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ABSTRACT

We consider model order reduction of a cable-mass system modeled by a one

dimensional wave equation with interior damping and dynamic boundary conditions.

The system is driven by a time dependent forcing input to a linear mass-spring

system at the left boundary of the cable. A mass-spring model at the right end

of the cable includes a nonlinear sti�ening force. The goal of the model reduction

is to produce a low order model that produces an accurate approximation to the

displacement and velocity of the mass in the nonlinear mass-spring system at the right

boundary. We believe the nonlinear cable-mass model considered here has not been

explored elsewhere; therefore, we prove the well-posedness and exponential stability

of the unforced linear and nonlinear models under certain conditions on the damping

parameters, and then consider a balanced truncation method to generate the reduced

order model (ROM) of the nonlinear input-output system. Little is understood about

model reduction of nonlinear input-output systems. Therefore, we present detailed

numerical experiments concerning the performance of the nonlinear ROM; we �nd

that the ROM is accurate for many di�erent combinations of model parameters. We

also prove the well-posedness and exponential stability of other cable-mass problems

with unbounded input and output operators, and numerically investigate the behavior

of the ROMs for these systems.
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1. INTRODUCTION

Model order reduction (MOR) is currently a very active �eld of research in

many disciplines with many potential applications including numerical simulation,

optimization, uncertainty quanti�cation, feedback control and data assimilation (see,

e.g., [1, 2, 3, 4, 5, 6, 7]). Many types of MOR for linear problems are well established

but remain challenging for nonlinear PDE systems with inputs and outputs.

One main objective of this work is to understand the numerical performance

of a type of balanced truncation model order reduction approach for a speci�c non-

linear PDE system with inputs and outputs and also with unbounded input/output

operators. Balanced truncation for linear input-output systems was �rst introduced

by Moore in 1981 [8], and is now a very popular model reduction approach [9, 10].

The theory of balanced truncation model reduction for nonlinear input-output sys-

tems was introduced later by Scherpen [11], but this method is not computationally

feasible for large-scale systems. We consider another type of nonlinear balanced

truncation model reduction that is closely related to balanced truncation for linear

systems; speci�cally, the modes obtained from linear balanced truncation are used

to reduce the nonlinear system via a Petrov-Galerkin projection. This approach is

computationally tractable and therefore has potential for various applications; how-

ever, there is no existing theoretical foundation for this MOR approach. Further, we

can �nd methods of model reduction for nonlinear systems by modi�ng the balanced

truncation method [12, 13, 14, 15, 16, 17].

In the absence of required theory, numerical studies are necessitated to test

the performance of this MOR approach. We are aware of only one detailed numerical

study: in [18], the authors numerically show that this nonlinear balanced truncation

MOR approach is very e�ective for a 1D complex Ginzburg-Landau equation.
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In this work, we consider the same model reduction approach for three di�erent

nonlinear input-output cable-mass systems that are represented by a one dimensional

damped wave equation with dynamic boundary conditions. One model, which is

introduced in Section 2, was originally considered as heuristic model for a wave tank

with an energy converter [19]. In this model, the input is a force to a mass-spring

system in the left boundary. In Section 3, we consider a di�erent boundary condition

in the left end: the input is the force applied to the left end of the cable.

In Section 4, we consider the model from Section 2, but with di�erent output:

the force of the cable on the right mass. The importance of doing Sections 3 and 4 is

the input and output operators are unbounded in each system, respectively. So we

need to study the performance of balanced truncation model reduction numerically.

We note that verifying the balanced truncation theory for PDE systems with inputs

and/or outputs on the boundary of the special domain can often be very challenging

[20, 21, 22] since the input/output operators B and/or C are no longer bounded.

The theory of balanced truncation for in�nite dimensional systems with unbounded

input and output operators can be found from [20, 21]. Further, in the literature

some authors present numerical investigations for MOR of nonlinear systems using

di�erent techniques (see, e.g., [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]).

In Section 5, we also consider a cable-mass system where the cable is �xed at

the left end. An analysis of this PDE system was originally performed in [36], and

nonlinear exponential stability was shown for small enough initial data. The main

purpose of doing Section 5 is to substantiate with theoretical proof the exponential

stability of the original cable-mass nonlinear system in [36] for any initial condition.

We believe the nonlinear cable-mass model considered here has not been ex-

plored elsewhere; therefore, we prove the well-posedness and exponential stability of

the unforced linear and nonlinear models in Sections 2, 3, and 5. The well-posedness
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and exponential stability of many types of wave equation models with dynamic bound-

ary conditions have been explored in the literature; see, e.g., [36, 37, 38, 39, 40] and

the references therein. The primary di�erence in the models considered here with

most of the models considered else where is that dynamic boundary conditions hold

on all boundaries or non-dynamic boundary conditions are speci�ed that are slightly

unusual. The paper [37] also considered a 1D wave equation with dynamic boundary

conditions on all boundaries; however, the physical system considered in that work

leads to di�erent boundary conditions than the one we considered.

MOR for wave equations has been discussed in the literature (see, e.g., [29,

41, 42, 43, 44, 45, 46]); however, many existing works do not consider input-output

model reduction as we do here. The work [42] also considers input-output types of

model reduction for a di�erent cable-mass model; however, that work explores the

e�ectiveness of the model reduction for a feedback control application. Feedback

control of PDE models with input in dynamic boundary conditions has also been

explored in other work (see, e.g., [47, 48, 49, 50]); however we do not believe model

reduction has been explored in depth for such systems.
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2. NONLINEAR CABLE-MASS PROBLEM WITH BOUNDED

INPUT AND OUTPUT OPERATORS

2.1. THE MODEL

We consider a �exible cable with mass-spring systems attached to each end.

Figure 2.1 illustrate the cable-mass system of interest. Each mass-spring system is

connected to a rigid horizontal support. The dotted line represents the equilibrium

position of the system. Let

• w0(t) denote the position below equilibrium of the left mass at location x = 0

and time t,

• w(t, x) denote the position of the cable at location x and time t, and

• wl(t) denote the position above equilibrium of the right mass at location x = l

and time t.

The left mass is located at position x = 0, and the right mass is located at x = l.

We assume the system is driven by an external force acting on the left mass-spring

system, and that there are no other external forces.

We model the motion of the �exible cable with a damped 1D wave equation

on 0 < x < l. We include both Kelvin-Voigt and viscous damping in the model. We

 

 

 

  

𝑤𝑤0(𝑡𝑡) 

𝑤𝑤ℓ(𝑡𝑡) 

𝑤𝑤(𝑡𝑡, 𝑥𝑥) 

𝑥𝑥 

Figure 2.1. The cable-mass system
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model the mass-spring system with damped second order oscillators. The left mass-

spring system includes a time dependent external force input u(t), and the right

mass-spring system includes a nonlinear sti�ening force. This gives a wave equation

with dynamic boundary conditions:

wtt(t, x) + αwt(t, x) = γwtxx(t, x) + β2wxx(t, x), (2.1)

m0ẅ0(t) + α0ẇ0(t) + k0w0(t) = (γwtx(t, 0) + β2wx(t, 0)) + u(t), (2.2)

mlẅl(t) + αlẇl(t) + klwl(t) = (−γwtx(t, l)− β2wx(t, l))− k3 [wl(t)]
3 . (2.3)

Each term in the parenthesis in the dynamic boundary conditions is the force of the

cable acting on the mass. Here, γ is the Kelvin-Voigt damping parameter, α, α0, αl

are viscous damping parameters, m0 and ml are the masses, and k0, kl, and k3 are

the sti�ness parameters. In the model the damping parameters are nonnegative, and

the wave equation parameter β as well as the mass and sti�ness parameters are all

positive. Finally, the position of the cable at each boundary must equal the position

of each mass; therefore, we have displacement compatibility condition

w(t, 0) = w0(t), w(t, l) = wl(t). (2.4)

For the model reduction problem, we assume we have two system outputs: the posi-

tion and the velocity of the right mass, i.e.,

y1(t) = wl(t), y2(t) = ẇl(t).

2.2. THE ENERGY FUNCTION

Next, we give a preliminary investigation of the change in energy of the un-

forced system, i.e., the system with u(t) = 0. This will help us to obtain the correct
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inner products for an abstract formulation of the system. Later we prove the energy

decays to zero exponentially fast under certain assumptions on the system parame-

ters. We assume the solution for the above system is su�ciently smooth. We de�ne

the total kinetic energy of the cable by

ET,K =
1

2

lˆ

0

w2
t dx.

Di�erentiating with respect to time and using the wave equation (2.1) gives

dET,K
dt

=
1

2

lˆ

0

2wtwtt dx

=
1

2

lˆ

0

2wt(t, x)(γwtxx(t, x) + β2wxx(t, x)− αwt(t, x)) dx.

Integrate by parts to obtain

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

+ wt(t, l)
[
γwtx(t, l) + β2wx(t, l)

]
− wt(t, 0)

[
γwtx(t, 0) + β2wx(t, 0)

]
.

Using the boundary conditions of our cable-mass model (2.2), (2.3) and the displace-

ment compatibility condition (2.4) gives

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

− ẇl(t)
[
mlẅl(t) + αlẇl(t) + klwl(t) + k3 [wl(t)]

3]
− ẇ0(t) [m0ẅ0(t) + α0ẇ0(t) + k0w0(t)] .
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This can be written as

d

dt

(
1

2

lˆ

0

w2
t dx +

ml

2
(ẇl(t))

2 +
m0

2
(ẇ0(t))

2 +
β2

2

lˆ

0

w2
x dx

+
kl
2

(wl(t))
2 +

k0
2

(w0(t))
2 +

k3
4

(wl(t))
4

)
=

−γ
ˆ l

0

(wtx(t, x))2 dx− α
ˆ l

0

(wt(t, x))2 dx− α0 (ẇ0(t))
2 − αl (ẇl(t))2 .

This suggests de�ning the system kinetic energy and potential energy as

EK =

lˆ

0

1

2
w2
t dx +

ml

2
(ẇl(t))

2 +
m0

2
(ẇ0(t))

2 ,

EP =

lˆ

0

β2

2
w2
x dx+

kl
2

(wl(t))
2 +

k0
2

(w0(t))
2 +

k3
4

(wl(t))
4 .

This energy expression can also be obtained by considering the kinetic energy and

potential energy of each component of the system. The above energy equation gives

d

dt
E =

d

dt
(EK + EP )

= −
[
γ

ˆ l

0

(wtx(t, x))2 dx+ α

ˆ l

0

(wt(t, x))2 dx+ α0 (ẇ0(t))
2 + αl (ẇl(t))

2

]
,

and therefore Ė(t) ≤ 0.

This result matches physical intuition and gives the correct energy inner prod-

ucts for the system. Later on, we prove the energy decays exponentially fast to zero

under certain assumptions.



8

2.3. VARIATIONAL FORM

In this subsection, we introduce the variational form (weak form) of the system.

Later, we use this form to analyze the model. We assume the solution [w,w0, wl] is

smooth and satis�es the displacement compatibility condition w(t, 0) = w0(t) and

w(t, l) = wl(t). Multiply the wave equation (2.1) by a smooth test function h = h(x)

satisfying h(0) = h0 and h(l) = hl and integrate:

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− γ
lˆ

0

wtxx(t, x)h dx− β2

lˆ

0

wxx(t, x)h dx = 0.

Now integrate by parts:

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− hl
[
γwtx(t, l) + β2wx(t, l)

]

+ h0
[
γwtx(t, 0) + β2wx(t, 0)

]
+ γ

lˆ

0

wtx(t, x)hx dx+ β2

lˆ

0

wx(t, x)hx dx = 0.

As in the above energy argument, we use the boundary conditions to give the varia-

tional form:

0 =

ˆ l

0

wtt(t, x)h dx+mlẅl(t)hl +m0ẅ0(t)h0

+ β2

lˆ

0

wx(t, x)hx dx+ klwl(t)hl + k0w0(t)h0

+

lˆ

0

[αwt(t, x)h + γwtx(t, x)hx ] dx+ hlαlẇl(t) + h0α0ẇ0(t) + k3 [wl(t)]
3 . (2.5)

Now we give details about the function spaces to make the formulation precise.

Let H be the real Hilbert space H = L2(0, l) × R2 with the inner product of z =
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[w,w0, wl] ∈ H and ψ = [p, p0, pl] ∈ H de�ned by

(z, ψ)H =

lˆ

0

wpdx+m0w0p0 +mlwlpl. (2.6)

Let V ⊂ H be the set of elements z = [w,w0, wl] ∈ H1(0, l) × R2 satisfying the

displacement compatibility condition w(0) = w0 and w(l) = wl. For z ∈ V as above

and ψ = [p, p0, pl] ∈ V de�ne the V inner product of z with ψ by

(z, ψ)V =

lˆ

0

β2wxpxdx+ k0w0p0 + klwlpl. (2.7)

We also use the notation σ1(z, ψ) = (z, ψ)V . The H and V inner products, (2.6)

and (2.7), can be derived from the energy function; the H and V norms are directly

related to the system kinetic and potential energies, respectively. Speci�cally,

EK =
1

2
(zt, zt)H =

1

2
‖zt‖2H , EP =

1

2
(z, z)V +

k3
4
w4
l =

1

2
‖z‖2V +

k3
4
w4
l .

Furthermore, both inner products appear in the variational form (2.5).

The Gelfand triple is V ↪→ H ↪→ V
′
with pivot space H and the algebraic

dual of V is V
′
. We de�ne 〈g, v〉 for g ∈ V ′

, v ∈ V by 〈g, v〉 = g(v). Also, we de�ne

the damping bilinear form σ2 : V × V → R by

σ2 (z, ψ) =

ˆ l

0

(γwxpx + αwp) dx+ α0w0p0 + αlwlpl. (2.8)

Note that this bilinear form occurs in the variational form (2.5) as a damping term

with all �rst order time derivatives.
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The spaces and inner products are motivated by the above variational form

(2.5). Further we can rewrite the above variational form (2.5) as

(ztt, ψ)H + σ1(z(t), ψ) + σ2(zt(t), ψ) + (f(z), ψ)H = 0, (2.9)

where f(z) = [0, 0, k3m
−1
l w3

l ] is the nonlinear term.

2.4. ABSTRACT FORM

The partial di�erential equation (PDE) model for the physical cable-mass

system can be written in an in�nite dimensional abstract form as

ẋ(t) = Ax(t) + Bu(t) + F(x(t)), x(0) = x0, (2.10)

y(t) = Cx(t), (2.11)

where x(t) is the state of the system in the Hilbert space H = V × H, and u(t) is

the input of the system. The operator A : D(A) ⊂ H → H contains the dynamics of

the physical system. Similar to Burns & King's work [36], the PDE system suggests

that the domain of the operator A and the operator A can be formally de�ned as

D(A) =

{
x = [w,w0, wl, v, v0, vl]

T ∈ H : w ∈ H1(0, l), v ∈ H1(0, l),

[
β2 d

dξ
w + γ

d

dξ
v

]
∈ H1(0, l), w(0) = w0, w(l) = wl, v(0) = v0, v(l) = vl

}
,
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and

Ax = A



w

w0

wl

v

v0

vl


=



v

v0

vl

d
dξ

[
β2 d

dξ
w + γ d

dξ
v
]
− αv

−δ0
[
β2

m0

d
dξ
w + γ

m0

d
dξ
v
]
− k0

m0
w0 − α0

m0
v0

−δl
[
β2

ml

d
dξ
w + γ

ml

d
dξ
v
]
− kl

ml
wl − αl

ml
vl


where δ0 and δl denote the evaluation operator de�ned as δl(φ(·)) = φ(l) and δ0(φ(·)) =

φ(0) in H1(0, l). Also, we de�ne the input/output operators and nonlinear term (A,

B and F) by

B =

[
0 0 0 0 1

m0
0

]T
, C =

 0 0 1 0 0 0

0 0 0 0 0 1


F(x) =

[
0 0 0 0 0 m−1l k3w

3
l

]T
.

In our analysis, we do not use the formal de�nition of the operator A given

above. Instead, we use theory from Banks [51] to rigorously de�ne the operator A

using the bilinear forms σ1 and σ2. We use this rigorous de�nition for the analysis. We

prove the operator A generates an exponentially stable C0-semigroup in the following

section.

2.5. THE LINEAR PROBLEM

We begin by analyzing the variational form for the linear problem

(ztt, ψ)H + σ1(z(t), ψ) + σ2(zt, ψ) = 0. (2.12)
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We prove the linear problem is well-posed, and also exponentially stable under certain

assumptions on the damping parameters. The exponential stability is necessary for

the application of the balanced truncation model reduction technique considered later.

2.5.1. Function Spaces. We �rst present basic results about the function

spaces that we frequently use in this work.

Lemma 2.1. The space V with the above inner product (2.7) is a real Hilbert space,

and V is dense in H.

Proof. First, if (z, z)V = 0, where z = [w,w0, wl], then w(x) is a constant function

and w0 = wl = 0. The compatibility condition implies w(x) = 0 for all x, and so

z = 0. It is clear that (·, ·)V satis�es the remaining properties of an inner product.

Next, let {zn} ⊂ V be a Cauchy sequence, where zn = [wn, wn0 , w
n
l ]. Therefore,

[wnx , w
n
0 , w

n
l ] is a Cauchy sequence in L2(0, l) × R2, and so there exists [q, w0, wl] ∈

L2(0, l)× R2 such that

wnx → q in L2(0, l), wn0 → w0, wnl → wl.

De�ne w by w(x) = w0 +
´ x
0
q(η)dη. Then w ∈ H1(0, l), wx = q, and w(0) = w0.

Also, we have w(l) = wl since

w(l) = lim
n→∞

wn0 +

ˆ l

0

wnx(η)dη = lim
n→∞

wnl = wl.

Therefore z = [w,w0, wl] satis�es the displacement compatibility condition and zn

converges in V to z ∈ V . This shows V is a Hilbert space. To show V is dense in H,

let z = [w,w0, wl] ∈ H and de�ne

g(x) = w0 + l−1(wl − w0)x
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Note that g(0) = w0 and g(l) = wl. Since H1
0 (0, l) is dense in L2(0, l), there exists a

sequence qn ∈ H1
0 (0, l) such that qn → w − g in L2. De�ne

zn = [qn + g , w0 , wl]

Due to the properties of qn and g, we have zn ∈ V for all n and also zn → z in H as

n→∞. This proves V is dense in H.

