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Modeling Inflation Transmission among Different
Construction Materials

Mohamad Abdul Nabi, Aff.M.ASCE1; Islam H. El-adaway, F.ASCE2; and Rayan H. Assaad, A.M.ASCE3

Abstract: Cost estimating in the construction industry is challenging due to the high uncertainty associated with the supply chain, especially
after the COVID-19 pandemic. Some research studies have addressed such problems by developing models that predict material cost. In fact,
all material can be interconnected and interrelated with lead-lag relationships such that any inflation in one material’s price can be associated
with inflation in other materials’ prices, referred to as transmission of inflation. Despite the latter, none of the existing studies have inves-
tigated inflation transmission among all construction materials. This paper fills this knowledge gap. The authors used a multistep research
methodology. First, Producer Price Index (PPI) data for 16 construction materials were collected and sorted. Second, the vector autoregression
technique was used to model the relationships between each pair of material and subsequently validate the associations using the Granger
causality test. Third, network analysis was performed to identify the inflation transmission capacity (out-degree centrality), inflation sus-
ceptibility (in-degree centrality), and inflation intermediatory capacity (betweenness centrality) for each material. Finally, modularity-based
clustering was conducted to categorize the materials based on their price indices’ interconnections and examine inflation transmission
path among different sectors of construction-related material. The results show that metals and plastic products are generally the highest
transmitters of inflation to other construction material including “Fabricated structural metal products” and “Plastic construction products.”
Furthermore, the results show that “Concrete products,” “Flat glass,” “Brick and structural clay tile,” and “Architectural coatings” are also
high transmitters of inflation and thus can be key indicators of increase in the overall construction cost. This paper provides the industry
stakeholders with leading indicators and early warning signs for the inflated material prices. Contractors and owners can utilize those warning
signs to enhance their procurement plans and budgeting decisions. DOI: 10.1061/JCEMD4.COENG-13893. © 2024 American Society of
Civil Engineers.

Introduction

Procurement strategies play a crucial role in construction projects
and are heavily influenced by changes in the supply chain. How-
ever, the supply chain is susceptible to various price fluctuations as
well as operational and disruption risks (Fahimnia et al. 2018;
Sawik 2011; Tomlin 2006). For instance, in 2018, major disrup-
tions occurred in the construction supply chain due to the imple-
mentation of new steel and aluminum import tariffs into the US,
resulting in a 25% tariff on imported steel and a 10% levy on im-
ported aluminum (BIS 2018). The increased input costs and retalia-
tory tariffs led to rises in producer pricing (Flaaen and Pierce 2019).
As a result, the tariffs and supply chain disruptions increased the

cost of construction material supplies, impacting construction en-
terprises by increasing the overall cost of construction projects.

Another example is the current global supply chain disruptions
experienced after the outbreak of the COVID-19/Coronavirus pan-
demic that started in 2019–2020. The pandemic disrupted normal
business operations in all industry sectors, including the construc-
tion industry. Despite being deemed essential businesses and
exempt from certain restrictions (Conerly 2020), the construction
industry was still affected by material and labor shortages, reduc-
tions in material production, and shipping interruptions. As a result,
the construction industry faced increased risks due to the pandemic
(Khalef et al. 2022).

Public agencies and private project owners often rely on cost
indexes and material prices to support their budgeting decision-
making (Swei 2020). One commonly utilized measure to gauge
the current price levels of construction materials by the industry
practitioners is the Producer Price Index (PPI). The US Bureau
of Labor Statistics (BLS) publishes several industry-level and
commodity-level PPIs of the construction material prices monthly.
Although the inflation observed in the industry-level PPI for con-
struction materials has slowed, the inflation observed in the
commodity-level PPI for several construction materials has moved
in divergent directions, and the actual increase varies a lot by type
of material (AGC 2022).

The Associated Builders and Contractors (ABC) has recently
reported that several contractors’ short-term confidence in sales,
profit, and staffing is severely affected by the inflated material pri-
ces (ABC 2023). Presented with inflated material prices, contrac-
tors cannot always pass on this inflation to project owners,
especially in times and regions with reduced construction demand.
In fact, the Associated General Contractors of America (AGC) has
reported that the inflation in construction materials outpaced the
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increase in bid prices for a consecutive 19 months between Decem-
ber 2020 and June 2022 (AGC 2022). Accordingly, the inflated
material prices present a challenge for owners and contractors.
Whereas contractors may lose bids or profits due to inaccurate cost
estimates, owners may be presented with inflated bids during peri-
ods with increased construction demand, very short-term price
guarantees, and too few bidders for their projects (Ashuri and
Lu 2010; Ilbeigi et al. 2017). Hence, providing construction con-
tractors and project owners with insights and outlooks into the in-
flation mechanism of the various material prices is of paramount
importance.

Based on the aforementioned, it is perceived that cost estimating
in the construction industry is challenging due to the high uncer-
tainty associated with the supply chain. The industry practitioners’
need for accurate estimates of construction costs has been reflected
in the plethora of studies attempting to propose forecasting models
for various construction inputs. Some papers focused on the rela-
tionship between construction costs and the associated influencing
factors (Trost and Oberlender 2003; Attalla and Hegazy 2003;
Doğan et al. 2006). Other papers focused on developing models
to capture and identify the behavior of construction costs in markets
over time. These papers often use cost indexes that are either di-
rectly related to, or closely reflect, the prices of labor, materials, and
equipment used in construction (Hwang 2011).

In the construction industry, estimating costs based on such in-
dexes has been widely adopted (Diekman 1983). Estimating con-
struction costs based on composite cost indexes involves analyzing
and capturing the trend of indexes relevant to construction costs
over time (Wilmot and Cheng 2003). An example of that includes
the work of Ashuri and Lu (2010), Ashuri and Shahandashti
(2012), Shahandashti and Ashuri (2013), Hwang (2011), Choi et al.
(2021), and Kim et al. (2021), among many others. The literature
already provided ample knowledge and tools for better prediction
and forecasting of construction cost indexes. Although many stud-
ies have focused on developing forecasting models to better esti-
mate construction cost indexes based on macroeconomic and
microeconomic variables such as leading indicators, instances of
those models’ underperformance may be attributed to (1) ignoring
other relevant leading indicators, and (2) the inaccurate assessment
of the associations between the target variable (i.e., construction
costs) and the identified leading indicators (Swei 2020). Although
the interpretation of construction cost indexes provides an indica-
tion of industry-level trends of costs, a closer look into the individ-
ual cost inputs (i.e., individual materials’ prices) is also of great
value.

Generally, the price of each commodity is related to others due
to different reasons including substitution effect and supply–
demand relationships (Acemoglu et al. 2012). Inflation in construc-
tion costs is often associated with inflation in several inputs to those
costs. The contribution of those inputs to costs in different con-
struction projects varies significantly. Furthermore, although a
macro-view of construction input prices revealed a 17% inflation
in 2022 compared with 2021, the monthly variations of each input’s
prices do not follow similar trends (ABC 2022). The monthly var-
iations in construction material prices can be interconnected and
interrelated such that inflation in one material’s prices be associated
with inflation of another material’s prices at a prior point in time,
referred to as transmission of inflation. Thus, it is of crucial impor-
tance to further understand the transmission of price fluctuations
among the different commodities or materials associated with
the construction industry.

In fact, according to Sun et al. (2018), the identification of
vital price indices and the transmission path of price fluctuations
allows for better control and understanding of price inflation as

well as easier market regulation. Furthermore, Zheng and Pan
(2022) highlighted that understanding price transmission is crucial
in creating efficient policies to manage inflation in prices as
well as supporting vulnerable producers (i.e., contractors and
subcontractors) and consumers (i.e., project owners). Generally,
investigating the price transmission path among the different com-
modities and materials allows for a better understanding of infla-
tion transmission mechanisms, and more specifically the different
roles of construction materials in transmitting inflation (Sun
et al. 2018).

