/ ρV  

 Considering equation (3),  

         J = 1/ ρE 

 For two current electrodes configuration (Figure 6.1), the two electrodes are 

considered as point sources. Ohm’s law in terms of the total current flow from or toward 

each electrode across the surface of a half sphere of radius (r) and area (2πr
2
), is given by 

the equation: 

              J = - 1/ ρV 

                                                     J = - 1/ ρ dV/dr           (5) 

 In homogeneous surfaces, (ρ) is constant, and equation (5) is considered a first 

order differential equation that can be integrated to give the value of the electrical potential 

at distance (r) from the electrode V(r): 

 V(r) = ρI/2πr                                              (6) 

 

 
Figure 6.1: Current flow pattern between two electrodes in homogeneous medium 

(Source: https://www.researchgate.net). 
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  In electrical resistivity techniques, four current electrodes configuration is usually 

used (Figure 6.2). The current is provided by electrodes A and B, whereas the potential 

difference between electrodes C and D is given by the equation:  

                    ΔV = VC – VD = ρI/2π{(1/rA-1/rB) – (1/RA-1/RB)}      (7) 

 From equation (7), resistivity (𝜌 ) is given by the equation: 

                                ρa = 2π ΔV /I{(1/rA-1/rB) – (1/RA-1/RB)}          (8) 

 For homogeneous surface, resistivity (ρ) is constant and is independent of 

electrode spacing and surface location. 

 

 
Figure 6.2: General configuration of four current electrodes where current is delivered 

through the electrodes A and B, and potential difference is measured between electrodes 

C and D. 

 

For inhomogeneous subsurface, resistivity varies with the relative position of 

electrodes and surface locations, and is known as the “Apparent Resistivity”, which is 

defined as  the resistivity of a homogeneous ground that will give the same resistance 

value for the same electrode arrangement, but it is not the true resistivity of the 

subsurface (Loke, 2011 ).  
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Apparent resistivity is given by the equation: 

                     ρa = 2π ΔV /I{(1/rA-1/rB) – (1/RA-1/RB)}          (9) 

Apparent resistivity depends on the form of the inhomogeneity.    

                                 ρa = k ΔV/I                             (10) 

where, 

                                 k = 2π/{(1/rA-1/rB) – (1/RA-1/RB)}  

k =  array geometric factor that depends on the geometry of the electrode arrangement.      

(Gibson and George 2003). 

            ρa = kR                    (11) 

where 

 R = V/I 

To obtain the true resistivity, the apparent resistivity of the medium can be found 

from measured values of V, I, and K (obtained by the instruments), then the apparent 

resistivity values are acquired from field observations at various locations and various 

electrode configurations. Finally, the true resistivities for the different earth materials are 

estimated by applying inversion techniques on the apparent resistivities. 

 

6.2. RESISTIVITY AND CONDUCTIVITY OF EARTH MATERIALS 

Electric current is the measure of the rate of flow of electrons in the medium, 

while electrolytic current is the current generated by the fluids containing dissolved 

current conductive materials. Current flow in the subsurface is electrolytic, and is carried 

through the rock by the passage of ions in pore space by water. Thus most rocks conduct 
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electricity by electrolytic rather than electronic processes where current is generated due 

to the positive and negative charges in conductive non-aqueous media.  

Resistivity is considered an intrinsic property of the material, and it depends on 

the homogeneity or heterogeneity of the rock or soil under investigation. Table 6.1 

displays some of the typical ranges of resistivity values for natural rocks and earth 

materials. 

 

Table 6.1: Typical electrical resistivities of earth materials. 

Material Resistivity (ohm-m) 

Clay 1 – 20 

Sand (wet to moist) 20 – 200 

Shale 1 – 500 

Porous limestone 100 – 1,000 

Dense limestone 1,000 – 1,000,000 

Metamorphic rocks 50 – 1,000,000 

Igneous rocks 100 – 1,000,000 

 

Homogeneous materials theoretically produce identical resistivity values. 

Whether these values are low or high depends on the properties of these materials, 

however, in real life homogeneity of earth material does not exist. Resistivity values for 

heterogeneous materials represent the average resistivity of the different components of 

the investigated area, which is a function of the average properties of the heterogeneous 

material. To account for the inherent heterogeneity of the earth, the calculated resistivity 

value is not the true resistivity of the subsurface, but an “apparent” value that is the resistivity 
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of a homogeneous ground that will give the same resistance value for the same electrode 

arrangement. (Loke, M.H., 2016). 

 Approximate resistivity values were obtained for the common rocks, soil 

materials and chemicals as shown in (Figure 6.3). The lateral or vertical variation of earth 

material resistivities is emphasized in variations in the relationship between the applied 

current and the potential distribution as measured on the surface. These measured 

variations define subsurface properties such as porosity, water content, and salinity of the 

pore water, grain size distribution and composition of clay mineral and metal content. 

 Properties that affect the resistivity of a soil or rock include porosity, water 

content, composition (clay mineral and metal content), salinity of the pore water, and 

grain size distribution. 

 Resistivity of rocks is governed by the degree to which the rock is intact or 

fractured and jointed. In this situation, igneous and metamorphic rocks are the ideal earth 

material representatives that possess high resistivities. However, depending on the 

sedimentary rocks intactness or fracturing and jointing, and the dryness or wetness, these 

rocks can have a wide range of resistivities (10’s to thousands of ohm-m), since joints 

and fractures allow water and soft infill materials (i.e. clay and silt particles) to percolate 

inside the solid rock and produce low resistivity values.  

In applied geophysical research, these properties of the igneous and metamorphic 

rocks is utilized in the detection of groundwater in arid regions and in geotechnical 

investigation of subsurface in order to construct dams, bridges, large buildings and 

highways. 

Unlike igneous and metamorphic rocks, sedimentary rocks are known for their 

porosity and storage ability of water and dissolved solids. The resistivity is generally 
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lower, yet they also possess a range of resistivities, depending on their mode of formation 

(chemical, mechanical, silicified, or compacted), and the intensity of their fracturing, and 

they can exhibit resistivity values ranging from 10 to 10000’s ohm-m. 