We use the inequalities in the following lemma to prove the well-posedness

and exponential stability of the system.

Lemma 2.2. If z = [w,w0, wl] ∈ V , then

|w(x)|2 ≤ 2 |w0|2 + 2l ‖wx‖2L2(0,l) , (2.13)

‖w‖2L2(0,l) ≤ 2l
[
|w0|2 + l ‖wx‖2L2(0,l)

]
, (2.14)

w2
l ≤ 2w2

0 + 2l ‖wx‖2L2(0,l) , (2.15)

|w(x)|2 ≤ 2 |wl|2 + 2l ‖wx‖2L2(0,l) , (2.16)

w2
0 ≤ 2w2

l + 2l ‖wx‖2L2(0,l) , (2.17)

‖w‖2L2(0,l) ≤ 2l
[
|wl|2 + l ‖wx‖2L2(0,l)

]
. (2.18)

Proof. Since w ∈ H1(0, l) and w(0) = w0, we have

w(x) = w0 +

xˆ

0

wξ(ξ) dξ.

Taking absolute values and using the triangle inequality gives

|w(x)| ≤ |w0|+
xˆ

0

|wξ(ξ)| dξ.
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Then applying Hölder's inequality (|wξ(ξ)| = 1. |wξ(ξ)|) gives

|w(x)| ≤ |w0|+

 lˆ

0

12dξ


1
2

.

 lˆ

0

|wx(x)|2 dx


1
2

≤ |w0|+ l
1
2 ‖wx‖L2(0,l) .

Squaring this inequality and using Young's inequality gives (2.13); integrating (2.13)

from x = 0 to x = l gives (2.14); and evaluating equation (2.13) at x = l yields (2.15).

Further note that beginning from w(x) = wl−
´ l
x
wξ(ξ) dξ and applying similar

ideas gives (2.16), (2.17) and (2.18).

Lemma 2.3. V is continuously embedded in H.

Proof. Let z = [w,w0, wl] ∈ V . We use theH and V inner products and the inequality

(2.14) from Lemma 2.2 to obtain

‖z‖2H =

ˆ l

0

w2dx+m0w
2
0 +mlw

2
l

= ‖w‖2L2(0,l) +m0w
2
0 +mlw

2
l

≤ 2l
[
|w0|2 + l ‖wx‖2L2(0,l)

]
+m0w

2
0 +mlw

2
l

≤ 2l2
lˆ

0

w2
x dx+ (2l +m0)w

2
0 +mlw

2
l

≤
(

2l2

β2

)
β2

lˆ

0

w2
x dx+

(
2l +m0

k0

)
k0w

2
0 +

(
ml

kl

)
klw

2
l

≤ C1

k0w2
0 + klw

2
l + β2

lˆ

0

w2
x dx

 .
where C1 = max

{
2l+m0

k0
, ml

kl
, 2l

2

β2

}
. This gives C−11 ‖z‖

2
H ≤ ‖z‖

2
V and therefore V is

continuously embedded in H.
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2.5.2. Well-Posedness and Exponential Stability. To show the linear

problem is well-posed, we rewrite the problem as ẋ = Ax and show A generates

a C0-semigroup on H = V × H. We need the following basic concepts concerning

bilinear forms acting on V .

De�nition 2.1.

• A bilinear form σ : V × V → R is V -continuous if |σ(ϕ, ψ)| ≤ c1 ‖ϕ‖V ‖ψ‖V for

all ϕ and ψ in V .

• A bilinear form σ : V × V → R is V -elliptic if there exists a constant c2 > 0

such that σ (ϕ, ϕ) ≥ c2 ‖ϕ‖2V for all ϕ in V .

• A bilinear form σ : V ×V → R is H-semielliptic if there exists a constant c3 ≥ 0

such that σ (ϕ, ϕ) ≥ c3 ‖ϕ‖2H for all ϕ in V . Also, σ is H-elliptic if c3 > 0.

Lemma 2.4. σ2 is V -continuous.

Proof. Let Φ = [ϕ, ϕ0, ϕl] and Ψ = [ψ, ψ0, ψl] and recall

σ2(Φ,Ψ) =

ˆ l

0

[αϕψ + γϕxψx] dx+ α0ϕ0ψ0 + αlϕlψl.

Applying Hölder's inequality and using the result (2.14) proves the lemma.

We follow the presentation in [51], Section 8.1, in order to �nd the linear operator

A. First, σ2 is V -continuous. Since σ1 and σ2 are V -continuous we have that there

exists operators Ai ∈ L(V, V
′
) for i = 1, 2 such that

σi(ϕ, ψ) = 〈Aiϕ, ψ〉 for all ϕ, ψ ∈ V.

De�ne the operator A : D(A) ⊂ H → H, where H = V ×H, by

D(A) = {x = [ϕ, ψ] ∈ H : ψ ∈ V,A1ϕ+ A2ψ ∈ H}
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and

A =

 0 I

−A1 −A2

 . (2.19)

Theorem 2.5. The operator A de�ned above generates a C0-semigroup on H =

V ×H.

Proof. Due to the properties of the spaces H and V , the result follows directly from

Theorem 8.2 in [51] since σ1 is the V inner product and σ2 is H-semielliptic.

Since A generates a C0-semigroup T (t) on H = V × H, then T (t)x0 is the

unique solution of ẋ = Ax where x(0) = x0.

For the exponential stability of the problem, we restrict our attention to the

model with interior damping, i.e., the Kelvin-Voigt damping parameter γ is positive

or the viscous damping parameter α is positive. In this case, the easiest way to

prove exponential stability is to show σ2 is H-elliptic or V -elliptic. Note that since

V is continuously embedded in H, if σ2 is V -elliptic then it must also be H-elliptic;

additionally, if σ2 is V -elliptic then the semigroup is also analytic.

Theorem 2.6. If σ2 is H-elliptic, then the operator A de�ned in (2.19) is the in-

�nitesimal generator of an exponentially stable C0-semigroup T (t) on H = V × H.

Furthermore, if σ2 is V -elliptic, then T (t) is exponentially stable and also analytic.

Proof. This follows directly from Theorems 8.1 and 8.3 in [51].

In this work, we restrict our analysis to the cases where the damping bilinear

form σ2 is H-elliptic or V -elliptic. The analysis of exponential stability for the model

when this condition is not satis�ed is more involved. We prove exponential stabil-

ity for the linear system for three main examples of damping parameter sets. We

also consider model reduction computations for two other examples in the numerical

results.
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Example 1: γ, αl > 0 and α0 = α = 0. We �rst consider the case of Kelvin-

Voigt damping (γ > 0) and viscous damping in the right mass-spring system (αl > 0).

We prove σ2 is V -elliptic. Let z = [w,w0, wl] ∈ V , and recall the bilinear form σ2 and

the V inner product are given by

σ2(z, z) =

ˆ l

0

γw2
x dx+ αlw

2
l ,

‖z‖2V =

ˆ l

0

β2w2
xdx+ k0w

2
0 + klw

2
l .

Use the inequality (2.17) to obtain

‖z‖2V ≤ (β2 + 2lk0)

ˆ l

0

w2
xdx+ (kl + 2k0)w

2
l

≤
(
β2 + 2lk0

γ

)ˆ l

0

γw2
xdx+

(
kl + 2k0
αl

)
αlw

2
l

≤ C2

(ˆ l

0

γw2
xdx+ αlw

2
l

)
≤ C2σ2(z, z),

where C2 = max
{
β2+2lk0

γ
, kl+2k0

αl

}
. This proves that σ2 is V -elliptic. It can also be

shown that σ2 is V -elliptic in the similar case when γ, α0 > 0 and α, αl = 0.

Example 2: γ = 0 and α, α0, αl > 0. Next, we consider the case of viscous

damping in the wave equation and both mass-spring systems (α, α0, αl > 0). We

prove σ2 is H-elliptic. Let z = [w,w0, wl] ∈ V . Recall

σ2(z, z) =

ˆ l

0

αw2dx+ α0w
2
0 + αlw

2
l ,

‖z‖2H =

ˆ l

0

w2dx+m0w
2
0 +mlw

2
l .
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Then

‖z‖2H =

ˆ l

0

(
1

α

)
αw2dx+

(
m0

α0

)
α0w

2
0 +

(
ml

αl

)
αlw

2
l

≤ C3

[ˆ l

0

αw2dx+ α0w
2
0 + αlw

2
l

]
≤ C3σ2(z, z),

where C3 = max
{

1
α
, m0

α0
, ml

αl

}
, This proves that σ2 is H-elliptic.

Example 3: γ, α > 0 and α0, αl = 0. In this last case, we consider Kelvin-

Voigt damping (γ > 0) and interior viscous damping (α > 0) but no other boundary

viscous damping. We prove σ2 is V -elliptic. We rewrite the bilinear form of σ2 and

the V inner products according to the above parameters:

σ2(z, z) =

ˆ l

0

(γw2
x + αw2) dx,

‖z‖2V =

ˆ l

0

β2w2
xdx+ k0w

2
0 + klw

2
l .

Recall the Sobolev inequality for the H1 norm and L∞ norm:

‖u‖∞ ≤ C ‖u‖H1(a,b) ,

‖u‖2H1(a,b) =

ˆ b

a

(u2 + u2x) dx,

‖u‖∞ = ess sup
x∈(a,b)

|u(x)| .
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Apply the L∞ norm for w2
0 and w

2
l , then use the Sobolev inequality to obtain

‖z‖2V ≤
ˆ l

0

β2w2
xdx+ k0 ‖w‖2∞ + kl ‖w‖2∞

=

ˆ l

0

β2w2
xdx+ (k0 + kl) ‖w‖2∞

≤
ˆ l

0

β2w2
xdx+ (k0 + kl)C ‖w‖2H1(0,l)

=

ˆ l

0

β2w2
xdx+ (k0 + kl)C

ˆ l

0

(w2 + w2
x) dx

=

ˆ l

0

((β2 + (k0 + kl)C)w2
x + (k0 + kl)Cw

2)dx

= C4 σ2(z, z),

and therefore C−14 ‖z‖
2
V ≤ σ2(z, z), where C4 = max

{
β2+(k0+kl)C

γ
, (k0+kl)C

α

}
, This

proves that σ2 is V -elliptic.

In Examples 1, 3 we proved that σ2 is V -elliptic and Theorem 2.6 gives us A

is the in�nitesimal generator of an analytic exponentially stable semigroup.

In Example 2 we proved that σ2 is H-elliptic and Theorem 2.6 gives us A

generates an exponentially stable C0-semigroup that is not analytic.

2.6. THE NONLINEAR PROBLEM

Next, we analyze the well-posedness and exponential stability of the full un-

forced nonlinear problem. First, we write the nonlinear problem as

ẋ(t) = Ax(t) + F(x(t)), x(0) = x0, (2.20)
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on H = V × H where the linear operator A is de�ned in Section 2.5.2 and the

nonlinear term F : H → H is de�ned for x = [ϕ, ψ] ∈ H with ϕ = [w,w0, wl] ∈ V by

F(x) =

 0

F0(ϕ)

 , F0(ϕ) =


0

0

m−1l k3w
3
l

 .

Theorem 2.7. The nonlinear cable-mass system has a unique mild solution on some

time interval [0, t∗).

Proof. From Section 2.5.2 we know A generates a C0-semigroup in H = V ×H. We

can check that the nonlinear term F is locally Lipschitz continuous on H. Therefore,

the result follows using semigroup theory; see, e.g., Theorem 1.4 in Section 6.1 in

[52].

Next, we prove the unforced nonlinear system is exponential stability when the

damping bilinear form σ2 is H − elliptic. For the proof, we use the energy argument

from Section 2.2, the variational formulation in Section 2.3, and also Lemma 2.8.

Lemma 2.8. (Theorem 8.1 in [53]). Let E : R+ → R+ be a non-increasing function.

If there exists a constant T > 0 such that
´∞
s
E(t) ≤ TE(s) for all s ≥ 0, then

E(t) ≤ E(0)e1−t/T for all t ≥ 0.

Theorem 2.9. If σ2 is H−elliptic and the solution x = [z, zt], with z = [w,w0, wl],

of the unforced nonlinear cable-mass problem (2.20) is su�ciently smooth, then the

energy E(t) = 1
2
‖zt‖2H + 1

2
‖z‖2V + k3

4
[wl(t)]

4 of the solution with the initial data

x(0) = x0 ∈ H decays exponentially fast as t→∞.

Remark 2.1. It may be possible to identify conditions on the damping parameters

or the initial data x0 ∈ H that provides the required smoothness of the solution for

the proof of this exponentially stable result. We do not investigate this here.
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Proof. First, since the solution is su�ciently smooth, the energy argument from Sec-

tion 2.2 gives E
′
(t) ≤ 0, where

E(t) = EK(t) + EP (t), EK =
1

2
‖zt‖2H , EP =

1

2
‖z‖2V +

k3
4

[wl]
4 .

Therefore, E(t) is non-increasing. Also, 1
2
‖x‖2H = 1

2
‖z‖2V + 1

2
‖zt‖2H ≤ E(t). Since

E(t) is bounded, ‖x‖2H cannot blow up in �nite time; therefore, semigroup theory

gives that the solution must exist for all t > 0 (Theorem 1.4 in Section 6.1 in [52]).

Next, we show that the energy function satis�es the remaining condition in

Lemma 2.8 by separately considering the kinetic and potential energies. Our proof

use ideas from the proof of Theorem 3.2 in Fourrier and Lasiecka's work [38]. To use

the above lemma, let s ≥ 0 and t > s.

Step 1 : First, we consider the kinetic energy. Recalling the energy argument

from Section 2.2 immediately gives

E ′(t) = −σ2(zt, zt).

Integrate with respect to time from s to t to obtain

E(t) = E(s)−
ˆ t

s

σ2(zt, zt)dτ.

Since σ2 is H-elliptic, there is a constant C > 0 such that σ2(zt, zt) ≥ (C/2) ‖zt‖2H =

CEK . Therefore, for C1 = C−1,

ˆ t

s

EK(τ) dτ ≤ C1E(s)− C1E(t) ≤ C1E(s),

since E(t) ≥ 0.
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Step 2 : Next, we consider the potential energy. Substitute ψ = z = [w,w0, wl]

in the vatiational form (2.9) to give

(ztt, z)H + (z, z)V + σ2(zt, z) + (f(z), z)H = 0.

Since σ2 is a symmetric bilinear form, we have σ2(zt, z) = 1
2
d
dt
σ2(z, z). Integrate with

respect to time from s to t, and then integrate by parts in time to obtain

(zt(t), z(t))H − (zt(s), z(s))H −
tˆ

s

(zt, zt)H dτ +

tˆ

s

(z, z)V dτ

+
1

2
(σ2(z(t), z(t))− σ2(z(s), z(s)) +

tˆ

s

k3(zl(t))
4dτ = 0.

Using the de�nition of kinetic energy and potential energy gives

1

2
σ2(z(t), z(t)) + 2

tˆ

s

EP (τ)dτ = −
tˆ

s

k3
2

[zl(t)]
4 dτ + 2

tˆ

s

EK(τ)dτ

− (zt(t), z(t))H + (zt(s), z(s))H +
1

2
σ2(z(s), z(s)).

We remove the nonnegative term
´ t
s
k3
2

[zl(t)]
4 dτ ≥ 0, and the equality becomes the

inequality

1

2
σ2(z(t), z(t)) + 2

tˆ

s

EP (τ)dτ ≤ 2

tˆ

s

EK(τ)dτ − (zt(t), z(t))H

+ (zt(s), z(s))H +
1

2
σ2(z(s), z(s)).
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Use (u, v)H ≤ ‖u‖H ‖v‖H and the V -continuity of σ2, i.e., σ2(Φ,Ψ) ≤ C2 ‖Φ‖V ‖Ψ‖V

to obtain

1

4
σ2(z(t), z(t)) +

tˆ

s

EP (τ)dτ

≤
tˆ

s

EK(τ)dτ +
1

2

[
‖zt(s)‖H ‖z(s)‖H + ‖zt(t)‖H ‖z(t)‖H +

C2

2
‖z(s)‖2V

]
.

Using the result from Step 1 and Young's inequality gives

1

4
σ2(z(t), z(t)) +

tˆ

s

EP (τ)dτ ≤ C1E(s) +
1

2

[
1

2
‖zt(s)‖2H +

1

2
‖z(s)‖2H

+
1

2
‖zt(t)‖2H +

1

2
‖z(t)‖2H +

C2

2
‖z(s)‖2V

]
.

Use V is continuously embedded in H, i.e., ‖z‖2H ≤ C3 ‖z‖2V , to obtain

1

4
σ2(z(t), z(t)) +

tˆ

s

EP (τ)dτ ≤ C1E(s) +
1

2

[
1

2
‖zt(s)‖2H +

1

2
‖zt(t)‖2H

+
C3

2
‖z(s)‖2V +

C3

2
‖z(t)‖2V +

C2

2
‖z(s)‖2V

]
.

Use the de�nition of kinetic energy and add positive terms k3
4

[zl(t)]
4 and k3

4
[zl(s)]

4

to the right hand side of the inequality to obtain

1

4
σ2(z(t), z(t)) +

tˆ

s

EP (τ)dτ ≤ C1E(s) + C4

[
1

2
‖zt(t)‖2H +

+
1

2
‖z(t)‖2V +

k3
4

[zl(t)]
4

]
+ C5

[
1

2
‖zt(s)‖2H +

1

2
‖z(s)‖2V +

k3
4

[zl(s)]
4

]

where C4 = max
{

1
2
, 1, C3

}
, and C5 = max

{
1
2
, 1, C2 + C3

}
.
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Since t > s and E
′
(t) ≤ 0 for all t ≥ 0, we have E(t) ≤ E(s). Also since

1
4
σ2(z(t), z(t)) ≥ 0 we get

tˆ

s

EP (τ)dτ ≤ C6E(s),

where C6 = C1 +C4 +C5. Combining the result of Step 1, letting t→∞, and using

Lemma 2.8 proves the result.