Hence, this paper will focus on commodity-level prices rather
than industry-level assessments to investigate the inflation trans-
mission among various construction materials as a more efficient
and effective way of supporting the supply chain associated with
construction activities. The ability to quantify the inflation trans-
missions between the different material prices equips industry’s
stakeholders with early warning signs of inflationary volatility
in certain material prices and enables them to prepare better-
informed mitigation measures consequently. This would aid con-
struction contractors, public agencies, and private-sector owners
by providing a better understanding of inflation transmission
among the various construction materials. Thus, this paper paves
the way for enhanced procurement and risk management strategies
in the event of inflated material prices.

Previous Studies for Investigating Construction
Costs

Historical data of several construction cost inputs including
material prices are considered time series in nature (Faghih and
Kashani 2018; Ilbeigi et al. 2017; Ma et al. 2023). A review of
the literature showed that many papers developed time-series mod-
els to either study different economic relationships in the construc-
tion sector or to promote accurate cost estimation in construction
projects. An example of the former is the work of El-adaway et al.
(2020), who examined the link between the stock prices of publicly
traded US companies and Gross Domestic Product (GDP) in a way
that actually showed how the 2008 economic collapse could have
been proactively forecasted way ahead of time. Also, Zheng and
Liu (2004) investigated the interplay between construction invest-
ment and GDP in China, and Anaman and Osei-Amponsah (2007)
studied the same relationship in Ghana. In Hong Kong, Chiang et al.
(2015) conducted research on the causal relationship among con-
struction activity, employment, and GDP.

Further, Priya and Arabinda (2019) analyzed the stock prices
of three Indian construction companies to provide guidance for
investors in making informed decisions on holding, buying, or
selling stocks based on economic signals. Barber and El-adaway
(2015) examined the performance of construction activity in the
southeastern US, focusing on its contribution to state GDP. In
China, Chen et al. (2017) researched the correlation between price
fluctuations in the stock market and the real estate market, and Lin
et al. (2018) employed time-series analysis to uncover correlations
between intellectual capital and business performance.

In relation to construction cost inputs, various studies focused
on modeling the relationships between various macroeconomic
indicators and the Engineering News-Record (ENR) construction
cost index (CCI), such as the works of Ashuri and Lu (2010),
Shahandashti and Ashuri (2013), Ashuri and Shahandashti (2012),
and Ashuri et al. (2012a, b). The ENR’s CCI is a composite index
measuring changes in four inputs (cement, lumber, structural steel,
and common labor). Ashuri and Lu (2010) developed univariate
time-series models to model the autocorrelation relationship
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between current and lagged values of ENR’s CCI and recom-
mended the inclusion of economic and market-related factors to
improve the modeling of the inputs’ price movements.

Investigating the association relationships between 16 macro-
economic indicators and ENR’s CCI, Ashuri et al. (2012a) identi-
fied the leading indicators of ENR’s CCI through Granger causality
tests and bivariate vector autoregression (VAR) models. Xu and
Moon (2013) proposed bivariate VAR model of ENR’s CCI using
the Consumer Price Index (CPI) as a leading indicator in addition
to lagged values of the ENR’S CCI itself. Although the VAR
successfully modeled the associations between CPI and the
ENR’s CCI, Xu and Moon (2013) recommended the utilization
of bivariate VAR for enhancing the modeling of the associations
between various leading indicators and the individual construction
materials.

Shahandashti and Ashuri (2013) further developed multivariate
time-series models to predict ENR’s CCI. Their study found that
the crude oil price and the overall PPI are leading indicators of
ENR’s CCI and that modeling relationships between those in-
dicators and the CCI enhance the interpretation of escalations in
the CCI. The authors recommended applying similar approaches
to other inputs to construction costs because the ENR’s CCI
does not capture all movements of costs in the US construction
industry.

Some other papers implemented similar time-series techniques
but focused on certain construction sectors. Using time-series
analysis methods, such as the Granger causality test, Shahandashti
and Ashuri (2016) found that crude oil prices and average hourly
earnings are the leading indicators of national highway construc-
tion costs. From a pool of macroeconomic indicators, Choi et al.
(2021) utilized the Granger causality and heteroskedasticity-
adjusted correlation analysis to identify the leading indicators of
city-level construction cost indexes. The conclusions highlighted
by Choi et al. (2021) demonstrated that the significant cross-city
variations in construction cost indexes were reflected in the differ-
ent leading indicators of those indexes in different cities. Further-
more, due to the limitations inherited in the development of cost
indexes that are composed of both material and labor components,
the leading indicators of each component of those indexes might be
different and the interpretation of multivariate forecasting models
can yield erroneous conclusions (Faghih and Kashani 2018). To
tackle this limitation, research efforts attempted to identify the
leading indicators of the individual components of those indexes
(i.e., individual material or labor components).

Ilbeigi et al. (2017) identified the short-term variations in asphalt
cement using univariate models. The authors concluded that the
univariate autoregressive integrated moving average (ARIMA)
and Holt exponential smoothing demonstrated acceptable capabil-
ities to model short-term variations of asphalt-cement prices when
compared with Monte Carlo simulation. Alternatively, Faghih and
Kashani (2018) proposed multivariate models of asphalt, cement,
and steel prices in the US construction industry. The work done by
Faghih and Kashani (2018) identified the leading indicators of as-
phalt, cement, and steel separately through Granger causality, then
developed models that relied on vector error correction to forecast
short- and long-term prices of those materials. The study not only
concluded that multivariate forecasting models outperformed uni-
variate models for each of the three investigated materials, but also
highlighted that the identified leading indicators of each material
were different.

Kim et al. (2021) used Granger causality, vector autoregression
models, and vector error correction models to identify the leading
indicators of different cost inputs to pipeline construction costs and
propose forecasting models accordingly. The time-series analysis

yielded different leading indicators for the various cost inputs
(i.e., pipe material costs and labor costs).

Although the construction materials cost indexes can provide a
general overview of the market conditions, assessment of escalation
of the individual material prices can offer valuable insights to
the industry’s stakeholders (Baek and Ashuri 2019; Joukar and
Nahmens 2016; Shiha et al. 2020). Furthermore, the reliance on
specific resources can vary between several projects. Hence, the
identification of the leading indicators of the individual price inputs
can provide more relevant benefits to cost estimators of those spe-
cific projects (Xu and Moon 2013). The findings reported by Kim
et al. (2021) echoed the ones by Faghih and Kashani (2018): the
leading indicators of each input to the construction costs may vary
and each material or labor cost shall be investigated separately if
historical data are available.

Review of the literature showed that bivariate and multivariate
time-series techniques can outperform univariate approaches in
many instances. Based on the aforementioned research, to the best
knowledge of the authors, although several macroeconomic indica-
tors were investigated as leading indicators of construction cost
indexes or prices of individual materials, no previous study inves-
tigated whether one price index of a construction material can be
a leading indicator of another construction material’s price index.
Accordingly, this paper fills this knowledge gap.

Goal and Objectives

The goal of this paper is to investigate the inflation transmission
mechanisms among the price indices of materials associated with
the construction industry. The associated objectives include (1) de-
termining the significant unidirectional and/or bidirectional causal
relationships between each pair of construction materials that re-
flect inflation transmission among the materials; (2) identifying
key construction materials in terms of their higher inflation trans-
mission (i.e., the materials that can be utilized as early warning
signs of other materials’ inflation), their higher inflation suscep-
tibility (i.e., the materials requiring further attention to their
frequently escalated prices), and their intermediatory capacity
(i.e., the materials that shall help facilitate the understanding of
the causal relationships between those with higher inflation trans-
mission and those with higher inflation susceptibility); and (3) clus-
tering the materials based on their price indices’ interconnections to
examine inflation transmission path among broader materials’
sectors.

Research Methodology

The authors utilized a research methodology comprised of four pri-
mary stages: (1) data collection; (2) identification of relationships
among materials’ price indices using VAR modeling and Granger
causality; (3) network analysis; and (4) modularity-based cluster-
ing. A summary of the methodology and its connection to the re-
search goal and objectives is provided in Fig. 1.

Overview and Justification of the General
Methodological Approach

In the context of this paper, the construction industry depends
on a set of materials whose prices can impact each other through
causal relationships. Additionally, any inflation in one of the
materials’ prices may propagate to others, resulting in a domino
effect, thus affecting contractors and subcontractors in terms of es-
timation, and project owners in terms of their budgeting decisions.