 

 
Figure 6.3: Resistivity of common rocks, soils and earth materials (After: Keller and 

Frischknecht 1966, Daniels and Alberty 1966, Telford et al. 1990). 

 

The least earth material that display very low resistivity is the unconsolidated 

sediments, which, is an easy media for the interaction of water, soluble and insoluble 

solids and gaseous and oxygen circulation. These unconsolidated materials possess 

resistivities less than 10 ohm-m. However, a spectrum of resistivities is also evident and 
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is controlled by the degree of compactness and the wetness-dryness of these materials. 

Clayey soil normally has lower resistivity value than sandy soil. 

   The resistivity of groundwater typically varies from 10 to 100 ohm-m depending 

on the concentration of dissolved salts. Note the low resistivity (about 0.2 ohm-m) of 

seawater due to the relatively high salt content. This makes the resistivity method an ideal 

technique for mapping the saline and fresh water interface in coastal areas. One simple 

equation that gives the relationship between the resistivity of a porous rock and the fluid 

saturation factor is Archie’s Law. It is only applicable for certain types of rocks and 

sediments, particularly those that have low clay content. The electrical conduction is 

assumed to be through the fluids filling the pores of the rock. Archie's Law is given by  

                                                       ρ = aρw
-m           (12) 

 where, 

 ρ = the rock resistivity 

 ρw = fluid resistivity 

  = porosity (the fraction of the rock filled with the fluid) 

 a and mare two empirical constants (Keller and Frischknecht, 1966) that depend 

on the geometry of the pores. For most rocks, 𝑎 is about 1 while 𝑚 is about 2.  

The conductivity (σ) of a material is defined as the ability of that material to 

conduct electricity, which is given by the reciprocal of the resistivity (ρ) of that material. 

Resistivity of rocks and soils is affected by many factors, on top of which are the 

porosity, water saturation, water salinity and clay mineralization (i.e. pure water is non-

conductive). Conduction of electrical current through earth material occurs basically in 

the aqueous media of pore space or in the openings of joints.  
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The porosity represents the volume of void space (space filled with air or water) 

in soil or bedrock (Aalpha, T.R., et al). Generally, with low porosity, the density 

increases, conductivity decreases, and the resistivity increases in well sorted rocks/soil, 

where the pore-space becomes tiny and occupied by water or gases, unlike the situation 

of coarse rocks/soils, where the pore space is large enough to accommodate the soil and 

the smaller rock fragments. The presence of these fragments and smaller particles will 

result in decreasing resistivity. 

 Water saturation will eventually imply low conductivity since it is ranked among 

the least conducting materials and is considered as a bad current conductor, unless it 

contains electrolytes. Therefore, as the saturation of rock or soil with water increases, the 

degree of rock/soil porosity decreases and so, the conductivity, whereas the resistivity 

increases. 

 Saline water and mineralized clay are good conductors for the current, such that 

high conductance implies low resistivity. Therefore, in the situation of water salinity and 

clay mineralization, resistivity records tend to be low. Clay mineralization, which means 

the presence of minerals in the clay, means also, current can be generated. Salt-water 

intrusion provides more ions for conduction and therefore reduces resistivity. Moreover, 

with the increase of salinity, the dissolved salt concentrations will increase, which leads 

to decrease in porosity, and as a result, resistivity will increase. 

 Resistivity values varies by seasons such that, during rainfall seasons and snow 

melt there is abundance of water, while in snow season and summer, water is scarce, 

hence there is less dissolved rock and soil material, and accordingly the recorded 
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resistivity values are high. When the pore water freezes, there is an increase in resistivity, 

perhaps by a factor of 10
4
 or 10

5
, depending on the salinity. 

 

6.3. METHODOLOGY 

The principle of the electrical resistivity survey is described by the distribution of 

electrical potential in the inhomogeneous surface ground, around a current carrying 

electrode, which depends on the resistivities and distribution of the surrounding soils and 

rocks. Practically a direct current is applied between the electrodes that are implanted in 

the ground to measure the difference of potential between other additional electrodes that 

do not carry current. The relationship between the distributed potentials and the ground 

resistivities and their distributions is the basic factor in interpretation the resistivity 

distributions. The resistivity of soils and rocks is governed primarily by the amount of 

pore water, its resistivity, and the arrangement of the pores. For this reason, there are 

wide ranges in resistivity values for any soil or rock type, and resistivity values cannot be 

directly interpreted in terms of soil type or lithology, but, instead, zones of distinctive 

resistivity can be associated with specific soil or rock units based on local field or drill 

hole information. 

6.3.1. Electrode Array Configurations. The principle problem of resistivity 

surveying is the use of apparent resistivity values from field observations at various 

locations and with various electrode configurations to estimate the true resistivities of the 

various earth materials of the study site and to spatially locate the boundaries below the 

surface. 



58 

 

 

An electrode array with constant spacing is used to investigate the lateral changes 

in apparent resistivity values, thus, depicting the lateral geologic variability or localized 

anomalous features. The apparent resistivity depends on the geometry of the electrodes 

array. The types of electrode arrays that are most commonly used in practice are Wenner, 

Schlumberger, and the dipole-dipole (Figure 6.4).  

 

 
Figure 6.4: The most common array types generally employed in electrical resistivity 

surveys (Source: http://old.acogok.org/geophysical-tutorial). 

 

The choice of the “best” array for a field survey depends on the type of structure 

to be mapped, the sensitivity of the resistivity meter and the background noise level. The 

characteristics of an array that should be considered are (i) the depth of investigation, (ii) 

the sensitivity of the array to vertical and horizontal changes in the subsurface resistivity, 

(iii) the horizontal data coverage, and (iv), the signal strength (Loke, 2016). 

6.3.1.1. Wenner array. The array (Figure 6.5), utilizes four equally spaced and 

aligned electrodes. This was considered an advantage for Schlumberger array and 

disadvantage for Wenner, since it is faster in the field to move the two current electrodes 
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of Schlumberger than to move the four electrodes of the Wenner array between the 

successive observations, in addition to that Schlumberger array is considered more robust 

in distinguishing lateral from vertical variations in resistivity. 