2.7. BALANCED TRUNCATION MODEL REDUCTION

Next, we return to the forced nonlinear cable-mass system (2.1) with the

system input u(t) in the dynamic boundary condition (2.3) and system output

y(t) = [wl(t), ẇl(t)]
T

of the position and velocity of the right mass. In this section, we describe a balanced

truncation model reduction approach for this nonlinear system. We begin by brie�y

reviewing balanced truncation model reduction for linear input-output ordinary dif-

ferential equation systems and then in�nite dimensional systems. We outline the

�nite di�erence method we use to approximate the nonlinear cable-mass model, and

then describe the balanced truncation model reduction method for the approximating

nonlinear �nite dimensional system.

2.7.1. Finite Dimensional Balanced Truncation. Balanced Truncation

is one of the most popular model reduction methods in control and system theory,

and it is based on the idea of controllability and observability [9, 10]. To review the

main ideas, consider the exponentially stable linear time invariant dynamical system
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in state space form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t). (2.21)

The above physical problem with dynamics has state x(t)∈RN , where N is the di-

mension of the state space, u(t) ∈ Rm is the input, and y(t) ∈ Rp is the output.

Moreover, A∈RN×N , B∈RN×m, and C∈Rp×N are constant matrices, and A is stable.

To reduce the complexity of the system, we approximate the problem using

a reduced number of states r � N . Balanced truncation looks for a reduced order

model

ȧ(t) = Ara(t) +Bru(t),

yr(t) = Cra(t),

where a(t) ∈ Rr is the reduced order state, such that the error in the output

‖y(t)− yr(t)‖ is small when the same input u(t) is applied to both systems.

To do this, let T ∈ RN×N be invertible, and make the change of variable

z = Tx. Then we can write the original system (2.21) as

ż(t) = T−1ATz(t) + T−1Bu(t),

y(t) = CTz(t).

It can be checked that the transfer function G(s) = C(sI −A)−1B relating inputs to

outputs in the original system is equal to the transfer function of the transformed sys-

tem. If A is exponentially stable, then the controllability and observability Gramians,

P,Q ∈ RN×N are the unique positive semide�nite solutions to the Lyapunov equa-

tions AP + PAT +BBT = 0 and ATQ+QA+CTC = 0. It can be checked that the



26

Gramians of the transformed system are given by P̂ = TPT T and Q̂ = (T−1)
T
QT−1.

Furthermore, if P and Q are positive de�nite, there exists T such that transformed

Gramians P̂ and Q̂ are balanced, i.e., they are equal and diagonal; the positive diag-

onal entries are called the Hankel singular values of the system, and they are ordered

from greatest to least.

The states in the transformed system corresponding to �small� Hankel singular

values are truncated to produce the balanced low order model. In addition, the

truncation error between the transfer functionG(s) of the original system and transfer

function Gr(s) = Cr(sI − Ar)−1Br of the balanced low order model is bounded by

‖G(s)−Gr(s)‖∞ ≤ 2
∑
i>r

σi, (2.22)

where {σi}Ni=1 are the ordered Hankel singular values of the system and the norm is the

H∞ system norm. Therefore, if the Hankel singular values decay to zero quickly, then

the balanced low order model can provide a good approximation to the input-output

response of the full order system. Once the Hankel singular values are computed, the

above error bound can be used as a guide to choose an appropriate value for r.

2.7.2. In�nite Dimensional Balanced Truncation. Since we consider a

partial di�erential equation system in this work, we brie�y review balanced truncation

model reduction for a linear in�nite dimensional system of the form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), (2.23)

holding over a Hilbert space H, where A : D(A) ⊂ H → H is the generator of an

exponentially stable C0-semigroup on H, and B : Rm → H and C : H → RP are both
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bounded linear operators. We also verify the theory holds for the linear cable-mass

system.

The theoretical background for the existence of the balanced truncation for

this class of in�nite dimensional linear systems can be found in [20, 54]. Speci�cally,

there is a transformed system holding over the Hilbert space l2 that is balanced, i.e.,

the controllability and observability Gramians are equal and diagonal; also, as in

the �nite dimensional case, the diagonal entries are called the Hankel singular values

and are ordered from greatest to the least. Truncating the states in the transformed

system corresponding to small Hankel singular values again yields the reduced order

model. The transfer function error bound (2.22) still holds, and the right hand side

of the error bound is �nite and tends to zero as r increases.

We can write our linear cable-mass system in the above �rst order abstract

form (2.23) with Hilbert space H = V ×H, as in Section 2.5.2. The operator A was

de�ned previously. The operator B : R→ H and C : H → R2 are de�ned as follows.

First, Bu = [0, B0u], where B0u = [0,m−10 u, 0]. Then

‖Bu‖2H = ‖Bu‖2V + ‖Bu‖2H = ‖Bu‖2H =
∥∥[0,m−10 , 0

]
u
∥∥2
H

=
∣∣m−10 u

∣∣2
≤ m−20 |u|

2 ,

and therefore B is bounded. Then let x = [z, χ] ∈ H, where z is the position and χ

is the velocity. For z = [w,w0, wl] and χ = [p, p0, pl], Cx is de�ned by Cx = [wl, pl].
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Then

‖Cx‖2R2 = ‖[wl, pl]‖2R2

= w2
l + p2l

=

[
1

ml

]
mlw

2
l +

[
1

kl

]
klp

2
l

≤
ˆ l

0

w2dx+m0w
2
0 +

[
1

ml

]
mlw

2
l +

ˆ l

0

β2p2xdx+ k0p
2
0 +

[
1

kl

]
klp

2
l

≤ C2

[
‖z‖2H + ‖χ‖2V

]
≤ C2 ‖x‖2H ,

where C2 = max
{

1, 1
ml
, 1
kl

}
. This proves the result that C is bounded. Since B, C

are bounded, the balanced truncation theory holds for the linear cable-mass system.

2.7.3. Formulating the Finite Di�erence Approximation. Finding ex-

act solutions of the nonlinear cable-mass problem is usually impossible. Therefore,

we use a basic numerical method, the �nite di�erence method, to approximate the so-

lution to our model problem with dynamic boundary conditions. Using this method,

we convert our PDE system to an ODE system, and we apply the model reduction

method to the resulting nonlinear �nite dimensional system.

We place n equally spaced nodes {xj}nj=1 in the interval [0, l], where xj =

(j − 1)h and h = l/(n−1) so that x1 = 0 and xn = l. In order to apply balanced

truncation below, we also eliminate the second order time derivatives by introducing

a velocity variable. Therefore, let di denote the �nite di�erence approximation to

the displacement w(t, xi), and let vi denote the �nite di�erence approximation to the

velocity wt(t, xi). We assume the solution is smooth so that the displacement and
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velocity compatibility conditions are satis�ed; we obtain

w0(t) = d1(t), wl(t) = dn(t),

ẇ0(t) = v1(t), ẇl(t) = vn(t).

We use second order centered di�erences to form �nite di�erence equations for the

wave equation (2.1)

v′i =
γ

h2
[vi+1 − 2vi + vi−1] +

β2

h2
[di+1 − 2di + di−1]− αvi,

d
′

i = vi for i = 2, ..., n− 1. (2.24)

To discretize our system we use (2.24) to obtain

v
′

i =

[
−α− 2γ

h2

]
vi +

[ γ
h2

]
vi−1 +

[ γ
h2

]
vi+1 +

[
β2

h2

]
di+1 −

[
2β2

h2

]
di +

[
β2

h2

]
di−1,

d
′

i = vi, for i = 2, ..., n− 1.

To discretize the dynamic boundary conditions we use second order accurate one

sided �nite di�erence approximations to the �rst order spatial derivatives. First,

wx(t, x) ≈ −3w(t, x) + 4w(t, x+ h)− w(t, x+ 2h)

2h
. (2.25)

Then we replace h by −h to obtain another second order accurate one sided �nite

di�erence approximation for wx(t, x) in terms of w(t, x), w(t, x−h) and w(t, x− 2h),

i.e.,

wx(t, x) ≈ 3w(t, x)− 4w(t, x− h) + w(t, x− 2h)

2h
. (2.26)
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Using these approximations we discretize the term wx(t, 0) in the left boundary con-

dition by

wx(t, 0) ≈ −3d1 + 4d2 − d3
2h

, (2.27)

and we discretize the term wx(t, 1) in the right boundary condition by

wx(t, 1) ≈ 3dn − 4dn−1 + dn−2
2h

. (2.28)

Using these one-side �nite di�erence approximations allows us to keep the the second

order accuracy without introducing �ghost� nodes outside of the spatial domain. After

discretizing the dynamic boundary conditions we obtain

v
′

1 =

[
− k0
m0

− 3β2

2hm0

]
d1 +

[
4β2

2hm0

]
d2 −

[
β2

2hm0

]
d3 +

[
− 3γ

2hm0

− α0

m0

]
v1

+

[
4γ

2hm0

]
v2 −

[
γ

2hm0

]
v3 +

u(t)

m0

,

d
′

1 = v1,

and

v
′

n =

[
− kl
ml

− 3β2

2hml

]
dn +

[
4β2

2hml

]
dn−1 −

[
β2

2hml

]
dn−2

+

[
− αl
ml

− 3γ

2hml

]
vn +

[
4γ

2hml

]
vn−1 −

[
γ

2hml

]
vn−2 −

[
k3
ml

]
[dn]3 ,

d
′

n = vn,

where di, vi and u(t) represent displacement, velocity, and input respectively. Then

the matrix form of the above system becomes

 d
′

v′

 =

 0 I

A11 A12


 d

v

+

 0 0

F12 0


 d3

v3

+

 0

B1

u, (2.29)
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 y1

y2

 =

 0 · · · 1 · · · 0

0 · · · 0 · · · 1


 d

v

 , (2.30)

where the matrices are de�ned below. First, the matrix A11 has nonzero (i, j) entries,

where i, j represent the row and column respectively, as speci�ed below. The nonzero

�rst row entries of A11 in the (1, 1), (1, 2) and (1, 3) entries are
(
− k0
m0
− 3β2

2hm0

)
,(

4β2

2hm0

)
,
(
− β2

2hm0

)
, respectively. The nonzero last row entries of A11 in the (n, n −

2), (n, n − 1) and (n, n) entries are
(
− β2

2hml

)
,
(

4β2

2hml

)
,
(
− kl
ml
− 3β2

2hml

)
, respectively.

The middle part of the matrix i = 2, 3, . . . , n− 1 is a tridiagonal matrix. The entries

are

[A11]i,j =



β2

h2
, j = i− 1,

−2β2

h2
, j = i,

β2

h2
, j = i+ 1.

Similarly, the nonzero �rst row entries of A12 in the (1, 1), (1, 2) and (1, 3)

entries are
(
− 3γ

2hm0
− α0

m0

)
,
(

4γ
2hm0

)
,
(
− γ

2hm0

)
, respectively. The nonzero last row

entries of A12 in the (n, n − 2), (n, n − 1) and (n, n) entries are
(
− γ

2hml

)
,
(

4γ
2hml

)
,(

− αl

ml
− 3γ

2hml

)
, respectively. The middle part of the matrix i = 2, 3, . . . , n − 1 is a

tridiagonal matrix. So the entries are

[A12]i,j =



γ
h2
, j = i− 1,

−α− 2γ
h2
, j = i,

γ
h2
, j = i+ 1.

Also,
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F12 =


0 · · · 0

...
. . .

...

0 · · · −m−1l k3

, C =

 0 · · · 1 · · · 0

0 · · · 0 · · · 1

, B1 =



0

...

m−10

...

0


.

Furthermore, A11, A1,2, F12 are n×n matrices, C is a 2×2n matrix and B1 is a n×1

matrix.

Or, we can write the nonlinear �nite dimensional approximating system as

ẋ = Ax+ F (x) +Bu, y = Cx. (2.31)

2.7.4. Implementation of Balanced Truncation Method. We compute

the balanced truncated reduced order model using the �square root algorithm� de-

scribed in [9]. The algorithm generates matrices Tr∈R2n×r and Sr∈Rr×2n such that

Tr = [ϕ1, ϕ2,··· ,ϕr], where ϕj denote the jth column of Tr, and Sr = [ψ1, ψ2,··· ,ψr]
T ,

where ψi denote the ith row of Sr. Further SrTr = Ir, where Ir is an identity matrix.

Approximate x(t) in the nonlinear full order model (2.31) by x(t) ≈ Tra(t),

and multiply the full order model on the left by Sr to produce the reduced order

model

ȧ(t) = Ara(t) +Bru(t) + SrF (Tra), yr(t) = Cra(t).

The matrices Ar, Br, and Cr in the reduced order model are given by Ar = SrATr,

Br = SrB and Cr = CTr. These are exactly the same matrices from the balanced

truncated reduced order model in the linear case.

We want to rewrite the nonlinear term SrF (Tra) in terms of aj, ϕj, ψj so that

we can compute the reduced order model using only low order operations. The 2n×r

matrix Tr has ij entries ϕj,i, where ϕj,i denotes the ith entry of ϕj, for i = 1 . . . 2n
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and j = 1 . . . r. Also, a = [a1, a2, . . . , ar]
T is a r×1 dimension vector. Then

r∑
j=1

ϕj,iaj

is the ith entry of the vector of Tra with 2n× 1 dimension where

Tra =

[
r∑
j=1

ϕj,1aj, . . . ,

r∑
j=1

ϕj,2naj

]T
. (2.32)

In our system we have only one nonlinear term that is in the right boundary condition.

Let dr be the vector consisting of the �rst n entries of Tra. Using the de�nition of

F (x) from the previous section gives

F (Tra) =

 0

F0(dr)

 , F0(dr) = [0, . . . , 0,−m−1l k3(Tra)3n]T ,

where (Tra)n denotes the nth entry of Tra. Therefore, we do not need to compute

the entire 2n× 1 vector Tra as in (2.32); we only need the nth entry. This gives

[F (Tra)]j =


0

−m−1l k3

(∑r
j=1 ϕj,naj

)3 j 6= 2n,

j = 2n.

Therefore, the nonlinear term in the reduced order model can be computed using

only low order operations by

[Sr F (Tra)]i = −m−1l k3ψi,2n

(
r∑
j=1

ϕj,naj

)3

, i = 1, 2, . . . , r,

where ψi,2n denotes the 2nth entry of the vector ψi.

2.8. NUMERICAL RESULTS

In this section, we present the numerical results concerning the e�ectiveness of

the balanced truncation MOR method applied to the �nite di�erence approximation
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Table 2.1. Fixed Simulation Parameters

l m0 ml k3 β
1 1 1.5 1 1

of the cable-mass problem. For our experiments, we used 100 �nite di�erence nodes

and solved all ordinary di�erential equations with Matlab's ode23s. Increasing the

number of nodes did not make any substantial change in the results. We �xed some

of the basic problem parameters, as shown in Table 2.1, and tested variations of the

remaining parameters to determine when the MOR approach is accurate.

In our model, there are two types of interior damping. One is Kelvin-Voigt

damping and the other is viscous damping. The Kelvin-Voigt damping is proportional

to the rate of change of strain. The viscous damping is proportional to velocity.

The Kelvin-Voigt damping parameter is γ and the viscous damping parameters are

α, α0, αl and those are interior and boundary damping parameters, respectively. Also

there are three sti�ness parameters: k0, kl, and k3. Here k3 is the sti�ness parameter

for the nonlinear term. We investigate the following examples:

• Example 1: Kelvin-Voigt damping in the interior (γ > 0) and damping in the

in the right boundary (αl > 0). All other damping parameters are taken to be

zero, i.e., α0 = α = 0.

• Example 2: Viscous damping in the interior (α > 0) and damping in both

boundaries α0, αl > 0. The Kelvin-Voigt damping parameter γ is set to zero.

Unlike Example 1, the C0-semigroup generated by the linear problem is not

analytic in this case and the PDE is hyperbolic.

• Example 3: Viscous damping in the interior (α > 0) and Kelvin-Voigt damping

in the interior (γ > 0). All other damping parameters are taken to be zero, i.e.,

α0 = αl = 0.
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• Example 4: Viscous damping in the interior (α > 0). All other damping pa-

rameters are taken to be zero, i.e., γ = α0 = αl = 0.

• Example 5: Kelvin-Voigt damping in the interior (γ > 0). All other damping

parameters are taken to be zero, i.e., α = α0 = αl = 0.

In Sections 2.5.2 and 2.6 we proved that the unforced linear and nonlinear systems

are exponentially stable for Examples 1-3. Numerical results indicate that the linear

problems are also exponentially stable for Examples 4-5. We do not investigate

Examples 4-5 theoretically here.

2.8.1. Exponential Stability. Before we present the model reduction com-

putational results, we brie�y present numerical results concerning the linear and non-

linear exponential stability theory. For the linear problem, we test the exponential

stability by analyzing the eigenvalues of the matrix A in the �nite di�erence model

(2.31). Figure 2.2(a) shows the eigenvalues of matrix A for γ = αl = 0.1, k0 = kl = 1,

and α0 = α = 0. This is a case of Example 1. The eigenvalues all have negative

real parts. For the nonlinear problem, we consider the solution of the �nite di�erence

model (2.31), and compute an approximation to the (continuous) energy function in

Theorem 2.8 by using trapezoidal rule quadrature on the integrals. Figure 2.2(b)

shows the exponential decay of the energy with the same parameters and the initial

data ex sin(1− x) for the position and cos(x) for the velocity.