© ASCE 04024024-3 J. Constr. Eng. Manage.
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Understanding the inflation transmission mechanisms among
commodity-level price indexes can be of higher value to contractors
and subcontractors performing the cost estimates of items involving
those individual materials. Furthermore, understanding those
mechanisms on a broader cluster of materials level can provide ad-
ditional value to project owners. As such, a robust methodological
approach has to be used.

Whether one material’s price index can be utilized as a leading
indicator of another material’s price index is to be explored by con-
ducting time-series tests where VAR modeling can be accompanied
by the Granger causality test. VAR modeling is a commonly uti-
lized approach in studying whether lagged values of one time series
can help in forecasting the current values of another time series. A
useful capability of a VARmodel is that it investigates the existence
of two types of relationships between two time series: unidirec-
tional and bidirectional (Ashuri and Shahandashti 2012). A unidi-
rectional relationship exists when lagged values of one time series
can help in forecasting the current values of the other time series,
but not vice versa. A bidirectional relationship exists when lagged
values of each time series can help in forecasting the current values
of the other. Accordingly, VAR modeling can capture the internal
structure of data sets and present highly accurate forecasts in the
short-term forecasts.

In addition, the Granger causality test—developed by Granger
(1969)—has been extensively utilized by researchers in the con-
struction engineering and management domain to identify the as-
sociations between various explanatory variables and material
prices (Ashuri and Shahandashti 2012; Choi et al. 2021; Faghih
and Kashani 2018; Kim et al. 2021; Shahandashti and Ashuri
2013, 2016; Swei 2020). It is worth noting that the relationships
inferred from VAR models and Granger causality tests are suitable
to be utilized for short-term forecasting but not long-term forecast-
ing (Assaad and El-adaway 2021b).

One notable drawback of VAR modeling is that its implemen-
tation and results’ interpretation may be difficult for practitioners
(Joukar and Nahmens 2016). To exploit the capabilities of VAR
modeling while attempting to overcome this drawback, this paper
utilizes network analysis and modularity-based clustering tech-
niques to enhance the interpretation and to clarify the practical
value of the identified causal relationships. Thus, in this paper,
the results of the VAR modeling and Granger causality tests are
used as inputs to the network analysis.

Network theory, which is a branch of graph theory, is a suitable
approach for analyzing the interdependency between system ele-
ments and investigating their cause–effect relationships (Yang
and Zou 2014). This method is particularly useful for complex sys-
tems with relational structures where individual elements can have
an impact on or be affected by other elements within the system
(Fang et al. 2012; Dogan et al. 2015; Mok et al. 2017; Chen et al.
2017). To further facilitate the understanding of the results of net-
work analysis of the commodity-level material price indexes,
modularity-based clustering is used to examine the inflation trans-
mission among a broader level of materials.

Data Collection

For the analysis of this paper, it is important to identify the metric to
be used that reflects price fluctuations of the materials on the one
hand and a comprehensive—yet simplified—list of materials rel-
evant to the construction sector on the other. To this end, the authors
adopted the PPI as a measure of price inflation in the materials rel-
evant to the construction sector. The PPI is defined as “the average
change over time in the selling prices received by domestic producers
for their output” (BLS 2023). In fact, PPI has been extensively used
to reflect price inflation in general or in relation to specific products
and materials (Shandashti and Ashuri 2013; Baek and Ashuri 2019;

Fig. 1. Research goal, objectives, and methodology.
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Li et al. 2021; Shiha et al. 2020; Joseph Shrestha et al. 2016). To that
end, the authors adopted the PPI as a measure of price inflation in
relation to the various construction materials.

However, the authors still need to identify the list of the materi-
als relevant to the construction sector. This paper retrieved PPI his-
torical data from the publications of the producer price index
program of the BLS. Two types of data are available to be collected:
industry-level indexes, and commodity-level indexes. Following
the recommendations provided by previous studies and the limita-
tions of industry-level indexes highlighted therein (Faghih and
Kashani 2018; Kim et al. 2021; Choi et al. 2021), this paper fo-
cused on individual material prices (i.e., commodity-level indexes).
The BLS publishes 3,700 commodity-level producer price indexes
that are not grouped by industry, and their commodity classification
structure do not follow any standard coding structure (BLS 2023).
Thus, the authors adopted the list of construction materials pre-
sented in the annual Producer Prices and Employment Costs report
published by the AGC (2020). In their efforts to develop this report,
the AGC attempted to pinpoint the commodities that are most rel-
evant to the construction sector from the 3,700 and identified 34
commodities accordingly. However, to avoid redundancy on one
hand and ensure conciseness on the other, the authors shortlisted
the materials and considered 16 types of materials, which are in-
clusive and representative of all of the 34 types of materials. Table 1
presents the 16 types of materials adopted for the analysis of this
paper along with the associated subtypes of materials.

For instance, Table 1 reflects that “concrete products” include
concrete block and brick, concrete pipe, ready-mixed concrete, pre-
cast concrete products, and prestressed concrete products. Thus,
instead of including the PPI of all the aforementioned subtypes,
only the PPI of concrete products was included in the analysis
of this paper. The same applies to “asphalt felts and coatings,” “iron
and steel,” “nonferrous metals,” and “fabricated structural metal
products.” Ultimately, the collected data of this paper include
the monthly PPI for each of the 16 types of construction materials
presented in Table 1. The time-series data were collected from 1991
to 2022, inclusive.

Identification of the Lead-Lag Associations among
Materials’ Price Indices

Unit Root Test
To ensure the reliability of the interpreted lead-lag associations be-
tween investigated material prices, the Granger causality test shall
be conducted only on stationary time series with constant mean and
variance (Ashuri and Shahandashti 2012). In addition, according to
Shahandashti and Ashuri (2016), VAR statistical models are in-
tended for analyzing time -series data that display stationarity.
As a result, it is necessary to verify that the time-series data is sta-
tionary prior to developing the VAR model and carrying out the
Granger causality test, which identifies causal relationships trigger-
ing fluctuations among the price of materials (Qiao and Guo 2014).
If the time-series data are nonstationary, it should be made station-
ary by employing differencing, which involves subtracting a pre-
vious value from a subsequent value, and this process is also
referred to as a unit root test (Faghih and Kashani 2018). Thus,
the widely used Augmented Dickey-Fuller (ADF) test proposed
by Dickey and Fuller (1979) was adopted in this study, and it is
shown in Eq. (1)

ΔPPIðmÞt ¼∝ þβtþ γPPIðmÞt−1 þ
Xk−1
i¼1

δiΔPPIðmÞt−i þ εt ð1Þ

where PPIðmÞt = PPI value of material m at time t; ΔPPIðmÞt =
first-order difference, i.e., PPIðmÞt − PPIðmÞt−1; α = drift term
or intercept constant; β = coefficient for time trend; δ = coefficient
used to examine whether it is necessary to apply differencing to the
gathered data to achieve stationarity; and εt = error term.

The ADF test’s null hypothesis (H0) is that the collected time-
series data contain a unit root, meaning it is nonstationary (Assaad
and El-adaway 2021a). To determine whether to reject this null hy-
pothesis or not, the ADF test produces a p-value that is compared
with a predefined significance level, which is assumed to be 0.05 in
this paper. It is imperative to note that it is necessary to apply
differencing to each time-series data until all of them become

Table 1. Materials included in the analysis of this paper

Construction material Material’s subtype Material codea

Paving mixtures and blocks — WPU1394
Asphalt felts and coatings Prepared asphalt, tar roofing, siding products WPU136
Cement — WPU1322
Concrete products Concrete block and brick; concrete pipe; ready-mixed concrete; precast concrete

products; and prestressed concrete products
WPU133

Brick and structural clay tile — WPU1342
Plastic construction products — WPU0721
Flat glass — WPU1311
Gypsum products — WPU137
Insulation materials — WPU1392
Lumber and plywood — WPUSI004011
Architectural coatings — WPU062101
Iron and Steel Steel mill products; steel pipe and tube; iron and steel scrap; and stainless and alloy

steel scrap
WPU101

Nonferrous metals Copper and brass mill shapes; aluminum mill shapes; and copper base scrap WPU102
Fabricated structural metal products Fabricated structural metal; fabricated structural metal bar joists and rebar;

fabricated structural metal for nonindustrial buildings; fabricated structural metal
for bridges; ornamental and architectural metal work; fabricated steel plate; and
prefabricated metal buildings

WPU107

Asphalt — WPU058102
Construction sand, gravel, crushed stone — WPU1321

Source: Data from AGC (2020).
aSource code of each material from the Bureau of Labor Statistics (BLS) database.
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stationary (Faghih and Kashani 2018). After achieving stationarity,
the VAR statistical model can be developed and thus the Granger
causality test can be conducted to explore any causal relationship or
price fluctuation transmission between the different construction
materials.

