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ABSTRACT 

Hot tearing is a complex thermomechanical phenomenon occurring in the semi-solid region. Strain in this region can induce 
cracking and localized alloying element segregation. An apparatus for investigating hot tearing was developed utilizing a 
servo-motor controlled cylinder to apply a pre-determined amount of strain to the solidifying shell. A special mold was 
developed using filling and solidification modeling to ensure that dendrite growth was perpendicular to applied strain. A 
computer-automated system was utilized to control the strain and strain rate and measure the force and displacement. 
Solidification experiments utilizing AISI 1020 steel validated the apparatus capabilities and optimized testing parameters. 

 
Keywords: Hot Tearing, Strain and Strain Rate, Directional Solidification  

 

INTRODUCTION 

Hot tearing is a common irreversible defect that usually appears as cracks, segregation or fractures in the mushy zone during 
solidification of steel. It occurs when a casting is strained to failure in the semi-solid region during solidification and can lead 
to alloy and impurity element segregation, porosity formation, and precipitation of inclusions [1-2]. These defects can be 
accentuated by poor caster alignment and damaged support rolls, as well as non-uniform cooling [3- 4] and soft cooling that 
can induce shell bulging. During solidification, the existence of residual low melting point liquid results in reduced ductility 
and increased susceptibility to cracking. This can be magnified by a coarse columnar grain structure, entrapped porosity, and 
segregation of alloying elements and impurities like Mn, C, Si, S, P [5]. As shown in Figure 1, the ductility of the solidifying 
steel shell remains almost zero as long as a liquid film exists between the dendrites [6]. Therefore, if there is sufficient strain 
that is perpendicular to the direction of dendrite growth, a hot tear can be generated.   

 

 

Figure 1: Schematic diagram of mechanical properties in the mushy zone during continuous casting of steels [6]. 
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The ability to understand and predict the casting conditions that cause hot tearing is important to steel mills and foundries for 
process design, quality control, and development of new steel grades. Hot tearing has been studied for decades [7-8]. 
However, the effects of segregation of alloying elements such as C, Mn, Al, Si, and S etc. on hot tearing sensitivity are still 
not well known. This often makes it difficult to predict the hot tearing susceptibility for new steel grades. Over the years, 
researchers have developed many different experimental tools to investigate hot tearing. Some of these methods employ 
different constraint conditions to induce stress or strain on the solidifying solid shell to promote the formation of hot tearing 
[9-12]. Wang et al. [13] used a ring mold to study the hot tearing susceptibility of Mg alloys. The constrained rod casting 
(CRC) approach has also been used by several researchers and consists of rod shaped castings with different lengths or 
diameters, as shown schematically in Figure 2 [14-15]. Stress is introduced by constraining shrinkage of the solidifying 
casting to initiate hot tearing in the area that experiences the maximum stress, such as the conjunction area of the round cap 
and the column in Figure 2 (a). These CRC experimental methods have been widely used to determine hot tearing sensitivity 
of both Mg and Al alloys in permanent molds, as summarized by J. Song and coworkers [7]. However, both of these methods 
are qualitative and do not provide a quantitative measure of critical stress or strain for hot tearing. 

 

 
 

(a) (b) 

Figure 2: Schematic of different designs of constrained rod castings used to determine hot tearing sensitivity in aluminum and 
magnesium castings: (a) a design that varies the rod length [14] and (b) a design that varies the rod diameter [15].  

Fewer experimental methods have been designed to study the hot tearing susceptibility of steels. One of the most widely used 
tests is the constrained T-shaped casting. Monroe and Beckermann [16] used a T section setup with a force and displacement 
measurement devices to quantitatively study the hot tearing behavior of low carbon low alloy steels. The measured force and 
displacement in this approach were in good agreement with their simulated force and displacement, respectively. However, 
the relationship between their measured data with the critical stress or critical strain was not discussed in their work. 
Bhiogade et al. [17] used the constrained T-shaped casting to study hot tearing susceptibility of a stainless steel and showed 
that strain and strain rate are more critical for hot tearing than stress. All of the proceeding constrained casting testing 
approaches share a common drawback; they all rely on solidification shrinkage contraction to develop the strain to form hot 
tearing. In addition, the amount of contraction and the hot tearing susceptibility will vary as a function of steel composition, 
which makes it difficult to compare the hot tearing susceptibility for different steel grades at a consistent level of strain.  