 

Figure 6.5: Wenner array configuration (Source: http://old.acogok.org ). 

 

A major advantage of Wenner array is that it allows for data minimization and 

requires less attention to equipment sensitivity. In general, the Wenner array is good in 

resolving vertical changes (i.e. horizontal structures), but relatively poor in detecting 

horizontal changes (i.e. narrow vertical structures), because it is sensitive to vertical 

changes in the subsurface resistivity below the center of the array.  The median depth of 

investigation for the Wenner Alpha array is approximately 0.5 times the “a” spacing 

used. Compared to other arrays, the Wenner Alpha array has a moderate depth of 

investigation. The signal strength is inversely proportional to the geometric factor used to 

calculate the apparent resistivity value for the array. The apparent resistivity is given by 

the equation: 

                                           ρa = 2πaV/I = k V/I                                                      (13) 

where, 

a = electrode spacing 

            k = the geometric factor for the Wenner array, and itis given by the equation: 

k = 2πa 

http://old.acogok.org/
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The geometric factor for the Wenner array is smaller than the geometric factor for 

other arrays. Among the common arrays, the Wenner array has the strongest signal 

strength. This can be an important factor if the survey is carried in areas with high 

background noise. One disadvantage of this array for 2-D surveys is the relatively poor 

horizontal coverage as the electrode spacing is increased. (Loke, 2016). 

6.3.1.2. Schlumberger array. Schlumberger is another array that operates with 

four aligned electrodes (Figure 6.6); the outer two of them are current source providers 

while the inner two electrodes are potential receivers. The potential electrodes are slightly 

separated (< 1/5 of current electrodes spacing) and are kept in fixed position at the center 

of the array, while the current electrodes are mobilized to greater separation during the 

survey to obtain the minimum observed voltage. 

 

 
Figure 6.6: Schlumberger array configuration (Source: http://old.acogok.org/ 

geophysical-tutorial). 

 

 The potential electrodes spacing could be adjusted with constant current 

electrodes spacing to detect the proximal heterogeneities or lateral resistivity changes 

around the potential electrodes. The apparent resistivity for the Schlumberger array is 

given by the equation: 

                                          ρa = π/a [(L/2)
2
 – (a/2)

2
]V/I = k V/I                                          (14) 

where, 

a = electrode spacing 

http://old.acogok.org/
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L = is the distance between the current electrode and the mid-point of the 

potential electrodes. 

k = the geometric factor for the Schlumberger array and it is given by the 

equation: 

                                                k = π/a [(L/2)
2
 – (a/2)

2
]                                                (15) 

6.3.1.3. Dipole-dipole array. The was used for this study owing to its high 

sensitivity to lateral changes in resistivity, despite that it is relatively insensitive to 

vertical changes in the resistivity. The array uses equally spaced electrode pairs (The 

spacing between the current electrodes is the same as the spacing between the potential 

electrodes and equals to a) to measure the curvature of the potential field, which means it 

is good in mapping vertical structures, such as dykes and cavities, but relatively poor in 

mapping horizontal structures such as sills or sedimentary layers (Figure 6.7). 

 

 
Figure 6.7: The dipole-diploe array configuration (Source: http://old.acogok.org/ 

geophysical-tutorial). 

 

 

 

 

 

 

 

http://old.acogok.org/
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The apparent resistivity for the dipole-dipole array is given by the equation: 

                                       ρa = πan(n+1)(n+2)V/I = k V/I                                                     (16) 

where 

            a = electrode spacing 

    n = the ratio of the distance between the C1 and P1 electrodes to the C2-C1 or (P1-

P2) 

   k = the geometric factor for the dipole- dipole array, and it is given by the equation:  

                      k = πn(n+1)(n+2)a                                                         (17) 

Dipole-dipole was preferred in karst terrain over the Schlumberger and Wenner 

for its overall advantage of the high sensitivity to lateral changes in resistivity and of 

mapping the vertical structures which are considered significant factors in imaging the 

karst terrain. 

6.3.2. Depth of Investigation. To investigate the change in resistivity at greater 

depths, the spacing’s between electrodes are increased to allow more current to flow 

deeper, and the apparent resistivity becomes increasingly similar to the average resistivity 

of the earth over a greater range of depths. This relationship is plotted as apparent 

resistivity versus electrode spacing to indicate vertical variations in resistivity. The 

smaller the spacing’s between electrodes, the closer the apparent resistivity values to the 

surface material and the larger spacing’s between electrodes, the more resemblance of the 

apparent resistivity to the bedrock.  

The relationship between the electrode spacing and the apparent resistivity of 

layers (1, 2 and 3) is illustrated by Figure (6.8), such that, most of the current induced by 

array (1) is close to the resistivity of layer (1). Similarly, the bulk of the current induced 
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by array (2) resembles an average apparent resistivity for layers (1 and 2), whereas a high 

percentage of the induced current of array (3) defines an apparent resistivity average for 

the three layers. 

 

 
Figure 6.8: The relationship between depth and electrode spacing (Source: Wightman, 

W., F. Jalinoos, et al. (2004)). 

 

For small electrode spacing’s, the apparent resistivity is close to the surface layer 

resistivity, whereas at large electrode spacing’s, the resistivity approaches the resistivity 

of the basement layer. 

 

6.4. DATA ACQUISITION 

Two-dimensional electrical imaging/tomography surveys are usually carried out 

using many electrodes, and a resistivity meter system with multi-core cables and electronic 

switching unit. In this work SuperSting R8 system was used to acquire the data to generate 

2-D and 3-D electrical resistivity images of the subsurface (Figure 6.9). 
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The system control unit can be interconnected to many electrodes, with only four 

electrodes that are active at a time. The dipole-dipole array configuration was used for 

data acquisition. For a dipole-dipole data collection, the system is set to use two 

electrodes as current electrodes injecting the current into the ground and the two others as 

voltmeter electrodes measuring the resulting voltage, whereas the electrode pairs are 

separated by a pre-determined distance (Figure 6.10). The depth of investigation depends 

on the type and the length of the electrode array. 