Vector Autoregression Modeling
Ganger causality is employed to analyze the relationships between
the materials’ PPI data. However, in order to perform the Granger
causality test, VAR models should be developed to represent the
relationship among each pair of construction materials’ price indi-
ces. A 1-month-lagged VAR model between each pair of materials’
PPI was developed as shown in Eq. (2)"

PPIðm1Þt
PPIðm2Þt

#
¼

�
α11 α12

α21 α22

�"
PPIðm1Þt−1
PPIðm2Þt−1

#
þ
�
ε1t

ε2t

�
ð2Þ

where PPIðm1Þt and PPIðm2Þt = PPI value of materials m1 and m2

at time t, respectively; α is the coefficient matrix; and ε is the error
term vector. Ultimately, a VAR model was developed between each
pair of the 16 materials considered in this paper to test for causal
relationships among them. Thus, because there are 16 different
types of construction materials, a total of 120 VAR models were
developed on the PPI data.

Granger Causality Test
Upon the development of the VAR models, the Granger causality
test was performed on each of the 120 VAR models where the null
hypothesis reflects that there is no association between PPIðm1Þt
and PPIðm2Þt (Assaad and El-adaway 2021b). The null hypothesis
of the Granger test is that lagged values of PPIðm2Þ with lag order
of p are not useful in predicting the current values of PPIðm1Þ
[i.e., PPIðm2Þt−p does not Granger-cause PPIðm1Þ at the investi-
gated lag length p]. Accordingly, it is worth mentioning that rejec-
tion of the Granger test’s null hypothesis at a certain lag length p
does not indicate that PPIðm2Þt−p causes PPIðm1Þt but rather that
PPIðm2Þt−p can be helpful in predicting PPIðm1Þt [i.e., PPIðm2Þt−p
can be utilized as a leading indicator of PPIðm1Þt. Hence, the iden-
tified association relationships are referred to hereafter as one time-
series Granger-causes the other rather than that one time series
causes the other.

Each VAR model can be tested for two null hypotheses:
(1) PPIðm2Þt−1 does not Granger-cause PPIðm1Þt, i.e., (α12 ¼ 0);
and (2) PPIðm1Þt−1 does not Granger-cause PPIðm2Þt, i.e., (α21 ¼
0 = 0) (Sun et al. 2018).

Finally, based on the VARmodel and Granger causality test, two
types of causal relationships (if any) are captured as follows:
(1) unidirectional causality where either of the two hypotheses
is rejected [i.e., either PPIðm1Þt−1 does Granger-cause PPIðm2Þt
or PPIðm2Þt−1 does Granger-cause PPIðm1Þt but not both]; or
(2) bidirectional causality where both hypotheses are rejected
[i.e., PPIðm1Þt−1 and PPIðm2Þt−1 Granger-cause PPIðm2Þt and
PPIðm1Þt, respectively]. The Granger causality test was performed
with the commonly used 0.05 significance level.

Granger Causality Matrices
To enhance the interpretation of the inferred causal relationships
between material prices, two types of matrices are developed from
the time-series tests results. Once the VAR models and causal re-
lationships were identified, there is need to construct a matrix that
enables to perform network analysis (Hummon and Dorein 1990).
Thus, a binary Granger causality matrix (also called an adjacency
matrix) was constructed as suggested by Sun et al. (2018). The
binary Granger causality (BGC) matrix was constructed such that
the rows and columns reflect the construction materials, and the cell

entries reflect the existence of a causal relationship. Ultimately, the
entries bgcij of the BGC matrix can be either one, indicating that
the construction material in row i does Granger-cause construction
material in column j, or zero, indicating that construction material
in row i does not Granger-cause construction material in column j.
Ultimately a 16 × 16 BGC matrix was constructed, reflecting all
causal relationships among the construction materials’ PPI.

Although BGC reflects all causal relationships, it does not ac-
tually reflect the degree of influence. To this end, another matrix
was developed based on the BGC matrix, and it is called the
weighted Granger causality (WGC) matrix (or weighted adjacency
matrix in network theory). It is important to note that the scope of
this paper is strictly focusing on inflation transmission rather than
price fluctuations in general. To this end, the authors have only con-
sidered the causalities that are directly proportional (i.e., having
positive coefficient in the VAR model). For instance, in case
PPIðm2Þt Granger-causes PPIðm2Þt and the corresponding VAR co-
efficient is negative, the causal relationship was not included in the
WGC matrix because they are not directly proportional to each
other, and thus do not affect the inflation transmission mechanism.
To this end, the entries of WGC were derived such based on Eq. (3)

wgcij ¼
(
0 if bgcij ¼ 0 or αij < 0

αij if bgcij ¼ 1 and αij > 0
ð3Þ

where wgcij = entry of the ith row and jth column in the WGC
matrix; bcgij = entry of the BGC matrix in the ith row and jth col-
umn in the WGC matrix; and αij = coefficient value of the VAR
model depicting the effect degree of construction materials’ price i
on construction materials’ price j. Ultimately, a 16 × 16WGC was
constructed such that the entries wgcij that are (1) equal to zero
depict that material price in row i does not Granger-cause material
price in column j or material price in row i has a negative effect on
material price in column j; and (2) greater than zero depict that
material price in row i does Granger-cause material price in column
j with weight αij.

Network Analysis

Network Building
Before conducting network analysis, it is necessary to construct a
network that includes all the construction materials and their causal
relationships. Networks can be categorized as either directed or
undirected, as noted by Ahmat (2009). Caliandro (2022) explained
that directed networks allow for nonreciprocal relationships among
factors or nodes, whereas undirected networks assume that relation-
ships are mutual. In other words, directed networks are better suited
for capturing causal relationships compared with undirected net-
works, which are mainly useful for identifying mutual relationships
(Lee and Stohr 1985). As a result, a directed network is more ap-
propriate for the scope of this study.

In order to construct the network, the causal relationships ob-
tained from the VAR model and Granger causality test have to
be converted into a weighted adjacency matrix, as explained by
Hummon and Doreian (1990). An unweighted adjacency matrix
is a binary representation of the causal relationships between fac-
tors, where a value of one indicates the presence of a link between
any two factors, and a value of zero indicates no link between them,
according to Ramirez et al. (2016).

To achieve this, the authors created an unweighted adjacency
matrix. This matrix has rows and columns that represent the ma-
terials, and its entries indicate whether there is a link between the
corresponding factors. To this end, the authors developed the BGC
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matrix as explained in the previous subsection. However, Parker
and McEachen (2016) noted that the unweighted adjacency matrix
only indicates the presence or absence of links without providing
any information about their quality or influence. Therefore, to gain
a better understanding of inflation transmission among the con-
struction materials, it is necessary to consider the number of asso-
ciated positive causal relationships and the strength or quality of
these materials in transmitting inflation. To achieve this, the authors
developed the WGCmatrix as explained in the previous subsection.