In recent studies, the submerged split-chill tensile (SSCT) test was developed by Ackermann et al. and applied by Hiebler 
and other researchers [18-20] to apply controlled deformation to the solidifying steel shell. As shown in Figure 3, a solid 
cooper or steel test body, which can be split into two halves, was submerged into the liquid steel. After a shell of sufficient 
thickness has formed around the test body, the lower part was moved downwards at a controlled velocity. The force and 
displacement were recorded during the test. This method allows researchers to study the mechanical behavior of the 
solidifying steel shell and investigate the relationship between the hot tearing susceptibility and process parameters 
encountered in the continuous casting process. However, the experiment setup for this test involves immersion of a water 
cooled copper or steel test body into molten steel contained in an induction furnace. Therefore, this experiment must be 
extremely well designed for the safety of the operation and to protect the testing devices from high temperature.  
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Figure 3: Schematic diagram of the SSCT test method. 

To study the hot tearing behavior for different steel grades, a novel approach was developed that overcomes these 
shortcomings and provides a repeatable and quantitative method of measuring hot tearing susceptibility at controllable strain 
rates for applications in the continuous casting process.   

 

EXPERIMENTAL PROCEDURE 

The Controlled Deformation Test (CDT) was developed in the current study to investigate hot tearing in a quantitative way in 
a solidifying casting. To apply a controlled strain to the mushy zone (see Figure 1) and develop test conditions that are 
comparable with the continuous casting process, the dendrite growth direction in the solidifying area of casting should be 
perpendicular to the direction of the applied strain and the solid shell growth in that area should be uniform. Figure 4 shows a 
schematic of the continuous casting process and highlights the dendritic nature of the expected shell growth. The 
experimental conditions of the CDT were designed to produce uniform shell growth in a cylindrical casting in which 
controlled amounts of deformation could be induced on the shell to replicate strains encountered in continuous casting. 

 

 

Figure 4: Similarity of the solidification patterns in the continuous casting process and the proposed testing method. 

 
Casting and mold design 
A resin bonded, silica sand mold was designed to provide directional solidification and a uniform shell growth in the 
cylindrical, tensile-bar shaped casting, as shown in Figure 5. A low thermal conductivity insulation sleeve was imbedded into 
the no-bake sand mold to delay solidification in the test area. The pouring cup also served as a large central riser to ensure 
proper feeding of the casting during solidification. Two water cooled copper chills were used in the mold to freeze the ends 
of the bar casting in order to allow transfer of the computer controlled linear displacement to the partial shell in the insulation 
sleeve area, as shown in Figure 5. The diameter of the reduced section of the casting is 50 mm, and the total length of the 
casting is 280 mm. 

To examine the solidification pattern and evaluate the uniformity of solid shell growth in the insulation sleeve area, filling 
and solidification software MAGMASOFT (Version 5.3) was used to simulate the solidification process and determine 
testing temperature.  
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Figure 5: Side view of the test casting design showing the cylindrical test casting, insulation sleeve used to delay 
solidification in the test area, and water cooled copper chills on each side of the casting used to induce solidification and 

allow mechanical locking of the test casting. 

