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ABSTRACT

In this dissertation we investigate zero-dimensional compact metric spaces and their

inverse limits. We construct an uncountable family of zero-dimensional compact metric

spaces homeomorphic to their Cartesian squares. It is known that the inverse limit on [0, 1]

with an upper semi-continuous function with a connected graph has either one or infinitely

many points. We show that this result cannot be generalized to the inverse limits on simple

triods or simple closed curves. In addition to that, we introduce a class of zero-dimensional

spaces that can be obtained as the inverse limits of arcs. We complete by answering a

problem by Kelly and Meddaugh about the limits of inverse limits.



v

ACKNOWLEDGEMENTS

Firstly, I would like to express my special appreciation and thanks to my advisor,

Dr. Włodzimierz J. Charatonik, for his continuous support of my Ph.D study and research.

I am grateful for his excellent guidance, patience, and immense knowledge. He has been

a great advisor, mentor, and teacher not only in the writing of this dissertation but also in

every academic experience I have had.

I would also like to acknowledge my dissertation committee members Dr. Elvan

Akın, Dr. Matt Insall, Dr. Van Nall, and Dr. Robert P. Roe for their invaluable advice,

comments and encouragement. I would like to thank Dr. Ilene Morgan, Stephanie Fitch,

and Dr. VA Samaranayake for writing reference letters during my job search as well.

I am also appreciative to my friends, Nur Göçer Ersay, Emir Y. Ersay, Yasemin and

Ümit Köylü, Tülin and Clayton Price, Gülşah Yeni, and Özkan Öztürk, who made me enjoy

my time in Rolla during my Ph.D studies. I also would like to express my sincere gratitude

to my parents Emine and Muzaffer Şahan, my siblings Erkan and Serkan, my sister-in-laws

Fatma and Semahat, and my little nieces Eslem, Ayşe, and Buḡlem for their continuous and
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SECTION

1. INTRODUCTION

The origins of the continuum theory date back to the 1880s. A continuum usually

means a metric compact connected space. The original definition given by Cantor in 1883

was that a subset of a Euclidean space is a continuum, provided it is perfect and connected,

see [Cantor, 1883]. Then in 1968 Kuratowski proved the equivalence of the two definitions.

A great breakthrough in the history of continuum theory was made in 1890 when Peano

proved that [0, 1]2 is a continuous image of [0, 1], see [Peano, 1890]. Generalizing Peano’s

idea, Hahn [1914] and Mazurkiewicz [1920] characterized continuous images of [0, 1] as

locally connected continua. Peano’s result also led Urysohn to invent the notion of the

topological dimension theory, another branch of topology. Urysohn [1922] and Menger

[1923], working independently, defined the dimension inductively. But actually, in 1922–

before the dimension was defined–Sierpiński described zero-dimensional spaces when he

introduced the totally disconnected topological spaces, see [Sierpiński, 1921].

The theory of hyperspaces started with Hausdorff and Vietoris in the 1900s and

the fundamentals of the subject were discovered during the 1920s and 1930s. The paper

published in 1931, where Borsuk and Mazurkiewicz [1931] proved that the hyperspaces 2X

and C(X) are arcwise connected showed the importance of the subject since it was the first

paper about the arc structure of hyperspaces. Another paper, published by Kelley [1942],

was an important milestone in the history of hyperspaces, since it was the first paper to study

the hyperspace of hereditarily indecomposable continua. This was not, however, the only

reason to make this paper very important. In his study, Kelley used Whitney maps for the

first time in the investigation of hyperspaces, andWhitney maps became one of the standard

tools in the study of hyperspaces. Moreover, he defined what is now known as the property
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of Kelley, or Kelley continua. In addition to the aforementioned, after Kelley’s paper,

the interest in hyperspace theory significantly increased among mathematicians, including

those in the United States. In 1978, Sam B. Nadler, Jr. published a book, Hyperspace

of Sets, see [Nadler, 1978]. This book is significant for continuum theorists since it was

the first book published about hyperspaces and continuum theory and it influenced so

many mathematicians to study continuum theory. Marjanović [1972] proved that there are

exactly nine different zero-dimensional, compact, metric spaces X including the point, the

Cantor set, and the Pełczyński space, that are homeomorphic to their hyperspaces 2X by

generalizing a result published in 1965 by Pełczyński, see [Pełczyński, 1965].

During the 1920s and 1930s, another useful tool in topology and more generally in

mathematics, the theory of inverse limits, was established. But the field became popular

among mathematicians, when Capel showed in 1954 that the inverse limit of arcs with

monotone bonding functions is an arc, see [Capel, 1954]. In 1959 Anderson and Choquet

showed how a plane continuumwith no two non-degenerate homeomorphic subcontinua can

be constructed by using an inverse limit with continuous bonding functions, see [Anderson

and Chouquet, 1959]. This was a breakthrough because the idea of inverse limits was being

used for the first time to construct such a complicated continuum. Since then inverse limits

have become an important tool in continuum theory.

In 2004, William Mahavier introduced the inverse limits with set-valued functions

as inverse limits with closed subsets of the unit square, see [Mahavier, 2004] and then a

book by Ingram andMahavier [2010] had been published and the subject became even more

popular among mathematicians, especially among continuum theorists. This new form of

inverse limits made the subject popular also among researchers of economics and dynamical

systems. With so many open problems about set-valued inverse limits the popularity of the

subject increases every day.
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This dissertation consists of three articles in which we focus on hyperspaces and the

inverse limits of zero-dimensional compact metric spaces and present some results about

the inverse limits of set-valued functions. In the first paper, motivated by the studies of

Marjanović, we show that there exists uncountably many zero-dimensional compact metric

spaces X that are homeomorphic to their Cartesian products as well as their hyperspaces

Fn(X). In the second paper we show that the result by Roškarič and Tratnik [2015] , and by

Banič and Kennedy [2015] cannot be generalized to simple triods and simple closed curves.

In the same paper we also introduce a new method to construct a zero-dimensional compact

metric space as the inverse limit of a single set-valued function on [0, 1]. Finally, in the last

paper we provide an answer to a question posted by Kelly and Meddaugh [2015].
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2. LITERATURE REVIEW

2.1. PRELIMINARY DEFINITIONS AND THEOREMS

We begin this section with some preliminary definitions and theorems from contin-

uum theory. For a better understanding of the subject, one can refer to the important book

Continuum Theory by Nadler [1992].

A topological space X is a continuum if it is a nonempty, compact, connected

metric space. A subset of a space X that is a continuum is called a subcontinuum of

X . A continuum X is called decomposable if it is the union of two proper subcontinua.

A non-degenerate continuum that is not decomposable is called indecomposable. An

indecomposable continuum in which every proper subcontinuum is also indecomposable is

called a hereditarily indecomposable continuum.

An arc is a continuum that is homeomorphic to a closed interval. A simple closed

curve is a continuum that is homeomorphic to a circle. A simple triod is a finite graph that

is the union of three arcs emanating from a single point, v, and otherwise disjoint from one

another. The point v is called the vertex of the triod.

Given continua X and Y , a continuous function f : X → Y is called an ε−map if

for each y ∈ Y , diam f −1(y) < ε . A continuum X is said to be arc-like if for every ε > 0,

there exists an ε−map such that f : X → [0, 1].