Centrality Measures
The development of WGC enables the weighted network to be
visualized and analyzed, which could be implemented using the
Gephi software version 0.10.1 package, which is a software pro-
gram that is open-source and commonly employed for visualizing
and analyzing graph networks (Gephi 2014). There are various
measures of centrality that can be utilized for network analysis,
such as degree centrality, in-degree and out-degree centralities, be-
tweenness centrality, and network density, among others (Lee et al.
2018). However, for this study, the primary interest is to examine
inflation transmission capacity, susceptibility, and intermediation
capacity of each material. Therefore, the following three centrality
measures were considered: in-degree, out-degree, and betweenness
centralities.
Out-Degree Centrality. Out-degree centrality is determined by the
sum of the outward weighted edges, as shown in Eq. (4) (Hassan
et al. 2022). In the context of this paper, a higher out-degree of a
material implies a greater capacity or range of transmission of its
price inflation (Sun et al. 2018)

Dout ¼ WGCi ¼
X
j

wgcij ð4Þ

where Dout = out-degree centrality; and WGCi = summation of the
entries of the ith row of WGC.
In-Degree Centrality. In directed networks, in-degree centrality is
determined by the sum of the inward weighted edges, as shown in
Eq. (4). In the context of this paper, a construction material with a
higher in-degree centrality will have a wider range of susceptibility
to price changes in other materials (Sun et al. 2018)

Din ¼ WGCj ¼
X
i

wgcij ð5Þ

where Din = in-degree centralities; and WGCj = summation of the
entries of the jth column of WGC.
Betweenness Centrality. Betweenness centrality is a metric used
to assess the extent to which a particular node serves as a mediator
in a network (Zhang and Luo 2017). If a node is situated in a po-
sition where other nodes must pass through it to communicate, con-
nect, transport, or conduct transactions, then that node is considered
significant and is likely to have a high betweenness centrality score
(Freeman 1997). In the context of this paper, the capacity of a
material price to regulate the spread of price inflation among other
materials is referred to as its intermediation capacity (Sun et al.
2018). The betweenness centrality for each material is computed
as shown in Eq. (6)

B ¼
Xn
j

Xn
k

gjkðiÞ
gjk

for i ≠ j and j < k ð6Þ

where i, j, and k = different materials; gjk = number of shortest
paths between node j and node k; and gjkðiÞ = number of shortest
paths between nodes j and k passing through node i.

Modularity-Based Clustering

Upon constructing and analyzing the network, it is crucial to iden-
tify what are the types of materials that influence each other the
most in terms of price inflation. To this end, there is a need for
a clustering method that clusters the construction materials by
maximizing the internal edges (i.e., the causal relationships among
the materials’ prices within the same cluster) while minimizing the
external edges (i.e., the causal relationships between the materials
prices within a cluster and prices of material in other clusters).
Thus, the authors adopted modularity-based method for network
clustering due to its capability to efficiently and reliably handle
different types of large and complex networks (Muhammed et al.
2017).

The use of modularity-based method for network clustering
aims to identify highly interconnected groups of nodes that are
more closely linked to each other compared with the rest of the
network (Clauset et al. 2004; Newman 2006). The approach in-
volves optimizing/maximizing the modularity quality function,
which assesses the extent to which the network can be partitioned
into distinct communities by maximizing the modularity quality
function (Rahmani et al. 2018), as shown in Eq. (7). Ultimately,
the number of clusters should be set prior to the implementation
of the algorithm to clusters the nodes by maximizing the modularity
index shown in Eq. (7) (Muhammed et al. 2017)

Q ¼ 1

2m

X
ij

�
wgcij − kikj

2m

�
δðci; cjÞ ð7Þ

where wgcij = edge weight between material price i and material
price j; ki and kj = number of edges connected to material prices i
and j, respectively; ci = cluster of material price i; cj = cluster of
material price j; δðci; cjÞ = binary number, which is equal to one if i
and j are in the same cluster, i.e., ci ¼ cj, and equal to zero other-
wise, i.e., ci ≠ cj; and m = total number of edges in the graph.

The authors implemented the clustering technique using Gephi,
where the resolution parameter in the modularity settings indicates
the desired number of clusters. By default, the resolution value is
set to one, and higher values result in fewer clusters, whereas lower
values lead to more clusters (Rahmani et al. 2018). For this study,
the authors opted to use the default resolution value of Gephi,
which is equal to one.

Results and Analysis

Data Visualization and Descriptive Analysis

As mentioned in the “Methodology,” the authors collected PPI data
for 16 different types of construction materials from BLS with a
monthly time interval. Fig. 2 presents the collected PPI data for
the materials. Fig. 2 shows that “Asphalt,” “Iron and steel,” and
“Nonferrous metals,” as well as “Lumber and plywood,” reflect
high fluctuations when compared with, for example, “Construction
sand, gravel, and crushed stone” and “Concrete products.” Further-
more, the graphs of the PPI show that the data are nonstationary,
thus necessitating the performance of unit root test prior to the VAR
modeling and Granger causality testing.

Although data visualization is crucial for the identification and
better understanding of potential patterns and trends in the data, it is
still necessary to conduct descriptive statistics on the data as to al-
low better numerical investigation and interpretation. Therefore,
Table 2 presents the descriptive statistics of each of the 16 collected
PPI data. As indicated in Table 2, different types of materials are
associated with different ranges and volatilities.
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For instance, “Architectural coatings,” “Gypsum products,”
“Paving mixtures and blocks,” and “Construction sand, gravel,
and crushed stone” showed high PPI averages when compared with
“Asphalt,” “Flat glass,” and “Insulation materials.” However, in

order to capture the inflation intensity during the 1991–2022
period, the standard deviation should be considered. Ultimately,
the descriptive statistics showed the highest standard deviation
in relation to “Architectural coatings,” “Asphalt,” “Construction

Fig. 2. Collected PPI data.

Table 2. Descriptive statistics of the producer price indexes of the 16 construction materials

Construction materials Mean Standard deviation Minimum 25% 50% 75% Maximum

Architectural coatings 240.09 85.63 136.10 165.03 222.75 307.23 508.89
Asphalt felts and coatings 168.92 67.85 94.50 100.50 145.00 230.15 330.59
Asphalt 144.37 86.38 29.50 63.40 128.65 211.70 425.06
Brick and structural clay tile 170.94 31.75 115.30 137.23 183.45 194.50 240.60
Cement 184.72 51.16 104.80 148.00 189.00 212.10 309.99
Concrete products 192.95 57.34 115.00 141.40 198.10 234.18 345.58
Construction sand, gravel, and crushed stone 232.50 83.10 126.70 155.03 222.50 292.35 427.79
Flat glass 118.29 13.44 104.50 109.48 112.55 122.13 168.57
Gypsum products 227.66 82.15 92.80 169.23 211.55 290.60 463.01
Insulation materials 151.52 35.87 98.00 125.48 142.85 182.25 263.48
Iron and steel 183.46 70.00 107.10 120.70 180.95 224.28 433.53
Lumber and plywood 193.12 48.67 114.30 167.80 179.75 203.65 453.40
Nonferrous metals 193.32 65.79 110.20 127.20 199.00 244.13 376.17
Fabricated structural metal products 186.60 54.46 121.70 142.98 185.55 215.33 374.51
Paving mixtures and blocks 213.44 93.97 99.30 113.45 216.25 310.18 395.38
Plastic construction products 177.48 54.28 111.10 131.48 180.30 211.40 362.15
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sand, gravel, and crushed stone,” “Gypsum products,” and “Paving
mixtures and blocks.” Thus, the aforementioned materials are the
ones that witnessed the highest price inflations. On the other hand,
the lowest price inflation was associated with “Brick and structural
clay tile,” “Flat glass,” “Insulation materials,” and “Lumber and
plywood.” The observed descriptive statistics presented in Table 2
further confirm the findings of Faghih and Kashani (2018) and Kim
et al. (2021) that the different material prices do not vary at the
same rate.

Causal Relationships among Materials’ Price Indices:
VAR and Granger Causality

Following the visualization and presentation of the descriptive sta-
tistics of the gathered materials’ PPIs, the authors investigated the
stationarity of each data series by performing a unit root test. The
outcomes of this test are displayed in Table 3.

The results in Table 3 indicate that 10 out of the 16 materials’
PPI are stationary (Column 2 of Table 3). Therefore, all PPI data
need to be differenced as to ensure that all time series are stationary

prior to the construction of the VAR models. Ultimately, Column 3
of Table 3 indicates that all PPI data are stationary after the first-
order difference. Thus, VAR models will be developed based on the
differenced data rather than on the original data.