 
Test apparatus 
A schematic of the CDT apparatus is shown in Figure 6 (a). The test was designed to control displacement with high 
precision and measure the resultant displacement and force on the solidifying shell as a function of time. Thus, it is possible 
to apply a certain amount of strain to the solidifying solid shell at a controlled strain rate. The experimental setup consists of 
an electric cylinder, which was powered by a servo motor and controlled by an electric drive. Rotational movement of 
servomotor was translated to reciprocate linear movement using high gear ratio electric cylinder. A 20KN compression & 
tension load cell and a 25mm linear variable differential transformer (LVDT) were used to control and monitor force and 
displacement as a function of time. Copper chills were water cooled to intensify solidification and protect heating the load 
cell. A threaded steel rod, with two clamping nuts on the end, penetrates the copper chills and protrudes on both sides into the 
casting cavity, as shown in the detailed view in Figure 6 (b). At the left side, the threaded rod was fixed to the platform, and 
at the right side, the threaded rod was connected to the load cell (and electric cylinder) by a flange coupling.  

 

 

 

(a) (b) 

Figure 6: (a) Schematic of the Controlled Deformation Test (CDT) setup showing the main components of this apparatus, and 
(b) a detailed view of the attachment between the clamping bolts and the copper chill. 

All of the components were placed on a custom-made platform, as shown schematically in Figure 7. The electric cylinder, 
servo motor and drive were fixed to the platform. A protective steel plate was used between the sand mold and the electric 
cylinder to protect the device. A steel flask was used as the “mold box” to keep the sand mold rigid and to support the copper 
chills. 
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Figure 7: The controlled deformation test setup shows how the mold box and electric cylinder were attached to the steel 
frame, and the blue arrow in the picture indicates the direction of the movement of the electric cylinder. 

 
Test procedure  
Two different types of experiments were carried out in this study to check the capabilities of the test setup and optimize the 
test parameters. For both tests, a common medium carbon steel with target composition of  0.25 wt%. C - 0.3 wt%. Si – 0.5 
wt%. Mn – 0.035 wt%. P – 0.03 wt%. S were used. For each test, before testing, a no-bake sand mold was prepared 
separately in the mold box, and then placed in the proper position on the platform. Figure 8(a) shows the experimental setup 
assembly; Figure 8(b) shows a close view of the LVDT and load cell. LabView software was used to control the movement 
of the motor. Additionally, LabView data acquisition input modules were connected to the LVDT and the load cell to collect 
and record the displacement and force data as a function of time. 

 

 

(a) (b) 

Figure 8: (a) Assembly of the experimental setup, and (b) detail view of the position of the LVDT and load cell. 

High purity induction iron, ferrosilicon, electrolytic manganese and cast iron were melted in a coreless 100 lbs capacity 
induction furnace under argon cover with a flow rate of 45 SCFH. The cast iron served as a source of carbon. When there was 
a small liquid pool was observed, the pyrite powder was added into the furnace as the source of sulfur. The molten metal was 
tapped at 1650 °C into a teapot ladle and killed by 0.05 wt.% high purity aluminum shots in the ladle. Then the liquid metal 
was poured into the sand mold at 1550°C in 5~6 s. At the same time, the force and displacement changes were monitored in 
the computer. Before the start of the deformation test, to avoid any premature deformation in the casting, the solidification 
contraction was compensated for by slowly moving the electric cylinder to maintain zero force reading on the load cell. After 
a specified amount of time, the casting was pulled by the electric cylinder at a constant strain rate. In the first test (Test 1), 
multiple deformation steps were applied during the test and the casting was totally fractured after the test. A 4% strain was 
used at each deformation step in this test and the strain rate was 5*10-3 /s. In the second test (Test 2), the test was stopped 
immediately after a load drop or a load deviation was observed on the load cell readings, which indicates the yield or failure 
of the material. The strain rate in Test 2 was 10-3 /s. These two tests varied the test start time. For Test 1, the test start time 
was 300 s after pouring. For Test 2, it was 480 s after pouring. The test start time was selected based on the MAGMASOFT 
solidification analysis of the steel. More details about how to determine the test start time will be discussed in the following 
section. 
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RESULTS AND DISCUSSION 

 
Thermodynamic modeling 
To determine the test start time after pouring, the solid fraction vs temperature curve for the current steel grade (0.25 wt%. C 
- 0.3 wt%. Si – 0.5 wt%. Mn – 0.035 wt%. P – 0.03 wt%. S) was calculated using the Schiel solidification model in FactSage 
(Version 7.1) thermodynamic software. Figure 9 shows the calculated solid fraction as a function of temperature. The liquid 
impenetrable temperature (LIT), which is considered the point below which the dendrites are connected enough to resist the 
feeding of the interdendritic liquid [4] [21], has been shown to correspond to a solid fraction of 90% [22-23]. Therefore, from 
the solid fraction – temperature curve, the LIT for the steel composition of interest was determined to be 1420 °C for the 
current steel composition. 