2.2. HYPERSPACES OF ZERO-DIMENSIONAL SPACES

The fundamentals of both hyperspaces and zero-dimensional spaces date back to

the 1920s and both subjects have been broadly used in the continuum theory since then.
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A hyperspace of a topological space X is the set of all closed subsets of X but in

this dissertation we consider metric spaces only. For a continuum X define the following

hyperspaces,

2X = {A ⊂ X |A is nonempty and closed }

C(X) = {A ∈ 2X |A is connected }

Fn(X) = {A ⊂ X | card(A) ≤ n}

Let X be a continuum. If ε > 0 and A ∈ 2X then we define the ε-neighboorhood of

A by

Nd(ε, A) = {x ∈ X | d(x, a) < ε for some a ∈ A}.

If A, B ∈ 2X , then define the the Hausdorff distance Hd by the formula,

Hd(A, B) = inf{ε > 0| A ⊂ Nd(ε, B) and B ⊂ Nd(ε, A)}.

The inductive definition of dimension by Urysohn and Menger is as follows (see

[Engelking, 1978]): To every regular space X one assigns the small inductive dimension

of X, denoted by ind X , which is an integer larger than or equal to −1 or the infinite number

∞: the definition of the dimension function ind consists in the following conditions:

1. ind X = −1 if and only if X = ∅;

2. ind X ≤ n, where n = 0, 1, . . . , if for every point x ∈ X and each neighborhoodV ⊂ X

of the point x there exists an open set U ⊂ X such that

x ∈ U ⊂ V and ind bd(U) ≤ n − 1;

3. ind X = n if ind X ≤ n and ind X > n−1, i.e., the inequality ind X ≤ n does not hold;

4. ind X = ∞ if ind X > n for n = −1, 0, 1, . . .
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For a regular space X if ind X = 0, then X is called as zero-dimensional.

In 1922, before the dimension was defined, Sierpiński introduced the totally discon-

nected topological space as follows (see [Sierpiński, 1921]):

Let X be a topological space. If for every pair x, y of distinct points of X there exists

a clopen subset U of X such that x ∈ U and y ∈ X \U then X is called totally disconnected.

It should be clear that every zero-dimensional space is totaly disconnected.

Example 1 The best known examples of zero-dimensional compact metric spaces are finite

sets, the Cantor set (Figure 2.1), and the Pełczyński compactum (Figure 2.2), that is obtained

by adding a point to the middle of every deleted interval of the Cantor set.

Figure 2.1. Cantor Set.

In 1972,Marjanović published an article about the zero-dimensional compact metric

spaces X that are homeomorphic to their hyperspace 2X generalizing a result by Pełczyński

[1965]. In his paper Marjanović showed that there exist exactly nine such spaces and the

Cantor set, and the Pełczyński space are among those nine spaces. As a continuation to his

studies, Marjanović published another paper in 1974, and showed that there exist infinitely

many pairs of non-homeomorphic zero-dimensional compact metric spaces having their
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Figure 2.2. Pełczyński compactum.

squares homeomorphic i.e. spaces X and Y are not homeomorphic, while X2 and Y2

are homeomorphic, see [Marjanović, 1974]. Also, at the end of this paper Marjanović

introduces a simpler construction of the sequence of zero-dimensional compact metric

spaces homeomorphic to their hyperspace 2X . This construction is as follows: Let C0 be

the set of a point, and C1 be the Cantor set. The space C2, which is the Pełczyński space,

is obtained by interpolation of a copy of C0 in each deleted interval of C1. The space Cn is

obtained from Cn−1, by interpolation a copy of Cn−2 in each deleted intervals of Cn−1.

The following definition plays an important role in the investigation of zero-

dimensional compact spaces.

Definition 1 The Cantor-Bendixson derivative of order α, or α-derivative of a compact

space X is defined inductively as follows:

1. X (0) = X

2. X (α+1) = {x ∈ X (α) : x is a limit point in X (α)}

3. For limit ordinals γ: X (γ) =
⋂
β<γ X (β)
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Then, the Cantor-Bendixson rank of a space X , denoted by rank(X) is defined as the

least ordinal α such that X (α+1) = ∅.

The Cantor-Bendixson rank of a point x in a set X , denoted by CB(x) is defined, if

x has a countable neighborhood, by

CB(x) = min{ rank(U) : U is a countable compact neighborhood of x in X}.

Using this definition as a tool, Cantor and Bendixson constructed the full classifi-

cation of the compact countable spaces as follows:

Theorem 1 Let α be an ordinal, and let X and Y be compact countable spaces such that

rank(X) = rank(Y ) = α and card Xα = cardYα, then X and Y are homeomorphic.

But such classification for compact uncountable spaces still remains as an open

problem and in this dissertation we provide a partial answer to this.

2.3. INVERSE LIMITS

The roots of inverse limits go back to the 1920s and since then the subject have

been widely used in the studies of continuum theory. Here by a mapping, we mean a

continuous function. The definitions for the inverse limits of single-valued functions are as

follows: Given a sequence, X = (Xi)
∞
i=1, of topological spaces and a sequence, f = ( fi)∞i=1,

of continuous functions such that for each i ∈ N, fi : Xi+1 → Xi, the pair {X, f} is called an

inverse sequence. The inverse limit of this inverse sequence is defined to be the set

lim
←−
{X, f} = {x ∈

∞∏
i=1

Xi : xi = fi(xi+1) for all i ∈ N}.

Here, the spaces Xi are called factor spaces, and the functions fi are called bonding maps.

For each j, let π j : lim
←−
{X, f} → X j be defined by π j

(
〈x1, x2, . . .〉

)
= x j that is, π j

is the projection map of lim
←−
{X, f} to the j-th factor space.

Inverse limit constructions became a very important tool in continuum theory since

Mardesič and Segal proved in 1967 that every continuum can be represented as the inverse

limit of polyhedra, see [Mardešić and Segal, 1967].
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In 2004, Mahavier investigated the continua that can be represented as inverse limits

of closed subsets of the unit square I2 = [0, 1] × [0, 1]. This investigation led Mahavier to

the generalized notion of an inverse limit. In [Mahavier, 2004], Mahavier showed that some

of usual properties for inverse limits with single-valued functions were still valid with this

new notion. Later,Ingram and Mahavier [2006] built upon this definition by generalizing it

to inverse sequences (X1, f1), (X2, f2), . . . where each Xi is a compact Hausdorff space and

each fi is an upper semi-continuous set-valued function from Xi+1 to 2Xi . They showed that

even if some of the properties still held, many other properties failed to hold for inverse

limits with set-valued functions.

The book by Ingram and Mahavier [2010] contains further generalization of the

inverse limit to inverse systems when the underlying index set is an arbitrary directed set

in place of nonnegative integers. Additionally, Charatonik and Roe generalized the notion

further in [Charatonik and Roe, 2014]. They definedMahavier systems when the underlying

index set is an arbitrary preorder, i.e. a transitive and reflexive relation. However, in this

dissertation we will restrict our attention to the inverse sequences rather than the inverse

systems or the Mahavier systems.

The graph G( f ) of a function f : X → 2Y is the set of all points 〈x, y〉 ∈ X ×Y such

that y ∈ f (x). For a positive integer n, the partial graph Gn defined to be {x ∈
n∏

i=1
Xi |xi ∈

fi(xi+1) for 1 ≤ i < n}.