  

 
Figure 6.9: SuperSting R8 system (Source: http://www.belirti.com/resistivity 

_%20instrumentation.html). 

 

 
Figure 6.10: Dipole-dipole interconnected electrodes (Source: Anderson, 2015). 

   

http://www.belirti.com/resistivity
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 To obtain high quality ERT data, some pre-arrangements and settings were found 

to be appropriate, which include: 

 The choice of a spot on the study site where the deepest measurement is 

anticipated (the mid-point) 

 The equipment’s are placed in the mid‐point and the cables are spread out away 

on both sides (depth of penetration of the ERT depends on the type and length of 

the electrode array). 

 The electrodes are installed into the ground at each contact on the cable and 

jumper cables are used to join the cable connections to the electrodes. 

Figure (6.10) shows the typical setup for a 2-D survey with several electrodes along a 

straight line attached to a multi-core cable. Normally a 1.5 m (5 feet) constant spacing 

between adjacent electrodes is used. The multi-core cable is attached to an integrated 

resistivity meter system that includes an electronic switching unit. The sequence of 

measurements to take, the type of array used and other survey parameters (such the current to 

use) is normally transferred to an internal microprocessor system within the resistivity meter 

from a personal computer. After reading the control file, the control program then 

automatically selects the appropriate electrodes for each measurement. 

 In a typical survey, most of the fieldwork is in laying out the cable and electrodes. 

After that, the measurements are taken automatically and stored in the resistivity meter 

system. Most of the survey time is spent waiting for the resistivity meter to complete the set 

of measurements. (Loke, 2016).   

 A known current is transmitted by the SuperSting control unit into the subsurface, 

while the unit also records the corresponding potential difference Figure. The apparent 

resistivity will then be calculated for the pre-determined distance (a). The apparent 
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resistivity (ρa) for all separations between electrodes is then calculated and a profile for 

the apparent resistivity is plotted as a function of the midpoint and the number of 

electrodes. (Figure 6.11). 

 

 
Figure 6.11: Profile plotted from data acquired using (n) number of electrodes at pre- 

determined distance of (ρa) (Source: Anderson, 2015). 

 

 To get the best results, the measurements in a field survey should be carried out in a 

systematic manner so that, as far as possible, all the possible measurements are made. This 

will affect the quality of the interpretation model obtained from the inversion of the apparent 

resistivity measurements (Dahlin and Loke, 1998). 

 

6.5. DATA PROCESSING  

Electrical Resistivity Tomography [ERT] data is processed using RES2DINV 

software that transforms the ERT data acquired along traverses into two and three 

dimensional (2D and 3D) electrical resistivity images of the subsurface. RES2DINV 
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inverts the actual pseudo-section data using a tomographic approach and transforms it into 

a 2D or 3D resistivity image of the subsurface. 

The inversion theory is based on finding a model that gives a response that is similar to 

the actual measured values. The model is an idealized mathematical representation of a section 

of the earth. The model has a set of model parameters that are the physical quantities we want 

to estimate from the observed data. The model response is the synthetic data that can be 

calculated from the mathematical relationships defining the model for a given set of model 

parameters. All inversion methods essentially try to determine a model for the subsurface 

whose response agrees with the measured data subject to certain restrictions and within 

acceptable limits. (Loke, 2016). 

The RES2DINV program uses the cell-based method, where the model 

parameters are the resistivity values of the model cells, while the data is the measured 

apparent resistivity values (Loke, 2016). 

 

6.6. DATA INTERPRETATION 

The aim of the interpretation is to determine the resistivity and thickness of sub 

surface layers based on observed resistivity. The interpreter seeks to map the variations in 

the elevations of top of rock, and to determine the moisture content of soil, rock and the fly 

ash, and as well, to detect any probable groundwater flow or seepage pathways and 

potential karst features.    

The interpretation is done usually for the processed resistivity data using 

RES2DINV software that produces a plot of resistivity against depth. Data interpretation is 

considered a complicated process, since it relates to the skillfulness of the interpreter, the 

data and the environmental factors related to the location, time, geology and the weather at 
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the site under investigation. The geophysicist should select the model that agrees best with 

the known geological and hydrogeological structures of the ground (Loke, 2016). 

The major factor in the data interpretation process is the contrast in resistivity. An 

example of that is the case of cavities and host rocks. Air-filled cavities will have higher 

resistivity than the host rock; however, if the cavity is filled with water, its resistivity might 

become similar to that of the host rock. In another scenario, if the host rock is resistive or 

that, the water in the cavity is saline (i.e. has a low resistivity), the cavity might become 

low-resistivity target. 

It is most often that the moisture contents of fly ash and soils are greater than 

underlying rock because of the increased porosity of soil and fly ash, thus, their 

resistivities are lower. On the other hand, the fractured, moisty weathered rock with clay 

infill could have low resistivities, similar to the electrical resistivity of soils and fly ash.  

Anderson N. (2016), considers that It is generally difficult to differentiate fly ash 

and soil on ERT data because both materials are porous and permeable. It can be difficult 

to map the contact between soil and rock where both materials are either very moist or 

very dry, and the presence of clay in soil or rock increases the conductivity of that soil or 

rock. Hence, clay-bearing soil and rock is generally less resistive than non-clay-bearing 

soil or rock (moisture content remaining the same).  

A general geologic interpretation of a 2-D ERT image (Figure 6.12), reveals that the 

units with resistivities greater than 405 ohm-m were mapped as limestone, and that the 

units with resistivities less than 105 ohm-m are moist soil or clay, whereas the units with 

resistivities greater than 105 ohm-m and less than 405 ohm-m, were variously mapped as 

either dry soil or moderately to intensely fractured/weathered limestone, with clay in-fill.  
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The bedrock is overlain by soil or clay and a relatively continuous limestone lenses 

and intervening clay in some places. 