 

 

Figure 9: Calculated solid fraction and temperature curve for the studied steel by Scheil equation, which was used to estimate 
the LIT (dotted lines). 

 
Casting solidification simulation  
Figure 10 shows the results of the solidification simulation using MAGMASOFT. Figure 10 (a) shows the predicted fraction 
of liquid at 6 minutes after solidification. It should be noted that the two sides of the casting were fully solidified because of 
the water cooled copper chills while the area within the insulation sleeve (short for insulated area) was only partially 
solidified. A cross section view of solid fraction the insulated area is shown in Figure 10 (b) and this reveals that a uniform 
solid shell was predicted to form in this area.  

   

  

(a) (b) 

Figure 10: MAGMASOFT solidification modeling shows (a) the solidification sequence of the casting and (b) the cross 
sectional view of liquid fraction in the insulated area.  

The last solidified cross section in the casting was near to the center of the insulated part of the casting, based on the 
solidification simulation. To establish relationship between the temperature and time, the temperature at two fixed locations 
within the last solidified cross section was predicted, as shown in Figure 11 (a). One predicted temperature was in the center 
of the casting and another one was in 10mm radial position from the surface. Figure 11(b) shows the simulated temperature 
history of these two points. Test 1 was aimed to check the accuracy of the setup and examine the structure of the fracture 
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surface, so the test start time was decided as 300 s to make sure there still had liquid metal when the start of the test. Test 2 
was design to start the test when the solid shell in the insulated area was about 10mm. Thus, when the temperature at the 
10mm thickness position is equal to the LIT, the corresponding time is the test start time, which was determined to be 480 s. 

 

  

(a) (b) 

Figure 11: (a) Cross sectional view of the insulated area with the position of the simulated thermocouples and, (b) simulated 
temperature history in different positions of the casting.  

 
CDT results  
Table 1 gives the target and measured chemistry of the steels employed in the two tests. The main elements were measured 
by optical emission spectroscopy (OES). LECO* combustion method was used for C, S. The measured compositions were in 
good agreement with the targeted chemistry. It should be noticed that the measured sulfur was slightly higher than the 
expected amount, which may have been caused by the segregation of sulfur, since the samples used for measuring the sulfur 
were cut from the insulated area, which was the last area in the casting to solidify. 

 

Table 1: Measured steel chemistry in two test (wt.%).  

Element (wt. %) Fe *C Mn *S (ppm) P Si Al 
Target Bal. 0.17~0.23 0.3~0.6 300 <0.04 0.3~0.4 0.05 
Test 1 Bal. 0.23 0.55 319 0.014 0.38 0.054 
Test 2 Bal. 0.20 0.59 353 0.021 0.35 0.045 

 
Figures 12 (a) and (b) show the load and displacement measurements obtained during Test 1 and Test 2, respectively. When 
pouring the metal into the mold, the liquid metal flow pushed the copper chill, which was connected with the load cell and 
the load cell measured the resultant compression force. As solidification started, the compression force began to decrease 
because of solidification contraction and solid section shrinkage. For Test 1, the test started 300s after pouring, which is 
indicated by the change of the displacement. Four deformation steps were applied to the casting in this test at a constant strain 
rate of 5*10-3 /s and each deformation step was at a 4% strain. It should be noted that the amount of strain was calculated 
using the length of the insulation sleeve as the gauge length. Among these four deformation steps, the last step had the 
maximum tensile force of about 2.6KN.   