Given compact metric spaces X and Y , a function f : X → 2Y is upper semi-

continuous if for each open set V ⊂ Y the set {x ∈ X | f (x) ⊂ V} is a an open set in X , and

it is known that a function between compact Hausdorff spaces is upper semi-continuous if

and only if its graph is closed. A set-valued function f : X → 2Y is surjective if for each

y ∈ Y there exist an x ∈ X such that y ∈ f (x). The set-valued function f −1 : Y → 2X

defined as the set of all x ∈ X such that y ∈ f (x) is called the inverse of f and it is also

upper semi-continuous when f is upper semi-continuous.
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If {Xi : i ∈ {1, 2, . . . }} is a countable collection of compact metric spaces each

with a metric di bounded by 1, then
∞∏

i=1
Xi is the countable product of the collection

{Xi : i ∈ {1, 2, . . . }} with the metric given by d(〈x1, x2, . . . 〉, 〈y1, y2, . . . 〉) =
∑∞

i=1
di(xi,yi)

2i .

For each i let fi : Xi+1 → 2Xi be a set-valued function where 2Xi denotes the

hyperspace of all nonempty closed subsets of Xi. The inverse limit of the sequence of

pairs {(Xi, fi)}, denoted by lim
←−
{Xi, fi}, is defined to be the set of all points 〈x1, x2, . . .〉 in

∞∏
i=1

Xi such that xi ∈ fi(xi+1). For a finite sequence x = 〈x1, x2, . . . , xn〉 and finite or infinite

sequence y = 〈y1, y2, . . . 〉, let x ⊕ y = 〈x1, x2, . . . , xn, y1, y2, . . . 〉

Many well-known results about the connectedness of the inverse limit of single-

valued functions do not hold when the functions are generalized to the set-valued functions.

Mahavier [2004] provided the following graph, Figure2.3, of an upper semi-continuous

set-valued function whose inverse limit is not connected.

(1,1/2)

(1,1)

Figure 2.3. A function with disconnected inverse limit.

One can easily see that the graph for this function is not connected thus may think

that this is a reason for disconnectedness of the inverse limit. But then Ingram andMahavier

[2006] showed that connectedness of the graph was not a sufficient condition to guarantee
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connectedness of the inverse limit. Ingram and Mahavier constructed an example whose

graph is given by Figure 2.4 and they showed that the inverse limit is not connected although

the graph itself is connected, see [Ingram and Mahavier, 2006].

(3/4,3/4)

(1/4,1/4)

Figure 2.4. A function with connected graph whose inverse limit is not connected.

In the same paper they provided the following important results about the connect-

edness of inverse limits.

Theorem 2 [Ingram and Mahavier, 2006, Theorem 4.7] Suppose that for each i, Xi is

Hausdorff continuum, fi : Xi → 2Xi is an upper semi-continuous function, and for each x

in Xi+1, fi(x) is connected. Then lim
←−

f is connected.

Theorem 3 [Ingram and Mahavier, 2006, Theorem 4.8] Suppose that for each i, Xi is

Hausdorff continuum, fi : Xi → 2Xi is an upper semi-continuous function, and for each x

in Xi {y ∈ Xi+1 |x ∈ fi(y)} is a non-empty, connected set. Then lim
←−

f is connected.

In addition to these results, Nall [2012] provided some results about connectivity for

a single surjective upper semi-continuous function on [0, 1]. These results are as follows:
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Theorem 4 [Nall, 2012, Theorem 3.1] Suppose X is a compact metric space, and {Fα}α∈Λ

is a collection of closed subsets of X × X such that for each x ∈ X and each α ∈ Λ, the

set {y ∈ X |(x, y) ∈ Fα} is nonempty and connected, and such that F =
⋃
α∈Λ

Fα is closed

connected subset of X ×X such that for each y ∈ X , the set {x ∈ X |(x, y) ∈ F} is nonempty.

Then lim
←−

F is connected.

Theorem 5 [Nall, 2012, Lemma 3.2] Suppose X is a Hausdorff continuum, f : X → 2X is

an upper semi-continuous set-valued function. Then lim
←−
{X, f } is connected if and only

if Gn is connected for each n.

Theorem6 [Nall, 2012, Theorem3.3] Suppose X is aHausdorff continuumand f : X → 2X

is a surjective upper semi-continuous set-valued function. Then lim
←−
{X, f } is connected if

and only if lim
←−
{X, f −1} is connected.

Greenwood and Kennedy [2012] constructed a function whose graph is given by

Figure 2.5. With this example they showed that even though G( f n) = G( f ◦ f ◦ . . . ◦ f ) is

connected for all n, the inverse limit still can be disconnected.

(3/4,3/4)

(1/4,1/4)

(1,1/2)

(1/2,0)

Figure 2.5. A function with connected compositions and disconnected inverse limit.
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Banič and Kennedy in 2015 proved that inverse limit of a surjective upper semi-

continuous set-valued functions whose graph is an arc on [0, 1] is never totally disconnected,

see [Banič and Kennedy, 2015]. But they did not only focus on the connectedness of such a

function, but proved a very important result about the cardinality of the inverse limit of such

functions without the surjectivity condition. Precisely, they proved the following theorem.

Theorem 7 [Banič and Kennedy, 2015, Theorem 3.9] Suppose f : [0, 1] → 2[0,1] is an

upper semi-continuous function with connected graph. If lim
←−
{[0, 1], f } consists of more

than one point, then lim
←−
{[0, 1], f } is infinite.

In 2015 Roškarič and Tratnik showed similar results by using the ideas of Banič

and Kennedy, independently, see [Roškarič and Tratnik, 2015], and [Banič and Kennedy,

2015]. In this dissertation we have shown that the connectedness of the graph is essential.

We have also shown that the set [0, 1] cannot be replaced by a simple triod nor by a simple

closed curve.

Banič et al. [2010] and Banič et al. [2011] showed that if a sequence of graphs

of upper semi-continuous set-valued functions fn : X → 2X converges to the graph of

a continuous single-valued function f : X → X , then the sequence of the inverse limits

lim
←−
{X, fn} converges to the inverse limit lim

←−
{X, f } by proving the next theorem.

Theorem 8 [Banič and Kennedy, 2015, Theorem 3.3] Let X be a compact metric space and

for each n ∈ N, let fn : X → 2X be an upper semi-continuous set-valued function, and let

f : X → X be continuous single-valued function, such that lim
n→∞

G( fn) = G( f ) in 2X×X .

Then the following are equivalent:

1. lim
n→∞

Kn = K in 2X ,

2. π1(K) ⊆ lim inf
n→∞

π1(Kn),

3. π1(K) = limn→∞ π1Kn in 2X .

Then Kelly and Meddaugh proved the following two theorems that relaxes the

condition about f being continuous, see [Kelly and Meddaugh, 2015].
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Theorem 9 [Kelly and Meddaugh, 2015, Theorem 1.2] Let X be a compact metric space

and f : X → 2X be upper semi-continuous. For each n ∈ N, let fn : X → 2X be an upper

semi-continuous function such that lim
n→∞

G( fn) = G( f ) in 2X×X . If π1(K) ⊆ lim inf
n→∞

π1(Kn)

and K has the weak compact full projection property, then lim
n→∞

Kn = K in 2X .