 

 
Figure 6.12: 2-D electrical resistivity tomography image showing the interpretation of   

the geology of a study area (Source: Anderson, 2015). 

 

Figure (6.13) provides a typical 2-D ERT profile (454) of a fly ash landfill. The 

resistivity values less than 125 ohm-m were interpreted as moist soils, whereas the values 

greater than 125 ohm-m, were considered as dry soil.  

 

 
Figure 6.13: 2-D interpreted ERT profile (454) of a fly ash landfill. 

 

 

Interpreted geosynthetic liner 
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The intact rock has resistivity values greater than 600 ohm-m, while the moist 

weathered rock has resistivity values less than 600 ohm-m. The black line in Figure 

(6.13) represents the depth to the top of rock, which varies between 6 m to 12 m (20 to 40 

feet). The interpretation of the ERT profile of a fly ash landfill of Figure (6.13) shows the 

geosynthetic liner and the top of rock, and the suggested seepage pathways. 
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7. MULTICHANNEL ANALYSIS OF SURFACE WAVES (MASW) 

 

7.1. THEORITICAL PRINCIPLES 

MASW is a non-invasive geophysical method designed to measure the spatial 

variations of the average shear-wave velocity of subsurface earth materials.  

The shear-wave velocity is a function of the earth materials rigidity, such that, the 

less rigid the material, the lower the shear-wave velocity, and the more rigid the material, 

the higher the shear wave velocity.  

MASW uses the dispersive nature of surface waves to measure the spatial 

variations in the average shear wave velocities (Vs) of the subsurface that was generated 

by an impulsive source. When the source is fired, the short-duration pulse creates a 

packet of seismic waves that travel in all directions through the body and along the 

surface in a form of a compressional waves (P-waves), shear waves (S-waves) and 

surface waves (Rayleigh waves), (Figure 7.1). 

The two fundamental types of multichannel analysis of surface waves data 

(MASW) are the active and the passive (MASW). The active MASW data are the most 

commonly acquired type of data, and is usually acquired using the sledge hammer as 

proximal acoustic source.  

When the source is fired the short-duration pulse creates a packet of seismic 

waves that travel through the body and along the surface. The shear wave velocity of the 

subsurface could then be utilized to determine the geological properties of the subsurface 

using the MASW software for the transformation and inversion of the surface wave 

velocity to shear wave velocity. On the other hand, the passive MASW data are acquired 
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from the background acoustic energy generated by natural and anthropogenic sources, 

such as the distal earthquakes and traffic (Figure 7.2).  

 

 
Figure 7.1: Kinds of seismic waves generated by seismic waves source (Source: 

http://www.parkseismic.com). 

 

 
Figure 7.2: Illustration of active and passive MASW sources (Source: 

http://masw.com/Whatisseismicsurvey.html). 
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7.2. METHODOLOGY 

 A large sledgehammer was used to generate surface waves that are recorded by a 

linear array of equally spaced geophones, aligned along pre-determined locations.  A 

dispersion curve relates the phase velocity and the frequency is generated from the 

recorded data, which are then modeled to a profile of shear wave velocity values (Vs) to 

give information in either 1D (depth) or 2D (depth and surface location) format. 

 

7.3. DATA ACQUISITION 

The actual field configuration of MASW is illustrated in (Figure 7.3), which is 

composed of a 24-channel Seistronix engineering seismograph, GPS sensor, and 24 

interchangeable low-frequency geophones (4.5 Hz) spaced at  1.5 m (5feet) and 0.762 m 

(2.5 feet) intervals, a laptop computer, and fully-automated interpretation software, and 

sledge hammer, and an impact plate (base plate) to concentrate the source energy and direct 

it horizontally or vertically and prevent the source impact point intrusion into soil (Figure 

7.4). 

 

 
Figure 7.3: Active MASW field survey (Source: http://www.masw.com/ 

DataAcquisition.html). 

 

http://www.masw.com/
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Figure 7.4: Acquisition of MASW data in the field. 

 

The geophones are placed at intervals of 5 or 2.5 ft. in relation to the value of the 

shortest wavelength, which is determined by the desired depth of investigation. However, 

the length of the receiver spread is directly related to the longest wavelength that can be 

analyzed to determine the maximum depth of investigation. The depth of investigation 

often varies between 9 m (30 feet) and 30.49 m (1,00feet), and is affected by the site 

conditions and the type of active source utilized.  
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The source offset (x1) and the receiver spacing (dx) are considered the most two 

important parameters in the MASW data acquisition (Figure 7.5). The source offset is set at 

a predetermined distance (e.g. 5, 10, 30 ft.) from the nearest geophone that is selected in 

conjunction with the geophone spacing’s and the desired depth of investigation to obtain 

the best dispersion curve, from which the 1-D the time-depth model is extracted.  

 

 
Figure 7.5: Definition of a source-receiver configuration and increment of the 

configuration (Source: Anderson, 2015). 

 

For this study, the MASW data were acquired at different locations in a west-east 

orientation, along traverses of about 61 m (200 feet) intervals, parallel to the ERT traverses. 

The geophones spacing’s used were 1.5 m (5 feet) and were 0.762 m (2.5 feet) in some 

instances. Where these MASW traverses acquired, their locations were re-adjusted to avoid 

the obstacles that obstruct the data acquisitions, and these included, water bodies, steep 

slopes and roadways.    
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7.4. DATA PROCESSING 

The acquired MASW data are processed using the Kansas Geologic Survey (KGS) 

software package SURFSEIS that transform the raw seismic data into1-D shear velocity 

profile, by extracting the fundamental-mode dispersion curves (velocity vs frequency), then 

apply an inversion process to the curves to calculate 1D shear-wave velocity profiles 

(Figure 7.6).  

The second processing stage involves the generation of a frequency vs. phase 

velocity dispersion curve of the acquired Rayleigh wave field data, using the wave-field 

transformation and the modified wave-field transform. 

The resulting curve is transformed into a 1D depth vs shear wave velocity profile, 

from which the elastic properties, rigidity, density, and thickness of layers of the subsurface 

are attained. 