Afterward, a total of 120 VARmodels were developed to test the
Granger causality among the 16 construction materials’ PPI. By
performing Granger causality, the authors were able to identify
the causal relationships whenever a p-value was found to be less
than 0.05. Fig. 3 shows the obtained p-values for all Granger cau-
sality tests performed on the construction materials.

It should be noted that causality in Fig. 3 is directed from rows
to columns. For instance, “Cement” was found to Granger-cause
“Architectural coatings,” “Brick and structural clay tile,” “Con-
struction sand, gravel, and crushed stone,” “Flat glass,” “Gypsum
products,” and “Insulation materials.” The same applies for all other
construction materials analyzed in this paper. Finally, based on the
p-values in Fig. 3, the BGC matrix is developed by replacing the
p-values that are less than 0.05 by one, and those that are greater
than 0.05 by zero. The BGC matrix is shown in Fig. 4.

As reflected in Figs. 3 and 4, there is a total of 110 causal rela-
tionships between the various construction materials. Furthermore,
the BGC matrix is not symmetrical, indicating the presence of uni-
directional causalities. In other words, although price fluctuations
in one material affect another, the opposite does not hold true. An
example of that is the PPI of “Cement,” which was found to
Granger-cause the PPI “Brick and structural clay tiles”; however,
the PPI “Brick and structural clay tiles” had no effect on the PPI of
“Cement.” Furthermore, some materials were found to have bidi-
rectional causalities, indicating that a change in price in any one of
the material transmits into the other material, and vice versa. An
example of that is “Concrete products” and “Construction sand,
gravel, and crushed stone.” Finally, some materials showed no cau-
salities at all, indicating that there is no transmission of price fluc-
tuations among the pair of materials. An examples is “Asphalt felts
and coatings” and “Construction sand, gravel, and crushed stone.

Upon constructing the BGC matrix, the authors derived the
WGC matrix as depicted in Eq. (3). Thus, the authors replaced the
binary values with the coefficients obtained from the VAR models.
In order to ensure that the analysis only reflects inflation transmis-
sion rather than price fluctuation in general, causal relationships
associated with negative VAR coefficients were set to zero. The
BGC matrix is shown in Fig. 5.

Table 3. Unit root test results

Construction materials
p-value
(PPI)

p-value
(ΔPPI).

Architectural coatings 0.010* 0.01*

Asphalt felts and coatings 0.595 0.01*

Asphalt 0.010* 0.01*

Brick and structural clay tile 0.669 0.01*

Cement 0.076 0.01*

Concrete products 0.010* 0.01*

Construction sand, gravel, and crushed stone 0.253 0.01*

Flat glass 0.010* 0.01*

Gypsum products 0.039* 0.01*

Insulation materials 0.010* 0.01*

Iron and steel 0.018* 0.01*

Lumber and plywood 0.010* 0.01*

Nonferrous metals 0.375 0.01*

Fabricated structural metal products 0.010* 0.01*

Paving mixtures and blocks 0.485 0.01*

Plastic construction products 0.010* 0.01*

Note: *p-value less than 0.05, and thus, null hypothesis is rejected,
indicating that the time-series data are stationary.

Fig. 3. Granger causality test results.
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The WGC matrix consists of a total of 103 positive causal re-
lationships. Thus, 7 out of the 110 relationships were to have a
negative causal relationships (i.e., a price increase in one material
leads to a price decrease in the other) including (1) “Iron and steel”
with “Asphalt felts and coatings”; (2) “Iron and steel” with
“Construction sand, gravel, and crushed stone”; (3) “Lumber
and plywood” with “Fabricated structural metal products”;
(4) “Nonferrous materials” with “Fabricated structural metal prod-
ucts”; (5) “Construction sand, gravel, and crushed stone” with
“Nonferrous materials”; (6) “Nonferrous materials” with “Asphalt
felts and coatings”; and (7) “Asphalt” with “Paving mixtures and
blocks.”

Ultimately, the WGC matrix consists only of positive causal re-
lationships reflecting inflation transmission among the 16 different
types of construction materials. Furthermore, as shown in Fig. 5,
the causal relationships differed in strength depending on the cor-
responding VAR coefficients. For instance, the strongest causal re-
lationships were those of (1) “Concrete products” on “Architectural
coatings” and “Gypsum products”; (2) “Fabricated structural metal
products” on “Asphalt” and “Iron and steel”; and (3) “Plastic con-
struction products” on “Asphalt.”

Inflation Transmission: Network Analysis

Based on the causal relationships on the one hand and their corre-
sponding strength on the other hand as reflected in WGC matrix,
the authors were able to effectively perform network analysis to
better interpret the causal relationships inferred from time-series
techniques and understand inflation transmission mechanism in
the construction materials supply chain. Fig. 6 shows the inflation
transmission network associated with the WGC matrix consisting
of the 16 nodes (construction materials) and directed edges. The
intensity of the edges is directly proportional to their corresponding
weight. Thus, the darker the edges’ weight, the higher the degree of
price inflation transmission the parent node has on the child node.

For a better understanding of the influential construction mate-
rials in terms of inflation transmission range or capacity, suscep-
tibility, and intermediatory capacity, the authors presented the
in-degree, out-degree, and betweenness centralities in a tabular
form (Table 4).

As indicated in Table 4, the construction materials with the high-
est inflation susceptibility in the network (i.e., the ones with the
highest in-degree centralities) include (1) “Gypsum products” with

Fig. 4. Constructed BGC matrix. Dark-colored cells = 1 and light-colored cells = 0.
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a value of 4.784; (2) “Architectural coatings” with a value of 4.780;
and (3) “Asphalt” with a value of 3.726. In addition, the construc-
tion materials that have the highest inflation transmission capacity
(i.e., the ones with the highest out-degree centralities) include
(1) “Fabricated structural metal products” with a value of 6.034;
(2) “Concrete products” with a value of 5.505; and (3) “Plastic con-
struction products” with a value of 4.558. Finally, the construction
materials with the highest intermediatory capacity (i.e., the ones
with the highest betweenness centrality) include (1) “Concrete
Products” with a value of 18.319; (2) “Architectural coatings” with
a value of 18.263; and (3) “Fabricated structural metals products”
with a value of 4.467.

Thus, the results show that “Gypsum products” is highly sus-
ceptible to price inflations in other construction materials, and it
was found to be capable of significantly transmitting inflation to
other materials. “Architectural coatings” was found to have also
high susceptibility to construction materials inflation. However,
it was also found to have high inflation intermediatory capacity,
indicating that, although it does not have a high inflation transmis-
sion capacity, it can still affect the price of influential construction
materials. “Asphalt” was found also to be susceptible to inflation;
however, it was found to have low inflation transmission capacity

as well as low inflation intermediatory capacity. “Fabricated struc-
tural metal products” and “Concrete products” were found to have
high transmission and intermediatory capacity with a low inflation
susceptibility, indicating that these two materials are critical in
terms of inflation transmission and can be used as early warning
signs of price inflations in construction materials. Furthermore,
the aforementioned materials, in addition to “Architectural coat-
ings,” can also indicate that inflation has also been witnessed in
some construction materials, and thus further transmission to
new construction materials is expected. The same results were
found for “Plastic construction products.”

Modularity-Based Clustering: Construction Materials
Clusters

Upon performing modularity-based clustering, the authors were
able to cluster the materials based on their causal relationships
as shown in Fig. 7. As shown in Fig. 7, the 16 construction materi-
als were clustered into three different groups. The first cluster
mainly consists of metals and plastic, the second cluster consists
of concrete, wood, and finishing materials, and the third cluster
consists of paving and asphalt materials.

Fig. 5. Constructed weighted Granger causality matrix.
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For a better understanding of the characteristics of the three
identified clusters of construction materials, the authors present
their average centralities in Table 5. Ultimately, the results show
that metals and plastic have the highest inflation transmission as
well as inflation intermediatory capacity indicating their impor-
tance as key indicator of price inflation in concrete, wood, and fin-
ishing materials as well as paving and asphalt materials. As for
paving and asphalt materials, it has the highest in-degree centrality,
indicating they are the most susceptible to inflation in materials’
prices in other clusters.