We also approximated the eigenvalues and the energy for the nonlinear prob-

lem when γ = 0; see Figure 2.3. This is a case of Example 2. We see the exponential

stability in both linear and nonlinear cases. The C0-semigroup is not analytic in

this case, and we see the imaginary part of the eigenvalues increase as is usual with

hyperbolic problems. In the nonlinear case, if γ = 0 and all the other parameters

are small, then the energy decays exponentially fast and also �uctuation takes place

rapidly.
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Figure 2.2. Eigenvalues and the energy decay for γ = αl = 0.1, k0 = kl = 1 and
α0 = α = 0
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Figure 2.3. Eigenvalues and the energy decay for γ = 0 and α = α0 = αl = k0 = kl =
0.01

Furthermore, we look at the behavior of the eigenvalue nearest the imaginary

axis by increasing the number of spatial nodes. As we can see in Tables 2.2 and 2.3

the eigenvalue do not approach the imaginary axis when the number of spatial nodes

is increased. This is the behavior we expect since the PDE system is exponentially

stable.
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Table 2.2. Eigenvalues of the linear system for number of spatial nodes with γ = αl =
0.1, k0 = kl = 1 and α = α0 = 0

N 10 20 40 80 160

Re (λ) -0.0160 -0.0160 -0.0160 -0.0160 -0.0160

Table 2.3. Eigenvalues of the linear system for number of spatial nodes with γ = 0
and α = α0 = αl = k0 = kl = 0.01

N 10 20 40 80 160

Re (λ) -0.0043 -0.0043 -0.0043 -0.0043 -0.0043

2.8.2. Model Reduction Results. Next, we begin the model reduction

experiments. We study the e�ects of the various parameters on the accuracy of the

model reduction. To do this, we consider the reduced order model (ROM) and full

order model (FOM) with zero initial data and the same input u(t) and compare the

output of the FOM and ROM. Recall the output y(t) of the cable-mass system is the

position and velocity of the right mass.

Although we focus on the accuracy of the nonlinear ROM, we also present

some results for the linear ROM for comparison. The output of the linear ROM is

highly accurate in all cases considered, as expected by balanced truncation theory.

For our experiments, we investigate the behavior of the ROM and FOM for

four di�erent oscillating smooth or discontinuous input functions u(t).

• Input 1: u(t) = 0.1 sin(0.2πt)

• Input 2: u(t) = 0.02 cos(at) + 0.03 cos(bt), where a, b are the two largest real

parts of the eigenvalues of the matrix A

• Input 3: u(t) = c1 sin(mt) + c2 cos(nt), where c1, c2,m, n are constants in the

range of c1, c2, < 0.1 and m, n < 0.2
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• Input 4: u(t) = 0.1square(0.2πt), where the square wave function is de�ned by

square(τ) = 1 if sin(τ) > 0 and square(τ) = −1 if sin(τ) < 0

Input 1 was originally considered for this problem in [19], where this cable-mass

system was considered as a heuristic model for a wave tank with a wave energy

converter. Input 2 was considered for a di�erent cable-mass problem in [36]. We note

that this input causes a type of resonance, i.e., the solution magnitude can initially

grow in time before the damping causes the magnitude to return to a moderate level.

We also considered Input 3 to test a variety of oscillating input behaviors. Finally,

we considered Input 4 to see if a discontinuous input causes any change in the ROM

output.

• Small damping parameters

Case 1a : Small damping parameters with smooth inputs

Here we investigate the behavior of the ROM for damping parameters that are small

relative to the boundary sti�ness parameters. We experiment for damping parameters

α, α0, αl, γ in the range of 0.1 to 0.001, and �x k0 = kl = 0.1. In this case, for all

smooth inputs (Inputs 1-3) the output of the nonlinear ROM is highly accurate

compared to the FOM output. We present results for two speci�c scenarios. Figure

2.4 shows the output of the FOM and ROM for both the linear and nonlinear systems

for Example 1, Input 2 with α0 = α = 0, αl = k0 = kl = 0.1, and small Kelvin-Voigt

parameter γ = 0.001. The agreement is excellent in both the linear and nonlinear

cases.

Figure 2.5 shows the output of the FOM and ROM for both the linear and

nonlinear systems for Example 2, Input 2 with γ = 0, k0 = kl = 0.1, α0 = αl = 0.01,

and small interior viscous parameter α = 0.001. The linear and nonlinear ROMs are

highly accurate. Further, the output of the linear and nonlinear systems have similar

patterns but the amplitudes are di�erent in each graph.
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Figure 2.4. Example 1, Input 2: Output of the ROM and FOM for α0 = α = 0,
αl = k0 = kl = 0.1 and γ = 0.001
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Figure 2.5. Example 2, Input 2: Output of the ROM and FOM for γ = 0, k0 = kl =
0.1, α0 = αl = 0.01, α = 0.001

Case 1b : Small damping parameters with discontinuous input

Next we observe the behavior of the ROM and FOM for small damping with discon-

tinuous input. Figure 2.6 shows the behavior of the linear and nonlinear FOM and

ROM for Example 5, Input 4 (the square wave) with α = α0 = αl = 0, γ = 0.001 and

k0 = kl = 0.1. The linear and nonlinear FOM and ROM output are highly accurate

even though the position and velocity outputs are very irregular.
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Figure 2.6. Example 5, Input 4: Output of the ROM and FOM for α = α0 = αl = 0,
γ = 0.001 and k0 = kl = 0.1

Overall, we can conclude that the linear and nonlinear ROM outputs are very

accurate for a long time interval for all examples and all inputs when the damping

parameters are small relative to the boundary sti�ness parameters.

• Small sti�ness parameters

Case 2a : Small sti�ness parameters with smooth inputs

Next, we investigate the behavior of the FOM and ROM when the boundary sti�-

ness parameters are small relative to the damping parameters. We �x the damping

parameters as γ = α = α0 = αl = 0.1. We observe that if one or both of the sti�-

ness parameter are small (either k0 or kl in the range of 0.001 to 0.1), we get highly

accurate ROM output for both linear and nonlinear systems with all smooth inputs.

Two speci�c scenarios are presented below.

Figure 2.7 shows the behavior of the ROM and FOM of the linear and nonlinear

systems for Example 1, Input 1 with α = α0 = 0, γ = αl = 0.1, and k0 = kl = 0.001.

Figure 2.8 shows the behavior of the ROM and FOM of the linear and nonlinear

systems for Example 4, Input 3 with α = 0.1, γ = 0, α0 = αl = 0, and k0 = 0.001,

kl = 0.01.
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Figure 2.7. Example 1, Input 1: Output of the ROM and FOM for k0 = kl = 0.001,
α = α0 = 0, and γ = αl = 0.1
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Figure 2.8. Example 4, Input 3: Output of the ROM and FOM for α = 0.1, γ = 0,
α0 = αl = 0 and k0 = 0.001, kl = 0.01

Overall, for all examples with all smooth inputs, the linear and nonlinear ROM

are highly accurate over a long time interval.

Case 2b : Small sti�ness parameters with discontinuous Input 4

Next, we explore the behavior of the ROM and FOM for smaller sti�ness parameters

with discontinuous input (square wave input). We present results of two speci�c
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Figure 2.9. Example 1, Input 4: Output of the ROM and FOM for α = α0 = 0,
γ = αl = 0.1, and k0 = kl = 0.001

scenarios with small sti�ness parameters. First, Figure 2.9 shows the behavior of

the linear and nonlinear FOM and ROM output for Example 1 with α = α0 = 0,

γ = αl = 0.1, and small sti�ness k0 = kl = 0.001. The nonlinear ROM for r = 4 is

accurate over an initial time interval and thereafter loses some accuracy. Increasing

r yields high accuracy for the entire time interval 0 ≤ t ≤ 300 . The linear ROM is

highly accurate for a longer interval.

Figure 2.10 shows the FOM and ROM output over the longer interval 0 ≤

t ≤ 300 for another scenario: Example 5, Input 4 with γ = 0.1, α = α0 = αl = 0

and small sti�ness k0 = kl = 0.001. The nonlinear ROM is highly accurate for an

initial time period, but then su�ers a loss of accuracy. Increasing r does not yield

high accuracy.

Next, we explore the behavior of the nonlinear ROM depending on the right

and left sti�ness parameters. In Examples 1, 3, 4, 5 with Input 4, the left sti�ness

parameter a�ects the nonlinear ROM more than the right sti�ness parameter. Figure

2.11(a) shows the behavior of the ROM of the nonlinear system for Example 3, Input

4 with α0 = αl = 0, α = γ = 0.1 and k0 = 0.01, kl = 0.001, and in Figure 2.11(b) with
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Figure 2.10. Example 5, Input 4: Output of the ROM and FOM for γ = 0.1, α =
α0 = αl = 0 and k0 = kl = 0.001
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(a) k0 = 0.01, kl = 0.001.
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Figure 2.11. Example 3, Input 4: Output of the nonlinear ROM and FOM for α0 =
αl = 0, α = γ = 0.1

α0 = αl = 0, α = γ = 0.1, and k0 = 0.001, kl = 0.01. The nonlinear ROM output

belonging to the smaller right sti�ness parameter is much less accurate compared

to the ROM output belonging to the smaller left sti�ness parameter. Increasing r

improves the accuracy of the ROM in both cases over a long interval.

Succinctly, when the sti�ness parameters are small relative to the damping

parameters, the nonlinear ROM is highly accurate in all examples with smooth inputs.
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However, for the discontinuous input, the nonlinear ROM is highly accurate over an

initial interval and then accuracy is likely to be lost. Increasing the order r of the

ROM may not improve the accuracy. Also, if the magnitude of the input is reduced,

then the length of the highly accurate initial time interval does increase. Further,

the nonlinear ROM is much less accurate when the right sti�ness parameter is small

when compared to the small left sti�ness parameter.

• Small damping and sti�ness parameters (All parameters are small)

Finally, we consider the behavior of the nonlinear ROM when the damping and

sti�ness parameters are small relative to the mass and nonlinear sti�ness parameters

(m0 = 1, ml = 1.5, and k3 = 1).

Case 3a : Small damping and sti�ness parameters with continuous Input 2

The nonlinear ROM is highly accurate in all examples with Input 2. Figure 2.12 shows

the behavior of the ROM of the nonlinear system for Example 3 for α0 = αl = 0 and

α = γ = k0 = kl = 0.001 with input u(t) = 0.02 cos(0.0001t) + 0.03 cos(0.0008t)

and Example 5 for α = α0 = αl = 0 and γ = k0 = kl = 0.001 with Input 2

u(t) = 0.02 cos(0t) + 0.03 cos(0.0007t). Overall, we can conclude that the nonlinear

ROM is very accurate in all examples with Input 2 when both damping and sti�ness

parameters are small.

Case 3b : Small damping and sti�ness parameters with Input 3

The nonlinear ROM is highly accurate in Examples 1, 3, 4, 5 with Input 3 over a

long interval. Only in Example 2 does the nonlinear ROM lose accuracy over a long

time period, but increasing r improves the accuracy. Figure 2.13 shows the nonlinear

ROM output for Example 2, Input 3 with γ = 0 and α = α0 = αl = k0 = kl = 0.001

for r = 4 and r = 6. Overall, we can conclude that the nonlinear ROM is very

accurate over a long interval in all examples except Example 2 with Input 3 when

the damping and sti�ness parameters are small. Increasing r improves the accuracy.
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(b) Example 5, Input: 2

Figure 2.12. Output of the nonlinear ROM and FOM
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(a) Nonlinear system for r = 4
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Figure 2.13. Example 2, Input 3: Output of the ROM and FOM for γ = 0, α = α0 =
αl = k0 = kl = 0.001

Case 3c : Small damping and sti�ness parameters with Input 1

For all examples, the nonlinear ROM output is highly accurate for an initial time

period, but then su�ers loss of accuracy with Input 1. Increasing r improves the

accuracy over a long interval.

Case 3d : Small damping and sti�ness parameters with Input 4
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(a) Nonlinear system for r = 4
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(b) Nonlinear system for r = 10

Figure 2.14. Example 1, Input 4: Output of the ROM and FOM for α = α0 = 0,
γ = αl = k0 = kl = 0.001

For all examples, the nonlinear ROM output is highly accurate only for an initial time

period, but then su�ers a great loss of accuracy. Increasing r does not improve the

accuracy over a long time interval. Figure 2.14 shows the behavior of the nonlinear

FOM and ROM for Example 1 with Input 4 with α = α0 = 0 and γ = αl = k0 = kl =

0.001 for r = 4 and r = 10. Overall, when all parameters are small, all behaviors are

possible. The nonlinear ROM may be highly accurate over a long time period, or it

may lose high accuracy after an initial time period. Also, increasing r may or may

not improve the accuracy over a long interval.
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3. NONLINEAR CABLE-MASS PDE SYSTEM WITH UNBOUNDED

INPUT OPERATOR

In this section, we study the performance of the balanced truncation model

reduction when the operator B is unbounded. We do not attempt to prove the in�-

nite dimensional balanced truncation theory for this problem. Instead, we investigate

the model reduction numerically. As we mentioned in the introduction, several PDE

examples have been investigated numerically in the literature to understand the be-

havior of ROMs (see e.g., [23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35]). The unforced

PDE system considered in this section di�ers from the cable-mass problem in Sec-

tion 2. We prove the linear and nonlinear exponential stability for this model in this

section.

3.1. THE MODEL

The �exible cable is driven by an external force u(t) acting on the left end

and is attached to a mass-spring system at the other end. The mass-spring system

is connected to a rigid horizontal support, and we assume all motion takes place in

the vertical direction. Let

• w(t, x) denote the position of the cable at location x and time t, and

• wl(t) denote the position of the right mass above equilibrium at location x = l

and time t.

We assume there are no other external forces acting on the system.

We model the motion of the �exible cable with a damped 1D wave equation

on 0 < x < l. We include both Kelvin-Voigt and viscous damping in the model. We

model the mass-spring system with a damped nonlinear second order oscillator. This
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gives a wave equation with a dynamic boundary condition:

wtt(t, x) + αwt(t, x) = γwtxx(t, x) + β2wxx(t, x), (3.1)

γwtx(t, 0) + β2wx(t, 0) = u(t), (3.2)

mlẅl(t) + αlẇl(t) + klwl(t) = −(γwtx(t, l) + β2wx(t, l))− k3 [wl(t)]
3 . (3.3)

The term in the parenthesis in the dynamic boundary condition is the force of the

cable acting on the mass. The boundary condition (3.2) indicates the external force

u(t) is applied at the left end of the cable. Here, γ is the Kelvin-Voigt damping

parameter, α and αl are viscous damping parameters, ml is the right mass, and kl, k3

are the sti�ness parameters. The model damping parameters are nonnegative, and

the wave equation parameter β as well as the mass and sti�ness parameters are all

positive. Finally, the position of the cable at the boundary must equal the position

of the mass; therefore, we have the displacement compatibility condition

w(t, l) = wl(t).

For the model reduction problem, we assume we have two system outputs as in Section

2: the position and the velocity of the right mass, i.e.,

y1(t) = wl(t), y2(t) = ẇl(t).

3.2. THE ENERGY FUNCTION

Next, we give a preliminary investigation of the change in energy of the un-

forced system, i.e., the system with u(t) = 0. This will help us to obtain the correct

inner products for an abstract formulation of the system. We assume the solution for

the above system is su�ciently smooth.
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We de�ne the total kinetic energy of the cable by

ET,K =
1

2

lˆ

0

w2
t dx.

Di�erentiate with respect to time and use the wave equation (3.1) to obtain

dET,K
dt

=
1

2

lˆ

0

2wtwtt dx

=
1

2

lˆ

0

2wt(t, x)(γwtxx(t, x) + β2wxx(t, x)− αwt(t, x)) dx.

Integrate by parts to obtain

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

+ wt(t, l)
[
γwtx(t, l) + β2wx(t, l)

]
− wt(t, 0)

[
γwtx(t, 0) + β2wx(t, 0)

]
.

Use the boundary conditions of our cable-mass model (3.2), (3.3) to obtain

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

− ẇl(t)
[
mlẅl(t) + αlẇl(t) + klwl(t) + k3 [wl(t)]

3] .
This can be rewritten as

d

dt

(
1

2

lˆ

0

w2
t dx +

ml

2
(ẇl(t))

2 +
β2

2

lˆ

0

w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4

)
=

−γ
ˆ l

0

(wtx(t, x))2 dx− α
ˆ l

0

(wt(t, x))2 dx− αl (ẇl(t))2 .
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This suggests de�ning the system kinetic energy and potential energy as

EK =

lˆ

0

1

2
w2
t dx +

ml

2
(ẇl(t))

2 ,

EP =

lˆ

0

β2

2
w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4 .

This energy expression can also be obtained by considering the kinetic energy and

potential energy of each component of the system. The above energy equation gives

d

dt
E =

d

dt
(EK + EP )

= −
[
γ

ˆ l

0

(wtx(t, x))2 dx+ α

ˆ l

0

(wt(t, x))2 dx+ αl (ẇl (t))
2

]
,

and therefore Ė(t) ≤ 0. This result matches physical intuition and gives the cor-

rect energy inner products for the system. Later on, we prove the energy decays

exponentially fast to zero.

3.3. VARIATIONAL FORM

In this section, we introduce the variational form (weak form) of the system.

Later, we use this form to analyze the model. We assume the solution [w, wl] is

smooth and satis�es the compatibility condition w(t, l) = wl(t). Multiply the wave

equation (3.1) by a smooth test function h = h(x), where h(l) = hl to obtain

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− γ
lˆ

0

wtxx(t, x)h dx− β2

lˆ

0

wxx(t, x)h dx = 0.
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Now integrate by parts:

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− hl
[
γwtx(t, l) + β2wx(t, l)

]

+ h(0)
[
γwtx(t, 0) + β2wx(t, 0)

]
+ γ

lˆ

0

wtx(t, x)hx dx+ β2

lˆ

0

wx(t, x)hx dx = 0.

As in the above energy argument, we use the boundary conditions to give the varia-

tional form

ˆ l

0

wtt(t, x)h dx+mlẅl(t)hl + β2

lˆ

0

wx(t, x)hx dx+ klwl(t)hl + k3 [wl(t)]
3

+ αlhlẇl(t) +

lˆ

0

[αwt(t, x)h + γwtx(t, x)hx ] dx = 0. (3.4)

Now, we give details about the function spaces to make the weak formulation

precise. Let H be the real Hilbert space H = L2(0, l)× R with the inner product of

z = [w, wl] ∈ H and ψ = [p, pl] ∈ H de�ned by

(z, ψ)H =

lˆ

0

wpdx+mlwlpl. (3.5)

Let V ⊂ H be the set of elements z = [w, wl] ∈ H1(0, l) × R satisfying the

displacement compatibility condition w(l) = wl. For z ∈ V as above and ψ = [p, pl] ∈

V de�ne the V inner product of z with ψ by

(z, ψ)V =

lˆ

0

β2wxpxdx+ klwlpl. (3.6)

We also use the notation σ1(z, ψ) = (z, ψ)V .
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The H and V inner products, (3.5) and (3.6), can be derived from the energy

function; also, the H and V norms are directly related to the system kinetic and

potential energies, respectively. Speci�cally,

EK =
1

2
(zt, zt)H =

1

2
‖zt‖2H , EP =

1

2
(z, z)V +

k3
4
w4
l =

1

2
‖z‖2V +

k3
4
w4
l .