To create 2D shear wave velocity geologic model, the MASW data sets are 

collected at close distances and constrained with external data (Park 1999).  To acquire a 2-

D MASW data, multiple 1-D Vs profiles acquired at adjacent locations along a traverse are 

compiled (Figure 7.7). 

The data are acquired by simply moving the entire array (active or passive) along 

the traverse. 2D velocity profiles can be generated following these steps: (i) acquiring 

multiple MASW field records by moving source-receiver array along traverse (ii) preparing 

multiple 1-D shear wave velocity curves, each array will have one curve (iii) constructing 

2-D shear wave velocity profile. 
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Figure 7.6: MASW surface wave data set transformed into a 1-D shear-wave velocity 

profile of the subsurface (Source: Anderson, 2015). 

(m
/s
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Figure 7.7: 1-D & 2-D shear velocity profiles (Source: https://expservices.ku.edu). 
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7.5. DATA INTERPRETATION  

The multi-channel analysis of surface waves method (MASW) was primarily 

developed to measure the spatial variations in the shear wave velocity of subsurface 

materials like soil, rock, and fly ash. The shear wave velocity is a function of the rigidity 

of the material. The higher the shear-wave velocity, the more rigid the material. Rock is 

more rigid and has higher shear wave velocity than soil and fly ash, which have lower 

shear wave velocity (Figure 7.8).   

 

 
Figure 7.8: 1-D shear-wave velocity profile generated from the fly ash landfill site. The 

red line indicates that the depth to the top of rock is about 16 m (53 feet). 

 

The NEHRP National Earthquake Hazard Reduction Program (NEHRP) classified 

the subsurface materials depending on their shear-wave velocity values, given in Table 

(7.1). (Bauer, R.A., 2004). 
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Table 7.1: NEHRP soil classification by shear wave velocity and material properties. 

 

Soil type 

 

Soil name 

Average Soil Properties for Top 100 feet 

Shear-wave 

velocity,Vs (ft/s) 

Standard 

penetration test, 

N (blows/foot) 

Undrained 

shear strength 

Su (kPa) 

SA Hard rock  > 4,921  

- 

 

- SB Rock 2,493 to 4,921 

SC Very dense 

soil and soft 

rock 

 

1,181 to 2,493 

 

>50 

 

>100 

SD Stiff soil 590.6 to 1,181 15 to 50 50 to 100 

SE Soft soil <590.6 <15 <50 

SF Soil requiring site-specific evaluation 
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8. RESULTS AND INTERPRETATION 

 

The (ERT) data were acquired to aid in interpreting the subsurface conditions 

beneath an existing fly ash landfill to a depth of ~ 30 m (100 feet). Dipole-dipole arrays 

consisting of 168 electrodes were used on each traverse. 1.5 m (5 feet) electrode spacing 

was used in a west-to-east orientation, normal to the dominant north-to-south trend of 

joints. 

 Figure 8.1 represents an illustration of the fly ash landfill, with 31 ERT traverses 

on the northern part of the landfill under study. The new fly ash landfill was established 

on a former fly ash landfill that consisted of a clay liner. A new geosynthetic liner was 

placed, on the remnants of the former fly ash landfill.  

The ERT traverses covering the northern part of the landfill are the subject of this 

study, running from west to east, whereas the general orientation of structures is in a 

north-south direction that includes faults and drainage systems. 

The fly ash landfill is thinning-out to the north and the study area, in general is 

slightly dipping to the south. Clay embankments surround the fly ash landfill, and are 

separated by drainage system that removes the excess surface water to the natural 

drainage system.   

The run off from the inner flanks of the fly ash landfill will be collected in the 

retention pond, and then this water can be removed to the detention pond for further 

treatments. The rain water from the outer flanks of the landfill can be collected directly to 

the detention pond. 



82 

 

 

 
Figure 8.1: Illustrative figure for a fly ash landfill, with ERT traverses 431 to 462. 
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In the process of establishing new channels, streams and rivers leave behind flood 

plains, drainage ditches and stream-cut terraces, such as in the case of the study area, 

where an existing upper terrace and a lower terrace indicates two consecutive shifts of the 

stream in the study area, added to that, the man-made ditches that are constructed to drain 

the water run-off along roads and around the fly ash landfill. The existing condition 

resulted in multiple sources of water that could ultimately affect the fly ash landfill 

moisture content, following different pathways. These sources include the direct rain-

water from the northwest of the study area and the water flowing off the flanks to the toe 

of the landfill. The run-off over-flow and by-pass the terrace at the toe of the landfill, to 

seep into the soil and underlying rock, while also seeps through the natural and man-

made ditches that are established to divert water away from the landfill (Figure 8.2 and 

Figure 8.3). 

 

 
          Figure 8.2: Flow directions of drainage in a fly ash landfill. 
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Figure 8.3: Drainage directions and pathways of moisture in the fly ash landfill. 
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 To explain the ways by which moisture accumulate beneath the landfill, the soil 

and rock, Figure (8.4) displays two pathways (1) and (2), that are controlled by the 

topography at the proximity of the landfill. Figure (8.4) displays a 3-D ERT profile that 

images the upper terrace, the lower terrace (where the fly ash landfill is placed) and a 

stream-cut terrace west of the fly ash landfill. Two seepage pathways were identified 

from the imaging, as indicated in Figure (8.4) as pathway (1) and pathway (2).  

 

 
Figure 8.4: 3-D electrical resistivity image of the subsurface mid-way between ERT 

traverses 405 and 406 to the north of the fly ash landfill site. Interpreted top-of-rock is 

highlighted in black. Seepage pathway #1 is highlighted in blue and seepage pathway #2 

is highlighted in red.   