To further understand the inflation transmission between each
cluster, the authors developed a network matrix based on the
WGC matrix where only the intercluster relationships were in-
cluded, while excluding the intracluster ones. The network matrix
and graph are shown in Fig. 8.

In Fig. 8(a), the nodes represent the clusters, and the edges re-
present the intercluster relationships. Furthermore, the in-degree
centrality of each cluster is proportional to the nodes’ colors. Thus,
the darker the node color, the higher is its in-degree centrality. For
the out-degree centrality, it is set to be proportional to the nodes’
sizes, where the bigger the size of the nodes, the higher the asso-
ciated out-degree centralities. It is important to note that between-
ness centrality was not computed because all nodes are connected,
and thus the metric is not applicable or useful. Ultimately, the graph
shows that metals and plastic materials have the highest out-degree
and the lowest in-degree centralities, indicating that they are in con-
trol of transmitting inflation while having low susceptibility to in-
flation by the other cluster of materials.

All the latter are also reflected in the network matrix of Fig. 8(b),
where the highest weights are present in the directed edges from

Table 4. Centrality measures

Construction materials

In-degree centrality Out-degree centrality Betweenness centrality

Weight Rank Weight Rank Weight Rank

Architectural coatings 4.780 2 0.867 11 18.263 2
Asphalt felts and coatings 1.787 7 1.516 10 8.320 6
Brick and structural clay tile 0.649 15 2.688 5 2.679 11
Concrete products 0.846 12 5.505 2 18.319 1
Construction sand, gravel, and crushed stone 1.985 6 1.574 9 5.158 8
Flat glass 0.656 14 2.877 4 10.313 5
Lumber and plywood 2.968 5 0.000 16 0.000 16
Fabricated structural metal products 0.754 13 6.034 1 16.467 3
Plastic construction products 1.217 10 4.558 3 12.343 4
Asphalt 3.726 3 0.218 14 0.950 13
Iron and steel 3.472 4 0.260 13 3.242 10
Paving mixtures and blocks 1.155 11 2.046 6 3.654 9
Nonferrous metals 1.532 9 0.362 12 1.250 12
Gypsum products 4.784 1 0.178 15 0.200 14
Insulation materials 1.655 8 1.704 8 5.841 7
Cement 0.333 16 1.908 7 0.000 15

Fig. 6. Directed network depicting inflation transmission among construction material supply chain.
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metals and plastics to concrete, wood, and finishing materials as
well as to paving and asphalt mixtures. Furthermore, concrete,
wood, and finishing materials have the highest in-degree, indicating
that these materials are the most susceptible to inflation by the other
clusters. The latter is mainly due to the high effect of metals and
plastic materials on their prices. The next section presents detailed
analysis on the findings of this paper in relation to each materials’
cluster.

Discussion

This section presents a detailed discussion on the key findings and
outcomes of this paper. The next subsections discuss the results in
relation to each cluster of materials.

Cluster 1: Metals and Plastic Materials

Metals and plastic materials include the following: (1) “Nonferrous
metals”; (2) “Iron and steel”; (3) “Fabricated structural metal prod-
ucts”; and (4) “Plastic construction products.” Metals and plastic
materials were found to be the most influential when it comes
to transmitting inflation to other construction materials (i.e., high
inflation transmission range or out-degree centrality). More specifi-
cally, it was found that inflation in metals and plastic prices can be
critical indicators to potential price inflation in concrete, wood, and
finishing materials as well as paving and asphalt mixtures (reflected
by high intercluster causality weights in Fig. 8).

Such results can be further explained by having “Fabricated
structural metal products” as well as “Plastic construction prod-
ucts” ranked as first and third, respectively, in terms of out-degree
centrality (i.e., inflation transmission capacity). Furthermore,
these two materials were also found to have high betweenness
centralities (ranked third and fourth, respectively), indicating their
inflation conductivity and transmission over the whole construc-
tion materials network. On the other hand, these two materials
possess low in-degree centralities, indicating that they are actually
more influential than susceptible to price inflation in construction
materials.

As for “Iron and steel” and “Nonferrous metals,” they were
found to be highly susceptible to inflation rather than influential
in the materials’ construction supply chain. To further facilitate in-
terpretation of the results, the authors present the difference be-
tween the out-degree and in-degree centralities as a measure of
the materials inflation susceptibility or influence on the supply
chain in Table 6.

Although it should be expected that primary materials (i.e., iron
and steel and nonferrous metals) to be more influential in transmit-
ting inflation to other construction materials, the insights showed
contradicting results that “Fabricated structural metal products”
have more transmission capacity. Another interesting finding is that
“Fabricated structural metal products” was found to transmit infla-
tion to “Iron and steel.” In fact, inflation is commonly known to be
transmitted from input materials to processed materials (Tang et al.
2010). However, in this case, the witnessed short-term inflation
transmission seems to be reversely directed from “Fabricated

Fig. 7. Clustered materials’ inflation transmission network.

Table 5. Cluster characteristics

Cluster Average in-degree centrality Average out-degree centrality Average betweenness centrality

Metals and plastic 1.744 2.804 8.325
Concrete, wood, and finishing materials 2.073 1.922 6.753
Paving and asphalt materials 2.223 1.260 4.308
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structural metal products” (i.e., processed product) to iron and steel
(i.e., input product).

According to Chen and Zhu (2018), inflation can be transmitted
from the downstream to upstream of the supply chain due to a
pull-demand inflation mechanism where there is imbalance in
the demand and supply of the processed products, leading to in-
creasing their prices by the fabricators, and subsequently increasing
the prices of raw materials by the suppliers. Thus, the results
show that the dominating inflation mechanism is from “Fabricated
structural metal products” (i.e., downstream) to “Iron and steel”
(i.e., upstream).

Ultimately, the results suggest that “Fabricated structural metal
products” as well as “Plastic construction products” are inflation
transmitters in the construction materials supply chain. On the other
hand, “Iron and steel” and “Nonferrous materials” seem to be in-
flation receivers.

Cluster 2: Concrete, Wood, and Finishing Materials

Concrete, wood, and finishing materials were found to be the most
susceptible materials to price inflation in the network (i.e., high in-
degree centrality). Such results can be further explained by having

“Gypsum products,” “Architectural coatings,” and “Lumber and
plywood” ranked as first, second, and fifth, respectively, in terms
of in-degree centrality (i.e., inflation susceptibility). As for “Archi-
tectural coatings,” although it is more likely to be susceptible to
inflation in other construction, it is ranked second in terms of
betweenness centrality, indicating its inflation conductivity and
intermediatory capacity across the whole construction materials
network. Thus, despite being a low inflation transmitter relative
to other materials, it has a critical propagation effect by having high
spread over different materials within the network.

As for “Construction sand, gravel, and crushed stone,” it is also
considered to be an inflation receiver more than an inflation trans-
mitter in the construction material network. To further facilitate in-
terpretation of the results, the authors present the difference
between the out-degree and indegree centralities as a measure of
the materials inflation susceptibility or influence on the supply
chain in Table 7.

Materials with higher out-degree than in-degree centralities in-
clude (1) “Brick and structural clay tile”; (2) “Concrete products”;
(3) “Flat glass”; (4) “Insulation materials”; and (5) “Cement.”More
specifically, “Concrete products” and “Flat glass” were found to be
among the top five materials in terms of out-degree centralities,

Table 6. Difference between out-degree and in-degree centralities of metals and plastic materials

Materials Out-degree In-degree Difference Conclusion

Iron and steel 0.26 3.472 −3.212 Inflation receiver
Nonferrous metals 0.362 1.532 −1.17 Inflation receiver
Fabricated structural metal products 6.034 0.754 5.28 Inflation transmitter
Plastic construction products 4.558 1.217 3.341 Inflation transmitter

Table 7. Difference between out-degree and in-degree centralities of concrete, wood, and finishing materials

Construction materials Out-degree centrality In-degree centrality Difference Conclusion

Architectural coatings 0.867 4.780 −3.912 Inflation receiver
Brick and structural clay tile 2.688 0.649 2.040 Inflation transmitter
Concrete products 5.505 0.846 4.659 Inflation transmitter
Construction sand, gravel, and crushed stone 1.574 1.985 −0.410 Inflation receiver
Flat glass 2.877 0.656 2.220 Inflation transmitter
Lumber and plywood 0.000 2.968 −2.968 Inflation receiver
Gypsum products 0.178 4.784 −4.606 Inflation receiver
Insulation materials 1.704 1.655 0.049 Inflation transmitter
Cement 1.908 0.333 1.576 Inflation transmitter

Fig. 8. Clusters’ network: (a) graph; and (b) matrix.
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indicating their importance as key warning signs of inflation propa-
gation in the construction supply chain (ranked as second and
fourth respectively). Furthermore, both of these materials seem
to also have high criticality in terms of their intermediatory capac-
ity, meaning that they possess high spread capabilities within the
inflation transmission network.