Furthermore, both inner products appear in the variational form (3.4).

Also, we de�ne the damping bilinear form σ2 : V × V → R

σ2(z, ψ) =

ˆ l

0

(γwxpx + αwp) dx+ αlwlpl. (3.7)

Note that this bilinear form occurs in the variational form (3.4) as a damping term

with all �rst order time derivatives.

The spaces and inner products are motivated by the above variational form

(3.4). Further we can rewrite the above variational form (3.4) as (2.9).

3.4. ABSTRACT FORM

Our original PDE model (3.1) with the boundary conditions (3.2), (3.3) can

be written as a �rst order abstract form (2.10). Similar to Burns & King's work [36],

the PDE system suggests that the operator A can be formally de�ned as

D(A) =

{
x = [w,wl, v, vl]

T ∈ V ×H : w ∈ H1(0, l), v ∈ H1(0, l), w(l) = wl,

v(l) = vl,

(
β2 d

dξ
v + γ

d

dξ
w

)
(0) = 0

}
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and

Ax =



w

wl

v

vl


=



v

vl

d
dξ

[
β2 d

dξ
w + γ d

dξ
v
]
− αv

−δl
[
β2

ml

d
dξ
w + γ

ml

d
dξ
v
]
− kl

ml
wl − αl

ml
vl


, (3.8)

where δl denotes the evaluation operator as before. Because the left boundary condi-

tion does not contain any of ẇ, ẇl, v̇, v̇l, therefore it is impossible to write ẋ = Ax+Bu

holding in H = V ×H. Therefore the operator B is said to be unbounded. It is pos-

sible to use the variational form to de�ne B, but we do not consider this here.

Furthermore, de�ne the operators C and F by

C =

 0 1 0 0

0 0 0 1

 , F(x) =

[
0 0 0 m−1l k3w

3
l

]T
.

As before, we do not use the formal de�nition of the operator A given above. Instead,

we use theory from Banks [51] to rigorously de�ne the operator A using the bilinear

forms σ1 and σ2.

3.5. THE LINEAR PROBLEM

We prove the linear problem (2.12) is well-posed and also exponentially stable

under certain assumptions on the damping parameters. The exponential stability is

necessary for the application of the balanced truncation model reduction technique

which is considered later.

3.5.1. Function Spaces. We �rst present basic results about the function

spaces that we frequently use in this work.

Lemma 3.1. The space V with the above inner product (3.6) is a real Hilbert space,

and V is dense in H.
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Proof. First, if (z, z)V = 0, where z = [w,wl], then w(x) is a constant function and

wl = 0. The compatibility condition implies w(x) = 0 for all x, and so z = 0. It

is straightforward to show that (·, ·)V satis�es the remaining properties of an inner

product.

Next, let {zn} ⊂ V be a Cauchy sequence, where zn = [wn, wnl ]. Therefore,

[wnx , w
n
l ] is a Cauchy sequence in L2(0, l)×R, and so there exists [q, wl] ∈ L2(0, l)×R

such that

wnx → q in L2(0, l), wnl → wl.

Note:

wn(x) = wn(0) +

ˆ x

0

wnx(η)dη

wn(x)− wn(0) =

ˆ x

0

wnx(η)dη

wn(l)− wn(0) =

ˆ l

0

wnx(η)dη

wn(0) = wnl −
ˆ l

0

wnx(η)dη.

We know wnl → wl and wnx → q in L2(0, l). Therefore, lim
n→∞

wn(0) exists and

lim
n→∞

wn(0) = wl −
ˆ l

0

q(η)dη = C (constant).

De�ne w by w(x) = wl −
´ l
x
q(η)dη. Then we can rewrite

w(x) = wl −
ˆ l

0

q(η)dη +

ˆ x

0

q(η)dη,

w(x) = C +

ˆ x

0

q(η)dη.
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Then w ∈ H1(0, l), wx = q, and w(0) = C. Also, w(l) = wl since

w(l) = lim
n→∞

(
C +

ˆ l

0

wnx(η)dη

)
= lim

n→∞

(
C + wn(η) |l0

)
= lim

n→∞

(
C + wn(l)− wn(0)

)
= lim

n→∞
wnl = wl,

where we used wn(l) = wnl . Therefore z = [w,wl] satis�es the displacement com-

patibility condition and zn converges in V to z ∈ V . This shows V is a Hilbert

space.

To show V is dense in H, let z = [w,wl] ∈ H and de�ne

g(x) = C + l−1(wl − C)x,

where C is de�ned above. Note that g(0) = C and g(l) = wl. Therefore, w − g ∈

H1(0, l). Since H1
0 (0, l) is dense in L2(0, l), there exists a sequence qn ∈ H1(0, l) such

that qn → w − g in L2(0, l). De�ne

zn = [qn + g, wl].
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Due to the properties of qn and g, i.e., qn + g ∈ H1(0, l), (qn + g)(0) = C, and

(qn + g)(l) = wl we have zn ∈ V for all n. Also,

lim
n→∞

‖zn − z‖2H = lim
n→∞

‖qn + g − w‖2L2(0,l) + |wl − wl|2

= lim
n→∞

ˆ l

0

(qn + g − w)2dx

= lim
n→∞

ˆ l

0

(qn − (w − g))2dx

= lim
n→∞

‖qn − (w − g)‖2L2(0,l)

= 0.

This proves V is dense in H.

Lemma 3.2. If z = [w,wl] ∈ V , then

|w(x)|2 ≤ 2 |wl|2 + 2l ‖wx‖2L2(0,l) , (3.9)

‖w‖2L2(0,l) ≤ 2l
[
|wl|2 + l ‖wx‖2L2(0,l)

]
, (3.10)

Proof. Since w ∈ H1(0, l) and w(l) = wl,

w(x) = wl −
lˆ

x

wξ(ξ) dξ.

Take absolute values, and use the triangle inequality to obtain

|w(x)| ≤ |wl|+
lˆ

x

|wξ(ξ)| dξ.
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Applying Hölder's inequality (|wξ(ξ)| = 1. |wξ(ξ)|) gives

|w(x)| ≤ |wl|+

 lˆ

0

12dξ


1
2

.

 lˆ

0

|wx(x)|2 dx


1
2

≤ |wl|+ l
1
2 ‖wx‖L2(0,l) .

Square this inequality and use Young's inequality to get (3.9), and integrate (3.9)from

x = 0 to x = l to obtain (3.10).

Lemma 3.3. V is continuously embedded in H.

Proof. Let z = [w, wl] ∈ V . We use the H and V inner products and the inequality

(3.10) from Lemma 3.2 to obtain

‖z‖2H =

ˆ l

0

w2dx+mlw
2
l

= ‖w‖2L2(0,l) +mlw
2
l

≤ 2l2 ‖wx‖2L2(0,l) + 2lw2
l +mlw

2
l

= 2l2
lˆ

0

w2
x dx+ (ml + 2l)w2

l

=

(
2l2

β2

) lˆ

0

β2w2
x dx+

(
ml + 2l

kl

)
klw

2
l

≤ C1

klw2
l + β2

lˆ

0

w2
x dx

 .
Therefore C−11 ‖z‖

2
H ≤ ‖z‖

2
V where C1 = max

{
ml+2l
kl

, 2l
2

β2

}
. This proves the result.

3.5.2. Well-Posedness and Exponential Stability. To show the linear

problem is well-posed, we rewrite the problem as ẋ = Ax as before and show A

generates a C0-semigroup on H = V ×H.
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As before, we restrict our analysis to the cases where the damping bilinear

form σ2 is H-elliptic or V -elliptic.

Example 1: γ, αl > 0 and α = 0. We �rst consider the case of Kelvin-Voigt

damping (γ > 0) and viscous damping in the right mass-spring system (αl > 0). We

prove σ2 is V -elliptic.

We rewrite the bilinear form σ2 and the V inner product according to the

above parameters:

σ2(z, z) =

ˆ l

0

γw2
x dx+ αlw

2
l ,

‖z‖2V =

ˆ l

0

β2w2
xdx+ klw

2
l .

Then

‖z‖2V = β2

ˆ l

0

w2
xdx+ klw

2
l

=

(
β2

γ

) ˆ l

0

γw2
xdx+

(
kl
αl

)
αlw

2
l

≤ C2

(ˆ l

0

γw2
xdx+ αlw

2
l

)
≤ C2σ2(z, z)

where C2 = max
{
β2

γ
, kl
αl

}
. This proves that σ2 is V -elliptic.

Example 2: α, αl > 0 and γ = 0. Next, we consider the case of viscous

damping in the wave equation and the right mass (α, αl > 0). We prove σ2 is H-

elliptic. Since

σ2(z, z) =

ˆ l

0

αw2dx+ αlw
2
l ,

‖z‖2H =

ˆ l

0

w2dx+mlw
2
l ,
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we have

‖z‖2H =

ˆ l

0

(
1

α

)
αw2dx+

(
ml

αl

)
αlw

2
l

≤ C3

[ˆ l

0

αw2dx+ αlw
2
l

]
.

Therefore, C−13 ‖z‖
2
H ≤ σ2(z, z), where C3 = max

{
1
α
, ml

αl

}
, and this proves σ2 is

H-elliptic.

Example 3: γ, α > 0 and αl = 0. In this last case, we consider only Kelvin-

Voigt damping (γ > 0) and interior viscous damping (α > 0). We prove σ2 is

V -elliptic. We have

σ2(z, ψ) =

ˆ l

0

(γw2
x + αw2) dx,

‖z‖2V =

ˆ l

0

β2w2
xdx+ klw

2
l .

Since L∞(0, l) is continuously embedded in H1(0, l), there exists a constant C > 0

such that

‖w‖2L∞(0.l) ≤ C ‖w‖2H1(0,l) = C

ˆ l

0

(w2 + w2
x)dx.

Therefore, since w(l) = wl,

‖z‖2V ≤ β2

ˆ l

0

w2
x dx+ kl ‖w‖2L∞(0.l)

= β2

ˆ l

0

w2
x dx+ klC

ˆ l

0

(w2 + w2
x)dx

≤ C4 σ2(z, z),

where C4 = max
{
β2+klC

γ
, klC
α

}
. This proves σ2 is V -elliptic.

In Examples 1, 3 we proved σ2 is V -elliptic and Theorem 8.1 in [51] gives us

A is the in�nitesimal generator of an analytic exponentially stable semigroup.
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In Example 2 we proved σ2 is H-elliptic and Theorem 8.3 in [51] gives us A

generates an exponentially stable C0-semigroup.

3.6. THE NONLINEAR PROBLEM

We write the nonlinear problem as

ẋ(t) = Ax(t) + F(x(t)), x(0) = x0 (3.11)

on H = V ×H. Here the linear operator A is de�ned in Section 2.1 and the nonlinear

operator F : H → H is de�ned for x = [ϕ, ψ] ∈ H with ϕ = [w,wl] ∈ V by

F(x) =

 0

F0(ϕ)

 , F0(ϕ) =

 0

m−1l k3w
3
l

 .
Theorem 3.4. The nonlinear cable-mass system has a unique mild solution on some

time interval [0, t∗).

Theorem 3.5. If σ2 is H−elliptic and the solution x = [z, zt], with z = [w,wl], of the

unforced nonlinear cable-mass problem (3.11) is su�ciently smooth, then the energy

E(t) = 1
2
‖zt‖2H+ 1

2
‖z‖2V + k3

4
[wl(t)]

4 of the solution with the initial data x(0) = x0 ∈ H

decays exponentially fast as t→∞.

Proofs of Theorems 3.4 and 3.5 are similar to Section 2.

3.7. BALANCED TRUNCATION MODEL REDUCTION

Since the input operator B is unbounded, it is more di�cult to check the

in�nite dimensional balanced truncation theory [20, 21, 22]; we do not attempt to do

this here. Therefore, we do not have the balanced truncation theory for the linear
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PDE system. So, our main goal in this section is to analyze the performance of the

model reduction numerically.

As before, we use a basic �nite di�erence method to approximate the solution

to our model problem with a dynamic boundary condition.

We place n equally spaced nodes {xj}nj=1 in the interval [0, l], where xj = jh

and h = l/n so that x1 = h and xn = l. In order to apply balanced truncation below,

we also eliminate the second order time derivatives by introducing a velocity vari-

able. Therefore, let di denote the �nite di�erence approximation to the displacement

w(t, xi), and let vi denote the �nite di�erence approximation to the velocity wt(t, xi).

We assume the solution is smooth so that the displacement and velocity compatibility

conditions are satis�ed; we obtain

wl(t) = dn(t),

ẇl(t) = vn(t).

We use second order centered di�erences to form �nite di�erence equations

for (3.1)

v′i =
γ

h2
[vi+1 − 2vi + vi−1] +

β2

h2
[di+1 − 2di + di−1]− αvi,

d
′

i = vi, for i = 1, ..., n− 1. (3.12)

To discretize our system we use (3.12) to obtain

v
′

i =

[
−α− 2γ

h2

]
vi +

[ γ
h2

]
vi−1 +

[ γ
h2

]
vi+1 +

[
β2

h2

]
di+1 −

[
2β2

h2

]
di +

[
β2

h2

]
di−1,

d
′

i = vi, for i = 1, ..., n− 1.
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To discretize the boundary conditions we use second order accurate one side

�nite di�erence approximation to the �rst order spatial derivatives. After discretizing

the left boundary condition we obtain

v
′

1 = −
[

2β2

3h2

]
d1 +

[
2β2

3h2

]
d2 +

[
− 2γ

3h2
− α

]
v1 +

[
2γ

3h2

]
v2 −

2u

3h
,

d
′

1 = v1,

and for the right boundary condition we obtain

v
′

n =

[
− kl
ml

− 3β2

2hml

]
dn +

[
4β2

2hml

]
dn−1 −

[
β2

2hml

]
dn−2

+

[
− αl
ml

− 3γ

2hml

]
vn +

[
4γ

2hml

]
vn−1 −

[
γ

2hml

]
vn−2 −

[
k3
ml

]
[dn]3 ,

d
′

n = vn,

where di, vi and u(t) represent displacement, velocity and input, respectively. The

above system can be placed in the matrix form (2.29). First, the matrix A11 has

nonzero (i, j) entries, where i, j represent the row and column respectively, as spec-

i�ed below. The nonzero �rst row entries of A11 in the (1, 1) and (1, 2), entries are(
−2β2

3h2

)
,
(

2β2

3h2

)
, respectively. The nonzero last row entries of A11 in the (n, n −

2), (n, n − 1) and (n, n) entries are
(
− β2

2hml

)
,
(

4β2

2hml

)
,
(
− kl
ml
− 3β2

2hml

)
, respectively.

The middle part of the matrix i = 2, 3, . . . , n− 1 is a tridiagonal matrix. The entries

are

[A11]i,j =



β2

h2
, i = i− 1,

−2β2

h2
, i = i,

β2

h2
, i = i+ 1.

Similarly, the nonzero �rst row entries of A12 in the (1, 1) and (1, 2) entries

are
(
−α− 2γ

3h2

)
,
(

2γ
3h2

)
, respectively. The nonzero last row entries of A12 in the (n, n−
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2), (n, n − 1) and (n, n) entries are
(
− γ

2hml

)
,
(

4γ
2hml

)
,
(
− αl

ml
− 3γ

2hml

)
, respectively.

The middle part of the matrix i = 2, 3, . . . , n− 1 is a tridiagonal matrix. The entries

are

[A11]i,j =



γ
h2
, i = i− 1,

−α− 2γ
h2
, i = i,

γ
h2
, i = i+ 1.

Also,

F12 =


0 · · · 0

...
. . .

...

0 · · · − k3
ml

 C =

 0 · · · 1 · · · 0

0 · · · 0 · · · 1

 B1 =


−2
3h

...

0

.
Furthermore, A11, A1,2, F12 are n× n matrices, C is a 2× 2n matrix and B1

is a n× 1 matrix.

Or, we can write the nonlinear �nite dimensional approximating system as

ẋ = Ax+ F (x) +Bu, y = Cx. (3.13)

3.8. FORMULATING THE FINITE DIFFERENCE APPROXIMATION

OF THE ENERGY FUNCTION

For the nonlinear problem, we consider the solution of the �nite di�erence

model and compute an approximation to the energy function in Theorem 3.5 using

trapezoidal rule quadrature on the integrals.

The energy of the unforced system is E = EK + EP where

EK =

lˆ

0

1

2
w2
t dx +

ml

2
(ẇl(t))

2 ,

EP =

lˆ

0

β2

2
w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4 .



64

Recall trapezoidal rule quadrature for an integral:

ˆ b

a

F (x)dx ≈
h

2
[F (a) + F (b)] +

n−1∑
i=2

hF (xi).

Applying the trapezoidal rule to each integral term in the energy gives

ˆ l

0

1

2
w2
t dx ≈

1

2

[
h

2
(v1(t))

2 +
h

2
(vM(t))2

]
+

1

2

n−1∑
i=2

h (vi(t))
2 ,

and

lˆ

0

β2

2
w2
x dx ≈

β2

2

[
h

2
(wx(t, x1))

2 +
h

2
(wx(t, xn))2

]
+
β2

2

n−1∑
i=2

h (wx(t, xi))
2 .

Use one-sided and centered di�erence formulas to get

lˆ

0

β2

2
w2
x dx ≈

β2

2

[
h

2

(
−3w1 + 4w2 − w3

2h

)2

+
h

2

(
3wn − 4wn−1 + wn−2

2h

)2
]

+
β2h

2

n−1∑
i=2

(
wi+1 − wi−1

2h

)2

.