Theorem 10 [Kelly and Meddaugh, 2015, Theorem 1.3] Let X be a compact metric space

and f : X → 2X be continuous. For each n ∈ N, let fn : X → 2X be upper semi-continuous.

If π1(K) ⊆ lim inf
n→∞

π1(Kn), and there exists a set A ⊆ X such that

1. A is dense in π1(K),

2. for each a ∈ A, A ∩ f (a) is dense in f (a),

3. A ⊆ f (A), and

4. for each a ∈ A, ( fn)∞n=1 converges uniformly to f on a neighborhood of a

then lim
n→∞

Kn = K in 2X

In the same paper Kelly and Meddaugh posted the following question and in this

dissertation we answer this question by providing an example.

Question 1 [Kelly and Meddaugh, 2015, Question 6.4] Let f : X → 2X be a function, and

for each n ∈ N, let fn : X → 2X be upper semi-continuous such that lim
n→∞

G( fn) = G( f ),

and π1(K) ⊆ lim inf
n→∞

π1(Kn). If f is continuous, does it follow that lim
n→∞

Kn = K in 2X?
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ABSTRACT

We show that there exists uncountably many zero-dimensional compact metric spaces

homeomorphic to their Cartesian squares as well as their n-fold symmetric products.

Keywords: Cantor-Bendixson rank; Cartesian squares; zero-dimensional spaces

1. INTRODUCTION AND PRELIMINARIES

Marjanović [1972] showed that there are exactly nine different zero-dimensional

compact metric spaces X which are homeomorphic to 2X . In this paper, we look at this

subject from a different perspective and show that there exist uncountably many zero-

dimensional compact metric spaces homeomorphic to their Cartesian products and further-

more to their n-fold symmetric products. As a tool, we use the Cantor-Bendixson rank of a

zero-dimensional compact metric space.

For a compact metric space X , we define hyperspaces 2X and Fn(X) as follows:
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2X = {A ⊂ X |A is nonempty and closed}

Fn(X) = {A ⊂ X | card(A) ≤ n}

The derivative of a set X represents the set of all limit points of X and is denoted by

X′.

A compact space X is called zero-dimensional if every component of X is degenerate.

2. CANTOR-BENDIXSON RANK IN CARTESIAN PRODUCT

Definition 2 The Cantor-Bendixson derivative of order α, or α-derivative, of a compact

space X is defined inductively as follows:

1. X (0) = X

2. X (α+1) = {x ∈ X (α) : x is a limit point in X (α)}

3. For limit ordinals γ: X (γ) =
⋂
β<γ X (β)

Then, the Cantor-Bendixson rank of a space X , denoted by rank(X), is defined as

the least ordinal α such that X (α+1) = ∅.

Finally, the Cantor-Bendixson rank of a point x in a set X , denoted by CB(x), is

defined, if x has a countable neighborhood, as

CB(x) = min{ rank(U) : U is a countable compact neighborhood of x in X and x ∈ U}.

Observation 1 For compact spaces X and Y , we have

(X × Y )′ = X′ × Y ∪ X × Y ′.

Any ordinal number α can be uniquely written asωα1n1+ω
α2n2+ · · ·+ω

αknk , where

α1, α2, . . . , αk are ordinals in a decreasing order and n1, n2, . . . , nk are integers. This is called

Cantor form. Let α = ωα1n1 +ω
α2n2 + · · · +ω

αknk and β = ωα1m1 +ω
α2m2 + · · · +ω

αkmk

be two ordinals, where the natural sum α ⊕ β is defined by
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α ⊕ β = ωα1(n1 + m1) + ω
α2(n2 + m2) + · · · + ω

αk (nk + mk)

(see e.g. [Kuratowski and Mostowski, 1976] pg.253).

The following lemmas were proved by Charatonik and Charatonik [2001].

Lemma 1 Let β be a limit ordinal, and for each α < β, assign two ordinals α1, α2 such that

α = α1 ⊕ α2. Then,

sup{α1 |α < β} ⊕ sup{α2 |α < β} ≥ β.

Lemma 2 Let α and β be ordinals such that α < β and β = β1 ⊕ β2. Then, there exists

ordinals α1 and α2 such that

α1 ≤ β1, α2 ≤ β2, and α = α1 ⊕ α2.

Corollary 1 was proposed by J. R. Prajs, but the proof to this Corollary has never

been published. In order to present a proof to this corollary we first prove the following

theorem.

Theorem 11 Let X and Y be two compact spaces and let Z = X × Y . Then,

Z (α) =
⋃
{X (αX ) × Y (αY ) |α = αX ⊕ αY }.

Proof:

• If we let α = 0, then it is clear that Z (0) = X (0)×Y (0), so the first condition is satisfied.

• Z (α+1) = (Z (α))′ =
⋃
{X (αX ) × Y (αY ) |α = αX ⊕ αY }

′
=

⋃
{(X (αX ))′ × Y (αY ) ∪ X (αX ) ×

(Y (αY ))′|α = αX ⊕ αY } =
⋃
{X (αX+1) × Y (αY ) ∪ X (αX ) × Y (αY+1) |α = αX ⊕ αY } =⋃

{X (αX ) × Y (αY ) |α + 1 = αX ⊕ αY }, as required. Here, the third equation is a conse-

quence of Observation 1.

• Now to show that Z (γ) =
⋃
{X (γX ) × Y (γY ) |γ = γX ⊕ γY } for each limit ordinals γ,

first take z = 〈x, y〉 ∈ Z (γ). Then, by Definition 2, 〈x, y〉 ∈ Z (γ) =
⋂
β<γ Z (β). Thus,

by the inductive hypothesis, we have 〈x, y〉 ∈
⋃
{X (βX ) × Y (βY ) |β = βX ⊕ βY }. Now,
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let γX = sup{βX |β < γ} and γY = sup{βY |β < γ}. By Lemma 1, γX ⊕ γY ≥ γ

and by Lemma 2, there exists ordinals γ′X and γ′Y such that γ′X < γX, γ
′
Y < γY

and γ′X ⊕ γ
′
Y = γ. Now since X (γX ) =

⋂
β<γ X (βX ) and Y (γY ) =

⋂
β<γ Y (βY ) for all

β < γ, we conclude that 〈x, y〉 ∈ X (γX ) × Y (γY ). Therefore, 〈x, y〉 ∈ X (γX ) × Y (γY ) ⊂

X (γ
′
X ) × Y (γ

′
Y ) ⊂

⋃
{X (γ

′
X ) × Y (γ

′
Y ) |γ = γ′X ⊕ γ

′
Y }.

In order to show the other inclusion, let 〈x, y〉 ∈
⋃
{X (γX )×Y (γY ) |γ = γX ⊕γY }. Then

byLemma1 for any ordinal β such that β < γ, we can assign two ordinals βX and βY such that

βX < γX , βY < γY and β = βX⊕βY . Therefore, 〈x, y〉 ∈ X (γX )×Y (γY ) ⊂ X (βX )×Y (βY ) ⊂ Z (β).

Now by Definition 2, 〈x, y〉 ∈ Z (γ). So finally the equality holds.

�

Corollary 1 Let X and Y be two compact spaces. Then,

rank(X × Y ) = rank(X) ⊕ rank(Y ).

3. CHARACTERIZATION

In this section, we define an uncountable family {Z(α) : α < ω1} of zero-

dimensional compact metric spaces and provide a topological characterization of the spaces

Z(α). Also, we prove that uncountably many of them have the property that their Cartesian

squares are homeomorphic to their factor spaces.