 

 Pathway (1) indicates a run-off flowing down dip along the upper terrace from the 

west to the east and seeping into the subsurface along or in proximity of the stream-cut 

terrace. This run-off would flow into the western drainage at the proximity of the landfill, 

where some of its water seeps vertically in into soil and underlying rocks, leading to 

increase in the moisture of the top of rock beneath the fly ash. Figure (8.4) suggests that 

some water also flows toward the stream (N-S direction) as well.  
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In pathway 2, Figure (8.4), the subsurface flow along the bedrock surface down-

dip from the west to the east along the upper terrace and seep vertically to the underlying 

soil and rock. 

The 3-D ERT profile (432–433) presents one of the subsurface electrical 

resistivity profiles along a traverse located mid-way between traverse lines 432 and 433 

(Figure 8.5).  

 

 
Figure 8.5: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 432 and 433, as shown in Figure 8.1. 

 

The upper boundary is coincident the ground surface, while the black line denotes 

the interpreted top-of-rock. This estimate correlates well with the 125 ohm-m resistivity 

value; as verified by the MASW results, except in a few locations exhibiting increased 

moisture contents, where the interpreted ERT values fall below the 125 ohm-m limit. In 

the absence of the geosynthetic liner, the moisture content of the fly ash is usually 

assumed to be relatively uniform except in the places that have seepage pathways with 

low resistivity values. 
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The 3-D ERT profile (433–434) presents one of the subsurface electrical 

resistivity profiles along the traverse located mid-way between traverse lines 433 and 434 

(Figure 8.6). The upper boundary is coincident the ground surface, while the black line 

denotes the interpreted top-of-rock. This estimate correlates well with the 125 ohm-m 

resistivity value; as confirmed by the MASW interpreted results.  

Figure (8.6) represent a different condition, in which, the upper fly ash is drier 

than the fly ash at the bottom of the landfill, which indicates that the moisture content of 

the fly ash increases with the depth of burial. The interpretation of Figure (8.6) is that, 

some rain-water has seeped through the upper cap of landfill, and reached down to the 

clay liner flowing almost vertically along pathway 3. The high resistivity patches shown 

in green in the upper part of the fly ash indicates high porosity of the fly ash that 

facilitated the escape of moisture to the bottom of the landfill. 

 

 
Figure 8.6: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 433 and 434, as shown in Figure 8.1. Possible seepage pathways 

highlighted in red, blue and purple. 
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This interpreted profile in Figure (8.6) also suggests some of the run-off from the 

flanks of the fly ash landfill is intercepted at the toe of the landfill and it seeped into soil 

and rock near the toe of the landfill along pathway (4). This seeping moisture goes into 

the vertical joints of the rock almost vertically, which yield resistivities less than 125 

ohm-m, generally indicative of very moist weathered and/or fractured rock, or for moist 

residual soil. Above the interpreted top of rock (black line), the interpreted profile 

suggests moisture retention by the fly ash. The size of the joint in Figure (8.6) indicates 

that the amount of moisture at the toe of the landfill is greater and it decreases away from 

the landfill. The size of the interpreted area exhibiting low resistivity is denoted by 

flow/seepage pathway (4) in Figure (8.6). This potential flow path appears continuous to 

the maximum depth of the profile. It is suggestive of radial drainage, presumably natural 

precipitation that percolates vertically into the residual soil profile at the toe of the 

landfill. 

This interpreted profile of Figure (8.6) also suggests that the run-off from the 

flanks that continue to flow away from the landfill carries a lesser amount of water as it is 

distance from the toe of the landfill increase as shown by pathway (5). Some of this water 

seeps into soil and underlying rock in almost vertical as shown in Figure (8.6), and the 

relatively moderate joint indicates the lesser amount of water.  

 In Figure 8.7, 3-D ERT profile 439-440, the data acquired at some locations 

where  there exist a geosynthetic liner beneath the fly ash embankment(denoted by the 

red line), and the interpreted top of rock is demarcated by a solid black line that is 

conformable with the 125 ohm-m resistivity value. In the Figure (8.7) below, the 

inconsistency of the low moisture content of the shallow rock beneath the landfill 
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geosynthetic  liner makes it more difficult to discern the top-of-rock. The underlying soil 

and rock appear to be moistened by seepage along or near the top-of-rock an expected 

permeability contrast. The fly ash placed before the geosynthetic liner is characterized by 

resistivity values above 125 ohm-m in areas where the fly ash and underlying soils are 

considerably drier.  

In Figure 8.7, the moisture that seeps from different sources into the fly ash, 

reaches the clay liner and drains to the retention pond or the leachate collection system. 

The moisture that flows down dip along the top of the geosynthetic liner to the outer 

edges of the geosynthetic liner and the moisture flows off the edges of the geosynthetic 

liner seeps vertically into underlying soil and rock (seepage pathway 6). 

 

 
Figure 8.7: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 439 and 440, as shown in Figure 8.1. Possible seepage pathways 

highlighted in blue. The approximate geosynthetic liner location is highlighted in red. 

 

Figures 8.8 to 8.10 present examples of the acquired 3-D ERT data for an existing 

fly ash landfill which incorporates a geosynthetic liner (shown in red). Based on the 

visual interpretation of the resistivity values, these profiles exhibit a much higher 
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variability and inconsistency in the moisture contents of fly ash, residual soils and 

weathered rock interfaces.  For example, in Figure (8.8), the shallow rock appears to 

retain much less moisture in some places than others, beneath the geosynthetic liner. The 

fly ash beneath the geosynthetic liner is characterized by resistivity values lower than 125 

ohm-m in some locations, while in other locations, moisture appears to be seeping along 

preferred percolation pathways within the shallow bedrock, which may be structurally 

controlled by jointing, shears, or joint clusters. On the other hand, resistivity values 

greater than 125 ohm-m were measured in areas of dry fly ash and soils lying beneath the 

geosynthetic liner. One of the ERT application limitations is the identification of the 

contact between soil and rock, in which situation both the residual soils and weathered 

rock are either very dry or are both moist. 

 

 
Figure 8.8: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 443 and 444, as shown in Figure 8.1. The approximate 

geosynthetic liner location is highlighted in red. 