Then the energy of the system is approximated as follows:

E(t) ≈
h

4
v21 +

[
h

4
+
ml

2

]
v2n +

h

2

n−1∑
i=2

(vi(t))
2 +

β2

16h
[−3w1 + 4w2 − w3]

2

+
β2

16h
[3wn − 4wn−1 + wn−2]

2 +
β2

8h

n−1∑
i=2

[wi+1 − wi−1]2

+
kl
2

(wn)2 +
k3
4

(wn)4 .
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Table 3.1. Fixed Simulation Parameters

l ml k3 β

1 1.5 1 1

3.9. NUMERICAL RESULTS

In this section, we examine the performance of ROM when the input operator

is unbounded. For our experiments, we used 100 �nite di�erence nodes and solved

all ordinary di�erential equations the Matlab's ode23s. We �xed some of the basic

problem parameters, as shown in Table 3.1, and tested variations of the remaining

parameters to determine when the MOR approach is accurate.

We investigate the following examples:

• Example 1: Kelvin-Voigt damping in the interior (γ > 0) and damping in the

right boundary (αl > 0). The interior viscous damping parameter is taken to

be zero, i.e., α = 0.

• Example 2: Viscous damping in the interior (α > 0) and damping in right

boundary αl > 0. The Kelvin-Voigt damping parameter γ is set to zero. Unlike

Example 1, the C0-semigroup generated by the linear problem is not analytic

in this case and the PDE is hyperbolic.

• Example 3: Viscous damping in the interior (α > 0) and Kelvin-Voigt damping

in the interior (γ > 0). The boundary damping parameter is taken to be zero,

i.e., αl = 0.

• Example 4: Kelvin-Voigt damping in the interior (γ > 0). All other damping

parameters are taken to be zero, i.e., α = αl = 0.

• Example 5: Viscous damping in the interior (α > 0). All other damping pa-

rameters are taken to be zero, i.e., γ = αl = 0.
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(b) Energy decay of the nonlinear system

Figure 3.1. Eigenvalues and energy decay for γ = αl = 0.1, kl = 0.1 and α = 0

In Sections 3.5.2 and 3.6 we proved that the unforced linear and nonlinear systems

are exponentially stable for Examples 1-3. Numerical results indicate that the linear

problems are also exponentially stable for Examples 4-5.

3.9.1. Exponential Stability. Before we present the model reduction com-

putational results, we brie�y present numerical results concerning the linear and non-

linear exponential stability theory. For the linear problem, we test the exponential

stability by analyzing the eigenvalues of the matrix A in the �nite di�erence model

(3.13). Figure 3.1(a) shows the eigenvalues of matrix A for γ = αl = 0.1, kl = 0.1, and

α = 0. This is a case of Example 1. The eigenvalues all have negative real parts. For

the nonlinear problem, we consider the solution of the �nite di�erence model (3.13),

and compute an approximation to the (continuous) energy function in Theorem 3.5

by using trapezoidal rule quadrature on the integrals in Section 3.8. Figure 3.1(b)

shows the exponential decay of the energy with same parameters and the initial data

xex sin(x) for the position and cos(x) for the velocity. We choose the initial condition

to match the boundary condition at x = 0 to produce a smooth solution. So the

initial condition for the position w0(x) satis�es w
′
0(0) = 0, and the initial condition

for the velocity v0(x) satis�es v
′
0(0) = 0.
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Figure 3.2. Eigenvalues and energy decay for γ = 0 and α = αl = kl = 0.01

Table 3.2. Eigenvalue with largest Re(λ) for the linear system with N spatial nodes,
γ = αl = 0.1, kl = 0.1 and α = 0

N 10 20 40 80 160

Re (λ) -0.0189 -0.0194 -0.0196 -0.0197 -0.0197

We also approximated the eigenvalues and the energy for the nonlinear prob-

lem when γ = 0 (this is a case of Example 2); see Figure 3.2. We see the exponential

stability in both linear and nonlinear cases. In the nonlinear case, if γ = 0 and all

the other parameters are small, then the energy decay becomes exponentially stable

and also �uctuation takes place rapidly.

Furthermore, we look at the behavior of the eigenvalue nearest the imaginary

axis by increasing the number of spatial nodes. As we can see in Tables 3.2 and 3.3

the eigenvalue do not approach the imaginary axis when the number of spatial nodes

is increased. This is the behavior we expect since the PDE system is exponentially

stable.

3.9.2. Model Reduction Results. Next, we begin the model reduction

experiments. We study the e�ects of the various parameters on the accuracy of the
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Table 3.3. Eigenvalue with largest Re(λ) for the linear system with N spatial nodes,
γ = 0, and α = αl = kl = 0.1

N 10 20 40 80 160

Re (λ) -0.0040 -0.0040 -0.0040 -0.0040 -0.0040

model reduction. To do this, we consider the reduced order model (ROM) and full

order model (FOM) with zero initial data and the same input u(t) and compare the

output of the FOM and ROM. Recall the output y(t) of the cable-mass system is the

position and velocity of the right mass.

We focus on the accuracy of the linear and nonlinear ROM and present some

results to show the performance of the ROM in both systems.

For our experiments we investigate the behavior of the ROM and FOM in the

four di�erent input functions from Section 2:

• Input 1: u(t) = 0.1 sin(0.2πt)

• Input 2: u(t) = 0.02 cos(at) + 0.03 cos(bt), where a, b are the two largest real

parts of the eigenvalues of the matrix A

• Input 3: u(t) = c1 sin(mt) + c2 cos(nt), where c1, c2,m, n are constants in the

range of c1, c2, < 0.1 and m, n < 0.2

• Input 4: u(t) = 0.1square(0.2πt)

We consider the same parameter scenarios as in Section 2.

• Small interior damping parameters

Here we investigate the behavior of the ROM for interior damping parameters that

are small relative to the boundary sti�ness parameter. We experiment for damping

parameters α and γ in the range of 0.1 to 0.001 and �x kl = 0.1 and αl = 0.1.

Case 1a : Small interior damping parameters with smooth Inputs 1, 2
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Figure 3.3. Example 3, Input 1: Output of the ROM and FOM for γ = α = 0.001,
kl = 0.1 and αl = 0

In this case, in all examples for smooth Inputs 1, 2 the output of the linear and

nonlinear ROM is highly accurate compared to the FOM output. We present results

for two speci�c scenarios. Figure 3.3 shows the output of the FOM and ROM for both

the linear and nonlinear systems for Example 3, Input 1 with αl = 0, γ = α = 0.001.

The agreement is excellent in both the linear and nonlinear cases.

Figure 3.4 shows the output of the FOM and ROM for both the linear and

nonlinear systems for Example 4, Input 2 with kl = 0.1, α = αl = 0 and small

Kelvin-Voigt parameter γ = 0.001. The linear and nonlinear ROM outputs are

highly accurate.

Overall, for all examples with smooth Inputs 1, 2 the linear and nonlinear

ROM outputs are highly accurate over a long interval.

Case 1b : Small interior damping parameters with smooth Input 3 and discontinuous

Input 4

Next, we observe the behavior of the ROM and FOM for small interior damping

with Inputs 3 and 4. In this case all behaviors are possible. We show di�erent

behaviors for three speci�c scenarios below. Figure 3.5 shows the behavior of the
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Figure 3.4. Example 4, Input 2: Output of the ROM and FOM for γ = 0.001, kl =
0.1, αl = α = 0
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Figure 3.5. Example 1, Input 4: Output of the ROM and FOM for α = 0, γ = 0.001
and αl = kl = 0.1.

linear and nonlinear FOM and ROM for Example 1, Input 4 with α = 0, γ = 0.001

and αl = kl = 0.1. The linear and nonlinear ROM outputs are highly accurate.

Next, we present a case where the output of the nonlinear ROM is highly

accurate over a short time period and increasing r improves the accuracy over a long

time interval. Figure 3.6 shows the behavior of the nonlinear FOM and ROM for
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Figure 3.6. Example 4, Input 4: Output of the ROM and FOM for α = αl = 0,
γ = 0.001 and kl = 0.1.

Example 4, Input 4 with αl = 0, α = γ = 0.001 and kl = 0.1 for r = 4 and r = 8. We

note the linear ROM is highly accurate over a long time interval with Inputs 3, 4.

Now, we present a case where the output of the nonlinear ROM is highly

accurate over a short interval and increasing r does not greatly improve the accuracy.

Figure 3.7 shows the behavior of the nonlinear FOM and ROM for Example 5, Input

3 with γ = αl = 0, α = 0.001 and kl = 0.1 for r = 4 and r = 8.

Overall, all behaviors are possible with Inputs 3 and 4 for nonlinear ROM. The

linear ROM is highly accurate over a long time interval. In Example 1, the nonlinear

ROM may be highly accurate over a longer time interval and in Examples 3, 4, 5 the

nonlinear ROM may lose high accuracy after an initial time period. Also, increasing

r may or may not greatly improve the accuracy over a long period of time.

• Small boundary damping parameter

Here we investigate the behavior of the ROM for a boundary damping parameter that

is small relative to the interior damping parameters and boundary sti�ness parameter.

We experiment for boundary damping parameter αl in the range of 0.1 to 0.001 and
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Figure 3.7. Example 5, Input 3: Output of the ROM and FOM for γ = αl = 0,
α = 0.001 and kl = 0.1

�x kl = γ = α = 0.1. Note only Examples 1 and 2 are applicable here since Examples

3-5 have αl = 0.

Case 2a : Small boundary damping parameter with smooth Inputs 1, 2

In this case, in Examples 1 and 2 with smooth Inputs 1 and 2, the output of the

nonlinear ROM is highly accurate. We present results only for one speci�c scenario.

Figure 3.8 shows the behavior of the ROM and FOM of the linear and nonlinear

systems for Example 1, Input 1 with α = 0, γ = kl = 0.1 and small boundary

damping αl = 0.001.

Overall the performance of both linear and nonlinear ROM outputs are excel-

lent.

Case 2b : Small boundary damping parameter with smooth Input 3 and discontin-

uous Input 4

Here, for Example 2 with Inputs 3, 4 the output of the linear and nonlinear ROM

is highly accurate. For Example 1 with Inputs 3, 4 the nonlinear ROM is accurate

for an initial time interval. Increasing r improves the length of the accurate time
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Figure 3.8. Example 1, Input 1: Output of the ROM and FOM for α = 0, γ = kl =
0.1 and αl = 0.001
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Figure 3.9. Example 1, Input 4: Output of the ROM and FOM for α = 0, γ = kl =
0.1 and αl = 0.001

interval but does not yield accuracy over a long time interval. Figure 3.9 shows the

behavior of the nonlinear ROM and FOM of the nonlinear systems for Example 1,

Input 4 with α = 0, γ = kl = 0.1 and small boundary damping αl = 0.001 for r = 4

and r = 8.

Succinctly, the linear ROM is highly accurate when the boundary damping

parameter is small. The nonlinear ROM may be highly accurate over a longer time
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Figure 3.10. Example 3, Input 2: Output of the ROM and FOM for αl = 0, α = γ =
0.1 and kl = 0.001

interval or highly accurate only for an initial period of time and increasing r can

improve the accuracy.

• Small boundary sti�ness parameter

Next, we investigate the behavior of the FOM and ROM when the boundary sti�ness

parameter is small relative to the damping parameters. We experiment for sti�ness

parameter kl in the range of 0.1 to 0.001 and �x the damping parameters γ = α =

αl = 0.1.

Case 3a : Small sti�ness parameter with smooth Input 2

In all examples for smooth Input 2, the output of the nonlinear and linear ROM is

highly accurate compared to the FOM output.

In Figure 3.10 shows the behavior of the ROM and FOM of the linear and

nonlinear systems for Example 3, Input 2 with αl = 0, α = γ = 0.1 and kl = 0.001.

Overall, in all examples with smooth Input 2, the linear and nonlinear ROM

are highly accurate for a longer time period.

Case 3b : Small sti�ness parameter with smooth Inputs 1, 3 and discontinuous Input

4.
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Figure 3.11. Example 2, Input 3: Output of the ROM and FOM for γ = 0, α = αl =
0.1 and kl = 0.001

Next, we explore the behavior of the ROM and FOM for smaller boundary sti�ness

parameter with smooth Inputs 1, 3 and discontinuous Input 4 . For Examples 1,

2, 3, 5 with Inputs 1, 3, 4 the nonlinear ROM is highly accurate over a long time

period. Only Example 4 behaves di�erently. For Example 4 with Inputs 1, 3, and 4

the nonlinear ROM is highly accurate over an initial time interval, and then it loses

accuracy. We present results for two speci�c scenarios. First, Figure 3.11 shows the

behavior of the linear and nonlinear FOM and ROM output for Example 2, Input 3

with γ = 0, α = αl = 0.1 and small boundary sti�ness kl = 0.001. In this case both

the linear and nonlinear outputs of ROM are highly accurate over a long period of

time.

Figure 3.12 shows another scenario for the nonlinear output over a long time

interval: Example 4, Input 4 with γ = 0.1, α = αl = 0 and small sti�ness kl = 0.001.

The nonlinear ROM is highly accurate over an initial time period, but then su�ers a

loss of accuracy. Increasing r does not yield high accuracy.

Succinctly, when the boundary sti�ness parameter is small relative to the

damping parameters, the accuracy of the nonlinear ROM can vary with di�erent
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Figure 3.12. Example 4, Input 4: Output of the ROM and FOM for γ = 0.1, α =
αl = 0 and kl = 0.001

examples and inputs. The linear ROM is highly accurate in all examples with all

inputs.

• Small damping and sti�ness parameters (all parameters are small)

Finally, we consider the behavior of the nonlinear ROM when the damping and

boundary sti�ness parameter are small relatively to the mass and nonlinear sti�ness

parameters (m0 = 1, ml = 1.5, and k3 = 1). We experiment for damping parameters

α, αl, γ and sti�ness parameter kl in the range of 0.1 to 0.001.

Case 4a : Small damping and sti�ness parameters with continuous Input 2

The nonlinear ROM is highly accurate in all examples with Input 2. We present

results for two speci�c scenarios. In Figure 3.13 shows the behavior of the ROM of

the nonlinear system for Example 3 with Input 2 and Example 4 with Input 2.

Overall, the linear and nonlinear ROM outputs are very accurate in all exam-

ples with Input 2 when the damping and sti�ness parameters are small.

Case 4b : Small damping and sti�ness parameters with Inputs 1, 3 and 4
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(a) Example 3, Input 2 αl = 0 and γ = α =
kl = 0.001
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(b) Example 5, Input: 2 α = αl = 0 and
γ = kl = 0.001

Figure 3.13. Output of the nonlinear ROM and FOM

In all examples, the nonlinear ROM output is highly accurate over an initial time

period, but then su�ers a large loss of accuracy with Inputs 1, 3 and 4. Increasing r

does improve the length of the accurate time interval but may not yield high accuracy

for a long time interval. We present results for two speci�c scenarios. Figure 3.14

shows the behavior of the ROM of the nonlinear system for Example 3 with Input

3 with αl = 0 and γ = α = kl = 0.001 for r = 4 and r = 10. Increasing r greatly

improves the length of the accurate time interval.

Figure 3.15 shows the behavior of the ROM of the nonlinear system for Exam-

ple 1, Input 4 with α = 0 and γ = αl = kl = 0.001 for r = 4 and r = 10. Increasing

r greatly improves the accuracy, but we do not get accuracy for a long time interval.

Overall, when all parameters are small all behaviors are possible. The non-

linear ROM may be highly accurate over a long period of time, or it may lose high

accuracy after an initial time period. Also, increasing r may or may not give accuracy

over a long time interval. The linear ROM is highly accurate in all cases.
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(b) Nonlinear system for r = 10

Figure 3.14. Example 3, Input 3: Output of the ROM and FOM for αl = 0, γ = α =
kl = 0.001
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Figure 3.15. Example 1, Input 4: Output of the ROM and FOM for α = 0, γ = αl =
kl = 0.001
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4. NONLINEAR CABLE-MASS PDE SYSTEM WITH UNBOUNDED

OUTPUT OPERATOR

In this section, we study the e�ect of an unbounded output operator to the

model reduction. Here, we use the same wave equation and boundary conditions as

described in Section 2 with a di�erent output. We do not attempt to prove the PDE

balanced truncation theory for this problem. Instead, we examine the performance

of the model order reduction numerically.

4.1. THE MODEL

As we explained in Section 2, the model is the same and we investigate the

model reduction with di�erent outputs. Recall the wave equation with dynamic

boundary conditions is given by

wtt(t, x) + αwt(t, x) = γwtxx(t, x) + β2wxx(t, x), (4.1)

m0ẅ0(t) + α0ẇ0(t) + k0w0(t) = (γwtx(t, 0) + β2wx(t, 0)) + u(t), (4.2)

mlẅl(t) + αlẇl(t) + klwl(t) = (−γwtx(t, l)− β2wx(t, l))− k3 [wl(t)]
3 . (4.3)

We assume we have one system output: the force of the cable acting on the right

mass, i.e.,

y(t) = γwtx(t, l) + β2wx(t, l).

4.2. ABSTRACT FORM

Our original PDE model (4.1) with the boundary conditions (4.2), (4.3) can

be written in the �rst order abstract form (2.10). The operators A and B are given in

Section 2. We de�ne the output operator C, which is unbounded in this case. De�ne
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Table 4.1. Fixed Simulation Parameters

l m0 ml k3 β
1 1 1.5 1 1

the operator C, where C : D(A)→ R, by Cx = δl

(
β2 d

dξ
w + γ d

dξ
v

)
. Since C maps the

domain of A to R, and Cx is not well-de�ned in general for x ∈ H = V × H, C is

called an unbounded operator.

4.3. NUMERICAL EXPERIMENTS

In this section, we examine the performance of ROM when the output operator

is unbounded. For our experiments, we used 100 �nite di�erence nodes and solved

all ordinary di�erential equations the Matlab's ode23s. We �xed some of the basic

problem parameters, as shown in Table 4.1, and tested variations of the remaining

parameters to determine when the MOR approach is accurate.

We investigated the following examples. Here we only consider the examples

when the Kelvin-Voigt parameter is positive.

• Example 1: Kelvin-Voigt damping in the interior (γ > 0) and damping in the

in the right boundary (αl > 0). All other damping parameters are taken to be

zero, i.e., α0 = α = 0.