Theorem 12 The following two conditions are equivalent for an ordinal α:

(3.12.1) For every β, γ < α, we have β ⊕ γ < α.

(3.12.2) α = 0 or there is an ordinal δ such that α = ωδ.

Proof:

(3.12.1) ⇒ (3.12.2) Let α , 0 and assume there is no δ such that α = ωδ. We may express

α = ωα1 k1 +ω
α2 k2 + · · · +ω

αnkn, where α1 > α2 > · · · > αn and k1, k2, . . . kn are nonzero

natural numbers. If k1 = 1, then n ≥ 2. Now, we take β = γ = ωα1 , and then we have

β ⊕ γ = ωα1 · 2 > α. If k1 , 1, we take β = ωα1(k1 − 1) + ωα2 k2 + · · · + ω
αnkn and



19

γ = ωα1(k1 − 1), and then β ⊕ γ = ωα1(2k1 − 2) + ωα2 k2 + · · · + ω
αnkn ≥ α which is a

contradiction.

(3.12.2) ⇒ (3.12.1) If α = 0 then the conclusion is true vacuously. Let α = ωδ for some

ordinal δ. Then let β and γ be less than α. We may express β = ωβ1i1 +ωβ2i2 + · · ·+ωβnin,

where β1 > β2 > · · · > βn and i1, i2, . . . in < ω, γ = ωγ1 j1 + ωγ2 j2 + · · · + ωγm jm where

γ1 > γ2 > . . . γm and j1, j2, . . . , jm < ω. Since β, γ < α, note that β1, γ1 < δ. Then

β ⊕ γ < ωmax{βi,γj }+1 < α. �

Corollary 2 There exist uncountably many ordinals α < ω1 satisfying condition 3.12.1 (or

equivalently 3.12.2) of Theorem 12.

To prove the next theorem we have used a large part of the proof of Proposition 8.8

in Illanes and Nadler [1996] and added necessary conditions on the ranks of points. Here,

S(X) represents the set of all points of X with no countable neighborhood.

Theorem 13 Let α be a countable ordinal and let X1 and X2 be two compact metric spaces

satisfying the following conditions for i ∈ {1, 2}:

(3.13.1) If x has a countable neighborhood in Xi, then CB(x) < α, for every x ∈ Xi.

(3.13.2) For every ordinal β such that β < α and for every uncountable open subset Ui of

Xi, there exists an x ∈ Ui such that CB(x) = β.

(3.13.3) S(X1) is homeomorphic to S(X2).

Then the spaces X1 and X2 are homeomorphic.

Proof: Let I(Xi) denote the set of all elements of Xi with a countable neighborhood.

Thus, Xi = S(Xi) ∪ I(Xi) for i ∈ {1, 2} where S(Xi) is closed and I(Xi) is open. Since S(X1)

is homeomorphic to S(X2), there exists a homeomorphism h : S(X1) → S(X2).

Let d1 and d2 denote the metrics for X1 and X2, respectively.

We will define by induction two sequences Rk and Sk of finite sets such that I(X1) =⋃
{Rk : k ∈ {0, 1, . . . }} and I(X2) =

⋃
{Sk : k ∈ {0, 1, . . . }} and a homeomorphism hk :

Rk → Sk such that CB(x) = CB(hk(x)) for all x ∈ Rk , then the required homeomorphism
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h∗ : X1 → X2 will be defined as follows:

h∗(x) =


h(x) if x ∈ S(X1)

hk(x) if x ∈ Rk

To start, define

R0 = S0 = ∅ and h0 = ∅

and assume that the sets Rl ⊂ I(X1) and Sl ⊂ I(X2) have been defined inductively for all

l such that 0 ≤ l ≤ k − 1. Now, for any n ∈ N, let Y1 be any infinite subset of I(X1), and

X1(n,Y1) be the set of n distinct points of Y1 with the following property:

(3.13.4)d1(x1, S(X1)) ≤ d1(x, S(X1)) for any x1 ∈ Y1 \ X1(n,Y1) andx ∈ X1(n,Y1)

. Define X2(n,Y2), where n ∈ N and Y2 is any infinite subset of I(X2), analogously. Since

S(X1) and S(X2) are compact there exist nonempty, finite subsets Ak and Bk of S(X1) and

S(X2), resp., defined as follows:

Ak = {ak,1, ak,2, . . . , ak,n(k)}

Bk = {bk,1, bk,2, . . . , bk,m(k)}

such that each point of S(X1) and S(X2) is within 1/k of a point of Ak and Bk respectively.

Observing that I(X1) \ ∪
k−1
l=0 Rl is an infinite set, let

Pk = X1(n(k), I(X1) \ ∪
k−1
l=0 Rl).

For each point p ∈ Pk , let

α(p) = min{ j : d1(p, ak, j) = d1(p, Ak)}.

We index the points of Pk as pk,1, pk,2, . . . , pk,n(k) in such a way that if s < t, then either

(3.13.5) or (3.13.6) holds:

(3.13.5) α(pk,s) < α(pk,t),
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(3.13.6) α(pk,s) = α(pk,t) and d1(pk,s, ak,α(pk,s)) ≥ d1(pk,t, ak,α(pk,t)).

Since I(X2) \ ∪
k−1
l=0 Sl contains points of all CB-rank less than α, we can define the sets, P′k

and Q′k , as follows: let p′k,1, p′k,2, . . . , p′k,n(k) be n(k) distinct points of I(X2) \ ∪
k−1
l=0 Sl such

that for each i,

d2(p′k,i, h(ak,α(pk,t ))) ≤ d1(pk,i, ak,α(pk,t ));

CB(pk,i) = CB(p′k,i);

then let

P′k = {p
′
k,1, p′k,2, . . . , p′k,n(k)}

and let

Q′k = X2(m(k), I(X2) \ [P′k ∪ (∪
k−1
l=0 Sl)]).

For each point q′ ∈ Q′k , let

β(q′) = min{ j : d2(q′, bk, j) = d2(q′, Bk)}.

We index the points of Q′k as q′k,1, q
′
k,2, . . . , q

′
k,m(k) in such a way that if s < t, then, as is

analogous to (3.13.5) and (3.13.6) above, either (3.13.7) or (3.13.8) holds:

(3.13.7) β(q′k,s) < β(q′k,t),

(3.13.8) β(q′k,s) = β(q
′
k,t) and d2(q′k,s, bk,β(q′

k,t
)) ≥ d2(q′k,t, bk,β(q′

k,t
)).

Now, we define Qk in terms of Q′k and Bk with a similar way that we have defined P′k in

terms of Pk and Ak as follows: noting that I(X1) \ [Pk ∪ (∪
k−1
l=0 Rl)] contains points of all

CB-rank less than α, let qk,1, qk,2, . . . , qk,m(k) be m(k) distinct points of I(X1)\[Pk∪(∪
k−1
l=0 Rl)

such that for each i,

d1(qk,i, h−1(bk,β(q′
k,t
))) ≤ d2(q′k,i, bk,β(q′

k,t
)),

and

CB(qk,i) = CB(q′k,i),
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and let

Qk = {qk,1, qk,2, . . . , qk,m(k)}.