 

The 3-D ERT profile 449-450 (Figure 8.9) and profile 453-454 (Figure 8.10) 

indicate that some of the moisture that follow the seepage pathways 1, 2, 4 and 6, flows 

Estimated location 

of geosynthetic liner 

Interpreted top of rock 
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along or near the top of the pervasively fractured shallow rock beneath the  landfill 

geosynthetic liner and above the clay liner (shown in Figure 8.9). The increased moisture 

coupled with the shallowness in depth, appears to create no contrast in the resistivity that 

could allow for successful imaging of the interface between the soil, rock and fly ash, 

using the ERT method. 

All kinds of liner systems (clay or geosynthetic liners) exhibit some degree of 

permeability that allows some amount of moisture to pass through. Thus, the 

interpretation of Figure 8.9 and Figure 8.10 suggests that the geosynthetic liner 

permeability has allowed the passage of some moisture, which eventually created minor 

resistivity difference above and below the geosynthetic liner and allowed the imaging of 

moisture using the ERT. A utility line is shown in Figure(8.9). 

 

 
Figure 8.9: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 449 and 450, as shown in Figure 8.1. The approximate 

geosynthetic liner location is highlighted in red. 
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Figure (8.10) also shows a utility line, where the original soil has been replaced 

after the excavation and placing the utility line, as a result the soil will allow the moisture 

to seep to the underlying rocks.  

Fine-ground materials, like silt clay, or fly ash, will tend to absorb any free 

moisture through capillary attraction. The wet fly ash fill beneath the geosynthetic liner 

may have been at field capacity (near saturation) before the liner was placed, or moisture 

may have migrated downward through tears or seams in the geosynthetic membrane, 

under increased hydrostatic pressure affected by the greater height/depth of fly ash fill. 

 

 
Figure 8.10: 3-D electrical resistivity image of the subsurface along a “traverse” mid-way 

between ERT traverses 453 and 454, as shown in Figure 8.1. The approximate 

geosynthetic liner location is highlighted in red. 

 

Based on the interpretation of the results of Figure (8.9), Figure (8.10), and the 

illustration of Figure (8.11), the primary source of moisture is the seepage from the sides 

of the landfill, where the run-off from the surface water or the flanks of the landfill 

seeped through the toe of the landfill and the natural and man-made ditches around and at 

the vicinity of the landfill to the clay liner. 

Utility line 
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Figure 8.11: Illustrative diagram for the direction of flow of moisture onto and beneath 

the fly ash landfill layers. 

 

 Figure (8.12) shows the dispersion curve and the related 1-D shear wave velocity 

profile generated for the MASW field record. This suggests that the estimated top-of-rock 

is 16 m (53 feet) at specific chosen location. The ERT derived top-of-rock for the same 

location was about 14 m (48 feet) (Figure 8.9). The difference between the MASW and 

the ERT measures could be referred to many factors that are related mainly to measuring 

instruments, the properties of the earth material and the field setting during data 

acquisition.  

The resolution of the ERT data is higher compared to the MASW data, and is 

influenced by the spacing between adjacent electrodes. However, Figure 8.12 show that 

the shear velocity is increasing with depth from 152 m/s (500 ft/s) to 365 m/s (1200 ft/s) 

for the compacted fly ash and soil, while the shear wave velocity for the fractured rock 
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reached values of approximately 518 m/s (1700 ft/s). The shear wave velocity of intact 

rock in Figure 8.12 exceeded the 762 m/s (2500 ft/s). 

The obtained ERT value of the top of rock is based on the contrast between the 

rock and soil resistivities, whereas for the MASW, the value of the top of rock is obtained 

based on the contrast between the rock and soil acoustic properties.     

 The average depth to the top of rock using the MASW is influenced by the length 

of the array, therefore, different averages will be produced using different arrays lengths, 

while the spacing between adjacent electrodes will produce different levels of details. 

  

 
Figure 8.12: Dispersion curve and its related 1-D shear – wave velocity profile generated 

for the MASW field record acquired on 3-D ERT profile 449-450. 
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9. CONCLUSIONS 

 

The integrated use of electrical resistivity tomography (ERT) and multi-channel 

analysis of surface waves (MASW) are complimentary techniques that, when applied 

together, can provide one of the cost effective means of non-intrusive geophysical 

profiling to detect anomalies in foundations up to 30 m (100 feet) beneath the ground 

surface.  These are useful techniques to map foundation conditions beneath an existing 

landfill site founded on karst terrain areas. 

In this study, the ERT geophysical method succeeded in locating the geosynthetic 

liner of a fly ash landfill. The visual interpretation of the ERT data was very useful in 

terms of discerning variations in the moisture content of the fly ash above and below the 

geosynthetic liner. The moisture below the geosynthetic liner was due mostly to seepage 

from the flanks of the landfill.  

The study identified seepage pathways through the existing fly ash landfill (but 

above the basal clay liner) and seepage pathways below the base of the landfill. These 

seepage pathways were typically characterized by low resistivity values (less than 125 

ohm-m) because moisture content was relatively high. Based on the interpretation of ERT 

data there is no evidence of any prominent karst features beneath the fly ash deposit, 

which could adversely affect the landfill’s structural stability.  

Mapping of the contact between soil and rock proved difficult where the 

resistivity values of the rock and the overlying soil was similar. Furthermore, variations 

in moisture content of the soil, rock and the fly ash could be mapped on the ERT data. 

The moisture content of the fly ash above the geosynthetic liner was found to exhibit a 
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uniform trend (which would be expected if the liner is functioning as intended), opposite 

to the trend observed below the geosynthetic liner, where moisture content appeared to be 

more variable.  

Interpretation of the acquired ERT data appears to correlate well with the MASW 

data and borehole control in estimating the depth to the top-of-rock. The MASW data 

provides verification of the ERT data interpretations. 

The interpretation of the ERT and MASW results indicates that the subsurface 

beneath the landfill is intact, showing no karst features that might adversely affect the 

stability of the landfill. Also, detected seepage pathways are diverting the non-

contaminated storm water and the channeled water flow into the groundwater. Therefore, 

the groundwater appears to be secured from leachate pollution.    
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