Ultimately, the results suggest that “Concrete products” and
“Flat glass” are inflation transmitters in the construction materials
supply chain. On the other hand, “Gypsum products” and “Archi-
tectural coatings” seem to be inflation receivers, where the latter
have further critical inflation intermediatory capacity. Thus, any in-
flation in “Concrete products,” “Flat glass,” and “Architectural
products” is expected to be transmitted to other construction ma-
terials in the network.

Cluster 3: Paving and Asphalt Mixtures

Paving and asphalt mixtures were found to be the least in terms of
inflation transmission capacity in the network (i.e. low out-degree
centrality). In fact, only “Paving mixtures and blocks” was found to
be an inflation transmitter, whereas both “Asphalt” and “Asphalt
felts and coatings” were found to be inflation receivers (Table 8).
The highest inflation transmission capacity was associated with
“Paving mixtures and blocks” followed by “Asphalt felts and
coatings,” then by “Asphalt.” However, when compared with the
materials of Clusters 1 and 2, it can be noticed that inflation trans-
mission capacity of paving and asphalt mixtures is not considered
critical.

Furthermore, the causal relationship directed from “Asphalt felts
and coatings” and “Paving mixtures and blocks” to “Asphalt” is
similar to that between “Fabricated structural metal products” and
“Iron and steel.” Thus, “Asphalt felts and coatings” and “Paving
mixtures and blocks” (downstream), being processed products
extracted from “Asphalt,” were found to transmit inflation to
“Asphalt” (upstream). However in the “Paving mixtures and
blocks”–“Asphalt” case, the causal relationship is reciprocal, indi-
cating that any inflation in one material will lead to inflation to the
other and subsequently turn into an inflationary loop.

This paper’s findings present new leading indicators for individ-
ual material price indexes a well as broader material groups or clus-
ters. Those findings complement the work done by existing studies
that investigated individual materials’ prices or composite indices.
Faghih and Kashani (2018) identified (1) crude oil prices and con-
sumer price index as leading indicators of asphalt prices, (2) gross
domestic product, number of housings starts, and total construction
spending as leading indicators of cement prices, and (3) consumer
price index, number of housings starts, and global iron ore price
as leading indicators of steel. On the other hand, several studies
that investigated the ENR’s CCI found consumer price index, num-
ber of housings starts, crude oil prices, and number of housings
starts to be leading indicators of CCI (which is composed of ce-
ment, steel, lumber, and common labor costs) (Ashuri et al. 2012a;
Shahandashti and Ashuri 2013; Xu and Moon 2013; Choi et al.
2021). The identified lead-lag relationships between material price
indexes or material clusters further enhances the predictability of
the main construction materials. For instance, forecasting models

of concrete, wood, and asphalt and paving mixtures can be com-
plemented by using metals and plastic prices as additional leading
indicators to those models.

Addition to the Body of Knowledge

This paper makes significant contributions to the body of knowl-
edge. As offering a first attempt toward the investigation of infla-
tion transmission among the different construction materials, the
practical implications of this paper’s findings can be multifold.
Construction contractors and subcontractors can adjust their pro-
curement plans for the identified inflation-susceptible materials
to mitigate the impact of their inflated prices. For example, contrac-
tors can utilize this paper’s identified causal relationships in
planning procurement strategies for “Architectural coatings” and
“Gypsum products” using the prices of “Concrete products” as
leading indicator. Similarly, project owners can benefit from this
paper’s findings to assist their budget-related decisions. For in-
stance, inflated prices of “Fabricated structural metal products”
and “Plastic construction products” would present Departments
of Transportation with leading indicators and early warning signs
of inflation in “Asphalt” prices.

Finally, researchers can use the findings of this paper in improv-
ing the accuracy of the forecasting models of material prices.
Existing studies have not explored using one construction materi-
al’s prices as a leading indicator of another construction material’s
prices bearing in mind that the time-series tests conducted in this
paper indicate that current prices of construction materials can help
forecasting short-term escalations in the prices of other construc-
tion prices.

Conclusion and Future Work

This paper investigated inflation transmission among the various
materials associated with the construction industry. First, the au-
thors collected data from BLS for the producer price indices of
a total of 16 construction elements. Second, the causal relationships
between the materials’ PPI were modeled and then verified in terms
of their significance using the Granger causality test. Ultimately,
only directly proportional relationships were included in the analy-
sis to strictly reflect inflation transmission rather than overall price
fluctuations. The significant and positive causal relationships were
then presented in the form of a binary matrix and a weighted matrix.

Third, network analysis was performed to identify the inflation
transmission capacity, susceptibility to inflation, and inflation
intermediatory capacity associated with each material. Fourth,
modularity-based clustering was conducted to group the materials’
PPI based on their interconnectivities and causal relationships to
identify inflation transmission path among the various materials’
sectors.

As such, the authors developed a total of 120 VAR models to
analyze the mutual relationship for each pair of materials. A total of
103 directed causal relationships were found to contribute to infla-
tion transmission among the materials. The network analysis
showed that the materials with the highest inflation transmission

Table 8. Difference between out-degree and in-degree centralities of paving and asphalt mixtures

Construction materials Out-degree centrality In-degree centrality Difference Conclusion

Asphalt felts and coatings 1.516 1.787 −0.270 Inflation receiver
Asphalt 0.218 3.726 −3.507 Inflation receiver
Paving mixtures and blocks 2.046 1.155 0.891 Inflation transmitter
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capacities include (1) “Fabricated structural metal products”;
(2) “Plastic construction products”; (3) “Concrete products”;
(4) “Flat glass”; and (5) “Brick and structural clay tile.” Ultimately,
it is concluded that significant changes in the price of these materi-
als can be utilized as leading indicators of price escalations in the
supply chain and other construction materials.

In addition to the aforementioned materials, “Architectural coat-
ings,” despite having low inflation transmission capacity, has high
inflation intermediatory capacity, indicating that any increase in its
price may lead to cascading effect to the whole construction
material network. Finally, metals and plastics materials were found
to be highly transmitters of inflation to other materials, whereas
concrete, wood, and finishing products were found to be the most
susceptible. Ultimately, the findings of this paper provide clear in-
sights on the key materials that may indicate overall inflation in
construction cost. Furthermore, this study provides industry practi-
tioners with the materials that can serve as early warning signs of
overall inflation in the construction industry.

This paper’s findings pave the way for more enhanced forecast-
ing models of construction material prices. Inspired by the discus-
sion and findings of this paper, future research studies can
• incorporate this paper’s identified associations into short-term

forecasting models to enhance the predictability of construction
material prices;

• analyze inflation transmission between the construction sector
and other important sectors;

• investigate the inflation transmission of each of the construction
materials on the overall construction price;

• build hybrid prediction models that combine time-series and
artificial intelligence techniques for construction materials by
considering the causal relationships identified in this paper as
well as other macroeconomic and market variables;

• assess whether the inclusion of this paper’s identified relation-
ships can enhance the accuracy of those models in case of the
occurrence of special events;

• attempt to identify long-term inflation transmissions between
materials in the construction supply chain; and

• develop a micro-level index for construction industry–related
perturbations as related to labor, material, and equipment.

Data Availability Statement

All data, models, and code generated or used during the study
appear in the published article.
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