Finally, let

Rk = Pk ∪Qk and Sk = P′k ∪Q′k,

and define hk : Rk → Sk as follows:

hk(pk,i) = p′k,i for all pk,i ∈ Pk, hk(qk,i) = q′k,i for all qk,i ∈ Qk .

Therefore, Rk , Sk and the one-to-one and onto function hk : Rk → Sk for each k = 0, 1, 2, . . .

have been defined by induction.

To be able to complete the definiton of the homeomorphism h∗ of X1 onto X2 we

need to prove the following two facts:

(3.13.9) ∪∞k=0Rk = I(X1);

(3.13.10) ∪∞k=0Sk = I(X2). First suppose that (3.13.9) is false. Then there is a point

x0 ∈ X1 \ ∪
∞
k=0Rk . Hence, by the definition of Rk and Pk ,

x0 < ∪
∞
k=1Pk = ∪

∞
k=1X1(n(k), I(X1,∪

k−1
l=0 Rl)).

Thus, since x0 ∈ I(X1) \ ∪
k−1
l=0 Rl for each k, from (3.13.4) we have the following:

(3.13.11)d1(x0, S(X1)) ≤ d1(p, S(X1)) for all p ∈ ∪∞k=1Pk .

From the definitions of Pk and Rk , we see that the sets P1, P2, . . . are mutually disjoint and

nonempty; hence, ∪∞k=1Pk is an infinite set. Thus, since X1 is compact,

inf{d1(p, S(X1)) : p ∈ ∪∞k=1Pk} = 0.

Hence, by (3.13.11), d1(x0, S(X1)) = 0; however, since x0 ∈ I(X1), this is impossible and

this completes the proof of (3.13.9). The proof of (3.13.10) is similar using the sets Q′k .



23

We complete the definition of h∗ : X1 → X2. First of all, note that h∗ is well defined

since the sets S(X1), R1, R2, . . . aremutually disjoint. Also, by (3.13.9) h∗ is defined on all X1

and by (3.13.10) h∗ maps onto X2 since hk(Rk) = Sk for each k and h[S(X1)] = S(X2). Due

to the fact that the sets S(X2), S1, S2, . . . are mutually disjoint, h and each hk is one-to-one

h∗ is one-to-one.

Finally, the continuity of h∗ follows from the uniform continuity of h, the properties

of the sets Ak and Bk and (3.13.5)-(3.13.8). Therefore, since X1 is compact and X2 is

Hausdorff, h∗ is a homeomorphism of X1 onto X2. �

Theorem 14 Let α be a countable ordinal and let X1 and X2 be two zero-dimensional

compact metric spaces satisfying the following conditions for i ∈ {1, 2}:

1. For every x ∈ Xi, if x has a countable neighborhood in Xi, then CB(x) < α.

2. For every ordinal β such that β < α and for every uncountable, open subset Ui of Xi,

there exist an x ∈ Ui such that CB(x) = β.

Then the spaces X1 and X2 are homeomorphic.

Proof: In this case S(X1) and S(X2) are homeomorphic to the Cantor set, so the

condition (3.13.3) of Theorem 13 is satisfied. �

Denote by Z(α) the (topologically unique) metric spaces satisfying the assumptions

of Theorem 14. In particular Z(0) is the Cantor set and Z(1) is the Pełczyński space

described in p.70 in [Illanes and Nadler, 1996].

Theorem 15 If α is an ordinal satisfying the condition (3.12.1) (or equivalently (3.12.2))

of Theorem 12, then Z(α) × Z(α) is homeomorphic to Z(α) and for every natural number

n, the hyperspace Fn(Z(α)) is homeomorphic to Z(α). In particular there are uncountably

many compact metric spaces X homeomorphic to their Cartesian products Xn and to their

hyperspaces Fn(X).

Proof: Note that if α satisfies condition (3.12.1) of Theorem 12 then Z(α) × Z(α)

satisfies the conditions of Theorem 14, so it is homeomorphic to Z(α). �
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Note that the spaces Z(α) are not the only ones that are homeomorphic to their

Cartesian squares. For example, the disjoint union Z(0) ∪ Z(1) also has this property.

Problem 1 Characterize all zero-dimensional compact metric spaces homeomorphic to

their Cartesian squares.

Problems 1 Is there a zero-dimensional compact metric space X such that X is homeomor-

phic to X × X , but not homeomorphic to F2(X) nor to Fn(X), for some n? Similarly, is

there a zero-dimensional compact metric space X such that X is homeomorphic to Fn(X),

for some n, but not to X × X? Is there a zero-dimensional compact metric space and two

natural numbers n,m such that X is homemomorphic to Fn(X), but not to Fm(X)?
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ABSTRACT

First, answering a question by Roškarič and Tratnik, we present inverse sequences of simple

triods or simple closed curves with set-valued bonding functions whose graphs are arcs and

the limits are n-point sets. Second, we present a wide class of zero-dimensional spaces that

can be obtained as the inverse limits of arcs with one set-valued function whose graph is an

arc.

Keywords: zero-dimensional, inverse limit, set-valued functions

1. INTRODUCTION

The inverse limits with upper semicontinuous bonding functions were introduced

by Mahavier [2004]. Since then, they became a very popular subject of investigation,

especially in the case when all the factor spaces are arcs. Then a book by Ingram and

Mahavier [2010] (one of a very few in continuum theory) containing a lot of information

about the subject was published and the subject became even more popular.
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It is known that the inverse limit of compact nonempty spaces with upper semi-

continuous functions is nonempty [Charatonik and Roe, 2012], but in some cases it can be

degenerate even if the factor spaces are not. Banič and Kennedy [2015] ,and Roškarič and

Tratnik [2015] independently showed that if f is an upper semicontinuous function whose

graph is connected, then lim
←−
{[0, 1], f } is either degenerate or infinite. Here we show by

counterexamples that this theorem is no longer true if we replace [0, 1] by a circle or by a

triod. Moreover, we present a wide class of zero-dimensional spaces that can be obtained

as the inverse limits of arcs with one set-valued function. At the end of the two sections

some open problems are asked.

2. PRELIMINARIES

In this article we consider metric spaces only. A continuum is a nonempty, compact

and connected metric space.

If X is a continuum, then 2X denotes the family of all nonempty closed subsets of

X .

The graph G( f ) of a function f : X → 2Y is the set of all points 〈x, y〉 ∈ X × Y

such that y ∈ f (x).

Given compact metric spaces X and Y , a function f : X → 2Y is upper semicontin-

uous if for each open set V ⊂ Y the set {x ∈ X | f (x) ⊂ V} is a an open set in X . It is known

that a function between compact spaces is upper semicontinuous if and only if its graph is

closed.

If {Xi : i ∈ {1, 2, . . . }} is a countable collection of compact metric spaces each

with a metric di bounded by 1, then Π∞i=1Xi is the countable product of the collection

{Xi : i ∈ {1, 2, . . . }} with the metric given by d(〈x1, x2, . . . 〉, 〈y1, y2, . . . 〉) =
∑∞

i=1
di(xi,yi)

2i .