• Example 3: Viscous damping in the interior (α > 0) and Kelvin-Voigt damping

in the interior (γ > 0). All other damping parameters are taken to be zero, i.e.,

α0 = αl = 0.

• Example 5: Kelvin-Voigt damping in the interior (γ > 0). All other damping

parameters are taken to be zero, i.e., α = α0 = αl = 0
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4.3.1. Formulating the Finite Di�erence Approximation. The matri-

ces A, B, and F are given in Section 2. We de�ne the matrix C, which is 1 × 2n,

by

C =

[
0 · · · 0 γ

2h
−4γ

2h
3γ
2h

0 · · · 0 β2

2h
−4β2

2h
3β2

2h

]
.

This gives the nonlinear �nite dimensional approximating system:

ẋ = Ax+ F (x) +Bu, y = Cx. (4.4)

4.3.2. Model Reduction Results. Next, we begin the model reduction

experiments. We study the e�ects of the various parameters on the accuracy of the

model reduction. To do this, we consider the reduced order model (ROM) and full

order model (FOM) with zero initial data and the same input u(t) and compare the

output of the FOM and ROM. Recall the output y(t) of the cable-mass system is the

force of the cable on the right mass.

We focus on the accuracy of the linear and nonlinear ROM and present some

results to analyze the performance of the ROM.

For our experiments, we investigate the behavior of the ROM and FOM for

four di�erent input functions as before.

• Input 1: u(t) = 0.1 sin(0.2πt)

• Input 2: u(t) = 0.02 cos(at) + 0.03 cos(bt), where a, b are the two largest real

parts of the eigenvalues of the matrix A

• Input 3: u(t) = c1 sin(mt) + c2 cos(nt), where c1, c2, m, n are constants in the

range of c1, c2, < 0.1 and m, n < 0.2.

• Input 4: u(t) = 0.1square(0.2πt)

The inputs are the same as previously described in Section 2.
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(b) Nonlinear system

Figure 4.1. Example 5, Input 1: Output of the ROM and FOM for γ = 0.001, k0 =
kl = 0.1, α = α0 = αl = 0 when r = 4

• Small interior damping parameters

We �rst investigate the behavior of the ROM for interior damping parameters which

are small relative to the boundary sti�ness parameter and boundary damping param-

eters. We experiment for damping parameters α and γ in the range of 0.1 to 0.001,

and �x k0 = kl = 0.1 and αl = 0.1.

Case 1a : Small interior damping parameters with all inputs

In this case, for Examples 3 and 5 with all inputs, the output of linear and nonlinear

ROM is accurate for r = 4 but the amplitude of the ROM is slightly di�erent com-

pared to the FOM. Increasing r does give high accuracy. Figure 4.1 shows the output

of the FOM and ROM for both linear and nonlinear systems for Example 5, Input 1

with α = α0 = αl = 0, k0 = kl = 0.1, and small Kelvin-Voigt parameter γ = 0.001.

The behavior of Example 1 is di�erent from the other two examples. We

present results for two speci�c scenarios. For Example 1 with smooth Input 1 the

output of linear and nonlinear ROM is highly accurate. Figure 4.2 shows the behavior
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Figure 4.2. Example 1, Input 1: Output of the ROM and FOM for α0 = α = 0,
αl = k0 = kl = 0.1 and γ = 0.001 when r = 4

of the linear and nonlinear FOM and ROM for Example 1, Input 1 with α0 = α = 0,

αl = k0 = kl = 0.1 and γ = 0.001 when r = 4.

Next, Example 1 with Inputs 2, 3 and 4 the nonlinear ROM is moderately

accurate and increasing r does not yield high accuracy. The linear ROM for Example

1 with Inputs 2, 3 and 4 is accurate but the amplitude of the ROM is slightly di�erent

from the FOM and increasing r does give high accuracy. Figures 4.3 and 4.4 show

the behavior of the linear and nonlinear FOM and ROM for Example 1, Input 4 with

α0 = α = 0, αl = k0 = kl = 0.1 and γ = 0.001 when r = 4 and r = 10.

Overall, when interior damping parameters are small, for Examples 3 and 5

with all inputs, the outputs of linear and nonlinear ROM are accurate with little

amplitude di�erence compared to the FOM and increasing r gives high accuracy. In

Example 1 high accuracy may be lost after an initial time period. Increasing r may

or may not improve the accuracy.

• Small boundary damping parameter
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Figure 4.3. Example 1, Input 4: Output of the ROM and FOM for α0 = α = 0,
αl = k0 = kl = 0.1 and γ = 0.001 when r = 4

Here we investigate the behavior of the ROM for boundary damping parameters

that are small relative to the interior damping parameters and boundary sti�ness

parameters. We experiment for boundary damping parameters αl and α0 in the

range of 0.1 to 0.001 and �x k0 = kl = γ = α = 0.1. Note only Example 1 is

applicable here since Examples 3, 5 have αl = 0.

Case 2a : Small boundary damping parameter with all inputs

For Example 1 with all inputs, the linear and nonlinear ROMs are accurate only for

an initial time interval. Increasing r yield highly accurate ROMs.

• Small damping parameters

Here we investigate the behavior of the ROM for boundary and interior damping

parameters which are small relative to the boundary sti�ness parameter. We ex-

periment for damping parameters α, γ, αl, α0 in the range of 0.1 to 0.001 and �x

k0 = kl = 0.1.

Case 3a : Small damping parameters with all inputs



85

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time

F
o

rc
e

 

 

FOM

ROM r=10

(a) Linear system

0 50 100 150 200 250 300
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

time

F
o

rc
e

 

 

FOM

ROM r=10

(b) Nonlinear system

Figure 4.4. Example 1, Input 4: Output of the ROM and FOM for α0 = α = 0,
αl = k0 = kl = 0.1 and γ = 0.001 when r = 10

In this case all linear and nonlinear ROMs are accurate with little amplitude di�erence

compared to the FOM and increasing r does give high accuracy. Figures 4.5 and 4.6

show the output of the FOM and ROM for the linear and nonlinear systems for

Example 3, Input 3 with α0 = αl = 0, k0 = kl = 0.1 and α = γ = 0.001 when r = 4

and r = 6.

• Small sti�ness parameters

Next, we investigate the behavior of the FOM and ROM when the boundary sti�ness

parameters are small relative to the damping parameters. We experiment for sti�ness

parameters k0 and kl in the range of 0.1 to 0.001 and �x damping parameters as

γ = α = α0 = αl = 0.1.

Case 4a : Small sti�ness parameters with all inputs

We test when one of k0 or kl is small, and also when both are small. In this case,

for all examples with all inputs both the nonlinear and linear output of the ROM are

moderately accurate and increasing r does yield high accuracy.
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Figure 4.5. Example 3, Input 3: Output of the ROM and FOM for α0 = αl = 0,
k0 = kl = 0.1 and α = γ = 0.001 when r = 4

• All parameters are small

Finally, we observe the behavior of the nonlinear and linear ROM when the damping

and sti�ness parameters are small relative to the mass and nonlinear sti�ness param-

eters (m0 = 1, ml = 1.5, and k3 = 1). We experiment for damping parameters α, αl,

γ and the sti�ness parameter k0, kl in the range of 0.1 to 0.001.

Case 5a : All parameters are small with all inputs for Examples 1 and 3

Here, for Examples 1, 3 with Inputs 1, 3 the output of the linear ROM is highly

accurate and the output of nonlinear ROM is moderately accurate. Figure 4.7 shows

the output of the FOM and ROM for the linear and nonlinear systems for Example

3, Input 3 with α0 = αl = 0 and k0 = kl = α = γ = 0.001 when r = 4.

In Examples 1, 3 with Input 2, the output of linear and nonlinear ROM is

moderately accurate. Increasing r does not give high accuracy. Figure 4.8 shows the

output of the FOM and ROM for the linear and nonlinear systems for Example 1,

Input 2 with α0 = α = 0 and k0 = kl = αl = γ = 0.001 when r = 4.
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Figure 4.6. Example 3, Input3: Output of the ROM and FOM for α0 = αl = 0,
k0 = kl = 0.1 and α = γ = 0.001 when r = 6

Next, for Examples 1, 3 with Input 4 the nonlinear ROM is moderately accu-

rate. The linear ROM is accurate with little amplitude di�erence compared to the

FOM and increasing r does produce high accuracy.

Overall, the linear ROM is highly accurate or moderately accurate when r is

small with all inputs and increasing r does yield high accuracy except Input 2. The

nonlinear ROM is moderately accurate and increasing r may or may not yield high

accuracy.

Case 5b : All parameters are small with all inputs for Example 5.

In Example 5, the linear and nonlinear ROM is highly accurate for an initial time

interval and then accuracy may be lost. Increasing r for both the linear and nonlinear

ROM yields high accuracy.
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Figure 4.7. Example 3, Input 3: Output of the ROM and FOM for α0 = αl = 0 and
α = γ = k0 = kl = 0.001 when r = 4
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Figure 4.8. Example 1, Input 2: Output of the ROM and FOM for α0 = α = 0 and
k0 = kl = αl = γ = 0.001 when r = 4.



89

5. NONLINEAR EXPONENTIAL STABILITY OF ANOTHER

NONLINEAR CABLE-MASS PDE SYSTEM

Next, we consider a cable-mass model similar to Section 2, but with di�erent

boundary condition at the left end. This problem was originally studied theoretically

by Burns and King in [36], but our model includes one additional damping term. In

[36], Burns and King proved the solution of the unforced nonlinear system decays to

zero exponentially fast if the initial condition is small enough. The primary goal of

this section is to prove the nonlinear exponential stability for large initial conditions.

Further, we demonstrate the exponential stability of the linear and nonlinear systems

numerically. We do not consider model reduction for this system.

5.1. THE MODEL

We consider a �exible cable which is �xed at one end and attached to mass-

spring at the other end. Let

• w(t, x) denote the position of the cable at location x and time t, and

• wl(t) denote the position of the right mass above equilibrium at location x = l

and time t.

The left side is �xed and the right mass is located at x = l. We assume there are no

external forces. The right mass-spring system includes a nonlinear sti�ening force, as

before. This gives a wave equation with a dynamic boundary condition:

wtt(t, x) + αwt(t, x) = γwtxx(t, x) + β2wxx(t, x), (5.1)

w(t, 0) = 0, (5.2)

mlẅl(t) + αlẇl(t) + klwl(t) = −(γwtx(t, l) + β2wx(t, l))− k3 [wl(t)]
3 . (5.3)



90

Finally, the position of the cable at each boundary must equal the position of the

mass; therefore, we have the displacement compatibility condition

w(t, 0) = 0, w(t, l) = wl(t).

5.2. THE ENERGY FUNCTION

Next, we give a preliminary investigation of the change in energy of system.

The only di�erence with the model considered in [36] is the addition of the viscous

damping term αwt in the wave equation. As before, we assume all damping param-

eters are nonnegative, and the remaining parameters are positive. This will help us

to obtain the correct inner products for an abstract formulation of the system. We

assume the solution for the above system is su�ciently smooth. We de�ne the total

kinetic energy of the cable by

ET,K =
1

2

lˆ

0

w2
t dx.

Di�erentiating with respect to time and using the wave equation (5.1) gives

dET,K
dt

=
1

2

lˆ

0

2wtwtt dx

=
1

2

lˆ

0

2wt(t, x)(γwtxx(t, x) + β2wxx(t, x)− αwt(t, x)) dx.

Integrate by parts to obtain

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

+ wt(t, l)
[
γwtx(t, l) + β2wx(t, l)

]
− wt(t, 0)

[
γwtx(t, 0) + β2wx(t, 0)

]
.
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Use the boundary conditions of our cable-mass model (5.2), (5.3), which gives w(t, 0) =

0 and since the solution is smooth this implies wt(t, 0) = 0, to obtain

dET,K
dt

= −γ
ˆ l

0

(wtx(t, x))2 dx− β2

ˆ l

0

wx(t, x)wtx(t, x)dx− α
ˆ l

0

(wt(t, x))2 dx

− ẇl(t)
[
mlẅl(t) + αlẇl(t) + klwl(t) + k3 [wl(t)]

3] .
This can be rewritten as

d

dt

(
1

2

lˆ

0

w2
t dx +

ml

2
(ẇl(t))

2 +
β2

2

lˆ

0

w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4

)
=

−γ
ˆ l

0

(wtx(t, x))2 dx− α
ˆ l

0

(wt(t, x))2 dx− αl (ẇl(t))2 .

This suggests de�ning the system kinetic energy and potential energy as

EK =

lˆ

0

1

2
w2
t dx +

ml

2
(ẇl(t))

2 ,

EP =

lˆ

0

β2

2
w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4 .

This energy expression may be obtained by considering the kinetic energy and po-

tential energy of each component of the system. The above energy equation gives

d

dt
E =

d

dt
(EK + EP )

= −
[
γ

ˆ l

0

(wtx(t, x))2 dx+ α

ˆ l

0

(wt(t, x))2 dx+ αl (ẇl(t))
2

]
,

and therefore Ė(t) ≤ 0.
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5.3. VARIATIONAL FORM

In this section, we introduce the variational form (weak form) of the system.

We assume the solution [w, wl] is smooth and satis�es the compatibility condition

w(t, l) = wl(t). Multiply the wave equation (5.1) by a smooth test function h = h(x)

satisfying h(0) = 0 and h(l) = hl and integrate by parts to obtain

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− γ
lˆ

0

wtxx(t, x)h dx− β2

lˆ

0

wxx(t, x)h dx = 0.

ˆ l

0

wtt(t, x)h dx+ α

lˆ

0

wt(t, x)h dx− hl
[
γwtx(t, l) + β2wx(t, l)

]

+h(0)
[
γwtx(0) + β2wx(0)

]
+ γ

lˆ

0

wtx(t, x)hx dx+ β2

lˆ

0

wx(t, x)hx dx = 0.

The boundary conditions give

ˆ l

0

wtt(t, x)h dx+ hl
[
mlẅl(t) + αlẇl(t) + klwl(t) + k3 [wl(t)]

3]
+α

lˆ

0

wt(t, x)h dx+ γ

lˆ

0

wtx(t, x)hx dx+ β2

lˆ

0

wx(t, x)hx dx = 0.

ˆ l

0

wtt(t, x)h dx+mlẅl(t)hl +

lˆ

0

[αwt(t, x)h + γwtx(t, x)hx ] dx

+β2

lˆ

0

wx(t, x)hx dx+ klwl(t)hl + αlhlẇl(t) + k3 [wl(t)]
3 = 0. (5.4)

Let H be the real Hilbert space H = L2(0, l) × R with the inner product of z =

[w,wl] ∈ H and ψ = [p, pl] ∈ H de�ned by

(z, ψ)H =

lˆ

0

wpdx+mlwlpl. (5.5)
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Let V ⊂ H be the set of elements z = [w,wl] ∈ H1(0, l) × R = V satisfying the

boundary condition w(0) = 0 and the displacement compatibility condition w(l) = wl.

For z ∈ V as above and ψ = [p, pl] ∈ V , de�ne the V inner product of z with ψ by

(z, ψ)V =

lˆ

0

β2wxpxdx+ klwlpl. (5.6)

We also use the notation σ1(z, ψ) = (z, ψ)V .

As before the, H and V norms are directly related to the system kinetic and

potential energies, respectively. Speci�cally,

EK =
1

2
(zt, zt)H =

1

2
‖zt‖2H , EP =

1

2
(z, z)V +

k3
4
w4
l =

1

2
‖z‖2V +

k3
4
w4
l .

Also, we de�ne the damping bilinear form σ2 : V × V → R,

σ2(z, ψ) =

ˆ l

0

(γwxpx + αwp) dx+ αlwlpl. (5.7)

5.4. ABSTRACT FORM

Our original PDE model (5.1) with the boundary conditions (5.2), (5.3) can

be written in the �rst order abstract form (2.10). Similar to [36], the PDE system

suggests the operator A may be formally de�ned as

D(A) =

{
x = [w,wl, v, vl]

T ∈ H = V ×H : w ∈ H1(0, l), v ∈ H1(0, l),

w(0) = 0, w(l) = wl, v(0) = 0, v(l) = vl

}
,
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Ax = A



w

wl

v

vl


=



v

vl

d
dξ

[
β2 d

dξ
w + γ d

dξ
v
]
− αv

−δl
[
β2

ml

d
dξ
w + γ

ml

d
dξ
v
]
− kl

ml
wl − αl

ml
vl


. (5.8)

As before, we do not use the formal de�nition of the operator A given above.

Instead, we use theory from Banks [51] to rigorously de�ne the operator A using the

bilinear forms σ1 and σ2.

5.5. THE LINEAR PROBLEM

We prove the linear problem (2.12) is well-posed and also exponentially stable

under certain assumptions on the damping parameters.

5.5.1. Function Spaces.

Lemma 5.1. The space V with the above inner product (5.6) is a real Hilbert space

and V is dense in H.

Proof. First, if (z, z)V = 0, where z = [w,wl], then w(x) is a constant function and

wl = 0. The compatibility condition implies w(x) = 0 for all x, and so z = 0. It is

clear that (·, ·)V satis�es the remaining properties of an inner product.

Next, let {zn} ⊂ V be a Cauchy sequence, where zn = [wn, wnl ]. Therefore,

[wnx , w
n
l ] is a Cauchy sequence in L2(0, l)×R, and so there exists [q, wl] ∈ L2(0, l)×R

such that

wnx → q in L2(0, l), wn(0) = 0, wnl → wl.
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De�ne w by w(x) =
´ x
0
q(η)dη. Then w ∈ H1(0, l), wx = q, and w(0) = 0. Also,

w(l) = wl since

w(l) = lim
n→∞

ˆ l

0

wnx(η)dη

= lim
n→∞

wn(η) |l0

= lim
n→∞

(
wn(l)− wn(0)

)
= lim

n→∞
wnl

= wl.

Therefore z = [w,wl] satis�es the displacement compatibility condition and zn con-

verges in V to z ∈ V . This shows V is a Hilbert space.

To show V is dense in H, let z = [w,wl] ∈ H and de�ne

g(x) = l−1wlx.