For Test 2, before the start of the test, the holding time before applying strain to the casting was longer compared with the 
waiting time in Test 1 to ensure that a thicker solid shell formed before strain was applied. A larger solidification contraction 
was observed, which was related to thicker solid shell that formed in the test. To compensate the solidification contraction, a 
“negative” displacement was applied to keep the measured force near zero. The deformation test started at 480 s after pouring 
at the strain rate of 10-3 /s. The maximum force in this test was around 13KN. Shell deformation was stopped immediately 
after the first observed load drop. 
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(a) (b) 

Figure 12: Load and displacement change during (a) Test 1 and (b) Test 2. 

Figure 13 shows the results of the whole test casting, detailing the insulated area after Test 1 and Test 2, respectively. After 
the Test 1, the casting was totally broken. And the failure position was close to the center of the insulation sleeve, which was 
expected. For Test 2, some surface cracks were observed on the casting surface. 

 

   

(a) (b) (c) 

Figure 13: Results of the casting: (a) Complete casting after Test 1, (b) insulated area after Test 1, and (c) insulated area after 
Test 2. 

An overview of the fracture surface after Test 1 is shown in Figure 14 (a). Columnar structure was observed on the upper side 
of the surface. On the lower side, there was evidence of liquid flow, which means when the test started, liquid was still 
present in the center of the insulated part and this liquid flowed to the lower side of the fracture site during the test. Figure 14 
(b) shows a closer view of a part of the fracture surface, which was highlighted by the red box in the Figure 14 (a). Figure 14 
(b) confirms that the dendrite structures grows from the surface towards the center of the casting in the insulated area, which 
satisfies with the requirement of the experimental design. Under higher magnification Figure 14 (c), single isolated dendrites 
can also be observed. 

 

   

(a) (b) (c) 

Figure 14: (a) An overview of the fracture surface after Test 1; (b) zoom of part of the fracture surface to show the growth 
direction of the dendrites; and (c) higher magnification SEM image to show a signal dendrite structure on the fracture 

surface. 
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To observe the internal crack, the insulated part of Test 2 was sectioned in longitudinal direction. Then small specimens were 
sectioned, mounted and polished for crack observation and chemistry analysis. As shown in Figure 15 (a) and (c), small 
internal cracks were found to be perpendicular to the direction of the external strain. Figure 15 (b) and (d) show the sulfur 
distribution in the area of (a) and (c) respectively, which were obtained by ASPEX EDS mapping. It should be noted that in 
the crack area, the sulfur concentration was higher than other area. It is well known that sulfur has a low partition ratio and it 
is easy to segregate to the inter-dendritic region, which can flow and accumulate at the crack site as damage occurs [24]. 
Those low-melting compositions increase the internal crack sensitivity and their enrichment at the crack site serves as a 
signature of the hot tearing. By comparing the sulfur EDS mapping with the position of the cracks, it can be demonstrated 
that these internal cracks are the results of hot tearing.  

 

    

(a) (b) (c) (d) 

Figure 15: (a) and (c) Internal cracks that were observed in the insulated part after the test 2; (b) and (d) EDS mapping in the 
area of (a) and (c) to show the sulfur distribution in those area. 

 

CONCLUSIONS 

In the present study, a laboratory method to investigate hot tearing formation in the continuous casting process was 
developed and tested. For the mold design, two water cooled copper chills and a centrally located low thermal conductivity 
insulation sleeve were used to control the solidification of the casting. Solidification simulations show that the insulated area 
is the last area to solidify in the mold. The solid shell grows from the surface towards the center uniformly in the insulated 
area, which satisfies the experimental requirements to simulate continuous casting shell growth. Two different tests were 
carried out in the present work. These tests confirm the capabilities of this experimental setup to induce hot tearing under 
controlled thermo-mechanical conditions. Test results indicate that the experimental setup has the ability to monitor the force 
and displacement change during the solidification of the casting and successfully create conditions for hot tear formation. A 
test method to quantitatively evaluate and compare the hot tearing susceptibility for different grades of steel has been 
demonstrated, and testing on a variety of alloy systems of interest are still ongoing.  
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