For each j, let π j : Π∞i=1Xi → X j be defined by π j
(
〈x1, x2, . . .〉

)
= x j that is, π j is the

projection map onto the j-th factor space. For each i let fi : Xi+1 → 2Xi be a set valued

function where 2Xi denotes the hyperspace of all nonempty closed subsets of Xi. The
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inverse limit of the sequence of pairs {(Xi, fi)}, denoted by lim
←−
{Xi, fi}, is defined to be the

set of all points 〈x1, x2, . . .〉 in Π∞i=1Xi such that xi ∈ fi(xi+1). The functions fi are called

bonding functions. For a finite sequence x = 〈x1, x2, . . . , xn〉 and finite or infinite sequence

y = 〈y1, y2, . . . 〉, let x ⊕ y = 〈x1, x2, . . . , xn, y1, y2, . . . 〉. More information on inverse limits

with upper semicontinuous bonding functions can be found for example in the book by

Ingram and Mahavier [2010].

A continuum X is called a dendrite if it is locally connected and it contains no

simple closed curves.

A continuum X is a hereditarily unicoherent if for any two subcontinua A and B of

X the intersection A ∩ B is connected. Consequently, by induction, the intersection of any

finite family of subcontinua of X is connected, and since X is compact the intersection of

any family of subcontinua of X is connected. As a consequence, for any subset S of X there

is a unique continuum C such that S ⊂ C and C is contained in any continuum that contains

S. Here C is the intersection of all continua that contain S. The continuum C is called the

irreducible continuum containing S.

3. COUNTEREXAMPLES

Theorem 16 below has been proved by Banič and Kennedy [2015] and also by

Roškarič and Tratnik [2015] independently. In this section, we show that, this theorem

cannot be generalized further by replacing [0, 1] by a circle nor by a simple triod. We

provide examples of inverse sequences of circles or of simple triods with set-valued bonding

functions whose graphs are arcs and the limits are n-point sets .

Theorem 16 Suppose that f : [0, 1] → 2[0,1] is an upper semicontinuous function whose

graph G( f ) is connected. Then lim
←−
{[0, 1], f } consists of either one or infinitely many

points.
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Definition 3 Let X be a compactmetric space. For an upper semicontinuous (not necessarily

surjective) function f on X , and a positive integer n, define Pn( f ) = {x ∈ X : there is xn ∈

X such that 〈xn, x〉 ∈ G( f n)}, and let P( f ) =
⋂∞

n=1 Pn( f ).

Note that f |P( f ) : P( f ) → 2P( f ) is surjective and that if f is surjective, then

P( f ) = X .

The following theorem is a generalization of Theorem 3.4 by Banič and Kennedy

[2015].

Theorem 17 Suppose X is a compact metric space and f : X → 2X is upper semicontion-

uous. Then lim
←−
{X, f } = lim

←−
{P( f ), f |P( f )}.

Proof: It is clear that lim
←−
{P( f ), f |P( f )} ⊂ lim

←−
{X, f }. Let 〈y1, y2, . . . 〉 ∈

lim
←−
{X, f } be any point and let i be a positive integer. For each positive integer n and

xi = yi+n, xi ∈ f n(yi). Thus, 〈xi, yi〉 ∈ G( f n). So, this shows that yi ∈ P( f ) for each

nonnegative integer i. Obviously yi ∈ f (yi+1) = f |P( f )(yi+1) for each nonnegative integer i.

Thus 〈y1, y2, . . . 〉 ∈ lim
←−
{P( f ), f |P( f )}. �

In the next two examples we show that the assumptions that X = [0, 1] and that G( f )

is connected are necessary conditions in Theorem 16.

Example 2 For every natural number n there is an upper semicontinuous function f : S1 →

2S1 whose graph is an arc such that lim
←−
{S1, f } has exactly n points.

Represent S1 as [0, 1] with 0 and 1 identified. For a fixed natural number n, define

ai =
i

n+1 and define f : S1 → 2S1 as follows:

f (x) =


{x + a1} : 0 ≤ x ≤ an−1

{an} : an−1 ≤ x ≤ an−1+an
2

{a1} : an−1+an
2 ≤ x ≤ 1

and note that the only point with a double value is an−1+an
2 .
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To describe the inverse limit lim
←−
{S1, f } we will use Theorem 17. Note that

P1( f ) = [a1, an], P2( f ) = [a2, an] ∪ {a1}, . . . , and Pk( f ) = [ak, an] ∪ {a1, a2, . . . , ak−1}.

Consequently, P( f ) = Pn( f ) = {a1, a2, . . . , an}. Observe that, f |P( f ) is the permutation

defined by f (ai) = a(i+1) mod n. So by Theorem 17, the only points of the inverse limit

lim
←−
{S1, f } are 〈ai, ai−1, . . . , a1, an, an−1, . . . 〉 for i ∈ {1, 2, . . . , n} as required.

an

a1

a1 an-1      an

Figure 1. Inverse limit with n points.

Example 3 Connectedness of the graph G( f ) is essential in Theorem 16 . Really, if

X = [0, 1] and f is the function pictured in Figure 1, then, arguing as in Example 2 we can

see that lim
←−
{[0, 1], f } consists of n points.

Next example shows that X = [0, 1] in Theorem 16 cannot be replaced by a simple

triod.

Example 4 Let X = A ∪ B where A and B are as shown in Figure 2.

Define f : A ∪ B→ 2A ⊂ 2A∪B such that the graph of f as in the Figure 3.

It is clear that the graph G( f |A) of f |A : A→ 2A is as in Figure 1 and the graph of

f |B : B→ 2A as in Figure 4.
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Figure 2. Triod.

Figure 3. Function of the triod.

With a similar argument as in Example 2 we see that,

P1( f ) = [a1, an] ⊂ A

P2( f ) = [a2, an] ∪ {a1} ⊂ A, . . .

Finally, P( f ) = Pn( f ) = {a1, a2, . . . , an} and lim
←−
{A ∪ B, f } has exactly n points.

Problem 2 Can Theorem 16 be generalized to an arc-like continuum in place of [0, 1]?
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an

a
1

Figure 4. Partial graph.

4. ZERO-DIMENSIONAL INVERSE LIMITS

Now we present a class of compact metric zero-dimensional spaces that can be

obtained as the inverse limit of intervals with bonding functions whose graphs are arcs.

Theorem 18 Let X be a nonempty compact subset of [0, 1] and let a and b be the least and

the greatest elements of X (in the order of [0, 1]), respectively. Define Y to be the one point

compactification of the countable union
⋃∞

i=1 Xi, where each Xi is a homeomorphic copy of

X and b in Xi is identified with a in Xi+1. Then there is a function f : [0, 1] → 2[0,1] whose

graph is an arc such that Y is homeomorphic to the inverse limit lim
←−
{[0, 1], f }.

Proof: Without loss of generality we may assume X ⊂ [a, b] ( (0, 1). For each

c, d ∈ X such that c < d and [c, d]
⋂

X = {c, d}, define m(c, d) = 〈a − 1
2 (d − c), 1

2 (c + d)〉

and let Lc,d be the union of two line segments: from 〈a, c〉 to m(c, d) and from m(c, d) to

〈a, d〉. Let f be the set-valued function whose graph (see Figure 5) is the union of the line

segment from 〈0, a〉 to 〈a, a〉, the set {a} × X , the union of all arcs Lc,d for all c, d for which

Lc,d is defined, and the line segment from 〈a, b〉 to 〈1, b〉.
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m(c,d)

<a,c>

a

<a,d>

c

d

b

a

Figure 5. Graph describing Theorem18.