Note that g(0) = 0 and g(l) = wl, Since H1
0 (0, l) is dense in L2(0, l), there exists a

sequence qn ∈ H1
0 (0, l) such that qn → w − g in L2(0, l). De�ne

zn = [qn + g, wl].
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Due to the properties of qn and g, i.e., qn+g ∈ H1, (qn+g)(0) = 0, and (qn+g)(l) = wl,

we have zn ∈ V for all n. Also,

lim
n→∞

‖zn − z‖2H = lim
n→∞

‖qn + g − w‖2L2(0,l) + ‖wl − wl‖2

= lim
n→∞

ˆ l

0

(qn + g − w)2dx

= lim
n→∞

ˆ l

0

(qn − (w − g))2dx

= lim
n→∞

‖qn − (w − g)‖2L2(0,l)

= 0.

This proves V is dense in H.

Lemma 5.2. If z = [w,wl] ∈ V , then

|w(x)|2 ≤ l ‖wx‖2L2(0,l) , (5.9)

‖w‖2L2(0,l) ≤ l2 ‖wx‖2L2(0,l) , (5.10)

w2
l ≤ l ‖wx‖2L2(0,l) . (5.11)

Proof. Since w ∈ H1(0, l) and w(0) = 0, we have

w(x) =

xˆ

0

wξ(ξ) dξ.

Taking absolute values and using the triangle inequality gives

|w(x)| ≤
xˆ

0

|wξ(ξ)| dξ.
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Applying Hölder's inequality gives

|w(x)| ≤

 lˆ

0

12dξ


1
2

.

 lˆ

0

|wx(x)|2 dx


1
2

≤ l
1
2 ‖wx‖L2(0,l) .

Squaring this inequality and using Young's inequality gives (5.9); integrating from

x = 0 to x = l gives us (5.10); and evaluating equation (5.9) at x = l yields (5.11).

Lemma 5.3. V is continuously embedded in H.

Proof. Let z = [w,wl] ∈ V . We use the H and V inner products and the inequality

(5.10) from Lemma (5.2) to obtain

‖z‖2H =

ˆ l

0

w2dx+mlw
2
l

= ‖w‖2L2(0,l) +mlw
2
l

≤ l2 ‖wx‖2L2(0,l) +mlw
2
l

= l2
lˆ

0

w2
x dx+mlw

2
l

=

(
l2

β2

) lˆ

0

β2w2
x dx+

(
ml

kl

)
klw

2
l

≤ C1

klw2
l + β2

lˆ

0

w2
x dx

 ,
where C1 = max

{
l2

β2 ,
ml

kl

}
. This gives C−11 ‖z‖

2
H ≤ ‖z‖

2
V , therefore V is continuously

embedded in H.

5.5.2. Well-Posedness and Exponential Stability. To show the linear

problem is well-posed, we rewrite the problem as ẋ = Ax as before and show A

generates a C0-semigroup on H = V ×H.
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As before, we restrict our analysis to the cases where the damping bilinear

form σ2 is H-elliptic or V -elliptic.

Example 1: γ, αl > 0 and α = 0. We �rst consider the case of Kelvin-Voigt

damping (γ > 0) and viscous damping in the right mass-spring system (αl > 0). We

prove σ2 is V -elliptic. We rewrite the bilinear form of σ2 and the V inner products

according to the above parameters:

σ2(z, z) =

ˆ l

0

γw2
x dx+ αlw

2
l ,

‖z‖2V =

ˆ l

0

β2w2
xdx+ klw

2
l .

Then

‖z‖2V = β2

ˆ l

0

w2
xdx+ klw

2
l

=

(
β2

γ

) ˆ l

0

γw2
xdx+

(
kl
αl

)
αlw

2
l

≤ C2

(ˆ l

0

γw2
xdx+ αlw

2
l

)
≤ C2σ2(z, z)

where C2 = max
{
β2

γ
, kl
αl

}
, This proves that σ2 is V − elliptic.

Example 2: α, αl > 0 and γ = 0. Next, we consider the case of viscous

damping in the wave equation and the right mass (α, αl > 0). We prove σ2 is H-

elliptic. Since

σ2(z, z) =

ˆ l

0

αw2dx+ αlw
2
l ,

‖z‖2H =

ˆ l

0

w2dx+mlw
2
l ,
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we have

‖z‖2H =

ˆ l

0

(
1

α

)
αw2dx+

(
ml

αl

)
αlw

2
l

≤ C3

[ˆ l

0

αw2dx+ αlw
2
l

]
,

where C3 = max
{

1
α
, ml

αl

}
, and this proves σ2 is H-elliptic.

Example 3: γ > 0 and α = αl = 0. In this last case, we consider only Kelvin-

Voigt damping (γ > 0) and no other viscous damping. We prove σ2 is V − elliptic.

Since

σ2(z, ψ) =

ˆ l

0

γw2
xdx,

‖z‖2V =

ˆ l

0

β2w2
xdx+ klw

2
l ,

use (5.11) to obtain

‖z‖2V ≤ β2

ˆ l

0

w2
x dx+ kll

ˆ l

0

w2
x dx

=

(
β2 + kll

γ

)
γ

ˆ l

0

w2
x dx.

Therefore C−14 ‖z‖
2
H ≤ σ2(z, z), where C4 = β2+kll

γ
, and this proves σ2 is H-elliptic.

In Examples 1, 3 we proved σ2 is V -elliptic and Theorem 8.1 in [51] gives us

A is the in�nitesimal generator of an analytic exponentially stable semigroup.

In Example 2 we proved σ2 is H-elliptic and Theorem 8.3 in [51] gives us A

generates an exponentially stable C0-semigroup.



100

5.6. THE NONLINEAR PROBLEM

We write the nonlinear problem as

ẋ(t) = Ax(t) + F(x(t)), x(0) = x0 (5.12)

on H = V ×H. Here the linear operator A is de�ned in Section 2.1 and the nonlinear

operator F : H → H is de�ned for x = [ϕ, ψ] ∈ H with ϕ = [w,wl] ∈ V by

F(x) =

 0

F0(ϕ)

 , F0(ϕ) =

 0

m−1l k3w
3
l

 .
Theorem 5.4. The nonlinear cable-mass system has a unique mild solution on some

time interval [0, t∗).

Theorem 5.5. If σ2 is H-elliptic and the solution x = [z, zt], with z = [w,wl], of the

unforced nonlinear cable-mass problem (5.12) is su�ciently smooth, then the energy

E(t) = 1
2
‖zt‖2H+ 1

2
‖z‖2V + k3

4
[wl(t)]

4 of the solution with the initial data x(0) = x0 ∈ H

decays exponentially fast as t→∞.

Proofs of Theorems 5.4 and 5.5 are similar to Section 2.

5.6.1. Formulating the Finite Di�erence Approximation. In this sec-

tion, we present numerical results concerning the linear and nonlinear exponential

stability theory. For the linear problem, we test the exponential stability by analyz-

ing the eigenvalues of the matrix A in the �nite di�erence model (5.12).

We place n equally spaced nodes {xj}nj=1 in the interval [0, l], where xj = jh

and h = l/n so that x1 = h and xn = l. In order to apply balanced truncation below,

we also eliminate the second order time derivatives by introducing a velocity vari-

able. Therefore, let di denote the �nite di�erence approximation to the displacement

w(t, xi), and let vi denote the �nite di�erence approximation to the velocity wt(t, xi).
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We assume the solution is smooth so that the displacement and velocity satisfy the

zero Dirichlet boundary condition at x = 0 and the compatibility condition; we obtain

w0(t) = 0, wl(t) = dn(t),

ẇ0(t) = 0, ẇl(t) = vn(t).

We use second order centered di�erences to form �nite di�erence equations

for the wave equation (5.1):

v′i =
γ

h2
[vi+1 − 2vi + vi−1] +

β2

h2
[di+1 − 2di + di−1]− αvi,

d
′

i = vi, for i = 2, ..., n− 1. (5.13)

To discretize our system we use (5.13) to obtain

v
′

i =

[
−α− 2γ

h2

]
vi +

[ γ
h2

]
vi−1 +

[ γ
h2

]
vi+1 +

[
β2

h2

]
di+1 −

[
2β2

h2

]
di +

[
β2

h2

]
di−1,

d
′

i = vi, for i = 1, ..., n− 1.

After discretizing the left boundary condition using one-sided �nite di�erence ap-

proximations and substituting the result in the above equation with i = 1, we obtain

v
′

1 = −
[

2β2

h2

]
d1 +

[
β2

h2

]
d2 +

[
−2γ

h2
− α

]
v1 +

[ γ
h2

]
v2,

d
′

1 = v1.

For the dynamic right boundary condition we obtain

v
′

n =

[
− kl
ml

− 3β2

2hml

]
dn +

[
4β2

2hml

]
dn−1 −

[
β2

2hml

]
dn−2

+

[
− αl
ml

− 3γ

2hml

]
vn +

[
4γ

2hml

]
vn−1 −

[
γ

2hml

]
vn−2 −

[
k3
ml

]
[dn]3 ,
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d
′

n = vn.

where di, vi and u(t) represent displacement, velocity and input respectively. The

above system can be placed in the matrix form (2.29). First, the matrix A11 has

nonzero (i, j) entries, where i, j represent the row and column, respectively, as

speci�ed below. The nonzero �rst row entries of A11 in the (1, 1) and (1, 2) en-

tries are
(
−2β2

h2

)
,
(
β2

h2

)
, respectively. The nonzero last row entries of A11 in the

(n, n− 2), (n, n− 1) and (n, n) entries are
(
− β2

2hml

)
,
(

4β2

2hml

)
,
(
− kl
ml
− 3β2

2hml

)
, respec-

tively. The middle part of the matrix i = 2, 3, . . . , n− 1 is a tridiagonal matrix. The

entries are

[A11]i,j =



β2

h2
, i = i− 1,

−2β2

h2
, i = i,

β2

h2
, i = i+ 1.

Similarly, the nonzero �rst row entries of A12 in the (1, 1) and (1, 2) entries

are
(
−α− 2γ

h2

)
,
(
γ
h2

)
, respectively. The nonzero last row entries of A12 in the (n, n−

2), (n, n − 1) and (n, n) are
(
− γ

2hml

)
,
(

4γ
2hml

)
,
(
− αl

ml
− 3γ

2hml

)
, respectively. The

middle part of the matrix i = 2, 3, . . . , n− 1 is a tridiagonal matrix. The entries are

[A11]i,j =



γ
h2
, i = i− 1,

−α− 2γ
h2
, i = 1,

γ
h2
, i = i+ 1.

Also, the matrix F12 in the nonlinear term is de�ned similarly to earlier sec-

tions. Furthermore A11, A1,2, F12 are n× n matrices.

We can write the nonlinear �nite dimensional approximating system as

ẋ = Ax+ F (x). (5.14)

5.6.2. Formulating the Finite Di�erence Approximation of the En-

ergy Function. For the nonlinear problem, we consider the solution of the �nite
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di�erence model and compute an approximation to the energy function in Theorem

5.5 using trapezoidal rule quadrature on the integrals.

The energy of the unforced system is E = EK + EP where

EK =

lˆ

0

1

2
w2
t dx +

ml

2
(ẇl(t))

2 ,

EP =

lˆ

0

β2

2
w2
x dx+

kl
2

(wl(t))
2 +

k3
4

(wl(t))
4 .

Recall trapezoidal rule quadrature for an integral:

ˆ b

a

F (x)dx ≈
h

2
[F (a) + F (b)] +

n−1∑
i=2

hF (xi)

Applying the trapezoidal rule to each term in the energy function gives

ˆ l

0

1

2
w2
t dx ≈

1

2

[
h

2
(v1(t))

2 +
h

2
(vn(t))2

]
+

1

2

n−1∑
i=2

h (vi(t))
2

and

lˆ

0

β2

2
w2
x dx ≈

β2

2

[
h

2
(wx(t, x1))

2 +
h

2
(wx(t, xn))2

]
+
β2

2

n−1∑
i=2

h (wx(t, xi))
2 .

Use one-sided and centered di�erence formulas to get

lˆ

0

β2

2
w2
x dx ≈

β2

2

[
h

2

(
−3w1 + 4w2 − w3

2h

)2

+
h

2

(
3wn − 4wn−1 + wn−2

2h

)2
]

+
β2h

2

n−1∑
i=2

(
wi+1 − wi−1

2h

)2

.
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Table 5.1. Eigenvalues of the linear system for number of spatial nodes with γ = αl =
0.01, kl = 0.01 and α = 0

N 10 20 40 80 160

Re (λ) -0.0050 -0.0052 -0.0053 -0.0053 -0.0054

Then the energy of the system is approximated as follows:

E(t) ≈
h

4
v21(t) +

[
h

4
+
ml

2

]
v2n +

h

2

n−1∑
i=2

(vi)
2 +

β2

16h
[−3w1 + 4w2 − w3]

2

+
β2

16h
[3wn − 4wn−1 + wn−2]

2 +
β2

8h

n−1∑
i=2

[wi+1 − wi−1]2

+
kl
2

(wn)2 +
k3
4

(wn)4

5.6.3. Numerical Results. Figure 5.1(a) shows the eigenvalues of the ma-

trix A for γ = αl = 0.01, kl = 0.01, and α = 0 (this is a case of Example 1), and

Figure 5.2(a) shows the eigenvalues of the matrix A for α = αl = 0.01, kl = 0.01,

and γ = 0 (this is a case of Example 2). All eigenvalues have negative real parts.

Similarly, the eigenvalues of Example 3 have negative real parts. We do not give

�gures for this case.

Figure 5.1(b) and 5.2(b) shows the exponential decay of the energy with the

same parameters with the initial data ex sin(x) for the position and cos(x) for the

velocity. We choose the initial condition to match the boundary condition at x = 0

to produce a smooth solution.

First, we look at the behavior of the eigenvalue nearest the imaginary axis

by increasing the number of spatial nodes. As we can see in Tables 5.1 and 5.2 the

eigenvalue do not approach the imaginary axis when the number of spatial nodes

is increased. This is the behavior we expect since the PDE system is exponentially

stable.
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Table 5.2. Eigenvalues of the linear system for number of spatial nodes with α =
αl = 0.01, kl = 0.01 and γ = 0

N 10 20 40 80 160

Re (λ) -0.0037 -0.0037 -0.0037 -0.0037 -0.0037
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(b) Nonlinear system

Figure 5.1. Eigenvalues of the linear system and energy decay of the nonlinear system
with γ = αl = 0.01, kl = 0.01 and α = 0

Next, Figures 5.1 and 5.2 show the exponential stability for examples of both

the linear and nonlinear cases. In the nonlinear case, if γ = 0 and all the other

parameters are small then the energy decays exponentially fast and �uctuates rapidly.
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Figure 5.2. Eigenvalues of the linear system and energy decay of the nonlinear system
with α = αl = 0.01, kl = 0.01 and γ = 0
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6. CONCLUSION

We considered a cable-mass system originally motivated by an application to

wave energy that is modeled by a 1D wave equation with linear and nonlinear sec-

ond order oscillator dynamic boundary conditions. In this work, we discussed four

di�erent cable-mass models, and we proved the well-posedness of the unforced linear

and nonlinear problems. Under certain assumptions on the damping parameters, we

proved the linear problems are exponentially stable and the energy decays exponen-

tially fast for the nonlinear problems.

For the forced input-output nonlinear cable-mass system, we described and

numerically investigated a model order reduction (MOR) approach based on balanced

truncation. Overall, we analyzed the performance of the ROM under three cases:

the damping parameters are small, the sti�ness parameters are small, and both the

damping and sti�ness parameters are small (i.e., all parameters are small).

When both input/output operators are bounded as in Section 2, we proved the

PDE balanced truncation theory holds. No theory currently exists for this nonlinear

balanced truncation approach.

In Section 2, the output of the linear ROM is highly accurate in all cases

considered, as expected in balanced truncation theory. The nonlinear ROM is highly

accurate in most cases. The other cases the nonlinear ROM is always highly accurate

over an initial time interval and increasing r may or may not improve the accuracy.

In Section 3 the input operator and in Section 4 the output operator are

unbounded. We did not attempt to prove the PDE balanced truncation theory holds.

In Section 3 the linear ROM is highly accurate in all cases. The nonlinear

ROM is highly accurate for all cases with smooth input 2. In other cases the nonlinear
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ROM is highly accurate over initial period of interval and increasing r may or may

not greatly improve the accuracy.

In Section 4 the performance of ROM is not accurate as Sections 2 and 3. The

linear ROM is not always highly accurate for a longer time period but increasing r

improves the accuracy. The nonlinear ROM does show high accuracy for few cases.

When either damping parameters are small or sti�ness parameters are small the

nonlinear ROM is moderately accurate and increasing r improves the accuracy. When

all parameters are small, both the linear and nonlinear ROM are moderately accurate.

Increasing r gives high accuracy for the linear ROM but for the nonlinear ROM

increasing r may or may not improve the accuracy.

To summarize, the linear ROM is always highly accurate when both the input

and output operators are bounded or the output operator is bounded. If the output

operator is unbounded the linear ROM is highly accurate over a long time period

or loses accuracy after an initial time interval and increasing r does improve the

accuracy. The accuracy of the nonlinear ROM can vary when the input and output

operators are bounded or the output operator is bounded or the input operator is

bounded. Increasing r may or may not improve the accuracy.

If the magnitude of the input is decreased, then the length of the accurate

time interval for the nonlinear ROM increases. The output of the linear and nonlinear

ROM is always accurate for an initial time interval and increasing r does improve the

accuracy.

The results in this work suggest some beginning theoretical results that could

be investigated. Speci�cally, our numerical results suggest it may be possible to prove

that the error in the output for the nonlinear ROM is small over an initial time period,

and that the length of this interval increases as the magnitude of the input decreases

or r increases.
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For our linear and nonlinear exponential stability results, we required the

damping bilinear form to be H-elliptic. For each cable-mass system, we proved this

H-elliptic condition assuming various conditions on the damping parameters. For

Example 4 and 5 the damping bilinear form is not H-elliptic, and so the exponential

stability theory in our work does not apply. Investigating these examples theoretically

is a topic for future research. Furthermore, it would be interesting to investigate the

exponential stability and MOR of a cable-mass system with only with boundary

damping terms.
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