We will show that the inverse limit lim
←−
{[0, 1], f } is homeomorphic to Y . Let

us examine all possible threads 〈x1, x2, . . . 〉 in the inverse limit. First observe that all

coordinates of any thread are in [a, b]. Define Xn to be the set of all threads 〈x1, x2, . . . 〉

such that xi = b for i < n, xn ∈ X , and xi = a for i > n. Notice that each Xn is homeomorphic

to X , and that Xn∩Xn+1 is the one point set {〈b, b, . . . , b, a, a, . . . 〉}, where first n coordinates

are equal to b. Then the inverse limit lim
←−
{[0, 1], f } =

⋃∞
n=1 Xn ∪ {〈b, b, . . . 〉} as required.

�

Example 5 Marjanović [1972] characterized compact metric zero-dimensional spaces X

that are homeomorphic to their hyperspaces 2X and showed there are exactly 9 such spaces.

All these 9 spaces can be obtained by using the method given in Theorem 18.

Theorem 19 Any compact metric zero-dimensional space can be represented as the inverse

limit of [0, 1] using two bonding functions whose graphs are arcs.

Proof: Let first bonding function be the one that we defined in the proof of Theorem

18 and the remaining bonding maps be the constant map at a. Then 〈x, a, a, . . . 〉 is the only

kind of thread in the inverse limit. Thus, {〈x, a, a, . . . 〉 : x ∈ X} is homeomorphic to X . �
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Problem 3What kind of compact metric zero-dimensional spaces can be obtained as the

inverse limits lim
←−
{[0, 1], f } with one set-valued function f ? In particular, is the converse

of the Theorem 18 true, i.e. if Y = lim
←−
{[0, 1], f } is a compact metric zero-dimensional

space, then does there exist a compact zero-dimensional set X such that Y is the union of

infinitely many copies of X with the identifications as in Theorem 18?
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ABSTRACT

An answer is provided to the following question that was asked by Kelly and Meddaugh in

2015. Let X be a continuum and G( f ) be the graph of an upper semi-continuous functions

f : X → 2X . Denote by Kn = lim
←−
{X, fn} for all n ∈ N and K = lim

←−
{X, f }. Assuming

that lim
n→∞

G( fn) = G( f ), and π1(K) ⊂ lim inf
n→∞

π1(Kn) where π1 denotes the projection from

the infinite product ΠX onto its first coordinate, and f is continuous, does it follow that

lim
n→∞

Kn = K in 2ΠX?

Keywords: inverse limit, set-valued functions, upper semi-continuous

1. INTRODUCTION

By [Banič et al., 2010] and [Banič et al., 2011], it has been discussed under what

conditions the sequence of inverse limits obtained from fn, a sequence of upper semi-

continuous functions, converges to the inverse limit obtained from a function f , when the

sequence of the graphs of fn converges to the graph of f . Kelly and Meddaugh [2015] has

given two nonequivalent generalizations to the previous answers by [Banič et al., 2010] and

[Banič et al., 2011], and they posted the following question. Let f : X → 2X be a function,
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and for each n ∈ N, let fn : X → 2X be upper semi-continuous such that lim
n→∞

G( fn) = G( f ),

and π1(K) ⊂ lim inf
n→∞

π1(Kn). If f is continuous, does it follow that lim
n→∞
(Kn) = K in 2

∏
X?

In this paper we provide a negative answer to this question by giving a counterexample.

First, we need to explain the denotations we use. For a compact metric space X , let

f : X → 2X be an upper semi-continuous function, and G( f ) = {(x, y) ∈ X × X | y ∈ f (x)}.

For each n ∈ N, let fn : X → 2X be a sequence of upper semi-continuous functions and let

K = lim
←−
{X, f }, Kn = lim

←−
{X, fn} for all n ∈ N. Denote by ΠX the infinite product

∞∏
i=1

X

and by π1 : ΠX → X the projection onto the first coordinate.

2. EXAMPLE

We construct an example where X = [0, 1], f : [0, 1] → 2[0,1] is a continuous

function, fn : [0, 1] → 2[0,1] is an upper semi-continuous function for all n ∈ N, lim
n→∞

G( fn) =

G( f ) and π1(K) ⊂ lim inf
n→∞

π1(Kn) but lim
n→∞

Kn , K in 2ΠX .

Let {〈a1, b1〉, 〈a2, b2〉, . . . } be dense subsets of [0, 1]2 such that all points of {a1, a2, . . . , b1, b2, . . . }

are different.

For each n ∈ N, define fn : [0, 1] → 2[0,1] by

fn(x) =

{x} if x < {a1, a2, . . . , an}

{ai, bi} if x = ai and i ≤ n

Thus, the graph of fn is the diagonal with n points added to it. Let f : [0, 1] → 2[0,1] be the

function defined by f (x) = [0, 1] for all x ∈ [0, 1].

First observe that K = lim
←−
{[0, 1], f } = [0, 1]∞ and π1(K) = π1(Kn) = [0, 1].

To show that lim
n→∞

Kn , K in 2ΠX , define F as the set of points of 2ΠX in the form:

〈a, a, . . . , a, b, b . . . 〉 where a, b ∈ [0, 1]. Then F is a closed proper subset of K . All points
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of the inverse limit Kn are the form 〈a, a, . . . 〉 for a ∈ [0, 1] or 〈bi, bi, . . . , bi, ai, ai, . . . 〉 for

i ≤ n. Then, clearly Kn ⊂ F. Since F is closed and Kn ⊂ F, we have that lim
n→∞

Kn ⊂ F, so

lim
n→∞

Kn , K in 2ΠX .
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SECTION

3. SUMMARY AND CONCLUSIONS

This dissertation focuses on zero-dimensional compact metric spaces and inverse

limits of upper semi-continuous set-valued functions; it consists of three main parts. Firstly,

an uncountable family of zero-dimensional compact metric spaces, which are homeomor-

phic to the their Cartesian squares, is constructed. The full characterization of such spaces

is still unknown; and one might possibly find a characterization of such spaces using Mar-

janovic’s technique. Secondly, a wide class of zero-dimensional compact metric spaces,

which can be obtained as the inverse limit of upper semi-continuous functions, is found.

Lastly, the following results about the inverse limit of upper semi-continuous functions are

obtained:

• Suppose that f : [0, 1] → 2[0,1] is an upper semicontinuous function, whose graph

G( f ) is connected. Then, lim
←−
{[0, 1], f } consists of either one or infinitely many

points. This result cannot be generalized to the cases when (i) the coordinate space

[0, 1] is replaced by a simple triod or a simple closed curve and (ii) the function’s

graph G( f ) is not connected.

• Let X be a continuum and G( f ) be the graph of an upper semi-continuous functions

f : X → 2X . Denote by Kn = lim
←−
{X, fn} for all n ∈ N and K = lim

←−
{X, f }.

Assuming that lim
n→∞

G( fn) = G( f ); π1(K) ⊂ lim inf
n→∞

π1(Kn), where π1 denotes the

projection from the infinite product ΠX onto its first coordinate; and f is continuous.

Then, lim
n→∞

Kn is not equal to K in 2ΠX .
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Inverse limit of upper semi-continuous functions is a new subject and there are

new results, answers, questions coming up all the time. This subject seems interesting and

promising in terms of working in the area, collaborating with others, answering problems,

and posing questions.
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